
Issued: June 2012

IBMP

®
P DB2 P

®
P for Linux P

®
P, UNIXP

®
P, and Windows P

®

Best practices
Managing data growth

Liping Zhang
Senior Software Engineer

Naresh Chainani
Software Developer

Alexandria R. Burkleaux
Software QA Engineer

Roman B. Melnyk
Information Developer

DB2 for Linux, UNIX, and Windows
Development

���®

Managing data growth Page 2 of 46

TUMANAGING DATA GROWTHUT.. 1

TUEXECUTIVE SUMMARYUT .. 4

TUINTRODUCTIONUT... 5

TUStrategies for managing data growthUT ...5

TUDatabase design considerations for data growthUT...6

TUData lifecycle managementUT..6

TUData maintenanceUT ..7

TUResponding to changesUT ...7

TUDATABASE DESIGN CONSIDERATIONS FOR DATA GROWTHUT 8

TUTable space considerationsUT ..8

TUThe DB2 data organization schemesUT ..10
TUDatabase partitioningUT ...11
TUTable partitioningUT ...13
TUMultidimensional clusteringUT ...15
TUBringing it all togetherUT ...17

TUMaterialized query tablesUT ..18

TUCompressionUT ...19

TUDATA LIFECYCLE MANAGEMENTUT... 20

TUAdding new data: Which solution to use?UT ..20
TUMethod 1: ATTACH PARTITION + SET INTEGRITYUT ..20
TUMethod 2: ADD PARTITIONUT ..22
TUMethod 3: INSERTUT ..23
TUMethod 4: LOADUT ..23
TUETL tools facilitate data roll-inUT..24

TURemoving old data: Which solution to use?UT ...24
TUMethod 1: DETACH PARTITIONUT ..24
TUMethod 2: DELETEUT ...25
TUMethod 3: TRUNCATEUT ..26

Managing data growth Page 3 of 46

TUMaintaining referential integrity as part of data lifecycle managementUT...27

TUMaintaining MQTs as part of data lifecycle management UT...28
TUPartitioned MQT maintenance after rolling data into a base tableUT ..28
TUDetaching data partitions from a partitioned MQTUT ...29

TUAccessing data after roll-outUT ..30
TUUNION ALL viewsUT...30
TUOptim Data Growth SolutionUT..30

TUMulti-temperature data warehouses UT ..31

TUDATA MAINTENANCEUT ... 32

TUReorganizing data and indexesUT ...32

TURunstatsUT ...33

TUParallel LOAD for range partitioned tables speeds up data roll-in performanceUT34

TUDatabase recovery: Backup and restoreUT ...34

TUResponding to changesUT ...35
TUAdding new database partitions to accommodate data growthUT ..35
TURebalancing data UT...36
TUChanging table partitioning granularity to accommodate data growthUT ...38

TUBEST PRACTICESUT .. 40

TUCONCLUSIONUT .. 42

TUFURTHER READING UT .. 43

TUContributorsUT..44

TUNOTICES UT .. 45

TUTrademarksUT ...46

TUContacting IBMUT ..46

Managing data growth Page 4 of 46

0BExecutive summary
Because of business needs for data retention and regulatory compliance, enterprises need
to manage increasingly large databases ranging from hundreds of gigabytes to many
terabytes, or even petabytes, in size. As data continues to grow at an exponential rate,
DBAs and IT professionals in these organizations face daunting challenges when design-
ing and operating such large databases. The data must be well organized to effectively
cope with data growth and to meet service requirements. Challenges include how best to
achieve the following objectives:

• Designing databases that can accommodate continuous data growth
• Keeping database systems lean and high performing
• Managing data lifecycles more efficiently and less intrusively to keep operational data

highly available
• Reducing the cost and impact of data maintenance operations, such as backup and re-

store operations, to keep mission-critical data ready when needed, and reorganization
and runstats operations to maximize system performance

• Satisfying near real-time requests for transactional data or the complex analytical
query requirements for large data sets, often including historical data, while reducing
the total cost of ownership (TCO)

DB2 for Linux, UNIX, and Windows offers a rich set of features that help you to meet
these challenges and to benefit from winning solutions. This paper describes best prac-
tices for managing data growth that you can consider during the stages of database plan-
ning, design, implementation, and operation. By leveraging these best practices, DBAs
and IT professionals can use DB2 data server’s extensible architecture and the layered
data partitioning and organization schemes to take full advantage of proven approaches
to managing data growth.

Managing data growth Page 5 of 46

TIntroduction
This paper, whose contents are based on DB2 for Linux, UNIX, and Windows Version
9.7, is primarily intended for database administrators and solution architects in a data
warehouse environment who are looking for physical database design and planning in-
formation that is applicable to data lifecycle management and data maintenance scenar-
ios characterized by rapid data growth. The best practices described in this paper are also
helpful in mixed-workload environments.

6BStrategies for managing data growth
There are a few general strategies for managing growth in a DB2 database system. Con-
sider these strategies when planning your database system or application. You can also
apply them when your system requirements change unexpectedly and you need to ad-
just accordingly.

Strategy 1: Control data growth

You might use this strategy when you have data that is constantly produced, but you
have different access patterns for the data based on its age. Growth could be controlled
by keeping the size of data in tables used for key applications constant, even as the size of
the overall database grows, or it could be controlled by keeping the size of the entire da-
tabase constant. Either way, you will need mechanisms for moving new, “active”, data
into the tables and moving less relevant, “inactive”, data out of the tables or database.
For example, a data warehouse might retain a single quarter's worth of data in its active
data set and move older data to near-line storage for retention for regulatory compliance.
By separating data according to access patterns, you can keep applications lean and op-
timize performance. You can also control costs by allocating hardware resources based
on requirements for accessing the data.

Strategy 2: Adapt to growth

You might use this strategy when you have a system that needs to maintain good per-
formance even as the size of its active data set continues to grow. For example, your data
warehouse has produced so much business value, that now other departments want to
take advantage of your application for their analyses. These departments want to include
more columns from the transactional data in the warehouse. Another example is business
growth. Increases in customers or sales, for example, could cause the same increase in
data for your system. The DB2 software provides mechanisms that add capacity to the
system to scale for good performance and to reduce the impact of data maintenance op-
erations on increasingly large tables.

Combined strategy: Control and adapt to growth

Controlling and adapting to data growth can be combined into the same strategy. You
might use this approach when you can separate data by access pattern, but the size of the

Managing data growth Page 6 of 46

data in the active data set continues to grow due to increases in business or increasing
data demands on the application from new use cases.

7BDatabase design considerations for data growth
As data volume increases over time, the data might become skewed and fragmented, re-
sulting in decreased performance. These problems can be addressed through good initial
planning during the design phase. The DB2 shared-nothing architecture provides unpar-
alleled system extensibility, both in terms of additional processing power and increased
storage capacity. Database partitioning, table partitioning, and multidimensional cluster-
ing (MDC) are innovative and industry-proven solutions for scalability, manageability,
and performance.

The tips in this section are intended to help DBAs take full advantage of these features,
either individually or in combination. The discussion covers best practices for the follow-
ing tasks:

• Designing table spaces with all anticipated database considerations in mind, includ-

ing query performance, data lifecycle management, archiving, data backup and re-
covery operations, and other database maintenance tasks

• Choosing the right database partitioning key so that the data can be distributed
evenly across all of the database partitions for efficient parallel processing

• Achieving better data collocation for enhanced complex query performance
• Choosing a table partitioning key that facilitates data roll-in or roll-out for efficient

data lifecycle management, and that helps complex queries to run faster by using the
DB2 optimizer’s data partition elimination capability to scan only relevant data parti-
tions

• Determining the right MDC dimensions to achieve better query performance and re-
quire less data maintenance

• Choosing the right combination of data organization schemes to maximize benefits

8BData lifecycle management
As a database grows, so does the relative amount of old data that is infrequently accessed
yet consumes limited resources. Even with good scaling, it is increasingly important to
keep the system lean to meet performance requirements and lower the TCO. It is also
important to keep the old data available to meet business needs. This is accomplished by
controlling the amount of active data and by defining a data retention strategy to handle
the data aging process, for example by archiving historical data. Data lifecycle manage-
ment refers to the management of data from the time at which the data is generated right
to the end of its useful life.

The data lifecycle actually starts before the point of injection into a database system, and
does not end when the data is rolled out from the active tables. Preparing, cleansing, and
transforming the data before putting it into the database is a critical part of the process.
Similarly, the management of data both while and after it is rolled out of the system
should be considered part of the data lifecycle.

Managing data growth Page 7 of 46

Today's database applications often require existing data to be available 24x7, so that the
applications can run without interruption during both data roll-in and roll-out. The best
practices for data lifecycle management are covered in the HTU“Data lifecycle management”UTH
section. The best practices for accessing archived data are also outlined in that section.

9BData maintenance
As the amount of data in a database continuously grows, database backups seem to take
forever, data reorganization takes a long time, and runstats operations do not complete
within the defined maintenance window. A highly active database can experience chang-
ing data distribution characteristics, including the balance of data across database parti-
tions. These changes can result in fragmentation, reduced clustering ratios, and degraded
performance over time. It is critical to regularly monitor the data distribution characteris-
tics and to maintain current statistics to keep system performance from degrading.

Regular maintenance typically includes reorganizing data and indexes for better cluster-
ing, space reclamation, or defragmentation; refreshing statistics to help the optimizer im-
prove data access plans; and redistributing the data in partitioned database environ-
ments to eliminate skew. Because such operations can be very time consuming and re-
source-intensive, especially with large amounts of data, careful consideration should be
given during the physical database design phase to reduce or eliminate the impact of
these maintenance tasks during database growth.

Another important operational aspect of managing data in a growing database is imple-
menting a good data backup and recovery strategy to ensure business continuity after ei-
ther planned or unexpected outages.

10BResponding to changes
No planning is perfect! As business needs change and data continues to grow, the origi-
nal design assumptions for the database might no longer be valid. Although small
changes to storage allocation or memory management can easily be accommodated, in
some cases you might need to make significant changes. For example, the growing needs
of your business might call for horizontal scaling, which you can address by adding a
new database partition. Or the distribution key has developed a lot of skew and no
longer seems to be the best choice.

