
 ���®
IBM® DB2® for Linux®, UNIX®, and Windows®

Best practices
Tuning and monitoring database

system performance

Steve Rees
Senior Technical Staff Member
DB2 Performance

Thomas Rech
Senior Consultant
DB2 SAP Center of Excellence

Olaf Depper
Principal
Information Management SAP
Ecosystem

Naveen K Singh
Senior S/W Engineer
DB2 Monitor Infrastructure

Gang Shen
Executive I/T Specialist
IBM Information Management

Roman B. Melnyk
Senior Writer
DB2 Information Development

Last updated: July 2013

Tuning and monitoring database system performance Page 2 of 80

Executive summary ... 4

Introduction .. 5

The first step: configuring for good performance ... 6

Hardware configuration ... 6

AIX configuration .. 8

Solaris and HP-UX configuration .. 9

Linux configuration ... 9

Partitioned database environments... 11

Choice of code page and collation... 11

Physical database design .. 12

Initial DB2 configuration settings.. 13

DB2 autonomics and automatic parameters .. 14

Explicit configuration settings ... 15

Statistics collection ... 16

Considerations for SAP and other ISV environments 16

The next step: monitoring system performance .. 17

Delta values and DB2 monitor table functions.. 19

Easy & powerful monitoring of DB2 performance with Optim
Performance Manager (OPM) .. 21

A good ‘starter set’ of DB2 performance queries 22

A helpful short-cut: the MONREPORT module...................................... 35

Other important data to collect .. 36

Cross-partition monitoring in partitioned database environments 37

Performance Tuning and Troubleshooting.. 38

Types of problems that you might see.. 39

Disk bottlenecks ... 40

Disk bottlenecks: The overall picture ... 51

CPU bottlenecks ... 52

Tuning and monitoring database system performance Page 3 of 80

System CPU bottlenecks: The overall picture .. 59

Memory bottlenecks .. 61

‘Lazy System’ bottlenecks... 63

System bottlenecks – the Overall Picture ... 71

Localized and system-wide troubleshooting... 72

Best Practices... 74

Conclusion .. 76

Further reading... 77

Contributors.. 77

Notices ... 79

Trademarks ... 80

Contacting IBM .. 80

Tuning and monitoring database system performance Page 4 of 80

Executive summary
Most DB2 systems go through something of a “performance evolution”. The system must
first be configured, both from hardware and software perspectives. In many ways, this
sets the stage for how the system behaves when it is in operation. Then, after the system
is deployed, a diligent DBA monitors system performance, in order to detect any
problems that might develop. If such problems develop, we come to the next phase –
troubleshooting. Each phase depends on the previous ones, in that without proper
preparation in the previous phase, we are much more likely to have difficult problems to
solve in the current phase.

This paper presents DB2 system performance best practices following this same
progression. We begin by touching on a number of important principles of hardware and
software configuration that can help ensure good system performance. Then we discuss
various monitoring techniques that help you understand system performance under both
operational and troubleshooting conditions. Lastly, because performance problems can
occur despite our best preparations, we talk about how to deal with them in a step-wise,
methodical fashion.

Tuning and monitoring database system performance Page 5 of 80

Introduction
System performance issues, in almost any form, can significantly degrade the value of a
system to your organization. Reduced operational capacity, service interruptions, and
increased administrative overhead all contribute to higher total cost of ownership (TCO).
A lack of understanding of the basic principles of system configuration, monitoring, and
performance troubleshooting can result in prolonged periods of mildly-to-seriously poor
performance and reduced value to the organization.

By spending some time early on to consider basic configuration guidelines and to
establish sound system monitoring practices, you will be better prepared to handle many
typical performance problems that might arise. The result is a data server that can
perform at a higher level and may provide an improved return on investment (ROI).

Tuning and monitoring database system performance Page 6 of 80

The first step: configuring for good performance
Some types of DB2 deployment, such as the IBM Smart Analytics System, or IBM
PureData System for Operational Analytics, or those within SAP systems, have
configurations that are tightly specified. In the IBM PureData case, hardware factors,
such as the number of CPUs, the ratio of memory to CPU, the number and configuration
of disks, as well as software versions, are pre-specified, based on thorough testing to
determine the optimal configuration. In the SAP case, hardware configuration is not as
precisely specified; however, there are a great many sample configurations available. In
addition, SAP best practice provides recommended DB2 configuration settings. If you are
using a DB2 deployment for a system that provides well-tested configuration guidelines,
you should generally take advantage of the guidelines in place of more generic rules-of-
thumb.

Consider a proposed system for which you do not already have a detailed hardware
configuration. An in-depth study of system configuration is beyond the scope of this
paper. However, there are a number of basic guidelines that are well worth the time to
understand and apply. Your goal is to identify a few key configuration decisions that get
the system well on its way to good performance. This step typically occurs before the
system is up and running, so you might have limited knowledge of how it will actually
behave. In a way, you have to make a “best guess,” based on your knowledge of what the
system will be doing. Fine tuning and troubleshooting based on actual monitoring data
collected from the system, are dealt with later in this paper.

Hardware configuration
CPU capacity is one of the main independent variables in configuring a system for
performance. Because all other hardware configuration typically flows from it, it is not
easy to predict how much CPU capacity is required for a given workload. In business
intelligence (BI) environments, 1.5 terabyte (TB) of active raw data per processor core is a
reasonable estimate. For other environments, a sound approach is to gauge the amount of
CPU required, based on one or more existing DB2 systems. For example, if the new
system needs to handle 50% more users, each running SQL that is at least as complex as
that on an existing system, it would be reasonable to assume that 50% more CPU capacity
is required. Likewise, other factors that predict a change in CPU usage, such as different
throughput requirements or changes in the use of triggers or referential integrity should
be taken into account as well.

After you have your best estimate of CPU requirements (derived from available
information), other aspects of hardware configuration start to fall into place. Although
you must consider the required system disk capacity in gigabytes or terabytes, the most
important factors regarding performance are the capacity in I/Os per second (IOPS), or in
megabytes per second of data transfer. In practical terms, this is determined by the
number and type of disks involved: ‘spinning’ or hard-disk drives (HDDs), solid-state
disks (SSDs), flash drives, etc…

Tuning and monitoring database system performance Page 7 of 80

Why is that the case? The evolution of CPUs over the past decade has seen incredible
increases in speed, whereas the evolution of disk drives (apart from the most modern
flash drives or SSDs) has been more in terms of increased capacity and reduced cost.
There have been improvements in seek time and transfer rate for spinning disks, but they
haven’t kept pace with CPU speeds. So to achieve the aggregate performance needed
with modern systems, using multiple disks is more important than ever, especially for
systems that will drive a significant amount of random disk I/O. Often, the temptation is
to use close to the minimum number of disks that can contain the total amount of data in
the system, but this generally leads to very poor performance.

For high performance applications, SSDs or flash drives can be excellent options.
Because they have no moving parts, they are able to process both read and write
operations extraordinarily quickly, when compared to HDDs. Random reads and writes,
in particular, can be up to 200x faster, and even sequential scans can proceed two to three
times more quickly. Because of higher cost, SSDs are often reserved for smaller and
more performance-sensitive areas of the database, such as temporary table space storage
in a data warehouse. However, the price of SSDs and flash drives is dropping quickly,
making this an increasingly realistic option for many customers. You should definitely
consider them for performance-sensitive IO-bound workloads.

In the case of RAID arrays of HDDs, a rule-of-thumb is to configure at least ten to twenty
disks per processor core. For SAN storage servers, a similar number is recommended;
however, in this case, a bit of extra caution is warranted. Allocation of space on storage
servers is often done more with an eye to capacity rather than throughput. It is a very
good idea to understand the physical layout of database storage, to ensure that the
inadvertent overlap of logically separate storage does not occur. For example, a
reasonable allocation for a 4-way system might be eight arrays of eight drives each.
However, if all eight arrays share the same eight underlying physical drives, the
throughput of the configuration would be drastically reduced compared to eight arrays
spread over 64 physical drives. See the best practices “Database Storage” (
https://ibm.biz/Bdx2My) and “Physical Database Design” (https://ibm.biz/Bdx2nr) for
more information on storage configuration best practices.

It is good practice to set aside some dedicated (unshared) disk for the DB2 transaction
logs, especially in transactional systems. This is because the I/O characteristics of the logs
are very different from other consumers such as DB2 containers, and the competition
between log I/O and other types of I/O can result in a logging bottleneck, especially in
systems with a high degree of write activity.

In general, a RAID-1 pair of disks (HDDs) can provide enough logging throughput for
up to 500 reasonably write-intensive DB2 transactions per second. Greater throughput
rates, or high-volume logging (for example, during bulk inserts or ETL processing),
requires greater log throughput, which can be provided by additional disks in a RAID-10
configuration, connected to the system through a write-caching disk controller. The
troubleshooting section below describes how to tell if the log is a bottleneck.

Because CPUs and HDDs effectively operate on different time scales – nanoseconds
versus microseconds – you need to decouple them to enable reasonable processing

https://ibm.biz/Bdx2My
https://ibm.biz/Bdx2nr

Tuning and monitoring database system performance Page 8 of 80

performance. This is where memory comes into play. In a database system, the main
purpose of memory is to avoid I/O, and so up to a point, the more memory a system has,
the better it can perform. Fortunately, memory costs have dropped significantly over the
last several years, and systems with hundreds of gigabytes (GB) of RAM are not
uncommon. In general, four to eight gigabytes per processor core should be adequate for
most applications.

AIX configuration
There are relatively few AIX parameters that need to be changed to achieve good
performance. For the purpose of these recommendations, we assume an AIX level of 6.1
or later. Again, if there are specific settings already in place for your system (for example,
an IBM PureData system or SAP configuration), those should take precedence over the
following general guidelines.

 The VMO parameter LRU_FILE_REPAGE should be set to 0. This parameter
controls whether AIX victimizes computational pages or file system cache pages.
In addition, minperm should be set to 3. These are both default values in AIX 6.1
and later.

 The AIO parameter maxservers can be initially left at the default value of ten
per CPU. This parameter controls the number of asynchronous IO kprocs or
threads that AIX creates per processor. After the system is active, maxservers
is tuned as follows:

1 Collect the output of the ps –elfk | grep aio command and
determine if all asynchronous I/O (AIO) kernel processes (aioservers) are
consuming the same amount of CPU time.

2 If they are, maxservers might be set too low. Increase maxservers by
10%, and repeat step 1.

3 If some aioservers are using less CPU time than others, the system has at
least as many of them as it needs. If more than 10% of aioservers are
using less CPU, reduce maxservers by 10% and repeat step 1.

 The AIO parameter maxreqs should be set to MAX(NUM_IOCLEANERS x 256,
4096). This parameter controls the maximum number of outstanding AIO
requests.

 The hdisk parameter queue_depth should be based on the number of physical
disks in the array. For example, for IBM disks, the default value for
queue_depth is 3, and experiments have resulted in a recommended value that
would be 3 x number-of-devices. This parameter controls the number of
queuable disk requests.

Tuning and monitoring database system performance Page 9 of 80

 The disk adapter parameter num_cmd_elems should be set to the sum of
queue_depth for all devices connected to the adapter. This parameter controls
the number of requests that can be queued to the adapter.

 Use scalable volume groups to avoid offset data blocks and allow for large PV
sizes and numbers. Do not mirror or stripe using the AIX LVM as this will
potentially conflict with storage subsystem striping and can result in the storage
subsystem I/O becoming more random, in which case it could confuse the
caching algorithms in the storage subsystem and result in reduced performance.

Solaris and HP-UX configuration
Setting sufficient kernel settings on HP-UX and Solaris is important for both the stability
and performance of DB2 on these operating systems. For DB2 running on Solaris or HP-
UX, the db2osconf utility is available to check and recommend kernel parameters based
on the system size. You can use db2osconf to specify the kernel parameters based on
memory and CPU, or with a general scaling factor that compares the current system
configuration to an expected future configuration.

A good approach is to use a scaling factor of 2 or higher if running large systems, such as
SAP applications. In general, db2osconf gives you a good initial starting point to
configure Solaris and HP-UX, but it does not deliver the optimal value, because it cannot
consider current and future workloads.

In HP-UX environments, in addition to the results provided by running db2osconf, you
might also want to consider tuning the following:

 Changing the internal attributes of the db2sysc executable using the chatr
command: chatr +pd 256M +pi 256M db2sysc. This will increase the
virtual memory page sizes from the default 1 MB to 256 MB.

 A larger-than-default base page size allows the operating system to manage
memory more efficiently, especially on systems with large RAM. This is achieved
by executing kctune base_pagesize = 16.

 HP-UX supports a modified scheduling policy, known as SCHED_NOAGE. This
will prevent the increase or decrease of a process priority. Changing the default
scheduling policy is especially useful in OLTP environments. It is achieved by
starting DB2 with /usr/bin/rtsched –s SCHED_NOAGE –p 178
db2start

Linux configuration
When a Linux system is used as a DB2 server, the DB2 database manager will
automatically enforce certain minimum kernel settings for memory management (like
SHMMAX or SHMALL) and for IPC communication (like the number and size of
semaphores).

Tuning and monitoring database system performance Page 10 of 80

However, in larger and more complex environments some additional kernel parameters
might have to be changed for optimal performance. Because Linux distributions change,
and because this environment is highly flexible, we only discuss some of the most
important settings that need to be validated on the basis of the Linux implementation.
For a complete list of validated DB2 Linux environments refer to this link
http://www.ibm.com/software/data/db2/linux/validate/.

Some important Linux tunables are:

 To influence the Linux kernel in swap decisions in a way that is appropriate for a
DB2 server, set vm.swappiness to 0 (default: 60) Note that in environments
where an application server like SAP shares the host with DB2, setting
vm.swappiness:0 might cause performance issues with the application. In
such cases, a value of 10 is often a reasonable compromise.

 To influence the management of page cache on the Linux server, tuning the
parameters vm.dirty_ratio and vm.dirty_background_ratio is
important. A good starting point is usually to set vm.dirty_ratio:10 and
vm.dirty_background_ratio:5.

 On SUSE Linux Enterprise Server, it is recommend to disable barrier at mount
time for ext3 and ext4 file systems by using the mount option barrier=0.
This is the default setting on other Linux distributions.

The Linux operating system supports three I/O schedulers (NOOP, Deadline and CFQ).
While the default CFQ scheduler is usually a good choice, sometimes a performance
benefit can be seen by using the Deadline scheduler for file systems containing the DB2
table space containers. This is due to the fact that the Deadline scheduler favors reads
versus write operations – and typically databases see more read requests than write
requests. In general, it requires some experimentation to confirm the benefit of this
change.

Tuning the Linux network kernel parameters is especially important in multi-tier
environments where many application servers connect to the database. In these
configurations, you will typically want to tune the send buffer and receive buffer sizes as
well as the minimum, initial and maximum size, in /etc/sysctl.conf:

 net.core.wmem_max = 268435456.

 net.core.rmem_max = 268435456

 net.ipv4.tcp_wmem = 4096 1048576 268435456

 net.ipv4.tcp_rmem = 4096 1048576 268435456

Tuning and monitoring database system performance Page 11 of 80

Partitioned database environments
The decision to use a hash-partitioned database environment is not generally made based
purely on data volume, but more on the nature of the workload. As a general guideline,
most partitioned database deployments are in the area of data warehousing and business
intelligence. Partitioned databases are highly recommended for large complex query
environments, because the shared-nothing architecture allows for outstanding scalability.
For smaller data marts (up to about 1 TB), which are unlikely to grow rapidly, a DB2
Enterprise Server Edition (ESE) configuration is often a good choice, potentially with
intra-query parallelism (INTRA_PARALLEL) enabled. However, large or fast-growing BI
environments benefit greatly from partitioned databases.

Although a thorough treatment of partitioned database system design is beyond the
scope of this paper, a basic description of CPU-to-partition allocation is fairly
straightforward.

A typical partitioned database system usually has one processor core per data partition.
For example, a system with N processor cores would likely have the catalog on partition
0, and have N additional data partitions. If the catalog partition will be heavily used (for
example, to hold single partition dimension tables), it might be allocated a processor core
as well. If the system will support very many concurrent active users, two cores per
partition might be required.

In terms of a general guide, you should plan on about 1.5TB of active raw data per
partition.

The IBM PureData for Operational Analytics documentation
(http://www.ibm.com/software/data/puredata/operationalanalytics/) contains in-depth
information regarding partitioned database configuration best practices. This
documentation contains useful information for custom deployments as well.

Choice of code page and collation
As well as affecting database behavior, the choice of code page or code set and collating
sequence can have a strong impact on performance. The use of Unicode has become very
widespread because it allows you to represent a greater variety of character strings in
your database than has been the case with traditional single-byte code pages. Unicode is
the default for new DB2 databases. However, because Unicode code sets use multiple
bytes to represent some individual characters, there can be increased disk and memory
requirements. For example, the UTF-8 code set, which is one of the most common
Unicode code sets, uses from one to four bytes per character. An average string
expansion factor due to migration from a single-byte code set to UTF-8 is very difficult to
estimate because it depends on how frequently multi-byte characters are used. For
typical North American content, there is usually no expansion. For most western
European languages, the use of accented characters typically introduces an expansion of
around 10%.

In addition to this, the use of Unicode can cause extra CPU consumption relative to
single-byte code pages. First, if expansion occurs, the longer strings require more work to

http://www.ibm.com/software/data/puredata/operationalanalytics/

Tuning and monitoring database system performance Page 12 of 80

manipulate. Second, and more significantly, the algorithms used by the more
sophisticated Unicode collating sequences, such as CLDR181_NO, can be much more
expensive than the typical SYSTEM collation used with single-byte code pages. This
increased expense is due to the complexity of sorting Unicode strings in a culturally-
correct way. Operations that are impacted include sorting, string comparisons, LIKE
processing, and index creation.

If Unicode is required to properly represent your data, choose the collating sequence
with care.

 If the database will contain data in multiple languages, and correct sort order of
that data is of paramount importance, use one of the culturally correct collations
(for example, CLDR181_xxx). Depending on the data and the application, this
could have a performance overhead of 1.5 to 3 times more, relative to the
IDENTITY sequence.

 There are both normalized and non-normalized varieties of culturally-correct
collation. Normalized collations (for example, CLDR181_NO) have additional
checks to handle malformed characters, whereas non-normalized collations (for
example, CLDR181_NX) do not. Unless the handling of malformed characters is
an issue, we recommend using the non-normalized version, because there is a
performance benefit in avoiding the normalization code. That said, even non-
normalized culturally correct collations are very expensive.

 If a database is being moved from a single-byte environment to a Unicode
environment, but does not have rigorous requirements about hosting a variety of
languages (most deployments will be in this category), ‘language aware’
collation might be appropriate. Language aware collations (for example,
SYSTEM_819_BE) take advantage of the fact that many Unicode databases
contain data in only one language. They use the same lookup table-based
collation algorithm as single-byte collations such as SYSTEM_819, and so are
very efficient. As a general rule, if the collation behavior in the original single-
byte database was acceptable, then as long as the language content does not
change significantly following the move to Unicode, language-aware collation
should be considered. This can provide very large performance benefits relative
to culturally correct collation.

Physical database design
The details of physical database design are well covered in the best practices papers
Physical database design for OLTP environments (https://ibm.biz/Bdx2nr) and Physical
database design for data warehouse environments (https://ibm.biz/Bdx2np) but for our
purposes, we address a couple of the top-level best practices here.

