
 ���®
IBM® DB2® for Linux®, UNIX®, and Windows®

Best Practices
Minimizing Planned Outages

Matthew Huras
DB2 LUW Kernel Chief Architect

Chris Eaton
DB2 Technical Evangelist

Jens Seifert
DB2 / SAP Development

Rob Causley
DB2 Information Development

Minimizing Planned Outages Page 2

Executive Summary... 3

Introduction .. 4

Availability.. 4

Outages.. 4

Unplanned outages.. 5

Planned outages ... 5

Availability strategies.. 5

Improving availability during table and index maintenance........................ 7

Improving availability during data loading or data ingestion 12

Improving availability during upgrades.. 14

Improving availability during backups.. 15

Improving availability during performance tuning 16

Improving availability through storage management 18

Best Practices... 19

Conclusion .. 22

Further reading... 23

Contributors.. 23

Notices ... 24

Trademarks ... 25

Minimizing Planned Outages Page 3

Executive Summary
This paper describes several best practices for minimizing or even potentially eliminating
planned database outages. An outage is any situation in which the database is unable to
serve user requests, either completely as in the case of an offline database or partially as
in the case of unacceptable performance. Planned outages can include activities such as
routine database maintenance activities or upgrades to your database environment.

Outages have a direct impact on the availability of your database environment.
Availability is a measure of a system’s ability to serve user application requests. Some
database environments can tolerate occasional interruptions in availability while others
must be available around the clock. The availability strategy you choose, and the
resources you spend to achieve your availability goals, should be driven by the needs of
your business.

DB2 data server contains features that can help you eliminate some types of planned
outages and reduce the impact of others. This paper will discuss those features as well as
when and how to use them to help achieve a high level of availability.

Minimizing Planned Outages Page 4

Introduction
This paper focuses on strategies for managing planned database outages, particularly
when performing maintenance activities, with the goal of achieving a level of database
availability that meets the needs of your business.

Areas of specific focus in this paper include:

• Table and index maintenance

• Data loading or data ingestion

• Upgrades

• Backups

This paper will also provide an overview of strategies for improving availability through:

• Tuning features and configuration

• Storage management

Availability
In the context of your business’ process and your underlying database solution,
availability refers to the measure of the database’s ability to process transactions for user
applications in a timely fashion.

The availability requirements of a database solution are determined by the needs of your
business. For example, if a database solution serves a single storefront business that is
open from 9:00am to 5:00pm, then the database could potentially be off-line from 5:01pm
to 8:59am every night and still be considered highly available. On the other hand, if that
same database solution serves a chain of stores that span multiple time zones, the
window of possible down time becomes smaller. If the database solution serves an on-
line business that needs to serve customers 24 hours every day, the database cannot be
taken off-line at all without affecting customers.

Outages
An outage is any disruption in the ability of the database solution to serve user
applications. Outages can be complete, as in the case of a database being offline, or
partial, as in the case of unacceptably slow performance due to a high demand on the
system’s resources.

Outages can be classified in two groups: planned outages, which are the focus of this best
practices paper, and unplanned outages.

Minimizing Planned Outages Page 5

Unplanned outages
Examples of unplanned outages include:

• The failure of one or more key components of the system, including hardware or
software failure.

• Inadvertent administrative or user application actions such accidentally
dropping a table that is needed for business-critical transactions.

• Poor performance due to suboptimal database configuration, or inadequate
hardware or software.

Planned outages
Examples of planned outages include:

• Maintenance activities that require you to take the database offline, or
maintenance activities that can be performed without stopping the database but
that can adversely affect performance. These are the most common types of
planned outages.

• Upgrades to your software or hardware, such as the installation of a DB2 Fix
Pack, that may require you to take a partial or complete database outage.

Availability strategies
The availability strategy you choose should be based on the impact that planned outages
will have on your business. In some cases, investing significant resources in a strategy
that guarantees your database is highly available may be appropriate; in other cases you
may not need a highly-available environment, if at all.

A crucial factor in determining your availability strategy is to ask how tolerant your
business, or a specific system in your business, is to the occurrence of an outage. For
example, a restaurant that has a website that contains menu information may be able to
tolerate the occasional planned outage. On the other hand, any outage (planned or
unplanned) on a stock exchange server that handles trade-related transactions would be
catastrophic. Investing a significant amount of resources to ensure the restaurant’s server
is 99.99% available may not be cost-effective, but it certainly would be in the case of the
stock exchange. Quantifying the impact of outages, be it in terms of lost revenue, lost
productivity, or even lost customer confidence and goodwill, will help you make
decisions about the level of investment you should make in your availability strategy.

