

IBM® PureData® System for Operational Analytics®

Best practices
Building a data migration strategy with

IBM InfoSphere Optim High

Performance Unload

Konrad Emanowicz

DB2 Data Warehouse QA Specialist

IBM Ireland Lab

Garrett Fitzsimons

Best Practices Specialist for Warehouses

IBM Ireland Lab

Richard Lubell

DB2 Information Development

IBM Ireland Lab
Issued: December 2012

 IBM®

Executive Summary... 3

Introduction .. 4

Incorporating HPU into your data migration strategy .. 5

Implementing HPU.. 7

Understanding HPU.. 9

Using the HPU control file.. 10

Controlling resources with HPU ... 14

Monitoring HPU migration.. 16

Configuring HPU in an IBM PureData System for Operational Analytics 19

Target system settings ... 20

Data migration scenarios .. 21

Migrating data between databases with different topologies 21

Migrating a data subset... 24

Migrating data between databases with different versions of DB2 and

different distribution maps... 27

Conclusion .. 30

Appendix A. Configuration of test systems used ... 31

Further reading... 33

Contributors.. 33

Notices ... 34

Trademarks ... 35

 Building a data migration strategy with High Performance Unload 3 of 35

Executive Summary
This paper is targeted at persons that are involved in planning, configuring, designing,

implementing, or administering a data warehouse that is based on DB2® Database for

Linux®, UNIX, and Windows® software. The examples in this paper apply generally but

are focused on the IBM ® PureData System for Operational Analytics.

IBM InfoSphere Optim High Performance Unload for DB2 for Linux, UNIX, and

Windows V4.02 is a high-speed tool for unloading, extracting, and migrating data in DB2

for Linux, UNIX, and Windows databases. High Performance Unload (HPU) is designed

to extract and migrate data from DB2 table space containers. A data migration strategy

that uses HPU minimizes storage needs and automates many manual tasks.

HPU uses named-pipes and parallel LOAD operations to stream data from the source to

the target database, minimizing the need to stage the data on disk. You can direct HPU to

determine where different partition maps, software levels, and key constraints are used

and automatically handle these events during data migration

HPU can also unload subsets of data from target database without the need to access the

DB2 software layer. With this functionality you can migrate data online from larger

production systems to smaller pre-production or development environments.

HPU has other uses in data extraction from DB2 backup images which are covered in the

companion paper “Best Practices Using IBM Optim High Performance Unload as part of

a Recovery Strategy in an IBM Smart Analytics System”

 Building a data migration strategy with High Performance Unload 4 of 35

Introduction
This paper describes best practices for incorporating the use of HPU into your migration

strategy and implementing HPU for an IBM PureData System for Operational Analytics

data warehouse. This paper covers how to migrate different sets of data between two

databases.

To use this paper, you should have a basic knowledge of HPU software as well as DB2

software as implemented in a partitioned data warehouse environment. The further

reading section in this paper contains links to product documentation and papers that are

referenced in the paper.

The first and second sections outline the benefits of using HPU and the possible

considerations of integrating it into your system.

The third section reviews the HPU Migration Process, HPU control files, HPU

parameters and recommends best practices for creating control files.

The fourth section provides details on how to install and configure HPU for migration in

an IBM PureData System for Operational Analytics.

The fifth section offers specific best practice recommendations for different scenarios.

The appendix section outlines the configuration of the test system that was used in

developing this paper.

This paper builds on and complements a series of best practices papers that discuss

aspects of a DB2 data warehouse. Refer to these papers in “Further Reading” for more

information.

 Building a data migration strategy with High Performance Unload 5 of 35

Incorporating HPU into your data migration strategy
HPU is a high-speed stand-alone utility for migrating data between DB2 databases on

Linux, UNIX, and Windows systems. HPU unloads large volumes of data quickly by

reading data directly from table space containers or backup images rather than through

the DB2 software layer. HPU accelerates the migration of data through parallel

processing between all source and target servers without the need to stage data to disk.

The key benefits that you gain by implementing a data migration strategy that uses HPU

are the abilities to:

• Migrate all or a subset of a database from source to target database

For example, use a WHERE clause to select a range of data to migrate or explicitly

specify a data partition, table space or database partition.

• Migrate data between databases with different topologies, software levels, and

partition maps

For example, use HPU control file parameters to control the migration of a subset

of data from a large production environment to a smaller development with

fewer database partitions, a different partition map and a different DB2 software

level.

• Eliminate the need to stage the source data on storage before the data is loaded

to the target database

For example, named pipes are used to stream data from the source to target

environment, then the LOAD command is automatically invoked to load data

into the target database.

• Control effects on system resources on the source database

For example, you can configure HPU to restrict the processor and memory

resources that are used on the source system. The LOAD utility can be optimized

or throttled on the target database. You can also choose to migrate data offline

from a backup image or online from table space containers.

• Automate the migration process so that it can be scheduled to run unattended

For example, because HPU is command line-driven and uses control files, you

can schedule data subsets to be migrated automatically during off-peak periods

or after ETL or backup operations are complete.

Avoid contention with ETL processes by scheduling automated data migration outside

of ETL, backup and other data operations.

Existing migration strategies involve laborious procedures such as backup and restore

operations, data redistribution, export and load commands, and moving source data over

 Building a data migration strategy with High Performance Unload 6 of 35

the network to the target systems. Using HPU helps simplify the migration process by

avoiding manual steps, skipping the staging phase and speeding migration through

direct transfer to target tables by using named pipes.

 Building a data migration strategy with High Performance Unload 7 of 35

Implementing HPU
When you use HPU to migrate data from source to target database there are installation

and configuration considerations that need to be addressed. An implementation of HPU

should minimize the number of configuration points and avoid unintentional use of

resources. The following sections cover how to install, configure and set up your

environment for HPU.

Installing HPU

HPU must be installed on each host of the source database where you intend to unload

data and on each host of the target database where the data is loaded. The same version

of HPU must be used across all source and target data nodes. Use the db2hpu --

version command to determine the version installed on each data node.