The HTU“Responding to changes”UTH section provides guidelines that help you to reconsider your
choices around data organization schemes by assessing current realities and anticipating
future trends. The following topics are covered in this section:

• Adding new database partitions to accommodate increasing data volume require-

ments and satisfy user demands
• Modifying the distribution key in response to skew
• Changing table partitioning granularity to accommodate data growth

Managing data growth Page 8 of 46

1BDatabase design considerations for data growth
When designing a database, it is important to understand the service requirements and
expected growth (as anticipated at the time of planning) so that the system will have suf-
ficient processing and storage capacity. Based on business growth trends, estimate the
rate at which data is expected to grow and have a plan for monitoring and extending sys-
tem capacity. It is also important to physically organize the data for optimal performance
and manageability.

To effectively manage data growth, it is important to streamline the following processes:

• Adding new data to the operational database
• Removing old data from the operational database
• Moving old data to cheaper, slower storage for continued availability in the opera-

tional database

As the volume of data grows, so too does the cost of storing and maintaining that data.
By performing maintenance operations only on the necessary subsets of the data, you can
limit the maintenance window and reduce costs. A good database design combines these
considerations with the performance, temperature, and data availability requirements of
the system.

This section describes some considerations when choosing table spaces and outlines the
DB2 data organization schemes. It explains best practices for choosing keys for the differ-
ent schemes and how the right choice can make the task of managing data growth easy
while helping to optimize performance.

11BTable space considerations
Table spaces enable you to physically group database objects for common configuration
and the application of maintenance operations at the table space level rather than at the
database level, which significantly reduces the impact on data availability and resource
requirements by confining such operations to specific objects.

It is generally recommended that you create separate table spaces for the following ob-
jects:

• Regular tables
• Staging tables
• Materialized query tables (MQTs)
• Individual data partitions of range partitioned tables
• Indexes

For a range partitioned table, placing individual data partitions into different table spaces
enables you to back up or restore an individual partition without impacting other parti-
tions. For many applications, you can avoid backing up older historical partitions by just

Managing data growth Page 9 of 46

backing up the partition with current data. The merge backup utility can merge the parti-
tion backup of current data with a previous full backup image to create a new full backup
image. Thus, you can reduce the need to take a full backup of large databases.

Isolating a partition in its own table space helps to reduce fragmentation. For example, if
unsorted data is loaded into a range partitioned table where all partitions are in the same
table space, the extents that are allocated for the partitions will be interleaved, reducing
the performance of table scans. If each data partition resides in its own table space, or the
data is sorted on the table partitioning key, fragmentation should be reduced.

Local indexes on range partitioned tables are placed by default in the same table space as
their corresponding data partition, and this default behavior should meet the needs of
most applications where ease of administration and maintainability are priorities. On the
other hand, if query performance is the priority, place each index partition into its own
table space so that local indexes use a separate buffer pool from that of the data. This will
increase the likelihood of index leaf pages residing in the buffer pool when they are
needed. Keep in mind, however, that having each data partition and each index partition
in their own table space will increase the number of table spaces, thereby incurring more
administrative complexity and cost.

Create each global index on a range partitioned table in a separate table space, because
such indexes can become very large. For optimal performance, ensure that the leaf pages
of frequently used global indexes reside in the buffer pool. If memory constraints exist,
place the most frequently used global indexes in table spaces that have containers on
faster disks.

Keep the number of table spaces per database partition below 1000. Having too many ta-
ble spaces or data partitions can increase administrative complexity and overhead and
decrease performance. Consider grouping related tables or multiple data partitions in the
same table space based on the archiving strategy, data temperature, or the granularity of
backup and restore operations. Use MDC rather than range partitioning for finer granu-
larity partitioning.

For example, if a table is partitioned by week and contains 7 years of data, there are 364
data partitions that reside in 364 table spaces, if each data partition is in its own table
space. However, if the business backup policy is to perform daily backups of the current
quarter, it might make sense to use MDC to partition by week and utilize quarterly range
partitions. Perform daily incremental backups of the table space holding the most recent
data. The merge backup utility can be used to merge backup images at another server to
create new full backup images. This reduces the number of required table spaces for this
table to 28.

Similarly, you can reduce the number of required table spaces based on the granularity of
the data that is used for archiving. For example, suppose that data is partitioned by date,
with each partition containing one month of data. If data is archived quarterly, having
three partitions on a table space will reduce both the number of table spaces and the table
space-based administrative overhead that is associated with the archiving procedure.

Managing data growth Page 10 of 46

12BThe DB2 data organization schemes
The DB2 data organization scheme hierarchy is the industry-proven solution to support
physical database designs for scalability, manageability, and performance.

• Database partitioning distributes table data across multiple database partitions in a

shared-nothing manner in which each database partition “owns” a subset of the data.
• Table partitioning partitions table data into different storage objects based on the table

partitioning column and defined ranges. When database partitioning is combined
with table partitioning, identical table partitions are created on each database parti-
tion.

• Multidimensional clustering physically organizes table data into blocks along one or
more dimensions, or clustering keys.

Table 1 shows the clauses on the CREATE TABLE statement that corresponds to each
data organization scheme.

Table 1. The DB2 data organization schemes

Data organization scheme Clause in the CREATE TABLE statement

Database partitioning DISTRIBUTE BY HASH

Table (or range) partitioning PARTITION BY RANGE

Multidimensional clustering ORGANIZE BY DIMENSION

These schemes can be used individually or in combination, based on operational and
workload requirements. Figure 1 illustrates the data organization scheme hierarchy for
the following table:

CREATE TABLE Sales (

 TxID INT,

 OrderDate DATE,

 CustRegion CHAR(5),

 ShipDate DATE,

 ProductID BIGINT,

 CustomerID BIGINT

)

 DISTRIBUTE BY HASH (TxID)

 PARTITION BY RANGE (OrderDate)

 (PARTITION Jan2009

Managing data growth Page 11 of 46

 STARTING '2009-01-01' ENDING '2009-01-31' IN Ts1,

 PARTITION Feb2009

 STARTING '2009-02-01' ENDING '2009-02-28' IN Ts2)

 …

 PARTITION Dec2011

 STARTING '2011-12-01' ENDING '2011-12-31' IN Ts36)

 ORGANIZE BY DIMENSIONS (CustRegion);

The Sales table is partitioned by month and stores a 36-month history of sales. The Sales
table is hash-partitioned by the transaction ID column (TxID) across two database parti-
tions named P1 and P2. The table is range partitioned by month based on the order date
(OrderDate). Data can be efficiently rolled in and out every month. Notice how each data
partition is in its own table space. Data within each table space is clustered based on sales
region (CustRegion), which facilitates aggregation for complex analytical queries.

Figure 1. The example data organization scheme hierarchy

28BDatabase partitioning
Database partitioning helps you to adapt to data growth by providing a way to expand
the capacity of the system and scale for performance. In a partitioned database environ-
ment, a database is divided into database partitions, and each database partition has its
own set of computing resources, including CPU and storage. Each table row is distrib-
uted to a database partition according to the distribution key that was specified in the
CREATE TABLE statement. The DB2 data server provides near-linear scalability when

Managing data growth Page 12 of 46

new database partitions are added to expand the processing power and storage capacity
of the system.

A distribution key is a column (or group of columns) that is used to determine the data-
base partition in which a particular row of data is stored. Index data is also partitioned
with the corresponding table data and stored locally at each database partition. When a
query is processed, the request is distributed to each database partition so that subsets of
the data can be processed in parallel.

47BChoosing the distribution key
The following guidelines will help you to choose a distribution key.

• Choose the distribution key from those columns having the highest cardinality.

Unique keys are good candidates. Columns with uneven data distribution or columns
with a small number of distinct values might result in skew, where query processing
involves more work on a subset of database partitions and less work on others.

• Choose the distribution key from columns with simple data types, such as integer or
fixed-length character; this will improve hashing performance.

• Choose the distribution key to be a subset of join columns to facilitate join collocation.
• Avoid choosing a distribution key with columns that are updated frequently.
• In an online transaction processing (OLTP) environment, ensure that all columns in

the distribution key participate in transactions through equality predicates. This en-
sures that an OLTP transaction is processed within a single database partition and
avoids the communication overhead inherent with multiple database partitions.

• Include columns that often participate in a GROUP BY clause in the distribution key.
• Unique index key columns must include all of the distribution key columns. The DB2

database manager creates unique indexes to support unique constraints and primary
key constraints, and these system-defined unique indexes have the same requirement
that the constraint key columns must be a superset of the distribution key.

48BBest practices for table collocation
As data grows, complex queries performing joins can result in an increasing amount of
data interchange between database partitions. Collocation needs to be factored into your
database design to maintain query performance as data volumes increase.

The following conditions facilitate collocation:

• The tables being joined are defined in the same database partition group.
• The tables have the same number of columns in the distribution key, and the data

types of key columns are partition compatible.
• For each column in the distribution keys of the joined tables, an equijoin predicate is

used in the WHERE clause of the query.

To collocate multiple dimension tables with one fact table, collocate the fact table with the
largest commonly joined dimension table when data skew is not significant, and then
replicate the rest of the dimension tables. If the dimension tables are large, replicate a ver-
tical subset of commonly used columns. If you already have a complete set of replicated

Managing data growth Page 13 of 46

dimension tables, the choice of partitioning the fact tables should be based on the com-
mon fact-fact table joins.

When the distribution key that is chosen on the basis of collocation conflicts with the one
that is based on data balancing, choose the one that will help to distribute the data evenly.

29BTable partitioning
Table partitioning (also known as range partitioning) helps with managing growth by
reducing the impact of maintenance operations, such as table reorganization and backup.
For example, as data grows, you need to reorganize only active data partitions instead of
the entire table. Applications can take advantage of logical partitioning so that queries
only access a subset of the table rows to satisfy range queries. Table partitioning facili-
tates fast roll-out of data, which helps to manage the size of the table by removing inac-
tive data efficiently. With table partitioning, rows that satisfy a defined range of column
values are stored together in a data partition. Although a partitioned table is a single en-
tity that queries can access in the same way as a nonpartitioned table, each data partition
is actually a separate database object.

Table partitioning has the following benefits pertaining to data growth management:

• Improved query performance: Query performance can be enhanced by a technique

known as partition elimination, in which the DB2 optimizer directs a query to access
only those data partitions that contain rows in the result set. The DB2 optimizer is
data partition-aware and can limit query access to relevant partitions on the basis of
query predicates that are defined on the table partitioning key.

• Optimized data roll-in process: The ALTER TABLE…ATTACH PARTITION statement
instantly attaches a data partition with pre-loaded data to a partitioned operational
table.

• Efficient data roll-out process: The ALTER TABLE…DETACH PARTITION statement
detaches a data partition containing obsolete data from a partitioned operational table
that remains accessible to read or write queries.