Of course, you should try to avoid planned outages whenever possible by performing
routine maintenance tasks, like database backups, while the database is online. You can
also greatly reduce the duration of planned outages when performing upgrades.

Some database maintenance tasks may always require full or partial planned outages but
you may be able to take steps to reduce the impact of these outages in terms of the

Minimizing Planned Outages Page 6

amount of time it takes to complete the maintenance task, or by minimizing the amount
of system resources the task consumes. For example, excessive reorganization of tables or
indexes can needlessly consume system resources to the point where your end users
experience unacceptably slow response times to their queries. The database may still be
theoretically online but suffering symptoms of a “brown out”, perhaps causing
applications to time out before transactions can be committed. When it comes to
upgrades, you can dramatically reduce the duration (and therefore the impact) of the
outage by using DB2 features like High Availability Disaster Recovery (HADR) or by
taking advantage of separate DB2 installations on the same system.

The following sections will discuss best practices for minimizing or potentially
eliminating the effects of planned outages.

Minimizing Planned Outages Page 7

Improving availability during table and index
maintenance
Reorganization operations (reorgs) on tables or indexes tend to be resource intensive
activities which limit the availability of the tables and reduce concurrency. However, if
you follow these general guidelines, you should be able to reduce the impact of reorg-
related outages:

• Perform reorgs only if necessary

• Use only type-2 indexes

• Reduce the need to perform reorgs

• Minimize the impact of your reorg

Perform index and table reorgs only if necessary
Reorgs should not be performed periodically just as a matter of routine. In fact, many
DB2 indexes and tables will seldom ever need to be reorganized. For additional
information on this topic, see Determining when to reorganize tables and indexes.

If you are using the REORGCHK command to determine if you need to do a reorg,
ensure that the threshold formulas are relevant to your workload. If you use the
following rules of thumb to interpret the formulas, and you should be able to limit the
frequency and impact of reorgs dramatically:

F1: Set PCTFREE to a moderate value

This formula is related to the percentage of overflow records. Consider adjusting the
percentage of free space on each page (PCTFREE) to reduce the need for future
reorgs. Setting PCTFREE to a moderate value such as 5% has shown good results.
Overflow records increase processing time because the overflow area needs to be
accessed as a part of any actions against the table. If overflow records are not
accessed frequently in your workload, you can ignore this formula. You can
determine how often overflow records are accessed using the overflow_accesses
monitor element.

F2, F3: Ignore them if you don’t need the space

These formulas are related to the free space to be gained by reorganizing the table. If
you don't need to use the space elsewhere and don't need to free space for other
tables, or if more data is going to be added to the table anyway, you can ignore these
two formulas.

F4: Use an MDC table or a clustering index

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.admin.perf.doc/doc/t0005079.html

Minimizing Planned Outages Page 8

This formula is related to the clustering ratio of an index. If you require clustering for
good performance, consider using a multidimensional clustering (MDC) table or a
clustering index. If your workload contains no or few important statements that
would benefit from table clustering it, ignore this formula. For a detailed discussion
of the benefits and design of MDC tables, see the “Physical Database Design” Best
Practices paper.

F5, F6: Ignore them if you don’t need the space, or use the CLEANUP option

These formulas are related to whether you should rebuild the indexes. If you don't
have the need to free space for use elsewhere, you can ignore these two formulas. If
you do want to perform an index-rebuilding reorg, you should first try a reorg with
CLEANUP ONLY ALL first, to compact the index. The reorg with CLEANUP ONLY
ALL is faster, consumes fewer resources, and has less impact because there is no
object switch phase involved, which requires table-level locks.

F7: Ignore if pseudo-deleted keys don’t have an impact

This formula is related to the number of pseudo-deleted RIDs on non-pseudo-empty
pages. This describes the need for the lowest impact index reorg with CLEANUP
ONLY ALL as the best. Even though this formula may suggest that you perform a
reorg, you may still be able to ignore it. You don't need to reorg if, for example, your
online workload is not penalized by the presence of the pseudo-deleted keys and if
you don't need the extra space occupied by the pseudo-deleted keys.

