
IBM
®

DB2
®

Universal Database

Data Recovery and High Availability
Guide and Reference

Version 7

DATA-RCVR-00

���

IBM
®

DB2
®

Universal Database

Data Recovery and High Availability
Guide and Reference

Version 7

DATA-RCVR-00

���

Before using this information and the product it supports, be sure to read the general information under
“Appendix K. Notices” on page 499.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Who Should Use this Book vii
How this Book is Structured vii

Part 1. Data Recovery. 1

Chapter 1. Developing a Good Backup and
Recovery Strategy 3
Deciding How Often to Back Up 6
Storage Considerations 7
Keeping Related Data Together 8
Using Different Operating Systems 9
Crash Recovery 9

Recovering Damaged Table Spaces . . . 11
Reducing the Impact of Media Failure . . 12
Reducing the Impact of Transaction Failure 14
Recovering from Transaction Failures in a
Partitioned Database Environment . . . 15
Recovering Indoubt Transactions on the
Host 19

Disaster Recovery 21
Version Recovery 22
Rollforward Recovery 23
Incremental Backup and Recovery 25

Restoring from Incremental Backup Images 27
Understanding Recovery Logs 30

Log Mirroring 34
Reducing Logging on Work Tables . . . 36
Configuration Parameters for Database
Logging 37
Managing Log Files 40
Blocking Transactions When the Log
Directory is Full. 44
On Demand Log Archive 45
Using Raw Logs 45
Losing Logs 47

Understanding the Recovery History File . . 48
Garbage Collection. 50

Understanding Table Space States 53
Enhancing Recovery Performance 54

Parallel Recovery 55
DB2 Data Links Manager Considerations . . 56

Crash Recovery Considerations 56
Backup Utility Considerations 57

Restore and Rollforward Utility
Considerations 63
Restoring Databases From an Offline
Backup Without Rolling Forward 65
Restoring Databases and Table Spaces, and
Rolling Forward to the End of the Logs . . 66
Restoring Databases and Table Spaces, and
Rolling Forward to a Point in Time . . . 67
DB2 Data Links Manager and Recovery
Interactions 68
Removing a Table From Datalink Reconcile
Not Possible State 74
Reconciling Data Links 74

Chapter 2. Database Backup 77
Backup Overview 77
Privileges, Authorities, and Authorization
Required to Use Backup 80
Using Backup 80

Before Using Backup 80
Invoking Backup 81

Displaying Backup Information 81
Backing Up to Tape 81
Backing Up to Named Pipes 83
BACKUP DATABASE Command 84
Backup Database API 88
Data Structure: SQLU-MEDIA-LIST 96
Data Structure: SQLU-TABLESPACE-BKRST-
LIST 100
Example Backup Sessions 102

CLP Examples 102
API Examples 102

Optimizing Backup Performance 102
Backup Restrictions 103
Troubleshooting Backup 103

Chapter 3. Database Restore 105
Restore Overview 105
Privileges, Authorities, and Authorization
Required to Use Restore 106
Using Restore 106

Before Using Restore 106
Invoking Restore 107

Redefining Table Space Containers During a
Restore Operation (Redirected Restore). . . 107

© Copyright IBM Corp. 2001 iii

Restoring to an Existing Database 108
Restoring to a New Database 109
RESTORE DATABASE Command 110
Restore Database API 116
Example Restore Sessions 126

CLP Examples 126
API Examples 127

Optimizing Restore Performance 127
Restore Restrictions 127
Troubleshooting Restore. 128

Chapter 4. Rollforward Recovery 129
Rollforward Overview 129
Privileges, Authorities, and Authorization
Required to Use Rollforward 131
Using Rollforward 132

Before Using Rollforward 132
Invoking Rollforward 132

Rolling Forward Changes in a Table Space 132
Recovering a Dropped Table 136
Using the Load Copy Location File 138
Synchronizing Clocks in a Partitioned
Database System 140
ROLLFORWARD DATABASE Command 142
Rollforward Database API 148
Data Structure: RFWD-INPUT 157
Data Structure: RFWD-OUTPUT 160
Example Rollforward Sessions 164

CLP Examples 164
API Examples 166

Rollforward Restrictions 167
Troubleshooting Rollforward 167

Part 2. High Availability 169

Chapter 5. Introducing High Availability
and Failover Support 171
High Availability 171
High Availability through Online Split
Mirror and Suspended I/O Support . . . 173

Making a Clone Database 174
Using the Split Mirror as a Standby
Database 175
Using the Split Mirror as a Backup Image 175

Chapter 6. High Availability on AIX . . . 177
Cluster Configuration 178

Configuring a DB2 Database Partition . . 182
Example of a Hot Standby Configuration 184

Example of a Mutual Takeover
Configuration 184
Configuration of an NFS Server Node . . 184
Example of an NFS Server Takeover
Configuration 186
Considerations When Configuring the SP
Switch 186
DB2 HACMP Configuration Examples 187
DB2 HACMP Startup Recommendations 196

HACMP ES Event Monitoring and
User-defined Events 197

HACMP ES Script Files 201
DB2 Recovery Script Operations with
HACMP ES 203
Other Script Utilities 205

Monitoring HACMP Clusters 206
DB2 SP HACMP ES Installation 207

DB2 SP HACMP ES New Installation . . 207
DB2 SP HACMP ES Migration 209
DB2 SP HACMP ES Worksheets 210

Chapter 7. High Availability on the
Windows Operating System 221
Failover Configurations 222

Hot Standby Configuration 222
Mutual Takeover Configuration 223

Using the DB2MSCS Utility 224
Specifying the DB2MSCS.CFG File . . . 225
Setting up Failover for a Single-Partition
Database System 229
Setting up a Mutual Takeover
Configuration for Two Single-Partition
Database Systems 230
Setting up Multiple MSCS Clusters for a
Partitioned Database System 231

Maintaining the MSCS System 232
Fallback Considerations 233
Registering a Database Drive Mapping for
Mutual Takeover Configurations in a
Partitioned Database Environment 233

Reconciling the Database Drive Mapping 235
Example - Setting up Two Single-Partition
Instances for Mutual Takeover 236

Preliminary Tasks 236
Run the DB2MSCS Utility 237

Example - Setting up a Four-Node
Partitioned Database System for Mutual
Takeover 238

Preliminary Tasks 239
Run the DB2MSCS Utility 240

iv Data Recovery and High Availability Guide and Reference

Register the Database Drive Mapping for
ClusterA 241
Register the Database Drive Mapping for
ClusterB 241

Administering DB2 in an MSCS
Environment 242

Starting and Stopping DB2 Resources . . 242
Running Scripts 243
Database Considerations 247
User and Group Support 247
Communications Considerations 248
System Time Considerations 248
Administration Server and Control Center
Considerations in a Partitioned Database
Environment 249
Limitations and Restrictions 251

Chapter 8. High Availability in the Solaris
Operating Environment 253
High Availability 253

Fault Tolerance and Continuous
Availability 256

Sun Cluster 2.2. 256
Supported Systems 256
Agents 257
Logical Hosts 258
Logical Network Interfaces. 258
Disk Groups and File Systems 259
Control Methods 262
Disk and File System Configuration. . . 263
HA-NFS 263
The cconsole and ctelnet Utilities . . . 263
Campus Clustering and Continental
Clustering 263
Common Problems 264

DB2 Considerations 264
Applications Connecting to an HA
Instance 265
Disk Layout for EE and EEE Instances 266
Home Directory Layout for EE and EEE
Instances. 267
Logical Hosts and DB2 UDB EEE . . . 268
DB2 Installation Location and Options 269
Database and Database Manager
Configuration Parameters 270
Crash Recovery 270
High Availability through Data
Replication 270
DB2 Connect Prerequisites on Sun Cluster
2.2 270

The DB2 High Availability Agent 271
Registering the hadb2 Service 271
The hadb2tab File 271
Control Methods 272
User Scripts 274
Other Considerations 276
Fault Monitor 276
EEE Considerations 277
The HA.config File 278
How Control Methods Run DB2
Commands 280

Setup 280
Common Installation Steps. 280
Setup on DB2 UDB Enterprise Edition 280
Setup on DB2 UDB Enterprise - Extended
Edition 281
The hadb2_setup Command 281

Failover Time 285
Troubleshooting 287

Part 3. Appendixes 293

Appendix A. How to Read the Syntax
Diagrams 295

Appendix B. Warning, Error, and
Completion Messages. 299

Appendix C. Additional DB2 Commands 301
db2adutl - Work with TSM Archived Images 302
db2ckbkp - Check Backup 306
db2ckrst - Check Incremental Restore Image
Sequence. 309
db2flsn - Find Log Sequence Number . . . 311
db2inidb - Initialize a Mirrored Database 313
db2mscs - Set up Windows NT Failover
Utility. 314
ARCHIVE LOG 315
INITIALIZE TAPE 317
LIST HISTORY. 318
PRUNE HISTORY/LOGFILE 321
REWIND TAPE 323
SET TAPE POSITION 324
UPDATE HISTORY FILE 325

Appendix D. Additional APIs and
Associated Data Structures. 327
db2ArchiveLog - Archive Active Log API 328

Contents v

db2HistoryCloseScan - Close Recovery
History File Scan API 331
db2HistoryGetEntry - Get Next Recovery
History File Entry API 333
db2HistoryOpenScan - Open Recovery
History File Scan API 337
db2HistoryUpdate - Update Recovery
History File API 342
db2Prune API 345
sqlurlog - Asynchronous Read Log API . . 349
Data Structure: db2HistData 352
Data Structure: SQLU-LSN. 357
Data Structure: SQLU-RLOG-INFO 358

Appendix E. Recovery Sample Programs 359
Sample Program with No Embedded SQL
(backrest.c) 359
Sample Program with Embedded SQL
(dbrecov.sqc) 366

Appendix F. Recovery CLP Script. . . . 425
Sample Command Script for Windows
Operating Systems 425
Sample Command Script for UNIX Based
Systems 428

Appendix G. Tivoli Storage Manager . . 433
Setting up a Tivoli Storage Manager Client
on UNIX Based Platforms 433
Setting up a Tivoli Storage Manager Client
on Other Platforms 434
Considerations for Using Tivoli Storage
Manager 435

Managing Backups and Log Archives on
TSM 437

Tivoli Space Manager Integration with Data
Links 437

Restrictions and Limitations 437

Appendix H. User Exit for Database
Recovery 439
Sample User Exit Programs 439
Calling Format. 441
Backup and Restore Considerations (DB2 for
OS/2 only) 443
Error Handling 444

Appendix I. Backup and Restore APIs for
Vendor Products 447

Operational Overview 447
Number of Sessions 448
Operation with No Errors, Warnings or
Prompting 449
PROMPTING Mode 450
Device Characteristics 450
If Error Conditions Are Returned to DB2 452
Warning Conditions 453

Operational Hints and Tips 453
Recovery History File 453

Functions and Data Structures 454
sqluvint - Initialize and Link to Device. . . 456
sqluvget - Reading Data from Device . . . 460
sqluvput - Writing Data to Device 463
sqluvend - Unlink the Device and Release its
Resources 466
sqluvdel - Delete Committed Session . . . 468
DB2-INFO 470
VENDOR-INFO 473
INIT-INPUT 474
INIT-OUTPUT 476
DATA. 477
RETURN-CODE 478
Invoking a Backup or a Restore Operation
Using Vendor Products 479

The Control Center 479
The Command Line Processor (CLP) . . 479
Application Programming Interface (API) 479

Appendix J. Using the DB2 Library . . . 481
DB2 PDF Files and Printed Books 481

DB2 Information 481
Printing the PDF Books 490
Ordering the Printed Books 491

DB2 Online Documentation 492
Accessing Online Help 492
Viewing Information Online 494
Using DB2 Wizards 496
Setting Up a Document Server 497
Searching Information Online 498

Appendix K. Notices 499
Trademarks 502

Index 505

Contacting IBM 511
Product Information 511

vi Data Recovery and High Availability Guide and Reference

About This Book

This book provides detailed information about, and shows you how to use,
the IBM DB2 Universal Database (UDB) backup, restore, and recovery utilities.
The book also explains the importance of high availability, and describes DB2
failover support on several platforms.

Who Should Use this Book

This manual is for database administrators, application programmers, and
other DB2 UDB users who are responsible for, or who want to understand,
backup, restore, and recovery operations on DB2 database systems.

It is assumed that you are familiar with DB2 Universal Database, Structured
Query Language (SQL), and with the operating system environment in which
DB2 UDB is running. For general information about DB2 UDB, see the
Administration Guide. For information about SQL, see the SQL Reference. For
information about configuring, invoking, and using the DB2 UDB command
line processor, see the Command Reference. For information about the DB2 UDB
application programming interfaces (APIs), see the Administrative API
Reference. For general information about creating applications containing DB2
administrative APIs, see the Application Building Guide. This manual does not
contain instructions for installing DB2, which depend on your operating
system. Installation information can be found in the appropriate Quick
Beginnings book for your operating system.

How this Book is Structured

The following topics are covered:

Data Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy
Discusses factors to consider when choosing database and table space
recovery methods, including backing up and restoring a database or
table space, and using rollforward recovery.

Chapter 2. Database Backup
Describes the DB2 backup utility, used to create backup copies of a
database or table spaces.

Chapter 3. Database Restore
Describes the DB2 restore utility, used to rebuild damaged or
corrupted databases or table spaces that were previously backed up.

© Copyright IBM Corp. 2001 vii

Chapter 4. Rollforward Recovery
Describes the DB2 rollforward utility, used to recover a database by
applying transactions that were recorded in the database recovery log
files.

High Availability

Chapter 5. Introducing High Availability and Failover Support
Presents an overview of the high availability failover support that is
provided by DB2.

Chapter 6. High Availability on AIX
Discusses DB2 support for high availability failover recovery on AIX,
which is currently implemented through the Enhanced Scalability (ES)
feature of High Availability Cluster Multi-processing (HACMP) for
AIX.

Chapter 7. High Availability on the Windows Operating System
Discusses DB2 support for high availability failover recovery on
Windows NT, which is currently implemented through Microsoft
Cluster Server (MSCS).

Chapter 8. High Availability in the Solaris Operating Environment
Discusses DB2 support for high availability failover recovery in the
Solaris Operating Environment, which is currently implemented
through Sun Cluster 2.x (SC2.x), Sun Cluster 3.0 (SC3.0), or Veritas
Cluster Server (VCS).

Appendixes

Appendix A. How to Read the Syntax Diagrams
Explains the conventions used in syntax diagrams.

Appendix B. Warning, Error, and Completion Messages
Provides information about interpreting messages generated by the
database manager when a warning or error condition has been
detected.

Appendix C. Additional DB2 Commands
Describes recovery-related DB2 commands.

Appendix D. Additional APIs and Associated Data Structures
Describes recovery-related APIs and their data structures.

Appendix E. Recovery Sample Programs
Provides the code listing for sample programs containing
recovery-related DB2 APIs and embedded SQL calls, and information
on how to use them.

viii Data Recovery and High Availability Guide and Reference

Appendix F. Recovery CLP Script
Provides the code listing for a DB2 command script containing
recovery-related CLP commands, and information on how to use it.

Appendix G. Tivoli Storage Manager
Provides information about the Tivoli Storage Manager (TSM,
formerly ADSM) product, which you can use to manage database or
table space backup operations.

Appendix H. User Exit for Database Recovery
Discusses how user exit programs can be used with database log files,
and describes some sample user exit programs.

Appendix I. Backup and Restore APIs for Vendor Products
Describes the function and use of APIs that enable DB2 to interface
with other vendor software.

About This Book ix

x Data Recovery and High Availability Guide and Reference

Part 1. Data Recovery

© Copyright IBM Corp. 2001 1

2 Data Recovery and High Availability Guide and Reference

Chapter 1. Developing a Good Backup and Recovery
Strategy

A database can become unusable because of hardware or software failure, or
both. You may, at one time or another, encounter storage problems, power
interruptions, and application failures, and different failure scenarios require
different recovery actions. Protect your data against the possibility of loss by
having a well rehearsed recovery strategy in place. Some of the questions that
you should answer when developing your recovery strategy are: Will the
database be recoverable? How much time can be spent recovering the
database? How much time will pass between backup operations? How much
storage space can be allocated for backup copies and archived logs? Will table
space level backups be sufficient, or will full database backups be necessary?

A database recovery strategy should ensure that all information is available
when it is required for database recovery. It should include a regular schedule
for taking database backups and, in the case of partitioned database systems,
include backups when the system is scaled (when database partition servers
or nodes are added or dropped). Your overall strategy should also include
procedures for recovering command scripts, applications, user-defined
functions (UDFs), stored procedure code in operating system libraries, and
load copies.

Different recovery methods are discussed in the sections that follow, and you
will discover which recovery method is best suited to your business
environment.

The concept of a database backup is the same as any other data backup: taking
a copy of the data and then storing it on a different medium in case of failure
or damage to the original. The simplest case of a backup involves shutting
down the database to ensure that no further transactions occur, and then
simply backing it up. You can then rebuild the database if it becomes
damaged or corrupted in some way.

The rebuilding of the database is called recovery. Version recovery is the
restoration of a previous version of the database, using an image that was
created during a backup operation. Rollforward recovery is the reapplication of
transactions recorded in the database log files after a database or a table space
backup image has been restored.

Crash recovery is the automatic recovery of the database if a failure occurs
before all of the changes that are part of one or more units of work

© Copyright IBM Corp. 2001 3

(transactions) are completed and committed. This is done by rolling back
incomplete transactions and completing committed transactions that were still
in memory when the crash occurred.

For detailed information about these different recovery methods, see “Version
Recovery” on page 22, “Rollforward Recovery” on page 23, or “Crash
Recovery” on page 9.

Recovery log files and the recovery history file are created automatically when
a database is created (Figure 1). You cannot directly modify a recovery log file
or the recovery history file; however, they are important should you need to
use your database backup image to recover data that is lost or damaged.
Each database includes recovery logs, which are used to recover from

application or system errors. In combination with the database backups, they
are used to recover the consistency of the database right up to the point in
time when the error occurred.

Database Object/Concept Equivalent Physical Object

System

Instance(s)

Database(s)

Log
Files

Recovery
History
File

Figure 1. Recovery Log Files and the Recovery History File

4 Data Recovery and High Availability Guide and Reference

The recovery history file contains a summary of the backup information that
can be used in case all or part of the database must be recovered to a given
point in time. It is used to track recovery-related events such as backup and
restore operations, among others.

Data that is easily recreated can be stored in a non-recoverable database. This
includes data from an outside source that is used for read-only applications,
and tables that are not often updated, for which the small amount of logging
does not justify the added complexity of managing log files and rolling
forward after a restore operation. Non-recoverable databases have both the
logretain and the userexit database configuration parameter disabled. This
means that the only logs that are kept are those required for crash recovery.
These logs are known as active logs, and they contain current transaction data.
Version recovery using offline backups is the primary means of recovery for a
non-recoverable database. (An offline backup means that no other application
can use the database when the backup operation is in progress.) Such a
database can only be restored offline. It is restored to the state it was in when
the backup image was taken.

Data that cannot be easily recreated should be stored in a recoverable
database. This includes data whose source is destroyed after the data is
loaded, data that is manually entered into tables, and data that is modified by
application programs or users after it is loaded into the database. Recoverable
databases have either the logretain database configuration parameter set to
“RECOVERY”, the userexit database configuration parameter enabled, or both.
Active logs are still available for crash recovery, but you also have the archived
logs, which contain committed transaction data. Such a database can only be
restored offline. It is restored to the state it was in when the backup image
was taken. However, with rollforward recovery, you can roll the database
forward (that is, past the time when the backup image was taken) by using the
active and archived logs to either a specific point in time, or to the end of the
active logs.

Recoverable database backup operations can be performed either offline or
online (online meaning that other applications can connect to the database
during the backup operation). Database restore and rollforward operations
must always be performed offline. During an online backup operation,
rollforward recovery ensures that all table changes are captured and reapplied
if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll
individual table spaces forward, rather than the entire database. When you
back up a table space online, it is still available for use, and simultaneous
updates are recorded in the logs. When you perform an online restore or

Chapter 1. Developing a Good Backup and Recovery Strategy 5

rollforward operation on a table space, the table space itself is not available
for use until the operation completes, but users are not prevented from
accessing tables in other table spaces.

Deciding How Often to Back Up

Your recovery plan should allow for regularly scheduled backup operations,
because backing up a database requires time and system resources. Your plan
may include a combination of full database backups and incremental backup
operations (see “Incremental Backup and Recovery” on page 25).

You should take full database backups regularly, even if you archive the logs
(which allows for rollforward recovery). It is more difficult to rebuild a
database from a collection of table space backup images than it is to recover
the database from a full database backup image. Table space backup images
are useful for recovering from an isolated disk failure or an application error.

You should also consider not overwriting backup images and logs, saving at
least two full database backup images and their associated logs as an extra
precaution.

If the amount of time needed to apply archived logs when recovering and
rolling a very active database forward is a major concern, consider the cost of
backing up the database more frequently. This reduces the number of archived
logs you need to apply when rolling forward.

You can initiate a backup operation while the database is either online or
offline. If it is online, other applications or processes can connect to the
database, as well as read and modify data while the backup operation is
running. If the backup operation is running offline, other application cannot
connect to the database.

To reduce the amount of time that the database is not available, consider
using online backup operations. Online backup operations are supported only
if rollforward recovery is enabled. If rollforward recovery is enabled and you
have a complete set of recovery logs, you can rebuild the database, should the
need arise. You can only use an online backup image for recovery if you have
the logs that span the time during which the backup operation was running.

Offline backup operations are faster than online backup operations.

If a database contains large amounts of long field and large object (LOB) data,
backing up the database could be very time-consuming. The backup utility
lets you back up selected table spaces. If you use DMS table spaces, you can
store different types of data in their own table spaces to reduce the time
required for backup operations. You can keep table data in one table space,

6 Data Recovery and High Availability Guide and Reference

long field and LOB data in another table space, and indexes in yet another
table space. By storing long field and LOB data in separate table spaces, the
time required to complete a backup operation can be reduced by choosing not
to back up the table spaces containing the long field and LOB data. If the long
field and LOB data is critical to your business, backing up these table spaces
should be considered against the time required to complete the restore
operation for these table spaces. If the LOB data can be reproduced from a
separate source, choose the NOT LOGGED option when creating or altering a
table to include LOB columns.

Note: Following is a special consideration if you keep your long field data,
LOB data, and indexes in separate table spaces, but do not back them
up together: If you back up a table space that does not contain all of
the table data, you cannot perform point-in-time rollforward recovery
on that table space. All the table spaces that contain any type of data
for a table must be rolled forward simultaneously to the same point in
time.

If you reorganize a table, you should back up the affected table spaces after
the operation completes. If you have to restore the table spaces, you will not
have to roll forward through the data reorganization.

The time required to recover a database is made up of two parts: the time
required to complete the restoration of the backup; and, if the database is
enabled for forward recovery, the time required to apply the logs during the
rollforward operation. When formulating a recovery plan, you should take
these recovery costs and their impact on your business operations into
account. Testing your overall recovery plan will assist you in determining
whether the time required to recover the database is reasonable given your
business requirements. Following each test, you may want to increase the
frequency with which you take a backup. If rollforward recovery is part of
your strategy, this will reduce the number of logs that are archived between
backups and, as a result, reduce the time required to roll the database forward
after a restore operation.

Storage Considerations

When deciding which recovery method to use, consider the storage space
required.

The version recovery method requires space to hold the backup copy of the
database and the restored database. The rollforward recovery method requires
space to hold the backup copy of the database or table spaces, the restored
database, and the archived database logs.

Deciding How Often to Back Up

Chapter 1. Developing a Good Backup and Recovery Strategy 7

If a table contains long field or large object (LOB) columns, you should
consider placing this data into a separate table space. This will affect your
storage space considerations, as well as affect your plan for recovery. With a
separate table space for long field and LOB data, and knowing the time
required to back up long field and LOB data, you may decide to use a
recovery plan that only occasionally saves a backup of this table space. You
may also choose, when creating or altering a table to include LOB columns,
not to log changes to those columns. This will reduce the size of the required
log space and the corresponding log archive space.

The backup of an SMS table space that contains LOBs can be larger than the
size of the original table space. The backup can be as much as 40 per cent
larger, depending on the LOB data size in the table space. For example, if you
take a backup of a 1-GB SMS table space (with LOBs), you will need more
than 1 GB of disk space when you restore it. This only occurs on file systems
that support sparse allocation (for example, on UNIX based operating
systems).

To prevent media failure from destroying a database and your ability to
rebuild it, keep the database backup, the database logs, and the database itself
on different devices. For this reason, it is highly recommended that you use
the newlogpath configuration parameter to put database logs on a separate
device once the database is created. (This and other configuration parameters
related to logging are discussed in “Configuration Parameters for Database
Logging” on page 37.)

The database logs can use up a large amount of storage. If you plan to use the
rollforward recovery method, you must decide how to manage the archived
logs. Your choices are the following:
v Dedicate enough space in the database log path directory to retain the logs.
v Manually copy the logs to a storage device or directory other than the

database log path directory after they are no longer in the active set of logs.
v Use a user exit program to copy these logs to another storage device in

your environment. For example, on OS/2, DB2 supports a user exit
program to handle the storage of both database backup images and
database logs on standard and non-standard devices. (For more
information, see “Appendix H. User Exit for Database Recovery” on
page 439.)

Keeping Related Data Together

As part of your database design, you will know the relationships that exist
between tables. These relationships can be expressed at the application level,
when transactions update more than one table, or at the database level, where
referential integrity exists between tables, or where triggers on one table affect

Storage Considerations

8 Data Recovery and High Availability Guide and Reference

another table. You should consider these relationships when developing a
recovery plan. You will want to back up related sets of data together. Such
sets can be established at either the table space or the database level. By
keeping related sets of data together, you can recover to a point where all of
the data is consistent. This is especially important if you want to be able to
perform point-in-time rollforward recovery on table spaces.

Using Different Operating Systems

When working in an environment that has more than one operating system,
you must consider that in most cases, the backup and recovery plans cannot
be integrated. That is, you cannot usually back up a database on one
operating system, and then restore that database on another operating system.
In such cases, you should keep the recovery plans for each operating system
separate and independent.

There is, however, support for cross-platform backup and restore operations
between Sun Solaris and HP. When you transfer the backup image between
systems, you must transfer it in binary mode. On the target system, the
database must be created with the same code page and territory as the system
on which the original database was created.

If you must move tables from one operating system to another, and
cross-platform backup and restore support is not available in your
environment, you can use the db2move command, or the export utility
followed by the import or the load utility. For more information about these
utilities, see the Data Movement Utilities Guide and Reference.

Crash Recovery

Transactions (or units of work) against a database can be interrupted
unexpectedly. If a failure occurs before all of the changes that are part of the
unit of work are completed and committed, the database is left in an
inconsistent and unusable state. Crash recovery is the process by which the
database is moved back to a consistent and usable state. This is done by
rolling back incomplete transactions and completing committed transactions
that were still in memory when the crash occurred (Figure 2 on page 10).
When a database is in a consistent and usable state, it has attained what is
known as a ″point of consistency″.

Keeping Related Data Together

Chapter 1. Developing a Good Backup and Recovery Strategy 9

A transaction failure results from a severe error or condition that causes the
database or the database manager to end abnormally. Partially completed
units of work, or UOW that have not been flushed to disk at the time of
failure, leave the database in an inconsistent and unusable state. Following a
transaction failure, the database must be recovered. Conditions that can result
in transaction failure include:
v A power failure on the machine, causing the database manager and the

database partitions on it to go down
v A serious operating system error that causes DB2 to go down.

If you want the rollback of incomplete units of work to be done automatically
by the database manager, enable the automatic restart (autorestart) database
configuration parameter by setting it to ON. (This is the default value. For
more information about this parameter, see the Administration Guide:
Performance book.) If you do not want automatic restart behavior, you will
need to issue the RESTART DATABASE command when a database failure
occurs. The db2diag.log file records when the database restart operation
begins.

If crash recovery is applied to a database that is enabled for forward recovery
(that is, the logretain configuration parameter is set to RECOVERY, or the userexit
configuration parameter is enabled), and an error occurs during crash
recovery that is attributable to an individual table space, that table space must
be taken offline, and cannot be accessed until it is repaired. Crash recovery
continues. At the completion of crash recovery, the other table spaces in the
database are generally still usable, and connections to the database can be
established.

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 2. Rolling Back Units of Work (Crash Recovery)

Crash Recovery

10 Data Recovery and High Availability Guide and Reference

Recovering Damaged Table Spaces
A damaged table space has one or more containers that cannot be accessed.
This is often caused by media problems that are either permanent (for
example, a bad disk), or temporary (for example, an offline disk, or an
unmounted file system).

If the damaged table space is the system catalog table space, the database
cannot be restarted. If the container problems cannot be fixed leaving the
original data intact, the only available options are:
v To restore the database
v To restore the catalog table space. (Table space restore is only valid for

recoverable databases, because the database must be rolled forward.)

If the damaged table space is not the system catalog table space, DB2 attempts
to make as much of the database available as possible.

If the damaged table space is the only temporary table space, you should
create a new temporary table space as soon as a connection to the database
can be made. Once created, the new temporary table space can be used, and
normal database operations requiring a temporary table space can resume.
You can, if you wish, drop the offline temporary table space. There are special
considerations for table reorganization using a system temporary table space:
v If the database or the database manager configuration parameter indexrec is

set to RESTART, all invalid indexes must be rebuilt during database
activation; this includes indexes from a reorganization that crashed during
the build phase.

v If there are incomplete reorganization requests in a damaged temporary
table space, you may have to set the indexrec configuration parameter to
ACCESS to avoid restart failures.

Recovering Table Spaces in Recoverable Databases
The damaged table space is put in offline and not accessible state, and in
rollforward pending state, because crash recovery is necessary. The restart
operation will succeed if there is no additional problem. The damaged table
space can be used again once you:
v Fix the damaged containers without losing the original data, and then

complete a table space rollforward operation. (The rollforward operation
will first attempt to bring it from offline to normal state.)

v Perform a table space restore operation after fixing the damaged containers
(with or without losing the original data), and then a rollforward operation.

Recovering Table Spaces in Non-recoverable Databases
Since crash recovery is necessary, and logs are not kept indefinitely, the restart
operation can only succeed if the user is willing to drop the damaged table
spaces. (Successful completion of recovery means that the log records

Crash Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 11

necessary to recover the damaged table spaces to a consistent state will be
gone; therefore, the only valid action against such table spaces is to drop
them.)

You can do this by invoking an unqualified restart database operation. It will
succeed if there are no damaged table spaces. If it fails (SQL0290N), you can
look in the db2diag.log file for a complete list of table spaces that are
currently damaged.
v If you are willing to drop all of these table spaces once the restart database

operation is complete, you can initiate another restart database operation,
listing all of the damaged table spaces under the DROP PENDING
TABLESPACES option. If a damaged table space is included in the DROP
PENDING TABLESPACES list, the table space is put into drop pending
state, and your only option after recovery is to drop the table space. The
restart operation continues without recovering this table space. If a
damaged table space is not included in the DROP PENDING
TABLESPACES list, the restart database operation fails with SQL0290N.

v If you are unwilling to drop (and thus lose the data in) these table spaces,
your options are to:
– Wait and fix the damaged containers (without losing the original data),

and then try the restart database operation again
– Perform a database restore operation.

Note: Putting a table space name into the DROP PENDING TABLESPACES
list does not mean that the table space will be in drop pending state.
This will occur only if the table space is found to be damaged during
the restart operation. Once the restart operation is successful, you
should issue DROP TABLESPACE statements to drop each of the table
spaces that are in drop pending state (invoke the LIST TABLESPACES
command to find out which table spaces are in this state). This way the
space can be reclaimed, or the table spaces can be recreated.

Reducing the Impact of Media Failure
To reduce the probability of media failure, and to simplify recovery from this
type of failure:
v Mirror or duplicate the disks that hold the data and logs for important

databases.
v Use a Redundant Array of Independent Disks (RAID) configuration, such as

RAID Level 5. For more information about RAID, see “Protecting Against
Disk Failure” on page 13.

v In a partitioned database environment, set up a rigorous procedure for
handling the data and the logs on the catalog node. Because this node is
critical for maintaining the database:
– Ensure that it resides on a reliable disk

Crash Recovery

12 Data Recovery and High Availability Guide and Reference

– Duplicate it
– Make frequent backups
– Do not put user data on it.

Protecting Against Disk Failure
If you are concerned about the possibility of damaged data or logs due to a
disk crash, consider the use of some form of disk fault tolerance. Generally,
this is accomplished through the use of a disk array. A disk array consists of a
collection of disk drives that appear as a single large disk drive to an
application.

Disk arrays involve disk striping, which is the distribution of a file across
multiple disks, the mirroring of disks, and data parity checks.

A disk array is sometimes referred to simply as a RAID (Redundant Array of
Independent Disks). Disk arrays can also be provided through software at the
operating system or application level. The point of distinction between
hardware and software disk arrays is how CPU processing of input/output
(I/O) requests is handled. For hardware disk arrays, I/O activity is managed
by disk controllers; for software disk arrays, this is done by the operating
system or an application.

Hardware Disk Arrays: In a hardware disk array, multiple disks are used
and managed by a disk controller, complete with its own CPU. All of the logic
required to manage the disks forming this array is contained on the disk
controller; therefore, this implementation is operating system-independent.

There are several types of RAID architecture, differing in function and
performance, but only RAID level 1 and level 5 are commonly used today.

RAID level 1 is also known as disk mirroring or duplexing. Disk mirroring
copies data (a complete file) from one disk to a second disk, using a single
disk controller. Disk duplexing is similar to disk mirroring, except that disks
are attached to a second disk controller (like two SCSI adapters). Data
protection is good: Either disk can fail, and data is still accessible from the
other disk. With disk duplexing, a disk controller can also fail without
compromising data protection. Performance is good, but this implementation
requires twice the usual number of disks.

RAID level 5 involves data and parity striping by sectors, across all disks.
Parity is interleaved with data, rather than being stored on a dedicated drive.
Data protection is good: If any disk fails, the data can still be accessed by
using information from the other disks, along with the striped parity
information. Read performance is good, but write performance is not. A RAID
level 5 configuration requires a minimum of three identical disks. The amount

Crash Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 13

of disk space required for overhead varies with the number of disks in the
array. In the case of a RAID level 5 configuration with 5 disks, the space
overhead is 20 percent.

When using a RAID (but not a RAID level 0) disk array, a failed disk will not
prevent you from accessing data on the array. When hot-pluggable or
hot-swappable disks are used in the array, a replacement disk can be swapped
with the failed disk while the array is in use. With RAID level 5, if two disks
fail at the same time, all data is lost (but the probability of simultaneous disk
failures is very small).

You might consider using a RAID level 1 hardware disk array or a software
disk array (see “Software Disk Arrays”) for your logs, because this provides
recoverability to the point of failure, and offers good write performance,
which is important for logs. In cases where reliability is critical (because time
cannot be lost recovering data following a disk failure), and write
performance is not so critical, consider using a RAID level 5 hardware disk
array. Alternatively, if write performance is critical, and the cost of additional
disk space is not significant, consider a RAID level 1 hardware disk array for
your data, as well as for your logs.

For detailed information about the available RAID levels, visit:
http://www.acnc.com/04_01_00.html

Software Disk Arrays: A software disk array accomplishes much the same as
does a hardware disk array (see “Hardware Disk Arrays” on page 13), but
disk traffic is managed by either the operating system, or by an application
program running on the server. Like other programs, the software array must
compete for CPU and system resources. This is not a good option for a
CPU-constrained system, and it should be remembered that overall disk array
performance is dependent on the server’s CPU load and capacity.

A typical software disk array provides disk mirroring (see “Hardware Disk
Arrays” on page 13). Although redundant disks are required, a software disk
array is comparatively inexpensive to implement, because costly disk
controllers are not required.

CAUTION:
Having the operating system boot drive in the disk array prevents your
system from starting if that drive fails. If the drive fails before the disk
array is running, the disk array cannot allow access to the drive. A boot
drive should be separate from the disk array.

Reducing the Impact of Transaction Failure
To reduce the impact of a transaction failure, try to ensure:
v An uninterrupted power supply

Crash Recovery

14 Data Recovery and High Availability Guide and Reference

v Adequate disk space for database logs
v Reliable communication links among the database partition servers in a

partitioned database environment
v Synchronization of the system clocks in a partitioned database environment

(see “Synchronizing Clocks in a Partitioned Database System” on page 140).

Recovering from Transaction Failures in a Partitioned Database
Environment

If a transaction failure occurs in a partitioned database environment, database
recovery is usually necessary on both the failed database partition server and
any other database partition server that was participating in the transaction:
v Crash recovery occurs on the failed database partition server after the

antecedent condition is corrected.
v Database partition failure recovery on the other (still active) database partition

servers occurs immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which
an application is submitted is the coordinator node, and the first agent that
works for the application is the coordinator agent. The coordinator agent is
responsible for distributing work to other database partition servers, and it
keeps track of which ones are involved in the transaction. When the
application issues a COMMIT statement for a transaction, the coordinator
agent commits the transaction by using the two-phase commit protocol.
During the first phase, the coordinator node distributes a PREPARE request to
all the other database partition servers that are participating in the transaction.
These servers then respond with one of the following:

READ-ONLY No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared
to commit

If one of the servers responds with a NO, the transaction is rolled back.
Otherwise, the coordinator node begins the second phase.

During the second phase, the coordinator node writes a COMMIT log record,
then distributes a COMMIT request to all the servers that responded with a
YES. After all the other database partition servers have committed, they send
an acknowledgment of the COMMIT to the coordinator node. The transaction
is complete when the coordinator agent has received all COMMIT
acknowledgments from all the participating servers. At this point, the
coordinator agent writes a FORGET log record.

For more information about two-phase commit, see the Administration Guide:
Planning book.

Crash Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 15

Transaction Failure Recovery on an Active Database Partition Server
If any database partition server detects that another server is down, all work
that is associated with the failed database partition server is stopped:
v If the still active database partition server is the coordinator node for an

application, and the application was running on the failed database
partition server (and not ready to COMMIT), the coordinator agent is
interrupted to do failure recovery. If the coordinator agent is in the second
phase of COMMIT processing, SQL0279N is returned to the application,
which in turn loses its database connection. Otherwise, the coordinator
agent distributes a ROLLBACK request to all other servers participating in
the transaction, and SQL1229N is returned to the application.

v If the failed database partition server was the coordinator node for the
application, agents that are still working for the application on the active
servers are interrupted to do failure recovery. The current transaction is
rolled back locally on each server, unless it has been prepared and is
waiting for the transaction outcome. In this situation, the transaction is left
in doubt on the active database partition servers, and the coordinator node
is not aware of this (because it is not available).
For more information about how an indoubt transaction is resolved, see the
Administration Guide: Planning book.

v If the application connected to the failed database partition server (before it
failed), but neither the local database partition server nor the failed
database partition server is the coordinator node, agents working for this
application are interrupted. The coordinator node will either send a
ROLLBACK or a disconnect message to the other database partition servers.
The transaction will only be indoubt on database partition servers that are
still active if the coordinator node returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a
request to the failed server is informed that it cannot send the request.

Transaction Failure Recovery on the Failed Database Partition Server
If the transaction failure causes the database manager to end abnormally, you
can issue the db2start command with the RESTART option to restart the
database manager once the processor has restarted. If you cannot restart the
processor, you can issue db2start to restart the database manager on a
different processor. For more information, see the Command Reference.

If the database manager ends abnormally, database partitions on the server
may be left in an inconsistent state. To make them usable, crash recovery can
be triggered on a database partition server:
v Explicitly, through the RESTART DATABASE command
v Implicitly, through a CONNECT request when the autorestart database

configuration parameter has been set to ON

Crash Recovery

16 Data Recovery and High Availability Guide and Reference

Crash recovery reapplies the log records in the active log files to ensure that
the effects of all complete transactions are in the database. After the changes
have been reapplied, all uncommitted transactions are rolled back locally,
except for indoubt transactions. There are two types of indoubt transaction in a
partitioned database environment:
v On a database partition server that is not the coordinator node, a

transaction is in doubt if it is prepared but not yet committed.
v On the coordinator node, a transaction is in doubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This
situation occurs when the coordinator agent has not received all the
COMMIT acknowledgments from all the servers that worked for the
application.

Crash recovery attempts to resolve all the indoubt transactions by doing one
of the following. The action that is taken depends on whether the database
partition server was the coordinator node for an application:
v If the server that restarted is not the coordinator node for the application, it

sends a query message to the coordinator agent to discover the outcome of
the transaction.

v If the server that restarted is the coordinator node for the application, it
sends a message to all the other agents (subordinate agents) that the
coordinator agent is still waiting for COMMIT acknowledgments.

It is possible that crash recovery may not be able to resolve all the indoubt
transactions (for example, some of the database partition servers may not be
available). In this situation, the SQL warning message SQL1061W is returned.
Because indoubt transactions hold resources, such as locks and active log
space, it is possible to get to a point where no changes can be made to the
database because the active log space is being held up by indoubt
transactions. For this reason, you should determine whether indoubt
transactions remain after crash recovery, and recover all database partition
servers that are required to resolve the indoubt transactions as quickly as
possible.

If one or more servers that are required to resolve an indoubt transaction
cannot be recovered in time, and access is required to database partitions on
other servers, you can manually resolve the indoubt transaction by making an
heuristic decision. You can use the LIST INDOUBT TRANSACTIONS
command (see the Command Reference) to query, commit, and roll back the
indoubt transaction on the server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a
distributed transaction environment. To distinguish between the two

Crash Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 17

types of indoubt transactions, the originator field in the output that is
returned by the LIST INDOUBT TRANSACTIONS command displays
one of the following:
v DB2 Universal Database Enterprise - Extended Edition, which

indicates that the transaction originated in a partitioned database
environment.

v XA, which indicates that the transaction originated in a distributed
environment.

For more information about distributed environments, see the
Administration Guide: Planning book.

Identifying the Failed Database Partition Server
When a database partition server fails, the application will typically receive
one of the following SQLCODEs. The method for detecting which database
manager failed depends on the SQLCODE received:

SQL0279N
This SQLCODE is received when a database partition server involved
in a transaction is terminated during COMMIT processing.

SQL1224N
This SQLCODE is received when the database partition server that
failed is the coordinator node for the transaction.

SQL1229N
This SQLCODE is received when the database partition server that
failed is not the coordinator node for the transaction.

Determining which database partition server failed is a two-step process. The
SQLCA associated with SQLCODE SQL1229N contains the node number of
the server that detected the error in the sixth array position of the sqlerrd field.
(The node number that is written for the server corresponds to the node
number in the db2nodes.cfg file.) On the database partition server that detects
the error, a message that indicates the node number of the failed server is
written to the db2diag.log file.

Note: If multiple logical nodes are being used on a processor, the failure of
one logical node may cause other logical nodes on the same processor
to fail.

To recover from the failure of a database partition server:
1. Correct the problem that caused the failure.
2. Restart the database manager by issuing the db2start command from any

database partition server.

Crash Recovery

18 Data Recovery and High Availability Guide and Reference

3. Restart the database by issuing the RESTART DATABASE command on
the failed database partition server or servers.

Recovering Indoubt Transactions on the Host
If your application has accessed a host or AS/400 database server during a
transaction, there are some differences in how indoubt transactions are
recovered.

To access host or AS/400 database servers, DB2 Connect is used. The recovery
steps differ if DB2 Connect has the DB2 Syncpoint Manager configured.

Recovery when DB2 Connect Has the DB2 Syncpoint Manager
Configured
The recovery of indoubt transactions at host or AS/400 servers is normally
performed automatically by the Transaction Manager (TM) and the DB2
Syncpoint Manager (SPM). An indoubt transaction at a host or AS/400 server
does not hold any resources at the local DB2 location, but does hold resources
at the host or AS/400 server as long as the transaction is indoubt at that
location. If the administrator of the host or AS/400 server determines that a
heuristic decision must be made, then the administrator may contact the local
DB2 database administrator (for example via telephone) to determine whether
to commit or roll back the transaction at the host or AS/400 server. If this
occurs, the LIST DRDA INDOUBT TRANSACTIONS command can be used to
determine the state of the transaction at the DB2 Connect instance. The
following steps can be used as a guideline for most situations involving an
SNA communications environment.
1. Connect to the SPM as shown below:

db2 => connect to db2spm

Database Connection Information

Database product = SPM0500
SQL authorization ID = CRUS
Local database alias = DB2SPM

2. Issue the LIST DRDA INDOUBT TRANSACTIONS command to display
the indoubt transactions known to the SPM. The example below shows
one indoubt transaction known to the SPM. The db_name is the local alias
for the host or AS/400 server. The partner_lu is the fully qualified luname
of the host or AS/400 server. This provides the best identification of the
host or AS/400 server, and should be provided by the caller from the host
or AS/400 server. The luwid provides a unique identifier for a transaction
and is available at all hosts and AS/400 servers. If the transaction in
question is displayed, then the uow_status field can be used to determine
the outcome of the transaction if the value is C (commit) or R (rollback). If
you issue the LIST DRDA INDOUBT TRANSACTIONS command with the
WITH PROMPTING parameter, you can commit, roll back, or forget the
transaction interactively. For more information, see the Command Reference.

Crash Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 19

db2 => list drda indoubt transactions
DRDA Indoubt Transactions:
1.db_name: DBAS3 db_alias: DBAS3 role: AR

uow_status: C partner_status: I partner_lu: USIBMSY.SY12DQA
corr_tok: USIBMST.STB3327L
luwid: USIBMST.STB3327.305DFDA5DC00.0001
xid: 53514C2000000017 00000000544D4442 0000000000305DFD A63055E962000000

00035F

3. If an indoubt transaction for the partner_lu and for the luwid is not
displayed, or if the LIST DRDA INDOUBT TRANSACTIONS command
returns as follows:
db2 => list drda indoubt transactions
SQL1251W No data returned for heuristic query.

then the transaction was rolled back.

There is another unlikely but possible situation that may occur. If an
indoubt transaction with the proper luwid for the partner_lu is displayed,
but the uow_status is ″I″, the SPM doesn’t know whether the transaction is
to be committed or rolled back. In this situation, you should use the WITH
PROMPTING parameter to either commit or roll back the transaction on
the DB2 Connect workstation. Then allow DB2 Connect to resynchronize
with the host or AS/400 server based on the heuristic decision.

Recovery when DB2 Connect Does Not Use the DB2 Syncpoint Manager
Use the information in this section when TCP/IP connectivity is used to
update DB2 for OS/390 in a multisite update from either DB2 Connect
Personal Edition or DB2 Connect Enterprise Edition, and the DB2 Syncpoint
Manager is not used. The recovery of indoubt transactions in this situation
differs from that for indoubt transactions involving the DB2 Syncpoint
Manager. When an indoubt transaction occurs in this environment, an alert
entry is generated at the client, at the database server, and (or) at the
Transaction Manager (TM) database, depending on who detected the problem.
The alert entry is placed in the db2alert.log file. For more information about
alerts, see the Troubleshooting Guide.

The resynchronization of any indoubt transactions occurs automatically as
soon as the TM and the participating databases and their connections are all
available again. You should allow automatic resynchronization to occur rather
than heuristically force a decision at the database server. If, however, you
must do this then use the following steps as a guideline.

Note: Because the DB2 Syncpoint Manager is not involved, you cannot use
the LIST DRDA INDOUBT TRANSACTIONS command.

1. On the OS/390 host, issue the command DISPLAY THREAD
TYPE(INDOUBT).

Crash Recovery

20 Data Recovery and High Availability Guide and Reference

From this list identify the transaction that you want to heuristically
complete. For details about the DISPLAY command, see the DB2 for
OS/390 Command Reference. The LUWID displayed can be matched to the
same luwid at the Transaction Manager Database.

2. Issue the RECOVER THREAD(<LUWID>) ACTION(ABORT|COMMIT)
command, depending on what you want to do.
For details about the RECOVER command, see the DB2 for OS/390
Command Reference.

Disaster Recovery

The term disaster recovery is used to describe the activities that need to be
done to restore the database in the event of a fire, earthquake, vandalism, or
other catastrophic events. A plan for disaster recovery can include one or
more of the following:
v A site to be used in the event of an emergency
v A different machine on which to recover the database
v Off-site storage of database backups and archived logs.

If your plan for disaster recovery is to recover the entire database on another
machine, you require at least one full database backup and all the archived
logs for the database. You may choose to keep a standby database up to date
by applying the logs to it as they are archived. Or, you may choose to keep
the database backup and log archives in the standby site, and perform restore
and rollforward operations only after a disaster has occurred. (In this case, a
recent database backup is clearly desirable.) With a disaster, however, it is
generally not possible to recover all of the transactions up to the time of the
disaster.

The usefulness of a table space backup for disaster recovery depends on the
scope of the failure. Typically, disaster recovery requires that you restore the
entire database; therefore, a full database backup should be kept at a standby
site. Even if you have a separate backup image of every table space, you
cannot use them to recover the database. If the disaster is a damaged disk, a
table space backup of each table space on that disk can be used to recover. If
you have lost access to a container because of a disk failure (or for any other
reason), you can restore the container to a different location. For additional
information, see “Redefining Table Space Containers During a Restore
Operation (Redirected Restore)” on page 107.

Both table space backups and full database backups can have a role to play in
any disaster recovery plan. The DB2 facilities available for backing up,
restoring, and rolling data forward provide a foundation for a disaster
recovery plan. You should ensure that you have tested recovery procedures in
place to protect your business.

Crash Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 21

Version Recovery

Version recovery is the restoration of a previous version of the database, using
an image that was created during a backup operation. You use this recovery
method with non-recoverable databases (that is, databases for which you do
not have archived logs). You can also use this method with recoverable
databases by using the WITHOUT ROLLING FORWARD option on the
RESTORE DATABASE command. A database restore operation will rebuild
the entire database using a backup image created earlier. A database backup
allows you to restore a database to a state identical to the one at the time that
the backup was made. However, every unit of work from the time of the
backup to the time of the failure is lost (see Figure 3).

Using the version recovery method, you must schedule and perform full
backups of the database on a regular basis.

In a partitioned database environment, the database is located across many
database partition servers (or nodes). You must restore all partitions, and the
backup images that you use for the restore database operation must all have
been taken at the same time. (Each database partition is backed up and
restored separately.) A backup of each database partition taken at the same
time is known as a version backup.

CREATE
database

BACKUP
database

BACKUP
database

image

TIME

create

RESTORE
database

Units of work

Figure 3. Version Recovery. The database is restored from the latest backup image, but all units of
work processed between the time of backup and failure are lost.

Version Recovery

22 Data Recovery and High Availability Guide and Reference

Rollforward Recovery

To use the rollforward recovery method, you must have taken a backup of the
database, and archived the logs (by enabling either the logretain or the userexit
database configuration parameters, or both. For information on the decisions
that you must make regarding the logging procedure that you use, see
“Understanding Recovery Logs” on page 30.) Restoring the database and
specifying the WITHOUT ROLLING FORWARD option is equivalent to using
the version recovery method. The database is restored to a state identical to
the one at the time that the offline backup image was made. If you restore the
database and do not specify the WITHOUT ROLLING FORWARD option for
the restore database operation, the database will be in rollforward pending
state at the end of the restore operation. This allows rollforward recovery to
take place.

The two types of rollforward recovery to consider are:
v Database rollforward recovery. In this type of rollforward recovery,

transactions recorded in database logs are applied following the database
restore operation (see Figure 4 on page 24). The database logs record all
changes made to the database. This method completes the recovery of the
database to its state at a particular point in time, or to its state immediately
before the failure (that is, to the end of the active logs.)
In a partitioned database environment, the database is located across many
database partitions. If you are performing point-in-time rollforward
recovery, all database partitions must be rolled forward to ensure that all
partitions are at the same level. If you need to restore a single database
partition, you can perform rollforward recovery to the end of the logs to
bring it up to the same level as the other partitions in the database. Only
recovery to the end of the logs can be used if one database partition is
being rolled forward. Point-in-time recovery applies to all database
partitions.

Rollforward Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 23

v Table space rollforward recovery. If the database is enabled for forward
recovery, it is also possible to back up, restore, and roll table spaces forward
(see Figure 5 on page 25). To perform a table space restore and rollforward
operation, you need a backup image of either the entire database (that is,
all of the table spaces), or one or more individual table spaces. You also
need the log records that affect the table spaces that are to be recovered.
You can roll forward through the logs to one of two points:
– The end of the logs; or,
– A particular point in time (called point-in-time recovery).

Table space rollforward recovery can be used in the following two situations:
v After a table space restore operation, the table space is always in

rollforward pending state, and it must be rolled forward. Invoke the
ROLLFORWARD DATABASE command (see “ROLLFORWARD
DATABASE Command” on page 142) to apply the logs against the table
spaces to either a point in time, or to the end of the logs.

v If one or more table spaces are in rollforward pending state after crash
recovery, first correct the table space problem. In some cases, correcting the
table space problem does not involve a restore database operation. For
example, a power loss could leave the table space in rollforward pending
state. A restore database operation is not required in this case. Once the
problem with the table space is corrected, you can use the ROLLFORWARD
DATABASE command to apply the logs against the table spaces to the end
of the logs. If the problem is corrected before crash recovery, crash recovery
may be sufficient to take the database to a consistent, usable state.

Note: If the table space in error contains the system catalog tables, you will
not be able to start the database. You must restore the
SYSCATSPACE table space, then perform rollforward recovery to the
end of the logs.

CREATE
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

ROLLFORWARD

changes in logs
Units of workUnits of work

update update

n archived logs
1 active log

n archived logs
1 active log

Figure 4. Database Rollforward Recovery. There can be more than one active log in the case of a
long-running transaction.

Rollforward Recovery

24 Data Recovery and High Availability Guide and Reference

In a partitioned database environment, if you are rolling a table space forward
to a point in time, you do not have to supply the list of nodes (database
partitions) on which the table space resides. DB2 submits the rollforward
request to all partitions. This means the table space must be restored on all
database partitions on which the table space resides.

In a partitioned database environment, if you are rolling a table space forward
to the end of the logs, you must supply the list of database partitions if you do
not want to roll the table space forward on all partitions. If you want to roll
all table spaces (on all partitions) that are in rollforward pending state
forward to the end of the logs, you do not have to supply the list of database
partitions. By default, the database rollforward request is sent to all partitions.

Incremental Backup and Recovery

As the size of databases, and particularly warehouses, continues to expand
into the terabyte and petabyte range, the time and hardware resources
required to back up and recover these databases is also growing substantially.
Full database and table space backups are not always the best approach when
dealing with large databases, because the storage requirements for multiple
copies of such databases are enormous. Consider the following issues:
v When a small percentage of the data in a warehouse changes, it should not

be necessary to back up the entire database.

TIME

update

ROLLFORWARD

changes in logs

update

Units of workUnits of work

Media
error

BACKUP
table space(s)

BACKUP
table space(s)

n archived logs
1 active log

n archived logs
1 active log

Figure 5. Table Space Rollforward Recovery. There can be more than one active log in the case of
a long-running transaction.

Rollforward Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 25

v Appending table spaces to existing databases and then taking only table
space backups is risky, because there is no guarantee that nothing outside
of the backed up table spaces has changed between table space backups.

DB2 now supports incremental backup and recovery (but not of long field or
large object data). An incremental backup is a backup image that contains only
pages that have been updated since the previous backup was taken. In
addition to updated data and index pages, each incremental backup image
also contains all of the initial database meta-data (such as database
configuration, table space definitions, database history, and so on) that is
normally stored in full backup images.

Two types of incremental backup are supported:
v Incremental. An incremental backup image is a copy of all database data that

has changed since the most recent, successful, full backup operation. This is
also known as a cumulative backup image, because a series of incremental
backups taken over time will each have the contents of the previous
incremental backup image. The predecessor of an incremental backup
image is always the most recent successful full backup of the same object.

v Delta. A delta, or incremental delta, backup image is a copy of all database
data that has changed since the last successful backup (full, incremental, or
delta) of the table space in question. This is also known as a differential, or
non-cumulative, backup image. The predecessor of a delta backup image is
the most recent successful backup containing a copy of each of the table
spaces in the delta backup image.

The key difference between incremental and delta backup images is their
behavior when successive backups are taken of an object that is continually
changing over time. Each successive incremental image contains the entire
contents of the previous incremental image, plus any data that has changed,
or is new, since the previous backup was produced. Delta backup images
contain only the pages that have changed since the previous image was
produced.

Combinations of database and table space incremental backups are permitted,
in both online and offline modes of operation. Be careful when planning your
backup strategy, because combining database and table space incremental
backups implies that the predecessor of a database backup (or a table space
backup of multiple table spaces) is not necessarily a single image, but could
be a unique set of previous database and table space backups taken at
different times.

To rebuild the database or the table space to a consistent state, the recovery
process must begin with a consistent image of the entire object (database or
table space) to be restored, and must then apply each of the appropriate

Incremental Backup and Recovery

26 Data Recovery and High Availability Guide and Reference

incremental backup images in the order described below (see “Restoring from
Incremental Backup Images”).

To enable the tracking of database updates, DB2 supports a new database
configuration parameter, trackmod, which can have one of two accepted
values:
v NO. Incremental backup is not permitted with this configuration. Database

page updates are not tracked or recorded in any way.
v YES. Incremental backup is permitted with this configuration. When update

tracking is enabled, the change becomes effective at the first successful
connection to any database in the instance. A full database backup is
necessary before an incremental backup can be taken.

The default trackmod setting for existing databases is NO; for new databases, it
is YES.

For SMS table spaces, the granularity of this tracking is at the table space
level. For DMS table spaces, the granularity is at the extent level for data and
index pages, and at the table space level for other page types.

Although minimal, the tracking of updates to the database can have an
impact on the runtime performance of transactions that update or insert data.

Restoring from Incremental Backup Images
A restore operation from incremental backup images always consists of the
following steps:
1. Identifying the incremental target image.

The DBA must first determine the final image to be restored, and request
an incremental restore operation from the DB2 restore utility. This image is
known as the target image of the incremental restore, because it will be the
last image to be restored. An incremental restore command against this
image may initiate the creation of a new database with the configuration
and table space definitions from this target image. The incremental target
image is specified using the TAKEN AT parameter in the RESTORE
DATABASE command.

2. Restoring the most recent full database or table space image to establish a
baseline against which each of the subsequent incremental backup images
can be applied.

3. Restoring each of the required full or table space incremental backup
images, in the order in which they were produced, on top of the baseline
image restored in Step 2.

4. Repeating Step 3 until the target image from Step 1 is read a second time.
The target image is accessed twice during a complete incremental restore

Incremental Backup and Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 27

operation. During the first access, only initial data is read from the image;
none of the user data is read. The complete image is read and processed
only during the second access.
The target image of the incremental restore operation must be accessed
twice to ensure that the database is initially configured with the correct
history, database configuration, and table space definitions for the database
that will be created during the restore operation. In cases where a table
space has been dropped since the initial full database backup image was
taken, the table space data for that image will be read from the backup
images but ignored during incremental restore processing.

To restore a set of incremental backup images, specify the TAKEN AT
timestamp option on the RESTORE DATABASE command. Specify the time
stamp for the last image that you want to restore. For example:

db2 restore db sample incremental automatic taken at 20001228152133

This will result in the DB2 restore utility performing each of the steps
described above automatically. During the initial phase of processing, the
backup image with time stamp 20001228152133 is read, and the restore utility
verifies that the database, its history, and the table space definitions exist and
are valid.

During the second phase of processing, the database history is queried to
build a chain of backup images required to perform the requested restore
operation. If, for some reason this is not possible, and DB2 is unable to build
a complete chain of required images, the restore operation terminates, and an
error message is returned. In this case, an automatic restore will not be
possible, and you will have to proceed with a manual restore procedure.

Note: It is highly recommended that you not use the FORCE option on the
PRUNE HISTORY command. The default operation of this command
prevents you from deleting history entries that may be required for
recovery from the most recent, full database backup image, but with
the FORCE option, it is possible to delete entries that are required for
an automatic restore operation.

If the database history is not available, you can perform an incremental
restore operation manually, following the steps outlined at the beginning of
this section. For example:

1. db2 restore database sample incremental taken at <ts>

where:
<ts> points to the last incremental backup image to be restored

2. db2 restore database sample incremental taken at <ts1>

where:

Incremental Backup and Recovery

28 Data Recovery and High Availability Guide and Reference

<ts1> points to the initial full database (or table space) image

3. db2 restore database sample incremental taken at <tsX>

where:
<tsX> points to each incremental backup image in creation sequence

4. Repeat Step 3, restoring each incremental backup image up to and including image <ts>

In cases where a database restore operation is being attempted, and table
space incremental backup images have been produced, the table space images
must be restored in the chronological order of their backup time stamps.

Limitations to Automatic Incremental Restore
1. If you renamed a table space since the backup you wish to restore from

and you issue a table space level restore using the new name, the required
chain of backup images using the database history will not be generated
correctly and an error will occur.
Example:
db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 rename tablespace from userspace1 to t1
db2 restore db sample tablespace ('t1') incremental automatic taken at <ts2>

Suggested workaround: Use manual incremental restore.
2. If you drop a database, the database history will be deleted. If you restore

the dropped database, the database history will be restored to its state at
the time of the restored backup and all history entries after that time will
be lost. If you then attempt to perform an automatic incremental restore
that would need to use any of these lost history entries, the RESTORE
utility will attempt to restore an incorrect chain of backups and will return
an ″out of sequence″ error.
Example:
db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 backup db sample incremental delta —> <ts3>
db2 backup db sample incremental delta —> <ts4>
db2 drop db sample
db2 restore db sample incremental automatic taken at <ts2>
db2 restore db sample incremental automatic taken at <ts4>

Suggested workarounds:
v Use manual incremental restore.
v Restore the history file first from image <ts4> before issuing an

automatic incremental restore.

Incremental Backup and Recovery

Chapter 1. Developing a Good Backup and Recovery Strategy 29

Understanding Recovery Logs

All databases have logs associated with them. These logs keep records of
database changes. If a database needs to be restored to a point beyond the last
full, offline backup, logs are required to roll the data forward to the point of
failure.

There are three types of DB2 logging: circular, capture, and archive, each
providing a different level of recovery capability:
v Circular logging is the default behavior when a new database is created.

(The logretain database configuration parameter setting is NO.) With this type
of logging, only full, offline backups of the database are valid. As the name
suggests, circular logging uses a “ring” of online logs to provide recovery
from transaction failures and system crashes. The logs are used and
retained only to the point of ensuring the integrity of current transactions.
Circular logging does not allow you to roll a database forward through
transactions performed after the last full backup operation. All changes
occurring since the last backup operation are lost. The database must be
offline (inaccessible to users) when a full backup is taken. Since this type of
restore operation recovers your data to the specific point in time at which a
full backup was taken, it is called version recovery.
Figure 6 shows that the active log uses a ring of log files when circular
logging is active.

DB2 server

Database Log Path

Transaction

Active Log Files

Circular Logs

Active

Log File

Figure 6. Circular Logging

Understanding Recovery Logs

30 Data Recovery and High Availability Guide and Reference

Active logs are used during crash recovery to prevent a failure (system
power or application error) from leaving a database in an inconsistent state.
The RESTART DATABASE command uses the active logs, if needed, to
move the database to a consistent and usable state. During crash recovery,
yet uncommitted changes recorded in these logs are rolled back. Changes
that were committed but not yet written from memory (the buffer pool) to
disk (database containers) are redone. These actions ensure the integrity of
the database. Active logs are located in the database log path directory.

v Capture logging can be configured by setting the logretain database
configuration parameter to CAPTURE. Capture logging is used for replication
processing. Log files are retained until replication processing has completed,
at which time they are deleted automatically. All DB2 utilities handle this
logging mode in the same way as they handle circular logging; that is,
neither online backup operations, nor table space backup and restore
operations, nor rollforward operations are allowed; and a load operation
specifying the RECOVERY NO option will not put table spaces in backup
pending state.

v Archive logging is used specifically for rollforward recovery. It can be
configured by setting the logretain database configuration parameter to
RECOVERY. Archived logs can be:

online archived logs
When changes in the active log are no longer needed for
normal processing, the log is closed, and becomes an
archived log. An archived log is said to be online when it is
stored in the database log path directory (see Figure 7 on
page 32).

offline archived logs
An archived log is said to be offline when it is no longer
found in the database log path directory (see Figure 8 on
page 33). You can also store archived logs in a location
other than the database log path directory by using a user
exit program. (For additional information, see “Appendix H.
User Exit for Database Recovery” on page 439.)

Understanding Recovery Logs

Chapter 1. Developing a Good Backup and Recovery Strategy 31

Database Log Path

Transaction

DB2 server

Active

Log

Files

Log

Files

Log Retain

Online Archived

Figure 7. Online Archive Logging

Understanding Recovery Logs

32 Data Recovery and High Availability Guide and Reference

Rollforward recovery can use both archived logs and active logs to rebuild a
database either to the end of the logs, or to a specific point in time. The
rollforward utility achieves this by reapplying committed changes found in
the archived and active logs to the restored database.

Rollforward recovery can also use logs to rebuild a table space by re-applying
committed updates in both archived and active logs. You can recover a table
space to the end of the logs, or to a specific point in time.

During an online backup operation, all activities against the database are
logged. When an online backup image is restored, the logs must be rolled
forward at least to the point in time at which the backup operation completed.
For this to happen, the logs must have been archived and made available
when the database is restored. After an online backup is complete, DB2 forces
the currently active log to be closed, and as a result, it will be archived. This
ensures that your online backup has a complete set of archived logs available
for recovery.

Database Log Path

Transaction

DB2 server

Log

Files

Active

Log

Files

User

Exit

Offline Archived

Figure 8. Offline Archive Logging

Understanding Recovery Logs

Chapter 1. Developing a Good Backup and Recovery Strategy 33

Two database configuration parameters allow you to change where archived
logs are stored: The newlogpath parameter, and the userexit parameter.
Changing the newlogpath parameter also affects where active logs are stored.
For more information about these configuration parameters, see the
Administration Guide: Performance book.

To determine which log extents in the database log path directory are archived
logs, check the value of the loghead database configuration parameter. This
parameter indicates the lowest numbered log that is active. Those logs with
sequence numbers less than loghead are archived logs and can be moved. You
can check the value of this parameter by using the Control Center; or, by
using the command line processor and the GET DATABASE
CONFIGURATION command to view the ″First active log file″. For more
information about this configuration parameter, see the Administration Guide:
Performance book.

Notes:

1. If you erase an active log, the database becomes unusable and must be
restored before it can be used again. You will be able to roll forward only
up to the first log that was erased.

2. If you are concerned that your active logs may be damaged (as a result of
a disk crash), you should consider mirroring, either at the operating
system level by mirroring the disk used for logging, or at the DB2 level by
using the NEWLOGPATH2 registry variable.

Log Mirroring
DB2 now supports log mirroring at the database level. Mirroring log files
helps protect a database from:

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 9. Active and Archived Database Logs in Rollforward Recovery. There can be more than
one active log in the case of a long-running transaction.

Understanding Recovery Logs

34 Data Recovery and High Availability Guide and Reference

v Accidental deletion of an active log
v Data corruption caused by hardware failure

If you are concerned that your active logs may be damaged (as a result of a
disk crash), you should consider using a new DB2 registry variable,
NEWLOGPATH2, to specify a secondary path for the database to manage
copies of the active log, mirroring the volumes on which the logs are stored.

The NEWLOGPATH2 registry variable allows the database to write an
identical second copy of log files to a different path. It is recommended that
you place the secondary log path on a physically separate disk (preferably one
that is also on a different disk controller). That way, the disk controller cannot
be a single point of failure.

Note: Because Windows NT does not allow “mounting” a device under an
arbitrary path name, it is not possible (on this platform) to specify a
secondary path on a separate device.

NEWLOGPATH2 can be enabled (set to 1) or disabled (set to 0). The default
value is zero. If this variable is set to 1, the secondary path name is the
current value of the LOGPATH variable concatenated with the character 2. For
example, in an SMP environment, if LOGPATH is
/u/dbuser/sqllogdir/logpath, the secondary log path will be
/u/dbuser/sqllogdir/logpath2. In an MPP environment, if LOGPATH is
/u/dbuser/sqllogdir/logpath, DB2 will append the node indicator to the path
and use /u/dbuser/sqllogdir/logpath/NODE0000 as the primary log path. In
this case, the secondary log path will be
/u/dbuser/sqllogdir/logpath2/NODE0000.

When NEWLOGPATH2 is first enabled, it will not actually be used until the
current log file is completed on the next database startup. This is similar to
how LOGPATH and NEWLOGPATH are currently used.

If there is an error writing to either path 1 or path 2, the database will mark
the failing path as “bad”, write a message to the db2diag.log file, and write
subsequent log records to the remaining “good” log path only. DB2 will not
attempt to use the “bad” path again until the current log file is completed.
When DB2 needs to open the next log file, it will verify that this path is valid,
and if so, will begin to use it. If not, DB2 will not attempt to use the path
again until the next log file is accessed for the first time. There is no attempt
to synchronize the log paths, but DB2 keeps information about access errors
that occur, so that the correct paths are used when log files are archived. If a
failure occurs while writing to the remaining “good” path, the database
abends.

Understanding Recovery Logs

Chapter 1. Developing a Good Backup and Recovery Strategy 35

Reducing Logging on Work Tables
If your application creates and populates work tables from master tables, and
you are not concerned about the recoverability of these work tables because
they can be easily recreated from the master tables, you may want to create
the work tables specifying the NOT LOGGED INITIALLY parameter on the
CREATE TABLE statement. The advantage of using the NOT LOGGED
INITIALLY parameter is that any changes made on the table (including insert,
delete, update, or create index operations) in the same unit of work that
creates the table will not be logged. This not only reduces the logging that is
done, but may also increase the performance of your application. You can
achieve the same result for existing tables by using the ALTER TABLE
statement with the NOT LOGGED INITIALLY parameter. (For this to work,
the table must have been created with the NOT LOGGED INITIALLY option.)