• Flexible database administration: Table partitioning facilitates the management of very
large tables by adopting a “divide and conquer” strategy. This concept is also known
as partition independence, and refers to the fact that maintenance operations on a
single data partition do not impact access to the rest of the table. You can place ranges
of data across multiple table spaces and then leverage table space-level backup and
restore operations to back up critical data more frequently. Offline data reorganiza-
tion can also be done on individual data partitions.

• The option to create local or global indexes on a range partitioned table: Each global index
can be placed in a different table space for space management or performance tuning
reasons.

• Better compression: Each data partition has its own compression dictionary. If parti-
tioning is based on time, compressed data in older partitions is not affected by the
changing characteristics of newly inserted data. The newly inserted data is placed in
new partitions with their own compression dictionaries.

Managing data growth Page 14 of 46

• Improved concurrency: The impact of lock escalation is minimized because the DB2
data server locks at the data partition level rather than at the table level, which is the
case for nonpartitioned tables.

• Alignment with multi-temperature technology: Table partitioning and the concept of data
temperature share the same time-based view of data. These two technologies com-
plement each other and reduce the TCO; data partitions containing older data can be
moved from a faster, more expensive storage tier to an inexpensive storage tier as
data ages.

Table partitioning tips:

• Limit the number of data partitions per table to a few hundred per database partition.

A table with 120 data partitions and monthly ranges can hold 10 years of data. Thou-
sands of data partitions increase the metadata overhead, complicate administration,
and can negatively impact DML performance.

• Ensure that data is more-or-less evenly distributed across data partitions. The DB2
optimizer assumes that the table data is homogeneously distributed across all data
partitions. Extreme skew between partitions can lead to sub-optimal query plans. For
example, if December holiday sales are anticipated to be significantly more than the
slowest month, consider creating two ranges for the December data; one for the first
two weeks of December and another for the last two weeks.

• Avoid creating too many empty data partitions for future data. Having many empty
partitions can contribute to skewed data distribution statistics. On the other hand,
adding one partition at a time might not be the best strategy either, because ADD
PARTITION requires a Z lock on the entire table. A reasonable compromise is to add
a few data partitions during each maintenance window.

49BChoosing the table partitioning key
Choosing the right table partitioning key is critical to taking full advantage of this data or-
ganization scheme. The following guidelines will help you to choose a table partitioning
key.

• Select columns that facilitate data roll-out. For example, consider a business that re-

tains sales information in a Sales table for 36 months after the sales date. The DBA can
choose OrderDate as the table partitioning key and use the ALTER TA-
BLE…DETACH PARTITION statement to efficiently roll out the data corresponding
to the oldest month.

• Select columns that facilitate data roll-in. For example, consider a business that ingests
data into the Sales table based on the OrderDate attribute. The warehouse can ingest a
month of sales data instantly by using the ALTER TABLE…ATTACH PARTITION
statement if the table partitioning key is OrderDate. However, if the data roll-in and
roll-out requirements are different, the table partitioning key should favor the roll-out
requirements, and the LOAD command, INSERT statement, or an alternate data or-
ganization scheme (such as MDC) should be considered for data roll-in.

• Select columns that facilitate partition elimination. For example, if most reporting
queries against the Sales table have a predicate on OrderDate that identifies a particu-
lar quarter, the access plan targets only the three data partitions containing data for

Managing data growth Page 15 of 46

that quarter. Note that if the table partitioning key is a composite key, data partition
elimination is possible only if there are predicates on the leading column of the com-
posite key, because non-leading columns are not independent.

• For any global clustering indexes, prefix the index key columns with table partition-
ing key columns to achieve optimal clustering. Clustered local indexes, on the other
hand, are always clustered on the basis of data in each partition and do not need the
partitioning key to be prefixed.

• Use multiple columns for the table partitioning key when the data timeline is repre-
sented by more than one column; for example, year and month columns. The follow-
ing code example shows how to partition such data into quarters:

CREATE TABLE SalesData (OrderID INT, Year INT, Month INT)
PARTITION BY RANGE (Year, Month)
 (PART Q1_2011 STARTING (2011,1) ENDING (2011, 3),
 PART Q2_2011 STARTING (2011,4) ENDING (2011, 6),
 PART Q3_2011 STARTING (2011,7) ENDING (2011, 9),
 PART Q4_2011 STARTING (2011,10) ENDING (2011, 12));

50BLocal index versus global index
Table partitioning supports both local indexes (also known as partitioned indexes) as
well as global indexes (also known as nonpartitioned indexes). Local indexes enable the
concept of partition-level independence, which becomes increasingly important as data
volumes grow. Partition-level independence allows maintenance operations at the granu-
larity of a partition, thereby minimizing the impact on the overall database.

Use local indexes to streamline data roll-in and roll-out. This reduces the impact of the
SET INTEGRITY statement. Global indexes can adversely impact roll-in (due to long-
running SET INTEGRITY operations) and roll-out (due to asynchronous index cleanup)
but can help improve the performance of some queries that need to sort large amounts of
data.

It is important to consider the table partitioning key and possible unique indexes on the
table when planning. If unique indexes are to be partitioned, the unique index key must
be a superset of the table partitioning key. Use global indexes if it is not viable to include
the table partitioning key as part of the unique index key.

30BMultidimensional clustering
Multidimensional clustering (MDC) provides an elegant method for clustering table data
across multiple dimensions using block indexes. MDC tables automatically maintain the
clustering of data, thereby eliminating the need to reorganize for clustering. This ability
to reduce maintenance costs makes MDC attractive in a rapidly growing database envi-
ronment.

For complex queries that access large amounts of data, block index scans are more effi-
cient, because the block indexes are smaller and yield I/O savings.

Managing data growth Page 16 of 46

51BChoosing MDC table dimensions
Follow these guidelines to choose dimension columns.

• Choose columns that are frequently used in query predicates or the GROUP BY

clause. The DB2 optimizer considers access plans that use block indexes. When que-
ries have predicates on dimension values, the optimizer can use the block index to
identify (and fetch from) the extents that contain these values. Because extents are
physically contiguous pages on disk, this minimizes I/O and improves performance.

• Choose columns that have a moderate number of distinct values to avoid sparsely-
populated cells.

• Use generated columns to limit table cardinality when there are no obvious candidate
columns. In the following example, a built-in function is used to convert date values
into year-month values (12 values per year), thereby significantly reducing the cardi-
nality.

CREATE TABLE Sales (
 OrderId BIGINT,
 OrderDate DATE,
 YearMonth INT GENERATED ALWAYS AS
 INTEGER(DATE(OrderDate))/100
)
 ORGANIZE BY (YearMonth);

• Choose columns that facilitate data roll-in. Ingesting data into an MDC table is faster
than ingesting data into a regular table, because block indexes require less mainte-
nance when the blocks for a key already exist and there is room for more data.

• Choose columns that facilitate data roll-out. Deleting data from an MDC table is faster
than deleting rows from a non-MDC table, because entire blocks are marked as rolled
out and any RID indexes can be cleaned up asynchronously after the transaction
commits.

• Validate your choices with the DB2 Design Advisor (use the db2advis command). If
table partitioning and MDC are being considered for the same table, define the table
partitioning scheme before using the DB2 Design Advisor for MDC recommenda-
tions.

52BMDC space usage considerations
Estimate the total cells needed by an MDC table by multiplying the number of distinct
values in each dimension with a query like: SELECT DISTINCT dim1, dim2, ... dimN
from <TableName>. In a fast growing database, the table size can increase rapidly if new
distinct values are inserted for the dimension key columns, because each unique combi-
nation of dimension column values is stored in separate cells.

After MDC is deployed, periodically check the space usage to detect excessive space con-
sumption. One important factor to consider is the total number of active blocks versus
the total number of rows in a table. The closer these two numbers are to one another, the
worse the space wastage, which means that the density of the cell is low and many of the
blocks hold only a few rows. When using MDC in a partitioned database environment,
space wastage can occur on each database partition.

Managing data growth Page 17 of 46

When significant space wastage is detected, revisit the MDC table definition and redes-
ign the dimension keys, but this can be very time and resource consuming. That is the
reason we emphasize the importance of choosing the MDC dimension keys before creat-
ing the table. During the redesign phase, consider using a generated column to roll up
the granularity, or use a table space with smaller extent size.

Choose dimension key columns to improve query performance and to ingest data
quickly. Ensure that MDC table cells are dense for best space utilization. If necessary, use
generated columns to increase the density of the cells.

31BBringing it all together
The following table summarizes the advantages of each data organization scheme and
lists some of the scenarios that can benefit from each scheme as data grows.

Table 2. Data organization scheme summary

 More users,
increasing
workload

Data lifecycle
management

Data maintenance Query perform-
ance

Database parti-
tioning

Increased ca-
pacity for ad-
ditional
power and
storage

 Database partition-
level backup, restore,
and reorganization

Parallel process-
ing, collocation
for joins

Table partition-
ing

Separation of
recent and
historical data

Historical data
roll-out, new
data roll-in

More frequent
backup and restore
of subsets of the ta-
ble data, ability to
reorganize a single
data partition

Partition elimi-
nation

Multidimen-
sional clustering

Clustering
automatically
maintained

Fast deletion
of stale data,
efficient inser-
tion of new
data

Auto clustering,
automatic addition
of storage blocks, no
need for reorganiza-
tion

Complex queries
on the dimen-
sion columns,
efficient block
index scans

Use database partitioning, table partitioning, and multidimensional clustering together
under the following scenarios:

• Data volumes are very large.
• There is a need for periodic data roll-in or roll-out.
• The data has a distinct lifecycle and access patterns that are based on time or specific

ranges of certain values. For example, “hot” data that is frequently accessed or modi-
fied (and therefore fragmented), so that periodic reorganization is required, or histori-

Managing data growth Page 18 of 46

cal data that is no longer required in service but that should be rolled out and ar-
chived.

• Some columns with a moderate number of distinct values are frequently used in
query predicates.

Depending on your business requirements, choose one or more of these data organiza-
tion schemes together for best results. The following scenarios provide further guidance.

53BScenario where combining table partitioning with MDC can be bene-
ficial
Suppose a health insurance provider has a large claims table that stores, among other
things, the plan ID (indicating the plan to which a claim belongs) and claim date (the
date on which the claim was received by the insurance company). Assume that the pro-
vider offers 100 different plans and deals with millions of claims every week. The busi-
ness retention policy for claims data is 7 years. Regular reports aggregate data over some
period of time (month/quarter/year), with queries returning results such as the number
of claims received last month, or the total dollar value of all claims paid out.