Make the HPU installation package available to each individual host by placing it on the

shared /db2home file system. This action avoids the task of copying the installation

package to each host.

Migrating a consistent transaction set

Where you migrate data from an online database or from an online backup image, the

result set migrated could contain an inconsistent record of data, because HPU does not

access transaction logs. This might be acceptable for your needs in a test or development

environment.

Where you need to migrate a consistent data transaction set:

• Use the HPU control file parameters to quiesce the table from which you want to

migrate data.

This action flushes all data for the table space in the buffer pool to the table space

container on disk and locks the table during the unloading operation.

• Schedule data migration activities outside of ETL windows to ensure a consistent

result set.

Avoid data migration that requires a read-access lock on the table space when

your ETL tasks or online backup operations are scheduled to run. In this case,

read-access workloads would be supported but no changes to the table space

would be allowed. ETL processes are unable to write data while the HPU data

migration is performed.

Unload data from offline backup images or online backup images created outside of

ETL operations to help ensure data consistency.

 Building a data migration strategy with High Performance Unload 8 of 35

Allocating resources for HPU

HPU uses all available processor resources on the source system. For example, on an IBM

PureData System for Operational Analytics there are sixteen cores. Unthrottled, HPU

starts a thread for each core and unloads data in parallel using sixteen threads.

 You can throttle resources on each data node by dedicating a number of processor cores

to the HPU migration process. You can also throttle the resources that are used on the

target system by throttling the DB2 load utility responsible for loading the migrated data.

When HPU migration is performed by using named pipes, there are some cases when

staging storage can be required. When XML or Large Object (LOB) columns are used, the

entire table must be staged to flat files before they are ingested into the target system.

When migrating data from database backup files you must have sufficient storage

capacity in the staging area for data unloaded from the backup files.

 Building a data migration strategy with High Performance Unload 9 of 35

Understanding HPU
The HPU migration consists of unloading, repartitioning, and loading data between a

source and target database. By understanding how HPU operates you can best configure

your environment and implement your data migration strategy. Figure 1 shows the data

migration process between a source and target database with a different topology:

• The source database contains data nodes DataNode 1, DataNode 2, and DataNode 3

and has a total of 28 database partitions plus a coordinator node.

• The target database contains data nodes DataNode 1 and DataNode 2 and has a total

of eight database partitions plus a coordinator node.

Figure 1 Data migration process using HPU

The HPU process represented by figure 1 consists of the following tasks:

1. HPU unloads data on each database partition in parallel on the source database.

2. HPU repartitions data according to the DB2 distribution map created by HPU

based on the target table details that are provided in the control file.

 Building a data migration strategy with High Performance Unload 10 of 35

3. HPU sends the output streams from the source database across the network to

the HPU daemon on the target database (DataNode 1 and DataNode 2 in figure

1).

The target daemon creates a single named pipe for each database partition on the

target system, in figure 1 it is represented as the /work1 directory, and initiates

the DB2 LOAD command.

4. The HPU daemon consolidates the multiple streams from each of the source

database partitions into a single stream, which HPU sends to each named pipes

associated with a target partition.

5. The HPU daemon calls the LOAD command to load data into the target

database.

The process for migrating from a backup file is slightly different than presented in figure

1. Data must first be staged from database backup files on the source system before it is

migrated through named pipes to the target system. Dedicate the same storage path on

each source data node for the staging process. Allocate storage capacity for staging

equivalent to the table space size of the table that is being migrated.

Using the HPU control file
HPU migration is controlled and operated through a control file. The structure of the

control file consists of two control blocks: the GLOBAL block and MIGRATE block. By

understanding the control file syntax you can help ensure the correct migration sequence.

GLOBAL Block

The GLOBAL control block contains configuration data that is common to all migrate

blocks in the HPU control file. There is only one GLOBAL block per control file and the

GLOBAL block must be the first block in the control file. Any parameters in this block

override its equivalent configuration file defaults.

The GLOBAL block designates the control settings that are used by default for each

MIGRATE block unless an option is overridden at a lower level. For example, the

QUIESCE and LOCK options control table space locking and buffer pool state but you

can override these options in each MIGRATE block.

The following example shows the GLOBAL block syntax:

-- Global Block

GLOBAL CONNECT TO BCUDB

DB2 NO QUIESCE NO LOCK NO;

 Building a data migration strategy with High Performance Unload 11 of 35

MIGRATE Blocks

The MIGRATE block specifies the table space, tables, and SELECT statement for the data

that is being migrated. You can specify multiple MIGRATE blocks in a single control file

to determine a sequence of migration tasks.

The key syntax elements that are used in a MIGRATE block are presented in table 1

below.

Parameter Description Usage

PART Specifies database partitions for

source tables.

Use this option to migrate tables from a

subset of source partitions.

FAST_SELECT Specifies details for the source table Use this block to specify a select statement

for the source table and a specific range for

ranged partitioned table.

TARGET

ENVIRONMENT

Specifies the target system details Use this option to specify the target instance

name, target database name, and the server

where the database is cataloged and where

the DB2 LOAD command is called by HPU.

LOCK OPTION Specifies locking on the source

database

Use this option to indicate whether a read-

only lock is to be held during unloading on

the table space of the source table.

QUIESCE

OPTION

Enables quiescing table spaces on the

source database

Use the default option (YES) to make the

related buffer pool pages flush to disk

before the start of unload.

TARGET KEYS Specifies details for the target table Use this clause to specify the partitioning

key details and the sequence of database

partition numbers on the target table.

WORKING IN Specifies the HPU processing path Use this option to specify the location for

pipes/files on the target data nodes.

XML/LOB IN Specifies staging details on the target

system for the LOB/XML columns

data of the table that is being

migrated

Use this parameter to specify the staging

paths and file names for the LOB/XML

columns data on the target system.