 In general, automatic storage (AS) and file-based database managed storage
(DMS) regular table spaces give better performance than system managed
storage (SMS) regular table spaces. SMS is often used for temporary table spaces,

https://ibm.biz/Bdx2nr
https://ibm.biz/Bdx2np

Tuning and monitoring database system performance Page 13 of 80

especially when the temporary tables are very small; however, the performance
advantage of SMS in this case is shrinking over time.

 In the past, DMS raw device table spaces had a fairly noticeable performance
advantage over AS and DMS file table spaces. However, with the introduction of
direct I/O (now defaulted through the NO FILE SYSTEM CACHING clause in
the CREATE TABLESPACE and the ALTER TABLESPACE statements), AS and
DMS file table spaces provide virtually the same performance as DMS raw
device table spaces.

 If the size of a row happens to be just over half the page size of the table space it
uses, this will leave almost half the page empty. While this can be intentional
sometimes (avoiding page-level contention for a particularly hot table), generally
that much waste is not desirable, and it would more efficient to store the table in
a larger page size table space.

Initial DB2 configuration settings
The DB2 configuration advisor
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.
admin.cmd.doc%2Fdoc%2Fr0008960.html), also known as the AUTOCONFIGURE
command, takes basic system guidelines that you provide, and determines a good
starting set of DB2 configuration values. The AUTOCONFIGURE command can provide
real improvements over the default configuration settings, and is recommended as a way
to obtain initial configuration values. Some additional fine-tuning of the
recommendations generated by the AUTOCONFIGURE command is often required,
based on the characteristics of the system.

Here are some suggestions for using the AUTOCONFIGURE command:

 Even though the AUTOCONFIGURE command is run automatically at database
creation time since DB2 v9.1, it is still a good idea to run the AUTOCONFIGURE
command explicitly. This is because you then have the ability to specify
keyword/value pairs that help customize the results for your system.

 Run (or re-run) the AUTOCONFIGURE command after the database is
populated. This provides the tool with more information about the nature of the
database. Ideally, ‘populated’ means with the amount of active data that you use
(which affects buffer pool size calculations, for example). Significantly too much
or too little data makes these calculations less accurate.

 Try different values for important AUTOCONFIGURE command keywords,
such as mem_percent, tpm, and num_stmts to get an idea of which, and to what
degree, configuration values are affected by these changes.

 If you are experimenting with different keywords and values, use the apply
none option. This gives you a chance to compare the recommendations with the
current settings.

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0008960.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0008960.html

Tuning and monitoring database system performance Page 14 of 80

 Specify values for all keywords, because the defaults might not suit your system.
For example, mem_percent defaults to 25%, which is too low for a dedicated DB2
server; 85% is the recommended value in this case.

DB2 autonomics and automatic parameters
Recent releases of DB2 database products have significantly increased the number of
parameters that are either automatically set at instance or database start-up time, or that
are dynamically tuned during operation. For most systems, automatic settings provide
better performance than all but the most carefully hand-tuned systems. This is
particularly due to the DB2 self-tuning memory manager (STMM), which dynamically
tunes total database memory allocation as well as four of the main shared memory
consumers in a DB2 system: the buffer pools, the lock list, the package cache, and the sort
heap.

Because these parameters apply on a partition-by-partition basis, using the STMM in a
partitioned database environment should be done with some caution. On partitioned
database systems, the STMM continuously measures memory requirements on a single
partition (automatically chosen by the DB2 system, but that choice can be overridden),
and ‘pushes out’ heap size updates to all partitions on which the STMM is enabled.
Because the same values are used on all partitions, the STMM works best in partitioned
database environments where the amounts of data, the memory requirements, and the
general levels of activity are very uniform across partitions. If a small number of
partitions have skewed data volumes or different memory requirements, the STMM
should be disabled on those partitions, and allowed to tune the more uniform ones. For
example, the STMM should generally be disabled on the catalog partition.

For partitioned database environments with skewed data distribution, where continuous
cross-cluster memory tuning is not advised, the STMM can be used selectively and
temporarily during a ‘tuning phase’ to help determine good manual heap settings:

 Enable the STMM on one ‘typical’ partition. Other partitions continue to have the
STMM disabled.

 After memory settings have stabilized, disable the STMM and manually ‘harden’
the affected parameters at their tuned values.

 Deploy the tuned values on other database partitions with similar data volumes
and memory requirements (for example, partitions in the same partition group).

 Repeat the process if there are multiple disjointed sets of database partitions
containing similar volumes and types of data and performing similar roles in the
system.

The configuration advisor generally chooses to enable autonomic settings where
applicable. This includes automatic statistics updates from the RUNSTATS command
(very useful), but excludes automatic reorganization and automatic backup. These can be
very useful as well, but need to be configured according to your environment and

Tuning and monitoring database system performance Page 15 of 80

schedule for best results. Automatic statistics profiling should remain disabled by
default. It has quite high overhead and is intended to be used temporarily under
controlled conditions and with complex statements.

Explicit configuration settings
Some parameters do not have automatic settings, and are not set by the configuration
advisor. These need to be dealt with explicitly. We only consider parameters that have
performance implications.

 logpath or newlogpath determine the location of the transaction log. Even the
configuration advisor cannot decide for you where the logs should go. As
mentioned above, the most important point, from a performance perspective, is
that they should not share disk devices with other DB2 objects, such as table
spaces, or be allowed to remain in the default location, which is under the
database path. Where possible, transaction logs should ideally be placed on
dedicated storage with sufficient throughput capacity to ensure that a bottleneck
won’t be created.

 logbufsz determines the size of the transaction logger internal buffer, in 4KB
pages. The default value of 256 pages is too small for good performance in many
production environments. The configuration advisor always increases it, but
possibly not enough, depending on the input parameters. A value of around
1024 pages is a good general range, and represents only a very small total
amount of memory in the overall scheme of a database server.

 buffpage determines the number of pages allocated to each buffer pool that is
defined with a size of -1. The best practice is to ignore buffpage, and either
explicitly set the size of buffer pools that have an entry in
SYSCAT.BUFFERPOOLS, or let the STMM tune buffer pool sizes automatically.

 logfilsiz determines the size of each transaction log file on disk. The log files
should be sized so that log switches do not occur more frequently than every few
minutes at their fastest. The rate of change of active log numbers can be obtained
by querying MON_GET_TRANSACTION_LOG. If a larger logfilsiz causes an
unacceptably long time between log switches during quieter times, you may
choose to schedule some manual switches to trigger archiving.

 diagpath determines the location of various useful DB2 diagnostic files. It
generally has little impact on performance, except possibly in partitioned or
clustered database environments. The default location of diagpath on all
partitions is typically on a shared, NFS or GPFS-mounted path. The best practice
is to override diagpath to a local, non-shared directory for each partition. This
prevents all partitions from trying to update the same file with diagnostic
messages. Instead, these are kept local to each partition, and contention is greatly
reduced.

Tuning and monitoring database system performance Page 16 of 80

 DB2_PARALLEL_IO is not a configuration parameter, but a DB2 registry
variable. It is typical for DB2 systems to use storage consisting of arrays of disks
(which are presented to the operating system by the storage controller as a single
device) or to use file systems that span multiple devices. The consequence is that
by default, a non-pureScale DB2 database system makes only one prefetch
request at a time to a table space container. This is done with the understanding
that multiple requests to a single device are serialized anyway. But if a container
resides on an array of disks, there is an opportunity to dispatch multiple prefetch
requests to it simultaneously, without serialization. This is where
DB2_PARALLEL_IO comes in. It tells the DB2 system that prefetch requests can
be issued to a single container in parallel. The simplest setting is
DB2_PARALLEL_IO=* (meaning that all containers reside on multiple –
assumed in this case to be six – disks), but other settings also control the degree
of parallelism and which table spaces are affected. For example, if you know that
your containers reside on a RAID-5 array of four disks, you might set
DB2_PARALLEL_IO to “*:3”. Whether or not particular values benefit
performance also depends on the extent size, the RAID segment size, and how
many containers use the same set of disks. Note that on DB2 pureScale systems,
DB2_PARALLEL_IO defaults to ‘*’, whereas on non-pureScale configurations it
defaults to off. See “Database Storage” (https://ibm.biz/Bdx2My) for more
information on storage configuration and DB2_PARALLEL_IO.

Statistics collection
It’s no exaggeration to say that having the right statistics is often critical to achieving the
best SQL performance, especially in complex query environments. For a complete
discussion of this topic, see “Writing and Tuning Queries for Optimal Performance”
(https://ibm.biz/Bdx2ng).

Considerations for SAP and other ISV environments
If you are running a DB2 database server for an ISV application such as SAP, some best
practice guidelines that take into account the specific application might be available. The
most straightforward mechanism is the DB2 registry variable DB2_WORKLOAD, which
has to be set to the value SAP in SAP environments. This will enable aggregated registry
variables that are optimized for SAP workloads.

In SAP environments, the database configuration has to follow SAP standards, for
example in regards of database code page, table space page and extent size as well as
naming conventions. During the installation of a SAP NetWeaver system an initial set of
DB2 configuration parameters is applied. In addition, SAP Notes describe the preferred
DB2 parameter settings for each supported DB2 version. For example, recommended
minimum parameters settings for SAP NetWeaver systems based on DB2 10.1 are
described in, SAP Note 1692571 (“DB6: DB2 10.1 Standard Parameter Settings”). In
addition to configuration recommendations, you will also find best practices regarding
the administration of DB2 databases in various SAP notes.

https://ibm.biz/Bdx2My
https://ibm.biz/Bdx2ng

Tuning and monitoring database system performance Page 17 of 80

SAP environments offer a powerful monitoring and administration platform in
transaction “DBACockpit”. In newer SAP releases, the DBACockpit is based on DB2 in-
memory monitoring functions described in this paper.

Pay special attention to SAP applications when using partitioned databases. SAP uses
partitioned databases mainly in their SAP NetWeaver Business Warehouse (BW)
product. The recommended layout has the DB2 system catalog, the dimension and
master tables, plus the SAP base tables on Partition 0. All SAP application servers
connect to partition 0. This leads to a different workload on this partition compared to
the other partitions in the partitioned cluster. Because of the additional workload, up to
eight processors might be assigned to just partition 0. As the SAP BW workload becomes
more highly parallelized, with many short queries running concurrently, the number of
partitions for SAP BW is typically smaller than for other applications. In other words,
more than one CPU per data partition is required.

To find more details about the initial setup for DB2 and SAP, please check the SAP
Service Marketplace (service.sap.com) or the SAP Community Network
(http://scn.sap.com/community/db2-for-linux-unix-windows).

Other recommendations and best practices might apply for other non-SAP ISV
environments, such as the choice of a code page or code set and collating sequence,
because they must be set to a predetermined value. Refer to the application vendor’s
documentation for details.

The next step: monitoring system performance
After devising an initial system configuration, it is important to put a monitoring strategy
in place to keep track of many important system performance metrics over time. This not
only gives you critical data to refine that initial configuration to be more tailored to your
requirements, but it also prepares you to address new problems that might appear on
their own or following software upgrades, increases in data or user volumes, or new
application deployments.

There are hundreds of metrics to choose from, but collecting all of them can be counter-
productive due to the sheer volume of data produced. You want metrics that are:

 Easy to collect – You don’t want to have to use complex tools for everyday
monitoring, and you don’t want the act of monitoring to significantly burden the
system.

 Easy to understand – You don’t want to have to look up the meaning of the
metric each time you see it.

 Relevant to your system – Not all metrics provide meaningful information in all
environments.

http://scn.sap.com/community/db2-for-linux-unix-windows

Tuning and monitoring database system performance Page 18 of 80

 Sensitive, but not too sensitive – A change in the metric should indicate a real
change in the system; the metric should not fluctuate on its own.

The DB2 database product has many monitoring elements, and we discuss those that
meet these requirements.

We draw a distinction between operational monitoring (which is something done on a
day-to-day basis) and exception monitoring (collecting extra data to help diagnose a
problem). The primary difference is that operational monitoring needs to be very light
weight (not consuming much of the system it is measuring) and generic (keeping a broad
‘eye’ out for potential problems that could appear anywhere in the system). In this
section, we focus primarily on operational monitoring.

A DB2 database system provides some excellent sources of monitoring data. The primary
mechanisms as of DB2 Version 9.7 are monitor table functions. These represent a
significant improvement over the snapshot infrastructure of previous versions, providing
not only additional monitoring data, but doing so with reduced overhead. The table
functions focus on summary data, where counters, timers, and histograms maintain
running totals of activity in the system. By sampling these monitor elements over time,
you can derive the average activity that has taken place between the start and end times,
which can be very informative.

Using a photographic analogy, most monitor table functions give us a single picture of
system activity. In some cases, it is instantaneous, like flash photography, but more often
it is a ‘time exposure’, showing what’s happened over a considerable period of time. The
DB2 system also provides ‘motion picture’ monitoring, which records the stream of
execution of a series of individual activities. This is achieved with trace-like mechanisms,
such as event monitors (especially activity event monitors.) These tools provide a much
more comprehensive, detailed recording of system activity than the summary you get
from monitor table functions. However, traces produce a large amount of data and
impose a greater overhead on the system. Consequently, they are more suitable for
exception monitoring than for operational monitoring. That said, as with monitor table
functions, the latest generation of activity event monitors impose a much lower overhead
on the system compared to statement event monitors of previous versions.

There is no reason to limit yourself to just metrics regarding the DB2 engine itself. In
fact, non-DB2 data is more than just a nice-to-have. Contextual information is key for
performance problem determination. The users, the application, the operating system,
the storage subsystem, and the network – all of these can provide valuable information
about system performance. Fortunately, DB2 now provides key operating system
information via table functions such as ENV_GET_SYSTEM_RESOURCES. Including
metrics from outside of the DB2 database software is an important part of producing a
complete overall picture of system performance.

Because you plan regular collection of operational metrics throughout the life of the
system, it is important to have a way to manage all that data. For many of the possible
uses you have for your data, such as long-term trending of performance, you want to be
able to do comparisons between arbitrary collections of data that are potentially many

Tuning and monitoring database system performance Page 19 of 80

months apart. The DB2 database engine itself facilitates this kind of data management
very well. Analysis and comparison of monitoring data becomes very straightforward,
and you already have a robust infrastructure in place for long-term data storage and
organization.

As mentioned above, recent releases of the DB2 database product have shifted the
emphasis in monitoring from textual snapshot output to SQL interfaces such as the
monitoring table functions. As well as introducing new metrics and reducing overhead,
this also makes management of monitoring data with DB2 very straightforward, because
you can easily redirect the data from the table functions and administration views right
back into DB2 tables. For deeper dives, event and activity monitor data can also be
written to DB2 tables, providing similar benefits.

Delta values and DB2 monitor table functions
If you are used to DB2 snapshots from previous releases, you are probably familiar with
the concept of the RESET MONITOR command. This command allowed you to reset the
internal monitor elements to zero, so that the next time you captured a snapshot on that
connection, you would have values for just the interval since the reset. This is important,
because the monitored interval might have very different activity from the total period
since database activation. In particular, the longer a database is active, the more the
monitor element values trend toward the true average behavior, and ‘damp out’ the
peaks and valleys we might be interested in.

In order to maximize efficiency, the monitor table function values cannot be reset.
Instead, we will use SQL to calculate ‘delta values’ for the period we’re interested in.
This means that we will first capture a sample of monitor data at the beginning of the
interval, wait some time and capture again at the end, and then just find the difference
between these two collections to determine the activity during the interval. Fortunately,
this is a pretty straightforward process in SQL

In the following example, we will find the delta values for data logical and physical
bufferpool reads.

1. First, we create a place to keep our baseline data (collected at the beginning of
the interval we’re interested in.) We will use a declared global temporary table
(DGTT), to give somewhere temporary (but persistent for the database
connection) where we can keep our baseline, and that gives us isolation from
other users. Of course, if we wanted to share our baseline across multiple
connections, we could just use a regular table. Note that a user temporary table
space needs to exist before the baseline DGTTs can be created. Fortunately, it
can be quite small, since the baseline DGTTs will only contain a single sample
from the table functions.

 declare global temporary table
 mgb_baseline
 as
 (select *

Tuning and monitoring database system performance Page 20 of 80

 from table(mon_get_bufferpool(null,-2)))
 with no data
 on commit preserve rows;

2. Once we have the temporary table, we can collect our baseline data. We want to
make sure there’s just one collection in the table at a time, so we delete any
previous data first.

 delete from session.mgb_baseline;

 insert
 into session.mgb_baseline
 select *
 from table(mon_get_bufferpool(null,-2));

3. Now we have a baseline for our data from mon_get_bufferpool. We wait a
bit of time, to allow activity in our interval to occur and be recorded by internal
DB2 monitor counters.

4. Once we reach the end of the desired interval, we query the desired elements
from mon_get_bufferpool, and subtract off the corresponding baseline values.
This gives us the activity that’s happened only during the interval we are
interested in.

-- Set up a common table expression (‘with clause’)
-- to calculate deltas for each table function we reference

with mgb_delta
 (MEMBER,
 BP_NAME,
 POOL_DATA_L_READS,
 POOL_DATA_P_READS)
as (
 select
 mgb.MEMBER,
 substr(mgb.BP_NAME,1,20) as BP_NAME,
 mgb.POOL_DATA_L_READS - mgb_baseline.POOL_DATA_L_READS,
 mgb.POOL_DATA_P_READS - mgb_baseline.POOL_DATA_P_READS
 from
 table(MON_GET_BUFFERPOOL(null,-2)) as mgb,
 session.mgb_baseline as mgb_baseline
 where
 mgb.MEMBER = mgb_baseline.MEMBER and
 mgb.BP_NAME = mgb_baseline.BP_NAME
)

-- Then pick out the values we need from our
-- ‘mgb_delta’ common table expression

select
 MEMBER,
 BP_NAME,
 POOL_DATA_L_READS,

Tuning and monitoring database system performance Page 21 of 80

 POOL_DATA_P_READS
from mgb_delta;

A few notes about the above example, since we’re going to follow this pattern
below:

 These queries may look a little ‘bulky’, but the process is exactly the
same in all of them: define one or more common table expressions to
find the delta values for the table functions we need (just straightforward
subtraction), and then follow this with the actual query to return the
desired values and/or calculations. They are very well suited to ‘cut and
paste’.

 The common table expression is tailored to just find the delta values
we’re interested in here, but it could be done once to find a superset of
columns that any one query needs (maybe all the columns in the table
function), and then reused. In that case, it would probably be set up as a
view instead.

 The BP_NAME column is important here, since it’s the ‘primary key’ of
the output of mon_get_bufferpool. We need to make sure we have a 1:1
mapping from the rows in the baseline to the rows returned from the
closing or ‘final’ call to mon_get_bufferpool. Different table functions
have different key columns.

 Each time you execute this query, it calls mon_get_bufferpool again, and
each time it does that, it might get a slightly different set of data for the
final sample. If there were multiple queries to be done and you wanted
them all to see exactly the same data, then the data for the closing call to
mon_get_bufferpool could be collected once and stored in a table, and
used multiple times in place of the call to mon_get_bufferpool in the
query.

Easy & powerful monitoring of DB2 performance with Optim
Performance Manager (OPM)
DB2 provides a comprehensive and powerful set of performance monitoring metrics,
accessible through snapshots, table functions, administrative views and event monitors.
While these interfaces together provide a complete view of DB2 performance, it can
sometimes be challenging to pull all the relevant data together on an ongoing basis,
particularly if many DB2 databases or instances need to be monitored.