In this scenario, table partitioning by month on the claim date results in 84 data ranges
for the table and facilitates the efficient roll-out of the oldest data at the end of each
month. Multidimensional clustering on the plan ID facilitates both the loading of data
and query processing by using small efficient block indexes. As data grows, reporting
queries continue to access only a subset of the data ranges rather than the entire table.

54BScenario where one data organization scheme might be a better
choice
If using table partitioning could result in thousands of data partitions, MDC can be a
more attractive alternative to consider.

13BMaterialized query tables
Use materialized query tables (MQT) in a data warehouse environment to improve query
performance. The rerouting of queries to an MQT is performed automatically by the
optimizer. Weigh the costs against the potential benefits of using MQTs in your environ-
ment. There are storage overheads when using MQTs and maintenance overheads to
keep them up-to-date when the base table is modified.

For large range partitioned fact tables, create range partitioned MQTs using the same
partitioning strategy. Not only does this enable partition elimination for complex queries
routed to the MQT, it also streamlines MQT maintenance. When old data is detached
from the base table, the MQT can be instantly refreshed by detaching the corresponding
data partition from the MQT. When new data is ingested into a base table, dependent
MQTs must be refreshed. Alternatives to refreshing MQTs after data roll-in on the base
table are described in the section HTU“Partitioned MQT maintenance after rolling data into a base
table”UTH.

Managing data growth Page 19 of 46

Replicate small dimension tables to improve collocation for join query performance in a
partitioned database environment. The technique to accomplish this involves creating
MQTs over the dimension tables. When dimension tables are large, however, it might not
be a good idea from a storage cost perspective to replicate them.

Deploy table partitioning for very large dimension tables to leverage the benefits of fast
data roll-in, roll-out, and partition elimination. Replicating such large dimension tables is
not recommended because of increased storage overhead.

Use materialized query tables to increase the performance of expensive or frequently
used queries that aggregate large amounts of data. Replicate small dimension tables for
join collocation in a partitioned database environment.

14BCompression
Compression is recommended for very large tables. It can provide significant space sav-
ings and also improve query performance, because fewer I/O operations are required to
access the same amount of data. In a data warehouse, it is not uncommon to see space
savings of up to 60% or more when compression is used. Buffer pool hit ratios are im-
proved, because more data can fit in the buffer pool. User data in log records is com-
pressed too, yielding further storage savings. All of these savings translate into less I/O
and better throughput during query processing. Additionally, compression reduces time
and space requirements for backup and restore operations, and for log archiving.

Compression can be enabled by specifying the COMPRESS YES option on the CREATE
TABLE statement or by using the ALTER TABLE statement to enable the compression
flag. A compression dictionary is created automatically when the table reaches a certain
size or, alternatively, you can manually issue a REORG TABLE command to effect com-
pression.

As data continues to grow, the compression ratio is likely to get worse, because the effec-
tiveness of compression depends on the data and the quality of the dictionary that exists
is based on an old view of the data. Monitor the effectiveness of compression periodically
as data grows by comparing the current savings from compression to the estimated sav-
ings if you were to reset the compression dictionary. The
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function can be used to report the ex-
isting compression information, as well as estimate compression information for a table,
and this metadata can help you to determine whether it is worthwhile to reset and re-
build the compression dictionary.

Compression tips:

• Compress large tables for better query performance and storage savings.
• Use the REORG TABLE…RESETDICTIONARY command after the table is fully

populated. This can yield higher compression ratios because the compression diction-
ary is based on a complete data set.

• Enable index compression by using the ALTER INDEX statement, followed by index
reorganization to rebuild the (compressed) index.

Managing data growth Page 20 of 46

• As data grows, estimate the compression savings from rebuilding the existing com-
pression dictionary and take action to maximize compression benefits.

• Use the ADMIN_GET_TAB_COMPRESS_INFO_V97 and
ADMIN_GET_INDEX_COMPRESS_INFO administrative functions to display current
and estimated potential compression ratios for each table and index.

• Optim Configuration Manager 2.1.1 introduces the capability to automate the process
of obtaining and evaluating compression estimates.

2BData lifecycle management
As data volumes grow, it is important to keep the system lean by managing the amount
of active data. In some cases, it is also important to keep the old data available to meet
business needs.

This section covers the following topics that will help you to manage large data volumes
associated with rapidly growing databases in data warehouse or mixed-workload envi-
ronments:

• Adding new data
• Removing historical data for archiving or purging
• Maintaining MQTs and referential integrity
• Accessing historical data

15BAdding new data: Which solution to use?

Consider the following factors when choosing a solution for adding new data in your en-
vironment:

• Is data “trickling in” or already available in files or tables?
• Is the target table required to be online while new data is being added?
• Should new data be immediately accessible?
• How much system resource, such as log space or locking, is required during the op-

eration?

There are four methods to add new data into a database:

• ALTER TABLE…ATTACH PARTITION statement, followed by the SET INTEGRITY

statement, against a range partitioned table
• ALTER TABLE…ADD PARTITION statement, followed by the INSERT statement or

the LOAD command, against a range partitioned table
• INSERT statement
• LOAD command

32BMethod 1: ATTACH PARTITION + SET INTEGRITY
This method provides a fast way for adding new data to a range partitioned table by at-
taching another table (the source table) as a new data partition of the range partitioned

Managing data growth Page 21 of 46

table (the target table). This method is appropriate if the new data is available “in bulk”
and if the target table is partitioned along some temporal scale. All of the new data will
be available to applications at the same time.

During attach, the data object of the table being attached becomes a new partition of the
target table. Indexes from the source table become index partitions for the new partition
if they match any of the local indexes that are defined on the target table. Because there is
no data movement involved, this method is extremely fast. The cost of index mainte-
nance can largely be avoided by using local indexes (Figure 2). The SET INTEGRITY
statement is needed to perform integrity processing and range validation on the new
data, and to maintain global indexes for the new rows.

Figure 2. Roll-in with local indexes

The following example shows the two steps that are required to complete the roll-in op-
eration:

Step 1:

 ALTER TABLE Sales ATTACH PARTITION

 Jan2012 STARTING ('2012-01-01') ENDING ('2012-01-31')

 FROM TABLE CurrentSales REQUIRE MATCHING INDEXES;

 COMMIT;

Step 2:

 SET INTEGRITY FOR Sales IMMEDIATE CHECKED;

 COMMIT;

The CurrentSales table holds transaction data for the current month. At the end of the
month, this table is attached to the Sales table, and a new CurrentSales table is initialized
for the following month. After Step 1, the existing data partitions are available for read
and write access; however, the data in the newly attached data partition remains invisible
until the SET INTEGRITY statement commits.

Managing data growth Page 22 of 46

55BRoll-in best practices
• Use local indexes instead of global indexes on a range partitioned table to streamline

data roll-in and roll-out.
• Prepare the source table of an attach operation by creating indexes on the source table

that match all of the local indexes on the target table. Use the optional REQUIRE
MATCHING INDEXES clause on the ALTER TABLE…ATTACH PARTITION state-
ment to enforce this best practice.

• Define and enforce all applicable data constraints, such as check constraints or range
checking, in the extraction, transformation, and loading (ETL) process to ensure that
the data is compliant prior to issuing the ALTER TABLE…ATTACH PARTITION
statement. This will reduce the amount of work performed by the SET INTEGRITY
statement, thereby making new data available sooner.

• If data is not cleansed, specify an exception table on the SET INTEGRITY statement to
reduce the chance of a long-running SET INTEGRITY operation failing; this also en-
ables you to monitor and correct errors in the data.

• Issue a COMMIT statement after each step of the roll-in process to release locks.
• Set LOCK TIMEOUT to WAIT to prevent a long-running SET INTEGRITY statement

from failing because of a possible lock conflict.

33BMethod 2: ADD PARTITION
The ALTER TABLE…ADD PARTITION statement adds an empty data partition to an ex-
isting range partitioned table. Following this, you can use the INSERT statement or the
LOAD command to populate the new partition. Because the ADD PARTITION operation
also places an exclusive lock on the target table, a COMMIT statement right after the AL-
TER TABLE…ADD PARTITION statement is recommended. A SET INTEGRITY state-
ment is not required following an ADD PARTITION operation.

ALTER TABLE Sales ADD PARTITION Q1_2012

 STARTING ('2012-01-01') ENDING ('2012-03-31')

 IN Q1_2012Tbsp INDEX IN Q1_2012IdxTbsp;

COMMIT;

ADD PARTITION is a good alternative to ATTACH PARTITION when you need to in-
gest large volumes of data and the table has many global indexes. It is also an appropri-
ate method when the target table needs to grow to accommodate new data, but the new
data is “trickling in” rather than available in bulk.

Because you can control the frequency of COMMIT statements after insert or load opera-
tions, you can minimize the consumption of active log space with frequent commit op-
erations.

Add a few partitions at each maintenance window to minimize the impact of frequent
ADD PARTITION operations to expand table capacity. Avoid adding too many
partitions in advance, because a large number of empty data partitions distort some ta-

Managing data growth Page 23 of 46

ble-level statistics, which might adversely affect the query optimizer’s ability to choose
an optimal access plan.

34BMethod 3: INSERT
Consider using this method of adding data with MDC tables. The INSERT statement of-
fers the best concurrency among all of the methods to populate a table. A disadvantage
of this approach is the logging overhead and potential row locking if data volumes are
large. In a data warehousing environment, this method is often used with MDC tables.
Locking at a block level reduces lock memory consumption. Moreover, block indexes are
updated only when a new block is created, not after each row is inserted, as is the case
with regular indexes on non-MDC tables.

35BMethod 4: LOAD
The DB2 load utility can quickly ingest large amounts of data into any table. It is particu-
larly useful for populating tables in a data warehouse environment and works well with
all organization schemes.

The ALLOW READ ACCESS option keeps the table data available for concurrent appli-
cations during most of the load operation. Keep in mind that the load utility acquires a
super-exclusive lock (Z-lock) for a short duration of time near the beginning and the end
of the process, regardless of what access option has been specified.

In some cases, applications that generate long running reports might not be able to drain
queries prior to execution of the load utility. The best practice in such cases is to use the
load utility to rapidly load data into staging tables, and then to populate the primary ta-
bles using an INSERT statement with a subselect. It is also good practice to understand
the workload and schedule load operations to occur when report applications are not
running.