F8: Ignore if pseudo-empty leaf pages don’t have an impact

This formula is related to the number of pseudo-empty leaf pages. It describes the
need for the lowest impact index reorg with CLEANUP PAGES as the best match.
As with F7, even though this formula may suggest that you perform a reorg, you
may still be able to ignore it.

Convert any type-1 indexes to type-2 indexes
Prior to DB2 Universal Database™ Version 8.1, all indexes were type-1 indexes. Even
though all new indexes are type-2 indexes (except those built on tables already
containing a type-1 index), type-1 indexes can still be present in your database. Because
type-2 indexes have several advantages, such as increased concurrency characteristics
and enabling additional function, such as online table reorgs, you should convert any
remaining type-1 indexes. Specify the CONVERT option of the REORG command to
perform this conversion.

Reduce the need to perform reorgs
Ask yourself if the reorg is even necessary and if there are alternative ways of achieving
the desired outcome of the reorg.

Minimizing Planned Outages Page 9

You should not be performing a reorg without first understanding what is to be gained
by it. For example, common wisdom in database systems may indicate that index reorgs
are required to do a number of things, including (not exhaustively):

• Reducing the size and number of levels in the index

• Reducing the number of pseudo-deleted keys in the index

• Increasing the sequentiality of the index pages, thereby improving the I/O
performance of index range scans

While these reasons are valid reasons for a reorg, remember that DB2 index management
algorithms work towards eliminating the need for explicit reorgs in many cases. For
example, pseudo-deleted keys are removed automatically during data manipulation
language (DML) processing.

Similarly, there are a number of reasons why you might perform table reorgs, including:

• Reclustering data rows with respect to index keys, thereby improving the I/O
performance of some access plans.

• Reclaiming embedded free space

• Eliminating overflow records

• Compressing a table

There are a number of strategies you can employ to achieve these outcomes that don’t
require a reorg.

• Use clustering technology. Multi-dimensional clustering (MDC) tables and
clustering indexes help you avoid the need for reclustering reorgs. MDC tables
keep the table clustered with respect to all specified dimensions, at all times. If
you decide to use MDC tables, you will need to choose your table dimensions
carefully to minimize the increase in storage consumption they entail. Use the
Design Advisor to examine your data and workload, and to provide a
recommended set of dimensions that optimize performance and space
consumption.

Clustering indexes attempt to keep the table clustered with respect to the
specified index, on a best-effort basis, which reduces the need for reorgs just to
keep the cluster ratio high. Although this should significantly reduce the need
for reorganizing the table, clustering indexes can result in slightly reduced insert
and update speeds.

• Exploit the DB2MAXFSCRSEARCH registry variable. In some cases, this can
reduce the need for space-reclaiming reorgs. This registry variable controls the
tradeoff between insert speed and space reclamation during insert processing.
Low values favor faster inserts over space, by limiting the number of pages that

Minimizing Planned Outages Page 10

are searched for enough space to accommodate the row being inserted before a
new page is added to the table. High values favor better space utilization, by
searching more of the table. The default value of 5 is typically a good tradeoff.
However, if you have very large tables with frequent deletes, you should
consider a higher value for DB2MAXFSCRSEARCH. The value -1 ensures that if
there is enough contiguous free space available, it will be used before a page is
added to the table.

Note that large values, and the -1 setting, do not necessarily mean the entire table
is searched on every insert. Instead, information about the free space in the table
is cached and may be used to bypass the space search. For example, when all
pages in the table are full, that information is cached, and in a subsequent insert
the search is bypassed, and a page is immediately added to the table, even if the
registry variable is set to -1.

• Keep your transactions as short as possible. Shorter-running transactions
reduce the need for space reclaiming reorgs, so take actions such as committing
as frequently as possible. The presence of long-lived transactions delays the
reuse of embedded deleted space within tables.

• Reduce or eliminate the frequency of UPDATEs which enlarge rows. This can
reduce the need to perform table reorgs to remove overflow records. Updates
that cause a row to no longer fit on its current page result in the creation of an
overflow record. For example, you could use CHAR(8) instead of VARCHAR(8)
for a column that is frequently updated, if the potential for extra space
consumption is acceptable. Updates to the VARCHAR(8) column may change
the row length, whereas updates to the CHAR(8) column would not.

• Exploit the PCTFREE parameter. This can reduce the need to perform table
reorgs as frequently to remove overflow records. This free space can then be
used to accommodate row growth without the creation of overflow records.
Typically, you should use PCTFREE if you know that the rows will be enlarged
later, for example, by a subsequent update. You should not use it if you know
that the rows won't be enlarged later, for example, if they are fixed-length rows.