FORMAT Specifies the output details Use this clause to select the output format

of the data and specify the target table

name.

Table 1. Key HPU data migration parameters when using the MIGRATE block

Use the SELECT clause with the PART clause to migrate a subset of data when the

target environment has less storage available.

 Building a data migration strategy with High Performance Unload 12 of 35

Target keys

The TARGET KEYS clause is the primary syntax element that is employed during data

migration. Information that is provided by the clause is used by HPU to generate the DB2

distribution map that is used to distribute and load data into the target table.

The TARGET KEYS clause consists of two sections:

Database partitions

This section specifies the sequence of the database partition numbers. For example,

PARTS(1:10) specifies that data is migrated for database partitions 1 and 10.

 Partitioning key details

This section specifies the columns details for DB2 partitioning key of the target table.

There are three ways to specify the partitioning key information:

• The CURRENT keyword keeps the current definition of the partitioning key. It

sets the partitioning key for the target table to the same value or values as

identified in the FAST_SELECT block in the source table. For example:

TARGET KEYS(CURRENT PARTS(1:M))

• The DEFAULT keyword indicates that the first valid column in the

FAST_SELECT block is used in the partitioning key. For example:

TARGET KEYS(DEFAULT PARTS(1:M))

• The explicit column list provides either column names or column numbers. For

example:

TARGET KEYS((3,4) parts(1:10))

TARGET KEYS((col1,col3) parts(1:10))

Use the HPU options for target database partitions and distribution key to help

ensure that data is re-partitioned correctly when you are migrating data to a database

with a different partition map.

Range partitioned tables

When migrating data from range partitioned tables, HPU can process multiple ranges in

parallel based on the number of processor cores and database partitions available on the

 Building a data migration strategy with High Performance Unload 13 of 35

data node. To determine how many ranges can be processed in parallel, use the

following calculation:

INTEGER(number of processor cores/ number of partitions).

Resource usage, especially memory, can be high for parallel migration of many ranges

and can consume more resources than intended on the source database system.

To control the resources available to HPU do not migrate whole partitioned table in one

step. Use the nbcpu HPU configuration parameter to limit the number of processor cores

available to HPU.

Migrate range partitioned tables as a sequence of ranges within a single control file;

choose the most recent range first.

Using the recommended control file parameters

When you create a control file, it is recommended to:

• Use FORMAT DELIMITED INTO clause when the source and target table name are

different.

• Use QUIESCE YES and LOCK YES options to help ensure a safe and consistent

unload where no modifications to the table are allowed until the unload process is

complete. The QUIESCE YES option flushes all pages of the source table from the

DB2 buffer pool. The LOCK YES places a share lock on the table and to prevent the

table from being modified.

• Use the CURRENT keywords in the TARGET KEYS clause when the partitioning

key for the target and source tables are the same.

• Use CURRENT PARTS(ALL) only when target tables exist on all database partitions

of the target instance.

• To exclude specific partitions from the full list of partitions of the target instance use

EXCEPT PARTS() clause in TARGET ENVIRONMENT clause together with

CURRENT PARTS(ALL).

• Use a location other than the default /tmp path in the WORKING IN and XML/LOB

IN clauses to ensure that appropriate disk space is available when migrating tables

with XML or LOB columns. Tables with XML or LOB columns have to be staged to

files temporarily and cannot be processed through pipes.

• Use separate TARGET KEYS clause for each target table in its FAST_SELECT block

to migrate tables in different database partition groups.

The following example shows a control file migrate block that is used to migrate data

from source_tabschema.source_tabname table on database partitions 1:N to

target_tabschema.target_tabname table on partitions 1:M. The target database name is

 Building a data migration strategy with High Performance Unload 14 of 35

target_db_name and exists on target_instance_name instance. The database is cataloged

on target_hostname.

-- Migrate block migrating from nodes 1:N to 1:M

MIGRATE TABLESPACE

PART(1:N)

QUIESCE YES LOCK YES DB2 NO

-- Select statement and target environment details

SELECT * FROM source_tabschema.source_tabname;

TARGET ENVIRONMENT(INSTANCE "target_instance_name" on

"target_hostname" IN target_db_name)

TARGET KEYS(CURRENT PARTS(1:M))

WORKING IN("/path")

FORMAT DELIMITED INTO target_tabschema.target_tabname;

Controlling resources with HPU
HPU is designed to use all available resources to unload and migrate data at high speeds.

Consider the limitations on storage, processor, and memory resources you established

during the planning phase.

Storage Capacity

When you migrate data from backup images, storage capacity is needed on the source

data nodes for staging data from the backup files. The storage capacity that is allocated

per data node for a migrated table must be the total size of the table space on the data

node.

For tables with LOB or XML columns, named pipes cannot be used and the data must be

staged to disk first before the load phase. Ensure that there is also sufficient storage

capacity on the target data nodes by determining the size of the table, including the LOB

and XML files.

When you are unloading a table from table space containers to files, the total storage

capacity that is required equals the table size.

Processor resources

HPU uses all processor cores and each partition is always processed by at least one core.

• When there are fewer cores than partitions, the number of partitions that are

processed in parallel equals the number of cores.

• When there are more cores than partitions, all partitions are processed in parallel by

more than one core.

• The number of cores that are processing each thread is calculated as

INTEGER(Number of cores / Number of Partitions).

Use the nbcpu configuration parameter on the source system to set the maximum

number of processor cores used by HPU when migrating data.

 Building a data migration strategy with High Performance Unload 15 of 35

In a scenario that involves a database outage, it is recommended to allow HPU to use all

available processor cores to unload data as quickly as possible. In an environment where

queries are running during migration, configure HPU to restrict the resources that are

consumed, reducing the amount of processor capacity that is used.