Notes:

1. You can create more than one table with the NOT LOGGED INITIALLY
parameter in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the
following when deciding to use the NOT LOGGED INITIALLY parameter:
v All changes to the table must be flushed out to disk at commit time. This

means that the commit may take longer.
v An error returned for any operation in a unit of work in which the table is

created will result in the rollback of the entire unit of work (SQLCODE
-1476, SQLSTATE 40506).

v You cannot recover these tables when rolling forward. If the rollforward
operation encounters a table that was created with the NOT LOGGED
INITIALLY option, the table is marked as unavailable. After the database is
recovered, any attempt to access the table returns SQL1477N.

Note: When a table is created, row locks are held on the catalog tables until
a COMMIT is done. To take advantage of the no logging behavior,
you must populate the table in the same unit of work in which it is
created. This has implications for concurrency. For more information,
see the “Concurrency” section of the Administration Guide: Performance
book.

For more information about creating tables, see the SQL Reference.

If you plan to use declared temporary tables as work tables, note the
following:
v Declared temporary tables are not created in the catalogs; therefore locks

are not held.

Understanding Recovery Logs

36 Data Recovery and High Availability Guide and Reference

v Logging is not performed against declared temporary tables, even after the
first COMMIT.

v Use the ON COMMIT PRESERVE option to keep the rows in the table after
a COMMIT; otherwise, all rows will be deleted.

v Only the application that creates the declared temporary table can access
that instance of the table.

v The table is implicitly dropped when the application connection to the
database is dropped.

v Errors in operation during a unit of work using a declared temporary table
do not cause the unit of work to be completely rolled back. However, an
error in operation in a statement changing the contents of a declared
temporary table will delete all the rows in that table. A rollback of the unit
of work (or a savepoint) will delete all rows in declared temporary tables
that were modified in that unit of work (or savepoint).

For more information about declared temporary tables and their limitations,
see the DECLARE GLOBAL TEMPORARY TABLE statement in the SQL
Reference.

Configuration Parameters for Database Logging
The database configuration file contains parameters related to rollforward
recovery. The default values of these parameters do not support this type of
recovery, so if you plan to use it, you must change some of the default values.
For more information about configuring DB2 Universal Database, see the
Administration Guide: Performance book.

Primary logs (logprimary)
This parameter specifies the number of primary logs that will be
created.

A primary log, whether empty or full, requires the same amount of
disk space. Thus, if you configure more logs than you need, you use
disk space unnecessarily. If you configure too few logs, you can
encounter a log-full condition. As you select the number of logs to
configure, you must consider the size you make each log and whether
your application can handle a log-full condition.

If you are enabling an existing database for rollforward recovery,
change the number of primary logs to the sum of the number of
primary and secondary logs, plus 1. Additional information is logged
for LONG VARCHAR and LOB fields in a database enabled for
rollforward recovery.

The total log file size limit is 32 GB. That is, the number of log files
(logprimary + logsecond) multiplied by the size of each log file, in bytes
(logfilsiz * 4096) must be less than 32 GB.

Understanding Recovery Logs

Chapter 1. Developing a Good Backup and Recovery Strategy 37

For more information about this configuration parameter, see the
Administration Guide: Performance book.

Secondary logs (logsecond)
This parameter specifies the number of secondary log files that are
created and used for recovery, if needed.

If the primary log files become full, secondary log files (of size
logfilsiz) are allocated, one at a time as needed, up to the maximum
number specified by this parameter. An error is returned, and activity
against the database is stopped, if more than the configured number
of secondary log files is required.

For more information about this configuration parameter, see the
Administration Guide: Performance book.

Log size (logfilsiz)
This parameter specifies the size of each configured log, in number of
4-KB pages.

There is a 32-GB logical limit on the total active log space that you
can configure. This limit is the result of the upper limit on logfilsiz,
which is 65535, and the upper limit on (logprimary + logsecond), which
is 128. Thus, ((logprimary + logsecond) * logfilsiz) < (32 GB / 4096).

The size of the log file has a direct bearing on performance. If the
database is configured to retain logs, each time a log is filled, a
request is issued for allocation and initialization of a new log.
Increasing the size of the log reduces the number of requests required
to allocate and initialize new logs. (Keep in mind, however, that with
a larger log size it takes more time to format each new log). The
formatting of new logs is transparent to applications connected to the
database, so that database performance is unaffected by formatting.

Assuming that you have an application that keeps the database open
to minimize processing time when opening the database (see
“Enhancing Recovery Performance” on page 54), the log file size
should be determined by the amount of time it takes to make offline
archived log copies.

The data transfer speed of the device you use to store offline archived
logs, and the software used to make the copies, must at a minimum
match the average rate at which the database manager writes data in
the logs. If the transfer speed cannot keep up with new log data being
generated, you may run out of disk space if logging activity continues
for a sufficiently long period of time, determined by the amount of
free disk space. If this happens, database processing stops.

The data transfer speed is most significant when using tape or an
optical medium. (For information about using different media for

Understanding Recovery Logs

38 Data Recovery and High Availability Guide and Reference

storing logs, see “Appendix H. User Exit for Database Recovery” on
page 439 .) Some tape devices require the same amount of time to
copy a file, regardless of its size. You must determine the capabilities
of your archiving device.

Tape devices have other considerations. The frequency of the
archiving request is important. For example, if the time taken to
complete any copy operation is five minutes, the log should be large
enough to hold five minutes of log data during your peak work load.
The tape device may have design limits that restrict the number of
operations per day. These factors must be considered when you
determine the log size.

Minimizing log file loss is also an important consideration when
setting the log size. Archiving takes an entire log. If you use a single
large log, you increase the time between archiving. If the medium
containing the log fails, some transaction information will probably be
lost. Decreasing the log size increases the frequency of archiving but
can reduce the amount of information loss in case of a media failure
since the smaller logs before the one lost can be used.

Log Buffer (logbufsz)
This parameter allows you to specify the amount of database shared
memory to use as a buffer for log records before writing these records
to disk. The log records are written to disk when any one of the
following events occurs:
v A transaction commits
v The log buffer becomes full
v Some other internal database manager event occurs.

Increasing the log buffer size results in more efficient input/output
(I/O) activity associated with logging, because the log records are
written to disk less frequently, and more records are written each
time.

Number of Commits to Group (mincommit)
This parameter allows you to delay the writing of log records to disk
until a minimum number of commits have been performed. This
delay can help reduce the database manager overhead associated with
writing log records and, as a result, improve performance when you
have multiple applications running against a database, and many
commits are requested by the applications within a very short period
of time.

The grouping of commits occurs only if the value of this parameter is
greater than 1, and if the number of applications connected to the
database is greater than the value of this parameter. When commit

Understanding Recovery Logs

Chapter 1. Developing a Good Backup and Recovery Strategy 39

grouping is in effect, application commit requests are held until either
one second has elapsed, or the number of commit requests equals the
value of this parameter.

New log path (newlogpath)
The database logs are initially created in SQLOGDIR, which is a
subdirectory of the database directory. You can change the location in
which active logs and future archive logs are placed by changing the
value of this configuration parameter to point to a different directory
or to a device. Archive logs that are currently stored in the database
log path directory are not moved to the new location if the database is
configured for rollforward recovery.

Because you can change the log path location, the logs needed for
rollforward recovery may exist in different directories or on different
devices. You can change the value of this configuration parameter
during a rollforward operation to allow you to access logs in multiple
locations.

You must keep track of the location of the logs.

Changes are not applied until the database is in a consistent state. The
configuration parameter database_consistent returns the status of the
database. For more information about this configuration parameter,
see the Administration Guide: Performance book. For information about
the roles that database logs play if a database is not in a consistent
state, see “Managing Log Files”.

Log retain (logretain)
If logretain is set to RECOVERY, archived logs are kept in the database
log path directory, and the database is considered to be recoverable,
meaning that rollforward recovery is enabled.

If logretain is set to CAPTURE, the replication capture program calls the
PRUNE LOGFILE command to delete log files when the capture
program completes. You should not set logretain to CAPTURE if you
want to perform rollforward recovery on the database.

User exit (userexit)
This parameter causes the database manager to call a user exit
program for archiving and retrieving logs. The log files are archived
in a location that is different from the active log path. If userexit is set
to ON, rollforward recovery is enabled. For information about user exit
programs, see “Appendix H. User Exit for Database Recovery” on
page 439.

Managing Log Files
Consider the following when managing database logs:

Understanding Recovery Logs

40 Data Recovery and High Availability Guide and Reference

v The numbering scheme for archived logs starts with S0000000.LOG, and
continues through S9999999.LOG, accommodating a potential maximum of
10 million log files. The database manager resets to S0000000.LOG if:
– A database configuration file is changed to enable rollforward recovery
– A database configuration file is changed to disable rollforward recovery
– S9999999.LOG has been used.

DB2 reuses log names after restoring a database (with or without
rollforward recovery). The database manager ensures that an incorrect log is
not applied during rollforward recovery, but it cannot detect the location of
the required log. You must ensure that the correct logs are available for
rollforward recovery.

When a rollforward operation completes successfully, the last log that was
used is truncated, and logging begins with the next sequential log. Any log
in the log path directory with a sequence number greater than the last log
used for rollforward recovery is re-used. Any entries in the truncated log
following the truncation point are overwritten with zeros. Ensure that you
make a copy of the logs before invoking the rollforward utility. (You can
invoke a user exit program to copy the logs to another location. For
information about user exit programs, see “Appendix H. User Exit for
Database Recovery” on page 439.)

v If a database has not been activated (by way of the ACTIVATE DATABASE
command), DB2 truncates the current log file when all applications have
disconnected from the database. The next time an application connects to
the database, DB2 starts logging to a new log file. If many small log files
are being produced on your system, you may want to consider using the
ACTIVATE DATABASE command. This not only saves the overhead of
having to initialize the database when applications connect, it also saves the
overhead of having to allocate a large log file, truncate it, and then allocate
a new large log file.

v An archived log may be associated with two or more different log sequences
for a database, because log file names are reused (see Figure 10 on page 42).
For example, if you want to recover Backup 2, there are two possible log
sequences that could be used. If, during full database recovery, you roll
forward to a point in time and stop before reaching the end of the logs, you
have created a new log sequence. The two log sequences cannot be
combined. If you have an online backup image that spans the first log
sequence, you must use this log sequence to complete rollforward recovery.
If you have created a new log sequence after recovery, any table space
backup images in the old log sequence are invalid. The restore utility fails
to recognize a table space backup image on an old log sequence if a
database restore operation is immediately followed by the table space
restore operation. Until the database is actually rolled forward, the log

Managing Log Files

Chapter 1. Developing a Good Backup and Recovery Strategy 41

sequence that is to be used is unknown. If the table space is on an old log
sequence, it must be “caught” by the table space rollforward operation. A
restore operation using an invalid backup image may complete successfully,
but a table space rollforward operation will fail, and the table space will be
left in rollforward pending state.
For example, suppose that a table space-level backup operation, Backup 3,
completes between S0000013.LOG and S0000014.LOG in the top log sequence
(see Figure 10). If you want to restore and roll forward using the
database-level backup image, Backup 2, you will need to roll forward
through S0000012.LOG. After this, you could continue to roll forward
through either the top log sequence or the (newer) bottom log sequence. If
you roll forward through the bottom log sequence, you will not be able to
use the table space-level backup image, Backup 3, to perform table space
restore and rollforward recovery.
To complete a table space rollforward operation to the end of the logs using
the table space-level backup image, Backup 3, you will have to restore the
database-level backup image, Backup 2, and then roll forward using the top
log sequence. Once the table space-level backup image, Backup 3, has been
restored, you can initiate a rollforward operation to the end of the logs.

Managing Log Files with a User Exit Program
The following considerations apply to calling a user exit program for
archiving and retrieving log files:
v The database configuration file parameter userexit specifies whether the

database manager invokes a user exit program to archive files or to retrieve
log files during rollforward recovery of databases. A request to retrieve a
log file is made when the rollforward utility needs a log file that is not
found in the log path directory.

Note: On Windows NT, you cannot use a REXX user exit to archive logs.

Restore Backup 2
and Roll Forward to

end of log 12.

Backup 1

. . .

. . .

Backup 2 Backup 3

S0000010.LOG S0000011.LOG S0000012.LOG S0000013.LOG S0000014.LOG

S0000013.LOG S0000014.LOG

Figure 10. Re-using Log File Names

Managing Log Files

42 Data Recovery and High Availability Guide and Reference

v When archiving, a log file is passed to the user exit when it is full, even if
the log file is still active and is needed for normal processing. This allows
copies of the data to be moved away from volatile media as quickly as
possible. The log file passed to the user exit is retained in the log path
directory until it is no longer needed for normal processing. At this point,
the disk space is reused.

v DB2 opens a log file in read mode when it starts a user exit program to
archive the file. On some platforms, this prevents the user exit program
from being able to delete the log file. Other platform, like AIX, allow
processes, including the user exit program, to delete log files. A user exit
program should never delete a log file after it is archived, because the file
could still be active and needed for crash recovery. DB2 manages disk space
reuse when log files are archived.

v When a log file has been archived and is inactive, DB2 does not delete the
file but renames it as the next log file when such a file is needed. This
results in a performance gain, because creating a new log file (instead of
renaming the file) causes all pages to be written out to guarantee the disk
space. It is better to reuse than to free up and then reacquire the necessary
pages on disk.

v DB2 will not invoke the user exit program to retrieve the log file during
crash recovery or rollback.

v A user exit program does not guarantee rollforward recovery to the point of
failure, but only attempts to make the failure window smaller. As log files
fill, they are queued for the user exit routine. Should the disk containing
the log fail before a log file is filled, the data in that log file is lost. Also,
since the files are queued for archiving, the disk can fail before all the files
are copied, causing any log files in the queue to be lost.

v The configured size of each individual log file has a direct bearing on the
user exit. If each log file is very large, a large amount of data can be lost if
a disk fails. A database configured with small log files causes the data to be
passed to the user exit routine more often.
However, if you are moving the data to a slower device such as tape, you
might want to have larger log files to prevent the queue from building up.
If the queue becomes full, archive and retrieve requests will not be
processed. Processing will resume when there is room on the queue.
Unprocessed requests will not be automatically requeued.

v An archive request to the user exit program occurs only if userexit is
configured, and each time an active log file is filled. It is possible that an
active log file is not full when the last disconnection from the database
occurs and the user exit program is also called for a partially filled active
log file.

Note: To free unused log space, the log file is truncated before it is
archived.

Managing Log Files

Chapter 1. Developing a Good Backup and Recovery Strategy 43

v A copy of the log should be made to another physical device so that the
offline log file can be used by rollforward recovery if the device containing
the log file experiences a media failure. This should not be the same device
containing database data files.

v In some cases, if a database is closed before a positive response has been
received from a user exit program for an archive request, the database
manager will send another request when the database is opened. Thus, a
log file may be archived more than once.

v If a user exit program receives a request to archive a file that does not exist
(because there were multiple requests to archive and the file was deleted
after the first successful archiving operation), or to retrieve a file that does
not exist (because it is located in another directory or the end of the logs
has been reached), it should ignore this request and pass a successful return
code.

v The user exit program should allow for the existence of different log files
with the same name after a point in time recovery; it should be written to
preserve both log files and to associate those log files with the correct
recovery path (see “Managing Log Files” on page 40).

v If two or more databases are using a device at the same time, and one of
the operations involves a rollforward operation, a log file needed for
rollforward recovery may not exist on the medium currently in the drive.
Two conditions can occur:
– If the user exit program passes a zero (successful) return code back to

the database manager, and the requested log file has not been retrieved,
the database manager assumes the rollforward operation is complete to
the end of the logs, and the rollforward operation stops. However,
rollforward processing may not have gone to the end of the logs.

– If a non-zero return code is returned, the database will be in rollforward
pending state, and you must either resume or stop rollforward
processing.

To prevent either situation from occurring, you can ensure that no other
databases on the node that calls the user exit program are open during the
rollforward operation, or write a user exit program to handle this situation.

Blocking Transactions When the Log Directory is Full
A new DB2 registry variable, DB2_BLOCK_ON_LOG_DISK_FULL, can be set
to prevent ″disk full″ errors from being generated when DB2 cannot create a
new log file in the active log path.

Instead, DB2 attempts to create the log file every five minutes until it
succeeds. If the database is configured with the userexit parameter set to ON,
DB2 also checks for the completion of log file archiving. If an inactive log file
is archived successfully, DB2 can rename the inactive log file to the new log
file name and continue. After each attempt, DB2 writes a message to the

Managing Log Files

44 Data Recovery and High Availability Guide and Reference

db2diag.log file. The only way that you can confirm that your application is
hanging because of a log disk full condition is to monitor the db2diag.log file.

Until the log file is successfully created, any user application that attempts to
update table data will not able to commit transactions. Read-only queries may
not be directly affected; however, if a query needs to access data that is locked
by an update request, or a data page that is fixed in the buffer pool by the
updating application, read-only queries will also appear to hang.

On Demand Log Archive
DB2 now supports the closing (and, if the user exit option is enabled, the
archiving) of the active log for a recoverable database at any time. This allows
you to collect a complete set of log files up to a known point, and then to use
these log files to update a standby database.

You can initiate on demand log archiving by invoking the ARCHIVE LOG
command, or by calling the db2ArchiveLog API; these are described in
“ARCHIVE LOG” on page 315 and “db2ArchiveLog - Archive Active Log
API” on page 328, respectively.

Using Raw Logs
You can use a raw device for your database log. There are both advantages
and disadvantages in doing so.
v The advantages are:

– You can attach more than 26 physical drives to a system.
– The file I/O path length is shorter. This may improve performance on

your system. You should conduct benchmarks to evaluate if there are
measurable benefits for your work load.

v The disadvantages are:
– The device cannot be shared by other applications; the entire device must

be assigned to DB2.
– The device cannot be operated upon by any operating system utility or

third-party tool which would backup or copy from the device.
– You can easily wipe out the file system on an existing drive if you

specify the wrong physical drive number.

You can configure a raw log with the newlogpath database configuration
parameter. For an example of the syntax used to specify a raw device, see the
“Raw I/O” section of the Administration Guide: Implementation book. Before
doing so, however, consider the advantages and disadvantages listed above,
and the additional considerations listed below:
v Only one device is allowed. You can define the device over multiple disks

at the operating system level. DB2 will make an operating system call to
determine the size of the device in 4-KB pages.

Managing Log Files

Chapter 1. Developing a Good Backup and Recovery Strategy 45

If you use multiple disks, this will provide a larger device, and the striping
that results can improve performance by faster I/O throughput.

v DB2 will attempt to write to the last 4-KB page of the device. If the device
size is greater than 2 GB, the attempt to write to the last page will fail on
operating systems that do not provide support for devices larger than 2 GB.
In this situation, DB2 will attempt to use all pages, up to the supported
limit.
Information about the size of the device is used to indicate the size of the
device (in 4-KB pages) available to DB2 under the support of the operating
system. The amount of disk space that DB2 can write to is referred to as the
device-size-available.
The first 4-KB page of the device is not used by DB2 (this space is generally
used by operating system for other purposes.) This means that the total
space available to DB2 is device-size = device-size-available - 1.

v The logsecond parameter is not used. DB2 will not allocate secondary logs.
The size of active log space is the number of 4-KB pages that result from
logprimary x logfilsiz.

v Log records are still grouped into log extents, each with a log file size
(logfilsiz) of 4-KB pages. Log extents are placed in the raw device, one after
another. Each extent also consists of an extra two pages for the extent
header. This means that the number of available log extents the device can
support is device-size / (logfilsiz + 2)

v The device must be large enough to support the active log space. That is,
the number of available log extents must be greater than (or equal to) the
value specified for the logprimary configuration parameter.

v If you are using circular logging, the logprimary configuration parameter
will determine the number of log extents that are written to the device. This
may result in unused space on the device.

v If you are using log retention (logretain) without a user exit program, after
the number of available log extents are all used up, all operations that result in
an update will receive a log full error. At this time, you must shut down
the database and take an offline backup of it to ensure recoverability. After
the database backup operation, the log records written to the device are
lost. This means that you cannot use an earlier database backup image to
restore the database, then roll it forward. If you take a database backup
before the number of available log extents are all used up, you can restore and
roll the database forward.

v If you are using log retention (logretain) with a user exit program, the user
exit program is called for each log extent as it is filled with log records. The
user exit program must be able to read the device, and to store the archived
log as a file. DB2 will not call a user exit program to retrieve log files to a
raw device. Instead, during rollforward recovery, DB2 will read the extent
headers to determine if the raw device contains the required log file. If the
required log file is not found in the raw device, DB2 will search the

Managing Log Files

46 Data Recovery and High Availability Guide and Reference

overflow log path. If the log file is still not found, DB2 will call the user
exit program to retrieve the log file into the overflow log path. If you do
not specify an overflow log path for the rollforward operation, DB2 will not
call the user exit program to retrieve the log file. For additional information
about calling a user exit program, see “Calling Format” on page 441.

v If you are using DPROP and writing logs to a raw device, the read log API
will not call the user exit program to retrieve log files. Requested log
records, however, will be still be returned if they are available on the
device. If you request logs that pre-date the oldest ones on the device, they
will not be returned (the behavior is similar to DB2 not being able to find
the log file that contains the requested log records).

Notes:

1. It is recommended that you do not use DPROP when you use a raw
device for logging.

2. If you use the sqlurlog API, you should not use a raw device for
logging.

Losing Logs
Dropping a database erases all logs in the current database log path directory.
Before dropping a database, consider making copies of the logs.

If you are rolling a database forward to a specific point in time, the last log
used and all existing logs following that are reused: You lose the ability to
recover beyond that particular point in time. Therefore, you should copy all of
the logs in the current database log path directory before beginning a
point-in-time recovery operation.

When the rollforward operation completes, the log file with the last
committed transaction is truncated, and logging begins with the next
sequential log. If you do not have a copy of the log before it is truncated, and
copies of logs with higher sequence numbers, you cannot recover the database
beyond the specified point in time. (Once normal database activity resumes,
new logs are created, which can be used in any subsequent recovery
operation.)

If you change the log path directory and then remove the subdirectory or
erase any logs in that subdirectory called for in the log path, the database
manager will look for the logs in the default log path, SQLOGDIR, when the
database is opened. If the logs are not found, the database is put in backup
pending state, and you must back up the database before it is usable. This
backup must be made even if the subdirectory contained empty logs.

If you lose the log containing the point in time of the end of the online
backup and you are rolling the corresponding restored image forward, the

Managing Log Files

Chapter 1. Developing a Good Backup and Recovery Strategy 47

database will not be usable. To make the database usable, you must restore
the database from a different backup and all associated logs.

You may encounter a situation similar to the following: You would like to do
a point in time recovery on a full database but you are concerned that you
might lose a log during the recovery process. (This scenario could occur if you
have an extended number of archived logs between the time of the last
backup database image and the point in time where you would like to have
the database recovered.)

First, you should copy all of the applicable logs to a “safe” location. Then you
can run the RESTORE command and use the rollforward recovery method to
the point in time you wish for the database. If any of the logs that you need is
damaged or lost during this process, you have a backup copy of all of the
logs elsewhere.

Understanding the Recovery History File

A recovery history file is created with each database and is automatically
updated whenever:
v A database or table spaces are backed up
v A database or table spaces are restored
v A database or table spaces are rolled forward
v A table space is created
v A table space is altered
v A table space is quiesced
v A table space is renamed
v A table space is dropped
v A table is loaded
v A table is dropped
v A table is reorganized
v Table statistics are updated

Managing Log Files

48 Data Recovery and High Availability Guide and Reference

You can use the summarized backup information in this file to recover all or
part of a database to a given point in time. The information in the file
includes:
v An identification (ID) field to uniquely identify each entry
v The part of the database that was copied and how
v The time the copy was made
v The location of the copy (stating both the device information and the logical

way to access the copy)
v The last time a restore operation was done
v The time at which a table space was renamed, showing the previous and

the current name of the table space
v The status of a backup operation: active, inactive, expired, or deleted
v The last log sequence number saved by the database backup or processed

during a rollforward recovery operation.

To see the entries in the recovery history file, use the LIST HISTORY
command. For more information about this command, see “LIST HISTORY”
on page 318.

Note: When a restore and then a rollforward operation is carried out to the
end of logs, the backup ID shown following invocation of the LIST
HISTORY command represents the end of time; that is, the backup ID
value is 99991231235959. The backup ID is only transformed in this
way when a rollforward operation is carried out.

Every backup operation (database, table space, or incremental) includes a
copy of the recovery history file. The recovery history file is linked to the
database. Dropping a database deletes the recovery history file. Restoring a
database to a new location restores the recovery history file. Restoring does
not overwrite the existing history recovery file.

CREATE
database

BACKUP
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

RHF is the Recovery History File

RHF

create

RHF

update

RHF

update

RHF

update

RHF

update

ROLLFORWARD

changes in logs
Units of workUnits of work Units of work

RHF

update

Figure 11. Creating and Updating the Recovery History File

Understanding the Recovery History File

Chapter 1. Developing a Good Backup and Recovery Strategy 49

If the current database is unusable or not available, and the associated
recovery history file is damaged or deleted, an option on the RESTORE
command allows only the recovery history file to be restored. The recovery
history file can then be reviewed to provide information on which backup to
use to restore the database.

The size of the file is controlled by the rec_his_retentn configuration parameter
that specifies a retention period (in days) for the entries in the file. Even if the
number for this parameter is set to zero (0), the most recent full database
backup (plus its restore set) is kept. (The only way to remove this copy is to
use the PRUNE with FORCE option.) The retention period has a default value
of 366 days. The period can be set to an indefinite number of days by using
-1. In this case, explicit pruning of the file is required. For more information
about this configuration parameter, see the Administration Guide: Performance
book.

Garbage Collection
Although you can use the PRUNE HISTORY command (see “PRUNE
HISTORY/LOGFILE” on page 321) at any time to remove entries from the
history file, it is recommended that such pruning be left to DB2. The number
of DB2 database backups recorded in the recovery history file is monitored
automatically by DB2 garbage collection. DB2 garbage collection is invoked
after a database backup operation completes successfully; it is also invoked
after a database restore operation completes successfully. The configuration
parameter num_db_backups defines how many active full (not incremental)
database backup images are kept. The value of this parameter is used to scan
the history file, starting with the last entry.

After every full database backup operation, the rec_his_retentn configuration
parameter is used to prune expired entries from the history file.

An active database backup is one that can be restored and rolled forward using
the current logs to recover the current state of the database. An inactive
database backup is one that, if restored, moves the database back to a previous
state.

Understanding the Recovery History File

50 Data Recovery and High Availability Guide and Reference

All active database backup images that are no longer needed are marked as
“expired”. These images are considered to be unnecessary, because more
recent backup images are available. All table space backup images and load
backup copies that were taken before the database backup image expired are
also marked as “expired”.

All database backup images that are marked as “inactive” and that were taken
prior to the point at which an expired database backup was taken are also
marked as “expired”. All associated inactive table space backup images and
load backup copies are also marked as “expired”.
If an active database backup image is restored, but it is not the most recent

database backup recorded in the history file, any subsequent database backup
images belonging to the same log sequence are marked as “inactive”.

If an inactive database backup image is restored, any inactive database
backups belonging to the current log sequence are marked as “active” again.

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

d2 d4d1 d3 LS1

t1 t4t3t2

Figure 12. Active Database Backups. The value of num_db_backups has been set to four.

d2 d4d1 d3

RS1 d5 d6

LS1

LS2

t1 t3t2

t5

t4

t7t6

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 13. Inactive Database Backups

Understanding the Recovery History File

Chapter 1. Developing a Good Backup and Recovery Strategy 51

All active database backup images that are no longer in the current log
sequence are marked as “inactive”.

DB2 garbage collection is also responsible for marking the history file entries
for a DB2 database or table space backup image as “inactive”, if that backup
does not correspond to the current log sequence, also called the current log
chain. The current log sequence is determined by the DB2 database backup
image that has been restored, and the log files that have been processed. Once
a database backup image is restored, all subsequent database backup images
become “inactive”, because the restored image begins a new log chain. (This is
true if the backup image was restored without rolling forward. If a
rollforward operation has occurred, all database backups that were taken after
the break in the log chain are marked as “inactive”. It is conceivable that an
older database backup image will have to be restored because the rollforward
utility has gone through the log sequence containing a damaged current
backup image.)

A table space-level backup image becomes “inactive” if, after it is restored, the
current state of the database cannot be reached by applying the current log
sequence.

If a backup image contains DATALINK columns, all Data Links servers
running the DB2 Data Links Manager are contacted to request garbage
collection. DB2 garbage collection then deletes backups of the associated Data
Links server files that were contained in the expired backup, but that were
unlinked before the next database backup operation.

d2 d4d1 d3 LS1

t1 t4t3t2

d5

t5

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 14. Expired Database Backups

Understanding the Recovery History File

52 Data Recovery and High Availability Guide and Reference

Understanding Table Space States

The current status of a table space is reflected by its state. The table space
states most commonly associated with recovery are:
v Rollforward pending. A table space is put in this state after it is restored, or

following an input/output (I/O) error. After it is restored, the table space
can be rolled forward to the end of the logs or to a point in time. Following
an I/O error, the table space must be rolled forward to the end of the logs.

v Rollforward-in-progress. A table space is put in this state when a rollforward
operation on that table space is in progress. Once the rollforward operation
completes successfully, the table space is no longer in rollforward-in-
progress state. The table space can also be taken out of this state if the
rollforward operation is cancelled.

d2 d4d1 d3 LS1

RS1 d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 15. Mixed Active, Inactive, and Expired Database Backups

d2 d4d1 d3 LS1

RS1
d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

t10t9

d9d8

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 16. Expired Log Sequence

Understanding the Recovery History File

Chapter 1. Developing a Good Backup and Recovery Strategy 53

v Restore pending. A table space is put in this state if a rollforward operation
on that table space is cancelled, or if a rollforward operation on that table
space encounters an unrecoverable error, in which case the table space must
be restored and rolled forward again.

v Backup pending. A table space is put in this state after a point-in-time
rollforward operation, or after a load operation with the no copy option.
The table space must be backed up before it can be used. (If it is not backed
up, the table space cannot be updated, but read only operations are
allowed.)

Enhancing Recovery Performance

The following should be considered when thinking about recovery
performance:
v You can improve performance for databases that are frequently updated by

placing the logs on a separate device. In the case of an online transaction
processing (OLTP) environment, often more I/O is needed to write data to
the logs than to store a row of data. Placing the logs on a separate device
will minimize the disk arm movement that is required to move between a
log and the database files.
You should also consider what other files are on the disk. For example,
moving the logs to the disk used for system paging in a system that has
insufficient real memory will defeat your tuning efforts.

v To reduce the amount of time required to complete a restore operation:
– Adjust the restore buffer size. The buffer size must be a multiple of the

buffer size that was used during the backup operation.
– Increase the number of buffers.

If you use multiple buffers and I/O channels, you should use at least
twice as many buffers as channels to ensure that the channels do not
have to wait for data. The size of the buffers used will also contribute to
the performance of the restore operation. The ideal restore buffer size
should be a multiple of the extent size for the table spaces.
If you have multiple table spaces with different extent sizes, specify a
value that is a multiple of the largest extent size.
The minimum recommended number of buffers is the number of media
devices or containers plus the number specified for the PARALLELISM
option.

– Use multiple source devices.
– Set the PARALLELISM option for the restore operation to be at least one

(1) greater than the number of source devices.
v If a table contains large amounts of long field and LOB data, restoring it

could be very time consuming. If the database is enabled for rollforward
recovery, the RESTORE command provides the capability to restore selected

Understanding Table Space States

54 Data Recovery and High Availability Guide and Reference

table spaces. If the long field and LOB data is critical to your business,
restoring these table spaces should be considered against the time required
to complete the backup task for these table spaces. By storing long field and
LOB data in separate table spaces, the time required to complete the restore
operation can be reduced by choosing not to restore the table spaces
containing the long field and LOB data. If the LOB data can be reproduced
from a separate source, choose the NOT LOGGED option when creating or
altering a table to include LOB columns. If you choose not to restore the
table spaces that contain long field and LOB data, but you need to restore
the table spaces that contain the table, you must roll forward to the end of
the logs so that all table spaces that contain table data are consistent.

Note: If you back up a table space that contains table data without the
associated long or LOB fields, you cannot perform point-in-time
rollforward recovery on that table space. All the table spaces for a
table must be rolled forward simultaneously to the same point in
time.

v The following apply for both backup and restore operations:
– Multiple I/O buffers and devices should be used.
– Allocate at least twice as many buffers as devices being used.
– Do not overload the I/O device controller bandwidth.
– Use more buffers of smaller size rather than a few large buffers.
– Tune the number and the size of the buffers according to the system

resources.

Parallel Recovery
DB2 now uses multiple agents to perform both crash recovery and database
rollforward recovery. You can expect better performance during these
operations, particularly on symmetric multi-processor (SMP) machines; using
multiple agents during database recovery takes advantage of the extra CPUs
that are available on SMP machines.

The new agent type introduced by this enhancement is db2agnsc. DB2
chooses the number of agents to be used for database recovery based on the
number of CPUs on the machine. For SMP machines, the number of agents
used is (number of CPUs + 1). On a machine with a single CPU, multiple
agents are used for more efficient reading of logs, processing of log records,
and prefetching of data pages.

DB2 distributes log records to these agents so that they can be reapplied
concurrently, where appropriate. For example, the processing of log records
associated with insert, delete, update, add key, and delete key operations can
be parallelized in this way. Because the log records are parallelized at the
page level (log records on the same data page are processed by the same
agent), performance is enhanced, even if all the work was done on one table.

Enhancing Recovery Performance

Chapter 1. Developing a Good Backup and Recovery Strategy 55

DB2 Data Links Manager Considerations

The following sections provide information that applies if you have tables that
contain DATALINK columns. For a full description of DATALINK columns,
see the CREATE TABLE statement in the SQL Reference.

Crash Recovery Considerations
When an application issues SQL requests involving Data Links servers
running the DB2 Data Links Manager (using DATALINK columns with the
FILE LINK CONTROL attribute), the database manager distributes the work
to the Data Links servers. It also keeps track of which Data Links servers are
involved in the transaction. When the application issues a COMMIT for a
transaction, the database manager commits the transaction by using
two-phase commit protocol. In the first phase, the database manager writes a
PREPARE log record and distributes a PREPARE request to all Data Links
servers. Each Data Links server then responds with one of the following:
v YES; signifying that the Data Links server is prepared to commit
v NO; because of an error, Data Links server is not prepared to commit.

The first phase is considered successful if all Data Links servers respond
“YES”.

The processing in the second phase depends on the outcome of the first
phase. If at least one of the Data Links servers responded “NO”, the database
manager distributes ABORT requests to all the Data Links servers involved.
The transaction is rolled back and the error message SQL0903N with reason
code “03” is returned to the application. Otherwise, the database manager
proceeds to commit the transaction as it usually does in the absence of
involvement of Data Links servers. At the end of this processing, it distributes
a COMMIT request to all the Data Links servers involved in the transaction.

If a failure occurs on a Data Links server leaving some transactions in the
PREPARED state, these transactions are called indoubt transactions. The
database manager is responsible for tracking the outcome of these transactions
and eventually resolving them on the Data Links server. Whenever the
database manager determines that a failure has potentially created indoubt
transactions on a Data Links server, it marks the state of the Data Links server
as needing crash recovery. It disallows any SQL requests involving the Data
Links server while it is in this state. SQL0357N with reason code “03” is
returned to the application which made the SQL request.

At the time of RESTART, ACTIVATE DATABASE, or first CONNECT
processing, the database manager attempts to connect to each configured Data
Links server and attempts to resolve its indoubt transactions by aborting or
committing them. A Data Links server’s state is marked as available if all of
its indoubt transactions are resolved except those transactions that are also
indoubt on the database manager. In the available state, SQL requests

DB2 Data Links Manager Considerations

56 Data Recovery and High Availability Guide and Reference

involving the Data Links server are allowed. At the end of this attempt to
resolve indoubt transactions if the database manager determines that a Data
Links server still potentially has indoubt transactions which need resolution, it
marks the state of the Data Links server as needing crash recovery. This can
happen, for instance, if a Data Links server is not available during RESTART,
ACTIVATE DATABASE, or first CONNECT processing; or, the Data Links
server encounters a failure during that processing.

While a Data Links server configured to a database is in a state needing crash
recovery, the database manager disallows SQL requests involving that
particular Data Links server. SQL requests involving other data in the
database are still allowed. The database manager starts a process which
asynchronously attempts to complete crash recovery on each Data Links
server requiring recovery. When the process successfully completes the crash
recovery, the state of the Data Links server is marked as available thereby
allowing further SQL requests involving it.

Backup Utility Considerations
DB2 ensures that by the time a backup operation completes, linked files at
Data Links servers running the DB2 Data Links Manager are also backed up.
(The backup utility can run either online or offline, and the backup image can
be of either a database or a table space.) The description that follows only
applies to files that are linked by DATALINK columns that have the
RECOVERY parameter set to YES. (Files that are referenced by DATALINK
columns for which RECOVERY=NO is specified are not backed up.)

When files are linked, the Data Links servers schedule them to be copied
asynchronously to an archive server such as TSM, or to disk. When the
backup utility runs, DB2 ensures that all files scheduled for copying have
been copied. At the beginning of backup processing, DB2 contacts all Data
Links servers that are specified in the DB2 configuration file. If one or more
Data Links servers are configured for the database, the backup operation will
succeed, even if a Data Links server is not available. When the Data Links
server restarts, backup processing will be completed on that Data Links server
before it becomes available to the database again. If a Data Links server has
one or more linked files and is not running, or stops running during the
backup operation, the backup image will not contain complete DATALINK
information. The backup operation will complete successfully. The comment
field in the history file for that backup operation will identify the DLM server
that failed or, if there are more than four DLM servers that failed, the number
of DLM servers that failed. Once the DLMs have been successfully backed up,
the comment field is reset to its previous value.

Before the Data Links server can be marked as available to the database again,
backup processing for all outstanding backups must complete successfully.
(This is done automatically by an asynchronous process.) If a backup

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 57

operation is initiated when there are already twice the value of
num_db_backups (see below) outstanding backups waiting to be completed on
the Data Links server, the backup operation will fail. That Data Links server
must be restarted, and the outstanding backups completed before additional
backups are allowed.

When a file is unlinked, it is either deleted or returned to its previous
permissions, depending on the value specified for the ON UNLINK
parameter. A successful backup operation can cause the Data Links servers to
clean up the archived versions of files on the archive server (either disk or
TSM; see “Garbage Collection” on page 50). The num_db_backups database
configuration parameter specifies the number of DB2 database backups before
archived versions of the files (that were unlinked) are removed. For more
information about this configuration parameter, see the Administration Guide:
Performance book.

When unlinked files are removed, the information about the unlinked files is
also removed from the Data Links server registration tables.

Choosing a Backup Method for DB2 Data Links Manager on AIX
In addition to Disk Copy and XBSA, you can also use Tivoli Storage Manager
(TSM) for backing up files that reside on a Data Links server.

To use Tivoli Storage Manager as an archive server:
1. Install Tivoli Storage Manager on the Data Links server. For more

information, see your Tivoli Storage Manager product documentation.
2. Register the Data Links server client application with the Tivoli Storage

Manager server. For more information, see your Tivoli Storage Manager
product documentation.

3. Add the following environment variables to the Data Links Manager
Administrator’s db2profile or db2cshrc script files:

(for Bash, Bourne, or Korn shell)
export DSMI_DIR=/usr/tivoli/tsm/client/api/bin
export DSMI_CONFIG=$HOME/tsm/dsm.opt
export DSMI_LOG=$HOME/dldump
export PATH=$PATH:$DSMI_DIR

(for C shell)
setenv DSMI_DIR /usr/tivoli/tsm/client/api/bin
setenv DSMI_CONFIG ${HOME}/tsm/dsm.opt
setenv DSMI_LOG ${HOME}/dldump
setenv PATH=${PATH}:$DSMI_DIR

4. Ensure that the dsm.sys TSM system options file is located in the
$DSMI_DIR directory.

DB2 Data Links Manager Considerations

58 Data Recovery and High Availability Guide and Reference

5. Ensure that the dsm.opt TSM user options file is located in the
INSTHOME/tsm directory, where INSTHOME is the home directory of the
Data Links Manager Administrator.

6. Set the PASSWORDACCESS option to generate in the
/usr/tivoli/tsm/client/api/bin/dsm.sys Tivoli Storage Manager system
options file.

7. Register TSM password with the generate option before starting the Data
Links File Manager for the first time. This way, you will not need to
provide a password when the Data Links File Manager initiates a
connection to the TSM server. For more information, see your TSM
product documentation.

8. Set the DLFM_BACKUP_TARGET registry variable to TSM. The value of
DLFM_BACKUP_DIR_NAME registry variable will be ignored in this
case. This will activate the Tivoli Storage Manager backup option.

Notes:

a. If you change the setting of the DLFM_BACKUP_TARGET registry
variable between TSM and disk at run time, you should be aware that
the archived files are not moved to the newly specified archive
location. For example, if you start the Data Links File Manager with
the DLFM_BACKUP_TARGET registry value set to TSM, and change
the registry value to a disk location, all newly archived files will be
stored in the new location on the disk. The files that were previously
archived to TSM will not be moved to the new disk location.

b. To override the default TSM management class there is a new registry
variable called DLFM_TSM_MGMTCLASS. If this registry variable is
left unset then the default TSM management class will be used.

9. Stop the Data Links File Manager by entering the dlfm stop command.
10. Start the Data Links File Manager by entering the dlfm start command.

Choosing a Backup Method for DB2 Data Links Manager in the Solaris
Operating Environment
In addition to Disk Copy and XBSA, you can also use Tivoli Storage Manager
(TSM) for backing up files that reside on a Data Links server.

To use Tivoli Storage Manager as an archive server:
1. Install Tivoli Storage Manager on the Data Links server. For more

information, see your Tivoli Storage Manager product documentation.
2. Register the Data Links server client application with the Tivoli Storage

Manager server. For more information, see your Tivoli Storage Manager
product documentation.

3. Add the following environment variables to the Data Links Manager
Administrator’s db2profile or db2cshrc script files:

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 59

(for Bash, Bourne, or Korn shell)
export DSMI_DIR=/opt/tivoli/tsm/client/api/bin
export DSMI_CONFIG=$HOME/tsm/dsm.opt
export DSMI_LOG=$HOME/dldump
export PATH=$PATH:/opt/tivoli/tsm/client/api/bin

(for C shell)
setenv DSMI_DIR /opt/tivoli/tsm/client/api/bin
setenv DSMI_CONFIG ${HOME}/tsm/dsm.opt
setenv DSMI_LOG ${HOME}/dldump
setenv PATH=${PATH}:/opt/tivoli/tsm/client/api/bin

4. Ensure that the dsm.sys TSM system options file is located in the
/opt/tivoli/tsm/client/api/bin directory.

5. Ensure that the dsm.opt TSM user options file is located in the
INSTHOME/tsm directory, where INSTHOME is the home directory of the
Data Links Manager Administrator.

6. Set the PASSWORDACCESS option to generate in the
/opt/tivoli/tsm/client/api/bin/dsm.sys Tivoli Storage Manager system
options file.

7. Register TSM password with the generate option before starting the Data
Links File Manager for the first time. This way, you will not need to
provide a password when the Data Links File Manager initiates a
connection to the TSM server. For more information, see your TSM
product documentation.

8. Set the DLFM_BACKUP_TARGET registry variable to TSM. The value of
DLFM_BACKUP_DIR_NAME registry variable will be ignored in this
case. This will activate the Tivoli Storage Manager backup option.

Notes:

a. If you change the setting of the DLFM_BACKUP_TARGET registry
variable between TSM and disk at run time, you should be aware that
the archived files are not moved to the newly specified archive
location. For example, if you start the Data Links File Manager with
the DLFM_BACKUP_TARGET registry value set to TSM, and change
the registry value to a disk location, all newly archived files will be
stored in the new location on the disk. The files that were previously
archived to TSM will not be moved to the new disk location.

b. To override the default TSM management class there is a new registry
variable called DLFM_TSM_MGMTCLASS. If this registry variable is
left unset then the default TSM management class will be used.

9. Stop the Data Links File Manager by entering the dlfm stop command.
10. Start the Data Links File Manager by entering the dlfm start command.

Choosing a Backup Method for DB2 Data Links Manager on Windows NT
Whenever a DATALINK value is inserted into a table with a DATALINK
column that is defined for recovery, the corresponding DATALINK files on the

DB2 Data Links Manager Considerations

60 Data Recovery and High Availability Guide and Reference

Data Links server are scheduled to be backed up to an archive server.
Currently, Disk Copy (default method) and Tivoli Storage Manager are the
two options that are supported for file backup to an archive server. Future
releases of DB2 Data Links Manager for Windows NT will support other
vendors’ backup media and software.

Disk Copy (default method)

When the backup utility is invoked on the DB2 server, it ensures that
the linked files in the database are backed up on the Data Links
server to the directory specified by the DLFM_BACKUP_DIR_NAME
environment variable. The default value for this variable is
c:\dlfmbackup, where c:\ represents the Data Links Manager backup
installation drive.

To set this variable to c:\dlfmbackup, enter the following command:
db2set -g DLFM_BACKUP_DIR_NAME=c:\dlfmbackup

The location specified by the DLFM_BACKUP_DIR_NAME
environment variable must not located on a file system using a Data
Links Filesystem Filter and that the required space is available in the
directory you specified for the backup files.

Also, ensure that the DLFM_BACKUP_TARGET variable is set to
LOCAL by entering the following command:

db2set -g DLFM_BACKUP_TARGET=LOCAL

After setting or changing these variables, stop and restart the Data
Links File Manager using the dlfm stop and dlfm start commands.

Tivoli Storage Manager

To use Tivoli Storage Manager as an archive server:
1. Install Tivoli Storage Manager on the Data Links server. For more

information, see your Tivoli Storage Manager product
documentation.

2. Register the Data Links server client application with the Tivoli
Storage Manager server. For more information, see your Tivoli
Storage Manager product documentation.

3. Click on Start and select Settings —> Control Panel —> System.
The System Properties window opens. Select the Environment
tab and enter the following environment variables and
corresponding values:

Variable Value

DSMI_DIR c:\tsm\baclient

DSMI_CONFIG c:\tsm\baclient\dsm.opt

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 61

Variable Value

DSMI_LOG c:\tsm\dldump

4. Ensure that the dsm.sys TSM system options file is located in the
c:\tsm\baclient directory.

5. Ensure that the dsm.opt TSM user options file is located in the
c:\tsm\baclient directory.

6. Set the PASSWORDACCESS option to generate in the
c:\tsm\baclient\dsm.sys Tivoli Storage Manager system options
file.

7. Register TSM password with the generate option before starting
the Data Links File Manager for the first time. This way, you will
not need to provide a password when the Data Links File
Manager initiates a connection to the TSM server. For more
information, see your TSM product documentation.

8. Set the DLFM_BACKUP_TARGET environment variable to TSM
using the following command:

db2set -g DLFM_BACKUP_TARGET=TSM

The value of the DLFM_BACKUP_DIR_NAME environment
variable will be ignored in this case. This will activate the Tivoli
Storage Manager backup option.

Notes:

a. If you change the setting of the DLFM_BACKUP_TARGET
environment variable between TSM and LOCAL at run time,
you should be aware that the archived files are not moved to
the newly specified archive location. For example, if you start
the Data Links File Manager with the
DLFM_BACKUP_TARGET environment variable set to TSM,
and change its value to LOCAL, all newly archived files will
be stored in the new location on the disk. The files that were
previously archived to TSM will not be moved to the new
disk location.

b. To override the default TSM management class there is a new
environment variable called DLFM_TSM_MGMTCLASS. If
this variable is left unset then the default TSM management
class will be used.

9. Stop the Data Links File Manager by entering the dlfm stop
command.

10. Start the Data Links File Manager by entering the dlfm start
command.

DB2 Data Links Manager Considerations

62 Data Recovery and High Availability Guide and Reference

Backing up a Journaled File System on AIX
You can perform an offline backup of a journaled file system on AIX after
stopping the Data Links Manager. The following approach, which removes the
requirement of stopping the Data Links Manager, is suggested for users who
require higher availability.
1. Access the CLI source file quiesce.c and the shell script online.sh. These

files are located in the /samples/dlfm directory.
2. Compile quiesce.c:

xlC -o quiesce -L$HOME/sqllib/lib -I$HOME/sqllib/include -c quiesce.c

3. As root, run the script on the node that has the DLFS file system.

The shell script online.sh assumes that you have a catalog entry on the Data
Link Manager node for each database that is registered with the Data Link
Manager. It also assumes that /etc/filesystems has the complete entry for
the DLFS file system. The shell script does the following:
v Quiesces all the tables in databases that are registered with the Data Links

Manager. This will stop any new activity.
v Unmounts and remounts the file system as a read-only file system.
v Performs a file system backup.
v Unmounts and remounts the file system as a read-write file system.
v Resets the DB2 tables; that is, brings them out of the quiesce state.

The script must be modified to suit your environment as follows:
1. Select the backup command and put in the do_backup function of the

script.
2. Set the following environment variables within the script:

v DLFM_INST: set this to the DLFM instance name.
v PATH_OF_EXEC: set this to the path where the ″quiesce″ executable

resides.

Invoke the script as follows:
online.sh <filesystem_name>

Restore and Rollforward Utility Considerations
The information that follows applies if you have a DATALINK column (or
columns) that is defined with RECOVERY=YES option for a table. If a table
has a DATALINK column defined with the RECOVERY=NO option, the table
is put in datalink reconcile pending state at the end of the restore operation.
For more information, see “Reconciling Data Links” on page 74.

During restore operations, tables with DATALINK columns may be put into
one of two states:
v Datalink reconcile not possible

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 63

When a table is in datalink reconcile not possible state, it is available for
unrestricted actions against columns that are not DATALINK columns.
When a DATALINK column is involved in a SELECT statement, a warning
is returned. You can issue UPDATE calls to DATALINK columns (with
some restrictions: see “Removing a Table From Datalink Reconcile Not
Possible State” on page 74 for details). You cannot issue INSERT and
DELETE statements, because they involve the DATALINK column.

v Datalink reconcile pending

When a table is in datalink reconcile pending> state, it is available for
unrestricted actions against columns that are not DATALINK columns.
When a DATALINK column is involved in a SELECT statement, a warning
is returned. You cannot issue any DML statements such as UPDATE,
INSERT, or DELETE.

These states are reported in the db2diag.log file when the restore or
rollforward utilities run. You can also use the db2dart command to obtain this
information.

When you restore a database or table space, the following conditions must be
satisfied for the restore operation to succeed:
v If any Data Links Server recorded in the backup file is not running, the

restore operation will still complete successfully.
Tables with DATALINK column information that are affected by the
missing Data Links server will be put in datalink reconcile pending state
after the restore operation (or the rollforward operation, if used) completes.
Before the Data Links servers can be marked as available to the database
again, this restore processing must complete successfully. The asynchronous
process that completes backup processing once the DLM becomes available
(see “Backup Utility Considerations” on page 57 also completes restore
processing.

v If any Data Links Server recorded in the backup file stops running during
the restore operation, the restore operation will fail. The restore can be
restarted with the Data Links Server down (see above).

v If a previous database restore operation is still incomplete on any Data
Links server, subsequent database or table space restore operations will fail
until those Data Links servers are restarted, and the incomplete restore is
completed.

v Information about all DATALINK columns that are recorded in the backup
file must exist in the appropriate Data Links servers’ registration tables.
If all the information about the DATALINK columns is not recorded in the
registration tables, the table with the missing DATALINK column
information is put in datalink reconcile not possible state after the restore
operation (or the rollforward operation, if used) completes.

DB2 Data Links Manager Considerations

64 Data Recovery and High Availability Guide and Reference

If the backup is not recorded in the registration tables, it may mean that the
backup file that is provided is earlier than the value for num_db_backups
and has already been ″garbage collected″. This means that the archived files
from this earlier backup have been removed and cannot be restored. All
tables that have DATALINK columns are put in datalink reconcile pending
state.
If the backup is not recorded in the registration tables, it may mean that
backup processing has not yet been completed because the Data Links
server is not running. All tables that have DATALINK columns are put in
datalink reconcile pending state. When the Data Links server is restarted,
backup processing will be completed before restore processing.
The table remains available to users, but the values in the DATALINK
columns may not reference the files accurately (for example, a file may not
be found that matches a value for the DATALINK column). If you do not
want this behavior, you can put the table into check pending state by
issuing the ″SET CONSTRAINTS for tablename TO DATALINK
RECONCILE PENDING″ statement.

If, after a restore operation, you have a table in datalink reconcile not possible
state, you can fix the DATALINK column data in one of the ways suggested
under “Removing a Table From Datalink Reconcile Not Possible State” on
page 74.

Note: In the process of marking a file from the unlinked state to the linked
state, that file may have to be retrieved from an archive server to the
file system. If an error occurs during this process (for example, a file
cannot be copied into the file system because of duplicate file names),
the corresponding table is placed in datalink reconcile pending state.

It is strongly recommended that the datalink.cfg file be archived to cover
certain unusual recovery cases, since the datalink.cfg file in the database
backup image only reflects the datalink.cfg as of the backup time. Having
the latest datalink.cfg file is required to cover all recovery cases. Therefore,
the datalink.cfg file must be backed up after every ADD DATALINKS
MANAGER or DROP DATALINKS MANAGER command invocation. This
would help to retrieve the latest datalink.cfg file, if the latest datalink.cfg
file is not available on disk.

If the latest datalink.cfg file is not available on disk, replace the existing
datalink.cfg file (restored from a backup image) with the latest datalink.cfg
file that was archived before running a rollforward operation. Do this after the
database is restored.

Restoring Databases From an Offline Backup Without Rolling Forward
You can only restore without rolling forward at the database level, not the
table space level. To restore a database without rolling forward, you can either

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 65

restore a non-recoverable database (that is, a database that uses circular
logging), or specify the WITHOUT ROLLING FORWARD parameter on the
RESTORE DATABASE command.

If you use the restore utility with the WITHOUT DATALINK option, all tables
with DATALINK columns are placed in datalink reconcile pending (DRP)
state, and no reconciliation is performed with the Data Links servers during
the restore operation.

If you do not use the WITHOUT DATALINK option, and a Data Links server
recorded in the backup file is no longer defined to the database (that is, it has
been dropped using the DROP DATALINKS MANAGER command), tables
that contain DATALINK data referencing the dropped Data Links server are
put in DRP state by the restore utility.

If you do not use the WITHOUT DATALINK option, all the Data Links
servers are available, and all information about the DATALINK columns is
fully recorded in the registration tables, the following occurs for each Data
Links server recorded in the backup file:
v All files linked after the backup image that was used for the database

restore operation are marked as unlinked (because they are not recorded in
the backup image as being linked).

v All files that were unlinked after the backup image, but that were linked
before the backup image was taken, are marked as linked (because they are
recorded in the backup image as being linked). If the file was subsequently
linked to another table in another database, the restored table is put into
the datalink reconcile pending state.

Note: The above cannot be done if the backup image that was used for the
database restore operation was taken when at least one Data Links
server was not running, since the DATALINK information in the
backup is incomplete. The above is also not done if the backup image
that was used for the database restore operation was taken after a
database restore operation with or without rollforward recovery. In
both cases, all tables with DATALINK columns are placed in datalink
reconcile pending state, and no reconciliation is performed with the
Data Links servers during the restore operation.

Restoring Databases and Table Spaces, and Rolling Forward to the End of
the Logs

If you restore, then roll the database or table spaces forward to the end of logs
(meaning that all logs are provided), a reconciliation check is not required
unless at least one of the Data Links servers recorded in the backup file is not
running during the restore operation. If you are not sure whether all the logs
were provided for the rollforward operation, or think that you may need to
reconcile DATALINK values, do the following:

DB2 Data Links Manager Considerations

66 Data Recovery and High Availability Guide and Reference

1. Issue the SQL statement for the table (or tables) involved:
SET CONSTRAINTS FOR tablename TO DATALINK RECONCILE PENDING

This puts the table in both datalink reconcile pending state and check
pending state.

2. If you do not want a table to be in check pending state, issue the
following SQL statement:

SET CONSTRAINTS FOR tablename IMMEDIATE CHECKED

This takes the table out of check pending state, but leaves it in datalink
reconcile pending state. You must use the reconcile utility to take the table
out of this state.

It may happen that the backup file contains DATALINK data that refers to a
DB2 Data Links Manager (that is, a DB2 Data Links Manager was registered
to the database when the backup was taken) that has been dropped from the
database. For each table space being rolled forward that contains at least one
table with DATALINK data referencing the dropped DB2 Data Links Manager,
all tables with DATALINK columns are put in DRP state by the rollforward
utility.

Restoring Databases and Table Spaces, and Rolling Forward to a Point in
Time

When working with Data Links tables, you can roll forward to the end of the
logs or to a specified point in time.

Tables in table spaces that are rolled forward to a point in time are placed in
datalink reconcile pending state at the end of the rollforward operation. You
should use the reconcile utility to remove them from this state. For more
information, see “Reconciling Data Links” on page 74.

Point in Time Rollforward Example
Following is a simple scenario showing the files that need to be retained in
order to handle backup and recovery. The example shows changes to the
value of a single row in column of type DATALINK together with the files
that the DB2 Data Links Manager needs to retain to support recovery. For this
example, the assumption is made that there is no support for point in time
recovery of these files earlier than the last backup. Data Links servers running
the DB2 Data Links Manager do not have such a restriction. Observe that
fileA exists until time 3, at which time it is deleted because it was unlinked at
time 2, and the policy for the database in this example is to keep the unlinked
files until the next backup is run (that is, the num_db_backups database
configuration parameter is set to 1).

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 67

Time 1 2 3 4 5 6 7

Activity Create Update Backup Update Update Delete Restore
to 5

Column
Value

valueA valueB valueB valueC valueD - valueD

Linked
File

fileA fileB fileB fileC fileD - fileD

Extra
Files
Kept by
Data
Links
File
Manager

fileA fileB fileB,
fileC

fileB,
fileC,
fileD

fileB,
fileC

Note: Recovery of linked files is always done in conjunction with the rest of
the database.

DB2 Data Links Manager and Recovery Interactions
The following table shows the different types of recovery that you can
perform, the DB2 Data Links Manager processing that occurs during restore
and rollforward processing, and whether you need to invoke the reconcile
utility after the recovery is complete:

Type of Recovery DB2 Data Links
Manager
Processing during
Restore

DB2 Data Links
Manager
Processing during
Rollforward

Reconcile

Non-recoverable database

Database restore of
a complete backup,
all Data Links
Servers up

Fast reconcile is
performed

N/A Can be optionally
run if problem with
file links is
suspected

Database restore
using WITHOUT
DATALINK option

Tables put in
datalink reconcile
pending state

N/A Required

DB2 Data Links Manager Considerations

68 Data Recovery and High Availability Guide and Reference

Type of Recovery DB2 Data Links
Manager
Processing during
Restore

DB2 Data Links
Manager
Processing during
Rollforward

Reconcile

Database restore of
a complete backup,
at least one Data
Links server down

Fast reconcile is
performed only on
those tables in table
spaces that do not
have links to a Data
Links server that is
down, other tables
put in datalink
reconcile pending
state

NA Required for tables
in table spaces with
links to the Data
Links server that is
down

Database restore of
an incomplete
backup, all Data
Links servers up

Fast reconcile is not
performed, all
tables with
DATALINK
columns put in
datalink reconcile
pending state

NA Required

Recoverable database

Database restore
using WITHOUT
ROLLING
FORWARD option,
using a complete
backup, all Data
Links servers up

Fast reconcile is
performed

N/A Optional

Database restore
using WITHOUT
ROLLING
FORWARD and
WITHOUT
DATALINK options,
using a complete or
incomplete backup,
Data Links servers
up or down

Tables put in
datalink reconcile
pending state

N/A Required

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 69

Type of Recovery DB2 Data Links
Manager
Processing during
Restore

DB2 Data Links
Manager
Processing during
Rollforward

Reconcile

Database restore
using WITHOUT
ROLLING
FORWARD option,
using a complete
backup, at least one
Data Links server
down

Fast reconcile is
performed only on
those tables in table
spaces that do not
have links to the
Data Links servers
that are down, other
tables put in
datalink reconcile
pending state

N/A Required on tables
in table spaces with
links to the Data
Links servers that
are down

Database restore
using WITHOUT
ROLLING
FORWARD option,
using an incomplete
backup, Data Links
servers up or down

Fast reconcile is not
performed, all
tables with
DATALINK
columns put in
datalink reconcile
pending state

N/A Required

Database restore
and rollforward to
end of logs, using a
complete backup,
all Data Links
servers up

No action No action Optional

Database restore
and rollforward to
end of logs, using a
complete backup, at
least one Data Links
server down during
rollforward
processing

No action No action Optional

Database restore
and rollforward to
end of logs, using a
complete or an
incomplete backup,
any Data Links
server down during
restore

No action All tables with
DATALINK
columns put in
datalink reconcile
pending state

Required for all
tables with
DATALINK
columns

DB2 Data Links Manager Considerations

70 Data Recovery and High Availability Guide and Reference

Type of Recovery DB2 Data Links
Manager
Processing during
Restore

DB2 Data Links
Manager
Processing during
Rollforward

Reconcile

Database restore
and rollforward to
end of logs, using
an incomplete
backup, all Data
Links servers up
during restore

No action No action Optional

Database restore
and rollforward to
end of logs, using a
complete or an
incomplete backup,
all Data Links
servers up, backup
unknown at any
Data Links server

No action All tables in table
spaces with links to
a Data Links server
where the backup is
unknown put in
datalink reconcile
pending state

Required

Table space restore
and rollforward to
end of logs, using a
complete backup,
all Data Links
servers up

No action No action Optional

Table space restore
and rollforward to
end of logs, using a
complete backup, at
least one Data Links
server down during
rollforward
processing

No action No action Optional

Table space restore
and rollforward to
end of logs, using a
complete or an
incomplete backup,
any Data Links
server down during
restore processing

No action All tables in table
spaces with links to
any Data Links
server that is down
put in datalink
reconcile pending
state

Required for tables
in table spaces with
links to any Data
Links server that is
down

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 71

Type of Recovery DB2 Data Links
Manager
Processing during
Restore

DB2 Data Links
Manager
Processing during
Rollforward

Reconcile

Table space restore
and rollforward to
end of logs, using
an incomplete
backup, all Data
Links servers up

No action No action Optional

Database restore
and rollforward to a
point in time, using
a complete or an
incomplete backup,
Data Links servers
up or down during
restore and/or
rollforward
processing

No action Tables put in
datalink reconcile
pending state

Required

Table space restore
and rollforward to a
point in time, using
a complete or an
incomplete backup,
Data Links servers
up or down during
restore and/or
rollfoward
processing

No action Tables put in
datalink reconcile
pending state

Required

Database restore to
a different database
name, alias,
hostname, or
instance with no
rollforward (see
Note 1 on page 73)

Tables put in
datalink reconcile
not possible state

N/A Optional, but tables
in datalink reconcile
not possible state
must be manually
fixed

Database restore to
a different database
name, alias,
hostname or
instance, and
rollforward

No action Tables put in
datalink reconcile
not possible state

Optional, but tables
in datalink reconcile
not possible state
must be manually
fixed

DB2 Data Links Manager Considerations

72 Data Recovery and High Availability Guide and Reference

Type of Recovery DB2 Data Links
Manager
Processing during
Restore

DB2 Data Links
Manager
Processing during
Rollforward

Reconcile

Database restore
from an unusable
backup (image has
been
garbage-collected on
the Data Links
server) with no
rollforward (see
Note 1), with or
without the
WITHOUT
DATALINK option

Tables put in
datalink reconcile
pending state

No action Required

Database restore
from an unusable
backup (image has
been
garbage-collected on
the Data Links
server), and
rollforward, with or
without WITHOUT
DATALINK option

No action Tables put in
datalink reconcile
pending state

Required

Table space restore
from an unusable
backup (image has
been
garbage-collected on
the Data Links
server), and
rollforward

No action Tables put in
datalink reconcile
pending state

Required

Notes:

1. A restore operation using an online backup image and the WITHOUT
ROLLING FORWARD option, or a restore operation using an offline
backup image.

2. A complete backup is a backup taken when all required Data Links servers
were running. An incomplete backup is a backup taken when at least one
required Data Links server was not running.

3. Fast reconcile processing will not be performed if the backup image that
was used for the database restore operation was taken after a database
restore, with or without rollforward. In this case, all tables with
DATALINK columns are put in datalink reconcile pending state.

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 73

Removing a Table From Datalink Reconcile Not Possible State
A restored table (or tables) with a DATALINK column is put in datalink
reconcile not possible state if a table space is restored from a backup that is
earlier than the value specified for the num_db_backups database configuration
parameter. For more information about this configuration parameter, see the
Administration Guide: Performance book.

DB2 still allows the table to be accessed, even though the DATALINK column
values may not be valid. If you want to prevent access to a table with
possibly inconsistent DATALINK column values, issue the SET
CONSTRAINTS for tablename TO DATALINK RECONCILE PENDING
command. You can update the DATALINK values as follows:
v Using the SQL UPDATE statement, set the data location part of a

DATALINK column value to a zero-length URL if the column is not
nullable, or to NULL if the column is nullable.

v Restore the files on the appropriate Data Links servers. Then run an
application that issues SELECT statements to read the DATALINK column
values, and issues UPDATE statements to update the DATALINK column
with the same values. Note that the datalink reconcile not possible state
must be in effect while the DATALINK column values are being updated.
After the update operation completes, the files will be marked as linked on
the appropriate Data Links servers.

You then reset the datalink reconcile not possible state by issuing the
following command:

SET CONSTRAINTS FOR tablename DATALINK RECONCILE PENDING IMMEDIATE UNCHECKED

Reconciling Data Links
You use the reconcile utility to reconcile data links. The utility is initiated from
DB2, and involves all the Data Links servers running the DB2 Data Links
Manager that are referenced by the DATALINK column values. It validates
that the referenced files either exist on the Data Links server, or that links can
be re-established. The following sections describe how DB2 detects whether
you need to reconcile data links, and how to reconcile them.

If a Data Links server file reference does not exist or cannot be re-established,
the reconcile utility places a copy of the rows in error along with a reason for
each into an exception table (if specified), then modifies the offending rows. If
the exception table is not specified, the DATALINK column values for which a
file reference could not be re-established are copied to an exception report file
along with a column-ID and reason. You can use the exception table (if
specified) information or the report to update the rows to make the required
corrections. The exception table used with the reconcile utility is identical to
the exception table used by the load utility. For more information about the
load utility, see the Data Movement Utilities Guide and Reference. The report uses

DB2 Data Links Manager Considerations

74 Data Recovery and High Availability Guide and Reference

the naming convention report.exp (the .exp extension is supplied by the
reconcile utility). For example, you can invoke the reconcile utility with the
following statement:

db2 RECONCILE dept DLREPORT /u/scottba/report FOR EXCEPTION excptab

This command reconciles the table called dept, and writes exceptions to the
exception table excptab, which was created by the user. Information about
files that were unlinked during reconciliation are written to the file
report.ulk, which is created in the directory /u/scottba. If FOR EXCEPTION
excptab is not specified, then the exception information is written to the file
report.exp, which is created in the directory /u/scottba. For more
information about the reconcile utility, see the Command Reference.

Detection of Situations That Require Reconciliation
Following are some situations in which you may need to run the reconcile
utility:
v The entire database is restored and rolled forward to a point in time.

Because the entire database is rolled forward to a committed transaction, no
tables will be in check pending state (due to referential constraints or check
constraints). All data in the database is brought to a consistent state. The
DATALINK columns, however, may not be synchronized with the metadata
in the DB2 Data Links Manager, and reconciliation is required.
In this situation, tables with DATALINK data will already be in DRP state.
You should invoke the reconcile utility for each of these tables.

v A particular Data Links server running the DB2 Data Links Manager loses
track of its metadata. This can occur for different reasons. For example:
– The Data Links server was cold started.
– The Data Links server metadata was restored to a back-level state.

In some situations, such as during SQL UPDATEs and DELETEs, DB2 may
be able to detect a problem with the metadata in a Data Links server. In
these situations, the SQL statement would fail. You would put the table in
DRP state by using the SET CONSTRAINTS statement, then run the
reconcile utility on that table.

v A file system is not available (for example, because of a disk crash) and is
not restored to the current state. In this situation, files may be missing.

v A DB2 Data Links Manager is dropped from a database, and there are
DATALINK FILE LINK CONTROL values referencing that DB2 Data Links
Manager. You should run the reconcile utility on such tables.

Summary of Procedure for Reconciliation
If you need to reconcile data links because of point in time recovery, or
because Data Links servers running the DB2 Data Links Manager and DB2
control information do not match:

DB2 Data Links Manager Considerations

Chapter 1. Developing a Good Backup and Recovery Strategy 75

1. Put the table in datalink reconcile pending state by issuing the SET
CONSTRAINTS statement. (In some situations, DB2 will do this for you.)

2. Use the reconcile utility to resolve the links, and take the appropriate
actions for the exceptions in the exception table or in the exception report.

DB2 Data Links Manager Considerations

76 Data Recovery and High Availability Guide and Reference

Chapter 2. Database Backup

This section describes the DB2 UDB backup utility, which is used to create
backup copies of a database or table spaces.