This is where InfoSphere® Optim™ Performance Manager (OPM) can have a significant
impact. OPM exploits DB2’s native monitoring interfaces to bring together the most
important performance indicators in an organized, powerful and easy-to-use way. This
greatly speeds the process of establishing a monitoring regimen and getting down to the
core performance issues in the system. OPM not only builds on DB2’s monitoring
interfaces to collect & visualize real-time performance data, it also provides an historical

Tuning and monitoring database system performance Page 22 of 80

performance repository to store and analyze metrics over time. This means that OPM
can help you “go back in time” to study the system’s current behavior in comparison
with how it was at prior times of good, poor or average performance. This is an
extremely powerful feature. When combined with OPM’s ability to alert you when
monitored metrics reach warning or critical levels, its powerful investigation workflows
help you to efficiently get to root cause. With the ability of the Extended Insight feature
to measure true end-to-end performance, the overall OPM package provides significant
additional value over monitoring with native DB2 interfaces.

In the following section, sample queries for collecting key performance metrics directly
from DB2 are accompanied by guidance on finding the same information in OPM.

A good ‘starter set’ of DB2 performance queries
Most of the metrics that these queries collect can come from the database snapshot (GET
SNAPSHOT FOR DATABASE command). However, as mentioned earlier, the best
practice is to access these elements through the appropriate SQL interfaces
(MON_GET_WORKLOAD, MON_GET_BUFFERPOOL, etc.), which provide access to
the most current set of monitoring metrics, and make analysis and long-term
management simpler.

The database configuration parameters affecting monitoring (MON_REQ_METRICS,
MON_ACT_METRICS and MON_OBJ_METRICS) must be at BASE (the default) or
EXTENDED if the monitor table functions are to provide the data we need. Fortunately,
these switches are dynamic and do not require a database reactivation to turn them on or
off. In the examples below, we highlight the table function columns that are used to
determine each metric.

A note about partitioned database environments and DB2 pureScale environments: if you
are running in a multi-partition environment, you should include MEMBER in your
monitoring SELECT statements, to distinguish the rows that you get back for each
partition.

1. The number of transactions, SELECT statements, and INSERT, UPDATE, or
DELETE statements executed:

-- DB2 10.5 can use mon_get_workload

with
mgw_delta (
 MEMBER,
 SELECT_SQL_STMTS,
 UID_SQL_STMTS,
 TOTAL_APP_COMMITS)
as (
 select
 mgw.MEMBER,
 sum(mgw.SELECT_SQL_STMTS
 - mgw_baseline.SELECT_SQL_STMTS),
 sum(mgw.UID_SQL_STMTS

Tuning and monitoring database system performance Page 23 of 80

 - mgw_baseline.UID_SQL_STMTS),
 sum(mgw.TOTAL_APP_COMMITS
 - mgw_baseline.TOTAL_APP_COMMITS)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select
 MEMBER,
 SELECT_SQL_STMTS,
 UID_SQL_STMTS,
 TOTAL_APP_COMMITS
from mgw_delta

-- On earlier versions of DB2, we use SNAPDB
with
sdb_delta (
 SELECT_SQL_STMTS,
 UID_SQL_STMTS,
 COMMIT_SQL_STMTS)
as (
 select
 sum(sdb.SELECT_SQL_STMTS
 - sdb_baseline.SELECT_SQL_STMTS),
 sum(sdb.UID_SQL_STMTS
 - sdb_baseline.UID_SQL_STMTS),
 sum(sdb.COMMIT_SQL_STMTS
 - sdb_baseline.COMMIT_SQL_STMTS)
 from
 sysibmadm.snapdb as sdb,
 session.sdb_baseline as sdb_baseline)

select
 SELECT_SQL_STMTS,
 UID_SQL_STMTS,
 COMMIT_SQL_STMTS
from sdb_delta;

OPM:
 Workload Dashboard -> Throughput pane
 Overview Dashboard -> Data Server Throughput pane

These provide an excellent base level measurement of system activity.

Note that sum() is used around columns from MON_GET_WORKLOAD
because this table function returns one row for each workload defined in the
system. Even if Workload Management (WLM) isn’t in use, at least two rows
will be returned. Of course, the sum() can be excluded, if WLM is in use, and
workload-level data is desired. In such a case, though, an extra predicate would

Tuning and monitoring database system performance Page 24 of 80

need to be added to the join, linking WORKLOAD_NAME on mgw with
mgw_baseline.

2. Buffer pool hit ratios, measured separately for data and index activity. This is
obtained from MON_GET_BUFERPOOL

with mgb_delta
(MEMBER,
 BP_NAME,
 POOL_DATA_L_READS,
 POOL_DATA_P_READS,
 POOL_TEMP_DATA_L_READS,
 POOL_TEMP_DATA_P_READS,
 POOL_ASYNC_DATA_READS,
 POOL_INDEX_L_READS,
 POOL_INDEX_P_READS,
 POOL_TEMP_INDEX_L_READS,
 POOL_TEMP_INDEX_P_READS,
 POOL_ASYNC_INDEX_READS)
as (select
 mgb.MEMBER,
 mgb.BP_NAME,
 mgb.POOL_DATA_L_READS
 - mgb_base.POOL_DATA_L_READS,
 mgb.POOL_DATA_P_READS
 - mgb_base.POOL_DATA_P_READS,
 mgb.POOL_TEMP_DATA_L_READS
 - mgb_base.POOL_TEMP_DATA_L_READS,
 mgb.POOL_TEMP_DATA_P_READS
 - mgb_base.POOL_TEMP_DATA_P_READS,
 mgb.POOL_ASYNC_DATA_READS
 - mgb_base.POOL_ASYNC_DATA_READS,
 mgb.POOL_INDEX_L_READS
 - mgb_base.POOL_INDEX_L_READS,
 mgb.POOL_INDEX_P_READS
 - mgb_base.POOL_INDEX_P_READS,
 mgb.POOL_TEMP_INDEX_L_READS
 - mgb_base.POOL_TEMP_INDEX_L_READS,
 mgb.POOL_TEMP_INDEX_P_READS
 - mgb_base.POOL_TEMP_INDEX_P_READS,
 mgb.POOL_ASYNC_INDEX_READS
 - mgb_base.POOL_ASYNC_INDEX_READS
 from
 table(MON_GET_BUFFERPOOL(null,-2)) as mgb,
 session.mgb_baseline as mgb_base
 where
 mgb.member = mgb_base.member and
 mgb.bp_name = mgb_base.bp_name)

select MEMBER,
 case
 when sum(b.POOL_DATA_L_READS + b.POOL_TEMP_DATA_L_READS)
 < 1000 then null else
 100 * sum(b.POOL_DATA_L_READS
 + b.POOL_TEMP_DATA_L_READS

Tuning and monitoring database system performance Page 25 of 80

 - (b.POOL_DATA_P_READS
 + b.POOL_TEMP_DATA_P_READS
 - b.POOL_ASYNC_DATA_READS))
 / decimal(sum(b.POOL_DATA_L_READS
 + b.POOL_TEMP_DATA_L_READS))
 end as DATA_BP_HR,
 case
 when sum(b.POOL_INDEX_L_READS +
 b.POOL_TEMP_INDEX_L_READS)
 < 1000 then null else
 100 * sum(b.POOL_INDEX_L_READS
 + b.POOL_TEMP_INDEX_L_READS
 - (b.POOL_INDEX_P_READS
 + b.POOL_TEMP_INDEX_P_READS
 - b.POOL_ASYNC_INDEX_READS))
 / decimal(sum(b.POOL_INDEX_L_READS
 + b.POOL_TEMP_INDEX_L_READS))
 end as INDEX_BP_HR
from mgb_delta as b

group by MEMBER

OPM:
 Buffer Pool and I/O Dashboard

Buffer pool hit ratios are one of the most fundamental metrics we have, and give
an important overall measure of how effectively the system is exploiting memory
to avoid disk I/O. Hit ratios of 80-85% or better for data and 90-95% or better for
indexes are generally considered good for an OLTP environment, and of course
these ratios can be calculated for individual buffer pools using data from the
MON_GET_BUFFERPOOL table function.

Why the CASE clause? The first reason is that this avoids a pesky divide-by-zero
in the case when there has been no activity on a particular buffer pool. The
second reason – really, the reason why we use “< 1000” and not “= 0” – is that for
buffer pools with very low levels of activity, we don’t really care what the hit
ratio is. For example, one logical read and one physical read is NOT grounds to
panic over a 0% hit ratio!

Although these metrics are generally useful, for systems such as data
warehouses that frequently perform large table scans, data hit ratios are often
irretrievably low, because data is read into the buffer pool and then not used
again before being evicted to make room for other data. In these cases, it’s best
to focus on temporary data and temporary index hit ratios, as they offer the best
opportunity for performance improvements in data warehouse applications.

3. Buffer pool physical reads and writes per transaction (here we get the metrics we
need from two different table functions):

with mgb_delta
(MEMBER,
 POOL_DATA_P_READS,

Tuning and monitoring database system performance Page 26 of 80

 POOL_TEMP_DATA_P_READS,
 POOL_INDEX_P_READS,
 POOL_TEMP_INDEX_P_READS,
 POOL_DATA_WRITES,
 POOL_INDEX_WRITES)
as (
 select
 mgb.MEMBER,
 sum(mgb.POOL_DATA_P_READS
 - mgb_baseline.POOL_DATA_P_READS),
 sum(mgb.POOL_TEMP_DATA_P_READS
 - mgb_baseline.POOL_TEMP_DATA_P_READS),
 sum(mgb.POOL_INDEX_P_READS
 - mgb_baseline.POOL_INDEX_P_READS),
 sum(mgb.POOL_TEMP_INDEX_P_READS
 - mgb_baseline.POOL_TEMP_INDEX_P_READS),
 sum(mgb.POOL_DATA_WRITES
 - mgb_baseline.POOL_DATA_WRITES),
 sum(mgb.POOL_INDEX_WRITES
 - mgb_baseline.POOL_INDEX_WRITES)
 from
 table(MON_GET_BUFFERPOOL(null,-2)) as mgb,
 session.mgb_baseline as mgb_baseline
 where
 mgb.MEMBER = mgb_baseline.MEMBER and
 mgb.BP_NAME = mgb_baseline.BP_NAME
 group by mgb.MEMBER),

mgw_delta (
 MEMBER,
 TOTAL_APP_COMMITS)
as (
 select
 mgw.MEMBER,
 sum(mgw.TOTAL_APP_COMMITS
 - mgw_baseline.TOTAL_APP_COMMITS)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select b.MEMBER,
 case when w.TOTAL_APP_COMMITS < 1000 then null
 else (b.POOL_DATA_P_READS
 + b.POOL_INDEX_P_READS
 + b.POOL_TEMP_DATA_P_READS
 + b.POOL_TEMP_INDEX_P_READS)
 / decimal(w.TOTAL_APP_COMMITS) end
 as BP_PHYS_RD_PER_TX,

 case when w.TOTAL_APP_COMMITS < 1000 then NULL
 else (b.POOL_DATA_WRITES
 + b.POOL_INDEX_WRITES)

Tuning and monitoring database system performance Page 27 of 80

 / decimal(w.TOTAL_APP_COMMITS) end
 as BP_PHYS_WR_PER_TX

from mgb_delta as b,
 mgw_delta as w
where b.MEMBER = w.MEMBER

OPM:
 Overview Dashboard -> I/O and Disk Space pane

These metrics are closely related to buffer pool hit ratios, but have a slightly
different purpose. Although we can talk about target values for hit ratios, there
are not really any sensible targets for reads and writes per transaction. Why do
we bother with these calculations? Because disk I/O is such a major factor in
database performance, it is useful to have multiple ways of looking at it. As well,
these calculations include writes, whereas hit ratios only deal with reads. Lastly,
in isolation, it’s difficult to know, for example, whether a 94% index hit ratio is
worth trying to improve. If we do only 100 logical index reads per hour, and 94
of them are in the buffer pool, working to keep those last 6 from turning into
physical reads is not a good use of time. However, if our 94% index hit ratio were
accompanied by a statistic that each transaction did twenty physical reads
(which could be further broken down by data and index, regular and
temporary), the buffer pool hit ratios might well deserve some investigation.

The metrics aren’t just ‘physical reads and writes’, but are normalized per
transaction, or per minute in OPM. We follow this trend through many of the
metrics. The purpose is to decouple metrics from the length of time data was
collected, and from whether the system was very busy or less busy at that time.
In general, this helps ensure that we get similar values for our metrics, regardless
of whether we are very precise about how and when monitoring data is
collected. Some amount of consistency in the timing and duration of data
collection is a good thing; however, normalization reduces it from being ‘critical’
to being ‘a good idea’.

4. The ratio of database rows read to rows returned:

with
mgw_delta (
 MEMBER,
 ROWS_READ,
 ROWS_RETURNED)
as (
 select
 mgw.MEMBER,
 sum(mgw.ROWS_READ
 - mgw_baseline.ROWS_READ),
 sum(mgw.ROWS_RETURNED
 - mgw_baseline.ROWS_RETURNED)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline

Tuning and monitoring database system performance Page 28 of 80

 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select w.MEMBER, case
 when ROWS_RETURNED < 1000 then null
 else ROWS_READ / decimal(ROWS_RETURNED) end
 as ROWS_READ_PER_ROWS_RET
from mgw_delta as w

OPM:
 Overview Dashboard -> Workload pane

This calculation gives us an indication of the average number of rows that are
read from database tables in order to find the rows that qualify. Low numbers
are an indication of efficiency in locating data, and generally show that indexes
are being used effectively. For example, this number can be very high in the case
where the system does many table scans (possibly due to indexes not being
available, or old statistics), and millions of rows need to be inspected to
determine if they qualify for the result set. On the other hand, this statistic can be
very low in the case of access to a table through a fully-qualified unique index.
Index-only access plans (where no rows need to be read from the table) do not
cause ROWS_READ to increase.

In an OLTP environment, this metric is often no higher than 2 or 3, indicating
that most access is through indexes instead of table scans. This metric is a simple
way to monitor plan stability over time – an unexpected increase is often an
indication that an index is no longer being used and should be investigated.

5. The amount of time spent sorting per transaction:

with
mgw_delta (
 MEMBER,
 TOTAL_APP_COMMITS,
 TOTAL_SECTION_SORT_TIME)
as (
 select
 mgw.MEMBER,
 sum(mgw.TOTAL_APP_COMMITS
 - mgw_baseline.TOTAL_APP_COMMITS),
 sum(mgw.TOTAL_SECTION_SORT_TIME
 - mgw_baseline.TOTAL_SECTION_SORT_TIME)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select w.MEMBER, case

Tuning and monitoring database system performance Page 29 of 80

 when w.TOTAL_APP_COMMITS < 1000 then null else
 w.TOTAL_SECTION_SORT_TIME /
 decimal(w.TOTAL_APP_COMMITS) end
 as SORT_TIME_PER_TX
 from mgw_delta as w

OPM:
 Workload Dashboard -> Sorting pane

This is an efficient way to handle sort statistics, because any extra overhead due
to spilled sorts automatically gets included here. That said, you might also want
to collect TOTAL_SORTS and SORT_OVERFLOWS for ease of analysis,
especially if your system has a history of sorting issues.

6. The amount of lock wait time accumulated per thousand transactions:

with
mgw_delta (
 MEMBER,
 TOTAL_APP_COMMITS,
 LOCK_WAIT_TIME,
 LOCK_ESCALS)
as (
 select
 mgw.MEMBER,
 sum(mgw.TOTAL_APP_COMMITS
 - mgw_baseline.TOTAL_APP_COMMITS),
 sum(mgw.LOCK_WAIT_TIME
 - mgw_baseline.LOCK_WAIT_TIME),
 sum(mgw.LOCK_ESCALS
 - mgw_baseline.LOCK_ESCALS)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select w.MEMBER,
 case when w.TOTAL_APP_COMMITS < 1000 then null else
 1000 * w.LOCK_WAIT_TIME
 / decimal(w.TOTAL_APP_COMMITS) end
 as LOCK_WAIT_TIME_PER_1000_TX,
 case when w.TOTAL_APP_COMMITS < 1000 then null else
 1000 * w.LOCK_ESCALS
 / decimal(w.TOTAL_APP_COMMITS)end
 as LOCK_ESCALS_PER_1000_TX
from mgw_delta as w

OPM:
 Overview Dashboard -> Locking pane

Tuning and monitoring database system performance Page 30 of 80

Excessive lock wait time often translates into poor response time, so it is
important to monitor. We normalize to one thousand transactions because lock
wait time on a single transaction is typically quite low. Scaling up to one
thousand transactions simply gives us measurements that are easier to handle.

7. The number of deadlocks and lock timeouts per thousand transactions:

with
mgw_delta (
 MEMBER,
 DEADLOCKS,
 LOCK_TIMEOUTS,
 TOTAL_APP_COMMITS)
as (
 select
 mgw.MEMBER,
 sum(mgw.DEADLOCKS
 - mgw_baseline.DEADLOCKS),
 sum(mgw.LOCK_TIMEOUTS
 - mgw_baseline.LOCK_TIMEOUTS),
 sum(mgw.TOTAL_APP_COMMITS
 - mgw_baseline.TOTAL_APP_COMMITS)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select w.MEMBER, case
 when w.TOTAL_APP_COMMITS < 1000 then null else
 1000 * (w.DEADLOCKS + w.LOCK_TIMEOUTS)
 / decimal(w.TOTAL_APP_COMMITS)end
 as DL_AND_LOCK_TMO_PER_1000_TX
from mgw_delta as w

OPM:
 Overview Dashboard -> Locking pane

Although deadlocks are comparatively rare in most production systems, lock
timeouts can be more common. (Note that the default lock timeout value is -1 –
that is, infinite – so lock timeouts will only occur if this has been explicitly
changed.) The application usually has to handle them in a similar way: re-
executing the transaction from the beginning. Monitoring the rate at which this
happens helps avoid the case where many deadlocks or lock timeouts drive
significant extra load on the system without the DBA being aware.

8. The number of dirty steal triggers per thousand transactions:

with
mgw_delta (
 MEMBER,

Tuning and monitoring database system performance Page 31 of 80

 TOTAL_APP_COMMITS)
as (
 select
 mgw.MEMBER,
 mgw.TOTAL_APP_COMMITS - mgw_baseline.TOTAL_APP_COMMITS
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID),

mgb_delta (
 MEMBER,
 POOL_DRTY_PG_STEAL_CLNS)
as (
 select
 mgb.MEMBER,
 mgb.POOL_DRTY_PG_STEAL_CLNS
 - mgb_baseline.POOL_DRTY_PG_STEAL_CLNS
 from
 table(MON_GET_BUFFERPOOL(null,-2)) as mgb,
 session.mgb_baseline as mgb_baseline
 where
 mgb.MEMBER = mgb_baseline.MEMBER and
 mgb.BP_NAME = mgb_baseline.BP_NAME)

select w.MEMBER,
 case when sum(w.TOTAL_APP_COMMITS) < 1000 then null else
 1000 * sum(b.POOL_DRTY_PG_STEAL_CLNS)
 / decimal(sum(w.TOTAL_APP_COMMITS)) end as
 DRTY_STEAL_PER_1000_TX
from mgw_delta as w,
 mgb_delta as b
where w.MEMBER = b.MEMBER
group by w.MEMBER

OPM:
 Buffer Pool and I/O Dashboard -> Prefetch and Page Cleaning tab

A ‘dirty steal’ is the least preferred way to trigger buffer pool cleaning.
Essentially, the processing of an SQL statement that is in need of a new buffer
pool page is interrupted while updates on the victim page are written to disk. If
dirty steals are allowed to happen frequently, they can have a significant impact
on throughput and response time. Note that dirty steals are currently only
reported if ‘classic’ page cleaning is used. If alternate page cleaning (see below)
is in use, dirty steal counts are always zero.