For example, for a data node on an IBM PureData System for Operational Analytics with

sixteen cores and eight database partitions, and with 50% of processor cores dedicated to

HPU by setting nbcpu=8, all eight database partitions are processed in parallel with each

processed by one core as INTEGER(Number of cores/Number of

Partitions)=INTEGER(4/4)=INTEGER(1)=1. With the default settings all sixteen cores

would be used with each partition processed by two cores.

For data node with 4 partitions and 18 processor cores and with nbcpu set to 10, each

partition is processed by two cores as INTEGER(Number of cores/Number of

Partitions)=INTEGER(10/4)=INTEGER(2.5)=2.

Memory resources

Use the bufsize parameter to define the HPU buffer. It is recommended to use the

default HPU buffer pool size in most cases. The minimum accepted value is 262144 (256

kilobytes), the maximum and default accepted value is 4 MB. Use the minimum value

when you are migrating from many source nodes.

Influence HPU usage of processor resources on the source system by specifying the

number of cores to be used on each data node.

User process resource limits

For migration scenarios that involve many source database partitions, change the default

settings for user process resource limits to unlimited. The key limits on the target system

on each data node are: data seg size and stack size. You can check and control

these settings with the ulimit command in the user session. These are called soft

settings because you can configure them up to the maximum defined by the hard limits

as set by the root user.

The following example shows a command that is used to check the current soft settings

on AIX system:

ulimit -a

core file size (blocks, -c) unlimited
data seg size (kbytes, -d) soft
file size (blocks, -f) unlimited
max memory size (kbytes, -m) unlimited
open files (-n) 2000
pipe size (512 bytes, -p) 64
stack size (kbytes, -s) 65536
cpu time (seconds, -t) unlimited
max user processes (-u) 4096
virtual memory (kbytes, -v) unlimited

 Building a data migration strategy with High Performance Unload 16 of 35

To change the data seg size settings to unlimited, use the following command:

 ulimit -d unlimited

Monitoring HPU migration
HPU can consume all available memory and processor resources to achieve maximum

throughput of data, which can sometimes cause contention and paging. Contention with

concurrent processes that have higher priority for processor capacity can slow or even

stop the HPU migration process. Migration can also terminate abnormally when all

paging space is fully utilized. It is recommended that you observe resource usage to help

ensure successful migration.

Monitor system resources to:

• Determine the resources used by HPU to prevent contention

Determine whether processor resources available to HPU are limited because of

contention with other processes by analyzing processor usage in the system.

Use the TOP command on Linux and AIX or TOPAS on AIX to check how much

processor and physical memory is consumed. The amount of processor and memory

consumed is expressed as a percentage of total resources available on the server.

1. Identify the HPU process using the "db2hpu" keyword in the COMMAND

column for the TOP command and in the Name column for the TOPAS command.

2. Verify that the processor resources used by HPU are expected for the HPU

nbcpu parameter settings.

For example, when the nbcpu parameter is set to half the number of cores available on

the server, processor usage for a "db2hpu" process should not exceed 50%. The following

sample TOPAS output shows contention between db2hpum6 process and java process:

 Tue Dec 18 16:16:50 2012 Interval: 2 Cswitch 5984 Readch 4864
 Syscall 15776 Writech 34280
 Kernel 63.1 |################## | Reads 8 Rawin 0
 User 36.8 |########## | Writes 2469 Ttyout 0
 Wait 0.0 | | Forks 0 Igets 0
 Idle 0.0 | | Execs 0 Namei 4
 Runqueue 11.5 Dirblk 0
 Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
 lo0 213.9 2154.2 2153.7 107.0 106.9
 tr0 34.7 16.9 34.4 0.9 33.8 PAGING MEMORY
 Faults 3862 Real,MB 1023
 Disk Busy% KBPS TPS KB-Read KB-Writ Steals 1580 % Comp 27.0
 hdisk0 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 73.9
 PgspOut 0 % Client 0.5
 Name PID CPU% PgSp Owner PageIn 0
 db2hpum6 16684 83.6 13.1 root PageOut 0 PAGING SPACE
 java 12192 12.7 12.2 root Sios 0 Size,MB 512
 lrud 1032 2.7 0.0 root % Used 1.2

 Building a data migration strategy with High Performance Unload 17 of 35

 aixterm 19502 0.5 0.7 root NFS (calls/sec) % Free 98.7
 topas 6908 0.5 0.8 root ServerV2 0
 ksh 18148 0.0 0.7 root ClientV2 0 Press:
 gil 1806 0.0 0.0 root ServerV3 0 "h" for help

The db2hpum6 and java processes are together consuming 100% of available processor

resources, causing contention between them. It is recommended to stop the java process

or limit the processor resources available by HPU by adjusting the HPU nbcpu

configuration parameter to lower the number of processor cores available to HPU.

Where you need the capability to manipulate HPU during processing, you should use

OS/WLM capabilities and LOAD parameters within DB2 on the target database.

• Check for paging

A shortage of physical memory can cause paging on the source system that can in some

cases trigger HPU migration failure. Use the vmstat command to view the pi and po

(page in and page out) columns on AIX, and the si and so (swap in and swap out)

columns on Linux. Non-zero values indicate that paging is occurring. The following

example shows sample output for the vmstat command:

kthr memory page faults cpu time
 ----- ----------- ------------------------ ------------ ----------- --------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa hr mi se
 0 0 45483 221 0 0 0 0 1 0 224 326 362 24 7 69 0 15:10:22
 0 0 45483 220 0 0 0 0 0 0 159 83 53 1 1 98 0 15:10:23
 2 0 45483 220 0 0 0 0 0 0 145 115 46 0 9 90 1 15:10:24

TO check whether the HPU process "db2hpum6" is triggering the paging process, refer to

the "Paging" Column in the TOP command output or "PgSp" Column in the TOPAS

command output.