56BConsiderations when using LOAD
• Because load operations can only be done at the table level, even if the data is target-

ing one particular data partition, access options such as ALLOW NO ACCESS or
READ ACCESS specify the level of access to the entire table.

• Loading data directly into a subset of data partitions while the remaining partitions
remain fully online is not supported. You have to perform a DETACH PARTITION,
LOAD, ATTACH PARTITION + SET INTEGRITY sequence to achieve that result.
When there are no global indexes on the table, this option is a reasonable choice for
many scenarios.

• The load utility can insert data records into the correct data partitions. There is no re-
quirement to partition the data in some external ETL tool before loading.

• Pre-sorting the data on the table partitioning key or the MDC key can improve load
performance. Do not sort the data on the distribution key, because that can negatively
impact LOAD inter-parallelism.

Managing data growth Page 24 of 46

36BETL tools facilitate data roll-in
In nearly all production systems, data is cleansed by an ETL process before the data is
added to a database. Generally speaking, therefore, you can view ETL as part of the data
roll-in process. The key point is that ETL can perform all of the cleansing, transforming,
sorting, aggregating, and joining of data outside of the operational database system. Data
preparation during ETL facilitates data roll-in and reduces its impact on the production
database. Pre-sorting the data on the table partitioning key can facilitate the loading of
large volumes of data into a range partitioned table. Creating appropriate indexes on the
source table can help data roll-in. IBM InfoSphere DataStage is one example of the ETL
tools that are widely used in the industry.

16BRemoving old data: Which solution to use?

The choice of which data roll-out method to use is typically based on the following fac-
tors:

• Is the target table accessible while data is being rolled out?
• How much time is required to move data out of operational tables?
• What are the recoverability options?

There are basically three methods to roll out or remove data from an operational table:

• ALTER TABLE…DETACH PARTITION statement against a range partitioned table
• DELETE statement
• TRUNCATE statement

37BMethod 1: DETACH PARTITION
This method provides fast roll-out of large amounts of data from a range partitioned ta-
ble by detaching a data partition and the corresponding local index partition from the ta-
ble (the source table) into a stand-alone result table (the target table). Because there is no
data movement involved, the operation requires minimal logging and can easily be un-
done.

You can archive the target table or purge it, depending on your business requirements.
You can roll the target table into another range partitioned table that maintains historical
data. This method for data roll-out operates online and provides an extremely efficient
means of moving historical data out of an operational table or removing obsolete data
from a warehouse. During a DETACH PARTITION operation, long-running reporting
queries can continue to access the entire table.

Partition detach is a two-phase operation. The first phase, which is performed by the
ALTER TABLE…DETACH PARTITION statement, logically detaches the data partition
from the table. The second phase, which is managed by the system in the background
without the need for user intervention, completes the physical detach asynchronously af-
ter ensuring that all other existing activities that access the partitioned table have com-
pleted. This background process is referred to as the asynchronous partition detach

Managing data growth Page 25 of 46

(APD) process. In most cases, you will not notice or care when the APD process is fin-
ished. If you need to take subsequent action, you can monitor APD progress by using the
following approach:

1. Run the LIST UTILITIES SHOW DETAIL command.
2. Query the STATUS column of the SYSCAT.DATAPARTITIONS catalog view for the

partition in question. You can use a program to determine when the APD process has
finished; for an example of how to implement such a program, see HTU"Online roll-out
with table partitioning in InfoSphere Warehouse"UTH.

In the absence of detached dependent tables, the asynchronous partition detach task
starts after the transaction issuing the ALTER TABLE…DETACH PARTITION statement
commits.

If there are any dependent tables that need to be incrementally maintained with respect
to the detached data partition (these dependent tables are referred to as detached de-
pendent tables), the asynchronous partition detach task starts only after the SET INTEG-
RITY statement is run against all detached dependent tables.

The following example shows the basic syntax of the roll-out operation:

ALTER TABLE Sales DETACH PARTITION Jan2011 INTO Jan2011Sales;

COMMIT;

Issue a COMMIT statement immediately after the ALTER TABLE…DETACH
PARTITION statement completes. If there are dependent tables, complete SET INTEG-
RITY processing on all of the dependent tables as soon as possible, so that the second
phase of the DETACH PARTITION operation can begin.

If you need to detach multiple data partitions during a maintenance window, detach the
partitions one at a time and issue a COMMIT statement immediately after each ALTER
TABLE…DETACH PARTITION statement. Let the first APD process complete before is-
suing another ALTER TABLE…DETACH PARTITION statement; this avoids a potential
locking conflict during concurrent updates of the metadata.

38BMethod 2: DELETE
Consider using this method of deleting data with MDC tables. The DELETE statement of-
fers the best concurrency among all of the methods to remove data from a table. A disad-
vantage of this approach is the logging overhead and potential row locking if data vol-
umes are large. In a data warehousing environment, this method is often used with MDC
tables. Locking at a block level reduces the lock memory consumption.

Roll-out deletion can be a good option for MDC tables, particularly if all of the data is be-
ing deleted or the DELETE statement includes predicates on the dimension key columns,
which results in reduced logging (page-level rather than row-level logging).

Managing data growth Page 26 of 46

DELETE performance with MDC tables can be further improved by deferring the
cleanup of any RID indexes. This can be done in either of the following ways:

• Set the DB2_MDC_ROLLOUT registry variable to DEFER
• Use the SET CURRENT MDC ROLLOUT MODE DEFERRED statement to override

the default value of the DB2_MDC_ROLLOUT registry variable for the duration of the
application connection

By default, RID indexes are cleaned up immediately as part of the transaction that per-
forms the deletion. Not only does this index maintenance operation consume logging re-
sources, it is also time consuming, in proportion to the number of RID indexes and the
amount of data being deleted. When the deferred mode is used, index maintenance is
faster, because the database manager drives index cleanup asynchronously and in paral-
lel after the DELETE transaction commits.

When deleting a large amount of data from an MDC table with many RID indexes, set
the CURRENT MDC ROLLOUT MODE special register to DEFERRED; this improves
performance and reduces logging overhead. For smaller MDC tables, the overhead of
asynchronous cleanup can outweigh any benefits. Deferred roll-out is not supported for
range partitioned RID indexes.

39BMethod 3: TRUNCATE
Use the TRUNCATE statement to quickly delete all of the data from an existing table. Be-
cause this statement does not perform row-level logging, a table truncation operation is
very fast but cannot be undone.

To simulate the effect of truncating a data partition in a range partitioned table, the parti-
tion can be rolled out using an ALTER TABLE…DETACH PARTITION statement, and
the resulting table truncated, followed by an ALTER TABLE…ATTACH PARTITION
statement. If there are no global indexes defined on the partitioned table, this procedure
works well. For example:

1. Detach the data partition that should be truncated.

ALTER TABLE Sales DETACH PARTITION Jan2012 INTO Jan2012Sales

2. Wait for the DETACH operation to complete asynchronously. For information about
how to implement this wait, see HTU"Method 1: DETACH PARTITION"UTH.

3. Truncate the partition, which is now a stand-alone table.
TRUNCATE TABLE Jan2012Sales IMMEDIATE

4. Optionally, roll new data into that range, using the LOAD command or the INSERT
statement.

5. Reattach the partition.
ALTER TABLE Sales ATTACH PARTITION Jan2012

 STARTING ('2012-01-01') ENDING ('2012-01-31')

 FROM TABLE Jan2012Sales REQUIRE MATCHING INDEXES

Managing data growth Page 27 of 46

An alternate approach that provides you with the opportunity to reconsider table space
placement is to detach data partitions and then add new (empty) partitions instead of re-
attaching the old partitions.

17BMaintaining referential integrity as part of data lifecycle man-
agement
In a star schema configuration, the fact table typically leverages various data organiza-
tion schemes for efficient access to large volumes of data. In some environments, the di-
mension tables can be large and might benefit from table partitioning. Fact and dimen-
sion tables are related through referential integrity. A dimension table is the parent with
a defined primary key, and the fact table is a child that has a foreign key relationship
with one or more dimension tables.

When attaching a data partition to a child table, the subsequent SET INTEGRITY opera-
tion enforces referential integrity constraints, among other things. If there is no exception
table, SET INTEGRITY processing will fail if constraints are violated. Even with an ex-
ception table, SET INTEGRITY performance can suffer when violations are detected, be-
cause removing rows from the base table and inserting them into an exception table takes
time. The best practice is to have the ETL process perform referential integrity checking
to ensure that there are no violations.

When detaching a data partition from a child table, it might be necessary to roll out data
from the parent table as well. However, the ALTER TABLE…DETACH PARTITION
statement cannot be run against parent tables, because there is no automatic way of
avoiding orphans in the child table after a DETACH operation. There is a work-around
that must be used with caution, however, because it can compromise the integrity of
your database if used incorrectly. The following example shows you the correct way to
proceed if you want to use this work-around. Complete these steps in a single transaction
to avoid lock time-outs.

1. Detach a data partition from each child table C.

ALTER TABLE C DETACH PARTITION Part1 INTO ChildDetached

2. Convert the RI constraint into an informational constraint for every child table C that
has a foreign-key relationship with the parent table P from which you want to detach
a data partition.
ALTER TABLE C ALTER FOREIGN KEY Fk NOT ENFORCED

3. Detach a data partition from the parent table P.
ALTER TABLE P DETACH PARTITION Part1 INTO ParentDetached

4. Place each child table C in SET INTEGRITY pending state to avoid expensive table
scans when the RI constraint reverts to being enforced.
SET INTEGRITY FOR C OFF

Managing data growth Page 28 of 46

5. Convert the informational constraint back to an enforced constraint on each child ta-
ble.
ALTER TABLE C ALTER FOREIGN KEY Fk ENFORCED

6. Bring each child table C out of SET INTEGRITY pending state. If you suspect that
data integrity might have been compromised while the constraint was not being en-
forced, use the IMMEDIATE CHECKED option instead of the IMMEDIATE UN-
CHECKED option. The former ensures data integrity but can take a long time to com-
plete, depending on data volume.
SET INTEGRITY FOR C ALL IMMEDIATE UNCHECKED

7. Commit the transaction.
COMMIT

18BMaintaining MQTs as part of data lifecycle management
Materialized query tables are very popular in a data warehouse environment. When data
in the underlying base table changes as a result of ongoing data roll-in and roll-out activi-
ties, MQTs become obsolete and need to be refreshed.