9. The number of package cache inserts per thousand transactions, and the percent
of time spent compiling SQL:

with
mgw_delta (
 MEMBER,

Tuning and monitoring database system performance Page 32 of 80

 PKG_CACHE_INSERTS,
 TOTAL_COMPILE_TIME,
 TOTAL_RQST_TIME,
 TOTAL_APP_COMMITS)
as (
 select
 mgw.MEMBER,
 sum(mgw.PKG_CACHE_INSERTS
 - mgw_baseline.PKG_CACHE_INSERTS),
 sum(mgw.TOTAL_COMPILE_TIME
 - mgw_baseline.TOTAL_COMPILE_TIME),
 sum(mgw.TOTAL_RQST_TIME
 - mgw_baseline.TOTAL_RQST_TIME),
 sum(mgw.TOTAL_APP_COMMITS
 - mgw_baseline.TOTAL_APP_COMMITS)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select w.MEMBER,
 case when w.TOTAL_APP_COMMITS < 1000 then null else
 1000 * w.PKG_CACHE_INSERTS
 / decimal(w.TOTAL_APP_COMMITS) end
 as PKG_CACHE_INS_PER_1000_TX,
 case when w.TOTAL_RQST_TIME < 1000 then null else
 100.0 * (w.TOTAL_COMPILE_TIME
 / decimal(w.TOTAL_RQST_TIME)) end
 as PCT_COMPILE_TIME
from mgw_delta as w

OPM:
 KPI Overview Dashboard -> Caching pane
 Memory Dashboard -> Health Overview pane

Package cache insertions are part of normal execution of the system; however, in
large numbers, they can represent a significant consumer of CPU time. In many
well-designed systems, after the system is running at steady-state, very few
package cache inserts occur and the percent of time spent in compiling SQL is
very low, because the system is using or re-using static SQL or previously
prepared dynamic SQL statements. In systems with a high traffic of ad hoc
dynamic SQL statements, SQL compilation and package cache inserts are
unavoidable. However, these metrics are intended to watch for a third type of
situation, one in which applications unintentionally cause package cache churn
and high CPU consumption by not reusing prepared statements, or by not using
parameter markers in their frequently executed SQL.

10. The amount of log activity per transaction, and the time per log write

Tuning and monitoring database system performance Page 33 of 80

with
mgw_delta (
 MEMBER,
 TOTAL_APP_COMMITS)
as (
 select
 mgw.MEMBER,
 sum(mgw.TOTAL_APP_COMMITS
 - mgw_baseline.TOTAL_APP_COMMITS)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER),

mgtl_delta (
 MEMBER,
 LOG_WRITES,
 LOG_WRITE_TIME)
as (
 select
 mgtl.MEMBER,
 mgtl.LOG_WRITES - mgtl_baseline.LOG_WRITES,
 mgtl.LOG_WRITE_TIME - mgtl_baseline.LOG_WRITE_TIME
 from
 table(MON_GET_TRANSACTION_LOG(-2)) as mgtl,
 session.mgtl_baseline as mgtl_baseline
 where
 mgtl.MEMBER = mgtl_baseline.MEMBER)

select
 w.MEMBER,
 case when w.TOTAL_APP_COMMITS < 1000 then null else
 1000 * tl.LOG_WRITES
 / decimal(w.TOTAL_APP_COMMITS) end
 as LOG_WR_PER_1000_TX,
 case when w.TOTAL_APP_COMMITS < 1000 then null else
 1000 * tl.LOG_WRITE_TIME
 / decimal(w.TOTAL_APP_COMMITS) end
 as LOG_WR_TIME_PER_1000_TX,
 case when tl.LOG_WRITES < 1000 then null else
 tl.LOG_WRITE_TIME
 / decimal(tl.LOG_WRITES) end
 as TIME_PER_LOG_WR
from mgw_delta as w,
 mgtl_delta as tl
where w.MEMBER = tl.MEMBER

OPM:
 Logging Dashboard

The transaction log has significant potential to be a system bottleneck, whether
due to high levels of activity, or to improper configuration, or other causes. By

Tuning and monitoring database system performance Page 34 of 80

monitoring log activity – both in number of writes and in write time – we can
detect problems both from the DB2 side (meaning an increase in number of log
requests driven by the application) and from the system side (often due to a
decrease in log subsystem performance caused by hardware or configuration
problems).

The above query makes use of the MON_GET_TRANSACTION_LOG table
function, which is available as of DB2 10. For earlier releases, you can use the
following, which uses one of the older-style administrative views:

with
sdb_delta (
 COMMIT_SQL_STMTS,
 LOG_WRITE_TIME_S,
 LOG_WRITE_TIME_NS,
 LOG_WRITES)
as (
 select
 sdb.COMMIT_SQL_STMTS - sdb_baseline.COMMIT_SQL_STMTS,
 sdb.LOG_WRITE_TIME_S - sdb_baseline.LOG_WRITE_TIME_S,
 sdb.LOG_WRITE_TIME_NS - sdb_baseline.LOG_WRITE_TIME_NS,
 sdb.LOG_WRITES - sdb_baseline.LOG_WRITES
 from
 SYSIBMADM.SNAPDB as sdb,
 session.sdb_baseline as sdb_baseline)

select
 case when sdb.COMMIT_SQL_STMTS < 1000 then null else
 1000 *
 sdb.LOG_WRITES / decimal(sdb.COMMIT_SQL_STMTS) end
 as LOG_WR_PER_1000_TX,
 case when sdb.COMMIT_SQL_STMTS < 1000 then null else
 1000 *
 (1000 * sdb.LOG_WRITE_TIME_S +
 sdb.LOG_WRITE_TIME_NS / 1000000.0)
 / decimal(sdb.COMMIT_SQL_STMTS) end
 as LOG_WR_TIME_PER_1000_TX,
 case when sdb.LOG_WRITES < 1000 then null else
 (1000 * sdb.LOG_WRITE_TIME_S +
 sdb.LOG_WRITE_TIME_NS / 1000000.0)
 / decimal(sdb.LOG_WRITES) end
 as TIME_PER_LOG_WR
 from sdb_delta as sdb

11. In partitioned database environments, the number of fast communication
manager (FCM) buffers sent and received between partitions:

with
mgw_delta (
 MEMBER,
 FCM_SENDS_TOTAL,
 FCM_RECVS_TOTAL)
as (
 select

Tuning and monitoring database system performance Page 35 of 80

 mgw.MEMBER,
 sum(mgw.FCM_SENDS_TOTAL
 - mgw_baseline.FCM_SENDS_TOTAL),
 sum(mgw.FCM_RECVS_TOTAL
 - mgw_baseline.FCM_RECVS_TOTAL)
 from
 table(MON_GET_WORKLOAD(null,-2)) as mgw,
 session.mgw_baseline as mgw_baseline
 where
 mgw.MEMBER = mgw_baseline.MEMBER and
 mgw.WORKLOAD_ID = mgw_baseline.WORKLOAD_ID
 group by mgw.MEMBER)

select
 MEMBER,
 FCM_SENDS_TOTAL,
 FCM_RECVS_TOTAL
from mgw_delta as w

OPM:
 Connection Dashboard -> Locking and Communication tab

These numbers give the volume of flow of FCM buffers between different
partitions in the partitioned instance, and in particular, whether the flow is
balanced. Significant differences in the numbers of buffers received from
different partitions might indicate a skew in the amount of data that has been
hashed to each partition.

Because this query is specifically targeted for partitioned databases, we pass -2
into MON_GET_WORKLOAD, so that we get data for the entire instance. Then,
we use SUM and GROUP BY to provide information on a per-partition basis.

A helpful short-cut: the MONREPORT module
The monitor table functions provide a wealth of information about system performance,
and queries like those above are a very powerful way to keep track of what’s going on.
However, it’s unlikely that many of them would be entered on-the-fly from the
command line. They’re definitely more suited to putting together into a script for
ongoing monitoring. To get quick, ‘human-readable’ performance monitoring output,
you may want to try MONREPORT.DBSUMMARY. It is a SQL stored procedure
included with recent versions of DB2 that produces a text-based report with key metrics
like bufferpool activity, and various wait and processing times.

call monreport.dbsummary(30)

MONREPORT.DBSUMMARY takes one parameter, which is the number of seconds over
which to collect monitor data. In this way, it reports the all-important delta values,
rather than totals since the database was activated.

The MONREPORT module contains other procedures, such as
MONREPORT.PKGCACHE, MONREPORT.LOCKWAIT and

Tuning and monitoring database system performance Page 36 of 80

MONREPORT.CURRENTSQL, which provide basic drill-down performance
information, and can be helpful if MONREPORT.DBSUMMARY indicates a problem.

Other important data to collect
Although DB2 monitoring elements provide much key operational data, as mentioned
above, it is important to augment this with other types of data:

 DB2 configuration information

Taking regular copies of database and database manager configuration, DB2
registry variables, and the schema definition helps provide a history of any
changes that have been made, and can help to explain changes that arise in
monitoring data.

As an alternative to storing copies of the database and database manager
configurations, DB2 10 also offers the CREATE EVENT MONITOR (change
history) statement. This creates an event monitor that tracks changes made in
these areas.

 Overall system load

If CPU or I/O utilization is allowed to approach saturation, this can create a
system bottleneck that might be difficult to detect using just DB2 monitoring
data. As a result, the best practice is to regularly monitor system load with
vmstat / iostat / netstat (or an all-in-one tool like sar) on UNIX-based systems1,
and perfmon on Windows. You can also use DB2 table functions, such as
ENV_GET_SYSTEM_RESOURCES, to retrieve operating system, CPU, memory,
and other information related to the system. Typically you look for changes in
what is normal for your system, rather than for specific one-size-fits-all values.

 Throughput and response time measured at the application level

An application view of performance, measured above DB2, at the business logic
level, has the advantage of being most relevant to the end user, plus it typically
includes everything that could create a bottleneck, such as presentation logic,
application servers, web servers, multiple network layers, and so on. This data
can be vital to the process of setting or verifying a service level agreement (SLA).
For example, in SAP environments, you would use transaction ST03N for this
monitoring.

The above metrics represent a good core set of data to collect on an ongoing basis. The
DB2 monitoring elements and system load data are compact enough that even if they are
collected every five to fifteen minutes, the total data volume over time is irrelevant in
most systems. Likewise, the overhead of collecting this data is typically in the one to
three percent range of additional CPU consumption, which is a small price to pay for a
continuous history of important system metrics. Configuration information typically

1 For users on AIX and Linux, the nmon tool is a very convenient & integrated way to collect performance metrics.

Tuning and monitoring database system performance Page 37 of 80

changes relatively rarely, so collecting this once a day is usually frequent enough to be
useful without creating an excessive amount of data.

Depending on your environment and the circumstances of your system, you might find it
useful to collect additional data beyond these core metrics:

 Per-buffer pool data, which gives you the opportunity to break down hit ratios
and physical I/O information for each buffer pool (obtained from the
MON_GET_BUFFERPOOL table function as above, with a simple additional
GROUP BY clause.)

 SQL statement data, which gives you information about each such statement
executed in the system, including a breakdown of buffer pool activity, elapsed
time, and CPU consumption (obtained from the
MON_GET_PKG_CACHE_STMT table function.) This can be useful in
identifying statements that are consuming the most resources.

 Connection and unit-of-work data (obtained from the
MON_GET_CONNECTION and MON_GET_UNIT_OF_WORK table functions),
which gives you data similar to what you get from the core database table
functions used above (MON_GET_WORKLOAD, etc.), but broken down by
connection. This provides very useful additional information when drill-down is
required, helping us to understand which application might be causing a
performance problem, as well as a useful breakdown of overall statistics over
different applications.

If you are going to drill down and pick up extra monitoring data, it is simplest to just
collect all elements provided by the table functions in which you are interested, rather
than try to anticipate in advance which fields might be needed.

Cross-partition monitoring in partitioned database
environments
Almost all of the individual monitoring element values mentioned above are reported on
a per-partition or per-member basis, as shown in the samples above. The same applies for
much of the non-DB2 performance data you can collect that report statistics for a single
OS instance (albeit possibly spanning multiple logical DB2 partitions), such as vmstat
and iostat. The monitor granularity is helpful in the sense that it matches that of the
DB2 configuration parameters that you use to control the system. However, in
partitioned database environments, you also have to be able to monitor relative activity
between partitions, for example, to detect imbalances in per-partition data volumes.

Fortunately, the DB2 monitoring data you collect from the table functions contains a
MEMBER column, where appropriate, that helps you query monitoring data by, or
compare data between, partitions or members.

Tuning and monitoring database system performance Page 38 of 80

In general, you expect most monitoring statistics to be fairly uniform across all partitions
in the same DB2 partition group within a cluster. Significant differences might indicate
data skew. Sample cross-partition comparisons to track include:

 Logical and physical buffer pool reads for data and indexes

 Rows read, at the partition level and for large tables

 Sort time and sort overflows

 FCM buffer sends and receives

 CPU and I/O utilization

If, through these metrics, any of the data partitions appear to be significantly more active
(for example, 10-20% busier) than the least active data partitions in the same partition
group (particularly if any of the busier partitions are CPU or I/O saturated) then it is
likely that data repartitioning is required. Finding the number of rows from each large
partitioned table that hashed to each partition will confirm whether significant skew
exists:

select
 COUNT(*) as ROWS,
 DBPARTITIONNUM(<partition key>) as PARTITION
from <partitioned table>
group by DBPARTITIONNUM(<partition key>)

The best practices paper Physical Database Design (https://ibm.biz/Bdx2nr) discusses
how to avoid data skew and minimize expensive non-collocated joins by using the DB2
Design Advisor to choose the right partition keys for your system.

Performance Tuning and Troubleshooting
Even the most carefully configured system occasionally finds itself in need of some
performance tuning, and this is where the operational monitoring data that we collected
comes in very handy.

It is important that we maintain a methodical approach to tuning and troubleshooting.
When a problem occurs, it can be very tempting to apply changes almost at random, in
the hope of fixing the problem. However, when you do this, the probability of actually
addressing the root cause can be relatively low, and you can even make the problem
worse. Here are a few basic rules for performance tuning:

1. Be prepared. Try to understand how the system performs when all is well. Collect
operational monitoring data to track changes in behavior over time.

2. Understand the whole picture. Do not limit yourself to looking only into the DB2
database – collect and analyze data that is coming from the operating system,

https://ibm.biz/Bdx2nr

Tuning and monitoring database system performance Page 39 of 80

storage, network, the application, and also from users. Understanding the nature of
the system helps you to interpret monitoring data.

3. Only tune things that can explain the symptoms you are seeing. Don’t change the
tire if the engine won’t start. Don’t try to fix a disk bottleneck by tuning to reduce
CPU consumption.

4. Change one thing at a time. Observe the effects before changing anything else.

Types of problems that you might see
Performance problems tend to fall into two broad categories: those that affect the entire
system, and those that only affect a part of it, such as a particular application or SQL
statement. During the course of investigation, a problem of one type might turn into the
other, and vice versa. For example, the root cause of an overall system slow-down might
be a single statement, or a system-wide problem might first be seen only in a particular
area. We start with system-wide problems.

Our overall approach to finding the cause of a slowdown is to start at a high level and
then gradually refine our diagnosis. This “decision tree” strategy helps us rule out, as
early as possible, causes that don’t explain the symptoms we see, and is applicable to
both system-wide and more localized problems. This saves effort that would otherwise
be spent making changes that have little or no impact.

Before starting an investigation within a DB2 database, it is often helpful to consider
some preliminary questions, such as the following:

 If there seems to be a performance slowdown, what is it in relation to? What is
our ‘baseline’?

 Is degradation seen on one system over time? Or is it degradation as compared
to a different system, or even a different application? This question might reveal
a variety of possible root causes for the slowdown. Did data volume increase?
Are all hardware upgrades running properly?

 When does the slowdown occur? Slowdowns might show up periodically –
before, during, or after another task is run. Even if the task is not directly related
to the database, it might influence performance by consuming network, CPU or
disk resources.

 Has something changed in the context of the slowdown? Sometimes, new
hardware has been added, or the application has been changed, mass data was
uploaded or more users are accessing the system.

These questions are usually an important part of a consolidated analysis approach, where
database specialists work together with application and infrastructure experts. The DB2
server is almost always just one part of a complex environment of hardware, other
middleware, and applications, and so skills from multiple domains might be required to
solve the problem.

Tuning and monitoring database system performance Page 40 of 80

There are four common types of bottlenecks, each of which is discussed in detail below:

1. Disk

2. CPU

3. Memory

4. ‘Lazy system’

Disk bottlenecks
System Bottleneck > Disk Bottleneck?

The basic symptoms of a disk bottleneck include:

 High I/O wait time, as reported in vmstat or iostat. This is an indication of
the fraction of time that the system is waiting for disk I/O requests to complete.
Up to 20% or 25% is not uncommon, but values above 30% tend to indicate a
bottleneck. High I/O wait time is a particularly good indicator of a bottleneck if
idle CPU time is very low.

 Disks showing up as more than 80% busy in iostat or perfmon.

 Low-mid CPU utilization (25-50%), as seen in vmstat.