• Track the progress of the migration operation

Use the db2 list utilities show detail command on the target system to check

the progress of the migration. The command shows the progress for the current DB2

LOAD command that was started by HPU.The following example shows sample output

for the db2 utilities command:

ID = 186

Type = LOAD

Database Name = TEST

Member Number = 0

Description = [LOADID: 1891.2012-12-18-

11.48.27.128866.0 (65530;32768)] [*LOCAL.bcuaix.121218114833]

OFFLINE LOAD DEL AUTOMATIC INDEXING INSERT NON-RECOVERABLE

TEST.TB_SALES_FACT

Start Time = 12/18/2012 11:48:27.158263

State = Executing

Invocation Type = User

Progress Monitoring:

 Building a data migration strategy with High Performance Unload 18 of 35

 Phase Number = 1

 Description = SETUP

 Total Work = 0 bytes

 Completed Work = 0 bytes

 Start Time = 12/18/2012 11:48:27.158270

 Phase Number [Current] = 2

 Description = LOAD

 Total Work = 100000 rows

 Completed Work = 220 rows

 Start Time = 12/18/2012 11:48:29.168612

 Phase Number = 3

 Description = BUILD

 Total Work = 12 indexes

 Completed Work = 0 indexes

 Start Time = Not Started

 Building a data migration strategy with High Performance Unload 19 of 35

Configuring HPU in an IBM PureData System for

Operational Analytics
You must create a directory structure for migration to ensure the required storage

capacity is available. Additional configuration on the target system is required whenever

the target instance name is different from the source instance name. Use a shared HPU

configuration file to minimize the administration of HPU configuration files.

Creating a directory structure for data migration

HPU requires a directory structure where named pipe files and staging data can be

located. This directory structure accommodates:

• When backup images are used and data needs to be unloaded and staged on the

source database system

• LOB and XML data that needs to be staged on the target database system before

it is loaded

HPU uses a single absolute directory path for each data host. On the target database

system, data can be loaded in parallel from multiple file system paths across each

database partition.

On an IBM PureData System for Operational Analytics, use the /bkpfs (backup and

cold storage) file system for HPU staging areas and for creating a working directory for

named pipes and LOB and XML flat files.

On IBM PureData System for Operational Analytics, create a directory for HPU in the

/bkpfs file system on each user host and each data host. For example, for pipes, LOB

and XML files or backup staging, create /work1 directory link on each host. For

example, the following commands show how to create the required link:

mkdir /bkpfs/bcuaix/NODE0001/HPU

ln /bkpfs/bcuaix/NODE0001/HPU /work1

For backup files staging, the stagedir HPU configuration parameter in the

db2hpu.cfg file should be set to your directory.

Use a directory structure on storage that does not conflict with storage used for table

space containers when you are staging or streaming data.

 Building a data migration strategy with High Performance Unload 20 of 35

Creating and sharing a single configuration file across all nodes

Minimize administration of configuration files by creating a shared configuration file on

the administration node and modifying the local configuration file on each node to

reference it. To create a single configuration file that is shared across all nodes on which

HPU is installed:

1. Make a copy of the default configuration file, customize it as required and save it

on a file system that is accessible across all nodes; /db2home is recommended.

2. Add the dir_cfg parameter to the default HPU configuration file on each data

node to reference the shared HPU configuration file.

3. Make further customizations to the referenced configuration file only.

Target system settings
When the user name used for the target instance is different than the user name used on

the source instance, create the source instance user on each of the target data nodes. You

must also grant the user the appropriate DB2 privileges, including LOAD and INSERT

privileges on all target tables. For example, the relevant privileges for user bcuaix for

table BI_SCHEMA.TB_SALES_FACT would be as follows:

db2 grant load on database to bcuaix

db2 grant insert on table BI_SCHEMA.TB_SALES_FACT to bcuaix

Ensure a user with the name used by source instance exists on the target system and

has the appropriate database privileges to load and insert into the target tables.

 Building a data migration strategy with High Performance Unload 21 of 35

Data migration scenarios

Each of the following migration scenarios was performed by the authors to validate the

accompanying recommendations. Refer to Appendix A for details of the test systems that

were used.

Migrating data between databases with different topologies
HPU can migrate data between two databases with different topologies by interpreting

the source and target partition maps and re-partitioning data on the target database

when necessary. Figure 2 shows migration between a BCUDB database and a TEST

database with different database topologies.

Figure 2 Data migration process between different database topologies

The database topologies are different since each of them has a different number of data

nodes and database partitions. The source database has three data nodes and 29 database

partitions and the target database has two data nodes and nine database partitions.

The key considerations for data migration between databases with different topologies

are:

• Partitioning key details for each target table

The sequence of database partitions must be explicitly specified in each

MIGRATE block unless the target table exists in IBMDEFAULTGROUP database

 Building a data migration strategy with High Performance Unload 22 of 35

partition group, the default pattern that is used by HPU. If the target tables exist

in different database partition groups, you must use either a separate TARGET

KEYS clause in the FAST_SELECT block for each table or two separate migrate

blocks.

• Table space migration

Whole table space migration can be performed only when all the target tables use

the same DB2 distribution map (target tables exist in the same table space or in

the same database partition group) and target table names are the same as source

table names. For other cases process each table in a separate migrate block to

prevent HPU migration failure.

Perform table space migration only when all target tables exist in the same DB2

database partition group and all target tables names match the source table names.

• Different HPU migration options

Use a separate migrate block per table when different LOCK and QUIESCE

options are required for different tables.

Use a separate migrate block for each table when different LOCK and QUIESCE

options are required for the tables.