The following topics are covered:
v “Backup Overview”
v “Privileges, Authorities, and Authorization Required to Use Backup” on

page 80
v “Using Backup” on page 80
v “Displaying Backup Information” on page 81
v “Backing Up to Tape” on page 81
v “Backing Up to Named Pipes” on page 83
v “BACKUP DATABASE Command” on page 84
v “Backup Database API” on page 88
v “Data Structure: SQLU-MEDIA-LIST” on page 96
v “Data Structure: SQLU-TABLESPACE-BKRST-LIST” on page 100
v “Example Backup Sessions” on page 102
v “Optimizing Backup Performance” on page 102
v “Backup Restrictions” on page 103
v “Troubleshooting Backup” on page 103

Backup Overview

The simplest form of the DB2 BACKUP DATABASE command requires only
that you specify the alias name of the database that you want to back up. For
example:

db2 backup db sample

If the command completes successfully, you will have acquired a new backup
image that is located in the path or the directory from which the command
was issued. It is located in this directory because the command in this
example does not explicitly specify a target location for the backup image. On
Windows NT/2000, for example, this command (when issued from the root
directory) creates an image that appears in a directory listing as follows:
Directory of D:\SAMPLE.0\DB2\NODE0000\CATN0000\20010320

03/20/2001 12:26p <DIR> .
03/20/2001 12:26p <DIR> ..
03/20/2001 12:27p 12,615,680 122644.001

© Copyright IBM Corp. 2001 77

Backup images are created at the target location that you have the option to
specify when you invoke the backup utility. This location can be:
v A directory (for backups to disk or diskette)
v A device (for backups to tape)
v A Tivoli Storage Manager (TSM) server (see “Appendix G. Tivoli Storage

Manager” on page 433)
v Another vendor’s server
v Specified through a user exit program (OS/2 only).

The recovery history file is updated automatically with summary information
whenever you invoke a full database backup operation. This file is created in
the same directory as the database configuration file. For more information
about the recovery history file, see “Understanding the Recovery History File”
on page 48.

On UNIX based systems, file names for backup images created on disk consist
of a concatenation of several elements, separated by periods:

DB_alias.Type.Inst_name.NODEnnnn.CATNnnnn.timestamp.Seq_num

For example:
STAFF.0.DB201.NODE0000.CATN0000.19950922120112.001

On other platforms, a four-level subdirectory tree is used:
DB_alias.Type\Inst_name.NODEnnnn\CATNnnnn\yyyymmdd\hhmmss.Seq_num

For example (Windows NT/2000):
SAMPLE.0\DB2\NODE0000\CATN0000\20010320\122644.001

Database alias A 1- to 8-character database alias name that
was specified when the backup utility was
invoked.

Type Type of backup operation, where: 0 represents
a full database-level backup, 3 represents a
table space-level backup, and 4 represents a
backup image generated by the LOAD...COPY
TO command.

Instance name A 1- to 8-character name of the current
instance that is taken from the
DB2INSTANCE environment variable.

Node number The node number. In non-partitioned database
systems, this is always NODE0000. In
partitioned database systems, it is NODExxxx,

Backup Overview

78 Data Recovery and High Availability Guide and Reference

where xxxx is the number assigned to the
node in the db2nodes.cfg file.

Catalog node number The node number of the catalog node for the
database. In non-partitioned database systems,
this is always CATN0000. In partitioned
database systems, it is CATNxxxx, where xxxx is
the number assigned to the node in the
db2nodes.cfg file.

Time stamp A 14-character representation of the date and
time at which the backup operation was
performed. The time stamp is in the form
yyyymmddhhnnss, where:
v yyyy represents the year (1995 to 9999)
v mm represents the month (01 to 12)
v dd represents the day of the month (01 to

31)
v hh represents the hour (00 to 23)
v nn represents the minutes (00 to 59)
v ss represents the seconds (00 to 59)

Sequence number A 3-digit number used as a file extension.

When a backup image is written to tape:
v File names are not created, but the information described above is stored in

the backup header for verification purposes.
v A tape device must be available through the standard operating system

interface. On a large partitioned database system, however, it may not be
practical to have a tape device dedicated to each database partition server.
You can connect the tape devices to one or more TSM servers, so that access
to these tape devices is provided to each database partition server. For more
information about TSM, see “Appendix G. Tivoli Storage Manager” on
page 433.

v On a partitioned database system, you can also use products that provide
virtual tape device functions, such as REELlibrarian 4.2 or CLIO/S. You can
use these products to access the tape device connected to other nodes
(database partition servers) through a pseudo tape device. Access to the
remote tape device is provided transparently, and the pseudo tape device
can be accessed through the standard operating system interface.

Backup Overview

Chapter 2. Database Backup 79

Privileges, Authorities, and Authorization Required to Use Backup

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the
backup utility.

Using Backup

Before Using Backup
You should not be connected to the database that is to be backed up: the
backup utility automatically establishes a connection to the specified database,
and this connection is terminated at the completion of the backup operation.

The database can be local or remote. The backup image remains on the
database server, unless you are using a storage management product such as
Tivoli Storage Manager (TSM).

On a partitioned database system, database partitions are backed up
individually. The operation is local to the database partition server on which
you invoke the utility. You can, however, issue db2_all from one of the
database partition servers in the instance to invoke the backup utility on a list
of servers, which you identify by node number. (Use the LIST NODES
command to identify the nodes, or database partition servers, that have user
tables on them. For information about the LIST NODES command, see the
Command Reference.) If you do this, you must back up the catalog node first,
then back up the other database partitions. You can also use the Command
Center to back up database partitions. Because this approach does not support
rollforward recovery, back up the database residing on these nodes regularly.
You should also keep a copy of the db2nodes.cfg file with any backup copies
you take, as protection against possible damage to this file.

On a distributed request system, backup operations apply to the distributed
request database and the metadata stored in the database catalog (wrappers,
servers, nicknames, and so on). Data source objects (tables and views) are not
backed up, unless they are stored in the distributed request database.

If a database was created with a previous release of the database manager,
and the database has not been migrated, you must migrate the database
before you can back it up. For information about migrating databases, see the
Administration Guide: Planning book.

Authorities Required to Use Backup

80 Data Recovery and High Availability Guide and Reference

Invoking Backup
The backup utility can be invoked through:
v The command line processor (CLP).

Following is an example of the BACKUP DATABASE command issued
through the CLP:

db2 backup database sample to c:\DB2Backups

v The Backup Database notebook or wizard in the Control Center. To open
the Backup Database notebook or wizard:
1. From the Control Center, expand the object tree until you find the

Databases folder.
2. Click on the Databases folder. Any existing databases are displayed in

the pane on the right side of the window (the contents pane).
3. Click the right mouse button on the database you want in the contents

pane, and select Backup Database or Backup Database Using Wizard
from the pop-up menu. The Backup Database notebook or the Backup
Database wizard opens.

For general information about the Control Center, see the Administration
Guide. Detailed information is provided through the online help facility
within the Control Center.

v An application programming interface (API), sqlubkp. For information
about this API, see “Backup Database API” on page 88. For general
information about creating applications containing DB2 administrative APIs,
see the Application Building Guide.

Displaying Backup Information

You can use db2ckbkp to display information about existing backup images.
This utility allows you to:
v Test the integrity of a backup image and determine whether or not it can be

restored.
v Display information that is stored in the backup header.

For detailed information about this utility, see “db2ckbkp - Check Backup” on
page 306.

Backing Up to Tape

When you back up your database or table space, you must correctly set your
block size and your buffer size. This is particularly true if you are using a
variable block size (on AIX, for example, if the block size has been set to
zero).

Using Backup

Chapter 2. Database Backup 81

There is a restriction on the number of fixed block sizes that can be used
when backing up. This restriction exists because DB2 writes out the backup
image header as a 4-KB block. The only fixed block sizes DB2 supports are
512, 1024, 2048, and 4096 bytes. If you are using a fixed block size, you can
specify any backup buffer size. However, you may find that your backup
operation will not complete successfully if the fixed block size is not one of
the sizes that DB2 supports.

If your database is large, using a fixed block size means that your backup
operations will take a long time. You may want to consider using a variable
block size.

Note: Use of a variable block size is currently not supported. If you must use
this option, ensure that you have well tested procedures in place that
enable you to recover successfully, using backup images that were
created with a variable block size.

When using a variable block size, you must specify a backup buffer size that
is less than or equal to the maximum limit for the tape devices that you are
using. For optimal performance, the buffer size must be equal to the
maximum block size limit of the device being used.

Restoring from a backup image with variable block size may return an error.
If this happens, you may need to rewrite the image using an appropriate
block size. Following is an example on AIX:

tcl -b 0 -Bn -f /dev/rmt0 read > backup_filename.file
dd if=backup_filename.file of=/dev/rmt0/ obs=4096 conv=sync

The backup image is dumped to a file called backup_filenam.file. The dd
command dumps the image back onto tape, using a block size of 4096.

There is a problem with this approach if the image is too large to dump to a
file. One possible solution is to use the dd command to dump the image from
one tape device to another. This will work as long as the image does not span
more than one tape. When using two tape devices, the dd command is:

dd if=/dev/rmt1 of=/dev/rmt0 obs=4096

If using two tape devices is not possible, you may be able to dump the image
to a raw device using the dd command, and then to dump the image from the
raw device to tape. The problem with this approach is that the dd command
must keep track of the number of blocks dumped to the raw device. This
number must be specified when the image is moved back to tape. If the dd
command is used to dump the image from the raw device to tape, the
command dumps the entire contents of the raw device to tape. The dd utility
cannot determine how much of the raw device is used to hold the image.

Backing Up to Tape

82 Data Recovery and High Availability Guide and Reference

When using the backup utility, you will need to know the maximum block
size limit for your tape devices. Here are some examples:

Device Attachment Block Size Limit DB2 Buffer Size
Limit (in 4-KB
pages)

8 mm scsi 131,072 32

3420 s370 65,536 16

3480 s370 65,536 16

3490 s370 65,536 16

3490E s370 65,536 16

7332 (4 mm)1 scsi 262,144 64

3490e scsi 262,144 64

35902 scsi 2,097,152 512

3570 (magstar MP) 262,144 64

Notes:

1. The 7332 does not implement a block size limit. 256 KB is simply a
suggested value. Block size limit is imposed by the parent adapter.

2. While the 3590 does support a 2-MB block size, you could experiment
with lower values (like 256 KB), provided the performance is adequate for
your needs.

3. For information about your device limit, check your device documentation
or consult with the device vendor.

Backing Up to Named Pipes

Support is now available for database backup to (and database restore from)
local named pipes on UNIX based systems. Both the writer and the reader of
the named pipe must be on the same machine. The pipe must exist and be
located on a local file system. Because the named pipe is treated as a local
device, there is no need to specify that the target is a named pipe. Following
is an AIX example:
1. Create a named pipe:

mkfifo /u/dmcinnis/mypipe

2. Use this pipe as the target for a database backup operation:
db2 backup db sample to /u/dmcinnis/mypipe

3. If this backup image is going to be used by the restore utility, the restore
operation must be invoked before the backup operation, so that it will not
miss any data:

db2 restore db sample into mynewdb from /u/dmcinnis/mypipe

Backing Up to Tape

Chapter 2. Database Backup 83

BACKUP DATABASE Command

Command Syntax

MM BACKUP DATABASE database-alias
DB USER username

USING password

M

M

N

,

TABLESPACE (tablespace-name)

ONLINE INCREMENTAL
DELTA

M

M

N

USE TSM
XBSA OPEN num-sessions SESSIONS

,

TO dir
dev

LOAD library-name
OPEN num-sessions SESSIONS

M

M
WITH num-buffers BUFFERS BUFFER buffer-size PARALLELISM n

M

M
WITHOUT PROMPTING

MO

Command Parameters

DATABASE database-alias
Specifies the alias of the database to back up.

USER username
Identifies the user name under which to back up the database.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

TABLESPACE tablespace-name
A list of names used to specify the table spaces to be backed up.

ONLINE
Specifies online backup. The default is offline backup. Online backups
are only available for databases configured with logretain or userexit
enabled.

BACKUP DATABASE Command

84 Data Recovery and High Availability Guide and Reference

Note: An online backup operation may time out if there is an IX lock
on sysibm.systables, because the DB2 backup utility requires
an S lock on objects containing LOBs.

INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental
backup image is a copy of all database data that has changed since
the most recent successful, full backup operation.

DELTA
Specifies a non-cumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the most
recent successful backup operation of any type.

USE TSM
Specifies that the backup is to use Tivoli Storage Manager (formerly
ADSM) output.

OPEN num-sessions SESSIONS
The number of I/O sessions to be created between DB2 and TSM or
another backup vendor product.

Note: This parameter has no effect when backing up to tape, disk, or
other local device.

USE XBSA
Specifies that the XBSA interface is to be used. Backup Services APIs
(XBSA) are an open application programming interface for
applications or facilities needing data storage management for backup
or archiving purposes. Legato NetWorker is a storage manager that
currently supports the XBSA interface.

TO dir/dev
A list of directory or tape device names. The full path on which the
directory resides must be specified. The target must reside on the
database server. This parameter may be repeated to specify the target
directories and devices that the backup image will span. If more than
one target is specified (target1, target2, and target3, for example),
target1 will be opened first. The media header and special files
(including the configuration file, table space table, and history file) are
placed in target1. All remaining targets are opened, and are then used
in parallel during the backup operation. Because there is no general
tape support on OS/2 or the Windows operating system, each type of
tape device requires a unique device driver. To back up to the FAT file
system on OS/2 or the Windows operating system, users must
conform to the 8.3 naming restriction.

Use of tape devices or floppy disks may generate messages and
prompts for user input. Valid response options are:

BACKUP DATABASE Command

Chapter 2. Database Backup 85

c Continue. Continue using the device that generated the
warning message (for example, when a new tape has been
mounted)

d Device terminate. Stop using only the device that generated
the warning message (for example, when there are no more
tapes)

t Terminate. Abort the backup operation.

Tape is not supported on OS/2. On OS/2, 0 or 0: can be specified to
cause the backup operation to call a user exit program (see
“Appendix H. User Exit for Database Recovery” on page 439). The
database is quiesced before an online database backup operation with
a user exit program starts. The backup utility waits until all
transactions are committed or rolled back. While the utility is running,
all new transactions wait until the backup operation completes.

If the tape system does not support the ability to uniquely reference a
backup image, it is recommended that multiple backup copies of the
same database not be kept on the same tape.

LOAD library-name
The name of the shared library (DLL on OS/2 or the Windows
operating system) containing the vendor backup and restore I/O
functions to be used. It can contain the full path. If the full path is not
given, it will default to the path on which the user exit program
resides.

WITH num-buffers BUFFERS
The number of buffers to be used. The default is 2. However, when
creating a backup to multiple locations, a larger number of buffers
may be used to improve performance.

BUFFER buffer-size
The size, in 4-KB pages, of the buffer used when building the backup
image. The minimum value for this parameter is 8 pages; the default
value is 1024 pages. If a buffer size of zero is specified, the value of
the database manager configuration parameter backbufsz will be used
as the buffer allocation size.

If using tape with variable block sizes, reduce the buffer size to a
range that the tape device supports. Otherwise, the backup operation
may succeed, but the resulting image may not be recoverable.

When using tape devices on SCO UnixWare 7, specify a buffer size of
16.

BACKUP DATABASE Command

86 Data Recovery and High Availability Guide and Reference

With most versions of Linux, using DB2’s default buffer size for
backup operations to a SCSI tape device results in error SQL2025N,
reason code 75. To prevent the overflow of Linux internal SCSI
buffers, use this formula:

bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

where bufferpages is the value of either backbufsz or restbufsz, and
ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel
under the drivers/scsi directory.

PARALLELISM n
Determines the number of table spaces which can be read in parallel
by the backup utility. The default value is 1.

WITHOUT PROMPTING
Specifies that the backup will run unattended, and that any actions
which normally require user intervention will return an error
message.

BACKUP DATABASE Command

Chapter 2. Database Backup 87

Backup Database API

C API Syntax

/* File: sqlutil.h */
/* API: Backup Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlubkp (
char * pDbAlias,
sqluint32 BufferSize,
sqluint32 BackupMode,
sqluint32 BackupType,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
sqluint32 NumBuffers,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaTargetList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
sqluint32 * pBackupSize,
void * pReserved4,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

Backup Database API

88 Data Recovery and High Availability Guide and Reference

Generic API Syntax

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is provided.

pReserved1.
Reserved for future use.

pDbAlias
Input. A string containing the database alias (as cataloged in the
system database directory) of the database to back up.

/* File: sqlutil.h */
/* API: Backup Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgbkp (
unsigned short DbAliasLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
unsigned short * pReserved1,
char * pDbAlias,
sqluint32 BufferSize,
sqluint32 BackupMode,
sqluint32 BackupType,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
sqluint32 NumBuffers,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaTargetList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
sqluint32 * pBackupSize,
void * pReserved4,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

Backup Database API

Chapter 2. Database Backup 89

BufferSize
Input. Backup buffer size in 4-KB allocation units (pages). Minimum is
8 units. The default is 1024 units.

BackupMode
Input. Specifies the backup mode. Valid values (defined in sqlutil)
are:

SQLUB_OFFLINE
Offline gives an exclusive connection to the database.

SQLUB_ONLINE
Online allows database access by other applications while the
backup operation is in progress.

Note: An online backup operation may time out if there is an
IX lock on sysibm.systables, because the DB2 backup
utility acquires S locks on SMS LOB objects and IN
locks on all other objects.

BackupType
Input. Specifies the type of backup to be taken. Valid values (defined
in sqlutil) are:

SQLUB_FULL
Specifies a full (non-incremental) database backup operation.
This value will not be supported in the future. Use SQLUB_DB
to specify a full database backup operation.

SQLUB_DB
Specifies a backup of all table spaces in the database.

SQLUB_TABLESPACE
Specifies a table space-level backup operation. Provide a list of
table spaces to be backed up in the pTablespaceList parameter.

SQLUB_INCREMENTAL
Specifies a cumulative (incremental) backup image. An
incremental backup image is a copy of all database data that
has changed since the most recent successful, full backup
operation.

SQLUB_DELTA
Specifies a non-cumulative (delta) backup image. A delta
backup image is a copy of all database data that has changed
since the most recent successful backup operation of any type.

CallerAction
Input. Specifies action to be taken. Valid values (defined in sqlutil)
are:

Backup Database API

90 Data Recovery and High Availability Guide and Reference

SQLUB_BACKUP
Start the backup operation.

SQLUB_NOINTERRUPT
Start the backup operation. Specifies that the backup operation
will run unattended. Scenarios that normally require user
intervention will either be attempted without first returning to
the caller, or will generate an error. Use this caller action, for
example, if it is known that all of the media required for the
backup operation have been mounted, and utility prompts are
not desired.

SQLUB_CONTINUE
Continue the backup operation after the user has performed
some action requested by the utility (continue after mounting
a new tape, for example).

SQLUB_TERMINATE
Terminate the backup operation after the user has failed to
perform some action requested by the utility.

SQLUB_DEVICE_TERMINATE
Remove a particular device from the list of devices being used
by the backup utility. When a particular medium is full, the
backup utility returns a warning to the caller (while
continuing to process using the remaining devices). Invoke the
backup utility again with this caller action to remove the
device that generated the warning from the list of devices
being used.

SQLUB_PARM_CHECK
Used to validate parameters without performing a backup
operation. This option does not terminate the database
connection after the call returns. After successful return of this
call, it is expected that the user will issue a call with
SQLUB_CONTINUE to proceed with the action.

SQLUB_PARM_CHECK_ONLY
Used to validate parameters without performing a backup
operation. Before this call returns, the database connection
established by this call is terminated, and no subsequent call
is required.

pApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in
sqlutil). The API will return a string identifying the agent servicing
the application. Can be used to obtain information about the progress
of the backup operation, using the database monitor.

Backup Database API

Chapter 2. Database Backup 91

pTimestamp
Output. Supply a buffer of length SQLU_TIME_STAMP_LEN+1
(defined in sqlutil). The API will return the time stamp of the
backup image.

NumBuffers
Input. Specifies the number of backup buffers to be used.

pTablespaceList
Input. List of table spaces to be backed up. Required for table
space-level backup operations only. See “Data Structure:
SQLU-TABLESPACE-BKRST-LIST” on page 100.

pMediaTargetList
Input. This structure allows the caller to specify a destination for the
backup operation. The information provided depends on the value of
the media_type field. The valid values for media_type (defined in
sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices (a combination of tapes, disks, or diskettes).
Provide a list of sqlu_media_entry structures. On OS/2 or the
Windows operating system, the entries can be directory paths
only, not tape device names.

SQLU_TSM_MEDIA
TSM. If an sqlu_media_entry structure is not being used to
specify a path for the backup image, initialize the media
pointer in the sqlu_media_list_targets structure to NULL. The
TSM shared library provided with DB2 is used. If a different
version of the TSM shared library is desired, use
SQLU_OTHER_MEDIA and provide the shared library name.

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in an
sqlu_vendor structure.

SQLU_USER_EXIT
User exit. No additional input is required (available on OS/2
only).

See “Data Structure: SQLU-MEDIA-LIST” on page 96.

pUserName
Input. A string containing the user name to be used when attempting
a connection.

pPassword
Input. A string containing the password to be used with the user
name.

Backup Database API

92 Data Recovery and High Availability Guide and Reference

pReserved2
Reserved for future use.

VendorOptionsSize
Input. The length of the pVendorOptions field which cannot exceed
65535 bytes.

pVendorOptions
Input. Used to pass information from the application to the vendor
functions. This data structure must be flat; that is, no level of
indirection is supported. Note that byte-reversal is not done, and code
page is not checked for this data.

Parallelism
Input. Degree of parallelism (number of buffer manipulators).

pBackupSize
Output. Size of the backup image (in MB). Can be set to NULL.

pReserved4
Reserved for future use.

pReserved3
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

REXX API Syntax

REXX API Parameters

dbalias
Alias of the database to be backed up.

value A compound REXX host variable to which the database backup
information is returned. In the following, XXX represents the host
variable name:

XXX.0 Number of elements in the variables (always 2)

BACKUP DATABASE dbalias USING :value [USER username USING password]

[TABLESPACE :tablespacenames] [ONLINE]

[LOAD vendor-library [OPTIONS vendor-options] [OPEN num-sessions SESSIONS] |
TO :target-area |
USE TSM [OPEN num-sessions SESSIONS] |
USER_EXIT]

[ACTION caller-action] [WITH num-buffers BUFFERS] [BUFFERSIZE buffer-size]
[PARALLELISM parallelism-degree]

Backup Database API

Chapter 2. Database Backup 93

XXX.1 The time stamp of the backup image

XXX.2 An application ID that identifies the agent that serves
the application.

username
Identifies the user name under which to back up the database.

password
The password used to authenticate the user name.

tablespacenames
A compound REXX host variable containing a list of table spaces to be
backed up. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be backed up

XXX.1 First table space name

XXX.2 Second table space name

XXX.3 and so on.

vendor-library
The name of the shared library (DLL on Windows operating systems
or OS/2) containing the vendor backup and restore I/O functions to
be used. It may contain the full path. If the full path is not given,
defaults to the path on which the user exit program resides.

vendor-options
Information required by the vendor functions.

num-sessions
The number of I/O sessions to be used with TSM or the vendor
product.

target-area
Local devices. Allows a combination of tapes, disks or diskettes.
Provide a list in “Data Structure: SQLU-MEDIA-LIST” on page 96. On
OS/2 or the Windows operating system, the entries can be directory
paths only, not tape device names.

caller-action
Specifies action to be taken. Valid values are:

SQLUB_BACKUP
Start the backup operation.

SQLUB_NOINTERRUPT
Start the backup operation. Specifies that the backup operation
will run unattended. Scenarios that normally require user
intervention will either be attempted without first returning to
the caller, or will generate an error. Use this caller action, for

Backup Database API

94 Data Recovery and High Availability Guide and Reference

example, if it is known that all of the media required for the
backup operation have been mounted, and utility prompts are
not desired.

SQLUB_CONTINUE
Continue the backup operation after the user has performed
some action requested by the utility (continue mounting a
new tape, for example).

SQLUB_TERMINATE
Terminate the backup operation after the user has failed to
perform some action requested by the utility.

SQLUB_DEVICE_TERMINATE
Remove a particular device from the list of devices being used
by the backup utility. When a particular medium is full, the
backup utility returns a warning to the caller (while
continuing to process using the remaining devices). Invoke the
backup utility again with this caller action to remove the
device that generated the warning from the list of devices
being used.

SQLUB_PARM_CHECK
Used to validate parameters without performing a backup
operation.

num-buffers
The number of backup buffers to be used.

buffer-size
Backup buffer size in 4-KB allocation units. The minimum value is 8
units.

parallelism-degree
Degree of parallelism (number of buffer manipulators).

Backup Database API

Chapter 2. Database Backup 95

Data Structure: SQLU-MEDIA-LIST

This structure is used to:
v Hold a list of target media for the backup image (see the “Backup Database

API” on page 88).
v Hold a list of source media for the backup image (see the “Restore Database

API” on page 116).
v Pass information to the DB2 load utility.

Table 1. Fields in the SQLU-MEDIA-LIST Structure

Field Name Data Type Description

MEDIA_TYPE CHAR(1) A character indicating media type.

SESSIONS INTEGER Indicates the number of elements in the array
pointed to by the target field of this structure.

TARGET Union This field is a pointer to one of three types of
structures. The type of structure pointed to is
determined by the value of the media_type
field. For more information on what to
provide in this field, see the appropriate API.

Table 2. Fields in the SQLU-MEDIA-LIST-TARGETS Structure

Field Name Data Type Description

MEDIA Pointer A pointer to an sqlu_media_entry structure.

VENDOR Pointer A pointer to an sqlu_vendor structure.

LOCATION Pointer A pointer to an sqlu_location_entry structure.

Table 3. Fields in the SQLU-MEDIA-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the media_entry field. For languages
other than C.

MEDIA_ENTRY CHAR(215) Path for a backup image used by the backup
and restore utilities.

Table 4. Fields in the SQLU-VENDOR Structure

Field Name Data Type Description

RESERVE_LEN1 INTEGER Length of the shr_lib field. For languages other
than C.

SHR_LIB CHAR(255) Name of a shared library supplied by vendors
for storing or retrieving data.

RESERVE_LEN2 INTEGER Length of the filename field. For languages
other than C.

FILENAME CHAR(255) File name to identify the load input source
when using a shared library.

Data Structure: SQLU-MEDIA-LIST

96 Data Recovery and High Availability Guide and Reference

Table 5. Fields in the SQLU-LOCATION-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the location_entry field. For
languages other than C.

LOCATION_ENTRY CHAR(256) Name of input data files for the load utility.

Valid values for MEDIA_TYPE (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices (tapes, disks, or diskettes)

SQLU_SERVER_LOCATION
Server devices (tapes, disks, or diskettes; load only). Can be specified
only for the pDataFileList parameter.

SQLU_TSM_MEDIA
TSM

SQLU_OTHER_MEDIA
Vendor library

SQLU_USER_EXIT
User exit (OS/2 only)

SQLU_PIPE_MEDIA
Named pipe (for vendor APIs only)

SQLU_DISK_MEDIA
Disk (for vendor APIs only)

SQLU_DISKETTE_MEDIA
Diskette (for vendor APIs only)

SQLU_TAPE_MEDIA
Tape (for vendor APIs only).

Data Structure: SQLU-MEDIA-LIST

Chapter 2. Database Backup 97

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: SQLU-MEDIA-LIST */
/* ... */
typedef SQL_STRUCTURE sqlu_media_list
{

char media_type;
char filler[3];
sqlint32 sessions;
union sqlu_media_list_targets target;

} sqlu_media_list;
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-MEDIA-LIST-TARGETS */
/* ... */
union sqlu_media_list_targets
{

struct sqlu_media_entry *media;
struct sqlu_vendor *vendor;
struct sqlu_location_entry *location;

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-MEDIA-ENTRY */
/* ... */
typedef SQL_STRUCTURE sqlu_media_entry
{

sqluint32 reserve_len;
char media_entry[SQLU_DB_DIR_LEN+1];

} sqlu_media_entry;
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-VENDOR */
/* ... */
typedef SQL_STRUCTURE sqlu_vendor
{

sqluint32 reserve_len1;
char shr_lib[SQLU_SHR_LIB_LEN+1];
sqluint32 reserve_len2;
char filename[SQLU_SHR_LIB_LEN+1];

} sqlu_vendor;
/* ... */

Data Structure: SQLU-MEDIA-LIST

98 Data Recovery and High Availability Guide and Reference

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLU-LOCATION-ENTRY */
/* ... */
typedef SQL_STRUCTURE sqlu_location_entry
{

sqluint32 reserve_len;
char location_entry[SQLU_MEDIA_LOCATION_LEN+1];

} sqlu_location_entry;
/* ... */

* File: sqlutil.cbl
01 SQLU-MEDIA-LIST.

05 SQL-MEDIA-TYPE PIC X.
05 SQL-FILLER PIC X(3).
05 SQL-SESSIONS PIC S9(9) COMP-5.
05 SQL-TARGET.

10 SQL-MEDIA USAGE IS POINTER.
10 SQL-VENDOR REDEFINES SQL-MEDIA
10 SQL-LOCATION REDEFINES SQL-MEDIA
10 FILLER REDEFINES SQL-MEDIA

*

* File: sqlutil.cbl
01 SQLU-MEDIA-ENTRY.

05 SQL-MEDENT-LEN PIC 9(9) COMP-5.
05 SQL-MEDIA-ENTRY PIC X(215).
05 FILLER PIC X.

*

* File: sqlutil.cbl
01 SQLU-VENDOR.

05 SQL-SHRLIB-LEN PIC 9(9) COMP-5.
05 SQL-SHR-LIB PIC X(255).
05 FILLER PIC X.
05 SQL-FILENAME-LEN PIC 9(9) COMP-5.
05 SQL-FILENAME PIC X(255).
05 FILLER PIC X.

*

* File: sqlutil.cbl
01 SQLU-LOCATION-ENTRY.

05 SQL-LOCATION-LEN PIC 9(9) COMP-5.
05 SQL-LOCATION-ENTRY PIC X(255).
05 FILLER PIC X.

*

Data Structure: SQLU-MEDIA-LIST

Chapter 2. Database Backup 99

Data Structure: SQLU-TABLESPACE-BKRST-LIST

This structure is used to provide a list of table space names.

Table 6. Fields in the SQLU-TABLESPACE-BKRST-LIST Structure

Field Name Data Type Description

NUM_ENTRY INTEGER Number of entries in the list pointed to by the
tablespace field.

TABLESPACE Pointer A pointer to an sqlu_tablespace_entry structure.

Table 7. Fields in the SQLU-TABLESPACE-ENTRY Structure

Field Name Data Type Description

RESERVE_LEN INTEGER Length of the character string provided in the
tablespace_entry field. For languages other than
C.

TABLESPACE_ENTRY CHAR(19) Table space name.

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLU-TABLESPACE-BKRST-LIST */
/* ... */
typedef SQL_STRUCTURE sqlu_tablespace_bkrst_list
{

long num_entry;
struct sqlu_tablespace_entry *tablespace;

} sqlu_tablespace_bkrst_list;
/* ... */

/* File: sqlutil.h */
/* Structure: SQLU-TABLESPACE-ENTRY */
/* ... */
typedef SQL_STRUCTURE sqlu_tablespace_entry
{

sqluint32 reserve_len;
char tablespace_entry[SQLU_MAX_TBS_NAME_LEN+1];
char filler[1];

} sqlu_tablespace_entry;
/* ... */

* File: sqlutil.cbl
01 SQLU-TABLESPACE-BKRST-LIST.

05 SQL-NUM-ENTRY PIC S9(9) COMP-5.
05 SQL-TABLESPACE USAGE IS POINTER.

*

Data Structure: SQLU-TABLESPACE-BKRST-LIST

100 Data Recovery and High Availability Guide and Reference

* File: sqlutil.cbl
01 SQLU-TABLESPACE-ENTRY.

05 SQL-TBSP-LEN PIC 9(9) COMP-5.
05 SQL-TABLESPACE-ENTRY PIC X(18).
05 FILLER PIC X.
05 SQL-FILLER PIC X(1).

*

Data Structure: SQLU-TABLESPACE-BKRST-LIST

Chapter 2. Database Backup 101

Example Backup Sessions

CLP Examples
db2 backup database sample use tsm open 2 sessions with 4 buffers

db2 backup database payroll tablespace syscatspace, userspace1 to
/dev/rmt0, /dev/rmt1 with 8 buffers without prompting

Following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:

(Sun) db2 backup db kdr use tsm
(Mon) db2 backup db kdr online incremental delta use tsm
(Tue) db2 backup db kdr online incremental delta use tsm
(Wed) db2 backup db kdr online incremental use tsm
(Thu) db2 backup db kdr online incremental delta use tsm
(Fri) db2 backup db kdr online incremental delta use tsm
(Sat) db2 backup db kdr online incremental use tsm

A sample DB2 command script, and information on how to use it, are
provided in “Appendix F. Recovery CLP Script” on page 425.

API Examples
Sample programs containing DB2 APIs and embedded SQL calls, and
information on how to use them, are provided in “Appendix E. Recovery
Sample Programs” on page 359.

Optimizing Backup Performance

To reduce the amount of time required to complete a backup operation:
v Specify table space backup.

You can back up (and subsequently recover) part of a database by using the
TABLESPACE option on the BACKUP DATABASE command. This
facilitates the management of table data, indexes, and long field or large
object (LOB) data in separate table spaces.

v Increase the value of the PARALLELISM parameter on the BACKUP
DATABASE command so that it reflects the number of table spaces being
backed up.
The PARALLELISM parameter defines the number of processes or threads
that are started when reading data from the database. Each process or
thread is assigned to a specific table space. When it finishes backing up this
table space, it requests another. Note, however, that each process or thread
requires both memory and CPU overhead: on a heavily loaded system,
keep the PARALLELISM parameter at its default value of 1.

v Increase the backup buffer size.

Example Backup Sessions

102 Data Recovery and High Availability Guide and Reference

The ideal backup buffer size is a multiple of the table space extent size. If
you have multiple table spaces with different extent sizes, specify a value
that is a multiple of the largest extent size.

v Increase the number of buffers.
If you use multiple buffers and I/O channels, you should use at least twice
as many buffers as channels to ensure that the channels do not have to wait
for data.

v Use multiple target devices.

Backup Restrictions

The following restrictions apply to the backup utility:
v A table space backup operation and a table space restore operation cannot

be run at the same time, even if different table spaces are involved.
v If you want to be able to do rollforward recovery in a partitioned database

environment, you must regularly back up the database on the list of nodes,
and you must have at least one backup image for of the rest of the nodes in
the system (even those that do not contain user data for that database). Two
situations require the backed-up image of a database partition at a database
partition server that does not contain user data for the database:
– You added a database partition server to the database system after

taking the last backup, and you need to do forward recovery on this
database partition server.

– Point-in-time recovery is used, which requires that all database partitions
in the system are in rollforward pending state.

Troubleshooting Backup

You cannot back up a database that is in an unusable state, except when that
database is in backup pending state. If any table space is in an abnormal state,
you cannot back up the database or that table space, unless it is in backup
pending state.

If a database or a table space is in a partially restored state because a system
crash occurred during the restore operation, you must successfully restore the
database or the table space before you can back it up.

A backup operation will fail if a list of the table spaces to be backed up
contains the name of a temporary table space.

The backup utility provides concurrency control for multiple processes that
are making backup copies of different databases. This concurrency control
keeps the backup target devices open until all the backup operations have
ended. If an error occurs during a backup operation, and an open container

Optimizing Backup Performance

Chapter 2. Database Backup 103

cannot be closed, other backup operations targeting the same drive may
receive access errors. To correct such access errors, you must terminate the
backup operation that caused the error and disconnect from the target device.
If you are using the backup utility for concurrent backup operations to tape,
ensure that the processes do not target the same tape.

Troubleshooting Backup

104 Data Recovery and High Availability Guide and Reference

Chapter 3. Database Restore

This section describes the DB2 UDB restore utility, which is used to rebuild
damaged or corrupted databases or table spaces that were previously backed
up.

The following topics are covered:
v “Restore Overview”
v “Privileges, Authorities, and Authorization Required to Use Restore” on

page 106
v “Using Restore” on page 106
v “Redefining Table Space Containers During a Restore Operation (Redirected

Restore)” on page 107
v “Restoring to an Existing Database” on page 108
v “Restoring to a New Database” on page 109
v “RESTORE DATABASE Command” on page 110
v “Restore Database API” on page 116
v “Example Restore Sessions” on page 126
v “Optimizing Restore Performance” on page 127
v “Restore Restrictions” on page 127
v “Troubleshooting Restore” on page 128

Restore Overview

The simplest form of the DB2 RESTORE DATABASE command requires only
that you specify the alias name of the database that you want to restore. For
example:

db2 restore db sample

In this example, because the SAMPLE database exists, the following message
is returned:
SQL2539W Warning! Restoring to an existing database that is the same as
the backup image database. The database files will be deleted.
Do you want to continue ? (y/n)

If you specify y, and a backup image for the SAMPLE database exists, the
restore operation should complete successfully.

A database restore operation requires an exclusive connection: that is, no
applications can be running against the database when the operation starts,

© Copyright IBM Corp. 2001 105

and the restore utility prevents other applications from accessing the database
until the restore operation completes successfully. A table space restore
operation, however, can be done online.

A table space is not usable until the restore operation (followed by rollforward
recovery) completes successfully.

If you have tables that span more than one table space, you should back up
and restore the set of table spaces together.

When doing a partial or subset restore operation, you can use either a table
space-level backup image, or a full database-level backup image and choose
one or more table spaces from that image. All the log files associated with
these table spaces from the time that the backup image was created must
exist.

Privileges, Authorities, and Authorization Required to Use Restore

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to an
existing database from a full database backup. To restore to a new database,
you must have SYSADM or SYSCTRL authority.

Using Restore

Before Using Restore
When restoring to an existing database, you should not be connected to the
database that is to be restored: the restore utility automatically establishes a
connection to the specified database, and this connection is terminated at the
completion of the restore operation. When restoring to a new database, an
instance attachment is required to create the database. When restoring to a
new remote database, you must first attach to the instance where the new
database will reside. Then, create the new database, specifying the code page
and the territory of the server.

The database can be local or remote.

Restore Overview

106 Data Recovery and High Availability Guide and Reference

Invoking Restore
The restore utility can be invoked through:
v The command line processor (CLP).

Following is an example of the RESTORE DATABASE command issued
through the CLP:

db2 restore db sample from D:\DB2Backups taken at 20010320122644

v The Restore Database notebook or wizard in the Control Center. To open
the Restore Database notebook or wizard:
1. From the Control Center, expand the object tree until you find the

Databases folder.
2. Click on the Databases folder. Any existing databases are displayed in

the pane on the right side of the window (the contents pane).
3. Click the right mouse button on the database you want in the contents

pane, and select Restore Database or Restore Database Using Wizard
from the pop-up menu. The Restore Database notebook or the Restore
Database wizard opens.

For general information about the Control Center, see the Administration
Guide. Detailed information is provided through the online help facility
within the Control Center.

v An application programming interface (API), sqlrestore. For information
about this API, see “Restore Database API” on page 116. For general
information about creating applications containing DB2 administrative APIs,
see the Application Building Guide.

Redefining Table Space Containers During a Restore Operation (Redirected
Restore)

During a database backup operation, a record is kept of all the table space
containers associated with the table spaces that are being backed up. During a
restore operation, all containers listed in the backup image are checked to
determine if they exist and if they are accessible. If one or more of these
containers is inaccessible because of media failure (or for any other reason),
the restore operation will fail. A successful restore operation in this case
requires redirection to different containers. DB2 supports adding, changing, or
removing table space containers.

You can redefine table space containers by invoking the RESTORE
DATABASE command and specifying the REDIRECT parameter, or by using
the Containers page of the Restore Database notebook in the Control Center.
For redirected restore examples that use the command line processor, a
command script, or the application programming interface, see “Example
Restore Sessions” on page 126.

Using Restore

Chapter 3. Database Restore 107

During a redirected restore operation, directory and file containers are
automatically created if they do not already exist. The database manager does
not automatically create device containers.

Container redirection provides considerable flexibility for managing table
space containers. For example, even though adding containers to SMS table
spaces is not supported, you could accomplish this by specifying an
additional container when invoking a redirected restore operation. Similarly,
you could move a DMS table space from file containers to device containers.

Restoring to an Existing Database

You can restore a full database backup image to an existing database. The
backup image may differ from the existing database in its alias name, its
database name, or its database seed.

A database seed is a unique identifier for a database that does not change
during the life of the database. The seed is assigned by the database manager
when the database is created. It remains unchanged following a restore
operation, even if the backup image has a different database seed. DB2 always
uses the seed from the backup image.

When restoring to an existing database, the restore utility:
v Deletes table, index, and long field data from the existing database, and

replaces it with data from the backup image.
v Replaces table entries for each table space being restored.
v Retains the recovery history file, unless it is damaged. If the recovery

history file is damaged, the database manager copies the file from the
backup image.

v Retains the authentication type for the existing database.
v Retains the database directories for the existing database. The directories

define where the database resides, and how it is cataloged.
v Compares the database seeds. If the seeds are different:

– Deletes the logs associated with the existing database.
– Copies the database configuration file from the backup image.
– Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE
command.

If the database seeds are the same:
– Deletes the logs if the image is for a non-recoverable database.
– Retains the current database configuration file, unless the file has been

corrupted, in which case the file is copied from the backup image.

Redefining Table Space Containers (Redirected Restore)

108 Data Recovery and High Availability Guide and Reference

– Sets NEWLOGPATH to the value of the logpath database configuration
parameter if NEWLOGPATH was specified on the RESTORE DATABASE
command; otherwise, copies the current log path to the database
configuration file. Validates the log path: If the path cannot be used by
the database, changes the database configuration to use the default log
path.

Restoring to a New Database

You can create a new database and then restore a full database backup image
to it. The code pages of the backup image and the target database must
match.

When restoring to a new database, the restore utility:
v Creates a new database, using the database alias name that was specified

through the target database alias parameter. (If a target database alias was
not specified, the restore utility creates the database with an alias that is the
same as that specified through the source database alias parameter.)

v Restores the database configuration file from the backup image.
v Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE
command. Validates the log path: If the path cannot be used by the
database, changes the database configuration to use the default log path.

v Restores the authentication type from the backup image.
v Restores the comments from the database directories in the backup image.
v Restores the recovery history file for the database.

Restoring to an Existing Database

Chapter 3. Database Restore 109

RESTORE DATABASE Command

Command Syntax

MM RESTORE DATABASE
DB

source-database-alias restore-options
CONTINUE
ABORT

MO

restore-options:

USER username
USING password

M

M

N

TABLESPACE
ONLINE

,

TABLESPACE (tablespace-name)
ONLINE

HISTORY FILE
ONLINE

M

M
INCREMENTAL

AUTO
AUTOMATIC
ABORT

M

M

N

USE TSM
XBSA OPEN num-sessions SESSIONS
,

FROM directory
device

LOAD shared-library
OPEN num-sessions SESSIONS

M

M
TAKEN AT date-time TO target-directory

M

RESTORE DATABASE Command

110 Data Recovery and High Availability Guide and Reference

M
INTO target-database-alias NEWLOGPATH directory

M

M
WITH num-buffers BUFFERS BUFFER buffer-size DLREPORT filename

M

M
REPLACE EXISTING REDIRECT PARALLELISM n

M

M
WITHOUT ROLLING FORWARD WITHOUT DATALINK WITHOUT PROMPTING

Command Parameters

DATABASE source-database-alias
Alias of the source database from which the backup was taken.

CONTINUE
Specifies that the containers have been redefined, and that the final
step in a redirected restore operation should be performed.

ABORT
This parameter:
v Stops a redirected restore operation. This is useful when an error

has occurred that requires one or more steps to be repeated. After
RESTORE DATABASE with the ABORT option has been issued,
each step of a redirected restore operation must be repeated,
including RESTORE DATABASE with the REDIRECT option.

v Terminates an incremental restore operation before completion.

USER username
Identifies the user name under which the database is to be restored.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

TABLESPACE tablespace-name
A list of names used to specify the table spaces that are to be restored.

ONLINE
This keyword, applicable only when performing a table space-level
restore operation, is specified to allow a backup image to be restored
online. This means that other agents can connect to the database while
the backup image is being restored, and that the data in other table
spaces will be available while the specified table spaces are being
restored.

RESTORE DATABASE Command

Chapter 3. Database Restore 111

HISTORY FILE
This keyword is specified to restore only the history file from the
backup image.

INCREMENTAL
Specifies a manual cumulative restore operation. The user must issue
each restore command manually.

AUTOMATIC/AUTO
Specifies an automatic cumulative (incremental) restore operation.

USE TSM
Specifies that the database is to be restored from TSM-managed
output.

OPEN num-sessions SESSIONS
Specifies the number of I/O sessions that are to be used with TSM or
the vendor product.

USE XBSA
Specifies that the XBSA interface is to be used. Backup Services APIs
(XBSA) are an open application programming interface for
applications or facilities needing data storage management for backup
or archiving purposes. Legato NetWorker is a storage manager that
currently supports the XBSA interface.

FROM directory/device
The directory or device on which the backup images reside. If USE
TSM, FROM, and LOAD are omitted, the default value is the current
directory.

On Windows operating systems or OS/2, the specified directory must
not be a DB2-generated directory. For example, given the following
commands:

db2 backup database sample to c:\backup
db2 restore database sample from c:\backup

DB2 generates subdirectories under the c:\backup directory that
should be ignored. To specify precisely which backup image to
restore, use the TAKEN AT parameter. There may be several backup
images stored on the same path.

If several items are specified, and the last item is a tape device, the
user is prompted for another tape. Valid response options are:

c Continue. Continue using the device that generated the
warning message (for example, continue when a new tape has
been mounted).

RESTORE DATABASE Command

112 Data Recovery and High Availability Guide and Reference

d Device terminate. Stop using only the device that generated
the warning message (for example, terminate when there are
no more tapes).

t Terminate. Abort the restore operation after the user has failed
to perform some action requested by the utility.

Tape is not supported on OS/2. On OS/2, 0 or 0: can be specified to
cause the restore utility to call a user exit program. (This can happen
only if a user exit program was used to back up the database.) When
restoring through a user exit program, the path to the database is the
only reference used to locate the containers; therefore, all the
containers for that database are restored.

Redirected restore is not allowed when a user exit program is being
used.

LOAD shared-library
The name of the shared library (DLL on Windows operating systems
or OS/2) containing the vendor backup and restore I/O functions to
be used. The name can contain a full path. If the full path is not
given, the value defaults to the path on which the user exit program
resides.

TAKEN AT date-time
The time stamp of the database backup image. The time stamp is
displayed after successful completion of a backup operation, and is
part of the path name for the backup image. It is specified in the form
yyyymmddhhmmss. A partial time stamp can also be specified. For
example, if two different backup images with time stamps
19971001010101 and 19971002010101 exist, specifying 19971002 causes
the image with time stamp 19971002010101 to be used. If a value for
this parameter is not specified, there must be only one backup image
on the source media.

TO target-directory
The target database directory. This parameter is ignored if the utility is
restoring to an existing database.

Note: On Windows operating systems or OS/2, specify only the drive
letter when using this parameter. If a longer path is specified,
an error is returned.

INTO target-database-alias
The target database alias. If the target database does not exist, it will
be created.

NEWLOGPATH directory
The fully qualified name of a directory that will be used for active log

RESTORE DATABASE Command

Chapter 3. Database Restore 113

files after the restore operation. This parameter has the same function
as the newlogpath database configuration parameter, except that its
effect is limited to the restore operation in which it is specified. The
parameter can be used when the log path in the backup image is not
suitable for use after the restore operation; for example, when the path
is no longer valid, or is being used by a different database.

WITH num-buffers BUFFERS
The number of buffers to be used. The default value is 2. However, a
larger number of buffers can be used to improve performance when
multiple sources are being read from, or if the value of
PARALLELISM has been increased.

BUFFER buffer-size
The size, in pages, of the buffer used for the restore operation. The
minimum value for this parameter is 8 pages; the default value is
1024 pages. If a buffer size of zero is specified, the value of the
database manager configuration parameter restbufsz will be used as
the buffer allocation size.

The restore buffer size must be a positive integer multiple of the
backup buffer size specified during the backup operation. If an
incorrect buffer size is specified, the buffers are allocated to be of the
smallest acceptable size.

When using tape devices on SCO UnixWare 7, specify a buffer size of
16.

DLREPORT filename
The file name, if specified, must be fully qualified. Reports the files
that become unlinked, as a result of a fast reconcile, during a restore
operation. This option is only to be used if the table being restored
has a DATALINK column type and linked files.

REPLACE EXISTING
If a database with the same alias as the target database alias already
exists, this parameter specifies that the restore utility is to replace the
existing database with the restored database. This is useful for scripts
that invoke the restore utility, because the command line processor
will not prompt the user to verify deletion of an existing database. If
the WITHOUT PROMPTING parameter is specified, it is not
necessary to specify REPLACE EXISTING, but in this case, the
operation will fail if events occur that normally require user
intervention.

REDIRECT
Specifies a redirected restore operation. To complete a redirected
restore operation, this command should be followed by one or more

RESTORE DATABASE Command

114 Data Recovery and High Availability Guide and Reference

SET TABLESPACE CONTAINERS commands, and then by a
RESTORE DATABASE command with the CONTINUE option.

Note: All commands associated with a single redirected restore
operation must be invoked from the same window or CLP
session.

WITHOUT ROLLING FORWARD
Specifies that the database is not to be put in rollforward pending
state after it has been successfully restored.

If, following a successful restore operation, the database is in
rollforward pending state, the “ROLLFORWARD DATABASE
Command” on page 142 must be invoked before the database can be
used again.

WITHOUT DATALINK
Specifies that any tables with DATALINK columns are to be put in
DataLink_Reconcile_Pending (DRP) state, and that no reconciliation of
linked files is to be performed.

PARALLELISM n
Specifies the number of buffer manipulators that are to be spawned
during the restore operation. The default value is 1.

WITHOUT PROMPTING
Specifies that the restore operation is to run unattended. Actions that
normally require user intervention will return an error message. When
using a removable media device, such as tape or diskette, the user is
prompted when the device ends, even if this option is specified.

RESTORE DATABASE Command

Chapter 3. Database Restore 115

Restore Database API

C API Syntax

/* File: sqlutil.h */
/* API: Restore Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlurestore (
char * pSourceDbAlias,
char * pTargetDbAlias,
sqluint32 BufferSize,
sqluint32 RollforwardMode,
sqluint32 DatalinkMode,
sqluint32 RestoreType,
sqluint32 RestoreMode,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
char * pTargetPath,
sqluint32 NumBuffers,
char * pReportFile,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaSourceList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
void * pRestoreInfo,
void * pContainerPageList,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

Restore Database API

116 Data Recovery and High Availability Guide and Reference

Generic API Syntax

API Parameters

SourceDbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the source database alias.

/* File: sqlutil.h */
/* API: Restore Database */
/* ... */
SQL_API_RC SQL_API_FN

sqlgrestore (
unsigned short SourceDbAliasLen,
unsigned short TargetDbAliasLen,
unsigned short TimestampLen,
unsigned short TargetPathLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
unsigned short ReportFileLen,
unsigned short Reserved2Len,
char * pSourceDbAlias,
char * pTargetDbAlias,
sqluint32 BufferSize,
sqluint32 RollforwardMode,
sqluint32 DatalinkMode,
sqluint32 RestoreType,
sqluint32 RestoreMode,
sqluint32 CallerAction,
char * pApplicationId,
char * pTimestamp,
char * pTargetPath,
sqluint32 NumBuffers,
char * pReportFile,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
struct sqlu_media_list * pMediaSourceList,
char * pUserName,
char * pPassword,
void * pReserved2,
sqluint32 VendorOptionsSize,
void * pVendorOptions,
sqluint32 Parallelism,
unsigned short RestoreInfoSize,
void * pRestoreInfo,
unsigned short ContainerPageListSize,
void * pContainerPageList,
void * pReserved3,
struct sqlca * pSqlca);

/* ... */

Restore Database API

Chapter 3. Database Restore 117

TargetDbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the target database alias. Set to zero if no target database alias is
specified.

TimestampLen
Input. A 2-byte unsigned integer representing the length in bytes of
the time stamp. Set to zero if no time stamp is provided.

TargetPathLen
Input. A 2-byte unsigned integer representing the length in bytes of
the target directory. Set to zero if no target path is provided.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is provided.

ReportFileLen
Input. A 2-byte unsigned integer representing the length in bytes of
the report file name. Set to zero if no report file name is provided.

Reserved2Len
Input. A 2-byte unsigned integer representing the length in bytes of
the reserved area. Set to zero.

pSourceDbAlias
Input. A string containing the database alias of the source database
backup image.

pTargetDbAlias
Input. A string containing the target database alias. If the value of this
parameter is NULL, the value of pSourceDbAlias is used.

BufferSize
Input. Backup buffer size in 4-KB allocation units (pages). Minimum
value is 8 units. The default value is 1024 units.

The specified buffer size must be equal to or an integer multiple of
the buffer size used to produce the backup image.

RollforwardMode
Input. Specifies whether or not to put the database in rollforward
pending state at the end of the restore operation. Valid values (defined
in sqlutil) are:

SQLUD_ROLLFWD
Put the database in rollforward pending state after it has been
successfully restored.

Restore Database API

118 Data Recovery and High Availability Guide and Reference

SQLUD_NOROLLFWD
Do not put the database in rollforward pending state after it
has been successfully restored.

If, following a successful restore operation, the database is in
rollforward pending state, the “Rollforward Database API” on
page 148 must be invoked before the database can be used again.

DatalinkMode
Input. Specifies whether any tables with DATALINK columns are to
be put in DataLink_Reconcile_Pending (DRP) state, and whether
reconciliation of linked files is to be performed. Valid values (defined
in sqlutil) are:

SQLUD_DATALINK
Perform reconciliation operations. Tables with a defined
DATALINK column must have the RECOVERY YES option
specified.

SQLUD_NODATALINK
Do not perform reconciliation operations. Tables with
DATALINK columns are put in DRP state. Tables with a
defined DATALINK column must have the RECOVERY YES
option specified.

RestoreType
Input. Specifies the type of restore operation. Valid values (defined in
sqlutil) are:

SQLUD_FULL
Restore everything from the backup image. This is run offline.
This value will not be supported in the future. Use SQLUD_DB
to specify a full database restore operation.

SQLUD_DB
Restore all table spaces in the database. This is run offline.

SQLUD_ONLINE_TABLESPACE
Restore only table space-level backup images. This is run
online. This value will not be supported in the future. Use
SQLUD_TABLESPACE | SQLUD_ONLINE to specify an online table
space-level restore operation.

SQLUD_TABLESPACE
Restore only the table space-level backup images. This can be
run online or offline.

SQLUD_HISTORY
Restore only the recovery history file.

Restore Database API

Chapter 3. Database Restore 119

SQLUD_INCREMENTAL
Perform a manual cumulative restore operation.

SQLUD_AUTOMATIC
Perform an automatic cumulative (incremental) restore
operation. Must be specified with SQLUD_INCREMENTAL; that is,
SQLUD_INCREMENTAL | SQLUD_AUTOMATIC.

RestoreMode
Input. Specifies whether the restore operation is to be performed
offline or online. Valid values (defined in sqlutil) are:

SQLUD_OFFLINE
Perform an offline restore operation.

SQLUD_ONLINE
Perform an online restore operation.

CallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
sqlutil) are:

SQLUD_RESTORE
Start the restore operation.

SQLUD_TERMINATE_INCREMENTAL
Terminate an incremental restore operation before completion.

SQLUD_NOINTERRUPT
Start the restore operation. Specifies that the restore operation
is to run unattended. Scenarios that normally require user
intervention will either be attempted without first returning to
the caller, or will generate an error. Use this caller action, for
example, when all of the media required for the restore
operation are known to have been mounted, and utility
prompts are not desired.

SQLUD_CONTINUE
Continue using the device that generated the warning
message (for example, continue when a new tape has been
mounted).

SQLUD_TERMINATE
Abort the restore operation after the user has failed to
perform some action requested by the utility.

SQLUD_DEVICE_TERMINATE
Remove a device from the list of devices being used by the
restore utility. When a device has exhausted its input, the
restore utility returns a warning to the caller. Invoke the

Restore Database API

120 Data Recovery and High Availability Guide and Reference

restore utility again with this caller action. The device that
generated the warning is removed from the list of devices
being used.

SQLUD_PARM_CHECK
Validate parameters without performing the restore operation.

SQLUD_RESTORE_STORDEF
Initial call. Request table space container redefinition.

CallerAction must be set to SQLUD_RESTORE, SQLUD_NOINTERRUPT,
SQLUD_RESTORE_STORDEF, or SQLUD_PARM_CHECK on the first call.

pApplicationId
Output. Supply a buffer of length SQLU_APPLID_LEN+1 (defined in
sqlutil). The restore utility returns a string identifying the agent that
is servicing the application. Can be used with the database system
monitor APIs to monitor the application.

pTimestamp
Input. A string representing the time stamp of the backup image. This
field is optional if there is only one backup image in the specified
source.

pTargetPath
Input. A string containing the relative or fully qualified name of the
target database directory. Used if a new database is to be created
during the restore operation.

NumBuffers
Input. The number of buffers to be used for the restore operation.

pReportFile
The file name, if specified, must be fully qualified. Reports the files
that become unlinked, as a result of a fast reconcile, during a restore
operation. This option is only to be used if the table being restored
has a DATALINK column type and linked files.

pTablespaceList
Specifies one or more table spaces to be restored. Used when restoring
a subset of the backup image, or a table space from a table space-level
backup image.

The following restrictions apply:
v The database must be recoverable. Recoverable databases have

either the logretain database configuration parameter set to
“RECOVERY”, the userexit database configuration parameter
enabled, or both.

Restore Database API

Chapter 3. Database Restore 121

v The database being restored to must be the same database that was
used to create the backup image. That is, table spaces cannot be
added to a database through the table space restore function.

v This function is not available when restoring from a user exit on
OS/2.

v The rollforward utility ensures that table spaces restored in an MPP
environment are synchronized with any other node containing the
same table spaces.

Note: When restoring a table space that has been renamed since it
was backed up, the new table space name must be used when
invoking the restore utility. If the old name is used, the table
space will not be found.

pMediaSourceList
Input. Source media for the backup image. See “Data Structure:
SQLU-MEDIA-LIST” on page 96. The information that the caller needs
to provide in this structure is dependent upon the value of the
media_type field. Valid values for this field (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
Local devices (a combination of tapes, disks, or diskettes).
Provide a list of sqlu_media_entry structures. On Windows
operating systems or OS/2, the entries can only be directory
paths, not tape device names.

SQLU_TSM_MEDIA
TSM. No additional input is required. The TSM shared library
provided with DB2 is used. If a different version of TSM is
desired, use SQLU_OTHER_MEDIA, and provide the shared library
name.

SQLU_OTHER_MEDIA
Vendor product. Provide the shared library name in an
sqlu_vendor structure.

SQLU_USER_EXIT
User exit. No additional input is required (available on OS/2
only).

pUserName
Input. A string containing the user name to be used for a connection.

pPassword
Input. A string containing the password used to authenticate the user
name.

pReserved2
Reserved for future use.

Restore Database API

122 Data Recovery and High Availability Guide and Reference

VendorOptionsSize
Input. The length of the vendor options field. The length cannot
exceed 65535 bytes.

pVendorOptions
Input. To be used by the vendor to pass information from the
application to the vendor functions. This data structure must be flat;
that is, no level of indirection is supported. Note that byte-reversal is
not done, and the code page for this data is not checked.

Parallelism
Input. Degree of intra-partition parallelism (number of buffer
manipulators).

RestoreInfoSize
Reserved for future use.

pRestoreInfo
Reserved for future use.

ContainerPageListSize
Reserved for future use.

pContainerPageList
Reserved for future use.

pReserved3
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

REXX API Syntax

REXX API Parameters

source-database-alias
Alias of the source database from which the database backup image
was taken.

value A compound REXX host variable to which the database restore
information is returned. In the following, XXX represents the host
variable name:

RESTORE DATABASE source-database-alias [USING :value] [USER username USING password]
[TABLESPACE :tablespacenames] [ONLINE | HISTORY FILE]
[LOAD shared-library [OPTIONS vendor-options] [OPEN num-sessions SESSIONS] |
FROM :source-area | USE TSM [OPEN num-sessions SESSIONS] | USER_EXIT]
[TAKEN AT timestamp] [TO target-directory] [INTO target-database-alias]
[ACTION caller-action] [WITH num-buffers BUFFERS] [BUFFERSIZE buffer-size]
[WITHOUT ROLLING FORWARD] [PARALLELISM parallelism-degree]

Restore Database API

Chapter 3. Database Restore 123

XXX.0 Number of elements in the variable (always 1)

XXX.1 An application ID that identifies the agent that serves
the application.

username
Identifies the user name to be used for a connection.

password
The password used to authenticate the user name.

tablespacenames
A compound REXX host variable containing a list of table spaces to be
restored. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be restored

XXX.1 First table space name

XXX.2 Second table space name

XXX.3 and so on.

HISTORY FILE
Specifies to restore only the history file from the backup image.

shared-library
The name of the shared library (DLL on Windows operating systems
or OS/2) containing the vendor restore I/O functions to be used. It
may contain the full path. If the full path is not given, defaults to the
path on which the user exit program resides.

vendor-options
Information required by the vendor functions.

num-sessions
The number of I/O sessions to be used with TSM or the vendor
product.

source-area
A compound REXX host variable that indicates on which directory or
device the backup image resides. The default value is the current
directory. On Windows operating systems or OS/2, the entries can
only be directory paths, not tape device names.

timestamp
The time stamp of the database backup image.

target-directory
The target database directory.

target-database-alias
The target database alias. If the target database does not exist, it will
be created.

Restore Database API

124 Data Recovery and High Availability Guide and Reference

caller-action
Specifies action to be taken. Valid values are:

SQLUD_RESTORE
Start the restore operation.

SQLUD_NOINTERRUPT
Start the restore operation. Specifies that the restore operation
is to run unattended. Scenarios that normally require user
intervention will either be attempted without first returning to
the caller, or will generate an error. Use this caller action, for
example, when all of the media required for the restore
operation are known to have been mounted, and utility
prompts are not desired.

SQLUD_CONTINUE
Continue using the device that generated the warning
message (for example, continue when a new tape has been
mounted).

SQLUD_TERMINATE
Abort the restore operation after the user has failed to
perform some action requested by the utility.

SQLUD_DEVICE_TERMINATE
Remove a device from the list of devices being used by the
restore utility. When a device has exhausted its input, the
restore utility returns a warning to the caller. Invoke the
restore utility again with this caller action. The device that
generated the warning is removed from the list of devices
being used.

SQLUD_PARM_CHECK
Validate parameters without performing the restore operation.

SQLUD_RESTORE_STORDEF
Initial call. Request table space container redefinition.

num-buffers
Number of backup buffers to be used.

buffer-size
Backup buffer size in 4-KB allocation units. Minimum value is 16
units.

parallelism-degree
Degree of intra-partition parallelism (number of buffer manipulators).

Restore Database API

Chapter 3. Database Restore 125

Example Restore Sessions

CLP Examples
Following is a typical redirected restore scenario for a database whose alias is
MYDB:
1. Issue a RESTORE DATABASE command with the REDIRECT option.

db2 restore db mydb replace existing redirect

After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers must be redefined. For example, on OS/2:

db2 set tablespace containers for 5 using
(file 'f:\ts3con1' 20000, file 'f:\ts3con2' 20000)

To verify that the containers of the restored database are the ones specified
in this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.
4. If step 3 fails, or if the restore operation has been aborted, the redirected

restore can be restarted, beginning at step 1.

Following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:

(Sun) backup db kdr use tsm
(Mon) backup db kdr online incremental delta use tsm
(Tue) backup db kdr online incremental delta use tsm
(Wed) backup db kdr online incremental use tsm
(Thu) backup db kdr online incremental delta use tsm
(Fri) backup db kdr online incremental delta use tsm
(Sat) backup db kdr online incremental use tsm

For an automatic database restore of the images created on Friday morning,
issue:

restore db kdr incremental automatic taken at (Thu)

For a manual database restore of the images created on Friday morning, issue:

Example Restore Sessions

126 Data Recovery and High Availability Guide and Reference

restore db kdr incremental taken at (Thu)
restore db kdr incremental taken at (Sun)
restore db kdr incremental taken at (Wed)
restore db kdr incremental taken at (Thu)

A sample DB2 command script, and information on how to use it, are
provided in “Appendix F. Recovery CLP Script” on page 425.

API Examples
Sample programs containing DB2 APIs and embedded SQL calls, and
information on how to use them, are provided in “Appendix E. Recovery
Sample Programs” on page 359.

Optimizing Restore Performance

To reduce the amount of time required to complete a restore operation:
v Increase the restore buffer size.

The restore buffer size must be a positive integer multiple of the backup
buffer size specified during the backup operation. If an incorrect buffer size
is specified, the buffers allocated will be the smallest acceptable size.

v Increase the number of buffers.
The value you specify must be a multiple of the number of pages that you
specified for the backup buffer. The minimum number of pages is 16.

Restore Restrictions

The following restrictions apply to the restore utility:
v You can only use the restore utility if the database has been previously

backed up using the DB2 backup utility.
v If you are using the DB2 Control Center, you cannot restore backup images

that were created with previous versions of DB2.
v A database restore operation cannot be started while the rollforward

process is running.
v You can restore a table space only if the table space currently exists, and if

it is the same table space; “same” means that the table space was not
dropped and then recreated between the backup and the restore operation.)

v You cannot restore a table space-level backup to a new database.
v You cannot perform an online table space-level restore operation involving

the system catalog tables.
v On OS/2, a partial or subset restore operation is not possible when calling a

user exit program.
v If the code page of the database being restored does not match a code page

that is available to the application, or if the database manager does not

Example Restore Sessions

Chapter 3. Database Restore 127

support code page conversion from the database code page to a code page
that is available to the application, the restored database will not be usable.

Troubleshooting Restore

If SQL0970N is returned when you try to restore a backup image to a new
database on a different system, and your original database has table spaces
defined using an absolute path, use a redirected restore operation to define
table space containers on the new system. The restore utility attempts to use
the absolute path and containers that do not exist on your new system.

If a system failure occurs during a database restore operation, you cannot
connect to the database until you invoke the restore utility again, and
successfully complete the restore operation. If a system failure occurs during a
table space restore operation, only the table space being restored is unusable.
The other table spaces in the database can still be used.

Restore Restrictions

128 Data Recovery and High Availability Guide and Reference

Chapter 4. Rollforward Recovery

This section describes the DB2 UDB rollforward utility, which is used to
recover a database by applying transactions that were recorded in the
database recovery log files.

The following topics are covered:
v “Rollforward Overview”
v “Privileges, Authorities, and Authorization Required to Use Rollforward” on

page 131
v “Using Rollforward” on page 132
v “Rolling Forward Changes in a Table Space” on page 132
v “Recovering a Dropped Table” on page 136
v “Using the Load Copy Location File” on page 138
v “Synchronizing Clocks in a Partitioned Database System” on page 140
v “ROLLFORWARD DATABASE Command” on page 142
v “Rollforward Database API” on page 148
v “Data Structure: RFWD-INPUT” on page 157
v “Data Structure: RFWD-OUTPUT” on page 160
v “Example Rollforward Sessions” on page 164
v “Rollforward Restrictions” on page 167
v “Troubleshooting Rollforward” on page 167

Rollforward Overview

The simplest form of the DB2 ROLLFORWARD DATABASE command
requires only that you specify the alias name of the database that you want to
rollforward recover. For example:

db2 rollforward db sample stop

In this example, the command returns:
Rollforward Status

Input database alias = sample
Number of nodes have returned status = 1

Node number = 0
Rollforward status = not pending
Next log file to be read =
Log files processed = -

© Copyright IBM Corp. 2001 129

Last committed transaction = 2001-03-11-02.39.48.000000

DB20000I The ROLLFORWARD command completed successfully.

For an explanation of these fields, see “ROLLFORWARD DATABASE
Command” on page 142.

The general approach to rollforward recovery involves:
1. Invoking the rollforward utility without the STOP option
2. Invoking the rollforward utility with the QUERY STATUS option

If you specify recovery to the end of the logs, the QUERY STATUS option
can indicate that one or more log files is missing, if the returned point in
time is earlier than you expect.
If you specify point-in-time recovery, the QUERY STATUS option will help
you to ensure that the rollforward operation has completed at the correct
point.

3. Invoking the rollforward utility with the STOP option. After the operation
stops, it is not possible to roll additional changes forward.

A database must be restored successfully (using the restore utility) before it
can be rolled forward, but a table space does not. A table space may be
temporarily put in rollforward pending state, but not require a restore
operation to undo it (following a power interruption, for example).

When the rollforward utility is invoked:
v If the database is in rollforward pending state, the database is rolled

forward. If table spaces are also in rollforward pending state, you must
invoke the rollforward utility again after the database rollforward operation
completes to roll the table spaces forward.

v If the database is not in rollforward pending state, but table spaces in the
database are in rollforward pending state:
– If you specify a list of table spaces, only those table spaces are rolled

forward.
– If you do not specify a list of table spaces, all table spaces that are in

rollforward pending state are rolled forward.

A database rollforward operation runs offline. The database is not available
for use until the rollforward operation completes successfully, and the
operation cannot complete unless the STOP option was specified when the
utility was invoked.

Rollforward Overview

130 Data Recovery and High Availability Guide and Reference

A table space rollforward operation can run offline. The database is not
available for use until the rollforward operation completes successfully. This
occurs if the end of the logs is reached, or if the STOP option was specified
when the utility was invoked.

You can perform an online rollforward operation on table spaces, as long as
SYSCATSPACE is not included. When you perform an online rollforward
operation on a table space, the table space is not available for use, but the
other table spaces in the database are available.

When you first create a database, it is enabled for circular logging only. This
means that logs are reused, rather than being saved or archived. With circular
logging, rollforward recovery is not possible: only crash recovery or version
recovery can be done (see “Understanding Recovery Logs” on page 30).
Archived logs document changes to a database that occur after a backup was
taken. You enable log archiving (and rollforward recovery) by setting the
logretain database configuration parameter to RECOVERY, or setting the userexit
database configuration parameter to YES, or both. The default value for both
of these parameters is NO, because initially, there is no backup image that you
can use to recover the database. When you change the value of one or both of
these parameters, the database is put into backup pending state, and you
must take an offline backup of the database before it can be used again.

For more information about the database configuration parameters associated
with logging, see “Configuration Parameters for Database Logging” on
page 37.

Privileges, Authorities, and Authorization Required to Use Rollforward

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the
rollforward utility.