 High read & write times reported by DB2. In fact, this is usually the most
important symptom – even more so than how busy the disk is. After all, if the
disk is busy, but DB2 is still seeing good I/O times, then we wouldn’t be likely to
see a big benefit from reducing the disk activity.

with mgtbsp_delta (
 MEMBER,
 TBSP_NAME,
 POOL_DATA_P_READS, POOL_TEMP_DATA_P_READS,
 POOL_XDA_P_READS, POOL_TEMP_XDA_P_READS,
 POOL_INDEX_P_READS, POOL_TEMP_INDEX_P_READS,
 POOL_READ_TIME, POOL_DATA_WRITES, POOL_XDA_WRITES,
 POOL_INDEX_WRITES, POOL_WRITE_TIME,
 DIRECT_READ_REQS, DIRECT_READ_TIME,
 DIRECT_WRITE_REQS, DIRECT_WRITE_TIME)
as (
 select
 mgtbsp.MEMBER,
 mgtbsp.TBSP_NAME,
 sum(mgtbsp.POOL_DATA_P_READS
 - mgtbsp_baseline.POOL_DATA_P_READS),
 <insert sum & difference for remaining items>
 sum(mgtbsp.DIRECT_WRITE_TIME
 - mgtbsp_baseline.DIRECT_WRITE_TIME)
 from
 table(MON_GET_TABLESPACE(null,-2)) as mgtbsp,
 session.mgtbsp_baseline as mgtbsp_baseline

Tuning and monitoring database system performance Page 41 of 80

 where
 mgtbsp.MEMBER = mgtbsp_baseline.MEMBER and
 mgtbsp.TBSP_NAME = mgtbsp_baseline.TBSP_NAME
 group by mgtbsp.MEMBER, mgtbsp.TBSP_NAME)

select
 m.MEMBER, m.TBSP_NAME,
 case when
 m.POOL_DATA_P_READS + m.POOL_TEMP_DATA_P_READS
 + m.POOL_XDA_P_READS + m.POOL_TEMP_XDA_P_READS
 + m.POOL_INDEX_P_READS + m.POOL_TEMP_INDEX_P_READS
 > 100
 then decimal(m.POOL_READ_TIME)
 / (m.POOL_DATA_P_READS + m.POOL_TEMP_DATA_P_READS
 + m.POOL_XDA_P_READS + m.POOL_TEMP_XDA_P_READS
 + m.POOL_INDEX_P_READS + m.POOL_TEMP_INDEX_P_READS)
 else null end as MS_PER_POOL_READ,
 case when
 m.POOL_DATA_WRITES + m.POOL_XDA_WRITES
 + m.POOL_INDEX_WRITES > 100
 then decimal(m.POOL_WRITE_TIME)
 /(m.POOL_DATA_WRITES + m.POOL_XDA_WRITES
 + m.POOL_INDEX_WRITES)
 else null end as MS_PER_POOL_WRITE,
 case when
 m.DIRECT_READ_REQS > 100
 then decimal(m.DIRECT_READ_TIME) / m.DIRECT_READ_REQS
 else null end as MS_PER_DIRECT_READ_REQ,
 case when
 m.DIRECT_WRITE_REQS > 100
 then decimal(m.DIRECT_WRITE_TIME) / m.DIRECT_WRITE_REQS
 else null end as MS_PER_DIRECT_WRITE_REQ
from mgtbsp_delta as m

In the monitoring query above, we find the average time in milliseconds for buffer pool
reads and writes, and for direct read and write requests. As a rule-of-thumb, we would
look for buffer pool read times in the 5-10 ms range, and writes generally a bit faster, in
the 2-5 ms range. Times significantly beyond these (or which are worse than typical for
your system) would suggest a disk bottleneck that needs to be investigated.

Direct read and write requests are used for large objects (LOBs.) For LOBs of around
1MB or larger, the typical read and write times can be quite a bit longer than for buffer
pool operations mentioned above, for example, in the 20-50 ms range. In such a case, a
combination of long LOB write times and heavy disk utilization would suggest a
bottleneck.

If at this point there appears to be a problem, either due to heavy buffer pool I/O or direct
I/O, we should investigate further to identify the root cause. We might need to add more
disks eventually, but first we should check with the storage administrator to determine if
there are any errors which could have a performance impact (for example, rebuilding a
RAID array due to a bad disk, or a failed storage adapter.) If there are no such issues
which would explain the bottleneck, we move on to tuning the DB2 system, particularly
focusing on how the DB2 system uses storage.

Tuning and monitoring database system performance Page 42 of 80

The system administrator can help map the name of one or more busy devices to the
affected file system path or paths. From there, you can determine how the DB2 system
uses the affected path or paths:

 Is the path used by one or more table space containers or database storage paths?
This is determined by querying TBSP_NAME, TBSP_ID and
CONTAINER_NAME from MON_GET_CONTAINER, and looking for the
bottlenecked path or paths in CONTAINER_NAME. This may generate a list of
candidate table spaces to examine, depending on the storage configuration.

 Is the path used for the transaction log? This is determined by examining the
database configuration and looking for the bottlenecked path in ‘Path to log files’
and ‘Mirror log path’.

 Is the path used for DB2 diagnostics? This is determined by examining
DIAG_PATH in the database manager configuration, and looking for the
bottlenecked path in DIAG_PATH.

We consider these cases separately, but first, a few words about DB2 automatic storage.

When Automatic Storage (AS) is in use, the DB2 system will assume responsibility for
provisioning storage for AS-enabled table spaces where AS is enabled, rather than the
database administrator needing to do so. This feature reduces administration effort, as
compared to database-managed storage table spaces, while maintaining the same
performance and capacity benefits. Because all AS table spaces share the same
filesystems and underlying devices, hot-spots are generally avoided, which is also good.
However, this automation also means that it’s a bit more difficult to categorize a table
space disk bottleneck – is it arising from data, index or temporary data activity? – based
only on what storage is affected, since there can be elements of all three in each location.
Likewise, a bottleneck on one storage path may impact several table spaces. So, if a disk
bottleneck occurs and AS is enabled, it may be necessary to look into at least the
preliminary stages of each investigation type (data, or index, or temporary table space
bottleneck?) over multiple table spaces, to get to the root cause.

System Bottleneck > Container or Storage Path Disk Bottleneck > Hot Data Container > Hot Table?
To determine what is causing the container storage path to be a bottleneck, we need to
determine which tables are stored in the affected table space(s), and which ones are most
active. But first, because the container path we’re investigating may contain more than
just regular data, we’ll verify that there is a high level of data access activity present.

1. Does the table space(s) on this path show high levels of physical data reads or
writes? As mentioned, even though this is a data table space container that is on
this path, it could contain other things as well.

with <delta view mgtbsp_delta similar to above>
select m.MEMBER, m.TBSP_ID, m.TBSP_NAME,
 m.POOL_DATA_P_READS, m.POOL_DATA_WRITES
 from mgtbsp_delta as m
 where m.TBSP_ID

Tuning and monitoring database system performance Page 43 of 80

 in (<table space IDs of hot containers>)
order by m.POOL_DATA_P_READS + m.POOL_DATA_WRITES desc

2. Which tables are in these table spaces? Query SYSCAT.TABLES, matching
TBSPACEIDs with TBSP_IDs from MON_GET_CONTAINER, as above.

3. Which tables are most active? Query MON_GET_TABLE, selecting
ROWS_READ, ROWS_INSERTED, ROWS_UPDATED, and ROWS_DELETED
for the table or tables from the table space(s) with the hot container path. Look
for levels of activity that are much higher than other tables.

System Bottleneck > Container or Storage Path Disk Bottleneck > Hot Data Container > Hot Table > SQL
stmt?

Drilling down further, we need to find out what is causing the high level of activity on
this table. Are particular SQL statements causing high activity? Query the SQL package
cache with MON_GET_PKG_CACHE_STMT , using the LIKE predicate on STMT_TEXT
to identify statements that touch the table(s) in which we are interested:

select …
 from table(MON_GET_PKG_CACHE_STMT(NULL,NULL,NULL,-1)) as MGPCS
 where
 translate(cast(substr(STMT_TEXT, 1, 32672) as
 varchar(32672))) like ‘%<hot table name>%’
 order by …
 fetch first … rows only

Columns returned could include rows read and written, buffer pool activity, execution
time, CPU time, and so on. We can use the ORDER BY clause on columns like
ROWS_READ, ROWS_MODIFIED, ROWS_RETURNED, and NUM_EXECUTIONS to
concentrate on those statements that are having the greatest impact on the table. We
assume here that the table name falls in the first 32672 characters of the SQL statement.
Not a perfect assumption, but true in most cases, and required by the LIKE predicate.

We include a FETCH FIRST clause, since if we have an ORDER BY clause included as
well, we’re only interested in the first range of statements. In general, 10 or 20 is
probably enough.

Of course, this technique as shown isn’t fool-proof (as shown here), since there could be
views or aliases used in the SQL statement, that hide the true table name from us. In such
a case, some extra steps to identify other ways that the table might be referred to might
have to be taken before querying the SQL texts.

A much more powerful fool-proof way of finding what statements refer to particular
tables (or indexes) is to use usage lists. These were introduced in DB2 10, and are
described in the DB2 Information Center
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.dbobj.do
c/doc/c0058647.html).

System Bottleneck > Container or Storage Path Disk Bottleneck > Hot Data Container > Hot Table > Hot

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058647.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058647.html

Tuning and monitoring database system performance Page 44 of 80

SQL statement

If we get to this point and identify one or more SQL statements that are causing our I/O
bottleneck, we must next determine whether the statement or statements can be
optimized to reduce I/O. Is the statement driving an unwanted table scan? This can be
verified by examining the access plan with db2exfmt, or by comparing ROWS_READ
with ROWS_RETURNED for the statement in question. Table scans are often a necessary
part of ad hoc queries, but a repeated query that creates a bottleneck due to too much I/O
should be addressed. Out-of-date statistics or an indexing problem might be behind the
use of a table scan. On the other hand, if the affected table is small enough, increasing
buffer pool size might be sufficient to reduce I/O and eliminate the bottleneck. For more
information, see “Writing and Tuning Queries for Optimal Performance”
(https://ibm.biz/Bdx2ng) and “Physical Database Design” (https://ibm.biz/Bdx2nr).

Finally, consider two unusual cases of data container disk bottlenecks:

1. We would expect a table scan to drive large disk reads through the prefetchers. If
there is a problem with prefetching (see 'Lazy System' bottlenecks), a large
portion of the reads into the buffer pool can be done by the agent itself, one page
at a time. Depending on the circumstance, this can result in a mostly-idle ‘lazy
system’, or (as we are considering here) a disk bottleneck, due to the less-efficient
small reads the agent does. So if the bottlenecked container is being driven by a
table scan, but the read sizes in iostat appear much smaller than the
prefetchsize for that table space, insufficient prefetching might be the problem.

2. Ordinarily, page cleaning drives a steady stream of page writes out to the table
space, in order to ensure a good supply of available buffer pool pages for use by
subsequent table space reads. However, if there are problems with the tuning of
page cleaning (see 'Lazy System' bottlenecks), the agent itself can end up doing
much of the cleaning. This often results in ‘bursty’ cleaning – sporadic periods of
intense write activity (possibly creating a disk bottleneck) alternating with
periods of better performance.

More information on diagnosing and solving these two problems is contained in 'Lazy
System' bottlenecks.

System Bottleneck > Container or Storage Path Disk Bottleneck > Hot Index Container > Hot Index?
A bottleneck in a container is more likely to be due to table activity than index activity,
but after we rule out a table as a likely cause, we should investigate the possibility that
index activity is causing the problem.

1. Is there a high level of index read or write activity in this table space? Query
MON_GET_TABLESPACE for the table space with TBSP_ID matching TBSP_ID of
MON_GET_CONTAINER, from above.

with <delta view mgtbsp_delta similar to above>
select m.MEMBER, m.TBSP_ID, m.TBSP_NAME,

https://ibm.biz/Bdx2ng
https://ibm.biz/Bdx2nr

Tuning and monitoring database system performance Page 45 of 80

 m.POOL_INDEX_P_READS, m.POOL_INDEX_WRITES
 from mgtbsp_delta as m
 where M.TBSP_ID
 in (<table space IDs of hot containers>)
 order by m.POOL_INDEX_P_READS + m.POOL_INDEX_WRITES desc

A large and increasing value for POOL_INDEX_P_READS or
POOL_INDEX_WRITES indicates one or more ‘busy indexes’ in this table space.

2. Which indexes in these table spaces are most active? Query SYSCAT.TABLES and
SYSCAT.INDEXES, matching INDEX_TBSPACE with
MON_GET_TABLESPACE.TBSP_NAME, from step 1. This gets us the indexes in
this table space, which we join with the output from MON_GET_INDEX to find out
which are most active.

with <delta view mgi_delta similar to above>
select
 T.TABSCHEMA, T.TABNAME, I.INDNAME,
 M.INDEX_SCANS, M.INDEX_ONLY_SCANS

from syscat.tables T, syscat.indexes I, mgi_delta as M

where T.TABNAME = I.TABNAME
 AND I.TABNAME = M.TABNAME
 AND T.TABSCHEMA = I.TABSCHEMA
 AND I.TABSCHEMA = M.TABSCHEMA
 AND I.IID = M.IID
 AND COALESCE(T.INDEX_TBSPACE, T.TBSPACE) IN

 (<names of table spaces with hot containers>)

order by M.INDEX_SCANS desc

System Bottleneck > Container or Storage Path Disk Bottleneck > Hot Index Container > Hot Index >
Buffer pool too small?

Index access is generally desirable, so at this point it is reasonable to investigate whether
more of the pages of the hot index can be kept in the buffer pool, rather than having to be
read from disk. Increasing the buffer pool size, or relocating the index to a different
buffer pool, might reduce I/O enough to eliminate the bottleneck. In data warehousing
environments, where indexes are often very large, it might be impossible to make enough
buffer pool space available to reduce I/O sufficiently. In that case, reducing the bottleneck
by improving disk I/O bandwidth through adding additional containers might be more
effective.

System Bottleneck > Container or Storage Path Disk Bottleneck > Hot Index Container > Hot Index > Hot
SQL Statement?

If we cannot eliminate the index I/O bottleneck by tuning, such as what occurred when
we identified a ‘hot table’, we might have to drill down further to find the SQL
statements that are driving the index I/O. Unfortunately, we can’t just mine the SQL
statement text for index names as we did before with table names, at least not directly.

Tuning and monitoring database system performance Page 46 of 80

Using the index names that are showing high activity, we determine the tables
corresponding to those indexes, and then use the table names and the methods described
above for hot tables to find the SQL statements that might be using those indexes. There
is no guarantee that a reference to the table means that an index is used. However, if we
focus on SQL statements that drive high volumes of index reads or writes
(POOL_INDEX_P_READS and POOL_INDEX_WRITES from
MON_GET_PKG_CACHE_STMT) we can easily narrow down the candidate statements.
We can then use db2exfmt to confirm that the statements used the indexes we’re
interested in.

As mentioned above, DB2 10 introduces usage lists, which allows the user to track
exactly which SQL statements refer to particular tables or indexes. If a sufficiently recent
version of DB2 is being used, usage reference lists make the process of progressing from
hot indexes to hot SQL statements much easier.

System Bottleneck > Container or Storage Path Disk Bottleneck > Hot Temporary Table Space Container

If the hot container belongs to a temporary table space, we need to consider a couple of
possible causes:

1. Is the high level of temporary table space I/O due to spilled sorts? This can occur
when sorting activity overflows the designated in-memory buffers and must use
a temporary table space instead. If the sort time and spilled sorts monitor
elements are high and increasing, this might be the cause.

with <delta view mgw_delta similar to above>
select w.MEMBER,
 w.TOTAL_SECTION_SORTS,
 w.TOTAL_SECTION_SORT_TIME,
 w.SORT_OVERFLOWS
from mgw_delta as w

The STMM tries to avoid this kind of situation; however if you are not using the
STMM to control sheapthres_shr and sortheap, you might want to
manually increase these values.

2. Is the I/O due to large intermediate results? This is revealed through high
numbers of temporary data physical reads or writes. We would initially check
for these in the table space-level monitoring data, and if there was evidence of
high temporary data I/O, we would then drill down into the SQL monitor data
via MON_GET_PKG_CACHE_STMT, looking for individual statements that
caused high levels of temporary buffer pool activity.

with <delta view mgtbsp_delta similar to above>
select t.MEMBER, t.TBSP_NAME,
 t.POOL_TEMP_DATA_P_READS, t.POOL_DATA_WRITES
 from mgtbsp_delta as t
 where TBSP_ID in (<table space IDs of hot containers>)

Tuning and monitoring database system performance Page 47 of 80

System Bottleneck > Container or Storage Path Disk Bottleneck > Poor Configuration?
Suppose that we have identified one or more of the above types of containers as
bottlenecks, but – as is sometimes the case – beyond that we can see no obvious single
cause. No hot table, no hot index, no hot SQL statement. There are a few possible causes
to investigate:

1. Are there too many ‘fairly active’ tables or indexes in the table space? Even if
none of them is individually active enough to cause the bottleneck on its own, it
is possible that the aggregate activity might be too much for the underlying
disks. One answer would be to distribute the tables and indexes over multiple
table spaces. Another possibility would be to add more containers or storage
paths to the table space (provided they were on different disks than the existing
containers, so that I/O operation capacity was increased).

2. Has a new storage path been added to an automatic storage configuration, but
rebalance not been performed yet? The potential performance benefit of having
a new storage path (assuming it introduces new disk spindles to the AS
configuration) may not be seen until a rebalance is performed, to spread existing
data equally over all paths.

3. Are there too many table spaces sharing the same disks? Many table spaces
spanning the same disks is a natural occurrence when Automatic Storage is in
use, but it can even happen inadvertently, with any table space type, when table
spaces occupy seemingly separate logical volumes that nevertheless use the same
physical disks underneath. As above, total activity – this time across table spaces
instead of tables – might be to blame. The logical response here would be to
move one or more of the table spaces to other disks.

4. Could there be issues with storage configuration below the DB2 software?
Candidate causes here could include too many disks attached via too few disk
controllers, incorrect configuration at the operating system level (see the
discussion on queue_depth and num_cmd_elems above, for example), or
storage errors like RAID array rebuilding, which have a strong performance
impact. Possibly with the help of your storage administrator, you may see
symptoms like very long controller-level I/O times, or very high peak I/O times,
in iostat.

If we get to this point without finding a specific cause of our container disk bottleneck,
we have effectively ruled out the vast majority of ‘tunable problems’, and should
consider adding additional disk operation / throughput capacity to the problem table
space to improve performance.

System Bottleneck > Log Disk Bottleneck?
Although container / storage path disk bottlenecks are more common, a log disk
bottleneck can have a greater impact on system performance. This is because a slow log
can interfere with all INSERT, UPDATE, or DELETE statements on the system, not just
those affecting a particular table or index. As with other types of disk bottlenecks, a main
symptom is very high disk utilization, as reported in iostat or perfmon (90% or

Tuning and monitoring database system performance Page 48 of 80

higher). A log bottleneck also causes long commit time as shown in
MON_GET_WORKLOAD, and, most importantly, longer log write times.

If high disk utilization occurs on the log disk, we first verify that log write times are high.

with <delta view mgtl_delta similar to above>
select
 case when l.NUM_LOG_WRITE_IO > 1000 then
 decimal(l.LOG_WRITE_TIME) / l.NUM_LOG_WRITE_IO
 else NULL end as l.TIME_PER_LOG_WRITE_MS ,

case when l.NUM_LOG_READ_IO > 1000 then
 decimal(l.LOG_READ_TIME) / l.NUM_LOG_READ_IO
 else NULL end as l.TIME_PER_LOG_READ_MS

from mgtl_delta as l

The above query uses the MON_GET_TRANSACTION_LOG table function, introduced
in DB2 10. For earlier versions of DB2, you can use SNAPDB, as follows:

with <delta view sdb_delta similar to above>
select
 case when db.NUM_LOG_WRITE_IO > 1000 then
 (1000.0 * db.LOG_WRITE_TIME_S
 + db.LOG_WRITE_TIME_NS/1000000.0)
 / db.NUM_LOG_WRITE_IO
 else NULL end as TIME_PER_LOG_WRITE_MS ,

case when db.NUM_LOG_READ_IO > 1000 then
 (1000.0 * db.LOG_READ_TIME_S
 + db.LOG_READ_TIME_NS/1000000.0)
 / db.NUM_LOG_READ_IO
 else NULL end AS TIME_PER_LOG_READ_MS

from sdb_delta as db

If the average log I/O time is in an acceptable range (for example, 2-3ms or less), then
there’s not likely to be much benefit in driving down log disk usage. Otherwise, we have
good reason to proceed with further investigations of log performance.

As mentioned in the section on log configuration, if possible, the log should not share a
disk with anything ‘active’ (such as a container, for example) during database operation.
This is one of the first things to verify in the case of a log bottleneck. If the log has its own
disks, we need to dig deeper to understand the cause of the bottleneck.