• Use automatic compression. This can reduce or eliminate the need to reorganize
for the purposes of data compression. With automatic compression, tables that
grow to a size where compression starts to make sense are automatically
compressed.

In addition, note that you should take special care if you use ALTER TABLE APPEND
ON for tables in which you do a large number of inserts and deletes. When you use
append mode, delete operations leave holes in the middle of the table and inserts will not
use up those holes because the add data to the end of the table only. Therefore, using
APPEND mode for tables can cause more table fragmentation and lead to the need to
reorg more frequently

Minimizing Planned Outages Page 11

Minimize the impact of your reorgs
If you do have to perform a reorg of your tables or indexes, avoid doing an offline reorg
whenever possible. Use either an online (also known as inplace) reorg or a cleanup reorg
to achieve similar results while still maximizing availability.

• Use an online table reorg. An online reorg is often the ideal way to maintain
data availability during a reorg operation. Full read and write access is
uninterrupted except during the truncate phase, during which all write access is
suspended but read access is maintained. Use the INPLACE...ALLOW WRITE
ACCESS options with the REORG command to specify an online reorg. One
tradeoff to be aware of here is that online reorgs experience slower performance
and increased log space consumption. However, you can modify your reorg to
mitigate this. For example, if you are reorganizing for space reclamation only
and clustering is not important in your workload, perform an online reorg with
no index specification (and ensure no clustering index is defined on the table) to
maximize availability during the reorg.

• Perform a cleanup instead of a full index reorg. For instance, if a bulk deletion
job just deleted large number of the rows in a table, this may leave index keys
pseudo-deleted. The index manager will typically remove these pseudo-deleted
keys automatically at some later time. However, if you want to be sure the next
accesses through the index aren’t penalized by the presence of the pseudo-
deleted keys, use the ALLOW WRITE ACCESS … CLEANUP ONLY options of
the REORG INDEXES command to efficiently remove the pseudo-deleted keys,
while still maintaining read and write access to the table and index. If you don’t
need the space and your workload doesn’t hit these keys, you are better off
ignoring them and letting the index manager handle their removal.

Minimizing Planned Outages Page 12

Improving availability during data loading or data
ingestion
When you are moving data into a table, there are several strategies that you can use to
maximize the availability of the unaffected data in the target table. These methods are
presented in order of the level of availability they can provide, from the highest to
lowest:

• Use SQL INSERTs

• Roll in data using an ATTACH operation

• Use online loads

Use INSERTs to insert data into a table
While the high speed load utility can load data at even faster speeds, SQL INSERT
transfer rates are very high and will often be sufficient for most needs. However, the
advantage with INSERT processing is that it keeps your table fully available for read and
write access. In cases where the base SQL INSERT may not meet your performance
needs, consider employing other insert methods such as buffered inserts and array
inserts, or coding your application to drive inserts concurrently from multiple
connections.

Use ATTACH or ADD/LOAD to roll in data to range-
partitioned tables
Table partitioning allows you to efficiently associate, or attach, a new or unused table as
new partition of a range-partitioned table. Alternatively, you add a table as a new data
partition and load the data into it instead.

You can use the ATTACH clause to streamline data ingestion by loading the new
partition’s data into the new or unused table and then performing any data cleansing
activities needs through SQL, while the data remains in this table. These activities have
minimal impact on the online workload accessing the range-partitioned table, because
the new or unused table is not yet associated with the range-partitioned table. Once the
data preparation activities are complete, this table can be attached as a new partition of
the range-partitioned table, using the ATTACH clause of the ALTER statement. This is an
efficient operation because it simply associates the existing table as a partition of the
range-partitioned table, without moving any data.

After this transaction is committed, the new partition is not visible to online accesses
until you issue the SET INTEGRITY statement with the ALLOW WRITE ACCESS clause.
This will reflect the new partition’s data in any indexes and MQTs that are defined on the
table, while allowing read and write access against the table. However, if you are
concerned about the amount of SET INTEGRITY logging required by an attach operation,

Minimizing Planned Outages Page 13

this may not be the best method to use. For more detailed information on rolling in data,
see the “Data Life Cycle Management” Best Practices paper.