Rollforward Overview

Chapter 4. Rollforward Recovery 131

Using Rollforward

Before Using Rollforward
You should not be connected to the database that is to be rollforward
recovered: the rollforward utility automatically establishes a connection to the
specified database, and this connection is terminated at the completion of the
rollforward operation.

The database can be local or remote.

Invoking Rollforward
The rollforward utility can be invoked through:
v The command line processor (CLP).

Following is an example of the ROLLFORWARD DATABASE command
issued through the CLP:

db2 rollforward db sample to end of logs and stop

v The Rollforward Database notebook in the Control Center. To open the
Rollforward Database notebook:
1. From the Control Center, expand the object tree until you find the

Databases folder.
2. Click on the Databases folder. Any existing databases are displayed in

the pane on the right side of the window (the contents pane).
3. Click the right mouse button on the database you want in the contents

pane, and select Rollforward from the pop-up menu. The Rollforward
Database notebook opens.

For general information about the Control Center, see the Administration
Guide. Detailed information is provided through the online help facility
within the Control Center.

v An application programming interface (API), sqluroll. For information
about this API, see “Rollforward Database API” on page 148. For general
information about creating applications containing DB2 administrative APIs,
see the Application Building Guide.

In a partitioned database environment, the rollforward utility must be invoked
from the catalog node of the database.

Rolling Forward Changes in a Table Space

If the database is enabled for forward recovery, you have the option of
backing up, restoring, and rolling forward table spaces instead of the entire
database. You may want to implement a recovery strategy for individual table
spaces because this can save time: it takes less time to recover a portion of the
database than it does to recover the entire database. For example, if a disk is

Using Rollforward

132 Data Recovery and High Availability Guide and Reference

bad, and it contains only one table space, that table space can be restored and
rolled forward without having to recover the entire database, and without
impacting user access to the rest of the database, unless the damaged table
space contains the system catalog tables; in this situation, you cannot connect
to the database. (The system catalog table space can be restored independently
if a table space-level backup image containing the system catalog table space
is available.) Table space-level backups also allow you to back up critical parts
of the database more frequently than other parts, and requires less time than
backing up the entire database.

After a table space is restored, it is always in rollforward pending state. To
make the table space usable, you must perform rollforward recovery on it. In
most cases, you have the option of rolling forward to the end of the logs, or
rolling forward to a point in time. You cannot, however, roll table spaces
containing system catalog tables forward to a point in time. These table spaces
must be rolled forward to the end of the logs to ensure that all table spaces in
the database remain consistent.

Before rolling a table space forward, invoke the LIST TABLESPACES SHOW
DETAIL command. This command returns the minimum recovery time, which is
the earliest point in time to which the table space can be rolled forward. The
minimum recovery time is updated when data definition language (DDL)
statements are run against the table space, or against tables in the table space.
The table space must be rolled forward to at least the minimum recovery
time, so that it becomes synchronized with the information in the system
catalog tables. If recovering more than one table space, the table spaces must
be rolled forward to at least the highest minimum recovery time of all the
table spaces being recovered. In a partitioned database environment, issue the
LIST TABLESPACES SHOW DETAIL command on all partitions. The table
spaces must be rolled forward to at least the highest minimum recovery time
of all the table spaces on all partitions.

If you are rolling table spaces forward to a point in time, and a table is
contained in multiple table spaces, all of these table spaces must be rolled
forward simultaneously. If, for example, the table data is contained in one
table space, and the index for the table is contained in another table space,
you must roll both table spaces forward simultaneously to the same point in
time.

If the data and the long objects in a table are in separate table spaces, and the
table has been reorganized, the table spaces for both the data and the long
objects must be restored and rolled forward together. You should take a
backup of the affected table spaces after the table is reorganized.

If you want to roll a table space forward to a point in time, and a table in the
table space is either:

Rolling Forward Changes in a Table Space

Chapter 4. Rollforward Recovery 133

v An underlying table for a summary table that is in another table space
v A summary table for a table in another table space

You should roll both table spaces forward to the same point in time. If you do
not, the summary table is placed in check pending state at the end of the
rollforward operation.

If you want to roll a table space forward to a point in time, and a table in the
table space participates in a referential integrity relationship with another
table that is contained in another table space, you should roll both table
spaces forward simultaneously to the same point in time. If you do not, both
table spaces will be in check pending state at the end of the point-in-time
rollforward operation. If you roll both table spaces forward simultaneously,
the constraint will remain active at the end of the point-in-time rollforward
operation.

Ensure that a point-in-time table space rollforward operation does not cause a
transaction to be rolled back in some table spaces, and committed in others.
This can happen if:
v A point-in-time rollforward operation is performed on a subset of the table

spaces that were updated by a transaction, and that point in time precedes
the time at which the transaction was committed.

v Any table contained in the table space being rolled forward to a point in
time has an associated trigger, or is updated by a trigger that affects table
spaces other than the one that is being rolled forward.

The solution is to find a suitable point in time that will prevent this from
happening.

You can issue the QUIESCE TABLESPACES FOR TABLE command to create a
transaction-consistent point in time for rolling table spaces forward. The
quiesce request (in share, intent to update, or exclusive mode) waits (through
locking) for all running transactions against those table spaces to complete,
and blocks new requests. When the quiesce request is granted, the table
spaces are in a consistent state. To determine a suitable time to stop the
rollforward operation, you can look in the recovery history file to find quiesce
points, and check whether they occur after the minimum recovery time.

After a table space point-in-time rollforward operation completes, the table
space is put in backup pending state. You must take a backup of the table
space, because all updates made to it between the point in time to which you
rolled forward and the current time have been removed. You can no longer
roll the table space forward to the current time from a previous database- or
table space-level backup image. The following example shows why the table
space-level backup image is required, and how it is used. (To make the table
space available, you can either back up the entire database, the table space

Rolling Forward Changes in a Table Space

134 Data Recovery and High Availability Guide and Reference

that is in backup pending state, or a set of table spaces that includes the table
space that is in backup pending state.)

In the preceding example, the database is backed up at time T1. Then, at time
T3, table space TABSP1 is rolled forward to a specific point in time (T2), The
table space is backed up after time T3. Because the table space is in backup
pending state, this backup operation is mandatory. The time stamp of the
table space backup image is after time T3, but the table space is at time T2.
Log records from between T2 and T3 are not applied to TABSP1. At time T4,
the database is restored, using the backup image created at T1, and rolled
forward to the end of the logs. Table space TABSP1 is put in restore pending
state at time T3, because the database manager assumes that operations were
performed on TABSP1 between T3 and T4 without the log changes between
T2 and T3 having been applied to the table space. If these log changes were in
fact applied as part of the rollforward operation against the database, this
assumption would be incorrect. The table space-level backup that must be
taken after the table space is rolled forward to a point in time allows you to
roll that table space forward past a previous point-in-time rollforward
operation (T3 in the example).

Assuming that you want to recover table space TABSP1 to T4, you would
restore the table space from a backup image that was taken after T3 (either
the required backup, or a later one), then roll TABSP1 forward to the end of
the logs.

In the preceding example, the most efficient way of restoring the database to
time T4 would be to perform the required steps in the following order:
1. Restore the database.
2. Restore the table space.
3. Roll the database forward.

Database Time of rollforward of Restore
backup table space TABSP1 to database.

T2. Back up TABSP1. Roll forward
to end of logs.

T1 T2 T3 T4
| | | |
| | | |
|---

| Logs are not
applied to TABSP1
between T2 and T3
when it is rolled
forward to T2.

Figure 17. Table Space Backup Requirement

Rolling Forward Changes in a Table Space

Chapter 4. Rollforward Recovery 135

4. Roll the table space forward.

Because you restore the table space before rolling the database forward,
resource is not used to apply log records to the table space when the database
is rolled forward.

If you cannot find the TABSP1 backup image that follows time T3, or you
want to restore TABSP1 to T3 (or earlier), you can:
v Roll the table space forward to T3. You do not need to restore the table

space again, because it was restored from the database backup image.
v Restore the table space again, using the database backup taken at time T1,

then roll the table space forward to a time that precedes time T3.
v Drop the table space.

In a partitioned database environment:
v You must simultaneously roll all parts of a table space forward to the same

point in time at the same time. This ensures that the table space is
consistent across database partitions.

v If some database partitions are in rollforward pending state, and on other
database partitions, some table spaces are in rollforward pending state (but
the database partitions are not), you must first roll the database partitions
forward, and then roll the table spaces forward.

v If you intend to roll a table space forward to the end of the logs, you do
not have to restore it at each database partition; you only need to restore it
at the database partitions that require recovery. If you intend to roll a table
space forward to a point in time, however, you must restore it at each
database partition.

Recovering a Dropped Table

You may occasionally drop a table whose data you still need. If this is the
case, you should consider making your critical tables recoverable following a
drop table operation.

You could recover the table data by invoking a database restore operation,
followed by a database rollforward operation to a point in time before the
table was dropped. This may be time consuming if the database is large, and
your data will be unavailable during recovery.

DB2’s dropped table recovery feature lets you recover your dropped table
data using table space-level restore and rollforward operations. This will be
faster than database-level recovery, and your database will remain available to
users.

Rolling Forward Changes in a Table Space

136 Data Recovery and High Availability Guide and Reference

For a dropped table to be recoverable, the table space in which the table
resides must have the DROPPED TABLE RECOVERY option turned on. This
can be done during table space creation, or by invoking the ALTER
TABLESPACE statement (see the SQL Reference). The DROPPED TABLE
RECOVERY option is table space-specific and limited to regular table spaces.
To determine if a table space is enabled for dropped table recovery, you can
query the DROP_RECOVERY column in the SYSCAT.TABLESPACES catalog
table.

When a DROP TABLE statement is run against a table whose table space is
enabled for dropped table recovery, an additional entry (identifying the
dropped table) is made in the log files. An entry is also made in the recovery
history file, containing information that can be used to recreate the table.

Only one dropped table can be recovered at a time. You can recover a
dropped table by doing the following:
1. Identify the dropped table by invoking the LIST HISTORY DROPPED

TABLE command (see “LIST HISTORY” on page 318). The dropped table
ID is listed in the Backup ID column.

2. Restore a database- or table space-level backup image taken before the
table was dropped.

3. Create an export directory to which files containing the table data are to
be written. This directory must either be accessible to all database
partitions, or exist on each partition. Subdirectories under this export
directory are created automatically by each database partition. These
subdirectories are named NODEnnnn, where nnnn represents the database
partition or node number. Data files containing the dropped table data as
it existed on each database partition are exported to a lower subdirectory
called data. For example, \export_directory\NODE0000\data.

4. Roll forward to a point in time after the table was dropped, using the
RECOVER DROPPED TABLE option on the ROLLFORWARD DATABASE
command. Alternatively, roll forward to the end of the logs, so that
updates to other tables in the table space or database are not lost.

5. Recreate the table using the CREATE TABLE statement from the recovery
history file.

6. Import the table data that was exported during the rollforward operation
into the table.

There are some restrictions on the type of data that is recoverable from a
dropped table. It is not possible to recover:
v Large object (LOB) or long field data. The DROPPED TABLE RECOVERY

option is not supported for long table spaces. If you attempt to recover a
dropped table that contains LOB or LONG VARCHAR columns, these

Recovering a Dropped Table

Chapter 4. Rollforward Recovery 137

columns will be set to NULL in the generated export file. The DROPPED
TABLE RECOVERY option can only be used for regular table spaces, not
for temporary or long table spaces.

v The metadata associated with row types. (The data is recovered, but not the
metadata.) The data in the hierarchy table of the typed table will be
recovered. This data may contain more information than appeared in the
typed table that was dropped.

The names of linked files associated with DATALINK columns can be
recovered. After importing the table data, the table should be reconciled with
the DB2 Data Links Manager. Backup images of the files may or may not be
restored by the DB2 Data Links Manager, depending on whether garbage
collection has already deleted them.

Using the Load Copy Location File

The DB2LOADREC registry variable is used to identify the file with the load
copy location information. This file is used during rollforward recovery to
locate the load copy. It has information about:
v Media type
v Number of media devices to be used
v Location of the load copy generated during a table load operation
v File name of the load copy, if applicable

If the location file does not exist, or no matching entry is found in the file, the
information from the log record is used.

The information in the file may be overwritten before rollforward recovery
takes place.

Notes:

1. In a partitioned database environment, the DB2LOADREC registry
variable must be in the db2profile file.

2. In a partitioned database environment, the load copy file must exist at
each database partition server, and the file name (including the path) must
be the same.

3. If an entry in the file identified by the DB2LOADREC registry variable is
not valid, the old load copy location file is used to provide information to
replace the invalid entry.

The following information is provided in the location file. The first five
parameters must have valid values, and are used to identify the load copy.
The entire structure is repeated for each load copy recorded. For example:

Recovering a Dropped Table

138 Data Recovery and High Availability Guide and Reference

TIMestamp 19950725182542 * Time stamp generated at load time
SCHema PAYROLL * Schema of table loaded
TABlename EMPLOYEES * Table name
DATabasename DBT * Database name
DB2instance TORONTO * DB2INSTANCE
BUFfernumber NULL * Number of buffers to be used for recovery
SESsionnumber NULL * Number of sessions to be used for recovery
TYPeofmedia L * Type of media - L for local device

A for TSM
O for other vendors

LOCationnumber 3 * Number of locations
ENTry /u/toronto/dbt.payroll.employes.001
ENT /u/toronto/dbt.payroll.employes.002
ENT /dev/rmt0

TIM 19950725192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 TORONTO
SES NULL
BUF NULL
TYP A
TIM 19940325192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 TORONTO
SES NULL
BUF NULL
TYP O
SHRlib /@sys/lib/backup_vendor.a

Notes:

1. The first three characters in each keyword are significant. All keywords are
required in the specified order. Blank lines are not accepted.

2. The time stamp is in the form yyyymmddhhmmss.
3. All fields are mandatory, except for BUF and SES, which can be NULL. If

SES is NULL, the value specified by the numloadrecses configuration
parameter is used. If BUF is NULL, the default value is SES+2.

4. If even one of the entries in the location file is invalid, the previous load
copy location file is used to provide those values.

5. The media type can be local device (L for tape, disk or diskettes), TSM (A),
or other vendor (O). If the type is L, the number of locations, followed by
the location entries, is required. If the type is A, no further input is
required. If the type is O, the shared library name is required. For details
about using TSM and other vendor products as backup media, see
“Appendix G. Tivoli Storage Manager” on page 433.

6. The SHRlib parameter points to a library that has a function to store the
load copy data.

Using the Load Copy Location File

Chapter 4. Rollforward Recovery 139

7. If you invoke a load operation, specifying the COPY NO or the
NONRECOVERABLE option, and do not take a backup copy of the
database or affected table spaces after the operation completes, you cannot
restore the database or table spaces to a point in time that follows the load
operation. That is, you cannot use rollforward recovery to rebuild the
database or table spaces to the state they were in following the load
operation. You can only restore the database or table spaces to a point in
time that precedes the load operation.

If you want to use a particular load copy, you can use the recovery history file
for the database to determine the time stamp for that specific load operation.
In a partitioned database environment, the recovery history file is local to each
database partition.

For detailed information about the load utility, see the Data Movement Utilities
Guide and Reference.

Synchronizing Clocks in a Partitioned Database System

You should maintain relatively synchronized system clocks across the
database partition servers to ensure smooth database operations and
unlimited forward recoverability. Time differences among the database
partition servers, plus any potential operational and communications delays
for a transaction should be less than the value specified for the max_time_diff
(maximum time difference among nodes) database manager configuration
parameter.

To ensure that the log record time stamps reflect the sequence of transactions
in a partitioned database system, DB2 uses the system clock on each machine
as the basis for the time stamps in the log records. If, however, the system
clock is set ahead, the log clock is automatically set ahead with it. Although
the system clock can be set back, the clock for the logs cannot, and remains at
the same advanced time until the system clock matches this time. The clocks
are then in synchrony. The implication of this is that a short term system clock
error on a database node can have a long lasting effect on the time stamps of
database logs.

For example, assume that the system clock on database partition server A is
mistakenly set to November 7, 1999 when the year is 1997, and assume that
the mistake is corrected after an update transaction is committed in the
partition at that database partition server. If the database is in continual use,
and is regularly updated over time, any point between November 7, 1997 and
November 7, 1999 is virtually unreachable through rollforward recovery.
When the COMMIT on database partition server A completes, the time stamp
in the database log is set to 1999, and the log clock remains at November 7,
1999 until the system clock matches this time. If you attempt to roll forward

Using the Load Copy Location File

140 Data Recovery and High Availability Guide and Reference

to a point in time within this time frame, the operation will stop at the first
time stamp that is beyond the specified stop point, which is November 7,
1997.

Although DB2 cannot control updates to the system clock, the max_time_diff
database manager configuration parameter reduces the chances of this type of
problem occurring:
v The configurable values for this parameter range from 1 minute to 24

hours. For more information about setting max_time_diff, see the
Administration Guide: Performance book.

v When the first connection request is made to a non-catalog node, the
database partition server sends its time to the catalog node for the database.
The catalog node then checks that the time on the node requesting the
connection, and its own time are within the range specified by the
max_time_diff parameter. If this range is exceeded, the connection is refused.

v An update transaction that involves more than two database partition
servers in the database must verify that the clocks on the participating
database partition servers are in synchrony before the update can be
committed. If two or more database partition servers have a time difference
that exceeds the limit allowed by max_time_diff, the transaction is rolled
back to prevent the incorrect time from being propagated to other database
partition servers.

Synchronizing Clocks in a Partitioned Database System

Chapter 4. Rollforward Recovery 141

ROLLFORWARD DATABASE Command

Command Syntax

MM ROLLFORWARD DATABASE database-alias
DB

M

M
USER username

USING password

M

M
TO isotime

ON ALL NODES AND COMPLETE
END OF LOGS AND STOP

On Node clause
COMPLETE
STOP On Node clause
CANCEL
QUERY STATUS

M

M

N

TABLESPACE ONLINE
,

(tablespace-name)
ONLINE

M

M
OVERFLOW LOG PATH (log-directory)

, Log Overflow clause

M

M
RECOVER DROPPED TABLE drop-table-id TO export-directory

MO

On Node clause:

ON Node List clause
ALL NODES

EXCEPT Node List clause

Node List clause:

ROLLFORWARD DATABASE Command

142 Data Recovery and High Availability Guide and Reference

NODE
NODES

(N

,

node-number1
TO node-number2

)

Log Overflow clause:

N

,

log-directory ON NODE node-number1

Command Parameters

DATABASE database-alias
The alias of the database that is to be rollforward recovered.

USER username
The user name under which the database is to be rollforward
recovered.

USING password
The password used to authenticate the user name. If the password is
omitted, the user is prompted to enter it.

TO

isotime
The point in time to which all committed transactions are to
be rolled forward (including the transaction committed
precisely at that time, as well as all transactions committed
previously).

This value is specified as a time stamp, a 7-part character
string that identifies a combined date and time. The format is
yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour, minutes,
seconds, microseconds), expressed in Coordinated Universal
Time (UTC). UTC helps to avoid having the same time stamp
associated with different logs (because of a change in time
associated with daylight savings time, for example). The time
stamp in a backup image is based on the local time at which
the backup operation started. The CURRENT TIMEZONE
special register specifies the difference between UTC and local
time at the application server. The difference is represented by
a time duration (a decimal number in which the first two
digits represent the number of hours, the next two digits
represent the number of minutes, and the last two digits
represent the number of seconds). Subtracting CURRENT
TIMEZONE from a local time converts that local time to UTC.

ROLLFORWARD DATABASE Command

Chapter 4. Rollforward Recovery 143

END OF LOGS
Specifies that all committed transactions from all online
archive log files listed in the database configuration parameter
logpath are to be applied.

ALL NODES
Specifies that transactions are to be rolled forward on all nodes
specified in the db2nodes.cfg file. This is the default if a node clause
is not specified.

EXCEPT
Specifies that transactions are to be rolled forward on all nodes
specified in the db2nodes.cfg file, except those specified in the node
list.

ON NODE / ON NODES
Roll the database forward on a set of nodes.

node-number1
Specifies a node number in the node list.

node-number2
Specifies the second node number, so that all nodes from node-number1
up to and including node-number2 are included in the node list.

COMPLETE / STOP
Stops the rolling forward of log records, and completes the
rollforward recovery process by rolling back any incomplete
transactions and turning off the rollforward pending state of the
database. This allows access to the database or table spaces that are
being rolled forward. These keywords are equivalent; specify one or
the other, but not both. The keyword AND permits specification of
multiple operations at once; for example, db2 rollforward db sample
to end of logs and complete.

Note: When rolling table spaces forward to a point in time, the table
spaces are placed in backup pending state.

CANCEL
Cancels the rollforward recovery operation. This puts the database or
one or more table spaces on all nodes on which forward recovery has
been started in restore pending state:
v If a database rollforward operation is not in progress (that is, the

database is in rollforward pending state), this option puts the
database in restore pending state.

v If a table space rollforward operation is not in progress (that is, the
table spaces are in rollforward pending state), a table space list
must be specified. All table spaces in the list are put in restore
pending state.

ROLLFORWARD DATABASE Command

144 Data Recovery and High Availability Guide and Reference

v If a table space rollforward operation is in progress (that is, at least
one table space is in rollforward in progress state), all table spaces
that are in rollforward in progress state are put in restore pending
state. If a table space list is specified, it must include all table spaces
that are in rollforward in progress state. All table spaces on the list
are put in restore pending state.

v If rolling forward to a point in time, any table space name that is
passed in is ignored, and all table spaces that are in rollforward in
progress state are put in restore pending state.

v If rolling forward to the end of the logs with a table space list, only
the table spaces listed are put in restore pending state.

This option cannot be used to cancel a rollforward operation that is
actually running. It can only be used to cancel a rollforward operation
that is in progress but not actually running at the time. A rollforward
operation can be in progress but not running if:
v It terminated abnormally.
v The STOP option was not specified.
v An error caused it to fail. Some errors, such as rolling forward

through a non-recoverable load operation, can put a table space into
restore pending state.

Note: Use this option with caution, and only if the rollforward
operation that is in progress cannot be completed because some
of the table spaces have been put in rollforward pending state
or in restore pending state. When in doubt, use the LIST
TABLESPACES command to identify the table spaces that are in
rollforward in progress state, or in rollforward pending state.

QUERY STATUS
Lists the log files that the database manager has rolled forward, the
next archive file required, and the time stamp (in CUT) of the last
committed transaction since rollforward processing began. In a
partitioned database environment, this status information is returned
for each node. The information returned contains the following fields:

Node number

Rollforward status
Status can be: database or table space rollforward pending,
database or table space rollforward in progress, database or
table space rollforward processing STOP, or not pending.

Next log file to be read
A string containing the name of the next required log file. In a
partitioned database environment, use this information if the

ROLLFORWARD DATABASE Command

Chapter 4. Rollforward Recovery 145

rollforward utility fails with a return code indicating that a
log file is missing or that a log information mismatch has
occurred.

Log files processed
A string containing the names of processed log files that are
no longer needed for recovery, and that can be removed from
the directory. If, for example, the oldest uncommitted
transaction starts in log file x, the range of obsolete log files
will not include x; the range ends at x - 1.

Last committed transaction
A string containing a time stamp in ISO format
(yyyy-mm-dd-hh.mm.ss). This time stamp marks the last
transaction committed after the completion of rollforward
recovery. The time stamp applies to the database. For table
space rollforward recovery, it is the time stamp of the last
transaction committed to the database.

Note: QUERY STATUS is the default value if the TO, STOP,
COMPLETE, or CANCEL clauses are omitted. If TO, STOP, or
COMPLETE was specified, status information is displayed if
the command has completed successfully. If individual table
spaces are specified, they are ignored; the status request does
not apply only to specified table spaces.

TABLESPACE
This keyword is specified for table space-level rollforward recovery.

tablespace-name
Mandatory for table space-level rollforward recovery to a point in
time. Allows a subset of table spaces to be specified for rollforward
recovery to the end of the logs. In a partitioned database environment,
each table space in the list does not have to exist at each node that is
rolling forward. If it does exist, it must be in the correct state.

ONLINE
This keyword is specified to allow table space-level rollforward
recovery to be done online. This means that other agents are allowed
to connect while rollforward recovery is in progress.

OVERFLOW LOG PATH log-directory
Specifies an alternate log path to be searched for archived logs during
recovery. Use this parameter if log files were moved to a location
other than that specified by the logpath database configuration
parameter. In a partitioned database environment, this is the (fully
qualified) default overflow log path for all nodes. A relative overflow
log path can be specified for single-partition databases. If the
rollforward utility cannot find the next log that it needs, the log name

ROLLFORWARD DATABASE Command

146 Data Recovery and High Availability Guide and Reference

is returned in the SQLCA, and rollforward recovery stops. If no more
logs are available, use the STOP option to terminate rollforward
recovery. Incomplete transactions are rolled back to ensure that the
database or table space is left in a consistent state.

log-directory ON NODE
In a partitioned database environment, allows a different log path to
override the default overflow log path for a specific node.

RECOVER DROPPED TABLE drop-table-id
Recovers a dropped table during the rollforward operation. The table
ID can be obtained using “LIST HISTORY” on page 318.

TO export-directory
Specifies a directory to which files containing the table data are to be
written. The directory must be accessible to all nodes.

ROLLFORWARD DATABASE Command

Chapter 4. Rollforward Recovery 147

Rollforward Database API

C API Syntax

/* File: sqlutil.h */
/* API: Rollforward Database */
/* ... */
SQL_API_RC SQL_API_FN

sqluroll (
struct rfwd_input * pRfwdInput,
struct rfwd_output * pRfwdOuput,
struct sqlca * pSqlca);

/* ... */

Rollforward Database API

148 Data Recovery and High Availability Guide and Reference

Generic API Syntax

API Parameters

pRfwdInput
Input. A pointer to the rfwd_input structure. For more information
about this structure, see “Data Structure: RFWD-INPUT” on page 157.

/* File: sqlutil.h */
/* API: Rollforward Database */
/* ... */
SQL_API_RC SQL_API_RN

sqlgroll (
struct grfwd_input * grfwdin,
struct rfwd_output * rfwdout,
struct sqlca * sqlca);

SQL_STRUCTURE grfwd_input
{

unsigned short DbAliasLen,
unsigned short StopTimeLen,
unsigned short UserNameLen,
unsigned short PasswordLen,
unsigned short OverflowLogPathLen,
unsigned short ReportFileLen, /* NOTE: This parameter is no longer used */

/* for the DB2 Data Links Manager. */
sqluint32 Version,
char * pDbAlias,
unsigned short CallerAction,
char * pStopTime,
char * pUserName,
char * pPassword,
char * pOverflowLogPath,
unsigned short NumChngLgOvrflw,
struct sqlurf_newlogpath * pChngLogOvrflw,
unsigned short ConnectMode,
struct sqlu_tablespace_bkrst_list * pTablespaceList,
short AllNodeFlag,
short NumNodes,
SQL_PDB_NODE_TYPE * pNodeList,
short NumNodeInfo,
unsigned short DlMode, /* NOTE: This parameter is no longer used */

/* for the DB2 Data Links Manager. */
char * pReportFile, /* NOTE: This parameter is no longer used */

/* for the DB2 Data Links Manager. */
char * pDroppedTblID,
char * pExportDir

}
/* ... */

Rollforward Database API

Chapter 4. Rollforward Recovery 149

pRfwdOutput
Output. A pointer to the rfwd_output structure. For more information
about this structure, see “Data Structure: RFWD-OUTPUT” on
page 160.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

StopTimeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the stop time parameter. Set to zero if no stop time is provided.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is provided.

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is provided.

OverflowLogPathLen
Input. A 2-byte unsigned integer representing the length in bytes of
the overflow log path. Set to zero if no overflow log path is provided.

ReportFileLen
Input. This parameter is not currently used, and should be set to zero.

Version
Input. The version ID of the rollforward parameters. It is defined as
SQLUM_RFWD_VERSION.

pDbAlias
Input. A string containing the database alias. This is the alias that is
cataloged in the system database directory.

CallerAction
Input. Specifies action to be taken. Valid values (defined in sqlutil)
are:

SQLUM_ROLLFWD
Roll forward to the point in time specified by pPointInTime.
For database rollforward recovery, the database is left in
rollforward pending state. For table space-level rollforward to
a point in time, the table spaces are left in
rollforward-in-progress state.

SQLUM_STOP
End rollforward recovery. No new log records are processed
and uncommitted transactions are backed out. The

Rollforward Database API

150 Data Recovery and High Availability Guide and Reference

rollforward-pending state of the database or table spaces is
turned off. Synonym is SQLUM_COMPLETE.

SQLUM_ROLLFWD_STOP
Roll forward to the point in time specified by pPointInTime,
and end rollforward recovery. The rollforward pending state
of the database or table spaces is turned off. Synonym is
SQLUM_ROLLFWD_COMPLETE.

SQLUM_QUERY
Query values for pNextArcFileName, pFirstDelArcFileName,
pLastDelArcFileName, and pLastCommitTime. Return database
status and a node number.

SQLUM_PARM_CHECK
Validate parameters without performing the rollforward
operation.

SQLUM_CANCEL
Cancel the rollforward operation that is currently running.
The database or table space are put in recovery pending state.

Note: This option cannot be used while the rollforward
operation is actually running. It can be used if the
operation is paused (that is, waiting for a STOP), or if a
system failure occurred during the rollforward
operation. It should be used with caution.

Rolling databases forward may require a load recovery operation
using tape devices. The rollforward API returns with a warning
message if user intervention on a device is required. The API can be
called again with one of the following three caller actions:

SQLUM_LOADREC_CONTINUE
Continue using the device that generated the warning
message (for example, when a new tape has been mounted).

SQLUM_LOADREC_DEVICE_TERMINATE
Stop using the device that generated the warning message (for
example, when there are no more tapes).

SQLUM_LOADREC_TERMINATE
Terminate all devices being used by load recovery.

pStopTime
Input. A character string containing a time stamp in ISO format.
Database recovery will stop when this time stamp is exceeded. Specify
SQLUM_INFINITY_TIMESTAMP to roll forward as far as possible.
May be NULL for SQLUM_QUERY, SQLUM_PARM_CHECK, and any of the load
recovery (SQLUM_LOADREC_xxx) caller actions.

Rollforward Database API

Chapter 4. Rollforward Recovery 151

pUserName
Input. A string containing the user name of the application. May be
NULL.

pPassword
Input. A string containing the password of the supplied user name (if
any). May be NULL.

pOverflowLogPath
Input. This parameter is used to specify an alternate log path to be
used. In addition to the active log files, archived log files need to be
moved (by the user) into the logpath (see “sqlfxdb - Get Database
Configuration” in the Administrative API Reference) before they can be
used by this utility. This can be a problem if the user does not have
sufficient space in the logpath. The overflow log path is provided for
this reason. During rollforward recovery, the required log files are
searched, first in the logpath, and then in the overflow log path. The
log files needed for table space rollforward recovery can be brought
into either the logpath or the overflow log path. If the caller does not
specify an overflow log path, the default value is the logpath. In a
partitioned database environment, the overflow log path must be a
valid, fully qualified path; the default path is the default overflow log
path for each node. In a single-partition environment, the overflow
log path can be relative if the server is local.

NumChngLgOvrflw
MPP only. The number of changed overflow log paths. These new log
paths override the default overflow log path for the specified node
only.

pChngLogOvrflw
MPP only. A pointer to a structure containing the fully qualified
names of changed overflow log paths. These new log paths override
the default overflow log path for the specified node only.

ConnectMode
Input. Valid values (defined in sqlutil) are:

SQLUM_OFFLINE
Offline roll forward. This value must be specified for database
rollforward recovery.

SQLUM_ONLINE
Online roll forward.

pTablespaceList
Input. A pointer to a structure containing the names of the table
spaces to be rolled forward to the end-of-logs or to a specific point in
time. If not specified, the table spaces needing rollforward will be
selected.

Rollforward Database API

152 Data Recovery and High Availability Guide and Reference

AllNodeFlag
MPP only. Input. Indicates whether the rollforward operation is to be
applied to all nodes defined in db2nodes.cfg. Valid values are:

SQLURF_NODE_LIST
Apply to nodes in a node list that is passed in pNodeList.

SQLURF_ALL_NODES
Apply to all nodes. pNodeList should be NULL. This is the
default value.

SQLURF_ALL_EXCEPT
Apply to all nodes except those in a node list that is passed in
pNodeList.

SQLURF_CAT_NODE_ONLY
Apply to the catalog node only. pNodeList should be NULL.

NumNodes
Input. Specifies the number of nodes in the pNodeList array.

pNodeList
Input. A pointer to an array of node numbers on which to perform
rollforward recovery.

NumNodeInfo
Input. Defines the size of the output parameter pNodeInfo, which must
be large enough to hold status information from each node that is
being rolled forward. In a single-partition environment, this parameter
should be set to 1. The value of this parameter should be same as the
number of nodes for which this API is being called.

DlMode
Input. This parameter is not currently used, and should be set to zero.

pReportFile
Input. This parameter is not currently used, and should be set to
NULL.

pDroppedTblID
Input. A string containing the ID of the dropped table whose recovery
is being attempted.

pExportDir
Input. The directory into which the dropped table data will be
exported.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

Rollforward Database API

Chapter 4. Rollforward Recovery 153

REXX API Syntax

REXX API Parameters

database-alias
Alias of the database to be rolled forward.

value A compound REXX host variable containing the output values. In the
following, XXX represents the host variable name:

XXX.0 Number of elements in the variable

XXX.1 The application ID

XXX.2 Number of replies received from nodes

XXX.2.1.1 First node number

XXX.2.1.2 First state information

XXX.2.1.3 First next archive file needed

XXX.2.1.4 First first archive file to be deleted

XXX.2.1.5 First last archive file to be deleted

XXX.2.1.6 First last commit time

XXX.2.2.1 Second node number

XXX.2.2.2 Second state information

XXX.2.2.3 Second next archive file needed

XXX.2.2.4 Second first archive file to be deleted

XXX.2.2.5 Second last archive file to be deleted

XXX.2.2.6 Second last commit time

XXX.2.3.x and so on.

ROLLFORWARD DATABASE database-alias [USING :value] [USER username USING password]
[rollforward_action_clause | load_recovery_action_clause]
where rollforward_action_clause stands for:

{ TO point-in-time [AND STOP] |
{

[TO END OF LOGS [AND STOP] | STOP | CANCEL | QUERY STATUS | PARM CHECK }
[ON {:nodelist | ALL NODES [EXCEPT :nodelist]}]

}
}
[TABLESPACE {ONLINE |:tablespacenames [ONLINE]}]
[OVERFLOW LOG PATH default-log-path [:logpaths]]

and load_recovery_action_clause stands for:
LOAD RECOVERY { CONTINUE | DEVICE_TERMINATE | TERMINATE }

Rollforward Database API

154 Data Recovery and High Availability Guide and Reference

username
Identifies the user name under which the database is to be rolled
forward.

password
The password used to authenticate the user name.

point-in-time
A time stamp in ISO format, yyyy-mm-dd-hh.mm.ss.nnnnnn (year,
month, day, hour, minutes,seconds, microseconds), expressed in
Coordinated Universal Time (UTC).

tablespacenames
A compound REXX host variable containing a list of table spaces to be
rolled forward. In the following, XXX is the name of the host variable:

XXX.0 Number of table spaces to be rolled forward

XXX.1 First table space name

XXX.2 Second table space name

XXX.x and so on.

default-log-path
The default overflow log path to be searched for archived logs during
recovery

logpaths
A compound REXX host variable containing a list of alternate log
paths to be searched for archived logs during recovery. In the
following, XXX is the name of the host variable:

XXX.0 Number of changed overflow log paths

XXX.1.1 First node

XXX.1.2 First overflow log path

XXX.2.1 Second node

XXX.2.2 Second overflow log path

XXX.3.1 Third node

XXX.3.2 Third overflow log path

XXX.x.1 and so on.

nodelist
A compound REXX host variable containing a list of nodes. In the
following, XXX is the name of the host variable:

XXX.0 Number of nodes

XXX.1 First node

Rollforward Database API

Chapter 4. Rollforward Recovery 155

XXX.2 Second node

XXX.x and so on.

Rollforward Database API

156 Data Recovery and High Availability Guide and Reference

Data Structure: RFWD-INPUT

This structure is used to pass information to the “Rollforward Database API”
on page 148.

Table 8. Fields in the RFWD-INPUT Structure
Field Name Data Type Description

VERSION sqluint32 Rollforward version.

PDBALIAS Pointer Database alias.

CALLERACTION UNSIGNED SHORT Action.

PSTOPTIME Pointer Stop time.

PUSERNAME Pointer User name.

PPASSWORD Pointer Password.

POVERFLOWLOGPATH Pointer Overflow log path.

NUMCHNGLGOVRFLW UNSIGNED SHORT Number of changed overflow log paths (MPP only).

PCHNGLOGOVRFLW Structure Changed overflow log paths (MPP only).

CONNECTMODE UNSIGNED SHORT Connect mode.

PTABLESPACELIST Structure A pointer to a list of table space names. For
information about this structure, see “Data Structure:
SQLU-TABLESPACE-BKRST-LIST” on page 100.

ALLNODEFLAG SHORT All node flag.

NUMNODES SHORT Size of the node list.

PNODELIST Pointer List of node numbers.

NUMNODEINFO SHORT Size of pNodeInfo in “Data Structure:
RFWD-OUTPUT” on page 160.

DLMODE UNSIGNED SHORT This parameter is not currently used.

PREPORTFILE Pointer This parameter is not currently used.

PDROPPEDTBLID Pointer A string containing the ID of the dropped table
whose recovery is being attempted.

PEXPORTDIR Pointer The directory into which the dropped table data will
be exported.

NODENUM SQL_PDB_NODE_TYPE Node number.

PATHLEN UNSIGNED SHORT Length of the new log path.

LOGPATH CHAR(255) New overflow log path.

Data Structure: RFWD-INPUT

Chapter 4. Rollforward Recovery 157

Language Syntax
C Structure

/* File: sqlutil.h */
/* Structure: RFWD-INPUT */
/* ... */
SQL_STRUCTURE rfwd_input
{

sqluint32 version;
char *pDbAlias;
unsigned short CallerAction;
char *pStopTime;
char *pUserName;
char *pPassword;
char *pOverflowLogPath;
unsigned short NumChngLgOvrflw;
struct sqlurf_newlogpath *pChngLogOvrflw;
unsigned short ConnectMode;
struct sqlu_tablespace_bkrst_list *pTablespaceList;
short AllNodeFlag;
short NumNodes;
SQL_PDB_NODE_TYPE *pNodeList;
short NumNodeInfo;
unsigned short DlMode; /* This parameter is not */

/* currently used. */
char *pReportFile; /* This parameter is not */

/* currently used. */
char *pDroppedTblID;
char *pExportDir;

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLURF-NEWLOGPATH */
/* ... */
SQL_STRUCTURE sqlurf_newlogpath
{

SQL_PDB_NODE_TYPE nodenum;
unsigned short pathlen;
char logpath[SQL_LOGPATH_SZ+SQL_LOGFILE_NAME_SZ+1];

};
/* ... */

Data Structure: RFWD-INPUT

158 Data Recovery and High Availability Guide and Reference

COBOL Structure

* File: sqlutil.cbl
01 SQL-RFWD-INPUT.

05 SQL-VERSION PIC 9(9) COMP-5.
05 SQL-DBALIAS USAGE IS POINTER.
05 SQL-CALLERACTION PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-STOPTIME USAGE IS POINTER.
05 SQL-USERNAME USAGE IS POINTER.
05 SQL-PASSWORD USAGE IS POINTER.
05 SQL-OVERFLOWLOGPATH USAGE IS POINTER.
05 SQL-NUMCHANGE PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-P-CHNG-LOG-OVRFLW USAGE IS POINTER.
05 SQL-CONNECTMODE PIC 9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-P-TABLESPACE-LIST USAGE IS POINTER.
05 SQL-ALLNODEFLAG PIC S9(4) COMP-5.
05 SQL-NUMNODES PIC S9(4) COMP-5.
05 SQL-NODELIST USAGE IS POINTER.
05 SQL-NUMNODEINFO PIC S9(4) COMP-5.
05 SQL-DLMODE PIC 9(4) COMP-5. * This parameter is not

* currently used.
05 SQL-REPORTFILE USAGE IS POINTER. * This parameter is not

* currently used.
05 SQL-DROPPEDTBLID USAGE IS POINTER.
05 SQL-EXPORTDIR USAGE IS POINTER.

*

* File: sqlutil.cbl
01 SQLURF-NEWLOGPATH.

05 SQL-NODENUM PIC S9(4) COMP-5.
05 SQL-PATHLEN PIC 9(4) COMP-5.
05 SQL-LOGPATH PIC X(254).
05 FILLER PIC X.
05 FILLER PIC X(1).

*

Data Structure: RFWD-INPUT

Chapter 4. Rollforward Recovery 159

Data Structure: RFWD-OUTPUT

This structure is used to pass information from the “Rollforward Database
API” on page 148 .

Table 9. Fields in the RFWD-OUTPUT Structure

Field Name Data Type Description

PAPPLICATIONID Pointer The address of a buffer of length
SQLU_APPLID_LEN+1 (defined in sqlutil) to
hold an application identifier returned from
the API. This identifier can be used with the
database system monitor APIs to monitor the
application. If this information is not of
interest, specify the NULL pointer. In a
partitioned database environment, returns
only the application identifier for the catalog
node.

PNUMREPLIES Pointer Number of node replies received. Each node
that replies fills in an sqlurf_info structure in
pNodeInfo. In a single-partition environment,
the value of this parameter is 1.

PNODEINFO Structure Node reply information. A user-defined array
of NumNodeInfo sqlurf_info structures.

Table 10. Fields in the SQLURF-INFO Structure

Field Name Data Type Description

NODENUM SQL_PDB_NODE_TYPE Node number.

STATE LONG State information.

NEXTARCLOG UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of
the next required archived log file. If a caller
action other than SQLUM_QUERY is specified, the
value returned in this field indicates that an
error occurred when accessing the file.
Possible causes are:

v The file was not found in the database log
directory, nor on the path specified by the
overflow log path parameter.

v The user exit program failed to return the
archived file.

Data Structure: RFWD-OUTPUT

160 Data Recovery and High Availability Guide and Reference

Table 10. Fields in the SQLURF-INFO Structure (continued)

Field Name Data Type Description

FIRSTARCDEL UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of
the first archived log file that is no longer
needed for recovery. This file, and all files up
to and including lastarcdel, can be moved to
make room on the disk.

For example, if the values returned in
firstarcdel and lastarcdel are S0000001.LOG and
S0000005.LOG, the following log files can be
moved:

v S0000001.LOG

v S0000002.LOG

v S0000003.LOG

v S0000004.LOG

v S0000005.LOG

LASTARCDEL UNSIGNED CHAR(13) A 12-byte buffer to hold the returned name of
the last archived log file that can be removed
from the database log directory.

LASTCOMMIT UNSIGNED CHAR(27) A 26-character string containing a time stamp
in ISO format. This value represents the time
stamp of the last committed transaction after
the rollforward operation terminates.

Possible values for STATE (defined in sqlutil) are:

SQLURFQ_NOT_AVAILABLE
Could not connect to the node.

SQLURFQ_NOT_RFW_PENDING
Database is not in rollforward pending state.

SQLURFQ_DB_RFW_PENDING
Database is in rollforward pending state.

SQLURFQ_TBL_RFW_PENDING
Table space is in rollforward pending state.

SQLURFQ_DB_RFW_IN_PROGRESS
Database is in rollforward-in-progress state.

SQLURFQ_TBL_RFW_IN_PROGRESS
Table space is in rollforward-in-progress state.

SQLURFQ_DB_RFW_STOPPING
Database rollforward operation was interrupted while processing a
STOP request.

Data Structure: RFWD-OUTPUT

Chapter 4. Rollforward Recovery 161

SQLURFQ_TBL_RFW_STOPPING
Table space rollforward operation was interrupted while processing a
STOP request.

Language Syntax
C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: RFWD-OUTPUT */
/* ... */
SQL_STRUCTURE rfwd_output
{

char *pApplicationId;
long *pNumReplies;
struct sqlurf_info *pNodeInfo;

};
/* ... */

/* File: sqlutil.h */
/* Structure: SQLURF-INFO */
/* ... */
SQL_STRUCTURE sqlurf_info
{

SQL_PDB_NODE_TYPE nodenum;
long state;
unsigned char nextarclog[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char firstarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastarcdel[SQLUM_ARCHIVE_FILE_LEN+1];
unsigned char lastcommit[SQLUM_TIMESTAMP_LEN+1];

};
/* ... */

* File: sqlutil.cbl
01 SQL-RFWD-OUTPUT.

05 SQL-APPLID USAGE IS POINTER.
05 SQL-NUMREPLIES USAGE IS POINTER.
05 SQL-P-NODE-INFO USAGE IS POINTER.

*

Data Structure: RFWD-OUTPUT

162 Data Recovery and High Availability Guide and Reference

* File: sqlutil.cbl
01 SQLURF-INFO.

05 SQL-NODENUM PIC S9(4) COMP-5.
05 FILLER PIC X(2).
05 SQL-STATE PIC S9(9) COMP-5.
05 SQL-NEXTARCLOG PIC X(12).
05 FILLER PIC X.
05 SQL-FIRSTARCDEL PIC X(12).
05 FILLER PIC X.
05 SQL-LASTARCDEL PIC X(12).
05 FILLER PIC X.
05 SQL-LASTCOMMIT PIC X(26).
05 FILLER PIC X.
05 FILLER PIC X(2).

*

Data Structure: RFWD-OUTPUT

Chapter 4. Rollforward Recovery 163

Example Rollforward Sessions

CLP Examples
Example 1

The ROLLFORWARD DATABASE command permits specification of multiple
operations at once, each being separated with the keyword AND. For example,
to roll forward to the end of logs, and complete, the separate commands:

db2 rollforward db sample to end of logs
db2 rollforward db sample complete

can be combined as follows:
db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be
done in two steps. It is important to verify that the rollforward operation has
progressed as expected, before stopping it and possibly missing logs. This is
especially important if a bad log is found during rollforward recovery, and the
bad log is interpreted to mean the “end of logs”. In such cases, an undamaged
backup copy of that log could be used to continue the rollforward operation
through more logs.

Example 2

Roll forward to the end of the logs (two table spaces have been restored):
db2 rollforward db sample to end of logs
db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND
COMPLETE is needed for table space rollforward recovery to the end of the
logs. Table space names are not required. If not specified, all table spaces
requiring rollforward recovery will be included. If only a subset of these table
spaces is to be rolled forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the
logs, and the other two to a point in time, both to be done online:

db2 rollforward db sample to end of logs tablespace(TBS1) online

db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop
tablespace(TBS2, TBS3) online

Note that two rollforward operations cannot be run concurrently. The second
command can only be invoked after the first rollforward operation completes
successfully.

Example Rollforward Sessions

164 Data Recovery and High Availability Guide and Reference

Example 4

After restoring the database, roll forward to a point in time, using
OVERFLOW LOG PATH to specify the directory where the user exit saves
archived logs:

db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop
overflow log path (/logs)

Example 5 (MPP)

There are three nodes: 0, 1, and 2. Table space TBS1 is defined on all nodes,
and table space TBS2 is defined on nodes 0 and 2. After restoring the database
on node 1, and TBS1 on nodes 0 and 2, roll the database forward on node 1:

db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table
spaces are off-line on node(s) 0 and 2.”).

db2 rollforward db sample to end of logs

This rolls TBS1 forward on nodes 0 and 2. The clause TABLESPACE(TBS1) is
optional in this case.

Example 6 (MPP)

After restoring table space TBS1 on nodes 0 and 2 only, roll TBS1 forward on
nodes 0 and 2:

db2 rollforward db sample to end of logs

Node 1 is ignored.
db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on node 1.
Reports SQL4906N.

db2 rollforward db sample to end of logs on nodes (0, 2) tablespace(TBS1)

This completes successfully.
db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on node 1; all
pieces must be rolled forward together.

Note: With table space rollforward to a point in time, the node clause is not
accepted. The rollforward operation must take place on all the nodes on
which the table space resides.

Example Rollforward Sessions

Chapter 4. Rollforward Recovery 165

After restoring TBS1 on node 1:
db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

tablespace(TBS1)

This completes successfully.

Example 7 (MPP)

After restoring a table space on all nodes, roll forward to PIT2, but do not
specify AND STOP. The rollforward operation is still in progress. Cancel and roll
forward to PIT1:

db2 rollforward db sample to pit2 tablespace(TBS1)
db2 rollforward db sample cancel tablespace(TBS1)

** restore TBS1 on all nodes **

db2 rollforward db sample to pit1 tablespace(TBS1)
db2 rollforward db sample stop tablespace(TBS1)

Example 8 (MPP)

Rollforward recover a table space that resides on eight nodes (3 to 10) listed in
the db2nodes.cfg file:

db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully.
The nodes on which the table space resides do not have to be specified. The
utility defaults to the db2nodes.cfg file.

Example 9 (MPP)

Rollforward recover six small table spaces that reside on a single node
nodegroup (on node 6):

db2 rollforward database dwtest to end of logs on node (6)
tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

A sample DB2 command script, and information on how to use it, are
provided in “Appendix F. Recovery CLP Script” on page 425.

API Examples
Sample programs containing DB2 APIs and embedded SQL calls, and
information on how to use them, are provided in “Appendix E. Recovery
Sample Programs” on page 359.

Example Rollforward Sessions

166 Data Recovery and High Availability Guide and Reference

Rollforward Restrictions

The following restrictions apply to the rollforward utility:
v You can only invoke one rollforward operation at a time. If there are many

table spaces to recover, you can specify all of them in the same operation.
v If you have renamed a table space following the most recent backup

operation, ensure that you use the new name when rolling the table space
forward. The previous table space name will not be recognized.

v You cannot cancel a rollforward operation that is running. You can only
cancel a rollforward operation that has completed, but for which the STOP
option has not been specified, or a rollforward operation that has failed
before completing.

v You cannot continue a table space rollforward operation to a point in time,
specifying a time stamp that is less than the previous one. If a point in time
is not specified, the previous one is used. You can initiate a rollforward
operation to a point in time by just specifying STOP, but this is only
allowed if the table spaces involved were all restored from the same offline
backup image. In this case, no log processing is required. If you start
another rollforward operation with a different table space list before the
in-progress rollforward operation is either completed or cancelled, an error
message (SQL4908) is returned. Invoke the LIST TABLESPACES command
on all nodes to determine which table spaces are currently being rolled
forward (rollforward in progress state), and which table spaces are ready to
be rolled forward (rollforward pending state). You have three options:
– Finish the in-progress rollforward operation on all table spaces.
– Finish the in-progress rollforward operation on a subset of table spaces.

(This may not be possible if the rollforward operation is to continue to a
specific point in time, which requires the participation of all nodes.)

– Cancel the in-progress rollforward operation.

Troubleshooting Rollforward

Do not restore table spaces without cancelling a rollforward operation that is
in progress; otherwise, you may have a table space set in which some table
spaces are in rollforward in progress state, and some table spaces are in
rollforward pending state. A rollforward operation that is in progress will
only operate on the tables spaces that are in rollforward in progress state.

If the rollforward utility encounters a non-recoverable operation (for example,
load with no copy), the associated table space is put in restore pending state.
To remove the table space from restore pending state, you must restore from a
more recent database- or table space-level backup image.

SQL1271 is returned (even if AND STOP has not yet been requested) as a
warning that there is a table space in rollforward pending or restore pending

Rollforward Restrictions

Chapter 4. Rollforward Recovery 167

state. During a database rollforward operation, this means that one of the
table spaces has been taken offline by the rollforward utility. During a table
space rollforward operation, this can mean that one of the table spaces being
rolled forward was taken offline by the rollforward utility, or that there is
another (unlisted) table space that still needs to be rolled forward.

SQL1272 is returned if all table spaces that were being rolled forward (either
specified in the list, or because they were in rollforward pending state), have
been taken offline by the rollforward utility. This may mean that they contain
a table that has undergone a non-recoverable load operation, or a table with
NOT LOGGED INITIALLY processing. If this error is returned, the table space
rollforward operation should have been stopped (that is, it should no longer
be in progress).

Troubleshooting Rollforward

168 Data Recovery and High Availability Guide and Reference

Part 2. High Availability

© Copyright IBM Corp. 2001 169

170 Data Recovery and High Availability Guide and Reference

Chapter 5. Introducing High Availability and Failover
Support

Successful e-businesses depend on the uninterrupted availability of
transaction processing systems, which in turn are driven by database
management systems, such as DB2, that must be available 24 hours a day and
7 days a week (“24 x 7”).

High Availability

High availability (HA) is the term that is used to describe systems that run and
are available to customers more or less all the time. For this to occur:
v Transactions must be processed efficiently, without appreciable performance

degradations (or even loss of availability) during peak operating periods. In
a partitioned database environment, DB2 can take advantage of both
intrapartition and interpartition parallelism to process transactions
efficiently. Intrapartition parallelism can be used in an SMP environment to
process the various components of a complex SQL statement
simultaneously. Interpartition parallelism in a partitioned database
environment, on the other hand, refers to the simultaneous processing of a
query on all participating nodes; each node processes a subset of the rows
in the table. For more information about parallelism, see the Administration
Guide .

v Systems must be able to recover quickly when hardware or software
failures occur, or when disaster strikes. Use of a journaled file system may
be helpful. A journaled file system is a file system that automatically logs
changes to it structure. This ensures that any changes to the file system
structure are safe from system crashes, assuming that the storage medium
is not lost or corrupted. After a system crash, the changes in these logs are
applied to the file system, in the order that they were initially logged.
Journaled file systems are characterized by fast recovery times. They are
preferred for environments with large file systems, or when data integrity is
particularly important.
The ability to recover quickly depends critically on having a proven backup
and recovery strategy in place. For more information about recovery
strategies, see “Chapter 1. Developing a Good Backup and Recovery
Strategy” on page 3 .

v Software that powers the enterprise databases must be continuously
running and available for transaction processing. To keep the database
manager running, you must ensure that another database manager can take

© Copyright IBM Corp. 2001 171

over if it fails. This is called failover. Failover capability allows for the
automatic transfer of workload from one system to another when there is
hardware failure.

Failover protection can be achieved by keeping a copy of your database on
another machine that is perpetually rolling the log files forward. Log shipping
is the process of copying whole log files to a standby machine, either from an
archive device, or through a user exit program running against the primary
database. With this approach, the primary database is restored to the standby
machine, using either the DB2 restore utility or the split mirror function. You
can use the new suspended I/O support to quickly initialize the new database
(see “High Availability through Online Split Mirror and Suspended I/O
Support” on page 173). The secondary database on the standby machine
continuously rolls the log files forward. If the primary database fails, any
remaining log files are copied over to the standby machine. After a
rollforward to the end of the logs and stop operation, all clients are
reconnected to the secondary database on the standby machine.

Failover support can also be provided through platform-specific software that
you can add to your system. For example:
v High Availability Cluster Multi-Processing, Enhanced Scalability, for AIX.

For detailed information about HACMP/ES, see “Chapter 6. High
Availability on AIX” on page 177, or the white paper entitled “IBM DB2
Universal Database Enterprise Edition for AIX and HACMP/ES”, which is
available from the “DB2 UDB and DB2 Connect Online Support” Web site
(http://www.ibm.com/software/data/pubs/papers/).

v Microsoft Cluster Server, for Windows NT or Windows 2000.
For detailed information about MSCS, see “Chapter 7. High Availability on
the Windows Operating System” on page 221 .

v Sun Cluster, or VERITAS Cluster Server, for the Solaris Operating
Environment.
For information about Sun Cluster 2.x, see “Chapter 8. High Availability in
the Solaris Operating Environment” on page 253 ; for information about Sun
Cluster 3.0, see the white paper entitled “DB2 and High Availability on Sun
Cluster 3.0”, which is available from the “DB2 UDB and DB2 Connect
Online Support” Web site
(http://www.ibm.com/software/data/pubs/papers/). For information
about VERITAS Cluster Server, see the white paper entitled “DB2 and High
Availability on VERITAS Cluster Server”, which is also available from the
“DB2 UDB and DB2 Connect Online Support” Web site.

v Multi-Computer/ServiceGuard, for Hewlett-Packard.
For detailed information about HP MC/ServiceGuard, see the white paper
entitled “IBM DB2 EE v.7.1 Implementation and Certification With
Hewlett-Packard’s MC/ServiceGuard High Availability Software”, which is

High Availability

172 Data Recovery and High Availability Guide and Reference

available from the “DB2 UDB and DB2 Connect Online Support” Web site
(http://www.ibm.com/software/data/pubs/papers/).

Failover strategies are usually based on clusters of systems. A cluster is a
group of connected systems that work together as a single system. Each
processor is known as a node within the cluster. Clustering allows servers to
back each other up when failures occur, by picking up the workload of the
failed server.

IP address takeover (or IP takeover) is the ability to transfer a server IP
address from one machine to another when a server goes down; to a client
application, the two machines appear at different times to be the same server.

Failover software may use heartbeat monitoring or keepalive packets between
systems to confirm availability. Heartbeat monitoring involves system services
that maintain constant communication between all the nodes in a cluster. If a
heartbeat is not detected, failover to a backup system starts. End users are
usually not aware that a system has failed.

The two most common failover strategies on the market are known as idle
standby and mutual takeover, although the configurations associated with these
terms may also be associated with different terms that depend on the vendor:

Idle Standby
In this configuration, one system is used to run a DB2 instance, and
the second system is “idle”, or in standby mode, ready to take over
the instance if there is an operating system or hardware failure
involving the first system. Overall system performance is not
impacted, because the standby system is idle until needed.

Mutual Takeover
In this configuration, each system is the designated backup for
another system. Overall system performance may be impacted,
because the backup system must do extra work following a failover: it
must do its own work plus the work that was being done by the
failed system.

Failover strategies can be used to failover an instance, a partition, or multiple
logical nodes.

High Availability through Online Split Mirror and Suspended I/O Support

Suspended I/O supports continuous system availability by providing a full
implementation for online split mirror handling; that is, splitting a mirror
without shutting down the database. A split mirror is an “instantaneous” copy
of the database that can be made by mirroring the disks containing the data,
and splitting the mirror when a copy is required. Disk mirroring is the process

High Availability

Chapter 5. Introducing High Availability and Failover Support 173

of writing all of your data to two separate hard disks; one is the mirror of the
other. Splitting a mirror is the process of making a backup copy of the mirror.

If you would rather not back up a large database using the DB2 backup
utility, you can make copies from a mirrored image by using suspended I/O
and the split mirror function. This approach also:
v Eliminates backup operation overhead from the production machine
v Represents a fast way to clone systems
v Represents a fast implementation of idle standby failover. There is no initial

restore operation, and if a rollforward operation proves to be too slow, or
encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:
v For making a clone database

A read-only clone of the primary database can be used, for example, to
create reports.

v As a standby database
v As a backup image

This command can only be issued against the split-off mirror, and the split-off
mirror must first run db2inidb before it can be used (see “db2inidb - Initialize
a Mirrored Database” on page 313).

In a partitioned database environment, the db2inidb command must be run
on every partition before the split image from any of the partitions can be
used. The tool can be run on all partitions simultaneously.

Making a Clone Database
A database clone can represent an offline “backup” of the primary (live)
database. You cannot, however, back up the cloned database, restore this
image on the original system, and roll forward through log files produced on
the original system.

To clone a database, follow these steps:
1. Suspend I/O on the primary database:

db2 set write suspend for database

2. Use an appropriate operating system-level command to split the mirror
from the primary database.

3. Resume I/O on the primary database:
db2 set write resume for database

4. Attach to the mirrored database from another machine.
5. Start the database instance:

db2start

HA through Online Split Mirror and Suspended I/O Support

174 Data Recovery and High Availability Guide and Reference

6. Initialize the mirrored database as a clone of the primary database:
db2inidb database_alias as snapshot

Note: This command will roll back transactions that are in flight when the
split occurs.

Using the Split Mirror as a Standby Database
As the mirrored (standby) database continually rolls forward through the logs,
new logs that are being created by the primary database are continually
fetched from the primary system. To use the split mirror as a standby
database, follow these steps:
1. Suspend I/O on the primary database:

db2 set write suspend for database

2. Use an appropriate operating system-level command to split the mirror
from the primary database.

3. Resume I/O on the primary database:
db2 set write resume for database

4. Attach the mirrored database to another instance.
5. Put the mirrored database in rollforward pending state:

db2inidb database_alias as standby

If you have DMS table spaces (database managed space), you can take a
full database backup to offload the overhead of taking a backup on the
production database.

6. Set up a user exit program to retrieve the most recent log files from the
primary system.

7. Roll the database forward to the end of the logs.
8. Continue retrieving log files, and rolling the database forward to the end

of the logs until the primary database goes down.

Using the Split Mirror as a Backup Image
To use the split mirror as a “backup image”, follow these steps:
1. Suspend I/O on the primary database:

db2 set write suspend for database

2. Use an appropriate operating system-level command to split the mirror
from the primary database.

3. Resume I/O on the primary database:
db2 set write resume for database

4. Use operating system-level commands to copy the mirrored data and logs
over the primary system.

5. Start the database instance:
db2start

HA through Online Split Mirror and Suspended I/O Support

Chapter 5. Introducing High Availability and Failover Support 175

6. Initialize the mirrored database as a “backup image” that can be used to
copy the data on split-off disks back to the disks on the original system.
(Do not bring back the file system that contains the log files, because the
logs will be needed during the rollforward process.)

db2inidb database_alias as mirror

7. Roll the database (on the original system) forward to the end of the logs.

HA through Online Split Mirror and Suspended I/O Support

176 Data Recovery and High Availability Guide and Reference

Chapter 6. High Availability on AIX

Enhanced Scalability (ES) is a feature of High Availability Cluster
Multi-Processing (HACMP) for AIX. This feature provides the same failover
recovery and has the same event structure as HACMP, (see HACMP for AIX,
V4.2.2, Enhanced Scalability Installation and Administration Guide). Enhanced
scalability also provides:
v Larger HACMP clusters.
v Additional error coverage through user-defined events. Monitored areas can

trigger user-defined events, which can be as diverse as the death of a
process, or the fact that paging space is nearing capacity. Such events
include pre- and post-events that can be added to the failover recovery
process, if needed. Extra functions that are specific to the different
implementations can be placed within the HACMP pre- and post-event
streams.
A rules file (/usr/sbin/cluster/events/rules.hacmprd) contains the
HACMP events. User-defined events are added to this file. The script files
that are to be run when events occur are part of this definition.
For more information about user-defined events and the rules file, see
“HACMP ES Event Monitoring and User-defined Events” on page 197.

v HACMP client utilities for monitoring and detecting status changes (in one
or more clusters) from AIX physical nodes outside of the HACMP cluster.

The nodes in HACMP ES clusters exchange messages called heartbeats, or
keepalive packets, by which each node informs the other nodes about its
availability. A node that has stopped responding causes the remaining nodes
in the cluster to invoke recovery. The recovery process is called a node_down
event and may also be referred to as failover. The completion of the recovery
process is followed by the re-integration of the node into the cluster. This is
called a node_up event.

There are two types of events: standard events that are anticipated within the
operations of HACMP ES, and user-defined events that are associated with
the monitoring of parameters in hardware and software components.

One of the standard events is the node_down event. When planning what
should be done as part of the recovery process, HACMP allows two failover
options: hot (or idle) standby, and mutual takeover.

© Copyright IBM Corp. 2001 177

Cluster Configuration

In a hot standby configuration, the AIX processor node that is the takeover
node is not running any other workload. In a mutual takeover configuration,
the AIX processor node that is the takeover node is running other workloads.

Generally, DB2 Universal Database Enterprise - Extended Edition (UDB EEE)
runs in mutual takeover mode with partitions on each node. One exception is
a scenario in which the catalog node is part of a hot standby configuration.

When planning a large DB2 installation on an RS/6000 SP using HACMP ES,
you need to consider how to divide the nodes of the cluster within or
between the RS/6000 SP frames. Having a node and its backup in different SP
frames allows takeover in the event one frame goes down (that is, the frame
power/switch board fails). However, such failures are expected to be
exceedingly rare, because there are N+1 power supplies in each SP frame, and
each SP switch has redundant paths, along with N+1 fans and power. In the
case of a frame failure, manual intervention may be required to recover the
remaining frames. This recovery procedure is documented in the SP
Administration Guide. HACMP ES provides for recovery of SP node failures;
recovery of frame failures is dependent on the proper layout of clusters within
one or more SP frames.

Another planning consideration is how to manage big clusters. It is easier to
manage a small cluster than a big one; however, it is also easier to manage
one big cluster than many smaller ones. When planning, consider how your
applications will be used in your cluster environment. If there is a single,
large, homogeneous application running, for example, on 16 nodes, it is
probably easier to manage the configuration as a single cluster rather than as
eight two-node clusters. If the same 16 nodes contain many different
applications with different networks, disks, and node relationships, it is
probably better to group the nodes into smaller clusters. Keep in mind that
nodes integrate into an HACMP cluster one at a time; it will be faster to start
a configuration of multiple clusters rather than one large cluster. HACMP ES
supports both single and multiple clusters, as long as a node and its backup
are in the same cluster.

HACMP ES failover recovery allows pre-defined (also known as cascading)
assignment of a resource group to a physical node. The failover recovery
procedure also allows floating (or rotating) assignment of a resource group to
a physical node. IP addresses, and external disk volume groups, or file
systems, or NFS file systems, and application servers within each resource
group specify either an application or an application component, which can be
manipulated by HACMP ES between physical nodes by failover and

Cluster Configuration

178 Data Recovery and High Availability Guide and Reference

reintegration. Failover and reintegration behavior is specified by the type of
resource group created, and by the number of nodes placed in the resource
group.

For example, consider a DB2 database partition (logical node). If its log and
table space containers were placed on external disks, and other nodes were
linked to those disks, it would be possible for those other nodes to access
these disks and to restart the database partition (on a takeover node). It is this
type of operation that is automated by HACMP. HACMP ES can also be used
to recover NFS file systems used by DB2 instance main user directories.

Read the HACMP ES documentation thoroughly as part of your planning for
recovery with DB2 UDB EEE. You should read the Concepts, Planning,
Installation, and Administration guides, then build the recovery architecture
for your environment. For each subsystem that you have identified for
recovery, based on known points of failure, identify the HACMP clusters that
you need, as well as the recovery nodes (either hot standby or mutual
takeover). This is a starting point for completing the HACMP worksheets that
are included in the documentation.

It is strongly recommended that both disks and adapters be mirrored in your
external disk configuration. For DB2 physical nodes that are configured for
HACMP, care is required to ensure that nodes on the volume group can vary
from the shared external disks. In a mutual takeover configuration, this
arrangement requires some additional planning, so that the paired nodes can
access each other’s volume groups without conflicts. For DB2 UDB EEE, this
means that all container names must be unique across all databases.

One way to achieve uniqueness is to include the partition number as part of
the name. You can specify a node expression for container string syntax when
creating either SMS or DMS containers. When you specify the expression, the
node number can be part of the container name or, if you specify additional
arguments, the results of those arguments can be part of the container name.
Use the argument ″ $N″ ([blank]$N) to indicate the node expression. The
argument must occur at the end of the container string, and can only be used
in one of the following forms:

Cluster Configuration

Chapter 6. High Availability on AIX 179

Table 11. Arguments for Creating Containers. The node number is assumed to be five.

Syntax Example Value

[blank]$N ″ $N″ 5

[blank]$N+[number] ″ $N+1011″ 1016

[blank]$N%[number] ″ $N%3″ 2

[blank]$N+[number]%[number] ″ $N+12%13″ 4

[blank]$N%[number]+[number] ″ $N%3+20″ 22

Notes:

1. % is modulus.

2. In all cases, the operators are evaluated from left to right.

Following are some examples of how to create containers using this special
argument:
v Creating containers for use on a two-node system.

CREATE TABLESPACE TS1 MANAGED BY DATABASE USING
(device '/dev/rcont $N' 20000)

The following containers would be used:
/dev/rcont0 - on Node 0
/dev/rcont1 - on Node 1

v Creating containers for use on a four-node system.
CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

(file '/DB2/containers/TS2/container $N+100' 10000)

The following containers would be used:
/DB2/containers/TS2/container100 - on Node 0
/DB2/containers/TS2/container101 - on Node 1
/DB2/containers/TS2/container102 - on Node 2
/DB2/containers/TS2/container103 - on Node 3

v Creating containers for use on a two-node system.
CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

('/TS3/cont $N%2, '/TS3/cont $N%2+2')

The following containers would be used:
/TS3/cont0 - on Node 0
/TS3/cont2 - on Node 0
/TS3/cont1 - on Node 1
/TS3/cont3 - on Node 1

Figure 18 on page 181 and Figure 19 on page 182 show an example of a DB2
SSA I/O subsystem configuration, and some of the planning necessary to

Cluster Configuration

180 Data Recovery and High Availability Guide and Reference

ensure both a highly available external disk configuration, and the ability to
access all volume groups without conflict.

DB2 SSA I/O Subsystem Configuration - No single point of failure

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

A1

A1

A2

A2

B1

B1

B2

B2

DB2-1

A1

A1

A2

A2

B1

B1

B2

B2

DB2-2 Disks are twintailed
between nodes.

Note:
Both adapters and
disks are mirrored.

(mirror copy)

Figure 18. No Single Point of Failure

Cluster Configuration

Chapter 6. High Availability on AIX 181

Configuring a DB2 Database Partition
Once configured, each database partition in an instance is started by HACMP
ES, one physical node at a time. Multiple clusters are recommended for
starting parallel DB2 configurations that are larger than four nodes. Note that
in a 64-node parallel DB2 configuration, it is faster to start 32 two-node
HACMP clusters in parallel, than four 16-node clusters.

A script file, rc.db2pe, is packaged with DB2 UDB EEE (and installed on each
node in /usr/bin) to assist in configuring for HACMP ES failover or recovery
in either hot standby or mutual takeover nodes. In addition, DB2 buffer pool
sizes can be customized during failover in mutual takeover configurations
from within rc.db2pe. (Buffer pool sizes need to be configured to ensure
proper performance when two database partitions run on one physical node.)