1. If iostat or MON_GET_TRANSACTION_LOG shows that the log device is
performing more than about 200 operations per second, and if the average I/O
size is about 4 KB, this indicates that log activity is more dominated by I/O
operations than by sheer data volume.

There are a couple of ways to influence this:

Tuning and monitoring database system performance Page 49 of 80

 Some applications in the system might be committing very frequently –
possibly more frequently than necessary. Applications with high commit
rates can be identified by comparing the ratio of commits to activities
completed in MON_GET_CONNECTION, and also by looking at the rate of
commits per minute. In the extreme case (with autocommit enabled, and
with short SQL statements, for example), there is the potential to saturate the
log device. Reducing commit frequency in the application can have a direct
benefit in reducing the log bottleneck.

 Another possible cause of frequent log writes is the log buffer being too
small. When the log buffer fills up, the DB2 system must flush it to disk,
regardless of whether there was a commit. A rapidly increasing number of
log buffer full conditions (as reported by the NUM_LOG_BUFFER_FULL
element in MON_GET_WORKLOAD, MON_GET_CONNECTION, and
others) indicates that this is the likely cause of the problem.

System Bottleneck > Log Disk Bottleneck > Large Number of Log Writes

2. A log bottleneck can also be caused by an excessive volume of data being
written. If, along with high device utilization, iostat also shows that writes to
the log device are much larger than 4 KB, this indicates that data volume is a
bigger factor than high transaction rate.

It might be possible to reduce the volume of data being logged:

a. When a DB2 system updates a row in a table, it logs all column data
from the first modified column to the last modified column – including
any columns in between that are not being modified. Placing columns
that are frequently modified next to one another in the table definition
can reduce the volume of data that is logged during updates.

b. Large object (CLOB, BLOB, DBCLOB) columns are logged by default, but
if the data they contain is recoverable from outside of the database, it
might be appropriate to mark these columns as NOT LOGGED, to
reduce the volume of data being logged during insert, update, or delete
operations.

c. If the excessive log volume is correlated with bulk SQL operations (such
as INSERT with subselect, as is sometimes used for maintenance and
data load procedures), the target table can be set to NOT LOGGED
INITIALLY (NLI). This suspends logging during the current unit of
work. The recovery procedure of the NLI table needs to be taken into
account. However, if it is appropriate in your environment, NLI can
provide a significant reduction in log data volume and a corresponding
performance increase. Of course, if the bulk operation is a
straightforward insert that can be replaced with a call to the load utility,
that would eliminate logging as well.

Tuning and monitoring database system performance Page 50 of 80

d. If the ‘currently committed’ feature is enabled (CUR_COMMIT), DB2
needs to log the ‘before’ value of updated rows. This feature can be
extremely useful in eliminating lock contention between readers and
writers, but it does increase log write volume. The CUR_COMMIT
monitor elements in MON_GET_TRANSACTION_LOG can help
determine if the CUR_COMMIT feature is providing enough benefit to
justify the extra log overhead.

System Bottleneck > Log Disk Bottleneck > High Volume of Data Logged

In either case – whether the log bottleneck is due to a very high rate of log writes or a
very high volume of data being written – it is often not possible or practical to eliminate
the cause of the problem. After you verify that the log configuration follows best
practices as described above, you might need to increase the capacity of the log
subsystem, either by adding additional disks into the log RAID array, or by providing a
dedicated or upgraded caching disk controller.

System Bottleneck > Diagnostic Path Bottleneck?

Heavy disk writes on the DB2 diagnostic path – where the db2diag.log is located – can
cause an overall system slowdown that can be isolated using the
DIAGLOG_WRITE_WAIT_TIME element in table functions such as
MON_GET_WORKLOAD_DETAILS. Like many other types of wait time, we mainly
want to see if it is a large portion of TOTAL_WAIT_TIME .

with
mgwd_xml_delta (
 MEMBER,
 METRIC_NAME,
 VALUE)
as (
 select
 t.MEMBER,
 m.METRIC_NAME,
 sum(m.VALUE - mgwd_xml_baseline.VALUE)
 from
 table(MON_GET_WORKLOAD_DETAILS(null,-2)) AS T,
 table(MON_FORMAT_XML_METRICS_BY_ROW(T.DETAILS)) AS M,
 session.mgwd_xml_baseline as mgwd_xml_baseline
 where
 t.MEMBER = mgwd_xml_baseline.MEMBER and
 m.METRIC_NAME = mgwd_xml_baseline.METRIC_NAME
 group by t.MEMBER, m.METRIC_NAME)

select
 substr(d.METRIC_NAME, 1, 25) as METRIC_NAME,
 d.VALUE
from mgwd_xml_delta as d
where d.METRIC_NAME

Tuning and monitoring database system performance Page 51 of 80

 in (‘TOTAL_WAIT_TIME’, ‘DIAGLOG_WRITE_WAIT_TIME’)

In a partitioned database environment, all partitions generally write to the same
diagnostic path, which is typically shared over the network through NFS or GPFS.
Concurrent writes to db2diag.log from a large number of partitions can cause a high
network and I/O load, as well as synchronization between partitions, thereby degrading
system performance. As mentioned in the configuration section above, a straightforward
solution to this is to have a dedicated diagnostic path (and hence a dedicated db2diag.log
file) for each partition.

Setting the diaglevel database manager configuration parameter to 4 increases the
volume of diagnostic messages by several factors, which can have a significant
performance impact – in particular in large partitioned database environments. A
dramatic slowdown of performance might even be followed by an eventual system stall
due to a file system full condition on DIAGPATH. To avoid this, verify that there is
sufficient free space in the diagnostic file system, by archiving DB2 diagnostic
information or assigning a dedicated file system for the DB2 diagnostic information.

Disk bottlenecks: The overall picture

Tuning and monitoring database system performance Page 52 of 80

Insufficient sortheap?
Missing indexes?

Inadequate disk configuration or subsystem?

Bad plans giving excessive
index scanning?
• Need more or different indexes?
• Buffer pool too small?

Anything sharing the disks?
High transaction rate:
• Too-frequent commits?
• Log buffer filling?

High data volume:
• Logging too much data?

Bad plan giving
 table scan?
• Old statistics?
• Need better indexing?
• Buffer pool too small?

Index
table space

Temp
table space Log

Devices
Data

table space

Disk
bottleneck

System
bottleneck

type?

Figure 1. Illustration of different types of disk bottlenecks.

CPU bottlenecks
System Bottleneck > CPU Bottleneck?

A CPU bottleneck manifests itself in two main ways:

1. Overall CPU saturation. All processors on the system are busy. This is generally
measured as the sum of user CPU time and system CPU time, and is often
collected using the vmstat or perfmon commands, or via
ENV_GET_SYSTEM_RESOURCES. CPU utilization over 95% is considered
saturated.

2. Individual CPU saturation. The load on the system is such that one processor is
fully saturated, but other processors are partially or completely idle. This
generally arises when there is only one heavy application or statement running
on the system at a time. Even though there is available CPU capacity, the system
cannot consume it, and the speed of the application or statement is therefore
limited by the performance of the one busy processor core.

Tuning and monitoring database system performance Page 53 of 80

Also consider the difference between user mode and system mode CPU consumption.
User CPU time is accumulated while the processor is running software outside the
operating system kernel, such as applications or middleware like DB2 for Linux, UNIX,
and Windows. System CPU time is accumulated while running in the operating system
kernel. These amounts are reported separately, and can help us identify the source of a
CPU bottleneck, depending on the distribution between the two. A ratio of between 3:1
and 4:1 in user to system CPU time is typical. If the balance of user to system CPU time in
the bottlenecked system is higher than this, first investigate possible causes of increased
user CPU time.

While we will focus on DB2’s CPU usage, it’s good practice to start out a CPU bottleneck
investigation with seeing whether there are any non-DB2 processes (applications, scripts,
commands, etc.) that may be running out of control and consuming too much CPU. In
such cases, ideally these can be stopped and the CPU bottleneck eliminated.

System Bottleneck > CPU Bottleneck > User CPU Bottleneck
Many causes of a user CPU bottleneck on a DB2 server can be diagnosed through the
DB2 monitor table functions. Drill down to find out which users are consuming the
most CPU time by using the MON_GET_CONNECTION table function:

with <delta view mgc_delta similar to above>
select
 c.MEMBER,
 c.APPLICATION_NAME,
 c.TOTAL_CPU_TIME
from mgc_delta as c
order by c.TOTAL_CPU_TIME desc

Similarly, you can also determine which SQL statements are using the most CPU time
from the MON_GET_PKG_CACHE_STMT:

with
mgpcs_delta (
 MEMBER,
 STMT_TEXT_1024,
 TOTAL_CPU_TIME)
as (
 select
 mgpcs.MEMBER,
 varchar(substr(mgpcs.STMT_TEXT,1,1024)),
 sum(mgpcs.TOTAL_CPU_TIME
 - mgpcs_baseline.TOTAL_CPU_TIME)
 from
 table(mon_get_pkg_cache_stmt(null,null,null,-2)) as mgpcs,
 session.mgpcs_baseline as mgpcs_baseline
 where
 mgpcs.member = mgpcs_baseline.member
 and varchar(substr(mgpcs.STMT_TEXT,1,1024)) =
 varchar(substr(mgpcs_baseline.STMT_TEXT,1,1024))
 group by mgpcs.MEMBER, varchar(substr(mgpcs.STMT_TEXT,1,1024
)))

Tuning and monitoring database system performance Page 54 of 80

select
 mgpcs.MEMBER,
 substr(mgpcs.STMT_TEXT_1024,1,128),
 mgpcs.TOTAL_CPU_TIME
from mgpcs_delta as mgpcs
order by TOTAL_CPU_TIME desc

In general, look for one or more statements that are consuming ‘more than their fair
share’ of CPU. This translates to high and increasing values of TOTAL_CPU_TIME.

System Bottleneck > CPU Bottleneck > User CPU Bottleneck > High CPU SQL
We cannot always reduce the amount of CPU a given SQL statement consumes, but there
are some cases where we can have an impact.

1. A frequently-executed in-buffer pool table scan can consume a surprising
amount of CPU time when a small, hot table is queried or participates in a join,
but has no suitable index. Symptoms include:

 A relatively short statement execution time

 User CPU consumption approximately equal to the execution time

 A relation scan in the explain plan

 A rapidly rising number of table scans in MON_GET_TABLES

 A low or very low number of buffer pool physical data reads for the statement

Even though this type of statement isn’t usually considered a bottleneck, the
frequent execution and high CPU consumption can make it a problem. You can
respond by creating an index that gives the optimizer an alternative to the table
scan. The right index definition might be obvious from the query, but if not, the
Design Advisor or Optim Query Workload Tuner can likely assist here.

2. If the application executing an SQL statement consumes only a fraction of the
rows the statement produces, using the OPTIMIZE FOR n ROWS (OFnR) or
FETCH FIRST n ROWS ONLY (FFnRO) clauses can help reduce resource
consumption of all types, including CPU. In particular, OFnR can help optimize
the SQL access plan to return the initial rows of the result set most efficiently,
rather than optimizing for the return of all rows in the result set to the calling
application. If only OFnR is used, n can be exceeded at run time; however,
FFnRO prevents more than n rows from being returned, even if the application
attempts to do so.

3. As mentioned in the configuration section above, the use of a culturally correct
collating sequence with a Unicode code page can introduce a significant amount
of overhead, particularly in CPU consumption. Because the amount of overhead
is directly related to the number of string comparisons that SQL statements make
(for example, in predicates or in sorting due to an ORDER BY clause), if we

Tuning and monitoring database system performance Page 55 of 80

reduce the number of comparisons a statement makes, we reduce its CPU
consumption. A reduction in the number of comparisons can often be achieved
by encouraging the use of indexes for both predicate evaluation and result set
ordering. The Design Advisor can be very helpful in designing the appropriate
indexes to minimize table scans and sorts (see “Physical Database Design”
(https://ibm.biz/Bdx2nr)).

4. Locking issues are often thought of only in terms of conflicts and wait time;
however, even when there are few or no conflicts, the process of acquiring and
releasing locks can consume a significant amount of CPU time. Consider an
application or statement that examines many rows in the table, but produces few
lock conflicts because it runs on its own, because it has exclusive access to the
tables it references, or because all concurrent applications only use the table in
read-only mode. In a case like this, it might be possible to use table-level locking
to achieve the required level of isolation while reducing CPU.

If no individual SQL statements appear to be consuming the bulk of the CPU cycles,
there are broader potential issues that can cause an overall increase in CPU usage.

System Bottleneck > CPU Bottleneck > User CPU Bottleneck > Dynamic SQL without Parameter Markers?
1. Some applications build their SQL statements ‘on the fly’ by concatenating

statement fragments and literal values, rather than by using parameter markers.
(For complex SQL statements querying tables with distribution statistics,
embedded literals can help the SQL optimizer choose a better access plan.
Instead, we are focusing on lightweight statements where embedded literals
have no benefit.)

String procNameVariable = "foo";

String inefficientQuery =
 "SELECT language FROM "
 + "syscat.procedures "
 + "WHERE procname = "
 + " ‘"
 + procNameVariable // inject literal value at prep time
 + "‘ ";

String betterQuery =
 "SELECT language FROM "
 + "syscat.procedures "
 + "WHERE procname = ? "; // provide value at exec time

Even though the statement strings generated in this way differ from each other
only in the literal value they contain, when the application prepares the queries,
the DB2 system has to compile them each time, rather than find them in the
dynamic SQL cache. Even for very simple statements, whose compile cost is very
low, the aggregate cost of a high statement volume can be significant.

Some signs that this problem might be occurring are:

Tuning and monitoring database system performance Page 56 of 80

a. A large number of similar but not identical statements in the package
cache (seen via MON_GET_PKG_CACHE_STMT, or
MONREPORT.PKGCACHE, etc.) that turn out to differ only by the
literal values that have been embedded in the statements.

b. A steadily increasing value of package cache inserts
(PKG_CACHE_INSERTS from MON_GET_WORKLOAD, etc.), even
after the system reaches steady state.

c. More than 15% of DB2 processing time spent compiling SQL statements
(seen via TOTAL_COMPILE_TIME divided by TOTAL_RQST_TIME,
from MON_GET_WORKLOAD, etc.)

d. High and increasing memory usage by the package cache, if it has been
set to automatic.

The best practice for avoiding this overhead is to ensure that applications use
parameter markers for simple dynamic SQL statements. If this is not possible,
then the DB2 statement concentrator may be able to reduce the impact of there
being so many ‘almost identical’ statements. This can be a very helpful
technique when the system does not also run more complex statements, with
literals, that depend on distribution statistics (in such cases, the removal of
literals by the statement concentrator can result in inefficient access plans and
poor performance.)

System Bottleneck > CPU Bottleneck > User CPU Bottleneck > Utilities Running?
2. DB2 utilities are designed to scale well and exploit system resources to get the job

done as quickly as possible. That can mean that while a utility is running, there
might be a significant increase in CPU consumption. LOAD and RUNSTATS are
good examples of utilities that often drive high CPU consumption, but under the
right circumstances, other utilities can do so as well. To see which utilities are
currently running, use the LIST UTILITIES SHOW DETAIL command.

If a utility is executing, we can drill down to determine its CPU consumption as
follows. The db2pd –edus command shows all of the various worker threads
inside the DB2 engine (see the DB2 Process Model
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.d
b2.luw.admin.perf.doc%2Fdoc%2Fc0008930.html)), including their user and
system CPU usage. This is very useful in determining if any of the utility worker
threads are behind the CPU bottleneck. The db2pd –edus command can be also
used to report the top CPU-consuming DB2 threads during a specified interval
(by using the interval and top options of the db2pd –edus command).

Setting UTIL_IMPACT_PRIORITY can be helpful in limiting the amount of
impact the backup and the runstats utilities have on the system. In addition,
the overhead and run time of runstats can be reduced by making use of
sampling runstats. In DB2 10.1, you can enable automatic runstats sampling
for large tables by setting the database configuration parameter

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0008930.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0008930.html

Tuning and monitoring database system performance Page 57 of 80

auto_sampling to ON and setting profiles for statistics collection, to avoid
runstats overhead during critical processing periods. Good recommendations
for the latter are included in “Writing and Tuning Queries for Optimal
Performance” (https://ibm.biz/Bdx2ng).

By default, the load command creates a formatter thread (db2lfrm) for each
CPU, but by using the CPU PARALLELISM N option, we can reduce the number
of formatters to N, leaving more CPU capacity for the rest of the system. In
general, throttling a utility with UTIL_IMPACT_PRIORITY or CPU
PARALLELISM extends the run time of the utility proportionately.

System Bottleneck > CPU Bottleneck > User CPU Bottleneck > Temporary Object Cleanup Overhead
3. When a system temporary table is no longer needed and is dropped, a DB2

system must remove its unneeded pages from the buffer pool. If this happens
frequently, and if temporary tables share a buffer pool with regular user data, the
result can be extra CPU cycles consumed in resolving conflicts and processing
the pages. This problem is more common on systems that perform transaction
processing rather than complex queries. If MON_GET_TABLE shows that there
are a significant number of temporary tables being created and destroyed, a best
practice is to place temporary table spaces in their own buffer pool. This
eliminates the extra conflict and processing overhead, and can contribute to
reduced CPU consumption.

System Bottleneck > CPU Bottleneck > System CPU Bottleneck?
Although user CPU tends to be the dominant factor in most CPU-bound environments,
system CPU time can sometimes be an issue, but the number of problems that we can
diagnose and solve is quite a bit smaller.

One cause of high system CPU time that is relevant to DB2 systems is a high context
switch rate in the operating system (OS). A context switch is used by the OS to alternate
between the different tasks it needs to handle. Context switches are triggered by a
number of different rules in the OS, and generally provide a smooth progression of all
work that the system must handle. However, when context switches are triggered too
frequently, they themselves can end up consuming a significant amount of CPU time. On
UNIX systems, context switches are reported using the vmstat command, under the ‘CS’
column. A rate of more than around 25,000 context switches per second per core would
be considered quite high, even for large systems.

System Bottleneck > CPU Bottleneck > High System CPU > High Context Switches
A common cause of a high context switch rate in a DB2 system is the presence of a very
large number of database connections. Each connection has one or more database agents
working on its behalf, so if the connections are active – particularly with short
transactions – a high context switch rate and high system CPU consumption can result.
One way to avoid this is to enable the DB2 connection concentrator. It allows multiple
connections to share a single agent, thereby reducing the number of agents (saving
memory footprint), and reducing the context switch rate.

https://ibm.biz/Bdx2ng

Tuning and monitoring database system performance Page 58 of 80

Device interrupts can also be a cause of high system CPU time. An interrupt occurs when
a device, such as a network adaptor, needs ‘attention’ from the OS. The cost of an
individual interrupt is not high; however, if the interrupt rate climbs too high, the
aggregate load on the system can be significant. Fortunately, modern network and disk
adapters have a high degree of independence from the OS, and cause far fewer interrupts
than their predecessors did just a few years ago. Significant overhead from disk
interrupts is quite rare; however, in a network-intensive client/server environment (such
as many SAP ERP installations), the load imposed by network interrupts can be quite
high. Although there are steps that can be taken to reduce network-driven overhead on
the server, this type of tuning is beyond the scope of this paper. In cases such as this, it is
best to involve your network administrator to confirm and solve the problem.