For example, to migrate data for three tables BI_SCHEMA.TB_SALES_FACT fact table

and BI_SCHEMA.TB_STORE_DIM, BI_SCHEMA.TB_CUSTOMER_DI dimension tables

from a source system with three data nodes each with eight database partitions to

another database with two data nodes each with four database partitions the following

control file was used:

GLOBAL CONNECT TO BCUDB;

-- Migrate Block for Fact table

MIGRATE TABLESPACE

PART(1:28)

DB2 NO LOCK YES QUIESCE YES

TARGET ENVIRONMENT(INSTANCE "bcuaix" on "bluejay06" IN

TEST)

WORKING IN("/work1")

SELECT * FROM BI_SCHEMA.TB_SALES_FACT;

TARGET KEYS((3,4) parts(1:8))

FORMAT DELIMITED INTO TEST.TB_SALES_FACT

;

-- Migrate whole TBS_DIM table space

MIGRATE TABLESPACE TBS_DIM

PART(ALL)

DB2 NO LOCK YES QUIESCE YES

 Building a data migration strategy with High Performance Unload 23 of 35

TARGET ENVIRONMENT(INSTANCE "bcuaix" on "bluejay06" IN

TEST)

TARGET KEYS(current parts(0))

WORKING IN("/work1")

FORMAT DELIMITED

;

The PART(ALL) parameter prompts HPU to unload data from all source partitions for

each table. Because dimension tables are processed as a whole, a separate MIGRATE

block must be used for fact and dimension tables. The partitioning key for the target fact

table is different (consists of different columns) than the key on the source table therefore

the TARGET KEYS specifies the appropriate column numbers, columns 3 and 4. This

information can be specified only in the FAST_SELECT block and not in the TARGET

ENVIRONMENT block.

The two source dimension tables exist in the same table space. Their target table names

also exist in one table space and have the same names as the source tables. If all

conditions are met, migrate both dimension tables in one MIGRATE TABLESPACE block

without specifying the SELECT statement for each of the tables. The TBS_DIM table

space name must be specified explicitly in the MIGRATE block. The dimension tables do

not have to process first since the foreign key from the fact table is not enforced and the

sequence is not important.

The LOCK YES QUIESCE YES for the tables ensures that the related buffer pool pages

are flushed to disk before the start of unload, and no modifications to the table are

allowed until unloading is complete.

 Building a data migration strategy with High Performance Unload 24 of 35

Migrating a data subset
HPU migration can migrate different subsets of data from the source database. For

example, a data subset might consist of fact table rows for a specific date range and a

group of commonly used dimension tables.

Figure 3 Data migration of data subsets

Figure 3 shows a subset of table data that can be migrated with HPU from either table

space containers or backup images. When using backup images, data is extracted directly

from the backup files; access to the source database is not required. The backup files can

also exist on a different system than the production database to completely minimize the

effect on the production.

 HPU can facilitate a data lifecycle management strategy. Where data has been detached

from the database, HPU can be used to retrieve data from a backup image associated

with archived data. This process allows data to be retrieved for auditing or data

governance reasons.

Use HPU migration to migrate different subsets of data from backup files when past

data is required and the access to the production database is not allowed or restricted,

for example, during ETL and online periods.

HPU migration offers several ways to specify the subset of data for migration:

 Building a data migration strategy with High Performance Unload 25 of 35

• Restrict use of the WHERE clause to filter the data on different columns in the

Select clause for each table

• Specify a range for range partitioned tables with DATAPARTITION ID (NAME)

keys

• Use DB2 temporal tables to access data from a point in time in the past

• Use the PART clause to specify specific source database partitions

For example, to migrate data extracts from range partitioned fact table the following

control file could be used:

GLOBAL CONNECT TO BCUDB;

-- Migrate block for the fact table

MIGRATE TABLESPACE

PART(1:28)

-- Buffer pool is flushed and write access to the table prevented

during the Migration

DB2 NO LOCK YES QUIESCE YES

TARGET ENVIRONMENT(INSTANCE "bcuaix" on "bluejay06" IN

TEST)

WORKING IN("/work1")

-- Select statement and target keys

SELECT * FROM BI_SCHEMA.TB_SALES_FACT where STORE_ID between 101

and 250

;

DATAPARTITION ID (2)

TARGET KEYS(current parts(1:8))

FORMAT DELIMITED INTO TEST.TB_SALES_FACT

;

This scenario demonstrates migrating a subset of fact table

BI_SCHEMA.TB_SALES_FACT. The requested data set has rows where value for

STORE_ID column is 101 - 250 and which exist only in data partition 2.

The following example demonstrates how to migrate the temporal dimension table

BI_SCHEMA.TB_PRODUCT_DIM data from the past time between '2012-06-18' and

'2012-06-19':

GLOBAL CONNECT TO BCUDB;

-- Migrate Block for Dimension table

MIGRATE TABLESPACE

PART(0)

DB2 NO LOCK YES QUIESCE YES

TARGET ENVIRONMENT(INSTANCE "bcuaix" on "bluejay06" IN

TEST)

WORKING IN("/work1")

-- Select statement and target keys

 Building a data migration strategy with High Performance Unload 26 of 35

select * from BI_SCHEMA.TB_PRODUCT_DIM FOR SYSTEM_TIME between

'2012-06-18' and '2012-06-19' where PRODUCT_DESCRIPTION like

'%fzc%';

TARGET KEYS(current parts(0))

FORMAT DELIMITED INTO TEST.TB_PRODUCT_DIM MODIFIED BY

identityoverride

;

In the following example the rows from BI_SCHEMA.TB_PRODUCT_DIM table with

specific production description and with values from the past period between '2012-06-

18' and '2012-06-19' were migrated. The history table for the

BI_SCHEMA.TB_PRODUCT_DIM table was used to retrieve the data from the past.

Instruct HPU to use the “MODIFIED BY IDENTITYOVERRIDE“option for the target

dimension table TEST.TB_PRODUCT_DIM. This modifier is used since an identity

column defined as GENERATED ALWAYS is present on the target table. Accept explicit,

non-NULL data for such a column to prevent the DB2 engine from generating new

values.

Preserve the values from the source database for target tables with identity columns

defined.