DB2 SSA I/O Subsystem Configuration -
Volume group and logical volume setup

DB2-1 DB2-2 - keep vg, lv fs names unique
- set vgs not to vary on at ipl

db2 database testdata on filesystem /database instance name powertp

Volume group DB2vg1

- lv dbdlv11 (mountpoint
/database/powertp/NODE0001)
- lv dbd11log (jfslog)
- lv dbdlv12 (raw data)
- lv dbdlv13 (raw data)
(and so on.)

Volume group DB2vg2

- lv dbdlv21 (mountpoint
/database/powertp/NODE0002)
- lv dbd21log (jfslog)
- lv dbdlv22 (raw data)
- lv dbdlv23 (raw data)
(and so on.)

Figure 19. Volume Group and Logical Volume Setup

Cluster Configuration

182 Data Recovery and High Availability Guide and Reference

When you create an application server in an HACMP configuration of a DB2
database partition, specify rc.db2pe as a start and stop script as follows:

/usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> start <use switch>
/usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> stop <use switch>

where:

<instance> is the instance name.
<dpn> is the database partition number.
<secondary dpn> is the "companion" database partition number in

mutual takeover configurations only; in hot standby configurations,
it is the same as <dpn>.

<use switch> is usually blank; when blank, it indicates that
the SP switch network is used for the hostname field
in the db2nodes.cfg file (all traffic for DB2 is routed over the SP switch);
if not blank, the name used is the host name of the SP node to be used.

The DB2 command LIST DATABASE DIRECTORY is used from within
rc.db2pe to find all databases configured for this database partition. The
script file then looks for the /usr/bin/reg.parms.DATABASE file and the
/usr/bin/failover.parms.DATABASE file, where DATABASE is each of the
databases configured for this database partition. In a mutual takeover
configuration, it is recommended that you create the parameter files
reg.parms.xxx and failover.parms.xxx. In the failover.parms.xxx file, the
settings for BUFFPAGE, DBHEAP, and any others affecting buffer pools,
should be adjusted to account for the possibility of more than one buffer pool.
Sample files reg.parms.SAMPLE and failover.parms.SAMPLE are provided for
your use.

One of the important parameters in this environment is the start_stop_time
database manager configuration parameter, which has a default value of 10
minutes. However, rc.db2pe sets this parameter to 2 minutes. You should set
this parameter through rc.db2pe to a value of 10 minutes, or slightly more. In
this context, the specified duration is the time interval between the failure of
the partition, and its recovery. If applications running on a partition are
issuing frequent COMMITs, 10 minutes following failure on a database
partition should be sufficient time to roll back uncommitted transactions and
to reach a point of consistency in the database on that partition. If your
workload is heavy, or you have many partitions, you may need to increase the
duration to decrease the probability of timeouts occurring before the rollback
operation completes.

Following is an example of a hot standby configuration and a mutual
takeover configuration. In both examples, the resource groups contain a
Service IP switch alias address. This switch alias address is used for:
v NFS access to a file server for the DB2 instance owner file systems

Cluster Configuration

Chapter 6. High Availability on AIX 183

v Other client access that needs to be maintained in the case of a failover,
TSM (Tivoli Storage Manager, formerly ADSM) connection, or other similar
operation.

If your implementation does not require these aliases, they can be removed. If
removed, be sure to set the MOUNT_NFS parameter to NO in the rc.db2pe
script file.

Example of a Hot Standby Configuration
The assumption in this example is that a hot standby configuration exists
between physical nodes 1 and 2, and that the DB2 instance name is
POWERTP. The database partition is 1, and the database is TESTDATA,
residing on file system /database.

Resource group name: db2_dp_1
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0001
Volume Groups: DB2vg1
Application Servers: db2_dp1_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 1 1 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 1 stop

Example of a Mutual Takeover Configuration
The assumption in this example is that a mutual takeover configuration exists
between physical nodes 1 and 2, and that the DB2 instance name is
POWERTP. The database partitions are 1 and 2, and the database is
TESTDATA, residing on file system /database.

Resource group name: db2_dp_1
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0001
Volume Groups: DB2vg1
Application Servers: db2_dp1_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 1 2 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 2 stop

Resource group name: db2_pd_2
Node Relationship: cascading
Participating nodenames: node2_eth, node1_eth
Service_IP_label: nfs_switch_2 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0002
Volume Groups: DB2vg2
Application Servers: db2_dp2_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 2 1 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 2 1 stop

Configuration of an NFS Server Node
The rc.db2pe script can also be used to make available NFS-mounted
directories of DB2 parallel instance user directories. This can be accomplished

Cluster Configuration

184 Data Recovery and High Availability Guide and Reference

by setting the MOUNT_NFS parameter to YES in the rc.db2pe script file, and
configuring the NFS failover server pair as follows:
v Configure the home directory and export it as ″root″ using /etc/exports

and the exportfs command to the IP address used on the nodes in the same
subnet as the NFS server’s IP address. Include both the HACMP boot and
service addresses. The NFS server’s IP address is the same address as the
service address in HACMP, and which can be taken over by a backup. The
home directory of the DB2 instance owner should be NFS-mounted directly,
not automounted. (The use of the automounter is not supported by the
scripts as a DB2 instance owner home directory.)

v Using SMIT or a bottom-line configuration, create a separate
/etc/filesystems entry for this file system, so that all nodes in the DB2
parallel grouping, including the file server, can mount using the NFS file
system command.
For example, an /nfshome JFS file system can be exported to all nodes as
/dbhome. Each node creates an NFS file system /dbname, which is
nfs_server:/nfshome. Therefore, the home directory of the DB2 instance
owner would be /dbhome/powertp if the instance name is ″powertp″.
Ensure that the NFS parameters for the mount in /etc/filesystems are
″hard″, ″bg″, ″intr″, and ″rw″.

v Ensure that the DB2 instance owner definitions associated with the home
directory /dbhome/powertp in /etc/passwd are the same on all nodes.
The user definitions in an SP environment are typically created on the
control workstation, and ″supper″ or ″pcp″ is used to distribute
/etc/passwd, /etc/security/passwd, /etc/security/user, and
/etc/security/group to all nodes.

v Do not configure the ″nfs_filesystems to export″ in HACMP resource groups
for the volume group and the file system that is exported. Instead,
configure it normally to NFS. The scripts for the NFS server will control the
exporting of the file systems.

v Ensure that the major number of the volume group where the file system
resides is the same on both the primary node and the takeover node. This is
accomplished by using importvg with the -V option.

v Verify that the MOUNT_NFS parameter is set to YES in the rc.db2pe script
file, and that each node has the NFS file system to mount in
/etc/filesystems. If this is not the case, rc.db2pe will not be able to mount
the file system and start DB2.

v If the DB2 instance owner was already created, and you are copying the
user’s directory structure to the file system you are creating, ensure that
you tar (-cvf) the directory. This ensures the preservation of symbolic links.

v Do not forget to mirror both the adapters and the disks for the logical
volumes, and the file system logs of the file system you are creating.

Cluster Configuration

Chapter 6. High Availability on AIX 185

Example of an NFS Server Takeover Configuration
The assumption in this example is that there is an NFS server file system
/nfshome in the volume group nfsvg over the IP address ″nfs_server″. The
DB2 instance name is POWERTP, and the home directory is /dbhome/powertp.

Resource group name: nfs_server
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_server (<<< this is the switch alias address)
Filesystems: /nfshome
Volume Groups: nfsvg
Application Servers: nfs_server_app
Application Server Start Script: /usr/bin/rc.db2pe powertp NFS SERVER start
Application Server Stop Script: /usr/bin/rc.db2pe powertp NFS SERVER stop

In this example:
v /etc/filesystems on all nodes would contain an entry for /dbhome as

mounting nfs_server:/nfshome. nfs_server is a Service IP switch alias
address.

v /etc/exports on the nfs_server node and the backup node would include
the boot and service addresses, and contain an entry for /nfsfs
-root=nfs_switch_1, nfs_switch_2,

Considerations When Configuring the SP Switch
When implementing HACMP ES with the SP switch, consider the following:
v There are ″base″ and ″alias″ addresses on the SP switch. The base addresses

are those defined in the SP System Data Repository (SDR), and are
configured by rc.switch when the system is ″booted″. The alias addresses
are IP addresses configured, in addition to the base address, into the css0
interface through the ifconfig command with an alias attribute. For
example:

ifconfig css0 inet alias sw_alias_1 up

v When configuring the DB2 db2nodes.cfg file, SP switch ″base″ IP address
names should be used for both the ″hostname″ and the ″netname″ field.
Switch IP address aliases are only used to maintain NFS connectivity. DB2
failover is achieved by restarting DB2 with the db2start (RESTART)
command (which updates db2nodes.cfg).

v Do not confuse the switch addresses with the etc/hosts aliases. Both the SP
switch addresses and the SP switch alias addresses are real in either
etc/hosts or DNS. The switch alias addresses are not another name for the
SP switch base address; each has its own separate address.

v The SP switch base addresses are always present on a node when it is up.
HACMP ES does not configure or move these addresses between nodes.

v If you intend to use SP switch alias addresses, configure these to HACMP
as boot and service addresses for ″heartbeating″ and IP address takeover. If
you do not intend to use SP switch alias addresses, configure the base SP

Cluster Configuration

186 Data Recovery and High Availability Guide and Reference

switch address to HACMP as a service address for ″heartbeating″ only (no
IP address takeover). Do not, in any configuration, configure alias addresses
and the switch base address; this configuration is not supported by HACMP
ES.

v Only the SP switch alias addresses (and not the SP switch base addresses)
are moved between nodes for an IP takeover configuration.

v The need for SP switch aliases arises because there can only be one SP
switch adapter per node. Using alias addresses allows a node to take over
another node’s switch alias IP address without adding another switch
adapter. This is useful in nodes that are ″slot-constrained″. For more
information about handling recovery from SP switch adapter failures, see
the network failure section under “HACMP ES Script Files” on page 201.

v If you configure the SP switch for IP address takeover, you will need to
create two extra alias IP addresses per node: one as a boot address and one
as a service address.

v Do not forget to use ″HPS″ in the HACMP ES network name definition for
an SP switch base IP address or an SP switch alias IP address.

v rc.cluster in HACMP automatically ifconfigs in the SP switch boot
address when HACMP is started. No additional configuration is required,
other than creating the IP address and name, and defining them to
HACMP.

v The Eprimary node of the SP switch is the server that implements the
Estart, Efence, and Eunfence commands. The HACMP scripts attempt to
Eunfence or to Estart a node when HACMP is started, and make the switch
available if it is defined as one of its networks. For this reason, ensure that
the Eprimary node is available when you start HACMP. The HACMP code
waits up to 12 minutes for an Eprimary failover to complete before it exits
with an error.

v The Eprimary node of the SP switch is moved between nodes by the SP
Parallel System Support Program (PSSP), and not HACMP. If an Eprimary
node goes offline, the PSSP automatically has a backup node assume
responsibility as the Eprimary node. The switch network is unaffected by
this change and remains up.

DB2 HACMP Configuration Examples
The following examples illustrate different failover support configurations and
show what happens when failure occurs.

In the case of DB2 HACMP mutual takeover configurations (Figure 20 on
page 189, Figure 21 on page 190, and Figure 22 on page 191):
v HACMP adapters are defined for ethernet, and SP switch alias boot and

service aliases — base addresses are untouched. Remember to use an ″HPS″
string in the HACMP network name.

Cluster Configuration

Chapter 6. High Availability on AIX 187

v The NFS_server/nfshome is mounted as /dbhome on all nodes through switch
aliases.

v The db2nodes.cfg file contains SP switch base addresses. The db2nodes.cfg
file is changed by the db2start (RESTART) command after a DB2 database
partition (logical node) failover.

v The SP switch alias boot addresses are not shown.
v Nodes can be in different SP frames.

Cluster Configuration

188 Data Recovery and High Availability Guide and Reference

DB2 HACMP Mutual Takeover with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:

node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

/nfshome
and log

Figure 20. Mutual Takeover with NFS Failover - Normal

Cluster Configuration

Chapter 6. High Availability on AIX 189

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

DB2 HACMP Mutual Takeover with NFS Failover - NFS failover

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)
nfs_backup (alias)
nfs_server (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node88_eth (ethernet - HACMP service addr)
node88_sw (switch base addr)
nfs_backup (HACMP service addr)
nfs_server (HACMP service addr)

Node 88:

- nfs_server SP Switch alias IP addr and nfs mounted /nfshome moved from node 87 to 88.

- SP switch arp code has functionality to update all switch arp caches with this move.

/nfshome

and log

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 21. Mutual Takeover with NFS Failover - NFS Failover

Cluster Configuration

190 Data Recovery and High Availability Guide and Reference

In the case of DB2 HACMP hot standby configurations (Figure 23 on page 193
and Figure 24 on page 194):

DB2 HACMP Mutual Takeover with NFS Failover - DB2 failover

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)
nfs_client5 (alias)
nfs_client6 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)
node5_sw (switch base addr)
nfs_client5 (HACMP service addr)
nfs_client6 (HACMP service addr)

Node 5:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

- switch IP address takeover allows other servers (like ADSM) to retain connectivity.

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

/nfshome

and log

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 22. Mutual Takeover with NFS Failover - DB2 Failover

Cluster Configuration

Chapter 6. High Availability on AIX 191

v HACMP adapters are defined for ethernet, and SP switch alias boot and
service aliases — base addresses are untouched. Remember to use an ″HPS″
string in the HACMP network name.

v The NFS_server/nfshome is mounted as /dbhome on all nodes through switch
aliases.

v The db2nodes.cfg file contains SP switch base addresses. The db2nodes.cfg
file is changed by the db2start (RESTART) command after a DB2 database
partition (logical node) failover.

v The SP switch alias boot addresses are not shown.

Cluster Configuration

192 Data Recovery and High Availability Guide and Reference

DB2 HACMP Hot Standby with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
...

Note: Hot Standby node can back up more than one node, depending on disk cabling.

/nfshome

and log

node 5
DB2 data
and logs

Figure 23. Hot Standby with NFS Failover - Normal

Cluster Configuration

Chapter 6. High Availability on AIX 193

In the case of DB2 HACMP mutual takeover without NFS failover
configurations (Figure 25 on page 195 and Figure 26 on page 196):
v HACMP adapters are defined for ethernet, and SP switch base addresses.

Remember that when base addresses are configured to HACMP as service

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

DB2 HACMP Hot Standby with NFS Failover- DB2 Failover

SP

SWITCH

BOARD

Hot Standby node can back up more than one node, depending on disk cabling.

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)
nfs_client6 (alias)
nfs_client5 (alias)

SP Switch Adapter

Node 6:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

node6_eth (ethernet - HACMP service addr)
node6_sw (switch base addr)
nfs_client6 (HACMP service addr)
nfs_client5 (HACMP service addr)

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

(db2nodes.cfg)
...
4 node6_sw 0 node6_sw
...

Note:

node 5
DB2 data
and logs

/nfshome
and log

Figure 24. Hot Standby with NFS Failover - DB2 Failover

Cluster Configuration

194 Data Recovery and High Availability Guide and Reference

addresses, there is no boot address (only a ″heartbeat″). Do not forget to use
an ″HPS″ string in the HACMP network name for the SP switch.

v The db2nodes.cfg file contains SP switch base addresses. The db2nodes.cfg
file is changed by the db2start (RESTART) command after a DB2 database
partition (logical node) failover.

v No NFS failover functions are shown.
v Nodes can be in different SP frames.

DB2 HACMP Mutual Takeover without NFS Failover - Normal

SP

SWITCH

BOARD

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr - HACMP

service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr - HACMP

service addr)

Node 6:

node5_sw (base)

SP Switch Adapter

node6_sw (base)

SP Switch Adapter

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 25. Mutual Takeover without NFS Failover - Normal

Cluster Configuration

Chapter 6. High Availability on AIX 195

DB2 HACMP Startup Recommendations
It is recommended that you do not specify that HACMP is to be started at
boot time in /etc/inittab. HACMP should be started manually after the
nodes are booted. This allows for non-disruptive maintenance of a failed
node.

As an example of ″disruptive maintenance″, consider the case in which a node
has a hardware failure and crashes. Failover is initiated automatically by
HACMP, and recovery completes successfully. However, the failed node needs
to be fixed. If HACMP was configured in /etc/inittab to start on reboot, this
node will try to reintegrate after boot completion, which is not desirable in
this case.

For ″non-disruptive maintenance″, consider manually starting HACMP on
each node. In this way, failed nodes can be fixed and reintegrated without
affecting the other nodes. The ha_cmd script is provided for controlling
HACMP start and stop commands from the control workstation.

DB2 HACMP Mutual Takeover without NFS Failover - DB2 failover

SP

SWITCH

BOARD

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

node5_sw (base)

SP Switch Adapter

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

Node 5:

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 26. Mutual Takeover without NFS Failover - DB2 Failover

Cluster Configuration

196 Data Recovery and High Availability Guide and Reference

Note: When creating a DB2 instance for the first time, the following entry is
appended to the /etc/inittab file:

rcdb2:2:once:/etc/rc.db2 > /dev/console 2>&1 # Autostart DB2 Services

If HACMP or HACMP ES is enabled, update the /etc/inittab file by
placing the above line before the HACMP entry. Following is a sample
HACMP entry in the /etc/inittab file:

clinit:a:wait:touch /usr/sbin/cluster/.telinit # HACMP for AIX

The entry must be the last entry in the /etc/inittab file.

HACMP ES Event Monitoring and User-defined Events

Shutting down DB2 database partitions on an AIX physical node when paging
space reaches a certain percentage of fullness, and restarting a DB2 database
partition, or initiating a failover operation if a process dies on a given node,
are two examples of user-defined events. Examples that illustrate user-defined
events, such as shutting down a database partition and forcing a transaction
abort to free paging space, can be found in the samples subdirectory.

A rules file, /user/sbin/cluster/events/rules.hacmprd, contains HACMP
events. Each event description in this file has the following nine components:
v Event name, which must be unique.
v State, or qualifier for the event. The event name and state are the rule

triggers. HACMP ES Cluster Manager initiates recovery only if it finds a
rule with a trigger corresponding to the event name and state.

v Resource program path, a full-path specification of the xxx.rp file
containing the recovery program.

v Recovery type. This is reserved for future use.
v Recovery level. This is reserved for future use.
v Resource variable name, which is used for Event Manager events.
v Instance vector, which is used for Event Manager events. This is a set of

elements of the form ″name=value″. The values uniquely identify the copy
of the resource in the system and, by extension, the copy of the resource
variable.

v Predicate, which is used for Event Manager events. This is a relational
expression between a resource variable and other elements. When this
expression is true, the Event Management subsystem generates an event to
notify the Cluster Manager and the appropriate application.

v Rearm predicate, which is used for Event Manager events. This is a
predicate used to generate an event that alters the status of the primary

Cluster Configuration

Chapter 6. High Availability on AIX 197

predicate. This predicate is typically the inverse of the primary predicate. It
can also be used with the event predicate to establish an upper and a lower
boundary for a condition of interest.

Each object requires one line in the event definition, even if the line is not
used. If these lines are removed, HACMP ES Cluster Manager cannot parse
the event definition properly, and this may cause the system to hang. Any line
beginning with ″#″ is treated as a comment line.

Note: The rules file requires exactly nine lines for each event definition, not
counting any comment lines. When adding a user-defined event at the
bottom of the rules file, it is important to remove the unnecessary
empty line at the end of the file, or the node will hang.

Following is an example of an event definition for node_up:
Beginning of the Event Definition: node_up
#
TE_JOIN_NODE
0
/usr/sbin/cluster/events/node_up.rp
2
0
6) Resource variable - only used for event management events

7) Instance vector - only used for event management events

8) Predicate - only used for event management events

9) Rearm predicate - only used for event management events

End of the Event Definition: node_up

This example is just one of the event definitions that can be found in the
rules.hacmprd file. In this example, the recovery program
/usr/sbin/cluster/events/node_up.rp is invoked when the node_up event
occurs. Values are specified for the state, recovery type, and recovery level.
There are four empty lines for resource variable, instance variable, predicate,
and rearm predicate.

You can define other events to react to non-standard HACMP ES events. For
example, to define the event that the /tmp file system is over 90 per cent full,
the rules.hacmprd file must be modified.

Many events are predefined in the IBM Parallel System Support Program
(PSSP). These events can be exploited (when used within user-defined events)
as follows:
1. Stop the cluster.

HACMP ES Event Monitoring and User-defined Events

198 Data Recovery and High Availability Guide and Reference

2. Edit the rules.hacmprd file. Back up the file before modifying it. Add the
predefined PSSP event manually. If you need synchronizing points across
all nodes in the cluster, use the barrier command in the recovery program.
(Read more about the barrier command, and synchronization of recovery
programs in the HACMP Concepts, Installation, and Administration
Guides.)

3. Restart the cluster. The rules.hacmprd file is stored in memory when
Cluster Manager is started. To accurately implement the changes, restart
all the clusters. There should not be any inconsistent rules in a cluster.

4. Cluster Manager uses all events in the rules.hacmprd file.

HACMP ES uses PSSP event detection to treat user-defined events. The PSSP
Event Management subsystem provides comprehensive event detection by
monitoring various hardware and software resources.

Resource states are represented by resource variables. Resource conditions are
represented as expressions called predicates.

Event Management receives resource variables from the Resource Monitor,
which observes the state of specific system resources and transforms this state
into several resource variables. These variables are periodically passed to
Event Management. Event Management applies predicates that are specified
by the HACMP ES Cluster Manager in rules.hacmprd for each resource
variable. When the predicate is evaluated as being true, an event is generated
and sent to the Cluster Manager. Cluster Manager initiates the voting
protocol, and the recovery program file (xxx.rp) is run (according to event
priority) on a set of nodes specified by ″node sets″ in the recovery program.

The recovery program file (xxx.rp) is made up of one or more recovery
program lines. Each line is declared in the following format:

relationship command_to_run expected_status NULL

There must be at least one space between each value in the line.
″Relationship″ is a value used to decide which program should run on which
kind of node. Three types of relationship are supported:
v All. The specified command or program is run on all nodes of the current

HACMP cluster.
v Event. The specified command or program is run only on the nodes on

which the event occurred.
v Other. The specified command or program is run on all nodes on which the

event did not occur.

″Command_to_run″ is a quotation mark-delimited string, with or without a
full-path specification to an executable program. Only HACMP-delivered

HACMP ES Event Monitoring and User-defined Events

Chapter 6. High Availability on AIX 199

event scripts can use a relative-path definition. Other scripts or programs
must use the full-path specification, even if they are located in the same
directory as the HACMP event scripts.

″Expected_states″ is the return code of the specified command or program. It
is either an integer value, or an ″x″. If ″x″ is used, Cluster Manager does not
care about the return code. All other codes must be equal to the expected
return code, otherwise Cluster Manager detects the event failure. The
handling of this event ″hangs″ the process until recovery (through manual
intervention) occurs. Without manual intervention, the node does not
synchronize with the other nodes. Synchronization across all nodes is required
for the Cluster Manager to control all the nodes.

″NULL″ is a field reserved for future use. The word ″NULL″ must appear at
the end of each line except the barrier line. If you specify multiple recovery
commands between two barrier commands, or before the first one, the
recovery commands are run in parallel on the node itself, and between the
nodes.

The barrier command is used to synchronize all the commands across all the
cluster nodes. When a node hits the barrier statement in the recovery
program, Cluster Manager initiates the barrier protocol on this node. Since the
barrier protocol is a two-phase protocol, all nodes are notified that both
phases have completed when all of the nodes have met the barrier in the
recovery program, and ″voted″ to approve the protocol.

The process can be summarized as follows:
1. Either Group Services/ES (for predefined events) or Event Management

(for user-defined events) notifies HACMP ES Cluster Manager of the
event.

2. Cluster Manager reads the rules.hacmprd file, and determines the recovery
program that is mapped to the event.

3. Cluster Manager runs the recovery program, which consists of a sequence
of recovery commands.

4. The recovery program executes the recovery commands, which may be
shell scripts or binary commands. (In HACMP for AIX, the recovery
commands are the same as the HACMP event scripts.)

5. Cluster Manager receives the return status from the recovery commands.
An unexpected status ″hangs″ the cluster until manual intervention (using
smit cm_rec_aids or the /usr/sbin/cluster/utilities/clruncmd
command) is carried out.

HACMP ES Event Monitoring and User-defined Events

200 Data Recovery and High Availability Guide and Reference

HACMP ES Script Files
The following sample scripts for failover recovery and user-defined events are
included with DB2 UDB EEE. The script files are located in the
$INSTNAME/sqllib/samples/hacmp/es directory. The scripts will work ″as is″, or
you can customize the recovery action.
v DB2 database partition recovery script rc.db2pe. This is the script file used

to start and stop the HACMP configuration on a database partition. It also
works as an HACMP start and stop script for an NFS server of the DB2
instance owner.

v DB2-specific user-defined events for HACMP ES. Six default events are
included: one for process recovery, two for paging space, and three for NFS
and automounter recovery.

v DB2 instance NFS file server failover. This script provides failover recovery
of the file system server for a DB2 instance to a backup.

v Network failover. The scripts network_up_complete, network_back,
network_down_complete, and network_down allow SP DB2 database partitions
to failover if their SP switch adapter fails.

v Scripts to define monitoring events for the SP GUI Perspectives. Monitoring
of failover and user-defined recovery is possible through the Event and
Hardware Perspectives. Read the documentation for PSSP Administration to
find out more about Perspectives.

v Installation scripts to install and remove core scripts and events on the
HACMP ES nodes.

v Script files to create and remove the SP Perspectives problem management
(pman) resources for monitoring the HACMP and DB2 configuration.

The recovery scripts must be installed on each node that will run recovery
operations. The script files can be centrally installed from the SP control
workstation or other designated SP node:
1. Copy the scripts from the $INSTNAME/sqllib/samples/hacmp/es directory to

one of either the SP control workstation or another SP node that can run
the pcp and pexec commands. These commands are required for the
install operation.

2. Customize the reg.parms.SAMPLE and failover.parms.SAMPLE files for your
environment by setting key parameters (such as BUFFPAGE) for failover
configurations. Typically, for mutual takeover configurations, your failure
settings will be adjusted lower to one-half the size of your regular settings
or less. Also, you will use a copy of these files renamed with your own
name (instead of ″SAMPLE″).

3. Customize (as necessary) the five parameters NFS_RETRIES,
START_RETRIES, MOUNT_NFS, STOP_RETRIES, and FAILOVER in the
rc.db2pe file. The retry and failover settings should be adequate for most
implementations. The MOUNT_NFS setting should be configured,
depending on whether you will be using the package for NFS server

HACMP ES Event Monitoring and User-defined Events

Chapter 6. High Availability on AIX 201

availability. You should specify this setting if you want rc.db2pe to mount
and verify the NFS home directory of the DB2 instance owner for you.
Setting the FAILOVER parameter to ″YES″ will invoke db2_proc_restart
and launch an attempt to restart a DB2 database partition. If the restart
operation is unsuccessful, HACMP will shut down with a failover.

4. Customize db2_paging_action, db2_proc_recovery, and nfs_auto_recovery
in the event file. Edit pwq to change this to the DB2 instance owner.
Customize db2_paging_action to specify which action is to be taken if
paging space becomes more that ninety percent full. (If this does occur, the
DB2 database partition is stopped.) Modify the script if additional recovery
actions are required.

5. Use db2_inst_ha to install the scripts and events on the nodes you specify.
(HACMP ES must be pre-installed on these nodes before you begin.) The
syntax of db2_inst_ha is:

db2_inst_ha $INSTNAME/sqllib/samples/hacmp/es <nodelist> <DATABASENAME>

where

$INSTNAME/sqllib/samples/hacmp/es is the directory in which the
scripts and the event are located

<nodelist> is the pcp or pexec style of the nodes; for example,
1-16 or 1,2,3,4

<DATABASENAME> is the name of the database for regular and
failover parameter files.

The reg.parms.SAMPLE and failover.parms.SAMPLE files will be copied to
each node and renamed reg.parms.DATABASENAME. db2_inst_ha copies files
to each node in /usr/bin, and updates the HACMP event files:

/usr/sbin/cluster/events/rules.hacmprd
/usr/sbin/cluster/events/network_up_complete
/usr/sbin/cluster/events/network_down_complete

6. Configure your system and scripts with HACMP.
7. Use the create_db2_events command to install the monitoring events for

problem management resources (pman) and the SP GUI Perspectives.
Additional configuration and customization in Perspectives is needed. For
more information about Perspectives, read the PSSP Administration Guide.

8. Use the ha_db2stop command to shutdown the database partitions without
HACMP ES failover recovery taking place. To use this command, copy the
file to the database user’s home directory and make sure permissions and
ownership are set for that user. To stop the database without failover
recovery, then as that user, type:

ha_db2stop

HACMP ES Event Monitoring and User-defined Events

202 Data Recovery and High Availability Guide and Reference

Note: You must wait for the command to return. Exiting by using a
ctrl-C interrupt, or by killing the process, may re-enable failover
recovery prematurely, and some database partitions may not be
stopped.

DB2 Recovery Script Operations with HACMP ES
HACMP ES invokes the DB2 recovery scripts in the following way:
v node_up_local (starting a node)

HACMP runs the node_up sequence, acquiring volume groups, logical
volumes, file systems, and IP addresses specified in resource groups that
are owned (through cascading) or assigned (through rotating) to this node.
When node_up_local_complete is run, the application server definition that
contains rc.db2pe is initiated to start the database partition specified in the
application server definitions on this physical node.

Note: rc.db2pe, when running in start mode, adjusts the DB2 parameters
specified in reg.parms.DATABASE for each DATABASE in the database
directory that matches a parameter (parms) file.

Each node follows this sequence when starting. If you have multiple
HACMP clusters and start them in parallel, multiple nodes are brought up
at once.

v node_down_remote (failover)
HACMP acquires volume groups, logical volumes, file systems, and IP
addresses that are specified in the resource group on the designated
takeover node.
When node_down_remote_complete is run, HACMP will run rc.db2pe as the
application server start script specified in the resource group for this
database partition.

Note: rc.db2pe, when running in mutual takeover mode, stops the DB2
database partition running on it, adjusts the DB2 parameters
specified in failover.parms.DATABASE for each DATABASE in the
database directory that matches a parameter (parms) file, and then
starts both database partitions on the physical takeover node.

v node_up_remote (reintegration of a failed node - cascading mutual takeover
resource group)
When node_up_remote is run on the old takeover node, the application
server definition causes rc.db2pe to be run in stop mode.

Note: rc.db2pe, when running in a reintegration mode (mutual takeover),
stops both of the database partitions running on it, adjust the DB2
parameters specified in reg.parms.DATABASE for each DATABASE in

HACMP ES Event Monitoring and User-defined Events

Chapter 6. High Availability on AIX 203

the database directory that matches a parameter (parms) file, and
then starts just the database partition to be kept on this physical
takeover node.

The old takeover node releases volume groups, logical volumes, file
systems, and IP addresses specified in resource groups that are to be owned
by the reintegrating node.

HACMP re-acquires volume groups, logical volumes, file systems, and IP
addresses specified in the resource group that is now owned by the
reintegrating node.

When node_up_local_complete is run, the application server definition that
contains rc.db2pe is initiated to start the DB2 database partition specified in
the application server definition on this reintegrating physical node.

Note: rc.db2pe, when running in start mode, adjusts the DB2 parameters
specified in reg.parms.DATABASE for each DATABASE in the database
directory that matches a parameter (parms) file.

v node_down_local (node stop or stop with takeover)
When node_down_local is run on the stopping node, the application server
definition causes rc.db2pe to be run in stop mode.

Note: rc.db2pe, when running in stop mode, adjusts the DB2 parameters
specified in failover.parms.DATABASE for each DATABASE in the
database directory that matches a parameter (parms) file, and then
stops the DB2 database partition (this is for takeover).

HACMP releases volume groups, logical volumes, file systems, and IP
addresses specified in resource groups that are now owned by the node.

v db2_proc_recovery (db2 process death)
All nodes run the db2_proc_restart script. The node on which the failure
occurred restarts the correct DB2 database partition.

v db2_paging_recovery (paging space recovery)
All nodes run the db2_paging_action script. If a node has more than 70
percent of paging space filled, a wall command is issued. If a node has
more than 90 percent of paging space filled, DB2 database partitions on this
physical node are stopped and then restarted.

v nfs_auto_recovery (nfs or automount process failure)
All nodes run the rc.db2pe script in NFS mode. If an NFS process stops
running, it is restarted. Similarly, if the automount process stops running, it
is restarted.

v network_down_complete (network failure - SP switch)

HACMP ES Event Monitoring and User-defined Events

204 Data Recovery and High Availability Guide and Reference

The net_down script is called. This verifies the network as the SP switch
network, and verifies that it is down. If that is the case, it waits a
user-defined time interval. The default time interval is 100 seconds.
If the SP switch network comes back, as indicated by an
network_up_complete event, no recovery is effected.
If the time limit is reached, HACMP is stopped with failover.

Note: All events can be monitored through SP problem management and the
SP Perspectives GUI.

Other Script Utilities
Other script utilities are available for your use, including:
v ha_cmd, a command provided to start HACMP on SP nodes from the control

workstation. The syntax is:
ha_cmd <noderange> <START|STOP|TAKE|FORCE>

where

<noderange> is a pcp or pexec style of SP noderange.
For example, "ha_cmd 3-6 START" would start HACMP on nodes 3,4,5,6.

"ha_cmd 5 TAKE" would shut down HACMP on node 5
for mutual takeover.

v ha_mon, a command for monitoring HACMP hacmp_out files from the SP
control workstation. The syntax is:

ha_mon <node>

where

<node> is the SP node to be monitored.

ha_mon will "tail -f" the /tmp/hacmp.out file on the node you specify.

v db2_turnoff_recov, a command for temporarily disabling all HACMP
(non-failover) recovery, and designed for extremely rare situations. No DB2
process, paging, NFS, or automounter recovery is initiated. This function
removes the event stanzas for that recovery from the HACMP rules file.
HACMP must be stopped and restarted. The syntax is:

db2_turnoff_recov <nodelist>

v db2_turnon_recov, a command to re-enable HACMP (non-failover) recovery.
This command is used after db2_turnoff_recov to restore HACMP rules
files, so that user-defined event recovery can occur. HACMP must be
stopped and restarted. The syntax is:

db2_turnon_recov <nodelist>

HACMP ES Event Monitoring and User-defined Events

Chapter 6. High Availability on AIX 205

Monitoring HACMP Clusters

Scripts are provided for creating SP problem management (pman) events to
monitor the DB2 HACMP ES configuration, in addition to those monitoring
utilities already present in HACMP ES. To monitor HACMP status from the
SP control workstation:
v Install the HACMP client code on the control workstation.
v Edit the /usr/sbin/cluster/etc/clhosts file, and include the SP ethernet IP

addresses of the nodes that you want to monitor.
v Invoke the command startsrc -s clinfo to start monitoring the clusters.

HACMP supplies an interface for monitoring the clusters
(/usr/sbin/cluster/clstat.

To use the problem management monitoring with SP Perspectives GUI for
HACMP RS and user-defined events:
1. Invoke create_db2_events <nodelist>, where nodelist contains pcp or

pexec style nodes. This script creates five pman events for monitoring by
Perspectives.

Note: The resource variables PSSP.pm.User_state12-16 are used in the
creation of these events. If these resource variables are already being
used for some other purpose, create_db2_events and
update_db2_events must be updated to use different resource
variables.

2. Start Perspectives on the control workstation. From the launch pad, choose
the event perspective. You should see five events: db2_hacmp_recovery,
db2_process_recovery, db2_paging_err, db2_nfs_err, and
Errlog_PERM_entry.

3. Double-click on each event. On the screen that appears, register (within
the Definition Table) a condition for the event. Click next to the down
arrow by Name: "unnamed", and select the same name as the event you
specify as the condition. Select the "Response Options" tab. Click on the
button at the top of the display (″Send Message to Perspectives event
session″). You can specify commands, errlog entries, as well as SNMP
traps for these event occurrences. The event log displays are maintained
only across Perspective sessions; therefore, you might want to create AIX
error log entries for each. Select OK, and close the window.

4. From the Perspectives launch pad, select the hardware Perspective.
5. When the hardware frame GUI appears, select ″View″ and then ″Monitor″.

You are provided with a list of events that can be monitored for your SP.
Scrolling to the bottom of the list, you will find two additional events: one
for HACMP DB2 recovery (db2_ha_ind), and the other for SP node PERM
errors (Errlog_PERM_mon. Select those that you want to monitor. (When an

Monitoring HACMP Clusters

206 Data Recovery and High Availability Guide and Reference

event occurs, the node displays a red ″X″. If all monitored conditions are
fine, the node display is green.) host_responds, switch_responds, and
node_power_LED are typically used. You can also monitor the DB2 HACMP
recovery, as well as PERM errors, on the node.

Note: The db2_hacmp_mon and db2_hacmp_recovery variables for pman and
Perspectives do not reflect HACMP cluster status. Rather, these
variables reflect the status of the rc.db2pe operation to start or stop
DB2. The ″real″ HACMP status is shown in the HACMP clstat
monitor, and reflects the HACMP cluster state. If you want
db2_hacmp_ind to reflect monitoring similar to HACMP status, add the
following line to your /etc/inittab file:

haind:2:wait:/usr/bin/db2_update_events HAIND OFF 2>&1 >/dev/null

If you are planning to use NetView for your implementation, consider using
HAVIEW (which is part of HACMP) for monitoring your configuration. For
information about configuring that product, refer to the NetView
documentation.

DB2 SP HACMP ES Installation

To help you plan for the installation of HACMP ES with DB2 Universal
Database, following is a step-by-step overview of the installation and
migration processes.

DB2 SP HACMP ES New Installation
To install HACMP ES:
1. Install the AIX operating system on each SP node, (refer to the SP

Installation and Administration Guides). Ensure that proper paging space
is available on both the control workstation, and each of the SP nodes.
Ensure that switch configuration has been considered and implemented,
along with any other modifiable configuration parameters. Put in place
the SP monitoring (Perspectives) that you want to use. Ensure that the SP
dsh, pcp, and pexec commands work.

2. Design your database layout. This should, at a minimum, include the
number of nodes to be used, the mapping of DB2 database partitions to
physical nodes, the disk requirements per node or partition, and table
space considerations. You should also consider who the main DB2
instance owner will be, and what access authorization this and other
users will require.

3. Plan your external SSA disk configuration, including redundant adapters,
mirrored disks, and the twin-tailing of disks.

4. Using your database layout and SSA configuration, complete the HACMP
worksheets located in the HACMP Planning, Installation, and
Administration Guides.

Monitoring HACMP Clusters

Chapter 6. High Availability on AIX 207

5. Implement your external SSA disk configuration. Ensure that microcode
levels are consistent across all drives, and use the Maymap utility to
validate and fill in any gaps in your worksheets.

6. Install DB2 UDB EEE on each SP node.
7. Install HACMP ES on each SP node.
8. Install the DB2 UDB EEE HACMP ES on SP Package, using the

db2_inst_ha command.
9. Create the main DB2 instance user, and ensure that it can access all

nodes. This is not a highly available user at this point. This can be
temporarily an SP user on the SP control workstation.

10. Create your DB2 instance and database. Ensure that it is operational by
invoking db2start, and then db2stop, before proceeding to the next step.

11. If you want to load the database before adding HACMP, do this now.
12. Configure HACMP ES on the SP nodes topology and resource groups

according to the HACMP worksheets and the information in this
document.

13. Beginning with your NFS server node for the main DB2 instance user,
change this user (by modifying /etc/security/user and /etc/passwd) on
all nodes, in accordance with what is specified in this document. This
user will become a highly available NFS user; and this node and its
backup will update /etc/exports. All nodes will be able to mount this
directory using NFS (with an entry in /etc/filesystems on each node)
through the switch alias IP addresses.

14. ″Tar″ the home directory of the main instance user and ″un-tar″ the home
directory in the new location.

15. Create an NFS file system on each of the SP nodes to mount a new main
instance home directory.

16. Start HACMP on the NFS server node. Verify that it comes up
successfully by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

17. Bring up the other nodes one at a time, verifying each successful
completion by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

18. Set up the optional monitoring through Perspectives and Problem
Management.

19. Validate failover functionality on each node by simulating a concurrent
maintenance action on each node. The ha_cmd command (specifying the
TAKE option) can be used to stop HACMP gracefully with takeover.
Verify that the takeovers and the reintegrations are successful by
interrogating /tmp/hacmp.out and using your monitoring tools.

DB2 SP HACMP ES Installation

208 Data Recovery and High Availability Guide and Reference

DB2 SP HACMP ES Migration
If you are migrating from a non-HACMP installation to one with HACMP,
consider the following overview:
1. Convert your existing external disks to a highly available, twin-tailed,

mirrored configuration. Add any extra hardware and disks to achieve this
configuration, remembering that names of different logical volumes on
different nodes must be unique when they are twin-tailed. This applies to
volume groups, logical volumes, and file systems.

2. Complete the HACMP planning and the related worksheets, including
the worksheets in this document.

3. Implement your external SSA disk configuration changes. Ensure that
microcode levels are consistent across all drives, and use the Maymap
utility to validate and eliminate any gaps in the worksheets.

Note: SSA disks in a RAID5 configuration is supported. Two SSA
adapters in the same RAID loop is the only configuration
permitted. For an HACMP configuration with the RAID disks
twin-tailed, only one adapter per node is supported. In this
configuration, the adapter is a single point of failure for access to
the disks, and extra configuration is recommended to detect the
adapter outage and promote this to an HACMP failover event. AIX
error notification is the simplest way to configure a node for
failover, should the SSA adapter fail. Refer to HACMP for AIX,
V4.2.2, Enhanced Scalability Installation and Administration Guide for
more information about AIX error notification.

4. Install HACMP ES on each SP node.
5. Install the DB2 UDB EEE HACMP ES on SP Package, using the

db2_inst_ha command.
6. Configure HACMP ES on the SP nodes topology and resource groups

according to the HACMP worksheets and the information in this
document.

7. Beginning with your NFS server node for the main DB2 instance user,
change this user (by modifying /etc/security/user and /etc/passwd on
all nodes, in accordance with what is specified in this document. This
user will become a highly available NFS user; and this node and its
backup will update /etc/exports. All nodes will be able to mount this
directory using NFS (with an entry in /etc/filesystems on each node)
through the switch alias IP addresses.

8. ″Tar″ the home directory of the main instance user and ″un-tar″ the home
directory in the new location.

9. Create an NFS file system on each of the SP nodes to mount a new main
instance home directory.

DB2 SP HACMP ES Installation

Chapter 6. High Availability on AIX 209

10. Start HACMP on the NFS server node. Verify that it comes up
successfully by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

11. Bring up the other nodes one at a time, verifying each successful
completion by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

12. Set up the optional monitoring through Perspectives and Problem
Management.

13. Validate failover functionality on each node by simulating a concurrent
maintenance action on each node. The ha_cmd command (specifying the
TAKE option) can be used to stop HACMP gracefully with takeover.
Verify that the takeovers and the reintegrations are successful by
interrogating /tmp/hacmp.out and using your monitoring tools.

DB2 SP HACMP ES Worksheets
The following worksheets are designed to be used with HACMP worksheets
that should be completed in preparation for your external SSA disk
configuration (and that are located in the HACMP Planning, Installation, and
Administration Guides). In each case, both a completed example, and a blank
worksheet, are provided.

The database configuration on external disks documented in the first sample
worksheet is shown in the following figure. The statement used to create the
database is:

db2 create database pwq on /newdata

Both SSA external adapters and external SSA disks are mirrored and
twin-tailed for logical volumes with no single point of failure. The diagram
depicts a configuration that is similar to output from the maymap command.
Maymap is a utility (available through AIXTOOLS) that shows the external
SSA disk configuration, and should be used when planning your setup.

DB2 SP HACMP ES Installation

210 Data Recovery and High Availability Guide and Reference

Before you review the following table, you should read the HACMP
documentation regarding the quorum settings on volume groups, and
mirrored write consistency settings on logical volumes. The settings used for
both will directly affect your availability and performance. Ensure that you

Sample DB2 4-node Database External Disks Setup
- Showing twin-tailing for High Availability.

A1

A2

B1

B2

B2

B1

A2

A1

node 3

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 4

ssa0

ssa1

catalogue nfsserver

A1

A2

B1

B2

B2

B1

A2

A1

node 5

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 6

ssa0

ssa1

dbnode5 dbnode6

hdisk1

hdisk1

hdisk5

hdisk5

hdisk9

hdisk13

hdisk2

hdisk2

hdisk6

hdisk6

hdisk10

hdisk14

hdisk3

hdisk3

hdisk7

hdisk7

hdisk11

hdisk15

hdisk4

hdisk4

hdisk8

hdisk8

hdisk12

hdisk16

Figure 27. Sample DB2 4-node Database External Disks Setup

DB2 SP HACMP ES Installation

Chapter 6. High Availability on AIX 211

review these settings and understand their implications. The typical setting for
both ″quorum″ and ″mirrored write consistency″ is ″off″.

Table 12. HACMP Volume Groups, Logical Volumes, and File Systems

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount
Point

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

3 havg3 8 hlv300 10 2 hdisk1
hdisk5

/newdata
/pwq
/NODE0003

hlog301 Catalognode
mount
point; node
4

root *

3 havg3 8 hlog301 1 2 hdisk1
hdisk5

N/A N/A Catalognode
jfslog; node
4

root *

3 havg3 8 hlv301 10 2 hdisk2
hdisk6

N/A N/A Catalognode
rawtemp
space; node
4

pwq **

4 havg4 8 hlv400 10 2 hdisk3
hdisk7

/dbmnt hlog401 nfsserver
pwq home;
node 3

root *

4 havg4 8 hlog401 1 2 hdisk3
hdisk7

N/A N/A nfsserver
jfslog; node
3

root *

5 havg5 8 hlv500 10 2 hdisk1
hdisk9

/newdata/
pwq/
NODE0005

HLOG501 Dbnode5
mount
point; node
6

root *

5 havg5 8 hlog501 1 2 hdisk1
hdisk9

N/A N/A Dbnode5
jfslog; node
6

root *

5 havg5 8 hlv501 10 2 hdisk2
hdisk10

N/A N/A Dbnode5
raw temp
space; node
6

pwq **

5 havg5 8 hlv502 100 2 hdisk2
hdisk10

N/A N/A Dbnode5
raw table
space; node
6

pwq **

5 havg5 8 halv503 100 2 hdisk3
hdisk11

N/A N/A Dbnode5
raw table
space; node
6

pwq **

DB2 SP HACMP ES Installation

212 Data Recovery and High Availability Guide and Reference

Table 12. HACMP Volume Groups, Logical Volumes, and File Systems (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount
Point

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

5 havg5 8 halv504 100 2 hdisk3
hdisk11

N/A N/A Dbnode5
raw table
space; node
6

pwq **

5 havg5 8 halv505 100 2 hdisk4
hdisk12

/dbdata5 hlog501 Dbnode6
system table
space; node
6

root *

6 havg6 8 hlv600 10 2 hdisk5
hdisk13

/newdata/
pwq/
NODE0006

hlog601 Dbnode6
mount
point; node
5

root *

6 havg6 8 hlog601 1 2 hdisk5
hdisk13

N/A N/A Dbnode6
jfslog; node
5

root *

6 havg6 8 hlv601 10 2 hdisk6
hdisk14

N/A N/A Dbnode6
raw temp
space; node
5

pwq **

6 havg6 8 hlv602 100 2 hdisk6
hdisk14

N/A N/A Dbnode6
raw table
space; node
5

pwq **

6 havg6 8 hlv603 100 2 hdisk7
hdisk15

N/A N/A Dbnode6
raw table
space; node
5

pwq **

6 havg6 8 hlv604 100 2 hdisk7
hdisk15

N/A N/A Dbnode6
raw table
space; node
5

pwq **

6 havg6 8 hlv605 100 2 hdisk8
hdisk16

/dbdata6 hlog601 Dbnode6
system table
space; node
5

root *

DB2 SP HACMP ES Installation

Chapter 6. High Availability on AIX 213

Table 12. HACMP Volume Groups, Logical Volumes, and File Systems (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount
Point

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

Notes:

1. * jfs file system logical volumes and logs keep root permissions.

2. ** raw database spaces get database user permissions on /dev raw file entries (/dev/rxxxx).

Table 13. HACMP Volume Groups, Logical Volumes, and File Systems - Blank

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount
Point

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

DB2 SP HACMP ES Installation

214 Data Recovery and High Availability Guide and Reference

Table 13. HACMP Volume Groups, Logical Volumes, and File Systems - Blank (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount
Point

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

DB2 SP HACMP ES Installation

Chapter 6. High Availability on AIX 215

Table 13. HACMP Volume Groups, Logical Volumes, and File Systems - Blank (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Copies
hdisk
List

File System
Mount
Point

File
System

Log
Logical
Volume

Node
Description
and Backup

User
Owner
of /dev
Logical
Device

Table 14. Planning HACMP NFS Server

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

3 /dbmnt 4 nfs_boot_3
nfs_client_3

nfs_server:/
dbmnt as /dbi

/dbi/pwq nfs_boot_3
nfs_client_3
nfs_server_boot
nfs_server
nfs_boot_5
nfs_client_5
nfs_boot_6
nfs_client_6

DB2 SP HACMP ES Installation

216 Data Recovery and High Availability Guide and Reference

Table 14. Planning HACMP NFS Server (continued)

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

4 /dbmnt 3 nfs_server_boot
nfs_server

nfs_server:/
dbmnt as /dbi

/dbi/pwq nfs_boot_3
nfs_client_3
nfs_server_boot
nfs_server
nfs_boot_5
nfs_client_5
nfs_boot_6
nfs_client_6

5 N/A N/A nfs_boot_5
nfs_client_5

nfs_server:/
dbmnt as /dbi

/dbi/pwq N/A

6 N/A N/A nfs_boot_6
nfs_client_6

nfs_server:/
dbmnt as /dbi

/dbi/pwq N/A

Notes:

1. /etc/passwd must be the same on all nodes. This can be synchronized from the control workstation.

2. Ensure that the external file system has the permission of the database instance owner.

3. The /etc/filesystems must have the mount parameters: hard, bg, intr, and rw.

4. The /etc/exports will have

-root=ip1:ip2:ip3

only on the server and its backup.

Table 15. Planning HACMP NFS Server - Blank

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

DB2 SP HACMP ES Installation

Chapter 6. High Availability on AIX 217

Table 15. Planning HACMP NFS Server - Blank (continued)

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

DB2 SP HACMP ES Installation

218 Data Recovery and High Availability Guide and Reference

Table 15. Planning HACMP NFS Server - Blank (continued)

SP
Node

External File
System

Backup
Node

SP Switch Boot
and Service IP

Alias Pairs

File System to
Mount

(/etc/filesystems)

File System
to Specify as

Database
Home

Directory

Addresses to
which File

System is to be
Exported

(/etc/exports)

DB2 SP HACMP ES Installation

Chapter 6. High Availability on AIX 219

DB2 SP HACMP ES Installation

220 Data Recovery and High Availability Guide and Reference

Chapter 7. High Availability on the Windows Operating
System

You can set up your database system so that if a machine fails, the database
server on the failed machine can run on another machine. On Windows NT,
failover support can be implemented with Microsoft Cluster Server (MSCS).
To use MSCS, you require Windows NT Version 4.0 Enterprise Edition with
the MSCS feature installed.

MSCS can perform both failure detection and the restarting of resources in a
clustered environment, such as failover support for physical disks and IP
addresses. (When the failed machine is online again, resources will not
automatically fall back to it, unless you previously configure them to do so.
For more information, see “Fallback Considerations” on page 233.)

Before you enable DB2 instances for failover support, perform the following
planning steps:
1. Decide which disks you want to use for data storage. Each database server

should be assigned at least one disk for its own use. The disk that you use
to store data must be attached to a shared disk subsystem, and must be
configured as an MSCS disk resource.

2. Ensure that you have one IP address for each database server that you
want to use to support remote requests.

When you set up failover support, it can be for an existing instance, or you
can create a new instance when you implement the failover support.

To enable failover support, perform the following steps:
1. Create an input file for the DB2MSCS utility.
2. Invoke the db2mscs command.
3. If you are using a partitioned database system, register database drive

mapping to enable mutual takeover. See “Registering a Database Drive
Mapping for Mutual Takeover Configurations in a Partitioned Database
Environment” on page 233.

After you finish enabling the instance for failover support, your configuration
will resemble Figure 28 on page 222.

© Copyright IBM Corp. 2001 221

The following sections describe the different types of failover support, and
how to implement them. Before performing any of the steps described below,
you must already have the MSCS software installed on every machine that
you want to use in an MSCS cluster. In addition, you must also have DB2
installed on every machine.

Failover Configurations

Two types of configuration are available:
v Hot standby
v Mutual takeover

Currently, MSCS supports clusters of two machines.

In a partitioned database environment, the clusters do not all have to have the
same type of configuration. You can have some clusters that are set up to use
hot standby, and others that are set up for mutual takeover. For example, if
your DB2 instance consists of five workstations, you can have two machines
set up to use a mutual takeover configuration, two to use a hot standby
configuration, and one machine not configured for failover support.

Hot Standby Configuration
In a hot standby configuration, one machine in the MSCS cluster provides
dedicated failover support, and the other machine participates in the database
system. If the machine participating in the database system fails, the database
server on it will be started on the failover machine. If, in a partitioned

Machine A Machine B

C: C:

E:

F:

SQLLIB SQLLIB

(Each machine has DB2 code
installed on a local disk)

Quorum disk
used by MSCS

DB2 Group 0

DB2 Group 1

Cluster disks in a disk tower

D:

Figure 28. Example MSCS Configuration

222 Data Recovery and High Availability Guide and Reference

database system, you are running multiple logical nodes on a machine and it
fails, the logical nodes will be started on the failover machine. Figure 29
shows an example of a hot standby configuration.

Mutual Takeover Configuration
In a mutual takeover configuration, both workstations participate in the
database system (that is, each machine has at least one database server
running on it). If one of the workstations in the MSCS cluster fails, the
database server on the failing machine will be started to run on the other
machine. In a mutual takeover configuration, a database server on one
machine can fail independently of the database server on another machine.
Any database server can be active on any machine at any given point in time.
Figure 30 on page 224 shows an example of a mutual takeover configuration.

Workstation BWorkstation A

Cluster

Instance A Instance A

Figure 29. Hot Standby Configuration

Failover Configurations

Chapter 7. High Availability on the Windows Operating System 223

Using the DB2MSCS Utility

Use the DB2MSCS utility to create the infrastructure for DB2 to support
failover in the Windows NT environment using Microsoft Cluster Service
(MSCS) support. You can use this utility to enable failover in both
single-partition and partitioned database environments.

For the DB2MSCS utility to run successfully, the Cluster Service must be able
to locate the resource DLL, db2wolf.dll, which resides under the
%ProgramFiles%\SQLLIB\bin directory. The DB2 UDB Version 7 Installation
Program sets the PATH system environment variable to point to the
%ProgramFiles%\SQLLIB\bin directory. However, it is not required that you
reboot the machine after installation if you are running on the Windows 2000
operating system. If you want to run the DB2MSCS utility, you must reboot
the machine so that the PATH environment variable is updated for the Cluster
Service.

Invoke the db2mscs command once for each instance on its instance-owning
machine. If there is only one DB2 instance running on one machine in the
MSCS cluster, this sets up a hot-standby configuration. If you have an
instance running on each machine in the MSCS cluster, you would run
DB2MSCS once on each instance-owing machine to set up a mutual takeover
configuration.

The DB2MSCS utility:
1. Reads the required MSCS and DB2 parameters from an input file called

DB2MSCS.CFG. See “Specifying the DB2MSCS.CFG File” on page 225 for
information about the full set of input parameters.

2. Validates the parameters in the input file.

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

Figure 30. Mutual Takeover Configuration

Using the DB2MSCS Utility

224 Data Recovery and High Availability Guide and Reference

3. Registers the DB2 resource type.
4. Creates the MSCS group (or groups) to contain the MSCS and DB2

resources.
5. Creates the IP resource.
6. Creates the Network Name resource.
7. Moves MSCS disks to the group.
8. Creates the DB2 resource (or resources).
9. Adds all required dependencies for the DB2 resource.

10. Converts the non-clustered DB2 instance into a clustered instance.
11. Brings all resources online.

The command syntax is as follows:

MM db2mscs
-f: input_file

MO

Where:

-f:input_file
Specifies the DB2MSCS.CFG input file to be used by the MSCS utility. If
this parameter is not specified, the DB2MSCS utility reads the
DB2MSCS.CFG file that is in the current directory.

Specifying the DB2MSCS.CFG File
The DB2MSCS.CFG file is an ASCII text file that contains parameters that are
read by the DB2MSCS utility. You specify each input parameter on a separate
line using the following format: PARAMETER_KEYWORD=parameter_value.
For example:

CLUSTER_NAME=WOLFPACK
GROUP_NAME=DB2 Group
IP_ADDRESS=9.21.22.89

Two example configuration files are in the /CFG subdirectory of the /SQLLIB
directory. The first, DB2MSCS.EE, is an example for single-partition database
environments. The second, DB2MSCS.EEE, is an example for partitioned
database environments.

The parameters for the DB2MSCS.CFG file are as follows:

DB2_INSTANCE
The name of the DB2 instance. If the instance name is not specified,
the default instance (the value of the DB2INSTANCE environment
variable) is used.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

Using the DB2MSCS Utility

Chapter 7. High Availability on the Windows Operating System 225

This parameter is optional.

Example:
DB2_INSTANCE=DB2

The instance must already exist. For information about creating
instances, refer to the DB2 Enterprise - Extended Edition for Windows
Quick Beginnings book.

DB2_LOGON_USERNAME
The name of the logon account for the DB2 service.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_LOGON_USERNAME=db2user

DB2_LOGON_PASSWORD
The password of the logon account for the DB2 service. If the
DB2_LOGON_USERNAME parameter is provided, but the
DB2_LOGON_PASSWORD parameter is not, the DB2MSCS utility
prompts for the password. The password is not displayed when it is
typed at the command line.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_LOGON_PASSWORD=xxxxxx

CLUSTER_NAME
The name of the MSCS cluster. All the resources specified following
this line are created in this cluster until another CLUSTER_NAME tag
is specified.

Specify this parameter once for each cluster.

This parameter is optional. If not specified, the name of the MSCS
cluster on the local machine is used.

Example:
CLUSTER_NAME=WOLFPACK

GROUP_NAME
The name of the MSCS group. If this parameter is specified, a new

Using the DB2MSCS Utility

226 Data Recovery and High Availability Guide and Reference

MSCS group is created if one does not exist. If the group already
exists, it is used as the target group. Any MSCS resource created
following this line is created in this group until another
GROUP_NAME keyword is specified.

Specify this parameter once for each group.

This parameter is required.

Example:
GROUP_NAME=DB2 Group

DB2_NODE
The node number of the database partition server (node) to be
included in the current MSCS group. If multiple logical nodes exist on
the same machine, each node requires a separate DB2_NODE
keyword.

You specify this parameter after the GROUP_NAME parameter, so
that the DB2 resources are created in the correct MSCS group.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_NODE=0

IP_NAME
The name of the IP Address resource. The value for IP_NAME is
arbitrary, but must be unique. When this parameter is specified, an
MSCS resource of type IP Address is created.

This parameter is required for remote TCP/IP connections. You must
specify this parameter for the instance-owning machine in a
partitioned database environment. This parameter is optional in
single-partition database environments.

Example:
IP_NAME=IP Address for DB2

Note: DB2 clients should use the TCP/IP address of this IP resource
to catalog the TCP/IP node entry. By using the MSCS IP
address, when the database server fails over to the other
machine, DB2 clients can still connect to the database server,
because the IP address is available on the failover machine.

The attributes of the IP resource are as follows:

IP_ADDRESS
The TCP/IP address of the IP resource. Specify this keyword
to set the TCP/IP address for the preceding IP resource.

Using the DB2MSCS Utility

Chapter 7. High Availability on the Windows Operating System 227

This parameter is required if the IP_NAME parameter is
specified.

Example:
IP_ADDRESS=9.21.22.34

IP_SUBNET
The subnet mask for the preceding IP resource.

This parameter is required if the IP_NAME parameter is
specified.

Example:
IP_SUBNET=255.255.255.0

IP_NETWORK
The name of the MSCS network to which the preceding IP
resource belongs. If this parameter is not specified, the first
MSCS network detected by the system is used.

This parameter is optional.

Example:
IP_NETWORK=Token Ring

NETNAME_NAME
The name of the Network Name resource. Specify this parameter to
create the Network Name resource.

This parameter is optional for single-partition database environments.
It is required for partitioned database environments.

Example:
NETNAME_NAME=Network name for DB2

The attributes of the Network Name resource are as follows:

NETNAME_VALUE
The value for the Network Name.

This parameter is required if the NETNAME_NAME
parameter is specified.

Example:
NETNAME_VALUE=DB2SRV

NETNAME_DEPENDENCY
The dependency list for the Network Name resource. Each
Network Name resource must have a dependency on an IP
Address resource. If this parameter is not specified, the
Network Name resource has a dependency on the first IP
resource in the group.

Using the DB2MSCS Utility

228 Data Recovery and High Availability Guide and Reference

This parameter is optional.

Example:
NETNAME_DEPENDENCY=IP Address for DB2

DISK_NAME
The name of the physical disk resources to be moved to the current
groups. Specify as many disk resources as you need.

Notes:

1. The disk resources must already exist.
2. When the DB2MSCS utility configures the DB2 instance for MSCS

support, the instance directory is copied to the first MSCS disk in
the group. To specify a different MSCS disk for the instance
directory, use the INSTPROF_DISK parameter.

Example:
DISK_NAME=Disk E:
DISK_NAME=Disk F:

INSTPROF_DISK
An optional parameter to specify an MSCS disk to contain the DB2
instance directory. If this parameter is not specified, the DB2MSCS
utility uses the first MSCS disk that belongs to the same group as the
instance directory.

The DB2 instance directory is created on the MSCS disk under the
X:\DB2PROFS directory (where X is the MSCS disk drive letter).

Example:
INSTPROF_DISK=Disk E:

TARGET_DRVMAP_DISK
An optional parameter to specify the target MSCS disk for database
drive mapping. If a database is created on an MSCS disk that does not
belong to the same group as the node, the target drive map disk is
used to contain the database partition. If this parameter is not
specified, the database drive mapping must be manually registered
using the DB2DRVMP utility.

Example:
TARGET_DRVMAP_DISK = Disk E:

Setting up Failover for a Single-Partition Database System
When you run the DB2MSCS utility against a single-partition database
system, one MSCS group contains DB2 and all the dependent MSCS resources
(the IP address, Network Name, and disks). For example, the contents of the
DB2MSCS.CFG file for a single-partition database system will look like the
following:

Using the DB2MSCS Utility

Chapter 7. High Availability on the Windows Operating System 229

#
DB2MSCS.CFG for a single-partition database system
#
DB2_INSTANCE=DB2
CLUSTER_NAME=MSCS
GROUP_NAME=DB2 Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...
IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk E:

Setting up a Mutual Takeover Configuration for Two Single-Partition
Database Systems

You can set up two single-partition database systems, each on a separate
machine, so that if the database system on any one machine fails, it is
restarted on the other MSCS node.

To set up failover support for this configuration, you need to run the
DB2MSCS utility once on each instance-owning machine. You must tailor the
configuration file for each database system.

Assume that the DB2 instances are called DB2A and DB2B. The DB2MSCS.CFG
file for the DB2A instance would be as follows:

#
DB2MSCS.CFG for first single-partition database system
#
DB2_INSTANCE=DB2A
CLUSTER_NAME=MSCS
GROUP_NAME=DB2A Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...
IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk E:

The DB2MSCS.CFG file for the DB2B instance would be as follows:
#
DB2MSCS.CFG for second single-partition database system
#
DB2_INSTANCE=DB2B
CLUSTER_NAME=MSCS
GROUP_NAME=DB2B Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...

Using the DB2MSCS Utility

230 Data Recovery and High Availability Guide and Reference

IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk F:

For a full example, see “Example - Setting up Two Single-Partition Instances
for Mutual Takeover” on page 236.

Setting up Multiple MSCS Clusters for a Partitioned Database System
When you run the DB2MSCS utility against a multi-partition database system,
one MSCS group is created for each physical machine that participates in the
system. The DB2MSCS.CFG file must contain multiple sections, and each section
must have a different value for the GROUP_NAME parameter, and for all the
required dependent resources for that group.

In addition, you must specify the DB2_NODE parameter for each database
partition server in each MSCS group. If you have multiple logical nodes, each
logical node requires a separate DB2_NODE keyword.

For example, assume that you have a multi-partition database system that
consists of four database partition servers on four machines, and you want to
configure two MSCS clusters using mutual takeover configuration. You would
set up the DB2MSCS.CFG configuration file as follows:

#
DB2MSCS.CFG for one partitioned database system with
multiple clusters
DB2_INSTANCE=DB2MPP
DB2_LOGON_USERNAME=db2user
DB2_LOGON_PASSWORD=xxxxxx
CLUSTER_NAME=MSCS1
Group 1
GROUP_NAME=DB2 Group 1
DB2_NODE=0
IP_NAME=...

...
Group 2
GROUP_NAME=DB2 Group 2
DB2_NODE=1
IP_NAME=...

...

CLUSTER_NAME=MSCS2
Group 3
GROUP_NAME=DB2 Group 3
DB2_NODE=2
IP_NAME=...

...
Group 4

Using the DB2MSCS Utility

Chapter 7. High Availability on the Windows Operating System 231

GROUP_NAME=DB2 Group 4
DB2_NODE=3
IP_NAME=...

...

For a full example, see “Example - Setting up a Four-Node Partitioned
Database System for Mutual Takeover” on page 238.

Maintaining the MSCS System

When you run the DB2MSCS utility, it creates the infrastructure for failover
support for all machines in the MSCS cluster. To remove support from a
machine, use the db2iclus command with the ″drop″ option. To re-enable
support for a machine, use the ″add″ option.

The command syntax is as follows:

MM db2iclus add
drop /i: instance_name

/u: account_name,password M

M
/m: machine_name /c: cluster_name

MO

Where:

add Enables failover support on the machine by
adding it to an MSCS cluster. The DB2
resource (database server) can then fail over to
this machine.

drop Removes failover support from the machine
by dropping it from an MSCS cluster.

/i: instance_name The name of the instance. (This parameter
overrides the setting of the DB2INSTANCE
environment variable.)

/u: account_name, password The domain account used as the logon
account name of the DB2 Service. For
example:

/u:domainA\db2nt,password

This parameter is only required with the
″add″ option.

/m:machine_name The computer name of the machine that you
want to add to, or drop from, an MSCS

Using the DB2MSCS Utility

232 Data Recovery and High Availability Guide and Reference

cluster. You must specify this option if you
run the command from a machine other than
the one for which you are modifying failover
support.

/c: cluster_name The name of the MSCS cluster as it is known
on the LAN. This name is specified when the
MSCS cluster is first created.

Fallback Considerations

By default, groups are set not to fall back to the original (failed) machine.
Unless you manually configure a DB2 group to fall back after failing over, it
continues to run on the alternative MSCS node after the cause of the failover
has been resolved.

If you configure a DB2 group to automatically fall back to the original
machine, all the resources in the DB2 group including the DB2 resource will
fall back as soon as the original machine is available. If, during the fall back, a
database connection exists, the DB2 resource cannot be brought offline, and
the fallback processing will fail.

If you want to force all database connections off the database during fallback
processing, set the DB2_FALLBACK registry variable to ON. This variable
must be set as follows:

db2set DB2_FALLBACK=ON

You do not have to reboot or restart the cluster service after setting this
registry variable.

Registering a Database Drive Mapping for Mutual Takeover Configurations in a
Partitioned Database Environment

When you create a database in a partitioned database environment, you can
specify a drive letter to indicate where the database is to be created.

Note: You do not set database drive mapping for single-partition database
environments.

When the CREATE DATABASE command runs, it expects that the drive that
you specify will be simultaneously available to all of the machines that
participate in the instance. Because this is not possible, DB2 uses database
drive mapping to assign the same drive a different name for each machine.

For example, assume that a DB2 instance called DB2 contains two database
partition servers:

Maintaining the MSCS System

Chapter 7. High Availability on the Windows Operating System 233

NODE0 is active on machine WOLF_NODE_0
NODE1 is active on machine WOLF_NODE_1

Assume also that the share disk E: belongs to the same group as NODE0, and
that the share disk F: belongs to the same group as NODE1.

To create a database on the share disk E:
db2 create database mppdb on e:

For the command to be successful, drive E: must be available to both
machines. In a mutual takeover configuration, each database partition server
may be active on a different machine, and the cluster disk E: is only available
to one machine. In this situation, the CREATE DATABASE command will
always fail.

To resolve this problem, the database drive should be mapped as follows:
For NODE0, the mapping is from drive F: to drive E:
For NODE1, the mapping is from drive E: to drive F:

Any database access for NODE0 to drive F: is then mapped to drive E:, and
any database access for NODE1 to drive E: is mapped to drive F:. Using drive
mapping, the CREATE DATABASE command will create database files on
drive E: for NODE0 and drive F: for NODE1.

Use the db2drvmp command to set up the drive mapping. The command
syntax is as follows:

MM db2drvmp add
drop
query
reconcile

node_number from_drive to_drive MO

The parameters are as follows:

add Assigns a new database drive map.

drop Removes an existing database drive map.

query Queries a database map.

reconcile Repairs a database map drive when the registry contents are
damaged. See “Reconciling the Database Drive Mapping” on
page 235 for more information.

node_number The node number. This parameter is required for add and
drop operations.

Registering a Database Drive Mapping

234 Data Recovery and High Availability Guide and Reference

from_drive The drive letter from which to map. This parameter is
required for add and drop operations.

to_drive The drive letter to which to map. This parameter is required
for add operations. It is not applicable to other operations.