If application logic (especially for longer transactions) can be encapsulated in an SQL
stored procedure or other powerful SQL construct, this can help reduce context switches
and network traffic. Not only does this get the application logic onto the server, in the
context of context switches, it also pushes the logic right into the DB2 agent. This
eliminates the back-and-forth flow of SQL invocations and results – and context switches
– between the agent and the client application.

System Bottleneck > CPU Bottleneck > High System CPU > High Device Interrupts
In a DB2 system, you should generally strive to exploit system memory by leaving as
little of it unused as possible. Unfortunately, if you over-allocate memory – that is,
mistakenly configure DB2 or other software to use more than the amount of physical
memory on the system – the result is system CPU overhead (and possibly disk overhead)
due to paging. This situation is identified on UNIX-based systems by low free memory
and high page in or page out activity reported in vmstat (the free, pi and po columns,
respectively) or in the OPM Overview dashboard. The solution is to reduce memory
allocation below the point where paging starts.

One thing that can make this slightly challenging is the memory consumed due to file
system caching. The OS generally uses ‘free’ memory to buffer data from disk, thereby
avoiding I/O. Although memory used by the file system cache is available to the DB2
database if needed, you generally want to avoid the case where the DB2 database and the
file system get into a ‘tug of war’ over memory. Although file system cache processing
itself takes place in user mode (that is, it is not a consumer of system CPU), the virtual
memory management involved can drive up system time as well. The DB2 configuration
section earlier in this paper makes recommendations on how to avoid file system caching
impact in DB2. On AIX, use of the vmo parameter LRU_FILE_REPAGE=0 (also discussed
above) can help keep file system cache overhead under control, even outside of DB2.
This is the default setting in AIX 6 and later.

System Bottleneck > CPU Bottleneck > High System CPU > Over-allocation of Memory
Servers with very large amounts of physical memory – 100s of GB – can be subject to
extra CPU overhead if the system is not configured to use large memory pages. The OS
manages memory at a page-level granularity. OS memory pages are different than DB2
pages. A common OS page size is 4 KB – meaning that the OS must look after 25 million
page table entries in a machine with 100 GB of RAM. Most operating systems support
larger page sizes, which helps to reduce the overhead of virtual memory management.

Tuning and monitoring database system performance Page 59 of 80

The AIX operating system, for example, supports large pages up to 16 GB in size,
although these would be very rarely used in practice. DB2 databases automatically use
64-KB pages if they are enabled on the system, and other sizes can be manually selected.
For more information, see “Enabling large page support in a 64-bit environment”
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.a
dmin.dbobj.doc%2Fdoc%2Ft0010405.html). The best practice on most large memory
systems running AIX is to ensure that 64-KB pages are enabled so that the DB2 system
can use them. This is the best compromise between good performance and the potential
side-effects of using even larger page sizes. On Linux systems, large page support for
DB2 databases must be manually enabled with DB2_LARGE_PAGE_MEM
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.regvars.
doc/doc/r0005665.html#r0005665).

On HP-UX systems, you can set the size of the base page (the smallest block of physical
memory that can be allocated by the HP-UX kernel) by using the kctune
base_pagesize command. While the default page size in HP-UX is 4 KB, the
recommendation for larger systems is to increase the base page size to 16 KB (kctune
base_pagesize 16).

On AIX systems, vmstat –P ALL shows what page sizes are available and in use on the
system. If 64-KB pages are enabled on the system and the DB2 database is running, you
should see large allocations of 64-KB pages in vmstat –P ALL, where the DB2 database
manager has allocated memory. If not, and the system has a large amount of RAM, this
might be the cause of higher-than-normal system CPU consumption.

System CPU bottlenecks: The overall picture

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Ft0010405.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Ft0010405.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.regvars.doc/doc/r0005665.html#r0005665
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.regvars.doc/doc/r0005665.html#r0005665

Tuning and monitoring database system performance Page 60 of 80

Simple SQL without parameter markers?
Too small dynamic SQL cache?
Unicode with culturally-correct collation?
Utility running?
Locking or unlocking overhead?
Frequent in-buffer pool table scans?

Too many device interrupts?
Too many connections?
Over-committed memory?
Large RAM with small memory pages?

High
system

time

High
user
time CPU

bottleneck

System
bottleneck

type?

Figure 2. Illustration of different types of CPU bottlenecks

Tuning and monitoring database system performance Page 61 of 80

Memory bottlenecks
System Bottleneck > Memory Bottleneck?

Having sufficient and properly configured memory is critical for good system
performance. Without adequate memory, access to data that would otherwise be
buffered turns into disk I/O, often creating a disk bottleneck in the process. As well,
smaller but just as important amounts of memory are used to store metadata and
calculated results, such as SQL access plans and locks. Without sufficient memory for
these, the system must discard or collapse important information and either recalculate it
or otherwise compensate with additional processing, increasing CPU overhead. Thus, a
memory bottleneck can actually disguise itself as a disk or CPU problem.

The following table summarizes disk and CPU bottlenecks that have memory as a
potential underlying cause.

Bottleneck
Type

Primary symptom Memory issue potentially causing or
worsening bottleneck

Disk Data or index table
space bottleneck

 Buffer pool too small
 Total system memory too

small
Disk Temporary table space

bottleneck
 Values for sortheap or

sheapthres_shr too small
 Total system memory too

small
Disk Log disk bottleneck Log buffer size too small
CPU CPU bottleneck due to

repeated package
cache inserts

 Package cache too small
 Total system memory too

small
CPU Excess system CPU

time spent in VMM
 Total system memory over-

allocated
 Very large system memory

managed with small OS
memory pages

Most memory bottlenecks manifest themselves with the symptoms of either a CPU or a
disk bottleneck, and memory issues are key possibilities in the investigation of such
problems. However, it can also happen that a shortage of available memory (as reported
from running the vmstat command), along with the poor performance that led us down
this path in the first place, are the dominant symptoms. If further examination of vmstat
data indicates sustained paging activity (with or without elevated system CPU usage),
there is excessive memory pressure on the system.

The multithreaded DB2 architecture that was introduced in DB2 9.5 on all platforms
greatly simplifies the configuration and optimization of memory usage of DB2 servers.
The overall limit of DB2 memory usage is set by a single database manager configuration
parameter called INSTANCE_MEMORY. In partitioned environments,

Tuning and monitoring database system performance Page 62 of 80

INSTANCE_MEMORY specifies the maximum amount of memory that can be allocated
for a database partition.

INSTANCE_MEMORY is set to AUTOMATIC by default. This allows instance memory
to grow as needed – up to a limit between 75% and 95% of the physical RAM of the
server. In environments where other applications share the same server with the DB2
system, setting a specific value for INSTANCE_MEMORY is recommended.

The easiest way to monitor the overall memory usage of the DB2 server (or partition in
partitioned environments) is by using the db2pd –dbptnmem command (alternatively,
you can query the ADMIN_GET_MEM_USAGE table function). The output of the db2pd
–dbptnmem command lists the current memory usage as well the high-water mark
(HWM) of both overall INSTANCE_MEMORY as well as for the different memory sets in
DB2. The most important memory sets in a DB2 server environment are:

1. Database Manager memory set: The memory used by the DB2 instance itself (for
example, for DB2 monitoring or DB2 Audit).

2. Database memory set: This memory set is usually the largest in a DB2 server. It
contains all the shared database memory consumers like the buffer pools, the
sort heap, the lock list, and the package cache. This memory set is controlled with
the database configuration parameter DATABASE_MEMORY (default value is
AUTOMATIC).

3. Application memory set: Memory used by application-specific processing like
statement heap. This set is configured with the database configuration parameter
APPL_MEMORY (defaulted to AUTOMATIC).

In addition to these memory sets, a DB2 server has additional memory sets like PRIVATE
(general purpose), FMP (for fenced mode processing), and FCM (fast communication
manager in cluster environments). In addition to the db2pd –dbptnmem command, you
can use the MON_GET_MEMORY_SET table function to see the size of the different
memory sets.

For all the major consumers in the database memory set you can enable self-tuning
memory manager (STMM). STMM will then tune the different memory pools like lock
list or package cache that are part of the DATABSE_MEMORY. An easy way to
determine actual memory consumption of the different memory pools is with the
MON_GET_MEMORY_POOL table function (alternatively, you can use the db2pd –
mempools command).

Memory bottlenecks can still occur under the following conditions:

1. If INSTANCE_MEMORY has been explicitly set to a numeric (non-
AUTOMATIC) value, and the STMM is enabled, the STMM might tune DB2
memory consumption right up to the value of INSTANCE_MEMORY if the
workload on the database is high. This is different from the behavior when
INSTANCE_MEMORY is set to AUTOMATIC, and so the combination of the
DB2 system and other big memory consumers, such as application servers, might

Tuning and monitoring database system performance Page 63 of 80

push the total system-wide memory usage too high. The ps command on UNIX
systems or the task manager on Windows shows memory usage by process, and
is an invaluable tool to track down memory hogs outside of the DB2 database. If
your DB2 database system shares the same host with another large memory
consumer like WebSphere or an SAP central instance, make sure to set
INSTANCE_MEMORY to a value that leaves enough memory for both DB2 and
the application.

As mentioned previously, although file system cache memory is technically
available to consumers such as the DB2 database, it can also be the case that large
amounts of file system cache (particularly of modified data that must be flushed
out to disk before the memory can be released to other memory users) can cause
paging to occur if additional demands on memory build up.

2. An explicit value of INSTANCE_MEMORY that is too high for the system might
not be an issue until additional databases are brought online, pushing the total
DB2 database allocation higher than the system can accommodate, but still
within INSTANCE_MEMORY.

Because the STMM is designed to cope with memory pressure by freeing
memory back to the OS if required, this scenario would be most likely to occur
when the STMM is not enabled, or when the platform involved does not support
the release of memory back to the OS, or when the memory demands of the
database are extremely dynamic (for example, rapid creation or destruction of
database connections, or very short-term activation of the database).

3. If a very large number of database connections are required, this can result in a
large portion of the instance memory being consumed by agents. If this amount
is excessive – leaving too little memory for database global memory allocations
either with or without the STMM – it can be reduced with the use of the
connection concentrator.

‘Lazy System’ bottlenecks

System Bottleneck > Lazy System
The fourth and most interesting category of bottlenecks that we examine is ‘lazy system’
bottlenecks. These represent cases in which none of the previous bottleneck areas appear
to be at fault. There is no apparent bottleneck caused by factors related to CPU, disk,
memory, or network, yet the system cannot be pushed any further.

A very common culprit in a ‘lazy system’ is lock contention. Fortunately, lock contention
is easy to detect in DB2 monitoring data. The monitor elements LOCK_WAIT_TIME and
TOTAL_ACT_TIME, available with MON_GET_WORKLOAD, indicate total lock wait
time and total amount of time spent processing database activities, respectively. A high
percentage of lock wait time compared to total activity time (for example, 20% or higher)
indicates that locking might be a significant bottleneck.

Tuning and monitoring database system performance Page 64 of 80

System Bottleneck > Lazy System > Lock Wait
We can drill down from high level data from MON_GET_WORKLOAD by examining
the per-statement LOCK_WAIT and TOTAL_ACT_TIME columns returned from
MON_GET_PKG_CACHE_STMT. Similarly, these metrics are also available at the
application level in MON_GET_CONNECTION. Both of these sources are very useful in
helping to identify the source of a locking bottleneck.

We can get information about individual in-flight lock waits from the
MON_GET_APPL_LOCKWAIT table function. It shows information such as

 Lock mode – shared or exclusive

 Object type – row, table, and so on

 Agent ID of holder and requestor

 Time that the lock wait started

Unlike many other types of DB2 monitor data, locking information is very transient.
Apart from LOCK_WAIT_TIME, which is a running total, most other lock information
goes away when the locks themselves are released. Thus, lock and lock wait monitor data
are most valuable if collected repeatedly over a period of time, so that the evolving
picture can be better understood. As suggested early on, the best practice for analyzing
large volumes of monitor data is collecting it through table functions or administrative
views, and storing it in DB2 tables.

Also, unlike most other types of monitor table functions, the main overhead in lock
monitoring via MON_GET_LOCKS and MON_GET_APPL_LOCKWAIT is in collecting
the data. So, although it is useful to have regular lock data collected and stored for
analysis, overly frequent collections can cause bottlenecks on their own.

There are a number of guidelines that help to reduce lock contention and lock wait time.

1. If possible, avoid very long transactions and WITH HOLD cursors. The longer
locks are held, the more chance that they cause contention with other
applications.

2. Avoid fetching result sets that are larger than necessary, especially under the
repeatable read (RR) isolation level. The more that rows are touched, the more
that locks are held, and the greater the opportunity to run into a lock that is held
by someone else.

3. Avoid using higher isolation levels than necessary. Repeatable read might be
necessary to preserve result set integrity in your application; however, it does
incur extra cost in terms of locks held and potential lock conflicts.

If it is common in your environment that performance suffers due to readers
(applications selecting rows) being blocked by writers (applications updating or deleting
rows), enabling ‘currently committed’ semantics may help reduce contention. This

Tuning and monitoring database system performance Page 65 of 80

feature allows readers to continue execution by providing them with the currently
committed value of the locked row, rather than forcing them to wait for an as-yet
uncommitted value. It is not currently fully supported in DB2 pureScale environments.
See the DB2 Information Center
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.a
dmin.config.doc%2Fdoc%2Fr0053556.html) for more information about currently
committed.

Lock escalation can also be a major source of contention. Whereas individual row locks
taken by a well-designed application might not conflict, block- or table-level locks
resulting from escalation are much more likely to cause serialization and severe
performance problems. Table functions like MON_GET_WORKLOAD report a count of
lock escalations (LOCK_ESCALS). This is most easily broken down to escalations in
individual tables by examining MON_GET_TABLE. Helpful information can also be
found at the statement level in MON_GET_PKG_CACHE_STMT.

Lock escalation is triggered when an application consumes its allowed portion of the lock
list (determined by the database configuration parameter MAXLOCKS, which is
expressed as a percentage of the lock list size). Thus, increasing MAXLOCKS or
LOCKLIST can reduce the likelihood or frequency of escalations. As well, as mentioned
above, reducing the number of locks taken by applications (through increased commit
frequency, reducing the isolation level, and so on) tends to reduce escalations.

System Bottleneck > Lazy System > Deadlocks and Lock Timeouts
Although lock wait time can be quite a subtle bottleneck, deadlocks and lock timeouts
are harder to ignore, because they both return negative SQL codes to a participating
application. Even so, many applications retry the failed transaction and eventually
succeed without reporting the deadlock. In this case, the most straightforward indication
of a potential deadlock issue is the DEADLOCK element in many of the monitor table
functions, such as MON_GET_WORKLOAD. As mentioned above, we recommend
collecting this as part of regular operational monitoring.

The cost of a deadlock varies, and is directly proportional to the length of the rolled-back
transaction. Regardless, more than one deadlock per 1000 transactions generally
indicates a problem.

Deadlock frequency can sometimes be reduced simply by ensuring that all applications
access their common data in the same order – meaning, for example, that they access
(and therefore lock) rows in Table A, followed by Table B, followed by Table C, and so
on. If two applications take incompatible locks on the same objects in different order,
they run a much larger risk of deadlocking. Sometimes, missing or stale statistics can
cause inefficient access paths, resulting in more rows being looked at, potentially causing
increased lock contention.

In DB2 V9.7 and later, DB2DETAILDEADLOCK is deprecated, and the new locking
event monitor (CREATE EVENT MONITOR FOR LOCKING) should be used instead.
Like all event monitors, it imposes a small amount of additional overhead (somewhat
higher if history and values are collected too); however, the benefit from being able to

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.config.doc%2Fdoc%2Fr0053556.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.config.doc%2Fdoc%2Fr0053556.html

Tuning and monitoring database system performance Page 66 of 80

track deadlocks usually outweighs the small performance penalty. The new locking
event monitor can capture lock timeouts too, which were invisible to the old
DB2DETAILDEADLOCK mechanism. This can produce very helpful information to
diagnose participants in the lock contention. See the DB2 Information Center
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc
/doc/c0054136.html) for more information.

System Bottleneck > Lazy System > Insufficient Prefetching?
Queries that require large amounts of data to be sequentially read from disk are far more
efficiently executed when DB2 prefetchers read the data, than when the agent itself reads
the data. There are several good reasons for this:

 The prefetchers bring in multiple pages with each read, the size of which is
controlled by database or table space prefetch size, whereas agents read a single
page at a time.

 The agent can be executing part of the query while the prefetchers do their work,
reducing serialization of computation and I/O.

 Multiple prefetchers can each be assigned a range of pages to read, achieving I/O
parallelism.

When the agent needs data from a range of pages, it queues a prefetch request. When the
time comes for the agent to use a page, if the prefetcher has not yet started the I/O for
that page (that is, if the page has not been requested from the prefetcher at all, or if the
request is still in the prefetch queue), the agent itself reads that single page. This reduces
the frequency with which the agent has to wait for the prefetcher (it only waits if the I/O
is actually in progress). However, all the benefits of prefetching disappear if we have to
fall back to agent I/O. Symptoms of this problem include:

 A ‘prefetch ratio’ of less than 100% for statements with large scans. At the
database or buffer pool level, the target value drops, depending on what fraction
of total activity is not scan-based. We define this metric similarly to the buffer
pool hit ratio, but here calculating the ratio of number of physical reads done by
the prefetcher, compared to the total number of physical reads:

100% * (pool_data_p_reads – pool_async_data_reads) /
pool_data_p_reads

This can be calculated at the database level with MON_GET_WORKLOAD and
other functions or at the buffer pool level with MON_GET_BUFFERPOOL. It is
not available at the statement level MON_GET_PKG_CACHE_STMT since
prefetch I/O (pool_async_data_reads) is not captured there.

 High and climbing ‘time spent waiting for prefetch’, reported in
PREFETCH_WAIT_TIME in MON_GET_WORKLOAD and
MON_GET_CONNECTIONS, among others. As mentioned above, the agent
only waits for prefetch I/O that is actually ‘in-flight’.

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc/doc/c0054136.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc/doc/c0054136.html

Tuning and monitoring database system performance Page 67 of 80

 As with other ‘lazy system’ problems, you also generally see a large amount of
idle time in vmstat and perfmon. However, there can also be increased I/O
wait time, because agents reading single pages are far less efficient than
prefetchers doing big-block reads. But even so, it is unlikely that the I/O wait
climbs high enough to appear to be the bottleneck.

A potential cause of this problem is that the number of prefetchers (database
configuration parameter NUM_IOSERVERS) is too low. The AUTOMATIC setting uses
factors such as table space parallelism, for example, to calculate the number of
prefetchers, and generally does not require tuning. However, if tuning appears to be
needed based on a low prefetch ratio, the process is as follows:

1. Determine whether all prefetchers are consuming roughly equal amounts of CPU
time. This can be done with the db2pd –edus command. If some prefetchers are
consuming significantly less CPU than others, there are already enough (and
possibly too many) prefetchers. If there are more than a couple of ‘idle’
prefetchers, you can reduce NUM_IOSERVERS slightly, but having extra
prefetchers is generally not a problem.

2. Increase NUM_IOSERVERS by 10%. Allow the system to run normally with the
larger number of prefetchers. If there is no improvement in prefetch ratio or in
performance of heavy scan queries, the problem is not being looked at correctly,
and NUM_IOSERVERS should be returned to its previous setting.