Another option is to add a table as a new data partition to the rest of the partitioned table
and then load data into it. This avoids the need to issue the SET INTEGRITY statement, if
the table has no constraints or MQTs defined on it. Use this option if you only require
read access to the table during the operation.

Use online loads
During a standard load operation, the load utility locks the target table with a super-
exclusive lock, whereas online loads allow read access. Use online loads for situations in
which you require the fastest data loading possible as well as some degree of availability
on the target table. To specify an online load operation, include the ALLOW READ
ACCESS option with your LOAD command.

Minimizing Planned Outages Page 14

Improving availability during upgrades

Use the High Availability Disaster Recovery (HADR) rolling
upgrade feature
You can use HADR to upgrade to a higher DB2 Fix Pack level while incurring only a
minor interruption.

The procedure is as follows:

1. Deactivate the standby database.

2. Upgrade the standby database.

3. Reactivate the standby database.

4. Once the standby database is in peer state, issue the TAKEOVER HADR
command on the standby database.

5. Direct clients to the new primary

6. Upgrade the former primary data as in steps 1-3 above.

Install new DB2 software in a different location on the same
system
Since DB2 Version 9, you have been able to install multiple DB2 server and client copies
on the same system. You can use this capability to install a new Fix Pack on a different
path and roll over your production instances to the new installation path. This can be an
effective method of speeding up the upgrade process if you are not using HADR.

1. Install your new DB2 product in a different path from your existing DB2
database production installation.

2. Shut down your production database instance.

3. Call the db2iupdt command from the new installation location to upgrade the
instance.

4. Start the new database instance.

5. Perform any necessary post-upgrade actions like calling db2updv8 or db2updv9,
or rebinding packages as directed by the Fix Pack installation topics in the DB2
Information Center.

6. Optionally, uninstall the earlier version of your DB2 product when you no longer
need it.

Minimizing Planned Outages Page 15

Improving availability during backups
Backup operations can be performed when the database is online or offline. An online
backup allows applications to have full read and write access the database while the
backup is taking place. Although an online backup can take significantly longer than the
default offline backup, there are steps you can take to shorten them.

There are two methods that allow you to reduce online backup times: table space-level
backups and incremental backups. A table space-level backup backs up a specified set
of table spaces only instead of the entire database. An incremental backup only reads
pages that have been updated since the last backup.

Online backups cannot be run concurrently with a few other operations, as described in
Compatibility of online backup and other utilities. However, there are two registry
variables that you can use to prevent some of these incompatibilities:
DB2_OBJECT_TABLE_ENTRIES and DB2_TRUNCATE_REUSESTORAGE. If your
table spaces contain large numbers of objects (tables, indexes, lob columns), setting
DB2_OBJECT_TABLE_ENTRIES to 65532 before you create DMS or automatic storage
table spaces will help you avoid incompatibilities with online create index and online
index reorg during the backup. If you plan to use the import utility with the REPLACE
option during an online backup, set the DB2_OBJECT_TABLE_ENTRIES registry
variable to IMPORT. Import replace operations are commonly used to truncate table
content, and by using this registry variable you can improve availability during online
backups.

A detailed discussion of database recovery may be covered in a future best practices
paper on unplanned outages, as a restore operation is typically only performed due to an
unplanned outage of the primary system.

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.admin.ha.doc/doc/c0021554.html

Minimizing Planned Outages Page 16

Improving availability during performance tuning
Another maintenance task that can potentially affect availability is making changes to the
database configuration. Fortunately, DB2 has automatic tuning capabilities, dynamic
(online) configuration abilities, and registry variable settings that are intended to allow
you to tune performance without incurring an outage.

Exploit DB2’s automatic tuning capability
Several DB2 configuration parameters can be tuned automatically, which allows you to
optimize performance without taking an outage. Although the automatic tuning
algorithms can be left on permanently, a common best practice is to enable automatic
tuning temporarily, allowing the self-tuning algorithms determine the optimal settings
for the workload. Then, once these optimal settings have been determined, you can
disable automatic tuning to ensure no further automatic changes take place. This strategy
is well suited for environments with relatively static workloads. If you are using the self-
tuning memory manager (STMM) in a partitioned database environment, enable it
temporarily on a representative data partition.

Another key advantage of setting a number of these parameters to AUTOMATIC is that
it prevents outage-like error conditions. For example, the AUTOMATIC setting
eliminates the need to specify an upper bound. An upper bound could lead to an error
message because a heap is exhausted even if there is enough free memory on the system.
Although the system remains up and running, these types of errors may appear to end
users as an application error. From a user perspective, these errors may indicate that the
system is not available when that may not really be the case.