If you wanted to set up database drive mapping from F: to E: for NODE0,
you would use the following command:

db2drvmp add 0 F E

Note: Database drive mapping does not apply to table spaces, containers, or
any other database storage objects.

Similarly, to set up database drive mapping from E: to F: for NODE1, you
would issue the following command:

db2drvmp add 1 E F

Note: Any setup of, or changes to, the database drive mapping does not take
effect immediately. To activate the database drive mapping, use the
Cluster Administrator tool to bring the DB2 resource offline, then
online.

Using the TARGET_DRVMAP_DISK keyword in the DB2MSCS.CFG file
will enable the drive mapping to be done automatically.

Reconciling the Database Drive Mapping
When a database is created on a machine that has database drive mapping in
effect, the map is saved on the drive in a hidden file. This is to prevent the
database drive from being removed after the database is created. You will
want to reconcile the database drive mapping if, for example, you accidentally
drop the database drive map. To reconcile the map, run the db2drvmp
reconcile command for each database partition server that contains the
database. The command syntax is as follows:

MM db2drvmp reconcile
node_number drive

MO

The parameters are as follows:

node_number The node number of the node to be repaired. If node_number is
not specified, the command reconciles the mapping for all
nodes.

drive The drive to reconcile. If a drive is not specified, the
command reconciles the mapping for all drives.

Registering a Database Drive Mapping

Chapter 7. High Availability on the Windows Operating System 235

The db2drvmp command scans all drives on the machine for database
partitions that are managed by the database partition server, and reapplies the
database drive mapping to the registry as required.

Example - Setting up Two Single-Partition Instances for Mutual Takeover

The objective for this example is to set up two single-partition database
instances with failover support in a mutual takeover configuration. In this
example, four servers are configured into two MSCS clusters. By using the
mutual takeover configuration, when any of the machine fails, the database
server configured for that machine will fail over to the alternative machine, as
configured using the MSCS software, and run on the alternative machine.

There are two MSCS clusters in the resulting configuration. Each cluster has:
v Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB
v One SCSI disk tower that has three shared SCSI disks of 2 GB each.

In addition, each machine has one 100X Ethernet Adapter card installed.

Each machine has the following software installed:
v Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed
v DB2 Universal Database Enterprise Edition Version 7.

The resulting network configuration is as follows:

Server 1:

v Machine name:db2test1

v TCP/IP hostname:db2test1

v IP Address: 9.9.9.1

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 2:

v Machine name:db2test2

v TCP/IP hostname:db2test2

v IP Address: 9.9.9.2

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Both machines in the network are configured with TCP/IP and connected to a
private LAN using an Ethernet 100 T-base Hub. In the absence of a Domain
Name Server (DNS), all machines have a local TCP/IP hosts file, which
contains the following entries:

9.9.9.1 db2test1 # for Server 1
9.9.9.2 db2test2 # for Server 2
9.9.9.3 ClusterA # for MSCS ClusterA
9.9.9.4 db2tcp1 # for DB2 remote client connection to Server 1
9.9.9.5 db2tcp2 # for DB2 remote client connection to Server 2

Preliminary Tasks
Before you perform the following tasks, it is assumed that both machines
belong to the same domain, called DB2NTD:

Registering a Database Drive Mapping

236 Data Recovery and High Availability Guide and Reference

1. Create a domain account for DB2 that is a member of the local
Administrators group on those machines where DB2 is going to run. Use
the account for performing all tasks:
v Set the user name to db2nt.
v Set the password to db2nt.

2. Install the MSCS feature on machines db2test1 and db2test2:
v Name the MSCS cluster ClusterA.
v The cluster IP Address is 9.9.9.3.
v Share disk D: will be used by the MSCS software.
v Share disks E: and F: will be used by DB2.

3. Install DB2 Universal Database Enterprise Edition Version 7 on machine
db2test1. Install the software on C:\SQLLIB, which is a local drive.

4. Install DB2 Universal Database Enterprise Edition Version 7 on machine
db2test2. Install the software on C:\SQLLIB, which is a local drive.

The next step is to set up the DB2MSCS.CFG file for each instance, and run the
DB2MSCS utility for each instance.

Run the DB2MSCS Utility
To set up the db2test1 machine, perform the following tasks:
1. On machine db2test1, log on as user db2nt. The password is db2nt.
2. Create the DB2 instance DB2A, if it does not already exist. The command

to create the instance is:
db2icrt DB2A

3. Set up the DB2MSCS.CFG file for the DB2 instance on machine db2test1:
#
DB2MSCS.CFG for database system
on machine db2test1
DB2_INSTANCE=DB2A
CLUSTER_NAME=ClusterA
#
Group 1
GROUP_NAME=DB2A Group
IP_NAME=IP Address for DB2A
IP_ADDRESS=9.9.9.4
IP_SUBNET=255.255.255.0
IP_NETWORK=ClusterA
NETNAME_NAME=Network name for DB2A
NETNAME_VALUE=DB2SRV1
NETNAME_DEPENDENCY=IP Address for DB2A
DISK_NAME=Disk E:
INSTPROF_DISK=Disk E:

4. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

5. Log out from the db2nt account.

Mutual Takeover Example (Single-Partition Instances)

Chapter 7. High Availability on the Windows Operating System 237

6. On machine db2test2, log on as user db2nt, which belongs to the local
Administrators group. The password is db2nt.

7. Create the DB2 instance DB2B, if it does not already exist. The command
to create the instance is:

db2icrt DB2B

8. Set up the DB2MSCS.CFG file for the DB2 instance on machine db2test2:
#
DB2MSCS.CFG for database system
on machine db2test2
DB2_INSTANCE=DB2B
CLUSTER_NAME=ClusterA
#
Group 1
GROUP_NAME=DB2B Group
IP_NAME=IP Address for DB2B
IP_ADDRESS=9.9.9.5
IP_SUBNET=255.255.255.0
IP_NETWORK=ClusterA
NETNAME_NAME=Network name for DB2B
NETNAME_VALUE=DB2SRV2
NETNAME_DEPENDENCY=IP Address for DB2B
DISK_NAME=Disk F:
INSTPROF_DISK=Disk F:

9. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

10. Log out from the db2nt account.

Example - Setting up a Four-Node Partitioned Database System for Mutual
Takeover

The objective for this example is to set up a four-node partitioned database
system with failover support in a mutual takeover configuration. In this
example, four servers are configured into two MSCS clusters. By using the
mutual takeover configuration, if any machine fails, the database partition
servers configured for that machine will fail over to the alternative machine,
as configured using the MSCS software, and run as a logical node on the
alternative machine.

There are two MSCS clusters in the resulting configuration. Each cluster has:
v Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB
v One SCSI disk tower that has three shared SCSI disks of 2 GB each.

In addition, each machine has one 100X Ethernet Adapter card installed.

Each machine has the following software installed:
v Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed

Mutual Takeover Example (Single-Partition Instances)

238 Data Recovery and High Availability Guide and Reference

v DB2 Universal Database Extended Enterprise Edition Version 7.

The resulting network configuration is as follows:

Server 1:

v Machine name:db2test1

v TCP/IP hostname:db2test1

v IP Address: 9.9.9.1

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 2:

v Machine name:db2test2

v TCP/IP hostname:db2test2

v IP Address: 9.9.9.2

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 3:

v Machine name:db2test3

v TCP/IP hostname:db2test3

v IP Address: 9.9.9.3

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterB

Server 4:

v Machine name:db2test4

v TCP/IP hostname:db2test4

v IP Address: 9.9.9.4

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterB

All machines in the network are configured with TCP/IP and connected to a
private LAN using an Ethernet 100 T-base Hub. In the absence of a Domain
Name Server (DNS), all machines have a local TCP/IP hosts file, which
contains the following entries:

9.9.9.1 db2test1 # for Server 1
9.9.9.2 db2test2 # for Server 2
9.9.9.3 db2test3 # for Server 3
9.9.9.4 db2test4 # for Server 4
9.9.9.5 ClusterA # for MSCS Cluster 1
9.9.9.6 ClusterB # for MSCS Cluster 2
9.9.9.7 db2tcp # for DB2 remote client connection

Preliminary Tasks
Before you perform the following tasks, it is assumed that all four machines
belong to the same domain, called DB2NTD:
1. Create a domain account for DB2 that is a member of the local

Administrators group on those machines where DB2 is going to run. Use
the account for performing all tasks:
v Set the user name to db2nt.
v Set the password to db2nt.

2. Create a second domain account with the ″password never expires″
characteristic. This account will be associated with DB2 services:
v Set the user name to db2mpp.
v Set the password to db2mpp.

3. Install the MSCS feature on machines db2test1 and db2test2:

Mutual Takeover Example (Partitioned Database System)

Chapter 7. High Availability on the Windows Operating System 239

v Name the MSCS cluster ClusterA.
v The cluster IP Address is 9.9.9.5.
v Share disk D: will be used by the MSCS software.
v Share disks E: and F: will be used by DB2.

4. Install the MSCS feature on machines db2test3 and db2test4:
v Name the MSCS cluster ClusterB.
v The cluster IP Address is 9.9.9.6.
v Share disk D: will be used by the MSCS software
v Share disks E: and F: will be used by DB2.

5. Install DB2 Enterprise - Extended Edition on machine db2test1:
v Select the ″This machine will be the instance-owning database partition

server″ option.
v The account for the DB2 service is db2mpp. The password is db2mpp.
v Install the software on C:\SQLLIB, which is a local drive.

6. Install DB2 Enterprise - Extended Edition on machines db2test2, db2test3,
and db2test4:
v Select the ″This machine will be a new node on an existing partitioned

database system″ option.
v Select db2test1 as the instance-owning machine.
v The account for the DB2 service is db2mpp. The password is db2mpp.
v Install the software on C:\SQLLIB, which is a local drive.

The next step is to set up the DB2MSCS.CFG file and run the DB2MSCS utility.

Run the DB2MSCS Utility
To set up the db2test1 machine, perform the following tasks:
1. Log on as user db2nt, which belongs to the local Administrators group.

The password is db2nt.
2. Set up the DB2MSCS.CFG file:

#
DB2MSCS.CFG for one partitioned database system with
multiple MSCS clusters
DB2_INSTANCE=DB2MPP
CLUSTER_NAME=ClusterA
DB2_LOGON_USERNAME=db2mpp
DB2_LOGON_PASSWORD=db2mpp
Group 1
for DB2 node 0
GROUP_NAME=DB2NODE0
DB2_NODE=0
IP_NAME=IP Address for DB2
IP_ADDRESS=9.9.9.7
IP_SUBNET=255.255.255.0
IP_NETWORK=Ethernet

Mutual Takeover Example (Partitioned Database System)

240 Data Recovery and High Availability Guide and Reference

NETNAME_NAME=Network name for DB2
NETNAME_VALUE=DB2WOLF
NETNAME_DEPENDENCY=IP Address for DB2
DISK_NAME=Disk E:
INSTPROF_DISK=Disk E:
#

Group 2
for DB2 node 1
GROUP_NAME=DB2NODE1
DB2_NODE=1
DISK_NAME=Disk F:
#

CLUSTER_NAME=ClusterB
Group 3
for DB2 node 2
GROUP_NAME=DB2NODE2
DB2_NODE=2
DISK_NAME=Disk E:

#
Group 4
for DB2 node 3
GROUP_NAME=DB2NODE3
DB2_NODE=3
DISK_NAME=Disk F:

3. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

4. Log out from the db2nt account.

The final steps are to register the database drive mapping for the two MSCS
clusters.

Register the Database Drive Mapping for ClusterA
To register the database drive mapping for MSCS cluster ClusterA, perform
the following tasks:
1. On machine db2test1, log on as user db2mpp, which is the account

associated with DB2 services. The password is db2mpp.
2. To register the database drive mapping, enter the following commands:

db2drvmp add 0 F E

db2drvmp add 1 E F

3. Bring all DB2 resources offline, then bring them online.

Register the Database Drive Mapping for ClusterB
To register the database drive mapping for MSCS cluster ClusterB, perform
the following tasks:
1. On machine db2test3, log on as user db2mpp, which is the account

associated with DB2 services. The password is db2mpp.
2. To register the database drive mapping, enter the following commands:

Mutual Takeover Example (Partitioned Database System)

Chapter 7. High Availability on the Windows Operating System 241

db2drvmp add 2 F E
db2drvmp add 3 E F

3. Bring all DB2 resources offline, then bring them online.

Administering DB2 in an MSCS Environment

If you are using MSCS clusters, your DB2 instance requires additional
planning with regards to daily operation, database deployment, and database
configuration. For DB2 to execute transparently on any MSCS node, additional
administrative tasks must be performed. All DB2 dependent operating system
resources must be available on all MSCS nodes. Some of these operating
system resources fall outside the scope of MSCS. That is, they cannot be
defined as an MSCS resource. You must ensure that each system is configured
such that the same operating system resources are available on all MSCS
nodes. The sections that follow describe the additional work that must be
done.

Starting and Stopping DB2 Resources
You must start and stop DB2 resources from the Cluster Administrator tool.
Several mechanisms are available to start a DB2 instance, such as the db2start
command, and the Services option from the Control Panel. However, if DB2 is
not started from the Cluster Administrator, the MSCS software will not be
aware of the state of the DB2 instance. If a DB2 instance is started using the
Cluster Administrator, and stopped using the db2stop command, the MSCS
software will interpret the db2stop command as a software failure, and
attempt to restart DB2. (The current MSCS interfaces do not support
notification of a resource state.)

Similarly, if you use db2start to start a DB2 instance, MSCS cannot detect that
the resource is online; if a database server fails, MSCS will not bring the DB2
resource online on the failover machine in the cluster.

Three operations can be applied to a DB2 instance:

Online
This operation is equivalent to using the db2start command. If DB2 is
already active, this operation can be used simply to notify MSCS that
DB2 is active. Any errors during this operation will be written to the
Windows NT Event Log.

Offline
This operation is equivalent to using the db2stop command. If there
are any active attachments to an instance, this operation will fail. This
is consistent with the behavior of db2stop.

Fail resource
This operation is equivalent to using the db2stop command with the

Mutual Takeover Example (Partitioned Database System)

242 Data Recovery and High Availability Guide and Reference

force option specified. DB2 will disconnect all applications from the
DB2 system, and stop all database servers.

Running Scripts
You can run scripts both before and after a DB2 resource is brought online.
These scripts must reside in the instance profile directory that is specified for
the DB2INSTPROF environment variable. This directory is the directory path
that is specified by the ″-p″ parameter of the db2icrt command. You can
obtain this value by issuing the following command:

db2set -i:instance_name DB2INSTPROF

This file path must be on a clustered disk, so that the instance directory is
available on all cluster nodes.

These script files are not required, and are only run if they are found in the
instance directory. They are launched by the MSCS Cluster Service in the
background. The script files must redirect standard output to capture any
information returned from commands within the script files. The output is not
displayed to the screen.

In a partitioned database environment, by default, the same script will be
used by every database partition server in the instance. If you need to
distinguish among the different database partition servers in the instance, use
different assignments of the DB2NODE environment variable to target specific
node numbers (for example, use the IF statement in the db2cpre.bat and
db2cpost.bat files).

Running Scripts Before Bringing DB2 Resources Online
If you want to run a script before you bring a DB2 resource online, the script
must be named db2cpre.bat. DB2 calls functions that will launch this batch
file from the Windows NT command line processor (CLP) and wait for the
CLP to complete execution before the DB2 resource is brought online. You can
use this batch file for tasks such as modifying the DB2 database manager
configuration. You may want to change some database manager parameter
values if the failover system is constrained, and you must reduce the system
resources consumed by DB2.

The commands placed in the db2cpre.bat script should execute
synchronously. Otherwise, the DB2 resource may be brought online before all
tasks in the script are completed, which may result in unexpected behavior.
Specifically, db2cmd should not be invoked in the db2cpre.bat script, because
it, in turn, launches another command processor, which will run DB2
commands asynchronously to the db2cmd program.

If you want to use DB2 CLP commands in the db2cpre.bat script, the
commands should be placed in a file and run as a CLP batch file from within

Administering DB2 in an MSCS Environment

Chapter 7. High Availability on the Windows Operating System 243

a program that initializes the DB2 environment for the DB2 command line
processor, and then waits for the completion of the DB2 command line
processor. For example:
#include <windows.h>

int WINAPI DB2SetCLPEnv_api(DWORD pid);

void main (int argc, char *argv [])
{

STARTUPINFO startInfo = {0};
PROCESS_INFORMATION pidInfo = {0};
char title [32] = "Run Synchronously";
char runCmd [64] =

"DB2 -z c:\\run.out -tvf c:\\run.clp";
/* Invoke API to set up a CLP Environment */

if (DB2SetCLPEnv_api (GetCurrentProcessId ()) == 0) �1�
{

startInfo.cb = sizeof(STARTUPINFO);
startInfo.lpReserved = NULL;
startInfo.lpTitle = title;
startInfo.lpDesktop = NULL;
startInfo.dwX = 0;
startInfo.dwY = 0;
startInfo.dwXSize = 0;
startInfo.dwYSize = 0;
startInfo.dwFlags = 0L;
startInfo.wShowWindow = SW_HIDE;
startInfo.lpReserved2 = NULL;
startInfo.cbReserved2 = 0;

if (CreateProcessA(NULL,
runCmd, �2�
NULL,
NULL,
FALSE,
NORMAL_PRIORITY_CLASS CREATE_NEW_CONSOLE,
NULL,
NULL,
&startInfo,
&pidInfo))

{
WaitForSingleObject (pidInfo.hProcess, INFINITE);
CloseHandle (pidInfo.hProcess);
CloseHandle (pidInfo.hThread);

}
}
return;

}

�1� The API DB2SetCLPEnv_api is resolved by the import library
DB2API.LIB. This API sets an environment that allows CLP commands
to be invoked. If this program is invoked from the db2cpre.bat script,
the command processor will wait for the CLP commands to complete.

Administering DB2 in an MSCS Environment

244 Data Recovery and High Availability Guide and Reference

�2� runCmd is the name of the script file that contains the DB2 CLP
commands.

A sample program called db2clpex.exe can be found in the MISC subdirectory
of the DB2 install path. This executable is similar to the example provided,
but accepts the DB2 CLP command as a command line argument. If you want
to use this sample program, copy it to the BIN subdirectory. You can use this
executable in the db2cpre.bat script as follows (INSTHOME is the instance
directory):

db2clpex "DB2 -Z INSTHOME\pre.log -tvf INSTHOME\pre.clp"

All DB2 ATTACH commands or CONNECT statements should explicitly
specify a user; otherwise, they will be executed under the user account
associated with the cluster service. CLP scripts should also complete with the
TERMINATE command to end the CLP background process.

Following is an example of a db2cpre.bat file:
db2cpre.bat : �1�

db2clpex "db2 -z INSTHOME\pre-%DB2NODE%.log -tvf INSTHOME\pre.clp" �2� - �5�

PRE.CLP �6�

update dbm cfg using MAXAGENTS 200;
get dbm cfg;
terminate;

�1� The db2cpre.bat script executes under the user account associated
with the Cluster Service. If DB2 actions are required, the user account
associated with the Cluster Service must be a valid SQL identifier, as
defined by DB2.

�2� INSTHOME is the instance directory.

�3� The name of the log file must be different for each node to avoid file
contention when both logical nodes are brought online at the same
time.

�4� db2clpex.exe is a sample program that uses a command line
argument to specify the CLP command that is to be invoked.

�5� The db2clpex.exe sample program must be made available on all
MSCS cluster nodes.

�6� The CLP commands in this example set a limit on the number of
agents.

Administering DB2 in an MSCS Environment

Chapter 7. High Availability on the Windows Operating System 245

Running Scripts After Bringing DB2 Resources Online
If you want to run a script after you bring a DB2 resource online, it must be
named db2cpost.bat. The script will be run asynchronously from MSCS after
the DB2 resource has been successfully brought online. The db2cmd command
can be used in this script to execute DB2 CLP script files. Use the ″-c″
parameter of the db2cmd command to specify that the utility should close all
windows on completion of the task. For example:

db2cmd -c db2 -tvf mycmds.clp

The ″-c″ parameter must be the first argument to the db2cmd command,
because it prevents orphaned command processors in the background.

The db2cpost.bat script is useful if you want to perform database activities
immediately after the DB2 resource fails over and becomes active. For
example, you can restart or activate databases in the instance so that they are
primed for user access.

Following is an example of a db2cpost.bat script:
db2cpost.bat �1�

db2cmd -c db2 -z INSTHOME\post-%DB2NODE%.log -tvf INSTHOME\post.clp �2� - �4�

POST.CLP �5�

restart database SAMPLE;
connect reset;
activate database SAMPLE;
terminate;

�1� The db2cpost.bat script runs under the user account associated with
the Cluster Service. If DB2 actions are required, the user account
associated with the Cluster Service must be a valid SQL identifier, as
defined by DB2.

�2� INSTHOME is the instance directory.

�3� The name of the log file must be different for each node to avoid file
contention when both logical nodes are brought online at the same
time.

�4� The db2cmd command can be used, because the db2cpost.bat script
can run asynchronously. The ″-c″ parameter must be used to terminate
the command processor.

�5� The CLP script in this example contains commands to restart and
activate the database. This script returns the database to an active
state immediately after the database manager is started. In a
partitioned database system, you should remove the ACTIVATE

Administering DB2 in an MSCS Environment

246 Data Recovery and High Availability Guide and Reference

DATABASE command, because multiple DB2 resources are brought
online at the same time. The RESTART DATABASE command may
fail, because another node is activating the database. If this occurs,
rerun the script to ensure that the database is restarted correctly.

Database Considerations
When you create a database, ensure that the database path refers to a share
disk. This allows the database to be seen on all MSCS nodes. All logs and
other database files must also refer to clustered disks for DB2 to failover
successfully. If you do not perform these steps, a DB2 system failure will
occur, because it will seem to DB2 that files have been deleted or are
unavailable.

Ensure also that the database manager and database configuration parameters
are set so that the amount of system resources consumed by DB2 is supported
on either MSCS node. The autorestart database configuration parameter should
be set to ON, so that the first database connection on failover will bring the
database to a consistent state. (The default setting for autorestart is ON.) The
database can also be brought to a ready state by using the db2cpost.bat script
to restart and activate the database. This method is preferred, because there
will be no dependency on autorestart, and the database is brought to a ready
state independent of a user connection request.

User and Group Support
DB2 relies on Windows NT for user authentication and group support. For a
DB2 instance to fail over from one MSCS node to another in a seamless
fashion, each MSCS node must have access to the same Windows NT security
databases. You can achieve this by using Windows NT Domain Security.

Define all DB2 users and groups in a Domain Security database. The MSCS
nodes must be members of this Domain, or the Domain must be a Trusted
Domain. DB2 will then use the Domain Security database for authentication
and group support, independent of the MSCS node on which DB2 is running.

If you are using local accounts, the accounts must be replicated on each MSCS
node. This approach is not recommended, because it is error prone and
requires dual maintenance.

DCE Security is also a supported authentication mode, if all MSCS nodes are
clients in the same DCE cell.

You should associate the MSCS service with a user account that follows DB2
naming conventions. This allows the MSCS service to perform actions against
DB2 that may be required in the db2cpre.bat and db2cpost.bat scripts.

Administering DB2 in an MSCS Environment

Chapter 7. High Availability on the Windows Operating System 247

For more information about Windows NT user and group support, see ″User
Authentication with DB2 for Windows NT″ in the Administration Guide:
Implementation.

Communications Considerations
DB2 supports two LAN protocols in an MSCS Environment:
v TCP/IP
v NetBIOS

TCP/IP is supported because it is a supported cluster resource type. To enable
DB2 to use TCP/IP as a communications protocol for a partitioned database
system, create an IP Address resource and place it in the same group as the
DB2 resource that represents the database partition server that you want to
use as a coordinator node for remote applications. Then create a dependency,
using the Cluster Administrator tool, to ensure that the IP resource is online
before the DB2 resource is started. DB2 clients can then catalog TCP/IP node
directory entries to use this TCP/IP address.

The TCP/IP port associated with the svcename database manager configuration
parameter must be reserved for use by the DB2 instance on all machines that
participate in the instance. The service name associated with the port number
must also be the same in the services file on all machines.

Although NetBIOS is not a supported cluster resource, you can use NetBIOS
as a LAN protocol, because the protocol ensures that NetBIOS names are
unique on the LAN. When DB2 registers a NetBIOS name, NetBIOS ensures
that the name is not in use on the LAN. In a failover scenario, when DB2 is
moved from one system to another, the nname used by DB2 will be
deregistered from one partner machine in the MSCS cluster and registered on
the other machine.

DB2 NetBIOS support uses NetBIOS Frames (NBF). This protocol stack can be
associated with different logical adapter numbers (LANA). To ensure
consistent NetBIOS access to the server, the LANA associated with the NBF
protocol stack should be the same on all clustered nodes. You can configure
this by using the Networks option from the Control Panel. You should
associate NBF with LANA 0, because this is the default setting expected by
DB2.

System Time Considerations
DB2 uses the system time to time stamp certain operations. All MSCS nodes
that participate in DB2 failover must have the system time zone and system
time synchronized to ensure that DB2 behaves consistently on all machines.

Set the system time zone using the Date/Time option from the Control Panel
dialog. MSCS has a time service that synchronizes the date and time when the

Administering DB2 in an MSCS Environment

248 Data Recovery and High Availability Guide and Reference

MSCS nodes join to form a cluster. The time service, however, only
synchronizes the time every 12 hours, which may result in problems if the
time is changed on one system, and DB2 fails over before the time is
synchronized.

If the time is changed on one of the MSCS cluster nodes, it should be
manually synchronized on the other cluster nodes using the command:

net time /set /y \\remote_node

Where remote_node is the machine name of the cluster node.

Administration Server and Control Center Considerations in a Partitioned
Database Environment

The DB2 Administration Server is (optionally) created during the installation
of DB2 Universal Database. It is not a partitioned database system. The
Control Center uses the services provided by the Administration Server to
administer DB2 instances and databases.

In a partitioned database system, a DB2 instance can reside on multiple MSCS
nodes. This implies that a DB2 instance must be cataloged on multiple
systems under the Control Center so that the instance remains accessible,
regardless of the MSCS node on which the DB2 instance is active.

The Administration Server instance directory is not shared. You must mirror
all user-defined files in the Administration Server directory to all MSCS nodes
to provide the same level of administration to all MSCS nodes. Specifically,
you must make user scripts and scheduled executables available on all nodes.
You must also ensure that scheduled activities are scheduled on all machines
in an MSCS cluster.

Alternatively, instead of duplicating the Administration Server on all
machines, you may want to have the Administration Server fail over. For the
purposes of the following example, assume that you have two MSCS nodes in
the cluster, and that they are called MACH0 and MACH1. MACH0 has access
to a cluster disk that will be used by the Administration Server. Assume also
that both MACH0 and MACH1 have an Administration Server. You would
perform the following steps to make the Administration Server highly
available:
1. Stop the Administration Server on both machines by invoking the

db2admin stop command on each machine.
2. On all administration client machines, uncatalog all references to the

Administration Servers on MACH0 and MACH1 using the UNCATALOG
NODE command. (You can use the LIST NODE DIRECTORY command on
the client machine to determine if any references to the Administration
Server exist.)

Administering DB2 in an MSCS Environment

Chapter 7. High Availability on the Windows Operating System 249

3. Drop the Administration Server from MACH1 by invoking the db2admin
drop command from MACH1. (You would only perform this step if you
had an Administration Server on both machines.)

4. Determine the name of the Administration Server by issuing the
db2admin command from MACH0. (The default name is DB2DAS00.)

5. Use the DB2MSCS utility to set up failover support for the Administration
Server. This entails creating a DB2 resource on MSCS named DB2DAS00 that
has dependencies on the IP and disk resources. (If you have a mutual
takeover configuration, you would put the resource in the group that
holds the DB2 resource for NODE0.) This resource will be used as the
MSCS resource that supports the Administration Server. The
DB2MSCS.ADMIN file would be as follows:

#
db2mscs.admin for Administration Server
run db2mscs -f:db2mscs.admin
#
DB2_INSTANCE=DB2DAS00
CLUSTER_NAME=CLUSTERA
DB2_LOGON_USERNAME=db2admin
DB2_LOGON_PASSWORD=db2admin
put Administration server in the same group as DB2 Node 0
GROUP_NAME=DB2NODE0 �1�
DISK_NAME=DISK E:
INSTPROF_DISK=DISK E:
IP_NAME= IP Address for Administration Server
IP_ADDRESS=9.9.9.8
IP_SUBNET=255.255.255.0
IP_NETWORK=Ethernet

�1� This group can be the same as the existing group. This way, you
do not require an additional disk for the instance profile directory.

6. On MACH1, invoke the following command to set DB2DAS00 as the
Administration Server:

db2set -g db2adminserver=DB2DAS00

7. On MACH0, modify the start-up properties of DB2DAS00 through the
Services program so that it is brought up manually and not automatically,
because DB2DAS00 is now controlled by MSCS.

When the Administration Server is enabled for failover, all remote access
should use an MSCS IP resource for communicating with the Administration
Server. The Administration Server will now have the following properties:
v The Administration Server instance directory will fail over with the

Administration Server.
v Clients will only catalog a single node to communicate with the

Administration Server, regardless of the MSCS node on which it is active.
v Jobs only need to be scheduled once against the Administration Server.

Administering DB2 in an MSCS Environment

250 Data Recovery and High Availability Guide and Reference

v Local instances can only be controlled by the Administration Server when
the Administration Server is active on the same MSCS node as the local
instance.

v The Administration Server is not accessible if the Cluster Service is not
active.

Limitations and Restrictions
When you run DB2 in an MSCS environment:
v You cannot use physical I/O on shared disks, unless the shared disks have

the same physical disk number across both MSCS nodes. You can use
logical I/O, because the disk is accessed using a partition identifier.

v You must configure all DB2 resource for MSCS support. If you do not,
system errors will occur during DB2 run time (DB2 cannot properly operate
in the absence of system resources). For example, if the database logs are
not on an MSCS shared disk, DB2 cannot restart the database.

v You must manage a DB2 instance from the Cluster Administrator tool.
MSCS will view other mechanisms that are used to start and stop the
database manager as software inconsistencies. For example, if you use
MSCS to start DB2, and the db2stop command to stop DB2, MSCS will
detect this as a software failure, and will restart the instance. This also
means that you should not use the Control Center to start and stop DB2.

v To uninstall DB2, you must first stop MSCS.

Administering DB2 in an MSCS Environment

Chapter 7. High Availability on the Windows Operating System 251

Administering DB2 in an MSCS Environment

252 Data Recovery and High Availability Guide and Reference

Chapter 8. High Availability in the Solaris Operating
Environment

High availability in the Solaris Operating Environment can be achieved
through DB2 working with Sun Cluster 2.x (SC2.x), Sun Cluster 3.0 (SC3.0), or
Veritas Cluster Server (VCS). For information about Sun Cluster 3.0, see the
white paper entitled “DB2 and High Availability on Sun Cluster 3.0”, which is
available from the “DB2 UDB and DB2 Connect Online Support” Web site
(http://www.ibm.com/software/data/pubs/papers/). For information about
VERITAS Cluster Server, see the white paper entitled “DB2 and High
Availability on VERITAS Cluster Server”, which is also available from the
“DB2 UDB and DB2 Connect Online Support” Web site.

This chapter describes in detail how DB2 works with Sun Cluster 2.x (SC2.x)
to achieve high availability, and includes a description of the high availability
agent, which acts as a mediator between the two software products (see
Figure 31).

High Availability

The computer systems that host data services contain many distinct
components, and each component has a ″mean time before failure″ (MTBF)
associated with it. The MTBF is the average time that a component will
remain usable. The MTBF for a quality hard drive is in the order of one
million hours (approximately 114 years). While this seems like a long time,
one out of 200 disks is likely to fail within a 6-month period.

Although there are a number of methods to increase availability for a data
service, the most common is an HA cluster. A cluster, when used for high
availability, consists of two or more machines, a set of private network
interfaces, one or more public network interfaces, and some shared disks. This

DB2 HA Agent SC2.x

Figure 31. DB2, Sun Cluster 2.x, and High Availability

© Copyright IBM Corp. 2001 253

special configuration allows a data service to be moved from one machine to
another. By moving the data service to another machine in the cluster, it
should be able to continue providing access to its data. Moving a data service
from one machine to another is called a failover, as illustrated in Figure 32.
The private network interfaces are used to send heartbeat messages, as well as

control messages, among the machines in the cluster. The public network
interfaces are used to communicate directly with clients of the HA cluster. The
disks in an HA cluster are connected to two or more machines in the cluster,
so that if one machine fails, another machine has access to them.

A data service running on an HA cluster has one or more logical public
network interfaces and a set of disks associated with it. The clients of an HA
data service connect via TCP/IP to the logical network interfaces of the data
service only. If a failover occurs, the data service, along with its logical
network interfaces and set of disks, are moved to another machine.

Switch

Data 1

Log1 : 2, 3
Log0 : HA-NFS, 0, 1

Log2: 4, 5

Log3: 6, 7

Mach A Mach B

Mach DMach C

Data 0 Data 3

Data 2

Figure 32. Failover

High Availability

254 Data Recovery and High Availability Guide and Reference

One of the benefits of an HA cluster is that a data service can recover without
the aid of support staff, and it can do so at any time. Another benefit is
redundancy. All of the parts in the cluster should be redundant, including the
machines themselves. The cluster should be able to survive any single point of
failure.

Even though highly available data services can be very different in nature,
they have some common requirements. Clients of a highly available data
service expect the network address and host name of the data service to
remain the same, and expect to be able to make requests in the same way,
regardless of which machine the data service is on.

Consider a Web browser that is accessing a highly available Web server. The
request is issued with a URL (Uniform Resource Locator), which contains both
a host name, and the path to a file on the Web server. The browser expects
both the host name and the path to remain the same after a failover ofáthe
Web server. If the browser is downloading a file from the Web server, and the
server is failed over, the browser will need to reissue the request.

Availability of a data service is measured by the amount of time the data
service is available to its users. The most common unit of measurement for
availability is the percentage of ″up time″; this is often referred to as the
number of ″nines″:

99.99% => service is down for (at most) 52.6 minutes / yr
99.999% => service is down for (at most) 5.26 minutes / yr
99.9999% => service is down for (at most) 31.5 seconds / yr

When designing and testing an HA cluster:
1. Ensure that the administrator of the cluster is familiar with the system and

what should happen when a failover occurs.
2. Ensure that each part of the cluster is truly redundant and can be replaced

quickly if it fails.
3. Force a test system to fail in a controlled environment, and make sure that

it fails over correctly each time.
4. Keep track of the reasons for each failover. Although this should not

happen often, it is important to address any issues that make the cluster
unstable. For example, if one piece of the cluster caused a failover five
times in one month, find out why and fix it.

5. Ensure that the support staff for the cluster is notified when a failover
occurs.

6. Do not overload the cluster. Ensure that the remaining systems can still
handle the workload at an acceptable level after a failover.

7. Check failure-prone components (such as disks) often, so that they can be
replaced before problems occur.

High Availability

Chapter 8. High Availability in the Solaris Operating Environment 255

Fault Tolerance and Continuous Availability
Another way to increase the availability of a data service is fault tolerance. A
fault tolerant machine has all of its redundancy built in, and should be able to
withstand a single failure of any part, including CPU and memory. Fault
tolerant machines are most often used in niche markets, and are usually
expensive to implement. An HA cluster with machines in different
geographical locations has the added advantage of being able to recover from
a disaster affecting only a subset of those locations.

Continuous availability is a step above high availability. It shelters its clients
from both planned and unplanned down time. With a continuous availability
configuration, the client is completely unaffected if one of the machines
hosting the data service fails or is brought down for maintenance. Continuous
availability configurations are complex and more expensive to implement.

An HA cluster is the most common solution to increase availability because it
is scalable, easy to use, and relatively inexpensive to implement.

Sun Cluster 2.2

Sun Cluster 2.2 (SC2.2) is Sun Microsystems’ clustering and high availability
product. SC2.2 supports up to four machines in a single cluster. Using four
Ultra Enterprise 10000s, a cluster can have up to 256 CPUs and 256 GB of
RAM.

Supported Systems

System UltraSPARC Memory Capacity I/O

Ultra Enterprise 1 1 64MB-1GB 3 SBus

Ultra Enterprise 2 1-2 64MB-2GB 4 SBus

Ultra Enterprise 450 1-4 32MB-4GB 10 PCI

Ultra Enterprise
3000

1-6 64MB-6GB 9 SBus

Ultra Enterprise
4000

1-14 64MB-14GB 21 SBus

Ultra Enterprise
5000

1-14 64MB-14GB 21 SBus

Ultra Enterprise
6000

1-30 64MB-30GB 45 SBus

Ultra Enterprise
10000

1-64 512MB-64GB 64 SBus

High Availability

256 Data Recovery and High Availability Guide and Reference

Agents
The Sun Cluster software includes a number of high availability agents that
are supported and shipped with the SC2.2 product. Other HA agents, such as
the one for DB2, are developed outside of Sun, and are not shipped with the
Sun Cluster software. The HA agent for DB2 is shipped with DB2, is
supported by IBM, and is supplied free of charge with DB2.

The Sun Cluster software works with highly available data services by
providing an opportunity to register methods (scripts or programs) that
correspond to various components of the Sun Cluster software. Utilizing these
methods, the SC2.2 software can control a data service without having
intimate knowledge of it. These methods include:

START
Used to start portions of the data service before the logical network
interfaces are online.

START_NET
Used to start portions of the data service after the logical network
interfaces are online.

STOP Used to stop portions of the data service after the logical network
interfaces are offline.

STOP_NET
Used to stop portions of the data service before the logical network
interfaces are offline.

ABORT
Like the STOP method, except it is run just before a machine is
brought down by the cluster software. In this case, the machine’s
″health″ is in question, and a data service may want to execute ″last
wish″ requests before the machine is brought down. Run after the
logical network interfaces are offline.

ABORT_NET
Like the ABORT method, except it is run before the logical network
interfaces are offline.

FM_INIT
Used to initialize fault monitors.

FM_START
Used to start the fault monitors.

FM_STOP
Used to stop the fault monitors.

FM_CHECK
Called by the hactl command. Returns the current status of the
corresponding data service.

Sun Cluster 2.2

Chapter 8. High Availability in the Solaris Operating Environment 257

The DB2 agent consists of the following scripts: START_NET, STOP_NET,
FM_START, and FM_STOP. The following scripts are not run during cluster
reconfiguration: ABORT, ABORT_NET, and FM_CHECK.

A high availability agent consists of one or more of these methods. The
methods are registered with SC2.2 through the hareg command. Once
registered, the Sun Cluster software will call the corresponding method to
control the data service.

It is important to remember that the ABORT and STOP methods of a service
may not be called. These methods are intended for the controlled shutdown of
a data service, and the data service must be able to recover if a machine fails
without calling them.

For more information, refer to the Sun Cluster documentation.

Logical Hosts
The SC2.2 software uses the concept of a logical host. A logical host consists of
a set of disks and one or more logical public network interfaces. A highly
available data service is associated with a logical host, and requires the disks
that are in the disk groups of the logical host. Logical hosts can be hosted by
different machines in the cluster, and ″borrow″ the CPUs and memory of the
machine on which they are running.

Logical Network Interfaces
As with other UNIX based operating systems, Solaris has the ability to have
extra IP addresses, in addition to the primary one for a network interface. The
extra IP addresses reside on a logical interface in the same way that the
primary IP address resides on the physical network interface. Following is an
example of the logical interfaces on two machines in a cluster. There are two
logical hosts, and both are currently on the machine ″thrash″.

scadmin@crackle(202)# netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 127.0.0.0 127.0.0.1 289966 0 289966 0 0 0
hme0 1500 9.21.55.0 9.21.55.98 121657 6098 764122 0 0 0
scid0 16321 204.152.65.0 204.152.65.1 489307 0 476479 0 0 0
scid0:1 16321 204.152.65.32 204.152.65.33 0 0 0 0 0 0
scid1 16321 204.152.65.16 204.152.65.17 347317 0 348073 0 0 0

1. lo0 is the loopback interface
2. hme0 is the public network interface (ethernet)
3. scid0 is the first private network interface (SCI or Scalable

Coherent Interface)
4. scid0:1 is a logical network interface that the Sun Cluster software

uses internally
5. scid1 is the second private network interface

scadmin@thrash(203)# netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

Sun Cluster 2.2

258 Data Recovery and High Availability Guide and Reference

lo0 8232 127.0.0.0 127.0.0.1 1128780 0 118780 0 0 0
hme0 1500 9.21.55.0 9.21.55.92 1741422 5692 757127 0 0 0
hme0:1 1500 9.21.55.0 9.21.55.109 0 0 0 0 0 0
hme0:2 1500 9.21.55.0 9.21.55.110 0 0 0 0 0 0
scid0 16321 204.152.65.0 204.152.65.2 476641 0 489476 0 0 0
scid0:1 16321 204.152.65.32 204.152.65.34 0 0 0 0 0 0
scid1 16321 204.152.65.16 204.152.65.18 348199 0 347444 0 0 0

1. hme0:1 is a logical network interface for a logical host
2. hme0:2 is a logical network interface for another logical host

A logical host can have one or more logical interfaces associated with it. These
logical interfaces move with the logical host from machine to machine, and
are used to access the data service that is associated with the logical host.
Because these logical interfaces move with the logical hosts, clients can access
the data service independently of the machine on which it resides.

A highly available data service should bind to the TCP/IP address
INADDR_ANY. This ensures that each IP address on the system can accept
connections for the data service. If a data service binds to a specific IP address
instead, it must bind the logical interface associated with the logical host that
is hosting the data service. Binding to INADDR_ANY also removes the need
to rebind to a new IP address if one arrives on the system that is needed by
the data service.

Note: Clients of an HA instance should catalog the database using the host
name for the logical IP address of a logical host. They should never use
the primary host name for a machine, because there is no guarantee
that DB2 will be running on that machine.

Disk Groups and File Systems
Disks for a data service are associated with a logical host in groups (or sets).
If the cluster is running Sun StorEdge Volume Manager (Veritas), the Sun
Cluster software uses the Veritas ″vxdg″ utility to import and deport the disk
groups for each logical host. Following is an example of the disk groups for
two logical hosts, ″log0″ and ″log1″, which are being hosted by a machine
called ″thrash″. The machine called ″crackle″ is not currently hosting any
logical hosts.

scadmin@crackle(206)# vxdg list
NAME STATE ID
rootdg enabled 899825206.1025.crackle

scadmin@thrash(205)# vxdg list
NAME STATE ID
rootdg enabled 924176206.1025.thrash
data0 enabled 925142028.1157.crackle=
data1 enabled 899826248.1108.crackle

Sun Cluster 2.2

Chapter 8. High Availability in the Solaris Operating Environment 259

The disk groups ″data0″ and ″data1″ correspond to the logical hosts ″log0″
and ″log1″, respectively. The disk group ″data0″ can be deported from
″thrash″ by running

vxdg deport data0

and imported to ″crackle″ by running
vxdg import data1

This is done automatically by the Sun Cluster software, and should not be
done manually on a live cluster.

Each disk group contains a number of disks that can be shared between two
or more machines in the cluster. A logical host can only be moved to another
machine that has physical access to the disks in the disk groups that belong to
it.

There are two files that control the file systems for each logical host:
/etc/opt/SUNWcluster/conf/hanfs/vfstab.<logical_host>
/etc/opt/SUNWcluster/conf/hanfs/dfstab.<logical_host>

where logical_host is the name of the associated logical host name.

The vfstab file is similar to the /etc/vfstab file, except that it contains entries
for the file systems to be mounted after the disk groups have been imported
for a logical host. The dfstab file is similar to the /etc/dfs/dfstab file, except
that is contains entries for file systems to export through HA-NFS for a logical
host. Each machine has its own copy of these files, and care should be taken
to ensure that they have the same content on each machine in the cluster.

Note: The paths for the vfstab and dfstab files of a logical host are
misleading, because they contain the directory hanfs. Only the dfstab
file for a logical host is used for HA-NFS. The vfstab file is used, even
if HA-NFS is not configured.

Following are examples from a cluster running DB2 Universal Database
Enterprise - Extended Edition (EEE) in a mutual takeover configuration:

scadmin@thrash(217)# ls -l /etc/opt/SUNWcluster/conf/hanfs
total 8
-rw-r--r-- 1 root build 173 Apr 14 15:01 dfstab.log0
-rw-r--r-- 1 root build 316 Apr 26 12:07 vfstab.log0
-rw-r--r-- 1 root build 389 Apr 13 21:04 vfstab.log1

scadmin@thrash(218)# cat dfstab.log0
share -F nfs -o root=crackle:thrash:\
jolt:bump:crackle.torolab.ibm.com:thrash.torolab.ibm.com:\
jolt.torolab.ibm.com:bump.torolab.ibm.com /log0/home

Sun Cluster 2.2

260 Data Recovery and High Availability Guide and Reference

The hosts, which are given permission to mount the file system, /log0/home,
are from all of the network interfaces (logical and physical) on each machine
in the cluster. The file systems are exported with root permissions.
scadmin@thrash(220)# cat vfstab.log0
#device to mount device to fsck mount
point

/dev/vx/dsk/data0/data1-stat /dev/vx/rdsk/data0/data1-stat /log0
/dev/vx/dsk/data0/vol01 /dev/vx/rdsk/data0/vol01 /log0/home
/dev/vx/dsk/data0/vol02 /dev/vx/rdsk/data0/vol02 /log0/data

scadmin@thrash(221)# cat vfstab.log1
#device to mount device to fsck mount
point
/dev/vx/dsk/data1/data1-stat /dev/vx/rdsk/data1/data1-stat /log1
/dev/vx/dsk/data1/vol01 /dev/vx/rdsk/data1/vol01 /log1/home
/dev/vx/dsk/data1/vol02 /dev/vx/rdsk/data1/vol02 /log1/data
/dev/vx/dsk/data1/vol03 /dev/vx/rdsk/data1/vol03 /log1/data1

FS fsck mount options
type pass at boot

ufs 2 no -
ufs 2 no -
ufs 2 no -

FS fsck mount options
type pass at boot

ufs 2 no -
ufs 2 no -
ufs 2 no -
ufs 2 no -

The vfstab.log0 file contains three valid entries for file systems under the
/log0 directory. Notice that the file systems for the logical host log0 use
logical volume devices, which are part of the disk group data0 that is
associated with the logical host.

The file systems in the vfstab files are mounted in order from top to bottom,
so it is important to ensure that the file systems are listed in the correct order.
File systems that are mounted underneath a particular file system should be
listed below it. The actual file systems that are needed for a logical host
depend on the needs of the data service, and will vary considerably from
these examples.

During a failover, the SC2.2 software is responsible for ensuring that the disk
groups and logical interfaces associated with a logical host follow it around

Sun Cluster 2.2

Chapter 8. High Availability in the Solaris Operating Environment 261

the cluster from machine to machine. The highly available data service expects
to have at least these resources available on a new system after a failover. In
fact, many data services are not even aware that they are highly available, and
must have these resources ″appear″ to be exactly the same after a failover.

Control Methods
The control methods are registered using

hareg(1m)

Once an HA service is registered, SC2.2 is responsible for calling the methods
that were registered for the HA service at appropriate times during a cluster
reconfiguration or failover.

The following actions take place (in the given order) during a cluster
reconfiguration (controlled failover). Actions preceding step 5c will not be
taken if a machine crashes. (For more information about cluster
reconfiguration, refer to the SC2.2 documentation.)

1. FM_STOP method is run.
2. STOP_NET method is run.
3. Logical interfaces for the logical host are brought offline.

- ifconfig hme0:1 0.0.0.0 down
4. STOP method is run.
5. Disk groups and file systems are moved.

a. Unmount logical host file systems.
b. vxdg deport disk groups on one machine.

- - Only the steps below are run if a machine crashes - -

c. vxdg import disk groups on the other machine.
d. fsck logical host file systems.
e. Mount logical host file systems.

6. START method is run.
7. Logical interfaces for the logical host are brought online.

- ifconfig hme0:1 <ip address> up
8. START_NET method is run.
9. FM_INIT method is run.
10. FM_START method is run.

The control methods are run with the following command line arguments:
METHOD <logical hosts being hosted> <logical hosts not being hosted> <time-out>

The first argument is a comma delimited list of logical hosts that are currently
being hosted, and the second is a comma delimited list of logical hosts that
are not being hosted. The last argument is the time-out for the method, the
amount of time that the method is allowed to run before the SC2.2 software
aborts it.

Sun Cluster 2.2

262 Data Recovery and High Availability Guide and Reference

Disk and File System Configuration
SC2.2 supports two volume managers: Sun StorEdge Volume Manager
(Veritas) and Solstice Disk Suite. Although both work well, the StorEdge
Volume Manager has some advantages in a clustered environment. In some
cluster configurations, the controller number for a disk enclosure can be
different for each machine in the cluster. If the controller number is different,
the paths for the disk devices for the controller will also be different. Because
Disk Suite works directly with the disk device paths, it will not work well in
this situation. The StorEdge Volume Manager works with the disks
themselves, regardless of the controller number, and is not affected if the
controller numbers are different.

Since the goal of HA is to increase availability for a data service, it is
important to ensure that all file systems and disk devices are mirrored, or in a
RAID configuration. This will prevent failovers due to a failed disk, and
increase the stability of the cluster.

HA-NFS
DB2 UDB EEE requires a shared file system when an instance is configured
across multiple machines. A typical DB2 UDB EEE configuration has the home
directory exported from one machine through NFS, and mounted on all of the
machines participating in the EEE instance. For a mutual takeover
configuration, DB2 UDB EEE depends on HA-NFS to provide a shared, highly
available file system. One of the logical hosts exports a file system through
HA-NFS, and each machine in the cluster then mounts the file system as the
home directory of the EEE instance. For more information about HA-NFS,
refer to the Sun Cluster documentation.

The cconsole and ctelnet Utilities
Two useful utilities that come with SC2.2 are cconsole and ctelnet. These
utilities can be used to issue a single command to several machines in a
cluster simultaneously. Editing a configuration file with these utilities ensures
that it will remain identical on all of the machines in the cluster. These utilities
can also be used to install software in exactly the same way on each machine.
For more information about these utilities, refer to the Sun Cluster
documentation.

Campus Clustering and Continental Clustering
A cluster is called a campus cluster when its machines are not in the same
building. A campus cluster is useful for removing the building itself as the
single point of failure. For example, if the machines in the cluster are all in the
same building, and it burns down, the entire cluster is affected. However, if
the machines are in different buildings, and one of the buildings burns down,
the cluster survives.

Sun Cluster 2.2

Chapter 8. High Availability in the Solaris Operating Environment 263

A continental cluster is a cluster whose machines are distributed among
different cities. In this case, the goal is to remove the geographic region as the
single point of failure. This type of cluster provides protection against
catastrophic events, such as earthquakes and tidal waves.

Currently, a Sun Cluster can support machines as far apart as 10 km, or about
6 miles. This makes campus clustering a viable option for those who need
high speed connections between two different sites. A cluster requires two
private interconnects, and a number of fiber optic cables for the shared disks.
The cost of high speed connections between two sites may offset the benefits.

Common Problems
The SC2.2 software uses the Cluster Configuration Database, or CCD(4), to
provide a single cluster-wide repository for the cluster configuration. The
CCD has a private API and is stored under the /etc/opt/SUNWcluster/conf
directory. In rare cases, the CCD can go out of synchrony, and may need to be
repaired. The best way to repair the CCD in this situation is to restore it from
a backup copy.

To back up the CCD, shut down the cluster software on all machines in the
cluster, ″tar″ up the /etc/opt/SUNWcluster/conf directory, and store the tar
file in a safe place. If the cluster software is not shut down when the backup
is made, you may have trouble restoring the CCD. Ensure that the backup
copy is kept up-to-date by taking a fresh backup any time that the cluster
configuration is changed. To restore the CCD, shut down the cluster software
on all machines in the cluster, move the conf directory to conf.old, and
″untar″ the backup copy. The cluster can then be started with the new CCD.

DB2 Considerations

The following topics are covered in this section:
v “Applications Connecting to an HA Instance” on page 265
v “Disk Layout for EE and EEE Instances” on page 266
v “Home Directory Layout for EE and EEE Instances” on page 267
v “Logical Hosts and DB2 UDB EEE” on page 268
v “DB2 Installation Location and Options” on page 269
v “Database and Database Manager Configuration Parameters” on page 270
v “Crash Recovery” on page 270
v “High Availability through Data Replication” on page 270
v “DB2 Connect Prerequisites on Sun Cluster 2.2” on page 270

Sun Cluster 2.2

264 Data Recovery and High Availability Guide and Reference

Applications Connecting to an HA Instance
Applications that rely on a highly available DB2 instance must be able to
reconnect in the event of a failover. Since the host name and IP address of a
logical host remain the same, there is no need to connect to a different host
name or to recatalog the database.

Consider a cluster with two machines and one DB2 Universal Database
Enterprise Edition (EE) instance. The EE instance will normally reside on one
of the machines in the cluster. Clients of the HA instance will connect to the
logical IP address (or host name) of the logical host associated with the HA
instance.

According to an HA client, there are two types of failover. One type occurs if
the machine that is hosting the HA instance crashes. The other type occurs
when the HA instance is given an opportunity to shut down gracefully.

If a machine crashes and takes down the HA instance, both existing
connections and new connections to the database will hang. The connections
hang because there are no machines on the network with the IP address that
the clients were using for the database. If the database is shut down
gracefully, a db2stop force breaks existing connections to the database, and
an error message is returned.

During the failover, the logical IP address associated with the database is
offline, either because the SC2.2 software took it offline, or because the
machine that was hosting the logical host crashed. At this point, any new
connections to the database will hang for a short period of time.

The logical IP address associated with the database is eventually brought up
on another machine before DB2 is started. At this stage, a connection to the
database will not hang, but will receive a communication error, because DB2
has not yet been started on the system. DB2 clients that were still connected to
the database will also begin receiving communication errors. Although the
clients still believe they are connected, the machine that has started hosting
the logical IP address has no knowledge of any existing connections. The
connections are simply reset, and the DB2 client receives a communication
error. After a short time, DB2 will be started on the machine, and a successful
connection to the database can be made. At this point, the database may be
inconsistent, and clients may have to wait for it to recover.

When designing an application for an HA environment, it is not necessary to
write special code for the stages where the database connections hang. The
connections only hang for a short period of time while the Sun Cluster
software moves the logical IP address. Any data service running on Sun
Cluster will experience the same hanging connections during this stage. No
matter how the database comes down, the clients will receive an error

DB2 Considerations

Chapter 8. High Availability in the Solaris Operating Environment 265

message, and must try to reconnect until successful. From the client’s
perspective, it is as if the HA instance went down, and was brought back up
on the same machine. In a controlled failover, it appears to the client that it
was forced off, and that it can later reconnect to the database on the same
machine. In an uncontrolled failover, it appears to the client that the database
server crashed, and was soon brought back up on the same machine.

Disk Layout for EE and EEE Instances
DB2 expects the disk devices or file systems it requires to appear the same on
each machine in the cluster. To ensure that this happens, the required disks or
file systems should be configured in such a way that they follow the logical
host associated with the HA instance, and will have the same path names on
each machine in the cluster.

Both DMS and SMS table spaces are supported in an HA environment. Device
containers for DMS table spaces must use raw devices created by the volume
manager, which are either mirrored, or in a RAID configuration. Regular disk
devices, such as /dev/rdsk/c20t0d0s0 should not be used because:
v It increases the possibility that the device could be written to from more

than one machine at the same time.
v The controller number may be different on another machine.

If DB2 is failed over in this situation, the disk devices it requires will not look
the same as they did on the other machine, and it will not start. File
containers for DMS table spaces, and containers for SMS table spaces, must
reside on mounted file systems. The file systems for a logical host are
mounted automatically when they are included in the vfstab file for the
logical host.

The vfstab file for a logical host is in the path:
/etc/opt/SUNWcluster/conf/hanfs/vfstab.<logical_host>

where logical_host is the name of the logical host that is associated with the
vfstab file.

Each logical host has its own vfstab file, which contains file systems that are
to be mounted after the disk groups for the logical host have been transferred
to the current machine, but before the HA services are started. The Sun
Cluster software will try to mount any file system that is properly defined
after running fsck (file system check), to ensure the health of the file system.
If fsck fails, the file system will not be mounted, and an error message is
logged.

DB2 Considerations

266 Data Recovery and High Availability Guide and Reference

Note: If a process has an open file, or its current working directory is under a
mount point, the mount will fail. To prevent this, ensure that no
processes are left under the mount points contained in the logical host’s
vfstab file.

Any convention can be used for the file system layout of an EEE instance
when using SMS table spaces. Following is the convention used by the
hadb2_setup utility:

scadmin@crackle(190)# pwd
/export/ha_home/db2eee/db2eee
scadmin@crackle(191)# ls -l
total 18
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0000 —> /log0/disks/db2eee/NODE0000
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0001 —> /log0/disks/db2eee/NODE0001
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0002 —> /log0/disks/db2eee/NODE0002
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0003 —> /log0/disks/db2eee/NODE0003
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0004 —> /log0/disks/db2eee/NODE0004
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0005 —> /log1/disks/db2eee/NODE0005
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0006 —> /log1/disks/db2eee/NODE0006
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0007 —> /log1/disks/db2eee/NODE0007
lrwxrwxrwx 1 root build 28 Aug 12 19:08 NODE0008 —> /log1/disks/db2eee/NODE0008
scadmin@crackle(192)#

The instance owner is db2eee, and the default database directory for the
db2eee instance is /export/ha_home/db2eee. Logical host log0 is hosting
database partitions 0, 1, 2, and 3, while logical host log1 is hosting database
partitions 4, 5, 6, 7, and 8.

For each database partition, there is a corresponding NODExxxx directory. The
node directories for the database partitions point to a directory under the
associated logical host file system.

When choosing a path convention, ensure that:
1. The disks for the file system are in a disk group of the logical host

responsible for the database partitions that need them.
2. The file systems that hold containers are mounted through the logical

host’s vfstab file.

Home Directory Layout for EE and EEE Instances
For an EE instance, the home directory should be a file system that is defined
in the vfstab file for a logical host. This directory will be available before DB2
is started, and is transferred with DB2 to wherever the logical host is moved
in the cluster. Each machine has its own copy of the vfstab file, and care
should be taken to ensure that it has the same contents on each machine.
Following is an example of the home directory for an EE instance:

/log0/home/db2ee

DB2 Considerations

Chapter 8. High Availability in the Solaris Operating Environment 267

where /log0 is the logical host file system for the logical host log0, and db2ee
is the name of the DB2 instance. This home directory path should be placed in
the /etc/passwd file on each machine in the cluster that could host the
″db2ee″ instance.

For an EEE instance, there are two ways to set up the home directory. For a
hot standby configuration, the home directory can be set up in the same way
as for an EE instance. For a mutual takeover configuration, HA-NFS must be
used for the home directory, and must be configured properly before setting up
the EEE instance.

One of the machines in the cluster must export the file system for the EEE
instance, using the dfstab file for a chosen logical host. The dfstab file
contains file systems that should be exported through NFS when a machine is
hosting a logical host. Each machine has its own copy of the dfstab file, and
care should be taken to ensure that it has the same contents on each machine.

Information for the HA-NFS file system is placed in the hadb2tab file (through
the hadb2_setup program). When an HA agent reads the information for the
instance, it automatically mounts the HA-NFS file system for the instance (see
“The hadb2tab File” on page 271).

The mount point for the HA-NFS file system is typically /export/ha_home. On
each machine in the cluster, this would be NFS mounted from the logical host
that is exporting the HA-NFS directory. The EEE instance owner’s home
directory is placed under this directory and is called:

/export/ha_home/<instance>

where instance is the name of the instance owner.

One could have a home directory for an instance on each machine, to avoid
having to mount or unmount it. Doing this requires extra administrative
overhead to ensure that the home directories remain identical on each
machine. Failure to do so can prevent DB2 from starting properly, or cause it
to start with a different configuration. This is not a supported configuration.

Logical Hosts and DB2 UDB EEE
A logical host is usually chosen to host one or more database partitions, as
well as export the HA-NFS file system. For example, if there are four database
partitions and two machines in the cluster, there should be one logical host for
each machine (Figure 33 on page 269). One logical host could host two
database partitions, and export the HA-NFS file system, while the other
logical host could host the remaining two database partitions.

By default, a DB2 UDB EEE instance allocates enough resources to
successfully add up to two database partitions to a machine that already has

DB2 Considerations

268 Data Recovery and High Availability Guide and Reference

one or more live database partitions for that instance. For example, if there are
four database partitions for a single instance on a cluster, this will only be a
concern if there is one database partition per logical host, or one logical host
is hosting three database partitions. In either case, it is possible to have three
database partitions fail over to a machine that is already hosting a database
partition for the same instance.

The DB2_NUM_FAILOVER_NODES registry variable can be used to increase
the amount of resource reserved for database partitions that are failed over.

DB2 Installation Location and Options
The file system on which DB2 is installed should be mirrored, or at least be in
a RAID configuration. If DB2 is installed on regular disks, disk failure is more
likely; the resulting failover is considered preventable, and decreases the
stability of the cluster.

DB2 cannot be installed on disks in a disk group for a logical host, because
the HA agent always needs to have access to the DB2 libraries. If the HA

Switch

Log0 : HA-NFS, 0, 1 Log1: 2, 3

Mach A Mach B

Data 0

Data 1

Data 2

Data 3

Data 0 Data 1

Figure 33. One Logical Host For Each Machine

DB2 Considerations

Chapter 8. High Availability in the Solaris Operating Environment 269

agents do not have access to the DB2 libraries, they will fail. DB2 must be
installed normally on each machine in the cluster.

Database and Database Manager Configuration Parameters
The database manager configuration parameters can be changed after a
failover, and before DB2 is started, by using the pre_db2start script (see
“User Scripts” on page 274). This executable script is run (if it exists) under
the sqllib/ha directory of the instance owner’s home directory. As the name
suggests, it is run just before db2start. The same arguments that are passed to
the control methods are passed to the pre_db2start script, unless the instance
is an EEE instance. For an EEE instance, the pre_db2start script is also passed
the node number for the db2start command.

Crash Recovery
Crash recovery in an HA environment is the same as it would in a regular
environment. Even if the HA instance is brought up on a different machine
from the one on which it crashed, the files and disk devices for the instance
will look the same, and the actions needed to recover the database will not be
different. For more information about crash recovery and other forms of
database recovery, see “Chapter 1. Developing a Good Backup and Recovery
Strategy” on page 3.

Although a database can be restarted manually (or through one of the user
scripts), it is recommended that the autorestart database configuration
parameter be set to ON, especially for an EEE instance. This will minimize the
amount of time that the database is in an inconsistent state.

High Availability through Data Replication
Data availability can also be enhanced through replication. By replicating data
between two servers, a form of high availability is achieved. If one of the
servers goes down, the other server should be able to take over and continue
to provide the data service.

However, because the replication is done asynchronously, some changes may
not have been propagated to the other server when that server goes down.

DB2 Connect Prerequisites on Sun Cluster 2.2
DB2 Connect is supported on Sun Cluster 2.2 if:
v The protocol to the host is TCP/IP (not SNA)
v Two-phase commit is not used. This restriction is relaxed if the user

configures the SPM log to be on a shared disk (this can be done through
the spm_log_path database manager configuration parameter), and the
failover machine has an identical TCP/IP configuration (the same host
name, IP address, and so on).

DB2 Considerations

270 Data Recovery and High Availability Guide and Reference

The DB2 High Availability Agent

The DB2 high availability agent acts like a mediator between DB2 and SC2.x.
It provides a way for the Sun Cluster 2.2 software to control DB2 in a
clustered environment, without having intimate knowledge of DB2. There is
one agent for both EE and EEE instances. The agent supports both
administrative instances and database instances.

Registering the hadb2 Service
To work with SC2.2, the DB2 HA agent must be registered. Registering a data
service tells SC2.2 which control methods are available, and in which
directory they reside. A special script called hadb2_reg, which is shipped with
the HA agent, can register the hadb2 service for both EE and EEE instances.
The hadb2_reg script needs to be run only once for the entire cluster.

Although there is only one set of control methods for the DB2 HA agent, the
way they are registered depends on whether or not an EEE instance will be
used in a mutual takeover configuration. For an EE instance or EEE instance
in a hot standby configuration, HA-NFS is not used; therefore, the ″-d nfs″
switch, which tells the SC2.2 software that the hadb2 service is dependent on
HA-NFS, is not needed.

The actual command that hadb2_reg uses to register the DB2 V7.1 control
methods for an EEE instance is:

hareg -r hadb2 -b /opt/IBMdb2/V7.1/ha -m
START=hadb2_start,START_NET=hadb2_startnet,STOP_NET=hadb2_stopnet,
FM_START=hadb2_fmstart,FM_STOP=hadb2_fmstop
-t START_NET=$TIMEOUT,STOP_NET=$TIMEOUT -d nfs

The -b switch tells SC2.x to look in the opt/IBMdb2/V7.1/ha directory for all of
the control methods. The -m switch defines the actual control methods for the
hadb2 service. The -t switch defines the timeout for the START_NET and
STOP_NET control methods. For a detailed description of each control
method, refer to the Sun Cluster documentation.

The hadb2_unreg script can be used to unregister the hadb2 service and, like
hadb2_reg, needs to be run only once for the cluster.

The hadb2tab File
The hadb2tab file is the main configuration file for the DB2 HA agent. Each
control method consults this file to find out which instances are highly
available. The hadb2tab file is located under the /var/db2/v71/ directory for
DB2 UDB Version 7.1. The file supports multiple instances, and each
non-commented line represents a different HA instance. Following is an
example of an hadb2tab file:

The DB2 High Availability Agent

Chapter 8. High Availability in the Solaris Operating Environment 271

<scadmin@thrash(203)# cat hadb2tab
EEE DATA db2eee jolt ON /export/ha_home /log0/home #Added by DB2 HA software
EE ADMIN db2ee log1 ON - - #Added by DB2 HA software

The first field indicates to the DB2 HA agent whether the instance is an EE
instance, or an EEE instance. The second field indicates whether the instance
is a data instance, or an administrative instance. The third field contains the
user name of the HA instance. The fourth field is the logical host or the
HA-NFS host for the instance, depending on whether it is an EE or an EEE
instance. The fifth field indicates whether fault monitoring for the instance is
turned on or off. The last two fields are the local mount point, and the remote
HA-NFS directory, respectively. These fields should be set to - (hyphen) if
they are not used, and should only be used with an EEE mutual takeover
configuration. Comments are allowed in the hadb2tab file if the information
on the line before a ″#″ marker is either of zero length, or a valid definition of
an instance.

Control Methods
Control methods for SC2.2 agents can be a set of scripts or programs. The
agent for DB2 on Solaris is a set of programs that includes the following
methods:

START_NET
hadb2_startnet, used to start DB2

STOP_NET
hadb2_stopnet, used to stop DB2

FM_START
hadb2_fmstart, used to start the fault monitor for DB2

FM_STOP
hadb2_fmstop, used to stop the fault monitor for DB2

For more information about these control methods, refer to the Sun Cluster
documentation.

For EE instances, the logical host that is associated with the instance is
defined right in the hadb2tab file. For EEE instances, however, the control
method must also look in:

˜<instance>/sqllib/ha/hadb2-eee.cfg

where ˜<instance> is the home directory of the instance owner. This file
contains one line for each database partition, and is used to associate database
partitions with logical hosts. An example of a valid hadb2-eee.cfg file is:

The DB2 High Availability Agent

272 Data Recovery and High Availability Guide and Reference

crackle % cat hadb2-eee.cfg
NODE:log0 0
NODE:log0 1
NODE:log1 2
NODE:log1 3

The instance or database partitions follow the corresponding logical host
around the cluster. The logical host can move to any machine in the cluster
that is supported by the underlying hardware and SC2.2. If the configuration
is properly set up, DB2 will support any topology that is supported by the
SC2.2 software.

After reading all of the information for an instance, the control method knows
which logical hosts are associated with the instance. After parsing the
command line arguments, the control method also knows which logical hosts
are hosted, and which are not hosted by the current machine.

The following table shows the actions that are taken, depending on which
control method is being run, and whether the logical hosts associated with the
database partition or instance are hosted on the current machine.

Control Method Associated logical host(s)
are hosted

Associated logical host(s)
are not hosted

START_NET Start DB2 instance or
database partitions

No action

STOP_NET No action Stop DB2 instance or
database partitions

FM_START Start fault monitor for
instance

No action

FM_STOP No action Stop fault monitoring for
instance

The control methods that perform start actions are only concerned with the
logical hosts that are currently being hosted, and the control methods that
perform stop actions are only concerned with the logical hosts that are not
currently being hosted.

The control methods also need to mount the HA-NFS directory in a special
way if HA-NFS is being used. If the local mount point and directory for
HA-NFS are not defined as - (hyphen), the control method runs a statvfs(2)
on the local mount point. If the file system type for the local mount point is
not nfs, the agent attempts to mount the file system using information from
the hadb2tab line. If the mount point and the directory for HA-NFS are
defined as - (hyphen), the vfstab file of the corresponding logical host is
required to mount the file system containing the home directory of the

The DB2 High Availability Agent

Chapter 8. High Availability in the Solaris Operating Environment 273

instance. The local mount point and the remote directory for HA-NFS should
only be defined as - (hyphen) for EE and EEE hot standby configurations.

User Scripts
These scripts are run from the control methods to add additional
functionality; they are passed the same command line arguments as the
control methods are passed, and are written by the system administrator or
the database administrator.

If a program must be run from within a script that is not run in the
background, consider backgrounding the program with nohup(1). The nohup
program protects the executed program from the SIGHUP (or hangup) signal.
Without nohup, a program that is run in the background from a script may die
as a result of a SIGHUP signal when the script is finished.