Use a SET INTEGRITY statement to update REFRESH IMMEDIATE MQTs after attach-
ing data partitions to underlying range partitioned base tables. Include the base tables
and MQTs in the same SET INTEGRITY statement. This prevents the new data from hav-
ing to be scanned multiple times, and reduces the total amount of time that is required to
check constraints on the base tables, maintain global indexes, and refresh the MQTs.

Similarly, use a SET INTEGRITY statement to update REFRESH IMMEDIATE MQTs af-
ter detaching data partitions from underlying range partitioned base tables.

40BPartitioned MQT maintenance after rolling data into a base table
Partitioned MQTs are often used when the base tables are partitioned. Maintaining a par-
titioned MQT can be tricky after data roll-in on the base table using an ALTER TA-
BLE…ATTACH PARTITION statement, because ATTACH PARTITION is not directly
supported on a partitioned MQT.

There is a workaround. The following example shows you how to proceed if you want to
use this workaround. Assume that SalesMqt is a partitioned MQT on the Sales table, and
that when the CurrentSales table is attached to Sales, CurrentSalesMqt (which needs to
be a regular table, not an MQT) must be attached to SalesMqt (which is an MQT).

1. Convert the target MQT (SalesMqt) into an ordinary table.

ALTER TABLE SalesMqt DROP MATERIALIZED QUERY;
COMMIT;

2. ATTACH a new partition to the base table.

ALTER TABLE Sales ATTACH PARTITION Jan2012
 STARTING ('2012-01-01') ENDING ('2012-01-31')
 FROM TABLE CurrentSales REQUIRE MATCHING INDEXES;

Managing data growth Page 29 of 46

COMMIT;

SET INTEGRITY FOR Sales IMMEDIATE CHECKED;
COMMIT;

3. ATTACH the source table CurrentSalesMqt (which is based on the MQT schema but

is not an MQT) to the target MQT (which is an ordinary table now).
ALTER TABLE SalesMqt ATTACH PARTITION Jan2012
 STARTING ('2012-01-01') ENDING ('2012-01-31')
 FROM TABLE CurrentSalesMqt REQUIRE MATCHING INDEXES;
COMMIT;

4. Run a SET INTEGRITY statement against the target MQT.

SET INTEGRITY FOR SalesMqt IMMEDIATE CHECKED
COMMIT;

5. Convert the SalesMqt table back into an MQT. The subsequent SET INTEGRITY

statement bypasses a full refresh of the MQT.
ALTER TABLE SalesMqt ADD MATERIALIZED QUERY <original MQT defi-
nition here>;
COMMIT;

SET INTEGRITY FOR SalesMqt ALL IMMEDIATE UNCHECKED;
COMMIT;

41BDetaching data partitions from a partitioned MQT
The ALTER TABLE…DETACH PARTITION statement can be applied directly to range
partitioned MQTs. The behavior is the same as detaching a data partition from a regular
range partitioned table. Use the SET INTEGRITY IMMEDIATE UNCHECKED statement
to skip data validation following a data roll-out operation against a partitioned MQT. For
example:

-- DETACH from base table

ALTER TABLE Sales DETACH PARTITION Jan2012 INTO Sales_Jan2012;

-- DETACH from MQT

ALTER TABLE SalesMqt DETACH PARTITION Jan2012 INTO
SalesMqt_Jan2012;

-- Skip data validation during SET INTEGRITY

SET INTEGRITY FOR SalesMqt ALL IMMEDIATE UNCHECKED;

Managing data growth Page 30 of 46

19BAccessing data after roll-out
To manage data growth, businesses maintain active data in operational tables that typi-
cally reside on high-end storage devices. After the data has exceeded its active life span,
it is rolled out. In some cases, the rolled-out data still needs to be retained in compliance
with corporate policy, government regulations, or business needs. For example, the Sar-
banes-Oxley Act sets the policy for corporations to retain certain accounting records.
Bank and credit agencies often need to perform analytics or audits on huge amounts of
historical data over very long time periods. The historical data might be retained in the
same DB2 database or in a different database for future use, and can reside on inexpen-
sive hardware. It is a critical part of data lifecycle management planning to consider the
data retention, archiving, and retrieval strategy. Two common solutions for accessing ar-
chived historical data are UNION ALL views and the IBM Optim Data Growth Solution.

42BUNION ALL views
Suppose that the active data resides in a range partitioned table and that the historical
data resides in another range partitioned table. A UNION ALL view is created over these
two tables so that applications can seamlessly access all of the data. Historical data tends
to be read-only and extensive, making it an ideal candidate for compression. The avail-
ability of historical data is important, but applications might be able to tolerate longer ac-
cess times. The enterprise can therefore reduce the TCO by placing historical data on
slower, more inexpensive hardware.

Keep the following points in mind when considering a solution using UNION ALL
views.

• UNION ALL views have performance limitations when they are defined over a large

number of tables, where each table represents a range.
• With UNION ALL views, each leg of the view can come from a different data source

in a federated system. This can be advantageous in some environments. In addition,
UNION ALL views enable you to define a different set of indexes over active data
and historical data.

• UNION ALL views can include a range partitioned table as a leg, as demonstrated in
the following example. The range partitioned history table can be in a separate data-
base, with applications transparently accessing it through the view using federated
technology.

CREATE VIEW SalesAll AS

SELECT * FROM Sales

UNION ALL

SELECT * FROM SalesHistory

43BOptim Data Growth Solution
IBM Optim Data Growth Solution is a leading solution for addressing growth, compli-
ance, and the management of data. It preserves application integrity by archiving busi-

Managing data growth Page 31 of 46

ness objects rather than single tables. For example, it retains foreign key relationships and
preserves metadata within the archive.

These features enable you to have flexible access to data and the ability to selectively re-
store archived data into the original database table, a new table, or even into a different
database. For more information, see HTU“Manage Data Growth”UTH.

20BMulti-temperature data warehouses
In a large warehouse, only a portion of the data is frequently accessed. Users expect op-
timal performance when accessing this data and this data is referred to as “hot” data. The
remainder of the data is “cold” data that is rarely accessed or updated, yet needs to be
available for regulatory compliance or other business requirements. Using faster, more
expensive storage devices for hot data and slower, cheaper storage devices for cold data
optimizes the performance of those queries that matter the most, while helping to reduce
the overall cost.

A good strategy is to store data in table spaces based on its temperature. As data ages, it
becomes less critical, and its temperature changes as well, typically from hot to warm or
cold. Table partitioning and multi-temperature storage share the same time-based view
of the data, and table partitioning can therefore be used to isolate hot data from cold
data. Classify data into two or three tiers of storage. Place the critical data partitions in
table spaces whose containers are defined in the hot tier of storage, and place the warm
or cold data partitions in table spaces whose containers are defined in the warm or cold
tier of storage.

For a large data warehouse, have a warm storage tier for the large amounts of historical
data. By applying multi-temperature concepts to your growing data warehouse, you can
reduce the total operating cost of your warehouse. Classifying data on the basis of its
temperature also enables you to back up hot data more frequently and the relatively
static cold data less frequently.

See HTU"DB2 best practices: Multi-temperature data management"UTH for information about the fol-
lowing tasks:

• Identifying and characterizing data into temperature tiers
• Designing the database in an IBM Smart Analytics System environment to accommo-

date multiple data temperatures
• Moving data from one temperature tier to another
• Using DB2 workload management to allocate more resources to requests for hot data

than to requests for cold data
• Planning a backup and recovery strategy when a data warehouse includes multiple

data temperature tiers

Managing data growth Page 32 of 46

3BData maintenance
Managing a large data warehouse is challenging, particularly in a dynamic growing en-
vironment. As data is added, updated, and removed, the data characteristics can signifi-
cantly change. Periodic data maintenance operations are necessary to keep the system
lean and high-performing. These maintenance operations consume critical system re-
sources and can impact data availability. This section presents best practices for efficient
data maintenance.

21BReorganizing data and indexes
Table and index reorganization are necessary maintenance operations that keep a system
performing well in the face of continued data growth and modification. Use the REORG
command to help cluster the data based on index order, reduce fragmentation, claim
empty space and, in some cases, complete ALTER TABLE operations. Use the RE-
ORGCHK command to determine whether tables or indexes need to be reorganized or
cleaned up.

Consider reorganizing a table or index if any of the following statements applies to your
scenario:

• A high volume of insert, update, and delete activity has occurred since the table was

last reorganized.
• The performance of queries that use an index with a high cluster ratio has changed

significantly.
• Executing the RUNSTATS command to refresh statistical information does not im-

prove performance.
• Output from the REORGCHK command suggests that performance can be improved

by reorganizing a table or its indexes.
• Using an MDC table reduces the need of reorganization because the data is guaran-

teed to be clustered. However, reorganization to reclaim empty space is often needed
after MDC roll-out deletion.

Use partition-level REORG to reorganize data and indexes in a range partitioned table.
With time-based partitioning, historical data tends to be static, whereas recent data is ac-
tively modified. By using the ON DATA PARTITION clause of the REORG TABLE and
REORG INDEXES ALL commands to reorganize only the data partitions containing re-
cent data, you will save considerable time and resources compared to reorganizing the
entire table.

When a data partition is being reorganized, the remaining data partitions of the table are
available for read and write operations if only local indexes exist on the table. If the table
has any global indexes, the entire table is offline. Nevertheless, in many cases, a partition-
level REORG operation is still preferable to table-level reorganization, because the time
required to reorganize one partition and rebuild the global indexes will be significantly
less than the time needed to reorganize the entire table.

Managing data growth Page 33 of 46

Run multiple partition-level REORG commands concurrently to significantly reduce
down time if multiple partitions need to be reorganized and sufficient CPU and memory
resources are available. For example, consider the Sales table, which has grown with the
addition of new data partitions. The DBA runs REORGCHK and determines that the last
three partitions in 2011 should be reorganized. Checking the system resources and work-
load in progress, she sees that there are abundant resources to perform the reorganiza-
tion in parallel, and issues the following commands in three different sessions concur-
rently:

Session 1:

REORG TABLE Sales ALLOW NO ACCESS ON DATA PARTITION Oct2011;

Session 2:
REORG TABLE Sales ALLOW NO ACCESS ON DATA PARTITION Nov2011;

Session 3:

REORG TABLE Sales ALLOW NO ACCESS ON DATA PARTITION Dec2011;

Drop all global indexes when multiple partitions need to be reorganized to avoid re-
building the indexes as part of every partition REORG operation. Doing so also enables
you to reorganize partitions concurrently if system resources permit. After data partition
reorganization is complete, create the global indexes that were dropped.