The commands which were used to enable the system-period temporal table feature for

table BI_SCHEMA.TB_PRODUCT_DIM were as follows:

ALTER TABLE BI_SCHEMA.TB_PRODUCT_DIM ADD COLUMN sys_start

TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN;

ALTER TABLE BI_SCHEMA.TB_PRODUCT_DIM ADD COLUMN sys_end

TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END;

ALTER TABLE BI_SCHEMA.TB_PRODUCT_DIM ADD COLUMN ts_id

TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID;

ALTER TABLE BI_SCHEMA.TB_PRODUCT_DIM ADD PERIOD

SYSTEM_TIME(sys_start, sys_end);

CREATE TABLE BI_SCHEMA.TB_PRODUCT_DIM_hist LIKE

BI_SCHEMA.TB_PRODUCT_DIM IN TS_DIMENSIONS;

ALTER TABLE BI_SCHEMA.TB_PRODUCT_DIM ADD VERSIONING USE HISTORY

TABLE BI_SCHEMA.TB_PRODUCT_DIM_hist;

 Building a data migration strategy with High Performance Unload 27 of 35

Migrating data between databases with different versions of

DB2 and different distribution maps
Differences in distribution maps can necessitate “single stream” migration. Figure 4

shows how “single stream” migration works.

Figure 4 Migrating data when partition maps are different

During single stream HPU migration data is unloaded but not repartitioned (hashed) by

HPU on the source database. The unloaded data is sent through single pipe on the target

coordinator for the DB2 LOAD command to repartition and load the rows.

There are two situations when “single stream” migration is recommended:

• Source and target database use different distribution map size

DB2 supports two distribution map sizes: 4K (4 096 entries) and 32K (32 768

entries). A typical example is when one database is V9.5 using a 4K

distribution map and the other database is V9.7 with a 32K map. In this case

single stream migration is the only available option.

 Building a data migration strategy with High Performance Unload 28 of 35

• Source and target databases have distribution maps that are the same size but

the target map is not in standard round robin order and the map does not have

a repeating list of target partitions

The target distribution map is created by HPU by repeating the sequence of

target partitions specified in the PARTS() clause in the TARKET KEYS block

until the DB2 distribution map array is filled. Some changes of the map can

leave no repeating pattern (list) of target partitions in the target distribution

map. The map can be changed deliberately, for example, to eliminate data

skew issues on the database or a redistribute command is run. After the

redistribute command the map might have no repeating pattern for target

partitions. Customization of a map can also leave the map without a pattern.

In this case, either run single stream migration or provide the transformed

version of the full map text in the control file, in the PARTS() clause, and use

the standard migration. Perform the following steps to use the transformed

map:

1. On the target database save the map into a file

db2gpmap -d target_db_name -m map_file.out -t

tabschema.tabname

2. Transform the map by replacing spaces and new line characters with a

comma with unix shell:

cat map_file.out | sed 's/ /,/g' | tr '\n' ',' | sed

'$s/.$//' > map_file_transformed.out

3. In the control file provide the text of the transformed map from the

map_file_transformed.out file in the PARTS() clause within the TARGET

KEYS block

4. Execute HPU migration

The key considerations and recommendations for “single stream migration” are:

• Performance degradation

The standard migration with row hashing performed by HPU and DB2 parallel

load offers better throughput than single stream migration especially on larger

partitioned database environments. In a system with several data nodes, use

default partition-to-partition migration to avoid the network bottleneck caused

by the single pipe processing on the coordinator node.

• Distribution map structure, including changes, on the target system

 Building a data migration strategy with High Performance Unload 29 of 35

Use the db2gpmap command on the database to extract the map into a file.

When no repeating pattern of partitions exists and the migration performance

is crucial, it provides the transformed version of the full map text in the control

file to use the standard migration rather than single stream migration

Enforce the standard migration for non-standard database partitioning

architecture when performance is critical.

• Verification of distribution map size

Extract the map with the db2pgmap command and check the number of

entries. When it has 4096 entries, it is a 4K map and when it has 32768 it is a

32K map. Verify the map for both the source and target database partition

groups.

• The TARGET KEYS clause

This clause is ignored for single stream migration as no HPU partitioning takes

place

The following example shows a control file that is enforcing the single stream migration

for BI_SCHEMA.TB_SALES_FACT table:

GLOBAL CONNECT TO BCUDB;

-- Migrate Block

MIGRATE TABLESPACE

PART(1:28)

DB2 NO LOCK YES QUIESCE YES

TARGET ENVIRONMENT(INSTANCE "bcuaix" on "bluejay06" IN

TEST REPART NO)

WORKING IN("/work1")

SELECT * FROM BI_SCHEMA.TB_SALES_FACT where PRODUCT_ID=10;

FORMAT DELIMITED INTO TEST.TB_SALES_FACT

;

The target database partition group in which the target table exists was redistributed

recently and is no longer in round robin order. There is no repeating pattern of target

logical nodes in the target distribution map. Since the source table is not large specify the

“REPART NO” in the TARGET ENVIRONMENT clause option to migrate the data in a

single stream mode. The TARGET KEYS clause is not used as repartitioning is not

performed by HPU.

 Building a data migration strategy with High Performance Unload 30 of 35

Conclusion
Use IBM InfoSphere Optim High Performance Unload as a tool to streamline specified

database migration scenarios:

• Avoid contention with ETL processes by scheduling automated data migration

outside of ETL, backup and other data operations.

• Unload data from offline backup images or online backup images created outside of

ETL operations to help ensure data consistency.

• Use the SELECT clause in conjunction with the PART clause to migrate a subset of

data when the target environment has less storage available.

• Use the HPU options for target database partitions and distribution key to help

ensure that data is re-partitioned correctly when you are migrating data to a

database with a different partition map.

• Migrate range partitioned tables as a sequence of ranges within a single control file;

choose the most recent range first.

• Influence HPU usage of processor resources on the source system by specifying the

number of cores to be used on each data node.

• Use a directory structure on storage that does not conflict with storage used for table

space containers when you are staging or streaming data.

• Ensure a user with the name used by source instance exists on the target system and

has the appropriate database privileges to load and insert into the target tables.

• Perform table space migration only when all target tables exist in the same DB2

database partition group and all target tables names match the source table names.