The control methods run the following scripts:
v /var/db2/v61/failover

v ˜<instance>/sqllib/ha/pre_db2start

v ˜<instance>/sqllib/ha/post_db2start

v ˜<instance>%s/sqllib/ha/post_failover

v ˜<instance>/sqllib/ha/pre_db2stop

v ˜<instance>/sqllib/ha/fm_warning

where ˜instance is the home directory of the HA instance.

With the exception of the fm_warning script, each user script is run with the
same arguments as the control method that invoked it. When using EEE
instances, the database partition number is also passed (as the last argument)
to the user script.

The /var/db2/v71/failover script is invoked at the beginning of the
START_NET method, and runs in the background. Such a script can be used,
for example, to e-mail support staff in the event of a failover. Following is an
example of a failover script:

#!/bin/ksh

E-mail or page support staff to notify them that a failover has occurred.

echo "Failover occurred on machine ′hostname′:Running $0!"
|/bin/mail admin@sphere.torolab.ibm.com

To e-mail successfully from a script, sendmail(1m) must be properly
configured on the system.

The DB2 High Availability Agent

274 Data Recovery and High Availability Guide and Reference

As its name suggests, the pre_db2start script is run just before db2start is
invoked. This script can be used for such tasks as changing database manager
configuration parameters. It is given a maximum of 20 seconds to complete.
For EEE instances, this script is run before db2start is invoked on each
database partition. This script is applicable only to data instances, not to
administrative instances.

Similarly, the post_db2start script is run just after db2start is invoked. This
script can be used for such tasks as restarting databases. It is run in the
background to ensure that its execution time does not interfere with other
instances. This script is applicable only to data instances, not to administrative
instances.

The post_failover script under the instance owner’s home directory, is run
after processing the instance. This script can be used to notify client
applications that DB2 is now functional, to activate databases, or to send
administrators a status file. It is run in the background to prevent its
execution time from delaying actions against the other HA instances.
Following is an example of a post-failover script:

#!/bin/ksh
#

Send the status file to the administrato-r.
mail admin@sphere.torolab.ibm.com </tmp/HA.info.db2eee

Both the START_NET and the STOP_NET method of the DB2 HA agent create
a status file after processing each instance. The name of the status file is:

/tmp/HA.info.<instance>

where instance is the user name of the instance owner. The status file contains
the start and stop report for the instance, as well as the time it took to run the
control method. Following is an example of a status file:

scadmin@crackle(173)# cat /tmp/HA.info.db2eee
----- Elapsed Time: 00:00:18 -----
----- Elapsed Time: 00:00:00 (HA-NFS) -----

NODE ACTION RESULT TRIES RC
---- ------ ------ ----- --

4 stop success 3 1064
5 stop success 1 1064
6 stop success 2 1064
7 stop success 2 1064
8 stop success 1 1064

The pre_db2stop script is run just before db2stop is invoked. This script can
be used to notify client applications that DB2 is about to stop. It is given a

The DB2 High Availability Agent

Chapter 8. High Availability in the Solaris Operating Environment 275

maximum of 20 seconds to complete. This script is applicable only to data
instances, not to administrative instances.

The fault monitor will also run a user script when DB2 is restarted because of
an unexpected shutdown. This script is called:

˜<instance>/sqllib/ha/fm_warning

The fm_warning script can be used to notify the system administrator that DB2
was restarted by the fault monitor. The system administrator should try to
find out why DB2 shut down unexpectedly, and take appropriate actions to
prevent this from happening again. The fm_warning script is run in the
background.

Other Considerations
If an HA data service is turned off, only the stop methods are run during a
failover or cluster reconfiguration; the other methods are run only if the HA
data service is properly registered and turned on.

Ensure that each machine in the cluster has enough resources to run all of the
data services for which it may be responsible. Resources such as CPU load,
memory, swap and kernel parameters must be considered before the cluster
goes into production. For example, if a machine in the cluster may need to
run two DB2 instances, the kernel parameter requirements for that machine
will be the sum of what is needed for each instance.

Fault Monitor
If fault monitoring is turned on, the fault monitor will be started during a
cluster reconfiguration or failover. If DB2 is not started by the START_NET
script, the fault monitor itself will start DB2. The fault monitor can detect if
DB2 did not start, or if it shut down for unknown reasons. Because of this, it
is important not to shut down DB2 manually when the fault monitor is
turned on. The fault monitor will see this as an unexpected shutdown, and
restart DB2. If this happens too many times, it will fail over the appropriate
logical host.

When fault monitoring is enabled for an instance, the correct way to start or
stop the instance manually is to first turn off fault monitoring or the hadb2
service. Both of these actions can be initiated through the hadb2_setup
command using the -f and -s switches (see “The hadb2_setup Command” on
page 281).

Note: Do not use more than one instance for the same logical host. If more
than one instance is associated with a logical host, a healthy instance
may be failed over along with an unhealthy one.

The DB2 High Availability Agent

276 Data Recovery and High Availability Guide and Reference

EEE Considerations
When deciding which database partitions to associate with a logical host, it is
important to consider how they will fail over. Consider a two-machine cluster
that is to be used with four database partitions between the two machines, as
shown in Figure 34.

You could associate one logical host with each database partition, and one for
HA-NFS. In this case, there could be a problem if all of the logical hosts are
being hosted by one system. If that system fails, all of the logical hosts must
be moved off the system at the same time. Unfortunately, the Sun Cluster
software does not move the logical hosts in any predictable order, and it is
possible for a logical host that has a database partition associated with it to
move before the logical host with HA-NFS. It is usually a good idea to group
database partitions together, according to what would be hosted on a single
system. This means that two database partitions that are normally hosted on
one machine should be associated with a single logical host.

Switch

Log0 : HA-NFS, 0 Log1: 1, 2, 3

Mach A Mach B

Data 0

Data 1

Data 2

Data 3

Data 0
Data 1

Data 2 Data 3

Figure 34. Two-machine Cluster with Four Database Partitions

The DB2 High Availability Agent

Chapter 8. High Availability in the Solaris Operating Environment 277

The db2nodes.cfg file used by an EEE instance is updated to indicate the
machine on which the database partitions are residing. For example, if all of
the database partitions are on a machine called ″crackle″, the db2nodes.cfg file
resembles the following:

scadmin@crackle(193)# cat db2nodes.cfg
0 crackle 0 204.152.65.33
1 crackle 1 204.152.65.33
2 crackle 2 204.152.65.33
3 crackle 3 204.152.65.33
4 crackle 4 204.152.65.33
5 crackle 5 204.152.65.33
6 crackle 6 204.152.65.33
7 crackle 7 204.152.65.33
8 crackle 8 204.152.65.33

If some of these database partitions are moved to a machine called ″thrash″,
the db2nodes.cfg file is updated as follows:

scadmin@crackle(193)# cat db2nodes.cfg
0 crackle 0 204.152.65.33
1 crackle 1 204.152.65.33
2 crackle 2 204.152.65.33
3 crackle 3 204.152.65.33
4 thrash 0 204.152.65.34
5 thrash 1 204.152.65.34
6 thrash 2 204.152.65.34
7 thrash 3 204.152.65.34
8 thrash 4 204.152.65.34

Notice that both the host name and the switch name are changed to reflect the
machine name ″thrash″, and that the port numbers are also different.

The HA.config File
If it exists, the /etc/HA.config file can contain a number of configuration
options, including the following:

scadmin@thrash(204)# cat /etc/HA.config
SYSLOG_FACILITY=LOG_LOCAL3
SYSLOG_LPRIORITY=LOG_INFO
SYSLOG_EPRIORITY=LOG_ERR
USE_INTERCONNECT=auto
SWITCH_NAME=204.152.65.18
DEBUG_LEVEL=2
FAILS_PER_HOUR=2
FAILS_PER_DAY=4
FAILS_PER_WEEK=10
FM_FAIL_SEV=soft
DB2START_TIMEOUT=60
DB2STOP_TIMEOUT=500
SCRIPT_USER=bin

Note: If the HA.config file does not exist, default values are used.

The DB2 High Availability Agent

278 Data Recovery and High Availability Guide and Reference

The SYSLOG_FACILITY variable sets the SYSLOG facility for logging both
messages and errors. The SYSLOG_LPRIORITY and SYSLOG_EPRIORITY
variables set the SYSLOG priority for logging informational messages and
error messages, respectively.

Some changes may be needed to enable the SYSLOG daemon to log
information from the DB2 HA agent. For example, one of the following two
lines added to the /etc/syslog.conf file will tell the SYSLOG daemon to
write information to a log file.

*.notice /var/adm/SC.x
local3.info /var/adm/SC.LOG_LOCAL3

A Sun Cluster usually has a high speed interconnect. To use the high speed
interconnect with DB2, set USE_INTERCONNECT to auto or to override. The
auto setting (the default) uses the Sun internal logical network interface. This
interface will be transferred to another physical interface if the initial interface
fails. If USE_INTERCONNECT is set to override, the switch name is taken
from the SWITCH_NAME variable. Another option is to set
USE_INTERCONNECT to no, which specifies that high speed interconnect is
not to be used.

DEBUG_LEVEL specifies how much information is to be logged during a
failover. It is a number between 0 and 10, where 10 is the highest debug level.
The information is logged at the specified SYSLOG priority and facility. If any
problems are encountered, set the debug level to the maximum level,
configure SYSLOG to log the output from the HA agents, and send the
SYSLOG output to IBM service.

Three of the variables help the DB2 fault monitor decide when to fail over a
logical host: FAILS_PER_HOUR, FAILS_PER_DAY, and FAILS_PER_WEEK.
Every HA environment is different; you must decide how many DB2 failures
are acceptable. After each ″acceptable″ failure, DB2 is restarted on the same
machine. When one of these three failure thresholds is exceeded, the logical
host associated with the instance or database partition is failed over.

The FM_FAIL_SEV variable specifies whether the failover is ″soft″ or ″hard″.
For more information, refer to the Sun Cluster documentation on hactl(1m).

The DB2START_TIMEOUT and DB2STOP_TIMEOUT variables specify the
maximum number of seconds that db2start and db2stop are allowed to run.
After the specified interval has passed, the HA agent considers the operation
to have failed, and try to restart the instance.

The DB2 High Availability Agent

Chapter 8. High Availability in the Solaris Operating Environment 279

There are some user scripts that are not associated with any particular
instance. Normally, these scripts are run as root; this can be overridden by the
SCRIPT_USER variable, which can be set to specify the user ID that can run
these scripts.

How Control Methods Run DB2 Commands
The DB2 HA agent uses the su command to run commands as the instance
owner. The actual command would look something like:

su - <instance> -c "db2stop"

where instance is the user name of the instance.

It is important to ensure that the .profile file of the instance owner is
su-″friendly″. If it is not, the su command may not work properly. Invoke the
su command manually, or from a script, to verify that the command can run
successfully.

Setup

Before you read this section, be sure that you are familiar with the SC2.2
software. This section assumes that you know how to set up SC2.2 and
HA-NFS, and that you know how to use your volume manager. Along with
the other required patches for DB2, the following patches are required for the
HA agent:

Solaris 2.6:
105210-17 (or later)
105786-05 (or later)

Note: There are no required patches for Solaris 7 (Solaris 2.7).

Common Installation Steps
1. Install SC2.2 on all machines in the cluster. During installation, SC2.2 will

ask which agents to install. Since DB2 is not shipped with SC2.2, it is not
in the list of agents. The agent for DB2 will be installed with DB2 and
registered through the hadb2_reg command.

2. Configure the logical hosts with disk groups and logical IP addresses.

Setup on DB2 UDB Enterprise Edition
1. Create the home directory for the instance under the logical host file

system of a logical host.
2. Install DB2 on all machines in the cluster.
3. Create the instance on the machine in the cluster that currently has the

home directory for the instance.
4. Add the user for the instance to the other machines in the cluster, ensuring

that the numeric user ID is the same.

The DB2 High Availability Agent

280 Data Recovery and High Availability Guide and Reference

5. Register the hadb2 service using the hadb2_reg command.
6. Run the hadb2_setup command to set up HA for the instance.

Setup on DB2 UDB Enterprise - Extended Edition
1. Create the home directory for the HA instance owner:

a. For hot standby, create the home directory for the instance under the
logical host file system of a logical host.

b. For mutual takeover, configure HA-NFS, and export the home
directory from one of the logical hosts. On one of the machines, mount
the HA-NFS directory under the chosen mount point.

2. Install DB2 on all machines in the cluster.
3. Create the instance on the machine that has the HA-NFS file system

mounted.
4. Add the user for the instance to the other machines in the cluster, ensuring

that the numeric user ID is the same.
5. Register the hadb2 service using the hadb2_reg command.
6. Run the hadb2_setup command to set up HA for the instance.

Note: Using NIS to define the information for the HA instance is not
recommended, because NIS can introduce a single point of failure.

The hadb2_setup Command
The hadb2_setup command is the central point of the programs that come
with the DB2 HA agent. It can be used to set up an instance, to modify it, or
to delete it. It can also be used to turn the hadb2_setup service on and off.
With this command, there is no need to manually edit the hadb2tab file.

Note: The hadb2_setup command performs actions only on the machine on
which it runs. Changes made to one machine should also be made to
the other machines in the cluster.

The following arguments are supported:
To add an EE instance:

hadb2_setup -a -i <instance> -f [on|off] -h <logical_host> -p [DATA|ADMIN] -t EE

For example:
hadb2_setup -a -i db2ee -f off -h log1 -p DATA -t EE

To add an EEE instance:

hadb2_setup -a -i <instance> -f [on|off] -h <nfs_host> -l <mount_point> \
-r <ha-nfs_dir> -p [DATA|ADMIN] -t EEE -n "<node_info>"

For example:

Setup

Chapter 8. High Availability in the Solaris Operating Environment 281

hadb2_setup -a -i db2eee -f off -h ha-sun1 -l /export/ha_home \
-r /log0/home -p DATA -t EEE -n "log0[0,10,20],log1[30,40,50]"

To delete an instance:

hadb2_setup -d -i <instance>

To modify an instance:

hadb2_setup -m -i <instance> [-f [on|off] | -l <mount_point> | \
-h <host> | -p [DATA|ADMIN] | -r <ha-nfs_dir> | -t [EE|EEE]]

Other options:

-s <on|off> Bring hadb2 up or down (for all HA instances)
-y Assume yes for safety checks

To turn the hadb2 service on or off, specify the -s switch. This is equivalent to
using the hareg command with the -n and -y switches, and specifying the
hadb2 service. For more information about the hareg(1m) command, refer to
the Sun Cluster documentation.

The fault monitor for the instance can be turned off using the -f switch. This
has the effect of stopping the fault monitor for the instance on the local
machine, as well as modifying the hadb2tab file to reflect the fact that fault
monitoring is turned off.

For EE instances, turning off fault monitoring on all machines is
recommended in case the instance fails over. For EEE instances, fault
monitoring must be turned off on all machines that are hosting database
partitions for the instance before it is shut down manually.

To delete an instance, use the -d switch. This only removes the instance from
the hadb2tab file, and does not remove or modify any other files or
directories. Since the hadb2tab file is the main configuration file for the
HA-DB2 agent, removing an instance from this file makes the control methods
unaware of its existence.

To modify an instance, use the -m switch. This only changes information in the
hadb2tab file, and does not remove or modify any other files or directories.
The -m switch can be used with any switch that pertains to information in the
hadb2tab file. The db2nodes.cfg file and the hadb2-eee.cfg file must be
changed manually after the initial setup, because the hadb2_setup command
does not support modifying these files.

Setup

282 Data Recovery and High Availability Guide and Reference

Adding an instance is somewhat more involved.

For EE instances, the following arguments are required:
hadb2_setup -a -i <instance> -f <fm> -h <logical_host> -t <EEE_or_EE>

-p <purpose>

where instance is the name of the instance to be added, fm specifies whether
fault monitoring is initially turned on or off, logical_host is the associated
logical host, EEE_or_EE is set to EE, and purpose can be either DATA or ADMIN.

For EEE instances, the following arguments are required:
hadb2_setup -a -i <instance> -f <fm> -h <nfs_host> -t <EEE_or_EE> -p

<purpose> -l <mount_point> -r <HA-NFS_directory> -n <node_info>

where instance is the name of the instance to be added, fm specifies whether
fault monitoring is initially turned on or off, nfs_host is the host name for the
logical host that is exporting the HA-NFS file system, EEE_or_EE is set to EEE,
purpose can be either DATA or ADMIN, mount_point is the local mount point for
the HA-NFS directory, HA-NFS_directory is the HA-NFS directory, and
node_info is the information that associates database partitions with a logical
host. For example:

hadb2_setup -a -i db2eee -f on -h jolt -l /export/ha_home -p DATA -t EEE -r
/log1/home -n "log0[0,1],log1[2,3]"

When adding an EEE instance, the node information must be enclosed by
quotation marks. In this example, the instance ″db2eee″ will be associated
with two logical hosts, ″log0″ and ″log1″. Database partitions ″0″ and ″1″ of
the ″db2eee″ instance will be associated with the logical host ″log0″, and
database partitions ″2″ and ″3″ will be associated with logical host ″log1″.

Use the hadb2_setup command to add an instance to all machines in the
cluster. The instance can then be started by forcing a cluster reconfiguration,
or by turning hadb2 service off and then on. This can be done, either through
the hareg command, or with the -s switch of the hadb2_setup command. If
the instance does not start, see “Troubleshooting” on page 287.

When the hadb2_setup command adds an EEE instance, the following actions
are performed transparently:
v Checking the specified information. This includes ensuring that the user

exists on the system, and that HA-NFS is running.
v Creating a db2nodes.cfg file.
v Creating an hadb2-eee.cfg file.
v Creating a .rhosts file for the EEE instance.
v Creating symbolic links from the default database path to the associated

logical hosts data directories.

Setup

Chapter 8. High Availability in the Solaris Operating Environment 283

v Adding a line to the hadb2tab file.

To prevent configuration errors, and to ensure that the HA instance will be
able to start after the hadb2_setup command runs, the command performs a
significant amount of testing before a new instance is added.

The db2nodes.cfg file is created and seeded with information corresponding
to the current cluster status. For example, if logical host ″log0″ is being hosted
by the machine ″crackle″, the entries for the database partitions associated
with ″log0″ will contain the machine name ″crackle″ and the high speed
interconnect for ″crackle″:

scadmin@crackle(193)# cat db2nodes.cfg
0 crackle 0 204.152.65.33
1 crackle 1 204.152.65.33
2 thrash 0 204.152.65.34
3 thrash 1 204.152.65.34

The hadb2-eee.cfg file is created only on the basis of the node information
that is specified on the command. There is one line per database partition:

sphere % cat hadb2-eee.cfg
NODE:log0 0
NODE:log0 1
NODE:log1 2
NODE:log1 3

The .rhost file is required for DB2 UDB EEE, and should contain all host
names (or IP addresses) for each machine in the cluster. For example:

crackle db2eee
204.152.65.1 db2eee
204.152.65.17 db2eee
thrash db2eee
204.152.65.2 db2eee
204.152.65.18 db2eee
crackle db2eee
jolt db2eee
bump db2eee
thrash.torolab.ibm.com db2eee
crackle.torolab.ibm.com db2eee

In accordance with a file system layout for SMS tables spaces, the
hadb2_setup command sets up a number of directories and symbolic links.
These include:
v A directory called ″data″ under the logical host file system for each logical

host.
v A node directory (under this ″data″ directory) for each database partition

associated with the logical host.
v Symbolic links in the default database path, located under ˜<instance>,

where ˜instance is the home directory of the instance. There is one symbolic

Setup

284 Data Recovery and High Availability Guide and Reference

link for each database partition that points to the corresponding node
directory. For more information, see “Disk Layout for EE and EEE
Instances” on page 266.

Failover Time

Failover time is measured from when data is first unavailable to when it is
available again. A number of events that occur during a failover can
contribute significantly to the failover time:
v Disk deporting and importing.

Deporting and importing disks usually does not take a very long time
compared to other events, although it does contribute to the overall down
time. The more disks that need to be moved from one machine to another
during a failover, the longer the process takes. If there are defective disks,
the process can take even longer.

v Fsck of the file systems that are mounted for a logical host.
Before the file systems of the logical host can be mounted, they must pass
an fsck to ensure the health of the file system. The larger the file system,
the longer this process takes. By using a journalled file system, this time
can be drastically reduced. Since journalled file systems are normally used
in an HA environment, the fsck time is usually not an issue.

v User scripts called from the HA agent.
The HA agent will call user scripts if they exist and are executable. Some of
these scripts are run synchronously, and can add to the time it takes to
bring up the HA instances. Ensure that they run as quickly as possible;
consider running any external programs called by these scripts in the
background.

v HA-NFS.
For a single EEE instance in a mutual takeover configuration, HA-NFS must
be used for the home directory of the instance owner. HA-NFS adds to
failover time because of the grace period for lockd (defined in the HA agent
for HA-NFS), which is 90 seconds when running HA-NFS. This affects
failover times, because any process that locks a file on the HA-NFS file
system after a failover must wait until the grace period is over. The HA
agent for DB2 is the first process to lock a file under the instance owner’s
home directory after a failover, and it records the time it takes to obtain the
first lock. This time is displayed in the status report after a failover.

v Starting DB2.
Starting DB2 contributes only a small amount to the failover time. For an
EE instance, it contributes about 5-15 seconds on average. For an EEE
instance, it contributes about 10 seconds, plus about 5 seconds per database
partition that is being failed over. If three database partitions are being
failed over, for example, the failover time contributed by starting these

Setup

Chapter 8. High Availability in the Solaris Operating Environment 285

three database partitions will be approximately 25 seconds. This does not
include crash recovery for the databases of the instance.

v Database crash recovery.
Crash recovery often contributes to the majority of down time associated
with a failover. How long it takes to recover a database depends on a
number of factors, including:
– Client workload. Only changes to the database are logged in the

transaction logs. If the client workload is mostly read-only operations,
relatively few transactions must be applied to the database during crash
recovery.

– Disk and machine speed. The speed of the disks and the machine that is
hosting the HA instance also contributes to the time it takes to recover
the database. The faster the system, the shorter the crash recovery time.

– Value of the softmax database configuration parameter. The value of
softmax is the percentage of the log file size at which a soft checkpoint is
to be taken, and a log control file is to be written. The log control file is
used during crash recovery to determine which log records are truly
necessary to restore the database to a consistent state. Reducing this
value will cause the database manager to trigger the page cleaners more
often, and take more frequent soft checkpoints; although performance is
reduced, database recovery is faster.

– Whether the instance is EE or EEE. If the instance is an EEE instance, the
database restart operations will be done in parallel. Each database
partition is responsible for restarting its own portion of the databases. If
there are 50 GB of data for a database, an instance with four database
partitions will be able to recover the database roughly four times faster
than an EE instance can.

Failover Time

286 Data Recovery and High Availability Guide and Reference

Troubleshooting

The following table identifies problems that you might encounter, their
probable causes, and actions that you can take to solve them.

Table 16. Troubleshooting High Availability on Sun Cluster 2.2

Symptom Possible cause Action

Cannot
mount
logical host
file system

The logical host file system is
normally mounted and unmounted
during the failover of a logical
host. During failover, there should
be no active processes or open files
under the logical host file system.
In rare cases, processes that cannot
be killed have their current
working directory under the logical
host file system. To find out if a
process is under the mount point,
use fuser(1m), or a GNU utility
called lsof. Error messages are
produced when the logical host file
system cannot be mounted.a

Reboot the system, or move the
logical host file system to another
name and recreate it. Doing this
allows the frozen process to stay
under the directory (since it can’t
be killed), and allows the mount to
take place.b

The
db2start or
db2stop
time-out
does not
work

A SIGALRM signal may not break
out of a blocking system call.
Instead, the system call will restart
as if the SA_RESTART flag were
set with sigaction(). This causes
time-outs for the DB2 HA agents to
be ignored, and the agent method
will hang instead of recovering
from a hung db2start or db2stop
command.

Apply the required patch,
105210-17 (or later), for Solaris 2.6.

Logging
into an
instance
hangs

Although there are numerous
reasons why this can happen, the
most common reasons include NFS
problems and the /usr/sbin/quota
program.

Check the NFS mounts to ensure
that they are healthy, and look for
quota processes owned by the
instance owner. At the discretion of
the system administrator, changing
the quota program to a symbolic
link to /bin/true may solve the
problem. This is not a
recommended solution, but it may
work.

I just set up
an EEE
instance,
but it does
not start

The hadb2_setup command does
not add ports to the /etc/services
file; it is expected that the
administrator will add them
manually. An error message is
returned.c

Ensure that you have appropriate
ports named in the /etc/services
file.

Troubleshooting

Chapter 8. High Availability in the Solaris Operating Environment 287

Table 16. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

START_NET
method
cannot start
DB2

Turn off fault monitoring to ensure
that the instance does not get failed
over. Log in as the instance owner,
and try to start DB2 manually.

1. Ensure that the hadb2tab
configuration file has the
correct instance type specified.
For example, having a
db2nodes.cfg file for an EE
administrative instance will
cause problems, and the HA
agent methods will not be able
to recover from this.

2. Ensure that the .rhosts file
exists, and has valid entries in
it.

3. Ensure that the HA-NFS file
system is shared with root
permissions for all machines in
the cluster.

4. Check the kernel parameters,
and ensure that they are
correct.

5. Ensure that the /etc/services
file contains entries for the
instance.

The
instance
only works
on one
machine

v The numeric uid for the instance
may not be the same on each
machine in the cluster.

v The kernel parameters may not
be valid on each machine in the
cluster.

v The hadb2tab file may not be the
same on each machine in the
cluster.

v Other configuration files, such as
the logical host vfstab file, may
not be the same on each machine
in the cluster.

If none of these causes appears to
apply, try logging in as the
instance owner, and start DB2
manually. For EE instances, this
should work if the logical host that
is hosting the instance is being
hosted by the current machine. For
EEE instances, this should work
from any machine in the cluster
that can host the database
partitions.

Troubleshooting

288 Data Recovery and High Availability Guide and Reference

Table 16. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

su -
<instance>
-c
″db2start″
does not
work

v The .profile for the instance
may not be su-″friendly″.

v There is a known problem with
the Bourne shell (/bin/sh), in
which the su command works
manually, but not through the
HA agent.

v As root, try running this
command manually, and ensure
that it works before trying again
through the HA agent.

v Switch to the Korn shell
(/bin/ksh), if necessary.

My EEE
instance
cannot
start, but
the home
directory is
mounted

The HA-NFS directory may not
have been exported with ″root″
permissions to the machines in the
cluster. Both DB2 and the HA
agents require this to run properly.

To test this, try to create a file (as
root) under the instance owner’s
home directory.

Trying to
access the
EEE
instance
directory
returns a
″Stale NFS
file handle″
error

There may still be processes under
the instance owner’s home
directory.

Unmount the instance owner’s
home directory, and allow the HA
agent to remount it. The HA agent
will remount it if the hadb2 service
is turned off and on again (see a
description of the -s switch on the
hadb2_setup command in “The
hadb2_setup Command” on
page 281).

Troubleshooting

Chapter 8. High Availability in the Solaris Operating Environment 289

Table 16. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

Control
methods do
not run
successfully
through
SC2.2

The hadb2 service may not be
registered with the Sun Cluster
software, or it may not be turned
on.

If the control methods appear to
run normally from the command
line, check the SYSLOG files for
error messages that may help to
explain the problem. Ensure that
the hadb2 service is registered with
the Sun Cluster software, and that
it is turned on.

Running the methods manually is
useful for debugging a problem.d

The methods should be run as root
and given the appropriate
command line arguments. If the list
of logical hosts is nil, the argument
should be given as ″″. The double
quotation marks without a blank
space separator denotes a blank
argument. For example:

hadb2_startnet log0,log1 "" 600

The first argument, log0,log1, tells
the hadb2_startnet method that
logical hosts log0 and log1 are
being hosted by the current
machine. The second argument is
nil, which tells the hadb2_startnet
method that there are no other
logical hosts being hosted on other
machines in the cluster (all of them
are on the current machine). The
third argument tells the method
that SC2.2 will time out after 600
seconds.

User scripts
do not run

The user scripts can only be run if
they exist in the appropriate
directories and are executable.

Check file ownership and
attributes. If a script still fails to
run, contact IBM service. Forward
a directory listing of the script that
does not run, and SYSLOG output
for a failover or a cluster
reconfiguration that should have
run the script.

Troubleshooting

290 Data Recovery and High Availability Guide and Reference

Table 16. Troubleshooting High Availability on Sun Cluster 2.2 (continued)

Symptom Possible cause Action

Information
is not being
logged to
the file
specified in
/etc/syslog.conf

Use touch(1) to create the file that
is specified in the
/etc/syslog.conf file, and then
restart the SYSLOG daemon.

a Error messages that are produced when the logical host file system cannot be
mounted may look something like the following:

Aug 17 11:14:01 rash ID[SUNWcluster.loghost.1170]: importing data1
Aug 17 11:14:06 rash ID[SUNWcluster.scnfs.3040]: mount -F ufs -o ""

/dev/vx/dsk/data1/data1-stat /log1 failed.
Aug 17 11:14:07 rash ID[SUNWcluster.ccd.ccdd.5304]: error freeze cmd =

/opt/SUNWcluster/bin/loghost_sync
CCDSYNC_POST_ADDU LOGHOST_CM:log1:rash /etc/opt/SUNWcluster/conf/ccd.database

2 "0 1" 1 error code = 1

b For example:

scadmin@rash(218)# ps -fe | egrep db2
db2ee 1984 1 0 0:01 <defunct>

Solution:

scadmin@rash(229)# cd /
scadmin@rash(230)# mv /log1 /log1.bkp
scadmin@rash(231)# mkdir /log1

c The error message may look something like the following:

SQL6030N START or STOP DATABASE MANAGER failed. Reason code "13".

d For example, if the hadb2_startnet method cannot find libdb2.so.1, but it runs
normally through the Sun Cluster software, no errors will be reported. Running the
method manually results in the following:

scadmin@crackle(213)# hadb2_startnet '''log0,log1' 600
ld.so.1: hadb2_startnet: fatal: libdb2.so.1: open failed:

No such file or directory
Killed

Troubleshooting

Chapter 8. High Availability in the Solaris Operating Environment 291

Troubleshooting

292 Data Recovery and High Availability Guide and Reference

Part 3. Appendixes

© Copyright IBM Corp. 2001 293

294 Data Recovery and High Availability Guide and Reference

Appendix A. How to Read the Syntax Diagrams

A syntax diagram shows how a command should be specified so that the
operating system can correctly interpret what is typed.

Read a syntax diagram from left to right, and from top to bottom, following
the horizontal line (the main path). If the line ends with an arrowhead, the
command syntax is continued, and the next line starts with an arrowhead. A
vertical bar marks the end of the command syntax.

When typing information from a syntax diagram, be sure to include
punctuation, such as quotation marks and equal signs.

Parameters are classified as keywords or variables:
v Keywords represent constants, and are shown in uppercase letters; at the

command prompt, however, keywords can be entered in upper, lower, or
mixed case. A command name is an example of a keyword.

v Variables represent names or values that are supplied by the user, and are
shown in lowercase letters; at the command prompt, however, variables can
be entered in upper, lower, or mixed case, unless case restrictions are
explicitly stated. A file name is an example of a variable.

A parameter can be a combination of a keyword and a variable.

Required parameters are displayed on the main path:

MM COMMAND required parameter MO

Optional parameters are displayed below the main path:

MM COMMAND
optional parameter

MO

© Copyright IBM Corp. 2001 295

A parameter’s default value is displayed above the path:

MM COMMAND
VALUE1

OPTPARM VALUE2
VALUE3
VALUE4

MO

A stack of parameters, with the first parameter displayed on the main path,
indicates that one of the parameters must be selected:

MM COMMAND required choice1
required choice2

MO

A stack of parameters, with the first parameter displayed below the main
path, indicates that one of the parameters can be selected:

MM COMMAND
optional_choice1
optional_choice2

MO

An arrow returning to the left, above the path, indicates that items can be
repeated in accordance with the following conventions:
v If the arrow is uninterrupted, the item can be repeated in a list with the

items separated by blank spaces:

MM COMMAND N repeatable parameter MO

v If the arrow contains a comma, the item can be repeated in a list with the
items separated by commas:

MM COMMAND N

,

repeatable_parameter MO

Items from parameter stacks can be repeated in accordance with the stack
conventions for required and optional parameters discussed previously.

Some syntax diagrams contain parameter stacks within other parameter
stacks. Items from stacks can only be repeated in accordance with the

How to Read the Syntax Diagrams

296 Data Recovery and High Availability Guide and Reference

conventions discussed previously. That is, if an inner stack does not have a
repeat arrow above it, but an outer stack does, only one parameter from the
inner stack can be chosen and combined with any parameter from the outer
stack, and that combination can be repeated. For example, the following
diagram shows that one could combine parameter choice2a with parameter
choice2, and then repeat that combination again (choice2 plus choice2a):

MM COMMAND N parameter choice3
parameter choice1
parameter choice2

parameter choice2a
parameter choice2b
parameter choice2c

MO

Some commands are preceded by an optional path parameter:

MM COMMAND
path

MO

If this parameter is not supplied, the system searches the current directory for
the command. If it cannot find the command, the system continues searching
for the command in all the directories on the paths listed in the .profile.

Some commands have syntactical variants that are functionally equivalent:

MM COMMAND FORM1
COMMAND FORM2

MO

How to Read the Syntax Diagrams

Appendix A. How to Read the Syntax Diagrams 297

How to Read the Syntax Diagrams

298 Data Recovery and High Availability Guide and Reference

Appendix B. Warning, Error, and Completion Messages

Messages generated by the various backup and recovery utilities are included
among the SQL messages. These messages are generated by the database
manager when a warning or error condition has been detected. Each message
has a message identifier that consists of a prefix (SQL) and a four- or
five-digit message number. There are three message types: notification,
warning, and critical. Message identifiers ending with an N are error messages.
Those ending with a W indicate warning or informational messages. Message
identifiers ending with a C indicate critical system errors.

The message number is also referred to as the SQLCODE. The SQLCODE is
passed to the application as a positive or negative number, depending on its
message type (N, W, or C). N and C yield negative values, whereas W yields
a positive value. DB2 returns the SQLCODE to the application, and the
application can get the message associated with the SQLCODE. DB2 also
returns an SQLSTATE value for conditions that could be the result of an SQL
statement. Some SQLCODE values have associated SQLSTATE values.

For detailed information about all of the DB2 messages, see the Message
Reference. You can use the information contained in this book to identify an
error or problem, and to resolve the problem by using the appropriate
recovery action. This information can also be used to understand where
messages are generated and logged.

SQL messages, and the message text associated with SQLSTATE values, are
also accessible from the operating system command line. To access help for
these error messages, enter the following at the operating system command
prompt:

db2 ? SQLnnnnn

where nnnnn represents the message number. On UNIX based systems, the
use of double quotation mark delimiters is recommended; this will avoid
problems if there are single character file names in the directory:

db2 "? SQLnnnnn"

The message identifier accepted as a parameter for the db2 command is not
case sensitive, and the terminating letter is not required. Therefore, the
following commands will produce the same result:

db2 ? SQL0000N
db2 ? sql0000
db2 ? SQL0000n

© Copyright IBM Corp. 2001 299

If the message text is too long for your screen, use the following command
(on UNIX based operating systems and others that support the ″more″ pipe):

db2 ? SQLnnnnn | more

You can also redirect the output to a file which can then be browsed.

Help can also be invoked from interactive input mode. To access this mode,
enter the following at the operating system command prompt:

db2

To get DB2 message help in this mode, type the following at the command
prompt (db2 =>):

? SQLnnnnn

The message text associated with SQLSTATEs can be retrieved by issuing:
db2 ? nnnnn
or
db2 ? nn

where nnnnn is a five-character SQLSTATE value (alphanumeric), and nn is a
two-digit SQLSTATE class code (the first two digits of the SQLSTATE value).

Messages

300 Data Recovery and High Availability Guide and Reference

Appendix C. Additional DB2 Commands

© Copyright IBM Corp. 2001 301

db2adutl - Work with TSM Archived Images
Allows users to query, extract, verify, and delete backup images, logs, and
load copy images saved using Tivoli Storage Manager (formerly ADSM).

On UNIX based systems, this utility is located in the INSTHOME/sqllib/misc
directory. On Windows operating systems and OS/2, it is located in the
\sqllib\misc directory.

Authorization
None

Required Connection
None

Command Syntax

MM db2adutl M

M QUERY

TABLESPACE SHOW INACTIVE
FULL
LOADCOPY

LOGS
BETWEEN sn1 AND sn2

EXTRACT

TABLESPACE SHOW INACTIVE TAKEN AT timestamp
FULL
LOADCOPY

LOGS
BETWEEN sn1 AND sn2

DELETE

TABLESPACE KEEP n
FULL OLDER timestamp
LOADCOPY THAN n days

TAKEN AT timestamp
LOGS

BETWEEN sn1 AND sn2
VERIFY

TABLESPACE SHOW INACTIVE TAKEN AT timestamp
FULL

LOGS
BETWEEN sn1 AND sn2

M

db2adutl - Work with TSM Archived Images

302 Data Recovery and High Availability Guide and Reference

M
DATABASE database_name
DB

NODE node_number PASSWORD password
M

M
NODENAME node_name WITHOUT PROMPTING OWNER owner

MO

Command Parameters

QUERY
Queries the TSM server for DB2 objects.

EXTRACT
Copies DB2 objects from the TSM server to the current directory on
the local machine.

DELETE
Either deactivates backup objects or deletes log archives on the TSM
server.

VERIFY
Performs consistency checking on the backup copy that is on the
server.

Note: This parameter causes the entire backup image to be transferred
over the network.

TABLESPACE
Includes only table space backup images.

FULL Includes only full database backup images.

LOADCOPY
Includes only load copy images.

LOGS Includes only log archive images

BETWEEN sn1 AND sn2
Specifies that the logs between log sequence number 1 and log
sequence number 2 are to be used.

SHOW INACTIVE
Includes backup objects that have been deactivated.

TAKEN AT timestamp
Specifies a backup image by its time stamp.

KEEP n
Deactivates all objects of the specified type except for the most recent
n by time stamp.

db2adutl - Work with TSM Archived Images

Appendix C. Additional DB2 Commands 303

OLDER THAN timestamp or n days
Specifies that objects with a time stamp earlier than timestamp or n
days will be deactivated.

DATABASE database_name
Considers only those objects associated with the specified database
name.

NODE node_number
Considers only those objects created by the specified node number.

PASSWORD password
Specifies the TSM client password for this node, if required. If a
database is specified and the password is not provided, the value
specified for the tsm_password database configuration parameter is
passed to TSM; otherwise, no password is used.

NODENAME node_name
Considers only those images associated with a specific TSM node
name.

WITHOUT PROMPTING
The user is not prompted for verification before objects are deleted.

OWNER owner
Considers only those objects created by the specified owner.

Examples
The following is sample output from: db2 backup database rawsampl use tsm

Backup successful. The timestamp for this backup is : 19970929130942

db2adutl query

Query for database RAWSAMPL

Retrieving full database backup information.
full database backup image: 1, Time: 19970929130942,

Oldest log: S0000053.LOG, Sessions used: 1
full database backup image: 2, Time: 19970929142241,

Oldest log: S0000054.LOG, Sessions used: 1

Retrieving table space backup information.
table space backup image: 1, Time: 19970929094003,

Oldest log: S0000051.LOG, Sessions used: 1
table space backup image: 2, Time: 19970929093043,

Oldest log: S0000050.LOG, Sessions used: 1
table space backup image: 3, Time: 19970929105905,

Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.
Log file: S0000050.LOG
Log file: S0000051.LOG

db2adutl - Work with TSM Archived Images

304 Data Recovery and High Availability Guide and Reference

Log file: S0000052.LOG
Log file: S0000053.LOG
Log file: S0000054.LOG
Log file: S0000055.LOG

The following is sample output from: db2adutl delete full taken at
19950929130942 db rawsampl

Query for database RAWSAMPL

Retrieving full database backup information. Please wait.

full database backup image: RAWSAMPL.0.db26000.0.19970929130942.001

Do you want to deactivate this backup image (Y/N)? y

Are you sure (Y/N)? y

db2adutl query

Query for database RAWSAMPL

Retrieving full database backup information.
full database backup image: 2, Time: 19950929142241,

Oldest log: S0000054.LOG, Sessions used: 1

Retrieving table space backup information.
table space backup image: 1, Time: 19950929094003,

Oldest log: S0000051.LOG, Sessions used: 1
table space backup image: 2, Time: 19950929093043,

Oldest log: S0000050.LOG, Sessions used: 1
table space backup image: 3, Time: 19950929105905,

Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.
Log file: S0000050.LOG
Log file: S0000051.LOG
Log file: S0000052.LOG
Log file: S0000053.LOG
Log file: S0000054.LOG
Log file: S0000055.LOG

db2adutl - Work with TSM Archived Images

Appendix C. Additional DB2 Commands 305

db2ckbkp - Check Backup
This utility can be used to test the integrity of a backup image and to
determine whether or not the image can be restored. It can also be used to
display the meta-data stored in the backup header.

Authorization
Anyone can access the utility, but users must have read permissions on image
backups in order to execute this utility against them.

Required Connection
None

Command Syntax

MM db2ckbkp N

,

-a
-c
-d
-h
-H
-l
-o

N

,

filename MO

Command Parameters

-a Displays all available information.

-c Displays results of checkbits and checksums.

-d Displays information from the headers of DMS table space data pages.

-h Displays media header information, including the name or path of the
image expected by the restore utility.

-H Displays only the media header information.

Notes:

1. This option does not validate the image. Validation is performed
on the entire image if this option is not specified.

2. This option is not valid in combination with any other option.

-l Displays Log File Header data.

-o Displays detailed information from the object headers.

filename
The name of the backup image file. One or more files can be checked
at a time.

db2ckbkp - Check Backup

306 Data Recovery and High Availability Guide and Reference

Notes:

1. If the complete backup consists of multiple objects, the validation
will only succeed if db2ckbkp is used to validate all of the objects
at the same time.

2. When checking multiple parts of an image, the first backup image
object (.001) must be specified first.

Examples
db2ckbkp SAMPLE.0.krodger.NODE0000.CATN0000.19990817150714.*
[1] Buffers processed: ##
[2] Buffers processed: ##
[3] Buffers processed: ##
Image Verification Complete - successful.

db2ckbkp -h SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001

=====================
MEDIA HEADER REACHED:
=====================

Server Database Name -- SAMPLE2
Server Database Alias -- SAMPLE2
Client Database Alias -- SAMPLE2
Timestamp -- 19990818122909
Node -- 0
Instance -- krodger
Sequence Number -- 1
Release ID -- 900
Database Seed -- 65E0B395
DB Comment's Codepage (Volume) -- 0
DB Comment (Volume) --
DB Comment's Codepage (System) -- 0
DB Comment (System) --
Authentication Value -- 255
Backup Mode -- 0
Backup Type -- 0
Backup Gran. -- 0
Status Flags -- 11
System Cats inc -- 1
Catalog Node Number -- 0
DB Codeset -- ISO8859-1
DB Territory --
Backup Buffer Size -- 4194304
Number of Sessions -- 1
Platform -- 0

The proper image file name would be:
SAMPLE2.0.krodger.NODE0000.CATN0000.19990818122909.001

[1] Buffers processed: ####
Image Verification Complete - successful.

db2ckbkp - Check Backup

Appendix C. Additional DB2 Commands 307

Usage Notes
If a backup image was created using multiple sessions, db2ckbkp can
examine all of the files at the same time. Users are responsible for ensuring
that the session with sequence number 001 is the first file specified.

This utility can also verify backup images that are stored on tape (except
images that were created with a variable block size). This is done by
preparing the tape as for a restore operation, and then invoking the utility,
specifying the tape device name. For example, on UNIX based systems:

db2ckbkp -h /dev/rmt0

and on Windows NT:
db2ckbkp -d \\.\tape1

If the backup image resides on TSM, see “db2adutl - Work with TSM
Archived Images” on page 302.

db2ckbkp - Check Backup

308 Data Recovery and High Availability Guide and Reference

db2ckrst - Check Incremental Restore Image Sequence
Queries the database history and generates a list of time stamps for the
backup images required for an incremental restore operation. A simplified
restore syntax for a manual incremental restore is also generated.

Authorization
None

Required Connection
None

Command Syntax

MM db2ckrst -d database name -t timestamp
database

-r tablespace

M

M

N-n tablespace name

-h
-u
-?

MO

Command Parameters

-d database namefile-name
Specifies the alias name for the database that will be restored.

-t timestamp
Specifies the time stamp for a backup image that will be incrementally
restored.

-r Specifies the type of restore that will be performed. The default is
database.

Note: If table space is chosen and no table space names are given, the
utility looks into the history entry of the specified image and
uses the table space names listed to do the restore.

-n tablespace name
Specifies the name of one or more table spaces that will be restored.

Note: If the database restore type is selected and a list of table space
names is specified, the utility will continue with a table space
restore operation using the specified table space names.

-h/-u/-?
Displays help information. When this option is specified, all other
options are ignored, and only the help information is displayed.

db2ckrst - Check Incremental Restore Image Sequence

Appendix C. Additional DB2 Commands 309

Examples
db2ckrst -d mr -t 20001015193455 -r database
db2ckrst -d mr -t 20001015193455 -r tablespace
db2ckrst -d mr -t 20001015193455 -r tablespace -n tbsp1 tbsp2

> db2 backup db mr

Backup successful. The timestamp for this backup image is : 20001016001426

> db2 backup db mr incremental

Backup successful. The timestamp for this backup image is : 20001016001445

> db2ckrst -d mr -t 20001016001445

Suggested restore order of images using timestamp 20001016001445 for database mr.
===

db2 restore db mr incremental taken at 20001016001445
db2 restore db mr incremental taken at 20001016001426
db2 restore db mr incremental taken at 20001016001445

===

> db2ckrst -d mr -t 20001016001445 -r tablespace -n userspace1
Suggested restore order of images using timestamp 20001016001445 for database mr.
===

db2 restore db mr tablespace (USERSPACE1) incremental taken at 20001016001445
db2 restore db mr tablespace (USERSPACE1) incremental taken at 20001016001426
db2 restore db mr tablespace (USERSPACE1) incremental taken at 20001016001445

===

Usage Notes
The database history must exist in order for this utility to be used. If a
database history does not exist, specify the HISTORY FILE option in the
RESTORE DATABASE command before using this utility.

If the FORCE option of the PRUNE HISTORY command is used, it will be
possible to delete entries that are required for recovery from the most recent,
full database backup image. The default operation of the PRUNE HISTORY
command prevents required entries from being deleted. It is recommended
that the FORCE option of the PRUNE HISTORY command not be used.

It is a good idea to keep a complete record of backup operations, and to use
this utility as a guide.

db2ckrst - Check Incremental Restore Image Sequence

310 Data Recovery and High Availability Guide and Reference

db2flsn - Find Log Sequence Number
Returns the name of the file that contains the log record identified by a
specified log sequence number (LSN).

Authorization
None

Command Syntax

MM db2flsn
-q

input_LSN MO

Command Parameters

-q Specifies that only the log file name be printed. No error or warning
messages will be printed, and status can only be determined through
the return code. Valid error codes are:
v -100 Invalid input
v -101 Cannot open LFH file
v -102 Failed to read LFH file
v -103 Invalid LFH
v -104 Database is not recoverable
v -105 LSN too big
v -500 Logical error.

Other valid return codes are:
v 0 Successful execution
v 99 Warning: the result is based on the last known log file size.

input_LSN
A 12-byte string that represents the internal (6-byte) hexadecimal
value with leading zeros.

Examples
db2flsn 000000BF0030

Given LSN is contained in log file S0000002.LOG

db2flsn -q 000000BF0030
S0000002.LOG

db2flsn 000000BE0030
Warning: the result is based on the last known log file size.
The last known log file size is 23 4K pages starting from log extent 2.

db2flsn - Find Log Sequence Number

Appendix C. Additional DB2 Commands 311

Given LSN is contained in log file S0000001.LOG

db2flsn -q 000000BE0030
S0000001.LOG

Usage Notes
The log header control file sqlogctl.lfh must reside in the current directory.
Since this file is located in the database directory, the tool can be run from the
database directory, or the control file can be copied to the directory from
which the tool will be run.

The tool uses the logfilsiz database configuration parameter. DB2 records the
three most recent values for this parameter, and the first log file that is created
with each logfilsiz value; this enables the tool to work correctly when logfilsiz
changes. If the specified LSN predates the earliest recorded value of logfilsiz,
the tool uses this value, and returns a warning. The tool can be used with
database managers prior to UDB Version 5.2; in this case, the warning is
returned even with a correct result (obtained if the value of logfilsiz remains
unchanged).

This tool can only be used with recoverable databases. A database is
recoverable if it is configured with logretain set to RECOVERY or userexit set to
ON.

db2flsn - Find Log Sequence Number

312 Data Recovery and High Availability Guide and Reference

db2inidb - Initialize a Mirrored Database
In a split mirror environment, this command is used to initialize a mirrored
database for different purposes.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection
None

Command Syntax

MM db2inidb database_alias AS SNAPSHOT
STANDBY
MIRROR

MO

Command Parameters

database_alias
Specifies the alias of the database to be initialized.

SNAPSHOT
Specifies that the mirrored database will be initialized as a clone of
the primary database. This database is read-only.

STANDBY
Specifies that the database will be placed in rollforward pending state.
New logs from the primary database can be fetched and applied to
the standby database. The standby database can then be used in place
of the primary database if it goes down.

MIRROR
Specifies that the mirrored database is to be used as a backup image
that can be used to restore the primary database.

db2inidb - Initialize a Mirrored Database

Appendix C. Additional DB2 Commands 313

db2mscs - Set up Windows NT Failover Utility
Creates the infrastructure for DB2 failover support on Windows NT/2000
using Microsoft Cluster Server (MSCS). This utility can be used to enable
failover in both single-partition and partitioned database environments.

Authorization
The user must be logged on to a domain user account that belongs to the
Administrators group of each machine in the MSCS cluster.

Command Syntax

MM db2mscs
-f: input_file

MO

Command Parameters

-f:input_file
Specifies the DB2MSCS.CFG input file to be used by the MSCS utility. If
this parameter is not specified, the DB2MSCS utility reads the
DB2MSCS.CFG file that is in the current directory.

db2mscs - Set up Windows NT Failover Utility

314 Data Recovery and High Availability Guide and Reference

ARCHIVE LOG
Closes and truncates the active log file for a recoverable database. If user exit
is enabled, issues an archive request.

Scope
In an MPP environment, this command closes and truncates the active logs on
all nodes; however, a subset of nodes can be specified.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
This command automatically establishes a connection to the specified
database. If a connection already exists, an error is returned.

Command Syntax

MM ARCHIVE LOG FOR DATABASE
DB

database-alias M

M
USER username

USING password

On Node clause MO

On Node clause:

ON Node List clause
ALL NODES

EXCEPT Node List clause

Node List clause:

NODE
NODES

N

,

(node number)
TO node number

ARCHIVE LOG

Appendix C. Additional DB2 Commands 315

Command Parameters

DATABASE database-alias
Specifies the alias of the database whose active log is to be archived.

USER username
Identifies the user name under which a connection will be attempted.

USING password
Specifies the password to authenticate the user name.

ON ALL NODES
Specifies that the command should be issued on all nodes in the
db2nodes.cfg file. This is the default if a node clause is not specified.

EXCEPT
Specifies that the command should be issued on all nodes in the
db2nodes.cfg file, except those specified in the node list.

ON NODE/ON NODES
Specifies that the logs should be archived for the specified database
on a set of nodes.

node number
Specifies a node number in the node list.

TO node number
Used when specifying a range of nodes for which the logs should be
archived. All nodes from the first node number specified up to and
including the second node number specified are included in the node
list.

Usage Notes
This command can be used to collect a complete set of log files up to a known
point. The log files can then be used to update a standby database.

If other applications have transactions in progress when this command is
invoked, a slight performance decrement will be noticed when the log buffer
is flushed to disk; other transactions attempting to write log records to the
buffer must wait until the flush has completed.

This command causes the database to lose a portion of its LSN space, thereby
hastening the exhaustion of valid LSNs.

ARCHIVE LOG

316 Data Recovery and High Availability Guide and Reference

INITIALIZE TAPE
DB2 for Windows NT/2000 supports backup and restore operations to
streaming tape devices. Use this command for tape initialization.

Authorization
None

Required Connection
None

Command Syntax

MM INITIALIZE TAPE
ON device USING blksize

MO

Command Parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0.

USING blksize
Specifies the block size for the device, in bytes. The device is
initialized to use the block size specified, if the value is within the
supported range of block sizes for the device.

Note: The buffer size specified in “BACKUP DATABASE Command”
on page 84, and in “RESTORE DATABASE Command” on
page 110 must be divisible by the block size specified here.

If a value for this parameter is not specified, the device is initialized
to use its default block size. If a value of zero is specified, the device
is initialized to use a variable length block size; if the device does not
support variable length block mode, an error is returned.

See Also
“REWIND TAPE” on page 323

“SET TAPE POSITION” on page 324.

INITIALIZE TAPE

Appendix C. Additional DB2 Commands 317

LIST HISTORY
Lists entries in the history file. The history file contains a record of recovery
and administrative events. Recovery events include full database and table
space level backup, incremental backup, restore, and rollforward operations.
Additional logged events include create, alter, or rename table space, run
statistics, reorganize table, drop table, and load.

Authorization
None

Required Connection
Instance. An explicit attachment is not required. If the database is listed as
remote, an instance attachment to the remote node is established for the
duration of the command.

Command Syntax

MM LIST HISTORY
BACKUP
ROLLFORWARD
DROPPED TABLE
LOAD
CREATE TABLESPACE
ALTER TABLESPACE
RENAME TABLESPACE

ALL
SINCE timestamp
CONTAINING schema.object_name

object_name

M

M FOR database-alias
DATABASE
DB

MO

Command Parameters

HISTORY
Lists all events that are currently logged in the history file.

BACKUP
Lists backup and restore operations.

ROLLFORWARD
Lists rollforward operations.

DROPPED TABLE
Lists dropped table records.

LOAD
Lists load operations.

CREATE TABLESPACE
Lists table space create and drop operations.

LIST HISTORY

318 Data Recovery and High Availability Guide and Reference

RENAME TABLESPACE
Lists table space renaming operations.

ALTER TABLESPACE
Lists alter table space operations.

ALL Lists all entries of the specified type in the history file.

SINCE timestamp
A complete time stamp (format yyyymmddhhnnss), or an initial prefix
(minimum yyyy) can be specified. All entries with time stamps equal
to or greater than the time stamp provided are listed.

CONTAINING schema.object_name
This qualified name uniquely identifies a table.

CONTAINING object_name
This unqualified name uniquely identifies a table space.

FOR DATABASE database-alias
Used to identify the database whose recovery history file is to be
listed.

Examples
db2 list history since 19980201 for sample
db2 list history backup containing userspace1 for sample
db2 list history dropped table all for db sample

Usage Notes
The report generated by this command contains the following symbols:
Operation

A - Create table space
B - Backup
C - Load copy
D - Dropped table
F - Roll forward
G - Reorganize table
L - Load
N - Rename table space
O - Drop table space
Q - Quiesce
R - Restore
S - Run statistics
T - Alter table space
U - Unload

Type

Backup types:

F - Offline
N - Online

LIST HISTORY

Appendix C. Additional DB2 Commands 319

I - Incremental offline
O - Incremental online
D - Delta offline
E - Delta online

Rollforward types:

E - End of logs
P - Point in time

Load types:

I - Insert
R - Replace

Alter tablespace types:

C - Add containers
R - Rebalance

Quiesce types:

S - Quiesce share
U - Quiesce update
X - Quiesce exclusive
Z - Quiesce reset

If a rollforward operation has been carried out to the end of all the logs, the
backup ID represents the end of time; that is, the backup ID value is
99991231235959.

LIST HISTORY

320 Data Recovery and High Availability Guide and Reference

PRUNE HISTORY/LOGFILE
Used to delete entries from the recovery history file, or to delete log files from
the active log file path. Deleting entries from the recovery history file may be
necessary if the file becomes excessively large and the retention period is
high. Deleting log files from the active log file path may be necessary if logs
are being archived manually (rather than through a user exit program).

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database

Command Syntax

MM PRUNE HISTORY timestamp
WITH FORCE OPTION

LOGFILE PRIOR TO log-file-name

MO

Command Parameters

HISTORY timestamp
Identifies a range of entries in the recovery history file that will be
deleted. A complete time stamp (in the form yyyymmddhhmmss), or an
initial prefix (minimum yyyy) can be specified. All entries with time
stamps equal to or less than the time stamp provided are deleted from
the recovery history file.

WITH FORCE OPTION
Specifies that the entries will be pruned according to the time stamp
specified, even if some entries from the most recent restore set are
deleted from the file. A restore set is the most recent full database
backup including any restores of that backup image. If this parameter
is not specified, all entries from the backup image forward will be
maintained in the history.

LOGFILE PRIOR TO log-file-name
Specifies a string for a log file name, for example S0000100.LOG. All
log files prior to (but not including) the specified log file will be
deleted. The LOGRETAIN database configuration parameter must be
set to RECOVERY or CAPTURE.

PRUNE HISTORY/LOGFILE

Appendix C. Additional DB2 Commands 321

Examples
To remove the entries for all restores, loads, table space backups, and full
database backups taken before and including December 1, 1994 from the
recovery history file, enter:

db2 prune history 199412

Note: 199412 is interpreted as 19941201000000.

Usage Notes
Pruning backup entries from the history file causes related file backups on
DB2 Data Links Manager servers to be deleted.

PRUNE HISTORY/LOGFILE

322 Data Recovery and High Availability Guide and Reference

REWIND TAPE
DB2 for Windows NT/2000 supports backup and restore operations to
streaming tape devices. Use this command for tape rewinding.

Authorization
None

Required Connection
None

Command Syntax

MM REWIND TAPE
ON device

MO

Command Parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0.

See Also
“INITIALIZE TAPE” on page 317

“SET TAPE POSITION” on page 324.

REWIND TAPE

Appendix C. Additional DB2 Commands 323

SET TAPE POSITION
DB2 for Windows NT/2000 supports backup and restore operations to
streaming tape devices. Use this command for tape positioning.

Authorization
None

Required Connection
None

Command Syntax

MM SET TAPE POSITION
ON device

TO position MO

Command Parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0.

TO position
Specifies the mark at which the tape is to be positioned. DB2 for
Windows NT/2000 writes a tape mark after every backup image. A
value of 1 specifies the first position, 2 specifies the second position,
and so on. If the tape is positioned at tape mark 1, for example,
archive 2 is positioned to be restored.

See Also
“INITIALIZE TAPE” on page 317

“REWIND TAPE” on page 323.

SET TAPE POSITION

324 Data Recovery and High Availability Guide and Reference

UPDATE HISTORY FILE
Updates the location, device type, or comment in a history file entry.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database

Command Syntax

MM UPDATE HISTORY FOR object-part WITH M

M LOCATION new-location DEVICE TYPE new-device-type
COMMENT new-comment

MO

Command Parameters

FOR object-part
Specifies the identifier for the backup or copy image. It is a time
stamp with an optional sequence number from 001 to 999.

LOCATION new-location
Specifies the new physical location of a backup image. The
interpretation of this parameter depends on the device type.

DEVICE TYPE new-device-type
Specifies a new device type for storing the backup image. Valid device
types are:

D Disk

K Diskette

T Tape

A TSM

U User exit

O Other

COMMENT new-comment
Specifies a new comment to describe the entry.

UPDATE HISTORY FILE

Appendix C. Additional DB2 Commands 325

Examples
To update the history file entry for a full database backup taken on April 13,
1997 at 10:00 a.m., enter:

db2 update history for 19970413100000001 with
location /backup/dbbackup.1 device type d

Usage Notes
The history file is used by database administrators for record keeping. It is
used internally by DB2 for the automatic recovery of incremental backups.

See Also
“PRUNE HISTORY/LOGFILE” on page 321.

UPDATE HISTORY FILE

326 Data Recovery and High Availability Guide and Reference

Appendix D. Additional APIs and Associated Data
Structures

© Copyright IBM Corp. 2001 327

db2ArchiveLog - Archive Active Log API
Closes and truncates the active log file for a recoverable database. If user exit
is enabled, issues an archive request.

Scope
In an MPP environment, this API closes and truncates the active logs on all
nodes.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
This API automatically establishes a connection to the specified database. If a
connection already exists, an error is returned.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Archive Active Log */
/* ... */
SQL_API_RC SQL_API_FN

db2ArchiveLog (
db2Uint32 version,
void * pDB2ArchiveLogStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseAlias;
char * piUserName;
char * piPassword;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
SQL_PDB_NODE_TYPE * piNodeList;
db2Uint32 iOptions;

} db2ArchiveLogStruct;
/* ... */

db2ArchiveLog - Archive Active Log API

328 Data Recovery and High Availability Guide and Reference

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the variable passed in
as the second parameter, pDB2ArchiveLogStruct.

pDB2ArchiveLogStruct
Input. A pointer to the db2ArchiveLogStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

iAliasLen
Input. A 4-byte unsigned integer representing the length in bytes of
the database alias.

iUserNameLen
Input. A 4-byte unsigned integer representing the length in bytes of
the user name. Set to zero if no user name is used.

iPasswordLen
Input. A 4-byte unsigned integer representing the length in bytes of
the password. Set to zero if no password is used.

/* File: db2ApiDf.h */
/* API: Archive Active Log */
/* ... */
SQL_API_RC SQL_API_FN

db2gArchiveLog (
db2Uint32 version,
void * pDB2gArchiveLogStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint32 iAliasLen;
db2Uint32 iUserNameLen;
db2Uint32 iPasswordLen;
char * piDatabaseAlias;
char * piUserName;
char * piPassword;
db2Uint16 iAllNodeFlag;
db2Uint16 iNumNodes;
SQL_PDB_NODE_TYPE * piNodeList;
db2Uint32 iOptions;

} db2gArchiveLogStruct;
/* ... */

db2ArchiveLog - Archive Active Log API

Appendix D. Additional APIs and Associated Data Structures 329

piDatabaseAlias
Input. A string containing the database alias (as cataloged in the
system database directory) of the database for which the active log is
to be archived.

piUserName
Input. A string containing the user name to be used when attempting
a connection.

piPassword
Input. A string containing the password to be used when attempting a
connection.

iAllNodeFlag
Input. MPP only. Flag indicating whether the operation should apply
to all nodes listed in the db2nodes.cfg file. Valid values are:

DB2ARCHIVELOG_ALL_NODES
Apply to all nodes (piNodeList should be NULL). This is the
default value.

DB2ARCHIVELOG_NODE_LIST
Apply to all nodes specified in a node list that is passed in
piNodeList.

DB2ARCHIVELOG_ALL_EXCEPT
Apply to all nodes except those specified in a node list that is
passed in piNodeList.

iNumNodes
Input. MPP only. Specifies the number of nodes in the piNodeList
array.

piNodeList
Input. MPP only. A pointer to an array of node numbers against
which to apply the archive log operation.

iOptions
Input. Reserved for future use.

Usage Notes
This API can be used to collect a complete set of log files up to a known
point. The log files can then be used to update a standby database.

If other applications have transactions in progress when this API is called, a
slight performance decrement will be noticed when the log buffer is flushed
to disk; other transactions attempting to write log records to the buffer must
wait until the flush has completed.

This API causes the database to lose a portion of its LSN space, thereby
hastening the exhaustion of valid LSNs.

db2ArchiveLog - Archive Active Log API

330 Data Recovery and High Availability Guide and Reference

db2HistoryCloseScan - Close Recovery History File Scan API
Ends a recovery history file scan and frees DB2 resources required for the
scan. This API must be preceded by a successful call to “db2HistoryOpenScan
- Open Recovery History File Scan API” on page 337.

Authorization
None

Required Connection
Instance. It is not necessary to call sqleatin before calling this API.

API Include File
db2ApiDf.h

C API Syntax

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the second parameter,
piHandle.

piHandle
Input. Specifies a pointer to the handle for scan access that was
returned by “db2HistoryOpenScan - Open Recovery History File Scan
API” on page 337.

/* File: db2ApiDf.h */
/* API: Close Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryCloseScan (
db2Uint32 version,
void * piHandle,
struct sqlca * pSqlca);

/* ... */

/* File: db2ApiDf.h */
/* API: Close Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryCloseScan (
db2Uint32 version,
void * piHandle,
struct sqlca * pSqlca);

/* ... */

db2HistoryCloseScan - Close Recovery History File Scan API

Appendix D. Additional APIs and Associated Data Structures 331

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

REXX API Syntax

REXX API Parameters

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

Usage Notes
For a detailed description of the use of the recovery history file APIs, see
“db2HistoryOpenScan - Open Recovery History File Scan API” on page 337.

See Also
“db2HistoryGetEntry - Get Next Recovery History File Entry API” on
page 333

“db2HistoryOpenScan - Open Recovery History File Scan API” on page 337

“db2Prune API” on page 345

“db2HistoryUpdate - Update Recovery History File API” on page 342.

CLOSE RECOVERY HISTORY FILE :scanid

db2HistoryCloseScan - Close Recovery History File Scan API

332 Data Recovery and High Availability Guide and Reference

db2HistoryGetEntry - Get Next Recovery History File Entry API
Gets the next entry from the recovery history file. This API must be preceded
by a successful call to “db2HistoryOpenScan - Open Recovery History File
Scan API” on page 337.

Authorization
None

Required Connection
Instance. It is not necessary to call sqleatin before calling this API.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Get Next Recovery History File Entry */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryGetEntry (
db2Uint32 version,
void * pDB2HistoryGetEntryStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint16 iHandle,
db2Uint16 iCallerAction,
struct db2HistData * pioHistData

} db2HistoryGetEntryStruct;
/* ... */

db2HistoryGetEntry - Get Next Recovery History File Entry API

Appendix D. Additional APIs and Associated Data Structures 333

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryGetEntryStruct.

pDB2HistoryGetEntryStruct
Input. A pointer to the db2HistoryGetEntryStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

iHandle
Input. Contains the handle for scan access that was returned by
“db2HistoryOpenScan - Open Recovery History File Scan API” on
page 337.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

DB2HISTORY_GET_ENTRY
Get the next entry, but without any command data.

DB2HISTORY_GET_DDL
Get only the command data from the previous fetch.

DB2HISTORY_GET_ALL
Get the next entry, including all data.

pioHistData
Input. A pointer to the db2HistData structure. For more information
about this structure, see “Data Structure: db2HistData” on page 352.

/* File: db2ApiDf.h */
/* API: Get Next Recovery History File Entry */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryGetEntry (
db2Uint32 version,
void * pDB2GenHistoryGetEntryStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint16 iHandle,
db2Uint16 iCallerAction,
struct db2HistData * pioHistData

} db2GenHistoryGetEntryStruct;
/* ... */

db2HistoryGetEntry - Get Next Recovery History File Entry API

334 Data Recovery and High Availability Guide and Reference

REXX API Syntax

REXX API Parameters

scanid Host variable containing the scan identifier returned from OPEN
RECOVERY HISTORY FILE SCAN.

value A compound REXX host variable into which the recovery history file
entry information is returned. In the following, XXX represents the
host variable name:

XXX.0 Number of first level elements in the variable (always
15)

XXX.1 Number of table space elements

XXX.2 Number of used table space elements

XXX.3 OPERATION (type of operation performed)

XXX.4 OBJECT (granularity of the operation)

XXX.5 OBJECT_PART (time stamp and sequence number)

XXX.6 OPTYPE (qualifier of the operation)

XXX.7 DEVICE_TYPE (type of device used)

XXX.8 FIRST_LOG (earliest log ID)

XXX.9 LAST_LOG (current log ID)

XXX.10 BACKUP_ID (identifier for the backup)

XXX.11 SCHEMA (qualifier for the table name)

XXX.12 TABLE_NAME (name of the loaded table)

XXX.13.0 NUM_OF_TABLESPACES (number of table spaces
involved in backup or restore)

XXX.13.1 Name of the first table space backed up/restored

XXX.13.2 Name of the second table space backed up/restored

XXX.13.3 and so on

XXX.14 LOCATION (where backup or copy is stored)

XXX.15 COMMENT (text to describe the entry).

Usage Notes
The records that are returned will have been selected using the values
specified on the call to “db2HistoryOpenScan - Open Recovery History File
Scan API” on page 337.

GET RECOVERY HISTORY FILE ENTRY :scanid [USING :value]

db2HistoryGetEntry - Get Next Recovery History File Entry API

Appendix D. Additional APIs and Associated Data Structures 335

For a detailed description of the use of the recovery history file APIs, see
“db2HistoryOpenScan - Open Recovery History File Scan API” on page 337.

See Also
“db2HistoryCloseScan - Close Recovery History File Scan API” on page 331

“db2HistoryOpenScan - Open Recovery History File Scan API” on page 337

“db2Prune API” on page 345

“db2HistoryUpdate - Update Recovery History File API” on page 342.

db2HistoryGetEntry - Get Next Recovery History File Entry API

336 Data Recovery and High Availability Guide and Reference

db2HistoryOpenScan - Open Recovery History File Scan API
Starts a recovery history file scan.

Authorization
None

Required Connection
Instance. It is not necessary to call sqleatin before calling this API. If the
database is cataloged as remote, an instance attachment to the remote node is
established.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Open Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryOpenScan (
db2Uint32 version,
void * pDB2HistoryOpenStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseAlias,
char * piTimestamp,
char * piObjectName,
db2Uint32 oNumRows,
db2Uint16 iCallerAction,
db2Uint16 oHandle

} db2HistoryOpenStruct;
/* ... */

db2HistoryOpenScan - Open Recovery History File Scan API

Appendix D. Additional APIs and Associated Data Structures 337

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryOpenStruct.

pDB2HistoryOpenStruct
Input. A pointer to the db2HistoryOpenStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

piDatabaseAlias
Input. A pointer to a string containing the database alias.

piTimestamp
Input. A pointer to a string specifying the time stamp to be used for
selecting records. Records whose time stamp is equal to or greater
than this value are selected. Setting this parameter to NULL, or
pointing to zero, prevents the filtering of entries using a time stamp.

piObjectName
Input. A pointer to a string specifying the object name to be used for
selecting records. The object may be a table or a table space. If it is a
table, the fully qualified table name must be provided. Setting this
parameter to NULL, or pointing to zero, prevents the filtering of
entries using the object name.