3. Repeat this process until you have found the optimum level of prefetchers for the
system

If prefetching still appears to be operating below par, it is also worth verifying that
PREFETCHSIZE is set correctly. The process for this is discussed thoroughly in the DB2
Information Center
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.a
dmin.perf.doc%2Fdoc%2Fc0005397.html) so we do not repeat it here. You should also
consider whether DB2_PARALLEL_IO should be set in your environment. This registry
variable enables parallel I/O within one table space container, in the case when the
container is located over multiple physical disks. Since this situation (multiple disks
underneath a single filesystem) is extremely common in most non-trivial systems, it is
generally a good idea to have DB2_PARALLEL_IO set (even just to ‘*’).

System Bottleneck > Lazy System > Insufficient Page Cleaning?
Similar to prefetching, a problem with buffer pool page cleaning forces agents executing
SQL statements to interrupt their normal processing to do I/O that should normally be
taken care of by one of the DB2 ‘background threads’. However, in this case, the agent
has to write (a modified page) instead of read. This is generally referred to as a ‘dirty
steal’.

The symptoms for a buffer pool page cleaning problem aren’t quite as straightforward as
those for the ‘lack of prefetching’ problem described above. Poor page cleaning tends to
be more of a problem in an online transaction processing (OLTP) environment, where

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0005397.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0005397.html

Tuning and monitoring database system performance Page 68 of 80

there are many DB2 agents operating concurrently. If they cannot find clean buffer pool
pages, and are having to do dirty steals, there could be potentially many extra single-
page writes going to the containers. This means that in this case, instead of the typically
idle ‘lazy system’, we might see an I/O bottleneck instead. The degree to which this
happens depends, for example, on the number of connections and page cleaning
performance.

A related symptom is ‘bursty’ system activity, as seen in vmstat. The system might run
well for a short time, with all agents working normally, followed by a period in which
the majority of agents are blocked, flushing a dirty page to disk. This appears as high I/O
wait and a short-to-empty run queue in vmstat. When the agents have finished the dirty
steal, performance spikes back up again – and the cycle repeats.

Within the DB2 monitoring data, the count of dirty page steals
(POOL_DRTY_PG_STEAL_CLNS in MON_GET_BUFFERPOOL) is the best indicator of
this problem. We would normally expect only a very few of these in a smoothly-running
system, so any non-trivial rising number is cause for some concern. Dirty steals can also
show up as a growing gap or difference between the following two metrics from
MON_GET_BUFFERPOOL:

 POOL_DATA_WRITES (total number of database pages written from the
bufferpool), and

 POOL_ASYNC_DATA_WRITES (the total number of database pages written
from the bufferpool by the page cleaners)

Of course, there are corresponding metrics for index pages, XML pages, etc...

If page cleaning is falling behind and dirty steals are occurring, the first thing to check is
the number of page cleaners (database configuration parameter NUM_IOCLEANERS).
The AUTOMATIC setting of NUM_IOCLEANERS follows the best practice of one
cleaner per physical CPU core (logical CPU core in DB2 9.7 and on HP-UX) in the current
partition. In DB2 Version 9.5 and later, extra cleaners beyond the recommended number
can actually hurt performance somewhat.

The DB2 database product supports two types of page cleaning: ‘classic’ reactive page
cleaning (the default) and proactive page cleaning, introduced in DB2 Universal database
Version 8.2.

 Classic page cleaning is controlled by two database configuration parameters:

o CHNGPGS_THRESH – determines the percentage of modified buffer
pool pages at which to activate page cleaning

o SOFTMAX – limits the age of the oldest modified page in the buffer pool
(LSN gap), thereby controlling recovery time

Reducing either of these parameters generally makes cleaning more aggressive;
however, CHNGPGS_THRESH is the preferred way to affect the number of clean

Tuning and monitoring database system performance Page 69 of 80

pages in the buffer pool. Decreasing CHNGPGS_THRESH can help to reduce the
number of dirty page steals, and stabilize uneven cleaning. Setting this
parameter too low can result in excessive disk writes, so it should be set just low
enough to avoid dirty steals.

 Proactive page cleaning (also known as alternate page cleaning, or APC) is
enabled using the registry variable DB2_USE_ALTERNATE_PAGE_CLEANING.
It differs from classic page cleaning in that it adjusts its cleaning rate to maintain
the desired LSN gap. Rather than cleaning being ‘on’ or ‘off’, triggered or not,
APC can throttle its activity to avoid the ‘bursty’ behavior that is sometimes seen
with classic page cleaning. Similar to classic page cleaning, reducing SOFTMAX
effectively increases the rate of cleaning and should reduce dirty steals. APC is
controlled only by SOFTMAX, not by CHNGPGS_THRESH, so that DBAs
enabling APC for the first time might have to tune SOFTMAX if their system was
previously cleaned based on hitting CHNGPGS_THRESH (that is, dirty page
threshold triggers).

System Bottleneck > Lazy System > Application side problem?
The back-and-forth synchronous flow of requests and responses between a client
application and the DB2 server means that both play a role in the performance of the
overall system. An increase in the run time of a batch application, for example, could be
due to a slowdown at the server, but it could also be caused by a decrease in the rate at
which the application makes requests to the DB2 database. The symptoms of this type of
problem at the server tend to fit the ‘lazy system’ mold quite well.

Symptoms of a reduction in the rate at which requests arrive at the DB2 database include:

 An increased ratio of CLIENT_IDLE_WAIT_TIME to TOTAL_REQUEST_TIME
(both from MON_GET_WORKLOAD) indicates that more time is being spent
above DB2. In many healthy systems, a typical ratio is around 4-5x, but it’s the
increase above normal (for your system) that’s most important.

 An increased time between requests made at the client side, as seen by the
activity event monitor, or a CLI or JDBC trace
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.t
rb.doc/doc/t0020709.html). CLI and JDBC traces capture API calls at the client
side, and record timestamps when the calls were made. Although the overhead
for client-side traces is high, they have the advantage that their timings include
network response time and other factors outside of the DB2 engine.

 If available, application-side metrics, such as business-level transaction
throughput or response time, might show degradation.

If an application-side slowdown appears to be the problem, possible causes include:

 Deployment of a new version of the application

 A network bottleneck between client and server

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/t0020709.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/t0020709.html

Tuning and monitoring database system performance Page 70 of 80

 Excessive load on the client system or in a tier located between client and server;
for example, too many users or too many copies of the application running.

Tuning and monitoring data performance Page 71 of 80 performance Page 71 of 80

System bottlenecks – the Overall Picture System bottlenecks – the Overall Picture

base systeem m

Sy
st

em

bo
ttl

en
ec

k
t y

pe
?

Di
sk

bo

ttl
en

ec
k

Dat
a
ab
e

T
l

Te
m

p
ta

bl
e

sp
ac

e
In

de
x

ta
bl

e
sp

ac
e

Lo
g

de
vi

ce
s

Ba
d

 p
la

ns
 g

iv
in

g

 ta

bl
e

sc
an

?
• O

ld
 st

at
ist

ic
s?

• N

ee
d

 m
or

e
in

d
ex

es
?

Bu
ffe

r p
oo

l t
oo

 sm
al

l?

Ba
d

 p
la

ns
 g

iv
in

g
ex

ce
ss

iv
e

 i
nd

ex
 sc

an
ni

ng
?

• N
ee

d
 m

or
e

or
 d

iff
er

en
t i

nd
ex

es
?

•B
uf

fe
r p

oo
l t

oo
 sm

al
l?

In
su

ffi
ci

en
t s

or
th

ea
p?

M

iss
in

g
in

d
ex

es
?

La
rg

e
in

te
rm

ed
ia

te

re

su
lts

?
A

ny
th

in
g

sh
ar

in
g

th
e

d
isk

s?

Hi
gh

 tr
an

sa
ct

io
n

ra
te

:
• T

oo
-fr

eq
ue

nt
 c

om
m

its
?

• L
og

 b
uf

fe
r f

illi
ng

?
Hi

gh
 d

at
a

vo
lu

m
e

• L
og

gi
ng

 to
o

m
uc

h
d

at
a?

C
PU

bo

ttl
en

ec
k

M
em

or
y

bo
ttl

en
ec

k

“L
az

y

sy
st

em
”

Da
ta

ta

bl
e

sp
ac

e

Hi
gh

 u
se

r
tim

e
Hi

gh

sy
st

em

tim
e

SQ
L

w
ith

ou
t p

ar
am

et
er

 m
ar

ke
rs

?
To

o
sm

al
l d

yn
am

ic
 S

Q
L

ca
ch

e?

A
pp

lic
at

io
ns

 c
on

ne
ct

in
g

or

d
isc

on
ne

ct
in

g?

N
on

-p
ar

al
le

liz
ed

 a
pp

lic
at

io
n?

O
ld

 d
ev

ic
e

d
riv

er
s

C
re

at
in

g
or

 d
es

tro
yi

ng
 a

ge
nt

s
To

o
m

an
y

co
nn

ec
tio

ns

In
st

an
ce

_m
em

or
y

to
o

hi
gh

?
D

at
ab

as
e_

m
em

or
y

to
o

hi
gh

?
To

o
m

uc
h

ap
pl

ic
at

io
n

m
em

or
y?

Lo
ck

 e
sc

al
at

io
n?

Lo

ck
 c

on
te

nt
io

n?

D
ea

d
lo

ck
s o

r l
oc

k
tim

eo
ut

?
To

o
fe

w
 p

re
fe

tc
he

rs
?

To
o

fe
w

 c
le

a
ne

rs
?

A
pp

lic
at

io
n

iss
ue

?

In
ad

eq
ua

te
 d

isk
 c

on
fig

ur
at

io
n

 o
r s

ub
sy

st
em

?

Tuning and monitoring database system performance Page 72 of 80

Localized and system-wide troubleshooting
Up to this point, we have dealt with performance issues that are seen in the system as a
whole: top-level disk, CPU, memory, and lazy system problems. But performance
problems don’t always come in this form. Often, the system as a whole is running well,
but there is one user, or one application, or one stored procedure, or one SQL statement,
that is experiencing problems. What is different about dealing with localized rather than
system-wide performance issues?

Fortunately, the methodical approach to performance troubleshooting that we have built
in this paper is equally applicable whether the problem is pervasive or more selective.
What we need to be able to do is extract the relevant parts from the large amount of
monitoring data that the system can provide.

Assume that an application is performing below expected levels. Before you can launch
into a diagnosis, you need to be able to identify the activity on the system that arises from
this application.

1. Knowing the application name and the authorization ID under which the
application is running, we can use the LIST APPLICATIONS command to
retrieve the numeric ‘application handle’ which is the key to identifying monitor
data that is specific to this application. We can also query the
SYSIBMADM.MON_CURRENT_SQL administrative view, which returns one
row for every SQL statement currently executing on the system, including
identification information like APPLICATION_HANDLE, as well as basic
monitoring information like ROWS_READ, etc.

2. The MON_GET_CONNECTION table function is an excellent source of
application-specific monitoring data, and by specifying the application handle,
we can focus on the connection of interest.

select * from table(MON_GET_CONNECTION(appl_handle, -1))

From MON_GET_CONNECTION and SYSIBMADM.MON_CURRENT_SQL, you can
determine many important things about the application, such as the statement being
executed when the monitor data was collected, the buffer pool hit ratios, the amount of
sort time, the ratio of rows read to rows selected, the CPU time, and elapsed time. In
short, you get much of the same information that you used to debug system-level
problems, but in this case, it is focused on the application in which you’re interested.
Furthermore, once the frequent & heavy statements are determined as above, additional
statement-level detail can be obtained from MON_GET_PKG_CACHE_STMT. Although
you’re not really focused on changing the global CPU consumption or disk activity
(remember we’re assuming that things are working well overall), it is still important to
understand the situation in which your application is running. If the system is CPU

Tuning and monitoring database system performance Page 73 of 80

bound, and our application is CPU hungry, its performance is constrained; likewise for
disk activity.

After collecting multiple sets of connection-level and statement-level table function
output, you have a similar palette of monitoring data available that you had for the
system-wide troubleshooting. The basic goal is to determine where in the application the
bulk of the time is being spent – where exactly is your bottleneck? Which of the SQL
statements in the application is taking the longest to run? Which statement consumes the
most CPU, or drives the most physical disk I/O? Answering these questions mimics the
initial step of the system-wide decision tree.

After you have identified one or more culprit SQL statements, and you have an idea of
the kind of bottleneck they are facing, you can apply many of the same approaches
discussed in previous sections. This especially includes techniques involving drill-downs
to ‘hot SQL statements’, hot tables, and so on – elements that are involved in the localized
problem.

Tuning and monitoring database system performance Page 74 of 80

Best Practices

Configuration:

 Ensure adequate disk capacity in terms of I/Os per second and
throughput per second. In practical terms, this often comes
down to the number and type (HDD, SSD, etc.) of disk spindles.
If the number of available disks is low, use about 70% of each
disk for data & index storage (either as individual containers or
combined into an array), and use the remaining 30% as another
array for database path and logs.

 Locate transaction logs on dedicated disks if possible, especially
for high-write DB2 systems. If it’s not possible, make sure to
carefully track log write times, which we want to see in the 2-3ms
range.

 Use the DB2 Data Partitioning Feature for data warehousing
deployments larger than around 1TB.

 Consider language-aware collation for best performance with
Unicode.

 For ISV applications like SAP, follow the vendor’s configuration
recommendations.

 Use the AUTOCONFIGURE command to obtain good initial
configuration settings.

 The STMM and other autonomics provide stability and strong
performance.

 In partitioned database environments, use a local rather than an
NFS-mounted file system for DIAGPATH.

 If the system uses storage based on arrays of disks, set the

Tuning and monitoring database system performance Page 75 of 80

DB2_PARALLEL_IO registry variable.

Monitoring:

 Collect basic operational monitoring data regularly, so that
background information is available in case of a problem.

 Use the monitor table functions and administration views to
access and manipulate monitoring data with SQL.

 Monitor non-DB2 metrics, such as CPU utilization and
application-level response time.

 Keep track of changes in configuration and environment settings.

Troubleshooting:

 Be methodical—change only one thing at a time, and observe the
result carefully.

 Start with the highest-level symptoms—such as a CPU, disk, or
memory bottleneck—to rule out unlikely or impossible causes
early.

 Drill down into possible causes, refining with each step; for
example, an I/O bottleneck might lead to container C, which
might lead to table T, which might lead to inefficient statement S.

 Don’t make changes to the system on just a ‘hunch’—make sure
to understand how the problem you’re trying to fix could cause
the symptoms you see.

 Use the same top-down methodical approach for both system-
wide problems, and for more localized ones.

Tuning and monitoring database system performance Page 76 of 80

Conclusion

This paper considered three key areas that are important to understand when trying to
avoid degradations in the performance of your system: configuration, monitoring, and
performance troubleshooting.

We made recommendations concerning hardware and software configuration that can
help you to ensure good system performance. We discussed several monitoring
techniques that help you to understand system performance under both operational and
troubleshooting conditions. We also presented a number of DB2 performance
troubleshooting best practices for dealing with problems in a step-wise, methodical
fashion.

If your system is configured appropriately and monitored well, you can more effectively
resolve performance problems that might arise. This can help reduce the total cost of
ownership and potentially increase the return on investment for your business.

Tuning and monitoring database system performance Page 77 of 80

Further reading
 DB2 Best Practices

http://www.ibm.com/developerworks/data/bestpractices/db2luw

o Physical database design for OLTP environments: https://ibm.biz/Bdx2nr

o Physical database design for data warehouse environments:
https://ibm.biz/Bdx2np

o Writing and tuning queries for optimal performance:
https://ibm.biz/Bdx2ng

o Database storage: https://ibm.biz/Bdx2My

 DB2 10.5 for Linux, UNIX, and Windows information center:
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

 DB2 for Linux, UNIX, and Windows V10.5 manuals: http://www-
01.ibm.com/support/docview.wss?uid=swg27038430#manuals

Contributors
Sonia Ang

Senior Consulting IT Specialist

Edward Bernal
Websphere Performance Engineer

Dr. Toni Bollinger
IM Data Warehousing Center of Excellence

Roy Cecil
Advisory Performance Engineer
DB2 pureScale Performance

Louise Cooper
Information Management Technical
Consultant
Hursley Innovation Centre

Michael Cornish
Senior Software Developer
DB2 Level 3 Support

Doug Doole

http://www.ibm.com/developerworks/data/bestpractices/db2luw
https://ibm.biz/Bdx2nr
https://ibm.biz/Bdx2np
https://ibm.biz/Bdx2ng
https://ibm.biz/Bdx2My
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp
http://www-01.ibm.com/support/docview.wss?uid=swg27038430#manuals
http://www-01.ibm.com/support/docview.wss?uid=swg27038430#manuals

Tuning and monitoring database system performance Page 78 of 80

Senior Software Developer
Information Management Software

Nela Krawez
DB2 Data Warehousing Solutions
Information Management Software

Michael Kwok
Senior DB2 Performance Manager

Tony Lau
Staff Performance Engineer
DB2 Performance

Scott Martin
Senior Software Engineer
Partner Ecosystems

Jacques Milman
Server Specialist
Business Intelligence & Data Warehousing

Mika Nikolopoulou
Senior Certified IT Specialist
 Information Management Software

Steve Schormann
Senior Software Engineer
IBM Identity Analytics

Adam Storm
Senior Software Developer, Master Inventor
DB2 Kernel Development

Tuning and monitoring database system performance Page 79 of 80

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or recommendations
provided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Anyone attempting to adapt
these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web sites is
at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual

Tuning and monitoring database system performance Page 80 of 80

results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2008, 2013. All Rights Reserved.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Contacting IBM
To provide feedback about this paper, write to db2docs@ca.ibm.com

To contact IBM in your country or region, check the IBM Directory of Worldwide
Contacts at http://www.ibm.com/planetwide

To learn more about IBM Information Management products, go to
http://www.ibm.com/software/data/

http://www.ibm.com/legal/copytrade.shtml
mailto:db2docs@ca.ibm.com?subject=DB2%20best%20practices:%20Tuning%20and%20monitoring%20database%20system%20performance
http://www.ibm.com/planetwide
http://www.ibm.com/software/data/

	Executive summary
	Introduction
	The first step: configuring for good performance
	Hardware configuration
	AIX configuration
	Solaris and HP-UX configuration
	Linux configuration
	Partitioned database environments
	Choice of code page and collation
	Physical database design
	Initial DB2 configuration settings
	DB2 autonomics and automatic parameters
	Explicit configuration settings
	Statistics collection
	Considerations for SAP and other ISV environments

	The next step: monitoring system performance
	Delta values and DB2 monitor table functions
	Easy & powerful monitoring of DB2 performance with Optim Performance Manager (OPM)
	A good ‘starter set’ of DB2 performance queries
	A helpful short-cut: the MONREPORT module
	Other important data to collect
	Cross-partition monitoring in partitioned database environments

	Performance Tuning and Troubleshooting
	Types of problems that you might see
	Disk bottlenecks
	Disk bottlenecks: The overall picture

	CPU bottlenecks
	System CPU bottlenecks: The overall picture

	Memory bottlenecks
	‘Lazy System’ bottlenecks
	System bottlenecks – the Overall Picture

	Localized and system-wide troubleshooting
	Conclusion
	Further reading
	Contributors
	Contacting IBM