22BRunstats
The optimizer determines a query execution plan that is based on data statistics. Up-to-
date statistics are necessary for the optimizer to generate optimal plans. As the volume of
data grows, the amount of time and resources required to collect statistics increase,
thereby impacting workload performance, particularly when tables become very large
(hundreds of gigabytes with millions of rows). A DBA must set policies that strike a good
balance between limiting system resource utilization and maintaining current statistics.

Use the sampling clause of the RUNSTATS command when collecting table and index
statistics for large tables to reduce the I/O and CPU overhead of RUNSTATS processing.
Start with a 10% page-level sample by specifying TABLESAMPLE SYSTEM(10). Check
the accuracy of the statistics and whether system performance has degraded due to
changes in the access plan. If it has degraded, try a 10% row-level sample instead, by
specifying TABLESAMPLE BERNOULLI(10). If the accuracy of the statistics is insuffi-
cient, increase the sampling amount. Similarly, for indexes, use the SAMPLED DE-
TAILED clause to collect index statistics with nearly the same accuracy but less CPU and
memory consumption.

Besides sampling, another technique to reduce the time and resources that are consumed
by RUNSTATS on large tables is to collect statistics only on a subset of columns that are
frequently used in query predicates. This is accomplished by using the ON COLUMNS
clause of the RUNSTATS command.

Managing data growth Page 34 of 46

Statistics must be collected after data roll-in and roll-out operations.

• Issue the RUNSTATS command after data roll-in, for instance, after ATTACH PAR-
TITION + SET INTEGRITY or ADD PARTITION + LOAD.

• After detaching data partitions, issue a RUNSTATS command only after completion
of the asynchronous index cleanup process.

• Check the STATUS field in the SYSCAT.DATAPARTITIONS catalog view and ensure
that no partitions are in the L (logically detached), I (index cleanup), or D (detached
with dependent MQT) states. If there are multiple roll-in or roll-out operations, collect
statistics only once after all data lifecycle management operations are complete.

Issue a COMMIT statement immediately after RUNSTATS processing completes to re-
lease locks that are held by the RUNSTATS utility.

23BParallel LOAD for range partitioned tables speeds up data
roll-in performance
If you need to load data into multiple data partitions, performance can be significantly
improved by loading the data in parallel. Because the DB2 data server does not support
load operations at the data partition level, you can achieve essentially the same result by
issuing multiple LOAD commands, one for each range. This approach works if there are
only a few global indexes. The following steps outline the high-level approach:

1. Ensure that the data that is to be loaded into each range is in a separate file. This

might require modifying the ETL logic to sort the data based on the table partitioning
key and to split the data into separate files, one for each data partition.

2. Detach each data partition that is to be loaded. Each detached partition is a stand-
alone table.

3. Load the data from different files into the appropriate tables that were created by the
previous detach operation.

4. Re-attach the tables to the original range partitioned table.
5. Run a SET INTEGRITY statement against the original table.
6. Execute a RUNSTATS operation to collect statistics on the table.

In the absence of global indexes, this approach can be used for loading data into a single
data partition. Otherwise, the availability of all data partitions is impacted by LOAD,
even though the data goes into a single data partition.

24BDatabase recovery: Backup and restore
As data continues to grow, the time and storage space that is consumed by backup op-
erations can be prohibitive. It might no longer be feasible to use offline backup, because
that impacts data availability for longer durations. Perform table space-level backups in-
stead of database-level backups for easier administration of backup and recovery. Clas-
sify your data as either active data or historical data and back up the active data more
frequently than the historical data.

Managing data growth Page 35 of 46

Table partitioning makes it easy to separate active data from historical data. It enables
you to place data on different table spaces, manage smaller backup images, and have the
flexibility to define a different backup policy for critical data.

If some tables are “scratch tables” that can be rebuilt as needed, you can avoid backing
up table spaces that contain these scratch tables.

ROLLFORWARD TO END OF LOGS operations can also be more granular. That is, you
can recover from a disk failure by restoring only the affected table spaces. However,
point-in-time rollforward operations must include all table spaces that are related to the
table. By carefully designing your backup policy to leverage table space-level backup op-
erations with table partitioning, you can reduce disk space usage, backup time, and the
impact on data availability.

Backup tips:

• Back up critical data first and more frequently.
• Perform incremental backup for very large table spaces.
• Use backup compression (by specifying the COMPRESS option on the BACKUP DA-

TABASE command) to reduce the size of your backup images.

25BResponding to changes
As data continues to grow through consolidation or on-boarding a new application,
original design assumptions might no longer be valid. Although small changes to storage
allocation or memory management can easily be accommodated, in some cases, you
might need to make significant changes. For example, if the table partitioning key has
developed a lot of skew, the key might not continue to be the best choice. Perhaps the
MDC key is causing the creation of many sparsely filled blocks, resulting in wasted
space. In such cases, it can be a good idea to consider whether the defined data organiza-
tion schemes should be altered or replaced. For example, if you are dealing with thou-
sands of data partitions, and the options for reducing the number of partitions are not at-
tractive, you might consider using MDC instead.

44BAdding new database partitions to accommodate data growth
To ensure good performance for business applications in an actively growing database
system, and to meet service requirements, DBAs need to continuously monitor and un-
derstand the database system’s capacity indicators and decide when new database parti-
tions should be added. The following guidelines summarize this process.

• Determine the capacity of resources in your environment at the outset so that you can

periodically compare used and available capacity.
• Collect data on a regular basis and collate the output both for the current month and

for a rolling 12 months. This enables you to compare current performance against
your performance baseline and can help identify trends in resource usage.

Managing data growth Page 36 of 46

• Use software (such as IBM InfoSphere Optim Performance Manager or IBM DB2 Per-
formance Expert) and tools (including nmon, vmstat, topas, and sar) to collect statis-
tics on resource usage.

• Understand how resources are used and where resource usage is trending with re-
spect to your performance baseline and performance forecasts in the context of over-
all capacity. Align service-level objectives with capacity planning indicators so that
metrics can easily be compared.

Begin planning for storage expansion when used storage reaches 60% of capacity and is
projected to reach 80% within 12 months. This window gives you sufficient time to plan
and implement a successful expansion project before storage utilization reaches 100%.

After you purchase and install the physical system and install all of the required soft-
ware, including DB2 data server, the general process of adding a database partition in-
cludes the following steps:

1. Issue the db2start dbpartitionnum <db-partition-number> command for each data-

base partition to be added. This process does not redistribute any data to the new da-
tabase partitions, and no outage is required.

2. Modify database partition groups to add the new database partitions.
3. Issue the REDISTRIBUTE DATABASE PARTITION GROUP command. Issue the

command in offline mode to ensure that the process completes as quickly as possible.
In line with best practice recommendations for all system upgrades, complete a full
database backup before and after running the REDISTRIBUTE DATABASE PARTI-
TION GROUP command. By completing a full backup, you have a restore point that
refers to the original database partitions in the event of hardware failure.

4. Issue the RUNSTATS command to refresh statistics.

45BRebalancing data
As data grows over time, the existing distribution keys might no longer be optimal. Sig-
nificant data skew can lead to degraded query performance. You can change the distribu-
tion key for a table by using the SYSPROC.ADMIN_MOVE_TABLE() stored procedure.

Using COUNT() and DBPARTITIONNUM() is a simple method to check whether the ta-
ble data is reasonably well distributed among all database partitions in the database par-
tition group. For example, the following query returns the data distribution for the
SALES table across all database partitions.

SELECT DBPARTITIONNUM(TxID), COUNT(*) FROM Sales GROUP BY DBPAR-
TITIONNUM(TxID);

This approach is simple but might take a long time to run if the number of rows in some
database partitions is very large. An alternate approach is to use the ESTI-
MATE_EXISTING_DATA_SKEW routine (available from
HTUhttp://www.ibm.com/developerworks/data/library/techarticle/dm-
1005partitioningkeys/#downloadUTH), which provides more user-friendly output, including
a list of database partitions, the skew percentage in comparison to the average, and more.

Managing data growth Page 37 of 46

It is recommended that you perform this check during maintenance windows or during
off-peak workload hours. The sampling option (10% to 25%, depending on the size of the
table) is also recommended. The following example shows how to measure data skew in
the Sales table, using a sampling rate of 25%.

SET serveroutput ON;

CALL estimate_existing_data_skew('AbcDept', 'Sales', 25);

 Return Status = 0

DATA SKEW ESTIMATION REPORT FOR TABLE: ABC_DEPT.SALES

Accuracy is based on 25% sample of data

--

ABC_DEPT.SALES

Estimated total number of records in the table: : 4,932,160

Estimated average number of records per partition : 1,233,040

Row count at partition 1 : 986,432 (Skew: -20.00%)

Row count at partition 2 : 1,850,794 (Skew: 50.10%)

…

Number of partitions: 4 (1,2,3,4)

If the data shows that the distribution key does not help to evenly distribute the data,
consider a new distribution key to replace the old one.

To check for query collocation, collect the queries that characterize the workload and cre-
ate a workload file (for example, my_new_workload_file) that can be used by the
db2advis utility to make recommendations about new distribution keys.

db2advis –d <database name> -i <my_new_workload_file> -m P

Alternatively, use the following approach to create a report based on the most recently
executed queries in the workload if the queries are still available in the DB2 package
cache:

Managing data growth Page 38 of 46

db2advis –d <database name> -g -m P

After you determine the new distribution key, create a table that is like the existing table.
Load a small percentage of rows from the existing table into the new table to validate the
data distribution based on the new distribution key.

Use the ADMIN_MOVE_TABLE procedure to automatically change the distribution key
while keeping the table fully accessible for both read and write operations. In the follow-
ing example, the distribution key for the Sales table is changed from Tx_Id to (Tx_Id,
Prod_Id). The LOAD option is used to improve performance of the
ADMIN_MOVE_TABLE procedure.

CALL SYSPROC.ADMIN_MOVE_TABLE (‘ABC_CO’, ‘Sales’, ‘’, ‘’, ‘’, ‘’,
‘TxId, ProdId’,‘’, ‘’, ‘COPY_USE_LOAD, FORCE’, ‘MOVE’);

Tips for coping with data growth and rebalancing:

• Regularly check the distribution of table data across the database partition groups.
• If necessary, rebalance the data by choosing a new distribution key for the table. Use

the DB2 Design Advisor (the db2advis utility) for distribution key recommendations.
Use the ADMIN_MOVE_TABLE procedure to change the distribution key while
keeping the table fully accessible for read and write operations.