The following parameters can now be set to AUTOMATIC:

• applheapsz: The application heap can grow now until appl_memory or
instance_memory is reached.

• database_memory: Starting in DB2 Version 9.5, STMM can tune the memory
allocated to the database based on its requirements, within the limits of
instance_memory.

• dbheap: The database heap can now grow as necessary inside the limits of
database_memory and instance_memory. This is very important if you have a
very large number of tables active in the database (like on SAP databases), that
require some space from the dbheap for the TCB (Table Control Block).

• instance_memory: Starting in DB2 Version 9.5, this parameter now limits the
overall memory consumption of applications and databases together. You need
to be careful in setting this parameter to automatic if other applications are
contending for memory. The database may release too much memory if other
applications consume more and more memory, and this may reduce the ability of
the database to handle large volumes of transactions or complex queries.

Minimizing Planned Outages Page 17

• mon_heap_sz: This prevents avoidable error messages because of missing
memory for event monitors.

• stat_heap_sz: RUNSTATS and the real-time statistics require memory for the
statistics collection. Because it can be difficult to estimate an upper limit, it is
better to set it to automatic to avoid failing runstats operations.

• stmtheap: Complex statements require a large amount of statement heap to
compile. Setting this to automatic will help avoid unnecessary errors during
statement compilation.

Set DB2_OPT_MAX_TEMP_SIZE to 10240. Setting the DB2_OPT_MAX_TEMP_SIZE
variable enables the DB2 optimizer to avoid large temporary space usage for sorts, if
other access patterns (for example, sort by an index) are available. This reduces the
likelihood of file system full conditions on the temporary table spaces and therefore
decreases the possibility of SQL errors, helping to increase the overall availability of the
system.

Use DB2’s dynamic configuration capability
Many DB2 configuration parameters can be changed online, while the database is
available. Online changes to database (or database manager) configuration parameters
must take place within a database connection (or database manager instance attachment).

Set the DB2 registry variable DB2_OPTPROFILE to YES. If this variable is set before you
start the DB2 instance, you can work around DB2 optimizer problems without the need
for restarting the database instance. Many optimizer problems can be fixed by changing
registry variables like DB2_REDUCED_OPTIMIZATION or by applying a new DB2 Fix
Pack, but both operations require a short outage.

Minimizing Planned Outages Page 18

Improving availability through storage management

Use automatic storage or enable the auto-resize capability of
DMS table spaces
These two technologies automatically add storage to table spaces when needed by
automatically extending existing containers, or automatically adding new containers.
This allows the database manager to handle full file system conditions automatically. In
both cases full read and write capability is preserved and minimal I/O bandwidth is
consumed.

Use automatic storage with a single table per table space
When many tables exist within a DMS table space, it can be inconvenient to reclaim space
associated with individual dropped tables. With one table per table space, reclaiming the
space is as simple as dropping the table space. Prior to the advent of automatic storage,
such a recommendation may have introduced an excessive amount of management
overhead, because each table space required its own storage management attention. With
automatic storage, this is no longer the case because automatic storage table spaces are
logical entities where tables can be created. Storage management for all automatic storage
table spaces is performed in a single place, at the database level.

Keep in mind that table space page sizes must be one of 4, 8, 16 or 32 kilobytes. These
values determine the maximum allowable row length for tables in a given table space.

Use the REDUCE clause of the ALTER TABLESPACE
statement
The REDUCE clause can be used to reclaim unused space above a table space’s high
water mark (that is, the highest address that was ever in use in the table space). Under
certain conditions, this ALTER statement can also reduce the high water mark without
requiring the database to be offline.

Minimizing Planned Outages Page 19

Best Practices
Table and index maintenance

• Although reorgs can be performed online, they can be resource
intensive. In many cases reorgs are simply unnecessary, so avoid
them when possible.

• Use DB2 clustering technology such as MDC tables or clustering
indexes to prevent or reduce the need for table reorgs.

• Set the DB2MAXFSCRSEARCH registry variable or keep your
transactions as short as possible to reduce the need for space
claiming table reorgs.

• Use the PCTFREE parameter or reduce the number of row-
enlarging UPDATEs to reduce the need to remove overflow
records.

• Use automatic compression instead of a table reorg to compress
your tables.