• Use a separate migrate block for each table when different LOCK and QUIESCE

options are required for the tables.

• Use HPU migration to migrate different subsets of data from backup files when past

data is required and the access to the production database is not allowed or

restricted, for example, during ETL and online periods.

• Preserve the values from the source database for target tables with identity columns

defined.

• Enforce the standard migration for non-standard database partitioning architecture

when performance is critical.

 Building a data migration strategy with High Performance Unload 31 of 35

Appendix A. Configuration of test systems used
Two test systems were used for this paper.

1. The source system was an IBM Smart Analytics System E7700 that consisted of

four servers; a foundation module and three data modules. The foundation

module had a single database partition that supported the catalog function, the

coordinator function and non-partitioned metadata, staging and data warehouse

tables and four database partitions. Each data module had eight database

partitions that contained partitioned data warehouse tables.

2. The target system was an IBM Smart Analytics System E7100 that consisted of

three servers; an administration module and two data modules. The

administration module had a single database partition that supported the catalog

function, the coordinator function and non-partitioned metadata, staging and

data warehouse tables. Each data module had four database partitions that

contained partitioned data warehouse tables.

The software versions installed were:

• Optim High Performance Unload for DB2 for Linux, UNIX, and Windows

version 32 bits 04.02.100

• DB2 version: DB2 v10.1.0.2 FP2

• AIX version: 6.1.0.0

 Staging area on the target system

The directory /work1 was used for the HPU named pipes. Symbolic links were used to

ensure that this directory was available on each data node so that data was processed

successfully on each data node. The staging area is a temporary area and HPU removes

temporary pipes and files once the migration operation is finished for a particular table.

The following example shows the commands used to create the symbolic links on the

first and second target data nodes. The first data node already contained the directory

/work1. The following commands were used:

mkdir /bkpfs/bcuaix/NODE0001/HPU

ln /bkpfs/bcuaix/NODE0001/HPU /work1

mkdir /bkpfs/bcuaix/NODE0005/HPU

ln /bkpfs/bcuaix/NODE0005/HPU /work1

The HPU configuration file db2hpu.cfg on the test system used was as follows:

HPU default configuration

bufsize=4194304

db2dbdft=BCUDB

 Building a data migration strategy with High Performance Unload 32 of 35

db2instance=BCUAIX

doubledelim=binary

netservice=db2hpudm412

nbcpu=8

lock=yes

quiesce=yes

stagedir=/work1

 Building a data migration strategy with High Performance Unload 33 of 35

Further reading
• Information Management best practices:

http://www.ibm.com/developerworks/data/bestpractices/

• DB2 for Linux, UNIX, and Windows best practices:

http://www.ibm.com/developerworks/data/bestpractices/db2luw/

• Using IBM InfoSphere Optim High Performance Unload as part of a

recovery strategy in an IBM Smart Analytics System

https://ibm.biz/Bdx2nk

• DB2 for Linux, UNIX, and Windows Best Practices on developerWorks

http://www.ibm.com/developerworks/data/bestpractices/db2luw

• Information Management best practices on developerWorks

http://www.ibm.com/developerworks/data/bestpractices/

• IBM InfoSphere Optim High Performance Unload product page

http://www-01.ibm.com/software/data/optim/high-performance-unload-

db2-luw/

• Advanced Recovery Solutions for IBM DB2 for Linux, UNIX and Windows

http://www-01.ibm.com/software/data/db2/linux-unix-windows/tools/data-

recovery/

Contributors

Vincent Arrat

HPU Development Team

Jaime Botella Ordinas

 IT Specialist & Accelerated Value Leader

James Cho

STSM & Chief Architect for IBM PureData

System for Operational Analytics

Austin Cliford

DB2 Data Warehouse QA Specialist

Bill Minor

Information Management DB2 Tooling &

Development

 Building a data migration strategy with High Performance Unload 34 of 35

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and services

currently available in your area. Any reference to an IBM product, program, or service is not

intended to state or imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any IBM

intellectual property right may be used instead. However, it is the user's responsibility to

evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in

this document. The furnishing of this document does not grant you any license to these

patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES

CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do

not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties

regarding the accuracy, reliability or serviceability of any information or recommendations

provided in this publication, or with respect to any results that may be obtained by the use of

the information or observance of any recommendations provided herein. The information

contained in this document has not been submitted to any formal IBM test and is distributed

AS IS. The use of this information or the implementation of any recommendations or

techniques herein is a customer responsibility and depends on the customer’s ability to

evaluate and integrate them into the customer’s operational environment. While each item

may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee

that the same or similar results will be obtained elsewhere. Anyone attempting to adapt

these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with

the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are

periodically made to the information herein; these changes will be incorporated in new

editions of the publication. IBM may make improvements and/or changes in the product(s)

and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only

and do not in any manner serve as an endorsement of those Web sites. The materials at

those Web sites are not part of the materials for this IBM product and use of those Web sites is

at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.

Therefore, the results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available systems.

Furthermore, some measurements may have been estimated through extrapolation. Actual

 Building a data migration strategy with High Performance Unload 35 of 35

results may vary. Users of this document should verify the applicable data for their specific

environment.

Information concerning non-IBM products was obtained from the suppliers of those products,

their published announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any other

claims related to non-IBM products. Questions on the capabilities of non-IBM products should

be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To

illustrate them as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any similarity to the

names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2012. All Rights Reserved.

This information contains sample application programs in source language, which illustrate

programming techniques on various operating platforms. You may copy, modify, and

distribute these sample programs in any form without payment to IBM, for the purposes of

developing, using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all conditions.

IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both. If these and

other IBM trademarked terms are marked on their first occurrence in this information with a

trademark symbol (® or ™), these symbols indicate U.S. registered or common law

trademarks owned by IBM at the time this information was published. Such trademarks may

also be registered or common law trademarks in other countries. A current list of IBM

trademarks is available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