• Use the ADMIN_MOVE_TABLE procedure to modify the table partitioning key or the
dimension key for a table. This procedure makes a new copy of the table, so you need
to ensure that enough storage space exists for the new copy during the move.

46BChanging table partitioning granularity to accommodate data
growth
With time, you might discover that the partitioning granularity of your original design is
no longer adequate. You might find that your partitioned table has grown rapidly to
hundreds or even thousands of partitions. In such cases, you have a couple of options.
You can merge data partitions or you can consider using MDC as an alternative and rely
on the ADMIN_MOVE_TABLE procedure to transform the data.

If you decide that your data partitions have become too large and are difficult to manage,
you can split the large partitions.

57BConverting a nonpartitioned table to a range partitioned table
As data volumes grow, it may become unmanageable to keep a large table within a single
table space. Based on the design choices described in this paper, you might decide to use
table partitioning to break up the table into a number of smaller pieces. This would im-
prove the maintainability of the table and enable you to perform efficient data lifecycle
management using ATTACH and DETACH operations. You can use one of the methods
below to accomplish this task.

If you are an experienced user who wants to complete the task faster and have more con-
trol over the process, follow these steps:

Managing data growth Page 39 of 46

1. Export or unload the data from the current (nonpartitioned) table.
2. Create a new range partitioned table whose definition is the same as the existing non-

partitioned table (do not create indexes yet). Place table partitions into different table
spaces by taking data temperature and backup or restore granularity requirements
into account.

3. Load the data into the newly created partitioned table.
4. Create necessary indexes and constraints; strive to create local indexes for efficient

data roll-in and roll-out.
5. Drop the nonpartitioned table.
6. Rename the new range partitioned table.

An alternative that keeps the table online for the duration of the conversion is to use the
ADMIN_MOVE_TABLE stored procedure. The stored procedure provides options to
complete all operations that are related to the move in a single step or in different steps.
The latter enables you to schedule when the source table is taken offline briefly to swap
the partitioned table with the nonpartitioned table.

58BSPLIT PARTITION
During the design phase, you might have chosen the table partitioning strategy to facili-
tate the even distribution of data across ranges. Suppose that an increase in customer
demand for your products has caused holiday sales during the month of December to be
orders of magnitude greater than during the other months, resulting in data skew and
decreased query performance for this partition. In such a scenario, it might be a good
idea to split the large December partition into two partitions by using the following ap-
proach:

1. Detach the December partition into DecemberTable and commit.
2. Attach a DecemberFirstHalf partition whose range definition covers the first half of

December from DecemberTable.
3. Create an exception table called DecemberSecondHalf.
4. Run SET INTEGRITY with exceptions being written to the DecemberSecondHalf ta-

ble; at this point, the DecemberFirstHalf partition has data for the first half of Decem-
ber, and the DecemberSecondHalf table has data for the remainder of December.

5. Attach a DecemberSecondHalf partition whose range definition covers the second
half of December from the DecemberSecondHalf table.

6. Run SET INTEGRITY.

Indexes need to be maintained as part of the split operation. With local indexes, only in-
dexes on the partition being split need to be maintained. Global indexes make this split-
ting method more expensive, and depending upon the amount of data involved in the
split, you might be better off dropping and recreating the global indexes.

In general, to improve the performance of a split partition operation, choose the range
with the least amount of data to be the range that will populate the exception table; this
minimizes the amount of data that needs to be copied.

Managing data growth Page 40 of 46

59BMERGE PARTITION
During the design phase, you might have chosen the table partitioning strategy by taking
into account the expected ingest rate. For example, you might have decided to create two
data partitions for each month, based on an ingest rate of 10 million records per month.
After monitoring the actual ingest rate, you might realize that you could merge the two
partitions and reduce the administrative overhead around managing so many table
spaces, one per data partition. In such a scenario, it might be a good idea to merge the
two partitions by using the following approach:

1. Detach the DecemberFirstHalf partition into the DecemberPart1 table and commit.
2. Detach the DecemberSecondHalf partition into the DecemberPart2 table and commit.
3. Copy data from the smaller of the two tables into the other. You can use either the IN-

SERT statement or the LOAD from cursor command to complete this data movement
operation.

4. Attach a December partition whose range definition covers the entire month of De-
cember.

5. Run SET INTEGRITY.

With local indexes, the amount of index maintenance is bound by the number of rows in
the smaller of the two data partitions that are being merged. Global indexes incur more
overhead with this method, because during the detach operation, asynchronous index
cleanup will clean up index data for detached partitions, and during the subsequent at-
tach operation, SET INTEGRITY processing will insert index keys for the attached
(merged) data partition.

Best practices

• Choose a distribution key to partition data evenly across database
partitions.

• Take advantage of collocation for complex join queries.

• When choosing a table partitioning key, select columns that facilitate
data roll-out, data roll-in, and partition elimination.

• Create all indexes as local indexes to streamline data roll-in and roll-
out (unless they are unique indexes that do not include the table par-
titioning key).

• Choose dimension key columns for an MDC table to improve query

Managing data growth Page 41 of 46

performance and to ingest data quickly.

• Use generated columns for dimension keys to increase cell density
for better space utilization.

• To improve load performance, sort data by the table partitioning key
(for range partitioned tables) or the dimension key (for MDC tables)
before issuing a LOAD command.

• Use materialized query tables to increase the performance of expen-
sive or frequently used queries that aggregate large amounts of data.

• Use row compression for very large tables, in conjunction with other
data organization schemes. It can provide 20-40% space reduction
and also improve query performance, because fewer I/O operations
are required to access the same amount of data.

• To minimize the impact of periodic ADD PARTITION operations to
expand table capacity, add a few partitions at each maintenance
window. Avoid adding too many empty partitions.

• Issue a COMMIT statement immediately after all DDL, including AT-
TACH PARTITION, DETACH PARTITION, RUNSTATS, and SET
INTEGRITY.

• Reorganize data or indexes at the table partition level.

• Use the RUNSTATS page sampling option on large tables.

• Monitor data growth rates periodically and plan for storage and ca-
pacity expansion in advance.

• Place data partitions in different table spaces to facilitate backup and
restore operations.

Managing data growth Page 42 of 46

4BConclusion
The best practices presented in this paper are intended to help you to manage scenarios
that are characterized by rapid data growth. The paper began with an overview of the
DB2 data organization schemes, and described the best database design practices for
scalability, manageability, and performance, including the use of these schemes in com-
bination.

This was followed by a discussion of best practices around data lifecycle management,
the process by which your system is kept lean to meet performance requirements, and
archived data remains available to meet various business needs.

A section on data maintenance included best practices information on reorganizing data
and indexes for better clustering, space reclamation, or defragmentation; refreshing sta-
tistics to help the optimizer improve data access plans; redistributing the data in parti-
tioned database environments to eliminate skew; and backup and recovery strategies to
ensure business continuity after planned or unexpected outages.

A final section provided guidelines that help you to reconsider your choices around data
organization schemes by assessing current realities and anticipating future trends.

By leveraging these best practices, you can use DB2 data server’s extensible architecture
and the layered data partitioning and organization schemes to take full advantage of
proven approaches to managing data growth.

Managing data growth Page 43 of 46

5BFurther reading
• Information Management best practices:

HTUhttp://www.ibm.com/developerworks/data/bestpractices/UT

• DB2 for Linux, UNIX, and Windows best practices:
HTUhttp://www.ibm.com/developerworks/data/bestpractices/db2luw/UT

o HTUPhysical database design for online transaction processing (OLTP) environ-
mentsUTH (details on translating logical design to physical design)

o HTUMulti-temperature data managementUTH (details on how to move data to new
storage repositories across its lifecycle)

o HTUStorage optimization with deep compressionUTH (details on controlling growth
with row compression)

o HTUIngesting data into an IBM Smart Analytics SystemUTH (IBM Smart Analytics
System represents the best practice for the implementation and configu-
ration of hardware, firmware, and software for a data warehouse.)

• HTUTable partitioningUTH in the HTUIBM DB2 Database for Linux, UNIX, and Windows In-
formation Center UT

• HTUIBM developerWorksUTH:
o HTUChoosing partitioning keys in DB2 Database Partitioning Feature environ-

mentsUT
o HTUUnleash the power of table partitioning in your DB2 warehouseUT

Managing data growth Page 44 of 46

26BContributors
Kevin Beck

Software Developer, Information Management

James Cho
STSM, Architect, Tier 1 Database and Smart Ana-
lytics Solutions

Enzo Cialini

STSM, Chief Architect, Quality Assurance, DB2
Distributed and Data Warehousing

Garrett Fitzsimons

Data Warehouse Best Practices Consultant

Jay Lennox
Senior Developer, DB2 Product Development

Paul McInerney

User Experience Professional, Information Manage-
ment

Christopher Tsounis

Executive I/T Specialist, Software Sales

Angela Yang
DB2 Advanced Technical Support

Managing data growth Page 45 of 46

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellec-
tual property right may be used instead. However, it is the user's responsibility to evaluate
and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these pat-
ents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

TThe following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: T INTERNATIONAL BUSINESS MACHINES CORPO-
RATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties regard-
ing the accuracy, reliability or serviceability of any information or recommendations pro-
vided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or tech-
niques herein is a customer responsibility and depends on the customer’s ability to evaluate
and integrate them into the customer’s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the
same or similar results will be obtained elsewhere. Anyone attempting to adapt these tech-
niques to their own environment does so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new edi-
tions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this IBM product and use of those websites is at your
own risk.

IBM may use or distribute any of the information you supply in any way it believes appropri-
ate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally available systems. Further-
more, some measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their specific envi-
ronment.

Managing data growth Page 46 of 46

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2012. All Rights Reserved.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and dis-
tribute these sample programs in any form without payment to IBM, for the purposes of de-
veloping, using, marketing or distributing application programs conforming to the applica-
tion programming interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions. IBM, there-
fore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law trade-
marks owned by IBM at the time this information was published. Such trademarks may also
be registered or common law trademarks in other countries. A current list of IBM trademarks
is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

27BContacting IBM
To provide feedback about this paper, write to HTUdb2docs@ca.ibm.comUT

To contact IBM in your country or region, check the IBM Directory of Worldwide Con-
tacts at HTUhttp://www.ibm.com/planetwide UT

To learn more about IBM Information Management products, go to
HTUhttp://www.ibm.com/software/data/UT