• Convert any type-1 indexes to type-2 indexes

• Use an online reorg if you do need to perform a reorg.

• Use the CLEANUP option to reduce the scope of your index
reorgs.

Data movement and data ingestion

• Use SQL INSERTs instead of a load operation to keep the target
table available for read and write access.

• Attach a data partition or add (and load into) a table as a data
partition when using range-partitioned tables.

• Use an online load if applications only require read access to the

Minimizing Planned Outages Page 20

target table.

Upgrade operations

• Use the rolling upgrade feature, if you have HADR.

• Install the new DB2 software parallel to your existing database.

Backup operations

• Use online backups to keep your database available.

• Use table space-level or incremental backups to shorten the
length of your backup operations.

• Create all data, index and long table spaces as DMS or automatic
storage table spaces, and set the DB2_OBJECT_TABLE_ENTRIES
registry variable to the maximum setting to reduce
incompatibilities with other concurrent operations.

• Set DB2_TRUNCATE_REUSESTORAGE to IMPORT if you are
performing an import replace operation during an online backup.

Tuning and configuration

• Use DB2’s dynamic configuration ability to keep the database
online during configuration changes.

• Use DB2’s automatic tuning capability to improve performance,
while keeping the database available

• Set certain configuration parameters to AUTOMATIC to prevent
error messages related to lack of resources

Storage management

• Use automatic storage or enable the auto-resize capability of
DMS table spaces to have the database manager prevent full file
system conditions automatically, while still maintaining full read
and write access.

• Use automatic storage with a single table per table space or the
REDUCE clause of the ALTER TABLESPACE statement to

Minimizing Planned Outages Page 21

simplify reclaiming space.

Minimizing Planned Outages Page 22

Conclusion

The database availability strategies you choose, and the resources you should invest to
implement them, should reflect how tolerant your business is with regard to database
outages.

DB2 provides several features and capabilities that are designed to help you to reduce or
potentially eliminate the impact of some types of outages related to routine maintenance
activities such as reorgs, loads, backups, upgrades, database configuration and tuning
exercises, and storage management. Reducing the duration or frequency of outages will
increase the time your database solution is available to serve the needs of your business.

A final note on developing strategies for avoiding planned outages: No matter how well
designed a plan or process is, its successful implementation depends on a sound
understanding of the technologies mentioned in this paper, along with rigorous testing.
You can learn more about the high-availability capabilities of DB2 by exploring the
resources listed below.

Minimizing Planned Outages Page 23

Further reading
• DB2 Version 9.5 for Linux, UNIX and Windows manuals

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009727

• DB2 9.5 Version 9.5 for Linux, UNIX, and Windows Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp

• DB2 Best Practices website
http://www.ibm.com/developerworks/db2/bestpractices/

Contributors
Bill Minor

DB2 LUW Kernel Development

Sarah Packowski
DB2 Information Development

Dwaine Snow
Senior DB2 Technical Evangelist

Tim Vincent
Chief Architect DB2 LUW

Mike Winer
 DB2 LUW Kernel Architect

http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg27009727
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp
http://www.ibm.com/developerworks/db2/bestpractices/

Minimizing Planned Outages Page 24

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or recommendations
provided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Anyone attempting to adapt
these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web sites is
at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual

Minimizing Planned Outages Page 25

results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2008. All Rights Reserved.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

	Introduction
	Availability
	Outages
	Unplanned outages
	Planned outages
	Availability strategies

	Improving availability during table and index maintenance
	Perform index and table reorgs only if necessary
	Convert any type-1 indexes to type-2 indexes
	Reduce the need to perform reorgs
	Minimize the impact of your reorgs

	Improving availability during data loading or data ingestion
	Use INSERTs to insert data into a table
	Use ATTACH or ADD/LOAD to roll in data to range-partitioned tables
	Use online loads

	Improving availability during upgrades
	Use the High Availability Disaster Recovery (HADR) rolling upgrade feature
	Install new DB2 software in a different location on the same system

	Improving availability during backups
	Improving availability during performance tuning
	Exploit DB2’s automatic tuning capability
	Use DB2’s dynamic configuration capability

	Improving availability through storage management
	Use automatic storage or enable the auto-resize capability of DMS table spaces
	Use automatic storage with a single table per table space
	Use the REDUCE clause of the ALTER TABLESPACE statement

	Conclusion
	Further reading
	Contributors

	Notices