/* File: db2ApiDf.h */
/* API: Open Recovery History File Scan */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryOpenScan (
db2Uint32 version,
void * pDB2GenHistoryOpenStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piDatabaseAlias,
char * piTimestamp,
char * piObjectName,
db2Uint32 oNumRows,
db2Uint16 iCallerAction,
db2Uint16 oHandle

} db2GenHistoryOpenStruct;
/* ... */

db2HistoryOpenScan - Open Recovery History File Scan API

338 Data Recovery and High Availability Guide and Reference

oNumRows
Output. Upon return from the API, this parameter contains the
number of matching recovery history file entries.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

DB2HISTORY_LIST_HISTORY
Lists all events that are currently logged in the history file.

DB2HISTORY_LIST_BACKUP
Lists backup and restore operations.

DB2HISTORY_LIST_ROLLFORWARD
Lists rollforward operations.

DB2HISTORY_LIST_DROPPED_TABLE
Lists dropped table records. The DDL field associated with an
entry is not returned. To retrieve the DDL information for an
entry, “db2HistoryGetEntry - Get Next Recovery History File
Entry API” on page 333 must be called with a caller action of
DB2HISTORY_GET_DDL immediately after the entry is fetched.

DB2HISTORY_LIST_LOAD
Lists load operations.

DB2HISTORY_LIST_CRT_TABLESPACE
Lists table space create and drop operations.

DB2HISTORY_LIST_REN_TABLESPACE
Lists table space renaming operations.

DB2HISTORY_LIST_ALT_TABLESPACE
Lists alter table space operations. The DDL field associated
with an entry is not returned. To retrieve the DDL information
for an entry, “db2HistoryGetEntry - Get Next Recovery
History File Entry API” on page 333 must be called with a
caller action of DB2HISTORY_GET_DDL immediately after the
entry is fetched.

DB2HISTORY_LIST_RUNSTATS
Lists RUNSTATS operations. This value is not currently
supported.

DB2HISTORY_LIST_REORG
Lists REORGANIZE TABLE operations. This value is not
currently supported.

oHandle
Output. Upon return from the API, this parameter contains the handle
for scan access. It is subsequently used in “db2HistoryGetEntry - Get

db2HistoryOpenScan - Open Recovery History File Scan API

Appendix D. Additional APIs and Associated Data Structures 339

Next Recovery History File Entry API” on page 333, and
“db2HistoryCloseScan - Close Recovery History File Scan API” on
page 331.

REXX API Syntax

REXX API Parameters

database_alias
The alias of the database whose history file is to be listed.

objname
Specifies the object name to be used for selecting records. The object
may be a table or a table space. If it is a table, the fully qualified table
name must be provided. Setting this parameter to NULL prevents the
filtering of entries using objname.

timestamp
Specifies the time stamp to be used for selecting records. Records
whose time stamp is equal to or greater than this value are selected.
Setting this parameter to NULL prevents the filtering of entries using
timestamp.

value A compound REXX host variable to which recovery history file
information is returned. In the following, XXX represents the host
variable name.

XXX.0 Number of elements in the variable (always 2)

XXX.1 Identifier (handle) for future scan access

XXX.2 Number of matching recovery history file entries.

Usage Notes
The combination of time stamp, object name and caller action can be used to
filter records. Only records that pass all specified filters are returned.

The filtering effect of the object name depends on the value specified:
v Specifying a table will return records for load operations, because this is the

only information for tables in the history file.
v Specifying a table space will return records for backup, restore, and load

operations for the table space.

Note: To return records for tables, they must be specified as schema.tablename.
Specifying tablename will only return records for table spaces.

OPEN [BACKUP] RECOVERY HISTORY FILE FOR database_alias
[OBJECT objname] [TIMESTAMP :timestamp]
USING :value

db2HistoryOpenScan - Open Recovery History File Scan API

340 Data Recovery and High Availability Guide and Reference

A maximum of eight history file scans per process is permitted.

To list every entry in the history file, a typical application will perform the
following steps:
1. Call db2HistoryOpenScan, which will return oNumRows.
2. Allocate an db2HistData structure with space for n oTablespace fields, where

n is an arbitrary number.
3. Set the iDB2NumTablespace field of the db2HistData structure to n.
4. In a loop, perform the following:

v Call db2HistoryGetEntry to fetch from the history file.
v If db2HistoryGetEntry returns an SQLCODE of SQL_RC_OK, use the sqld

field of the db2HistData structure to determine the number of table space
entries returned.

v If db2HistoryGetEntry returns an SQLCODE of
SQLUH_SQLUHINFO_VARS_WARNING, not enough space has been allocated for
all of the table spaces that DB2 is trying to return; free and reallocate the
db2HistData structure with enough space for oDB2UsedTablespace table
space entries, and set iDB2NumTablespace to oDB2UsedTablespace.

v If db2HistoryGetEntry returns an SQLCODE of SQLE_RC_NOMORE, all
recovery history file entries have been retrieved.

v Any other SQLCODE indicates a problem.
5. When all of the information has been fetched, call “db2HistoryCloseScan -

Close Recovery History File Scan API” on page 331 to free the resources
allocated by the call to db2HistoryOpenScan.

The macro SQLUHINFOSIZE(n), defined in sqlutil, is provided to help
determine how much memory is required for an db2HistData structure with
space for n oTablespace fields.

See Also
“db2HistoryCloseScan - Close Recovery History File Scan API” on page 331

“db2HistoryGetEntry - Get Next Recovery History File Entry API” on
page 333

“db2Prune API” on page 345

“db2HistoryUpdate - Update Recovery History File API” on page 342.

db2HistoryOpenScan - Open Recovery History File Scan API

Appendix D. Additional APIs and Associated Data Structures 341

db2HistoryUpdate - Update Recovery History File API
Updates the location, device type, or comment in a history file entry.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database. To update entries in the history file for a database other than the
default database, a connection to the database must be established before
calling this API.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Update Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2HistoryUpdate (
db2Uint32 version,
void * pDB2HistoryUpdateStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piNewLocation,
char * piNewDeviceType,
char * piNewComment,
db2Uint32 iEID

} db2HistoryUpdateStruct;
/* ... */

db2HistoryUpdate - Update Recovery History File API

342 Data Recovery and High Availability Guide and Reference

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2HistoryUpdateStruct.

pDB2HistoryUpdateStruct
Input. A pointer to the db2HistoryUpdateStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

piNewLocation
Input. A pointer to a string specifying a new location for the backup,
restore, or load copy image. Setting this parameter to NULL, or
pointing to zero, leaves the value unchanged.

piNewDeviceType
Input. A pointer to a string specifying a new device type for storing
the backup, restore, or load copy image. Setting this parameter to
NULL, or pointing to zero, leaves the value unchanged.

piNewComment
Input. A pointer to a string specifying a new comment to describe the
entry. Setting this parameter to NULL, or pointing to zero, leaves the
comment unchanged.

iEID Input. A unique identifier that can be used to update a specific entry
in the history file.

/* File: db2ApiDf.h */
/* API: Update Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2GenHistoryUpdate (
db2Uint32 version,
void * pDB2GenHistoryUpdateStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piNewLocation,
char * piNewDeviceType,
char * piNewComment,
db2Uint32 iEID

} db2GenHistoryUpdateStruct;
/* ... */

db2HistoryUpdate - Update Recovery History File API

Appendix D. Additional APIs and Associated Data Structures 343

REXX API Syntax

REXX API Parameters

value A compound REXX host variable containing information pertaining to
the new location of a recovery history file entry. In the following, XXX
represents the host variable name:

XXX.0 Number of elements in the variable (must be between 1 and
4)

XXX.1 OBJECT_PART (time stamp with a sequence number from 001
to 999)

XXX.2 New location for the backup or copy image (this parameter is
optional)

XXX.3 New device used to store the backup or copy image (this
parameter is optional)

XXX.4 New comment (this parameter is optional).

Usage Notes
This is an update function, and all information prior to the change is replaced
and cannot be recreated. These changes are not logged.

The history file is used for recording purposes only. It is not used directly by
the restore or the rollforward functions. During a restore operation, the
location of the backup image can be specified, and the history file is useful for
tracking this location. The information can subsequently be provided to the
backup utility (see “Backup Database API” on page 88). Similarly, if the
location of a load copy image is moved, the rollforward utility must be
provided with the new location and type of storage media. For additional
information, see “Rollforward Database API” on page 148.

See Also
“db2HistoryCloseScan - Close Recovery History File Scan API” on page 331

“db2HistoryGetEntry - Get Next Recovery History File Entry API” on
page 333

“db2HistoryOpenScan - Open Recovery History File Scan API” on page 337

“db2Prune API” on page 345.

UPDATE RECOVERY HISTORY USING :value

db2HistoryUpdate - Update Recovery History File API

344 Data Recovery and High Availability Guide and Reference

db2Prune API
Deletes entries from the recovery history file or log files from the active log
path.

Authorization
One of the following:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection
Database. To delete entries from the recovery history file for any database
other than the default database, a connection to the database must be
established before calling this API.

API Include File
db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Prune Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2Prune (
db2Uint32 version,
void * pDB2PruneStruct,
struct sqlca * pSqlca);

typedef struct
{

char * piString,
db2Uint32 iEID,
db2Uint32 iCallerAction,
db2Uint32 iOptions

} db2PruneStruct;
/* ... */

db2Prune API

Appendix D. Additional APIs and Associated Data Structures 345

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, pDB2PruneStruct.

pDB2PruneStruct
Input. A pointer to the db2PruneStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

iStringLen
Input. Specifies the length in bytes of piString.

piString
Input. A pointer to a string specifying a time stamp or a log sequence
number (LSN). The time stamp or part of a time stamp (minimum
yyyy, or year) is used to select records for deletion. All entries equal to
or less than the time stamp will be deleted. A valid time stamp must
be provided; there is no default behavior for a NULL parameter.

This parameter can also be used to pass an LSN, so that inactive logs
can be pruned.

iEID Input. Specifies a unique identifier that can be used to prune a single
entry from the history file.

iCallerAction
Input. Specifies the type of action to be taken. Valid values (defined in
db2ApiDf) are:

/* File: db2ApiDf.h */
/* API: Prune Recovery History File */
/* ... */
SQL_API_RC SQL_API_FN

db2GenPrune (
db2Uint32 version,
void * pDB2GenPruneStruct,
struct sqlca * pSqlca);

typedef struct
{

db2Uint32 iStringLen;
char * piString,
db2Uint32 iEID,
db2Uint32 iCallerAction,
db2Uint32 iOptions

} db2GenPruneStruct;
/* ... */

db2Prune API

346 Data Recovery and High Availability Guide and Reference

DB2PRUNE_ACTION_HISTORY
Remove history file entries.

DB2PRUNE_ACTION_LOG
Remove log files from the active log path.

iOptions
Input. Valid values (defined in db2ApiDf) are:

DB2PRUNE_OPTION_FORCE
Force the removal of the last backup.

DB2PRUNE_OPTION_LSNSTRING
Specify that the value of piString is an LSN, used when a
caller action of DB2PRUNE_ACTION_LOG is specified.

REXX API Syntax

REXX API Parameters

timestamp
A host variable containing a time stamp. All entries with time stamps
equal to or less than the time stamp provided are deleted from the
recovery history file.

WITH FORCE OPTION
If specified, the recovery history file will be pruned according to the
time stamp specified, even if some entries from the most recent
restore set are deleted from the file. If not specified, the most recent
restore set will be kept, even if the time stamp is less than or equal to
the time stamp specified as input.

Usage Notes
Pruning the history file does not delete the actual backup or load files. The
user must manually delete these files to free up the space they consume on
storage media.

CAUTION:
If the latest full database backup is deleted from the media (in addition to
being pruned from the history file), the user must ensure that all table
spaces, including the catalog table space and the user table spaces, are
backed up. Failure to do so may result in a database that cannot be
recovered, or the loss of some portion of the user data in the database.

See Also
“db2HistoryCloseScan - Close Recovery History File Scan API” on page 331

PRUNE RECOVERY HISTORY BEFORE :timestamp [WITH FORCE OPTION]

db2Prune API

Appendix D. Additional APIs and Associated Data Structures 347

“db2HistoryGetEntry - Get Next Recovery History File Entry API” on
page 333

“db2HistoryOpenScan - Open Recovery History File Scan API” on page 337

“db2HistoryUpdate - Update Recovery History File API” on page 342.

db2Prune API

348 Data Recovery and High Availability Guide and Reference

sqlurlog - Asynchronous Read Log API
Provides the caller with the ability to extract certain log records from the
database logs, and to query the Log Manager for current log state
information. This API can only be used with recoverable databases. A
database is recoverable if it is configured with logretain set to RECOVERY or
userexit set to ON.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

API Parameters

CallerAction
Input. Specifies the action to be performed.

SQLU_RLOG_READ
Read the database log from the starting log sequence to the
ending log sequence number and return all propagatable log
records within this range.

SQLU_RLOG_READ_SINGLE
Read a single log record (propagatable or not) identified by
the starting log sequence number.

SQLU_RLOG_QUERY
Query the database log. Results of the query will be sent back

/* File: sqlutil.h */
/* API: Asynchronous Read Log */
/* ... */
SQL_API_RC SQL_API_FN

sqlurlog (
sqluint32 CallerAction,
SQLU_LSN * pStartLsn,
SQLU_LSN * pEndLsn,
char * pLogBuffer,
sqluint32 LogBufferSize,
SQLU_RLOG_INFO * pReadLogInfo,
struct sqlca * pSqlca);

/* ... */

sqlurlog - Asynchronous Read Log API

Appendix D. Additional APIs and Associated Data Structures 349

via the SQLU_RLOG_INFO structure (see “Data Structure:
SQLU-RLOG-INFO” on page 358).

pStartLsn
Input. The starting log sequence number specifies the starting relative
byte address for the reading of the log. This value must be the start of
an actual log record.

pEndLsn
Input. The ending log sequence number specifies the ending relative
byte address for the reading of the log. This value must be greater
than startLsn, and does not need to be the end of an actual log record.

pLogBuffer
Output. The buffer where all the propagatable log records read within
the specified range are stored sequentially. This buffer must be large
enough to hold a single log record. As a guideline, this buffer should
be a minimum of 32 bytes. Its maximum size is dependent on the size
of the requested range. Each log record in the buffer is prefixed by a
six byte log sequence number (LSN), representing the LSN of the
following log record.

LogBufferSize
Output. Specifies the size, in bytes, of the log buffer.

pReadLogInfo
Output. A structure detailing information regarding the call and the
database log. For more information about this structure, see “Data
Structure: SQLU-RLOG-INFO” on page 358.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference or the SQL Reference.

Sample Programs

C \sqllib\samples\c\asynrlog.sqc

Usage Notes
If the requested action is to read the log, the caller will provide a log sequence
number range and a buffer to hold the log records. This API reads the log
sequentially, bounded by the requested LSN range, and returns log records
associated with tables having the DATA CAPTURE option CHANGES, and an
SQLU_RLOG_INFO structure with the current active log information. If the
requested action is query, the API returns an SQLU_RLOG_INFO structure
with the current active log information.

To use the Asynchronous Log Reader, first query the database log for a valid
starting LSN. Following the query call, the read log information structure
(SQLU-RLOG-INFO) will contain a valid starting LSN (in the initialLSN

sqlurlog - Asynchronous Read Log API

350 Data Recovery and High Availability Guide and Reference

member), to be used on a read call. The end of the current active log will be
in the curActiveLSN member of the read log information structure. The value
used as the ending LSN on a read can be one of the following:
v The value of the curActiveLSN
v A value greater than initialLSN
v FFFF FFFF FFFF, which is interpreted by the asynchronous log reader as the

end of the current log.

For more information about the read log information structure, see “Data
Structure: SQLU-RLOG-INFO” on page 358.

The propagatable log records read within the starting and ending LSN range
are returned in the log buffer. A log record does not contain its LSN; it is
contained in the buffer before the actual log record. Descriptions of the
various DB2 log records returned by sqlurlog can be found in the
Administrative API Reference.

To read the next sequential log record after the initial read, add 1 to the last
read LSN returned in SQLU-RLOG-INFO. Resubmit the call, with this new
starting LSN and a valid ending LSN. The next block of records is then read.
An sqlca code of SQLU_RLOG_READ_TO_CURRENT means that the log
reader has read to the end of the current active log.

sqlurlog - Asynchronous Read Log API

Appendix D. Additional APIs and Associated Data Structures 351

Data Structure: db2HistData

This structure is used to return information after a call to
“db2HistoryGetEntry - Get Next Recovery History File Entry API” on
page 333.

Table 17. Fields in the db2HistData Structure

Field Name Data Type Description

ioHistDataID char(8) An 8-byte structure identifier and
“eye-catcher” for storage dumps. The only
valid value is “SQLUHINF”. No symbolic
definition for this string exists.

oObjectPart db2Char The first 14 characters are a time stamp with
format yyyymmddhhnnss, indicating when the
operation was begun. The next 3 characters
are a sequence number. Each backup
operation can result in multiple entries in this
file when the backup image is saved in
multiple files or on multiple tapes. The
sequence number allows multiple locations to
be specified. Restore and load operations have
only a single entry in this file, which
corresponds to sequence number ’001’ of the
corresponding backup. The time stamp,
combined with the sequence number, must be
unique.

oEndTime db2Char A time stamp with format yyyymmddhhnnss,
indicating when the operation was completed.

oFirstLog db2Char The earliest log file ID (ranging from S0000000
to S9999999):

v Required to apply rollforward recovery for
an online backup

v Required to apply rollforward recovery for
an offline backup

v Applied after restoring a full database or
table space level backup that was current
when the load started.

oLastLog db2Char The latest log file ID (ranging from S0000000
to S9999999):

v Required to apply rollforward recovery for
an online backup

v Required to apply rollforward recovery to
the current point in time for an offline
backup

v Applied after restoring a full database or
table space level backup that was current
when the load operation finished (will be
the same as oFirstLog if roll forward
recovery is not applied).

Data Structure: db2HistData

352 Data Recovery and High Availability Guide and Reference

Table 17. Fields in the db2HistData Structure (continued)

Field Name Data Type Description

oID db2Char Unique backup or table identifier.

oTableQualifier db2Char Table qualifier.

oTableName db2Char Table name.

oLocation db2Char For backups and load copies, this field
indicates where the data has been saved. For
operations that require multiple entries in the
file, the sequence number defined by
oObjectPart identifies which part of the backup
is found in the specified location. For restore
and load operations, the location always
identifies where the first part of the data
restored or loaded (corresponding to sequence
’001’ for multi-part backups) has been saved.
The data in oLocation is interpreted differently,
depending on oDeviceType:

v For disk or diskette (D or K), a fully
qualified file name

v For tape (T), a volume label

v For TSM (A), the server name

v For user exit or other (U or O), free form
text.

oComment db2Char Free form text comment.

oCommandText db2Char Command text, or DDL.

oLastLSN SQLU_LSN Last log sequence number.

oEID Structure Unique entry identifier.

poEventSQLCA Structure Result sqlca of the recorded event. For
information about the sqlca structure, see the
Administrative API Reference and the SQL
Reference.

poTablespace db2Char A list of table space names.

ioNumTablespaces db2Uint32 Number of entries in the poTablespace list. Each
table space backup contains one or more table
spaces. Each table space restore operation
replaces one or more table spaces. If this field
is not zero (indicating a table space level
backup or restore), the next lines in this file
contain the name of the table space backed up
or restored, represented by an 18-character
string. One table space name appears on each
line.

oOperation char See Table 18 on page 354.

oObject char Granularity of the operation: D for full
database, P for table space, and T for table.

oOptype char See Table 19 on page 355.

Data Structure: db2HistData

Appendix D. Additional APIs and Associated Data Structures 353

Table 17. Fields in the db2HistData Structure (continued)

Field Name Data Type Description

oStatus char Entry status: D for deleted (future use), E for
expired, I for inactive, N for not yet
committed, and Y for committed or active.

oDeviceType char Device type. This field determines how the
oLocation field is interpreted: A for TSM, C for
client, D for disk, K for diskette, L for local, O
for other (for other vendor device support), P
for pipe, S for server, T for tape, and U for user
exit.

Table 18. Valid oOperation Values in the db2HistData Structure

Value Description C Definition COBOL/FORTRAN Definition

A add table space DB2HISTORY_OP_ADD_
TABLESPACE

DB2HIST_OP_ADD_
TABLESPACE

B backup DB2HISTORY_OP_BACKUP DB2HIST_OP_BACKUP

C load copy DB2HISTORY_OP_LOAD_COPY DB2HIST_OP_LOAD_COPY

D dropped table DB2HISTORY_OP_DROPPED_
TABLE

DB2HIST_OP_DROPPED_TABLE

F rollforward DB2HISTORY_OP_ROLLFWD DB2HIST_OP_ROLLFWD

G reorganize table DB2HISTORY_OP_REORG DB2HIST_OP_REORG

L load DB2HISTORY_OP_LOAD DB2HIST_OP_LOAD

N rename table space DB2HISTORY_OP_REN_
TABLESPACE

DB2HIST_OP_REN_
TABLESPACE

O drop table space DB2HISTORY_OP_DROP_
TABLESPACE

DB2HIST_OP_DROP_
TABLESPACE

Q quiesce DB2HISTORY_OP_QUIESCE DB2HIST_OP_QUIESCE

R restore DB2HISTORY_OP_RESTORE DB2HIST_OP_RESTORE

S run statistics DB2HISTORY_OP_RUNSTATS DB2HIST_OP_RUNSTATS

T alter table space DB2HISTORY_OP_ALT_
TABLESPACE

DB2HIST_OP_ALT_TBS

U unload DB2HISTORY_OP_UNLOAD DB2HIST_OP_UNLOAD

Data Structure: db2HistData

354 Data Recovery and High Availability Guide and Reference

Table 19. Valid oOptype Values in the db2HistData Structure

oOperation oOptype Description C/COBOL/FORTRAN Definition

B F offline DB2HISTORY_OPTYPE_OFFLINE

N online DB2HISTORY_OPTYPE_ONLINE

I incremental
offline

DB2HISTORY_OPTYPE_INCR_
OFFLINE

O incremental
online

DB2HISTORY_OPTYPE_INCR_
ONLINE

D delta offline DB2HISTORY_OPTYPE_DELTA_
OFFLINE

E delta online DB2HISTORY_OPTYPE_DELTA_
ONLINE

F E end of logs DB2HISTORY_OPTYPE_EOL

P point in time DB2HISTORY_OPTYPE_PIT

L I insert DB2HISTORY_OPTYPE_INSERT

R replace DB2HISTORY_OPTYPE_REPLACE

Q S quiesce share DB2HISTORY_OPTYPE_SHARE

U quiesce update DB2HISTORY_OPTYPE_UPDATE

X quiesce exclusive DB2HISTORY_OPTYPE_EXCL

Z quiesce reset DB2HISTORY_OPTYPE_RESET

R F offline DB2HISTORY_OPTYPE_OFFLINE

N online DB2HISTORY_OPTYPE_ONLINE

I incremental
offline

DB2HISTORY_OPTYPE_INCR_
OFFLINE

O incremental
online

DB2HISTORY_OPTYPE_INCR_
ONLINE

T C add containers DB2HISTORY_OPTYPE_ADD_CONT

R rebalance DB2HISTORY_OPTYPE_REB

Table 20. Fields in the db2Char Structure

Field Name Data Type Description

pioData char A pointer to a character data buffer. If NULL,
no data will be returned.

iLength db2Uint32 Input. The size of the pioData buffer.

oLength db2Uint32 Output. The number of valid characters of
data in the pioData buffer.

Table 21. Fields in the db2HistoryEID Structure

Field Name Data Type Description

ioNode SQL_PDB_NODE_TYPE Node number.

ioHID db2Uint32 Local history file entry ID.

Data Structure: db2HistData

Appendix D. Additional APIs and Associated Data Structures 355

Language Syntax
C Structure

/* File: db2ApiDf.h */
/* ... */
typedef SQL_STRUCTURE db2HistoryData
{

char ioHistDataID[8];
db2Char oObjectPart;
db2Char oEndTime;
db2Char oFirstLog;
db2Char oLastLog;
db2Char oID;
db2Char oTableQualifier;
db2Char oTableName;
db2Char oLocation;
db2Char oComment;
db2Char oCommandText;
SQLU_LSN oLastLSN;
db2HistoryEID oEID;
struct sqlca * poEventSQLCA;
db2Char * poTablespace;
db2Uint32 ioNumTablespaces;
char oOperation;
char oObject;
char oOptype;
char oStatus;
char oDeviceType

} db2HistoryData;

typedef SQL_STRUCTURE db2Char
{

char * pioData;
db2Uint32 ioLength

} db2Char;

typedef SQL_STRUCTURE db2HistoryEID
{

SQL_PDB_NODE_TYPE ioNode;
db2Uint32 ioHID

} db2HistoryEID;
/* ... */

Data Structure: db2HistData

356 Data Recovery and High Availability Guide and Reference

Data Structure: SQLU-LSN

This union, used by “sqlurlog - Asynchronous Read Log API” on page 349,
contains the definition of the log sequence number. A log sequence number
(LSN) represents a relative byte address within the database log. All log
records are identified by this number. It represents the log record’s byte offset
from the beginning of the database log.

Table 22. Fields in the SQLU-LSN Union

Field Name Data Type Description

lsnChar Array of UNSIGNED
CHAR

Specifies the 6-member character array log
sequence number.

lsnWord Array of UNSIGNED
SHORT

Specifies the 3-member short array log
sequence number.

Language Syntax
C Structure

typedef union SQLU_LSN
{
unsigned char lsnChar [6] ;
unsigned short lsnWord [3] ;
} SQLU_LSN;

Data Structure: SQLU-LSN

Appendix D. Additional APIs and Associated Data Structures 357

Data Structure: SQLU-RLOG-INFO

This structure contains information about the status of calls to the “sqlurlog -
Asynchronous Read Log API” on page 349, and the database log.

Table 23. Fields in the SQLU-RLOG-INFO Structure

Field Name Data Type Description

initialLSN SQLU_LSN Specifies the LSN value of the first log record
that is written after the first database
CONNECT statement is issued. For more
information, see “Data Structure: SQLU-LSN”
on page 357.

firstReadLSN SQLU_LSN Specifies the LSN value of the first log record
read.

lastReadLSN SQLU_LSN Specifies the LSN value of the last log record
read.

curActiveLSN SQLU_LSN Specifies the LSN value of the current (active)
log.

logRecsWritten sqluint32 Specifies the number of log records written to
the buffer.

logBytesWritten sqluint32 Specifies the number of bytes written to the
buffer.

Language Syntax
C Structure

typedef SQL_STRUCTURE SQLU_RLOG_INFO
{
SQLU_LSN initialLSN ;
SQLU_LSN firstReadLSN ;
SQLU_LSN lastReadLSN ;
SQLU_LSN curActiveLSN ;
sqluint32 logRecsWritten ;
sqluint32 logBytesWritten ;
} SQLU_RLOG_INFO;

Data Structure: SQLU-RLOG-INFO

358 Data Recovery and High Availability Guide and Reference

Appendix E. Recovery Sample Programs

Sample Program with No Embedded SQL (backrest.c)

The following sample program shows how to use DB2 backup and restore
APIs to:
v Back up a database
v Restore the database
v Rollforward recover the database

For detailed information about the SAMPLE database, see the SQL Reference.

The source file for this sample program (backrest.c) can be found in the
\sqllib\samples\c directory on Windows operating systems and OS/2, and in
the /sqllib/samples/c directory on UNIX based systems. It contains a
number of DB2 APIs. The makefile, located in the same directory, contains the
commands to build this and other sample programs. For general information
about creating applications containing DB2 administrative APIs, and detailed
information about compile and link options, see the Application Building Guide.
To build the sample program backrest from the source file backrest.c on
Windows NT or Windows 2000:
1. Copy the files backrest.c, makefile, utilapi.c, and utilapi.h to a

working directory.
2. If the database manager is not running, issue the db2start command from

a DB2 command window. To open a CLP-enabled DB2 window, and
initialize the DB2 command line environment on the Windows operating
system, issue db2cmd from a command prompt.

3. Enter nmake backrest. The following files are generated:
backrest.exe
backrest.ilk
backrest.obj
backrest.pdb
utilapi.obj

To run the sample program (executable file), enter:
backrest database userID password

For example:
backrest sample db2admin db2admin

The following is an example of the output that this program returns:

© Copyright IBM Corp. 2001 359

This is sample program : backrest.c

NOTE: Ensure the database is not in use prior to running this program.

Updating the sample database configuration parameter LOGRETAIN
to 'ON' to enable rollforward recovery.

Backing up the 'sample' database.
The database has been successfully backed up.

Updating the sample database configuration parameter LOGRETAIN
to 'OFF'.

Restoring the database 'sample' as 'TESTBACK' (1st pass).
Should get returned value = SQLUD_INACCESSABLE_CONTAINER.
SQLUD_INACCESSABLE_CONTAINER is returned.

Need to SET TABLESPACES CONTAINERS
Tablespace container information for tablespace 1 obtained.
Tablespace containers have been set for tablespace 1.

Restoring the database 'sample' as 'TESTBACK' (2nd pass).
Database sample has been restored as 'TESTBACK'.

The database 'TESTBACK' has been successfully rolled forward.

The database 'TESTBACK' has been successfully dropped.

Following is the source listing for the sample program:
/***
**
** Source File Name = backrest.c
**
** Licensed Materials - Property of IBM
**
** (C) COPYRIGHT International Business Machines Corp. 1995, 2000
** All Rights Reserved.
**
** US Government Users Restricted Rights - Use, duplication or
** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
**
** PURPOSE :
** an example showing how to use BACKUP & RESTORE APIs in order to:
** - backup a database
** - restore a database
** - roll forward database to return the database to a state it was
** in prior to the damage...
**
** APIs USED :
** BACKUP DATABASE sqlubkp()
** RESTORE DATABASE sqlurestore()
** UPDATE DATABASE CONFIGURATION sqlfudb()
** GET TABLESPACE CONTAINER QUERY sqlbtcq()
** SET TABLESPACE CONTAINERS sqlbstsc()

Sample Program with No Embedded SQL (backrest.c)

360 Data Recovery and High Availability Guide and Reference

** ROLLFORWARD DATABASE sqluroll()
**
** STRUCTURES USED :
** sqlu_tablespace_bkrst_list
** SQLB_TBSCONTQRY_DATA
** sqlu_media_list
** rfwd_input
** rfwd_output
** sqlurf_info
** sqlca
**
** OTHER FUNCTIONS DECLARED :
** 'C' COMPILER LIBRARY :
** stdio.h - printf
**
** internal :
**
** external :
** check_error : Checks for SQLCODE error, and prints out any
** [in UTIL.C] related information available.
** This procedure is located in the UTIL.C file.
**
** EXTERNAL DEPENDENCIES :
** - Ensure existence of database for precompile purposes.
** - Compile and link with the IBM Cset++ compiler (AIX and OS/2)
** or the Microsoft Visual C++ compiler (Windows)
** or the compiler supported on your platform.
**
** For more information about these samples see the README file.
**
** For more information on programming in C, see the:
** - "Programming in C and C++" section of the Application Development Guide
** For more information on building C applications, see the:
** - "Building C Applications" section of the Application Building Guide.
**
** For more information on the SQL language see the SQL Reference.
**
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlutil.h>
#include <sqlenv.h>
#include "utilapi.h"

/* You can change the following path to another directory for which */
/* you have permission. create the "backup" directory in the same path. */

#define TEMPDIR "."

int main (int argc, char *argv[]) {

/* Variables for the BACKUP API */
sqluint32 buff_size;

Sample Program with No Embedded SQL (backrest.c)

Appendix E. Recovery Sample Programs 361

sqluint32 num_buff;
struct sqlu_tablespace_bkrst_list *tablespace_list;
struct SQLB_TBSCONTQRY_DATA *cont;
struct sqlca sqlca;
struct sqlu_media_entry media_entry;
struct sqlu_media_list media_list;
char applid[SQLU_APPLID_LEN+1];
char timestamp[SQLU_TIME_STAMP_LEN+1];
char *target_path;

sqluint32 tsc_id;
sqluint32 num_cont;

/* variables for the Update Database Configuration API */
struct sqlfupd itemList;
short log_retain;

/* variables for the ROLLFORWARD API */
struct rfwd_input rfwdInput;
char dbAlias[] = "TESTBACK";
char overFlowLogPath[SQL_PATH_SZ] = TEMPDIR;

struct rfwd_output rfwdOutput;
sqlint32 numReplies;
struct sqlurf_info nodeInfo;

printf ("\nThis is sample program : backrest.c\n\n");

printf ("NOTE: Ensure the database is not in use prior to running
this program.\n\n");

if (argc != 4) {
printf ("\nUSAGE: backrest database userID password\n\n");
return 1;

} /* endif */

/* Altering the default Database Configuration to enable rollforward
recovery of the TESTBACK database. */

log_retain = 1;
itemList.token = SQLF_DBTN_LOG_RETAIN;

itemList.ptrvalue = (char *) &log_retain;

printf ("Updating the %s database configuration parameter
LOGRETAIN \n", argv[1]);
printf ("to 'ON' to enable rollforward recovery.\n\n");

/**\
* UPDATE DATABASE CONFIGURATION API called *
**/
sqlfudb(argv[1], 1, &itemList, &sqlca);
API_SQL_CHECK("updating the database configuration");

Sample Program with No Embedded SQL (backrest.c)

362 Data Recovery and High Availability Guide and Reference

/* Initialize the BACKUP API variables */
buff_size = 16;
num_buff = 1;
tablespace_list = NULL;
media_list.media_type = 'L';
media_list.sessions = 1;

strcpy (media_entry.media_entry, TEMPDIR);

media_list.target.media = &media_entry;
printf ("Backing up the '%s' database.\n", argv[1]);
/*****************\
* BACKUP DATABASE *
*****************/
sqlubkp (argv[1],

buff_size,
SQLUB_OFFLINE,
SQLUB_FULL,
SQLUB_BACKUP,
applid,
timestamp,
num_buff,
tablespace_list,
&media_list,
argv[2],
argv[3],
NULL,
0,
NULL,
1,
NULL,
NULL,
NULL,
&sqlca);

API_SQL_CHECK("backing up the database");
printf ("The database has been successfully backed up.\n\n");

/* Altering the default Database Configuration to disable rollforward
recovery of the TESTBACK database. */

log_retain = 0;
itemList.token = SQLF_DBTN_LOG_RETAIN;
itemList.ptrvalue = (char *) &log_retain;

printf ("Updating the %s database configuration parameter
LOGRETAIN \n", argv[1]);
printf ("to 'OFF'.\n\n");

/**\

Sample Program with No Embedded SQL (backrest.c)

Appendix E. Recovery Sample Programs 363

* UPDATE DATABASE CONFIGURATION API called *
**/
sqlfudb(argv[1], 1, &itemList, &sqlca);
API_SQL_CHECK("updating the database configuration");

/* Initialize the variables for the RESTORE API */
buff_size = 1024;
target_path = NULL;
printf ("Restoring the database '%s' as 'TESTBACK' (1st pass).\n", argv[1]);
printf ("Should get returned value = SQLUD_INACCESSABLE_CONTAINER.\n");
/******************\
* RESTORE DATABASE *
******************/
sqlurestore(argv[1],

"TESTBACK",
buff_size,
SQLUD_ROLLFWD,
SQLUD_DATALINK,
SQLUD_FULL,
SQLUD_OFFLINE,
SQLUD_RESTORE_STORDEF,
applid,
timestamp,
target_path,
num_buff,
NULL,
tablespace_list,
&media_list,
argv[2],
argv[3],
NULL,
0,
NULL,
1,
NULL,
NULL,
NULL,
&sqlca);

if (sqlca.sqlcode != SQLUD_INACCESSABLE_CONTAINER)
API_SQL_CHECK("restoring database");

printf ("SQLUD_INACCESSABLE_CONTAINER is returned.\n\n");
printf ("Need to SET TABLESPACES CONTAINERS\n");
/* Set the containers structure to a new list of containers */
tsc_id = 1;
cont = (struct SQLB_TBSCONTQRY_DATA *) malloc

(sizeof(struct SQLB_TBSCONTQRY_DATA));

/********************************\
* GET TABLESPACE CONTAINER QUERY *
********************************/
sqlbtcq (&sqlca, tsc_id, &num_cont, &cont);

Sample Program with No Embedded SQL (backrest.c)

364 Data Recovery and High Availability Guide and Reference

API_SQL_CHECK("GET TABLESPACE CONTAINER QUERY");
printf ("Tablespace container information for tablespace 1 obtained.\n");
/***************************\
* SET TABLESPACE CONTAINERS *
***************************/
sqlbstsc (&sqlca,

SQLB_SET_CONT_INIT_STATE,
tsc_id,
num_cont,
cont);

API_SQL_CHECK("SET TABLESPACE CONTAINERS");
printf ("Tablespace containers have been set for tablespace 1.\n\n");

printf ("Restoring the database '%s' as 'TESTBACK' (2nd pass).\n", argv[1]);
/******************\
* RESTORE DATABASE *
******************/
sqlurestore (argv[1],

"TESTBACK",
buff_size,
SQLUD_ROLLFWD,
SQLUD_DATALINK,
SQLUD_FULL,
SQLUD_OFFLINE,
SQLUD_CONTINUE,
applid,
timestamp,
target_path,
num_buff,
NULL,
tablespace_list,
&media_list,
argv[2],
argv[3],
NULL,
0,
NULL,
1,
NULL,
NULL,
NULL,
&sqlca);

API_SQL_CHECK("restoring database 2");
printf ("Database %s has been restored as 'TESTBACK'.\n\n", argv[1]);

/**********************\
* ROLLFORWARD DATABASE *
**********************/
rfwdInput.version=SQLUM_RFWD_VERSION;
rfwdInput.pDbAlias=dbAlias;
rfwdInput.CallerAction=SQLUM_ROLLFWD;
rfwdInput.pStopTime=SQLUM_INFINITY_TIMESTAMP;
rfwdInput.pUserName=argv[2];
rfwdInput.pPassword=argv[3];

Sample Program with No Embedded SQL (backrest.c)

Appendix E. Recovery Sample Programs 365

rfwdInput.pOverflowLogPath=overFlowLogPath;
rfwdInput.NumChngLgOvrflw=0;
rfwdInput.pChngLogOvrflw=NULL;
rfwdInput.ConnectMode=SQLUM_OFFLINE;
rfwdInput.pTablespaceList=NULL;
rfwdInput.AllNodeFlag= SQLURF_ALL_NODES;
rfwdInput.NumNodes=0;
rfwdInput.pNodeList=NULL;
rfwdInput.NumNodeInfo=1;
rfwdInput.DlMode=0;
rfwdInput.pReportFile=NULL;
rfwdInput.pDroppedTblID=NULL;
rfwdInput.pExportDir=NULL;

rfwdOutput.pApplicationId=applid;
rfwdOutput.pNumReplies=&numReplies;
rfwdOutput.pNodeInfo=&nodeInfo;

sqluroll(&rfwdInput,
&rfwdOutput,
&sqlca);

API_SQL_CHECK("rolling database forward");
printf ("The database 'TESTBACK' has been successfully rolled
forward.\n\n", argv[1]);

/***************\
* DROP DATABASE *
***************/
sqledrpd ("TESTBACK",

&sqlca);
API_SQL_CHECK("DROP DATABASE");
printf ("The database 'TESTBACK' has been successfully dropped.\n");

return 0;
}

Sample Program with Embedded SQL (dbrecov.sqc)

The following sample program shows how to use DB2 backup and restore
APIs to:
v Back up a database
v Restore the database
v Rollforward recover the database

For detailed information about the SAMPLE database, see the SQL Reference.

Note: The dbrecov sample files are not installed with DB2 Version 7.2. They
are only available for download from the Web.

Sample Program with No Embedded SQL (backrest.c)

366 Data Recovery and High Availability Guide and Reference

To download the required files for the dbrecov sample program:
1. Go to http://www.ibm.com/software/data/db2/udb/ad/v7/abg.html.
2. Under “Recent Updates”, click on “dbrecov sample files by platform”.
3. On the page that appears, choose the link to download the files for your

platform. For Windows operating systems and OS/2, the files are
contained in a zipped executable file; for UNIX based systems, the files are
contained in a tar.gz file.

CAUTION:
Do not run this executable in the directory where your existing DB2 UDB
Version 7 sample files reside, because the new utility files will overwrite
existing versions of the DB2 UDB Version 7 utility files. The new utility
files are not compatible with other sample programs.

The source file for this sample program (dbrecov.sqc) contains both DB2 APIs
and embedded SQL calls. For general information about creating applications
containing DB2 administrative APIs, and detailed information about compile
and link options, see the Application Building Guide.

Following are instructions for building and running the dbrecov program on
the Windows operating system. To build the program on other supported
operating systems, see the README file that is included among the sample
files.
1. Run the downloaded executable file, dbrecov_win.exe, in your working

directory. This will extract the following files:
dbrecov.sqc - Embedded SQL source file for dbrecov program
utilapi.c - Error-checking utility file for DB2 API programs
utilapi.h - Header file for utilapi.c
utilemb.sqc - Error-checking utility file for embedded SQL programs
utilemb.h - Header file for utilemb.sqc
bldmapp.bat - Builds Microsoft Visual C++ application programs
bldvapp.bat - Builds VisualAge C++ application programs
embprep.bat - Precompiles and binds embedded SQL programs
README - Contains information about the program files

2. If the database manager is not running, issue the db2start command from
a DB2 command window. To open a CLP-enabled DB2 window, and
initialize the DB2 command line environment on the Windows operating
system, issue db2cmd from a command prompt.

3. Enter bldmapp dbrecov, or bldvapp dbrecov, depending on your compiler.
The following files are generated:

dbrecov.exe
dbrecov.ilk
dbrecov.c
dbrecov.obj

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 367

dbrecov.bnd
dbrecov.pdb
utilemb.c
utilemb.obj

To run the sample program (executable file), enter:
dbrecov

The output will vary depending on your operating system environment. The
following is an example of the output that this program returns on a
Windows system:
THIS SAMPLE SHOWS HOW TO RECOVER A DATABASE.

USE THE DB2 API:
sqlfxdb -- Get Database Configuration

TO GET THE DATABASE CONFIGURATION AND DETERMINE
THE SERVER WORKING PATH.

NOTE: Backup images will be created on the server
in the directory D:\DB2,
and will not be deleted by the program.

*** PRUNE THE RECOVERY HISTORY FILE ***

USE THE DB2 API:
db2Prune -- Prune Recovery History File

AND THE SQL STATEMENTS:
CONNECT
CONNECT RESET

TO PRUNE THE RECOVERY HISTORY FILE.

Connecting to 'sample' database...
Connected to 'sample' database.

Prune the recovery history file for 'sample' database.

Disconnecting from 'sample' database...
Disconnected from 'sample' database.

*** BACK UP AND RESTORE A DATABASE ***

USE THE DB2 APIs:
sqlfudb -- Update Database Configuration
sqlubkp -- Backup Database
sqlurestore -- Restore Database

TO BACK UP AND RESTORE A DATABASE.

Update 'sample' database configuration:
- Disable the database configuration parameter LOGRETAIN

Sample Program with Embedded SQL (dbrecov.sqc)

368 Data Recovery and High Availability Guide and Reference

i.e., set LOGRETAIN = OFF/NO

Backing up the 'sample' database...
Backup finished.

- backup image size : 9 MB
- backup image path : D:\DB2
- backup image time stamp: 20010506162032

Restoring a database ...
- source image alias : sample
- source image time stamp: 20010506162032
- target database : sample

-- The following warning report is expected! --
---- warning report ---------------------------

application message = database restore -- start
line = 506
file = dbrecov.sqc
SQLCODE = 2539

SQL2539W Warning! Restoring to an existing database that is the same as the
backup image database. The database files will be deleted.

---- end warning report ----------------------

Continuing the restore operation...

Restore finished.

*** REDIRECTED RESTORE ***

USE THE DB2 APIs:
sqlfudb -- Update Database Configuration
sqlubkp -- Backup Database
sqlecrea -- Create Database
sqlurestore -- Restore Database
sqlbmtsq -- Tablespace Query
sqlbtcq -- Tablespace Container Query
sqlbstsc -- Set Tablespace Containers
sqlefmem -- Free Memory
sqledrpd -- Drop Database

TO BACK UP AND DO A REDIRECTED RESTORE OF A DATABASE.

Update 'sample' database configuration:
- Disable the database configuration parameter LOGRETAIN

i.e., set LOGRETAIN = OFF/NO

Backing up the 'sample' database...
Backup finished.

- backup image size : 9 MB
- backup image path : D:\DB2
- backup image time stamp: 20010506162125

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 369

Restoring a database ...
- source image alias : sample
- source image time stamp: 20010506162125
- target database : RRDB

-- The following warning report is expected! --
---- warning report ---------------------------

application message = database restore -- start
line = 776
file = dbrecov.sqc
SQLCODE = 1277

SQL1277N Restore has detected that one or more table space containers are
inaccessible, or has set their state to 'storage must be defined'.

---- end warning report ----------------------

Continuing the restore operation...

Find and redefine inaccessible containers.

Redefine inaccessible container:
- table space name: SYSCATSPACE
- default container name: D:\DB2\NODE0000\SQL00003\SQLT0000.0
- container type: path
- new container name: D:\DB2\SQLT0000.0

Redefine inaccessible container:
- table space name: TEMPSPACE1
- default container name: D:\DB2\NODE0000\SQL00003\SQLT0001.0
- container type: path
- new container name: D:\DB2\SQLT0001.0

Redefine inaccessible container:
- table space name: USERSPACE1
- default container name: D:\DB2\NODE0000\SQL00003\SQLT0002.0
- container type: path
- new container name: D:\DB2\SQLT0002.0

Restore finished.

Drop the 'RRDB' database.

*** ROLLFORWARD RECOVERY ***

USE THE DB2 APIs:
sqlfudb -- Update Database Configuration
sqlubkp -- Backup Database
sqlecrea -- Create Database
sqlurestore -- Restore Database
sqluroll -- Rollforward Database

Sample Program with Embedded SQL (dbrecov.sqc)

370 Data Recovery and High Availability Guide and Reference

sqledrpd -- Drop Database
TO BACK UP, RESTORE, AND ROLL A DATABASE FORWARD.

Update 'sample' database configuration:
- Enable the configuration parameter LOGRETAIN

i.e., set LOGRETAIN = RECOVERY/YES

Backing up the 'sample' database...
Backup finished.

- backup image size : 9 MB
- backup image path : D:\DB2
- backup image time stamp: 20010506162223

Restoring a database ...
- source image alias : sample
- source image time stamp: 20010506162223
- target database : RFDB

Restore finished.

Rolling 'RFDB' database forward ...
Rollforward finished.

Drop the 'RFDB' database.

*** ASYNCHRONOUS READ LOG ***

USE THE DB2 APIs:
sqlfudb -- Update Database Configuration
sqlubkp -- Backup Database
sqlurlog -- Asynchronous Read Log

AND THE SQL STATEMENTS:
CONNECT
ALTER TABLE
COMMIT
INSERT
DELETE
ROLLBACK
CONNECT RESET

TO READ LOG RECORDS FOR THE CURRENT CONNECTION.

Update 'sample' database configuration:
- Enable the database configuration parameter LOGRETAIN

i.e., set LOGRETAIN = RECOVERY/YES

Backing up the 'sample' database...
Backup finished.

- backup image size : 9 MB
- backup image path : D:\DB2
- backup image time stamp: 20010506162247

Connecting to 'sample' database...
Connected to 'sample' database.

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 371

Invoke the following SQL statements:
ALTER TABLE emp_resume DATA CAPTURE CHANGES;
COMMIT;
INSERT INTO emp_resume

VALUES('000777', 'ascii', 'This is a new resume.');
('777777', 'ascii', 'This is another new resume');

COMMIT;
DELETE FROM emp_resume WHERE empno = '000777';
DELETE FROM emp_resume WHERE empno = '777777';
COMMIT;
DELETE FROM emp_resume WHERE empno = '000140';
ROLLBACK;
ALTER TABLE emp_resume DATA CAPTURE NONE;
COMMIT;

Start reading database log.

-- The following warning report is expected! --
---- warning report ---------------------------

application message = database log info -- get
line = 1457
file = dbrecov.sqc
SQLCODE = 2653

SQL2653W A Restore, Forward or Crash Recovery may have reused log sequence
number ranges. Reason code "1".

---- end warning report ----------------------

Record type: Normal
component ID: DMS log record
function ID: Alter Table Attribute

Propagation attribute is changed to: ON

Record type: Normal
component ID: DMS log record
function ID: Update Record

oldRID: 2
old subrecord length: 76
old subrecord offset: 0
subrecord type: Updatable, Internal control
newRID: 2
new subrecord length: 76
new subrecord offset: 2916
subrecord type: Updatable, Internal control

Record type: Local pending list
UTC transaction committed (in seconds since 01/01/70): 989180591
authorization ID of the application: MELNYK

Record type: Normal
component ID: DMS log record
function ID: Insert Record

Sample Program with Embedded SQL (dbrecov.sqc)

372 Data Recovery and High Availability Guide and Reference

RID: 12
subrecord length: 88
subrecord offset: 486
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
30 30 30 37 37 37 0F 00 05 00 *000777....*
14 00 3C 00 00 61 73 63 69 69 *.....ascii*
49 06 01 00 00 00 00 00 15 00 *I.........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 3C 00 01 00 00 00 15 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*

Record type: Normal
component ID: DMS log record
function ID: Insert Record

RID: 13
subrecord length: 88
subrecord offset: 398
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
37 37 37 37 37 37 0F 00 05 00 *777777....*
14 00 3C 00 00 61 73 63 69 69 *.....ascii*
49 06 01 00 00 00 00 00 1A 00 *I.........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 3C 00 01 00 00 00 1A 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 01 00 00 00 *..........*

Record type: Normal commit
UTC transaction committed (in seconds since 01/01/70): 989180591
authorization ID of the application: MELNYK

Record type: Normal
component ID: DMS log record
function ID: Delete Record

RID: 12
subrecord length: 88
subrecord offset: 0
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
30 30 30 37 37 37 0F 00 05 00 *000777....*
14 00 3C 00 00 61 73 63 69 69 *.....ascii*
49 06 01 00 00 00 00 00 15 00 *I.........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 3C 00 01 00 00 00 15 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 373

Record type: Normal
component ID: DMS log record
function ID: Delete Record

RID: 13
subrecord length: 88
subrecord offset: 0
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
37 37 37 37 37 37 0F 00 05 00 *777777....*
14 00 3C 00 00 61 73 63 69 69 *.....ascii*
49 06 01 00 00 00 00 00 1A 00 *I.........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 3C 00 01 00 00 00 1A 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 01 00 00 00 *..........*

Record type: Normal commit
UTC transaction committed (in seconds since 01/01/70): 989180591
authorization ID of the application: MELNYK

Record type: Normal
component ID: DMS log record
function ID: Delete Record

RID: 6
subrecord length: 88
subrecord offset: 0
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
30 30 30 31 34 30 0F 00 05 00 *000140....*
14 00 3C 00 00 61 73 63 69 69 *.....ascii*
49 06 01 00 00 00 00 00 24 05 *I.........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 01 3C 00 02 00 00 00 24 05 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 14 00 00 00 *..........*

Record type: Normal
component ID: DMS log record
function ID: Delete Record

RID: 7
subrecord length: 89
subrecord offset: 0
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
30 30 30 31 34 30 0F 00 06 00 *000140....*
15 00 3C 00 00 73 63 72 69 70 *.....scrip*
74 49 06 01 00 00 00 00 00 56 *tI.......V*
07 00 00 00 00 00 00 00 00 00 *..........*
00 00 01 3C 00 02 00 00 00 56 *.........V*
07 00 00 00 00 00 00 00 00 00 *..........*

Sample Program with Embedded SQL (dbrecov.sqc)

374 Data Recovery and High Availability Guide and Reference

00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 16 00 00 *..........*
00 *. *

Record type: Compensation
component ID: DMS log record
function ID: Undo Delete Record

RID: 7
subrecord length: 89
subrecord offset: 397
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
30 30 30 31 34 30 0F 00 06 00 *000140....*
15 00 3C 00 00 73 63 72 69 70 *.....scrip*
74 49 06 01 00 00 00 00 00 56 *tI.......V*
07 00 00 00 00 00 00 00 00 00 *..........*
00 00 01 3C 00 02 00 00 00 56 *.........V*
07 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 16 00 00 *..........*
00 *. *

Record type: Compensation
component ID: DMS log record
function ID: Undo Delete Record

RID: 6
subrecord length: 88
subrecord offset: 309
subrecord type: Updatable, Formatted user data
user data fixed length: 15
user data:
30 30 30 31 34 30 0F 00 05 00 *000140....*
14 00 3C 00 00 61 73 63 69 69 *.....ascii*
49 06 01 00 00 00 00 00 24 05 *I.........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 01 3C 00 02 00 00 00 24 05 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 00 00 00 00 *..........*
00 00 00 00 00 00 14 00 00 00 *..........*

Record type: Normal abort
authorization ID of the application: MELNYK

Record type: Normal
component ID: DMS log record
function ID: Alter Table Attribute

Propagation attribute is changed to: OFF

Record type: Local pending list
UTC transaction committed (in seconds since 01/01/70): 989180591
authorization ID of the application: MELNYK

Disconnecting from 'sample' database...
Disconnected from 'sample' database.

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 375

*** READ A DATABASE RECOVERY HISTORY FILE ***

USE THE DB2 APIs:
db2HistoryOpenScan -- Open Recovery History File Scan
db2HistoryGetEntry -- Get Next Recovery History File Entry
db2HistoryCloseScan -- Close Recovery History File Scan

TO READ A DATABASE RECOVERY HISTORY FILE.

Open recovery history file for 'sample' database.

Read entry number 0.

Display entry number 0.
object part: 20010506162032001
end time: 200105061620
first log: S0000000
last log: S0000000
ID:
table qualifier:
table name:
location: D:\DB2\SAMPLE.0\DB2\NODE0000\CATN0000\20010506
comment: DB2 BACKUP SAMPLE OFFLINE
command text:
history file entry ID: 48
table spaces:

SYSCATSPACE
USERSPACE1

type of operation: B
granularity of the operation: D
operation type: F
entry status: A
device type: D
SQLCA:

sqlcode: 0
sqlstate:
message:

Read entry number 1.

Display entry number 1.
object part: 20010506162058001
end time: 200105061621
first log: S0000000
last log: S0000000
ID: 20010506162032
table qualifier:
table name:
location: D:\DB2\SAMPLE.0\DB2\NODE0000\CATN0000\20010506
comment: DB2 RESTORE SAMPLE NO RF
command text:
history file entry ID: 49
table spaces:

Sample Program with Embedded SQL (dbrecov.sqc)

376 Data Recovery and High Availability Guide and Reference

SYSCATSPACE
USERSPACE1

type of operation: R
granularity of the operation: D
operation type: F
entry status: A
device type: D
SQLCA:

sqlcode: 0
sqlstate:
message:

Read entry number 2.

Display entry number 2.
object part: 20010506162125001
end time: 200105061622
first log: S0000000
last log: S0000000
ID:
table qualifier:
table name:
location: D:\DB2\SAMPLE.0\DB2\NODE0000\CATN0000\20010506
comment: DB2 BACKUP SAMPLE OFFLINE
command text:
history file entry ID: 50
table spaces:

SYSCATSPACE
USERSPACE1

type of operation: B
granularity of the operation: D
operation type: F
entry status: A
device type: D
SQLCA:

sqlcode: 0
sqlstate:
message:

Read entry number 3.

Display entry number 3.
object part: 20010506162223001
end time: 200105061622
first log: S0000000
last log: S0000000
ID:
table qualifier:
table name:
location: D:\DB2\SAMPLE.0\DB2\NODE0000\CATN0000\20010506
comment: DB2 BACKUP SAMPLE OFFLINE
command text:
history file entry ID: 51
table spaces:

SYSCATSPACE

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 377

USERSPACE1
type of operation: B
granularity of the operation: D
operation type: F
entry status: A
device type: D
SQLCA:

sqlcode: 0
sqlstate:
message:

Read entry number 4.

Display entry number 4.
object part: 20010506162247001
end time: 200105061623
first log: S0000000
last log: S0000000
ID:
table qualifier:
table name:
location: D:\DB2\SAMPLE.0\DB2\NODE0000\CATN0000\20010506
comment: DB2 BACKUP SAMPLE OFFLINE
command text:
history file entry ID: 52
table spaces:

SYSCATSPACE
USERSPACE1

type of operation: B
granularity of the operation: D
operation type: F
entry status: A
device type: D
SQLCA:

sqlcode: 0
sqlstate:
message:

Close recovery history file for 'sample' database.

*** UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY ***

USE THE DB2 APIs:
db2HistoryOpenScan -- Open Recovery History File Scan
db2HistoryGetEntry -- Get Next Recovery History File Entry
db2HistoryUpdate -- Update Recovery History File
db2HistoryCloseScan -- Close Recovery History File Scan

TO UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY.

Open the recovery history file for 'sample' database.

Read the first entry in the recovery history file.

Sample Program with Embedded SQL (dbrecov.sqc)

378 Data Recovery and High Availability Guide and Reference

Display the first entry.
object part: 20010506162032001
end time: 200105061620
first log: S0000000
last log: S0000000
ID:
table qualifier:
table name:
location: D:\DB2\SAMPLE.0\DB2\NODE0000\CATN0000\20010506
comment: DB2 BACKUP SAMPLE OFFLINE
command text:
history file entry ID: 48
table spaces:

SYSCATSPACE
USERSPACE1

type of operation: B
granularity of the operation: D
operation type: F
entry status: A
device type: D
SQLCA:

sqlcode: 0
sqlstate:
message:

Connecting to 'sample' database...
Connected to 'sample' database.

Update the first entry in the history file:
new location = 'this is the NEW LOCATION'
new comment = 'this is the NEW COMMENT'

Disconnecting from 'sample' database...
Disconnected from 'sample' database.

Close recovery history file for 'sample' database.

Read the first recovery history file entry.

Display the first entry.
object part: 20010506162032001
end time: 200105061620
first log: S0000000
last log: S0000000
ID:
table qualifier:
table name:
location: this is the NEW LOCATION
comment: this is the NEW COMMENT
command text:
history file entry ID: 48
table spaces:

SYSCATSPACE
USERSPACE1

type of operation: B

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 379

granularity of the operation: D
operation type: F
entry status: A
device type: D
SQLCA:

sqlcode: 0
sqlstate:
message:

Close the recovery history file for 'sample' database.

*** PRUNE THE RECOVERY HISTORY FILE ***

USE THE DB2 API:
db2Prune -- Prune Recovery History File

AND THE SQL STATEMENTS:
CONNECT
CONNECT RESET

TO PRUNE THE RECOVERY HISTORY FILE.

Connecting to 'sample' database...
Connected to 'sample' database.

Prune the recovery history file for 'sample' database.

Disconnecting from 'sample' database...
Disconnected from 'sample' database.

Following is the source listing for the sample program:
/**
**
** Source File Name: dbrecov.sqc
**
** Licensed Materials - Property of IBM
**
** (C) COPYRIGHT International Business Machines Corp. 2001
** All Rights Reserved.
**
** US Government Users Restricted Rights - Use, duplication or
** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
**
**
** PURPOSE:
** This sample shows how to recover a database.
**
** APIs USED:
** db2HistoryCloseScan -- Close Recovery History File Scan
** db2HistoryGetEntry -- Get Next Recovery History File Entry
** db2HistoryOpenScan -- Open Recovery History File Scan
** db2HistoryUpdate -- Update Recovery History File
** db2Prune -- Prune Recovery History File
** sqlbmtsq -- Tablespace Query

Sample Program with Embedded SQL (dbrecov.sqc)

380 Data Recovery and High Availability Guide and Reference

** sqlbstsc -- Set Tablespace Containers
** sqlbtcq -- Tablespace Container Query
** sqledrpd -- Drop Database
** sqlefmem -- Free Memory
** sqlfudb -- Update Database Configuration
** sqlfxdb -- Get Database Configuration
** sqlubkp -- Backup Database
** sqlurestore -- Restore Database
** sqlurlog -- Asynchronous Read Log
** sqluroll -- Rollforward Database
**
** For detailed information about database backup and recovery, see the
** "Data Recovery and High Availability Guide and Reference". This manual will
** help you to determine which database and table space recovery methods are
** best suited to your business environment.
**
** For more information about the sample programs, see the README file.
**
** For more information about programming in C, see the
** "Programming in C and C++" section of the "Application Development Guide".
**
** For more information about building C applications, see the
** section for your compiler in the "Building Applications" chapter
** for your platform in the "Application Building Guide".
**
** For more information about SQL, see the "SQL Reference".
**
** For more information about DB2 APIs, see the "Administrative API Reference".
**
** For the latest information on programming, compiling, and running DB2
** applications, visit the DB2 application development Web site at
** http://www.software.ibm.com/data/db2/udb/ad
**
**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlutil.h>
#include <db2ApiDf.h>
#include "utilemb.h"

int DbRecoveryHistoryFilePrune(char *, char *, char *);
int DbBackupAndRestore(char *, char *, char *, char *, char *);
int DbBackupAndRedirectedRestore(char *, char *, char *, char *, char *);
int DbBackupRestoreAndRollforward(char *, char *, char *, char *, char *);
int DbLogRecordsForCurrentConnectionRead(char *, char *, char *, char *);
int DbRecoveryHistoryFileRead(char *);
int DbFirstRecoveryHistoryFileEntryUpdate(char *, char *, char *);

/* support function called by the main() */
int ServerWorkingPathGet(char *, char *);

/* support function called by DbBackupAndRedirectedRestore() */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 381

int InaccessableContainersRedefine(char *);

/* support function called by DbBackupAndRedirectedRestore() and
DbBackupRestoreAndRollforward() */

int DbDrop(char *);

/* support function called by DbLogRecordsForCurrentConnectionRead() */
int LogBufferDisplay(char *, sqluint32);
int LogRecordDisplay(char *, sqluint32, sqluint16, sqluint16);
int SimpleLogRecordDisplay(sqluint16, sqluint16, char *, sqluint32);
int ComplexLogRecordDisplay(sqluint16, sqluint16, char *, sqluint32,

sqluint8, char *, sqluint32);
int LogSubRecordDisplay(char *, sqluint16);
int UserDataDisplay(char *, sqluint16);

/* support functions called by DbRecoveryHistoryFileRead() and
DbFirstRecoveryHistoryFileEntryUpdate() */

int HistoryEntryDataFieldsAlloc(struct db2HistoryData *);
int HistoryEntryDisplay(struct db2HistoryData);
int HistoryEntryDataFieldsFree(struct db2HistoryData *);

/* DbCreate will create a new database on the server with the server's
code page.
Use this function only if you want to restore a remote database.
This support function is being called by DbBackupAndRedirectedRestore()
and DbBackupRestoreAndRollforward(). */

int DbCreate(char *, char *);

int main(int argc, char *argv[])
{

int rc = 0;
char nodeName[SQL_INSTNAME_SZ + 1];
char serverWorkingPath[SQL_PATH_SZ + 1];
char restoredDbAlias[SQL_ALIAS_SZ + 1];
char redirectedRestoredDbAlias[SQL_ALIAS_SZ + 1];
char rolledForwardDbAlias[SQL_ALIAS_SZ + 1];
sqluint16 savedLogRetainValue;
char dbAlias[SQL_ALIAS_SZ + 1];
char user[USERID_SZ + 1];
char pswd[PSWD_SZ + 1];

/* check the command line arguments */
rc = CmdLineArgsCheck3(argc, argv, dbAlias, nodeName, user, pswd);
if (rc != 0)
{

return rc;
}

printf("\nTHIS SAMPLE SHOWS HOW TO RECOVER A DATABASE.\n");

strcpy(restoredDbAlias, dbAlias);
strcpy(redirectedRestoredDbAlias, "RRDB");
strcpy(rolledForwardDbAlias, "RFDB");

/* attach to a local or remote instance */

Sample Program with Embedded SQL (dbrecov.sqc)

382 Data Recovery and High Availability Guide and Reference

rc = InstanceAttach(nodeName, user, pswd);
if (rc != 0)
{

return rc;
}

printf("\nUSE THE DB2 API:\n");
printf(" sqlfxdb -- Get Database Configuration\n");
printf("TO GET THE DATABASE CONFIGURATION AND DETERMINE\n");
printf("THE SERVER WORKING PATH.\n");

/* get the server working path */
rc = ServerWorkingPathGet(dbAlias, serverWorkingPath);
if (rc != 0)
{

return rc;
}

printf("\nNOTE: Backup images will be created on the server\n");
printf(" in the directory %s,\n", serverWorkingPath);
printf(" and will not be deleted by the program.\n");

/* call the sample functions */
rc = DbRecoveryHistoryFilePrune(dbAlias, user, pswd);

rc = DbBackupAndRestore(dbAlias,
restoredDbAlias,
user,
pswd,
serverWorkingPath);

rc = DbBackupAndRedirectedRestore(dbAlias,
redirectedRestoredDbAlias,
user,
pswd,
serverWorkingPath);

rc = DbBackupRestoreAndRollforward(dbAlias,
rolledForwardDbAlias,
user,
pswd,
serverWorkingPath);

rc = DbLogRecordsForCurrentConnectionRead(dbAlias,
user,
pswd,
serverWorkingPath);

rc = DbRecoveryHistoryFileRead(dbAlias);

rc = DbFirstRecoveryHistoryFileEntryUpdate(dbAlias, user, pswd);

rc = DbRecoveryHistoryFilePrune(dbAlias, user, pswd);

/* detach from the local or remote instance */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 383

rc = InstanceDetach(nodeName);
if (rc != 0)
{

return rc;
}

return 0;
} /* end main */

int ServerWorkingPathGet(char dbAlias[], char serverWorkingPath[])
{

int rc = 0;
struct sqlca sqlca;
struct sqlfupd dbConfigFields[1];
char serverLogPath[SQL_PATH_SZ + 1];
int len;

/* get the server log path */
/* SQLF_DBTN_LOGPATH is a token of the non-updatable database configuration

parameter 'logpath'; it is used to get the server log path */
dbConfigFields[0].token = SQLF_DBTN_LOGPATH;
dbConfigFields[0].ptrvalue =

(char *)malloc((SQL_PATH_SZ + 1) * sizeof(char));

/* get database configuration */
/* the API sqlfxdb returns the values of individual entries in a

database configuration file */
sqlfxdb(dbAlias, 1, &dbConfigFields[0], &sqlca);
DB2_API_CHECK("server log path -- get");

strcpy(serverLogPath, dbConfigFields[0].ptrvalue);
free(dbConfigFields[0].ptrvalue);

/* choose the server working path; if, for example, serverLogPath =
"C:\DB2\NODE0001\....", we'll keep "C:\DB2" for the serverWorkingPath
variable; backup images created in this sample will be placed under
the 'serverWorkingPath' directory */

len = (int)(strstr(serverLogPath, "NODE") - serverLogPath - 1);
memcpy(serverWorkingPath, serverLogPath, len);
serverWorkingPath[len] = '\0';

return 0;
} /* ServerWorkingPathGet */

int DbCreate(char existingDbAlias[], char newDbAlias[])
{

struct sqlca sqlca;
char dbName[SQL_DBNAME_SZ + 1];
char dbLocalAlias[SQL_ALIAS_SZ + 1];
char dbPath[SQL_PATH_SZ + 1];
struct sqledbdesc dbDescriptor;
struct sqledbcountryinfo countryInfo;
struct sqlfupd dbConfigFields[2];

printf("\n Create '%s' empty database with the same code set as

Sample Program with Embedded SQL (dbrecov.sqc)

384 Data Recovery and High Availability Guide and Reference

'%s' database.\n",
newDbAlias, existingDbAlias);

/* initialize dbConfigFields */
dbConfigFields[0].token = SQLF_DBTN_TERRITORY;
dbConfigFields[0].ptrvalue = (char *)malloc(10 * sizeof(char));
memset(dbConfigFields[0].ptrvalue, '\0', 10);
dbConfigFields[1].token = SQLF_DBTN_CODESET;
dbConfigFields[1].ptrvalue = (char *)malloc(20 * sizeof(char));
memset(dbConfigFields[1].ptrvalue, '\0', 20);

/* get two database configuration fields */
sqlfxdb(existingDbAlias, 2, &dbConfigFields[0], &sqlca);
DB2_API_CHECK("DB Config. -- Get");

/* create a new database */
strcpy(dbName, newDbAlias);
strcpy(dbLocalAlias, newDbAlias);
strcpy(dbPath, "");

strcpy(dbDescriptor.sqldbdid, SQLE_DBDESC_2);
dbDescriptor.sqldbccp = 0;
dbDescriptor.sqldbcss = SQL_CS_NONE;

strcpy(dbDescriptor.sqldbcmt, "");
dbDescriptor.sqldbsgp = 0;
dbDescriptor.sqldbnsg = 10;
dbDescriptor.sqltsext = -1;
dbDescriptor.sqlcatts = NULL;
dbDescriptor.sqlusrts = NULL;
dbDescriptor.sqltmpts = NULL;

strcpy(countryInfo.sqldbcodeset, (char *)dbConfigFields[1].ptrvalue);
strcpy(countryInfo.sqldblocale, (char *)dbConfigFields[0].ptrvalue);

/* create database */
sqlecrea(dbName,

dbLocalAlias,
dbPath,
&dbDescriptor,
&countryInfo,
'\0',
NULL,
&sqlca);

DB2_API_CHECK("Database -- Create");

/* free the allocated memory */
free(dbConfigFields[0].ptrvalue);
free(dbConfigFields[1].ptrvalue);

return 0;
} /* DbCreate */

int DbDrop(char dbAlias[])
{

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 385

struct sqlca sqlca;

printf("\n Drop the '%s' database.\n", dbAlias);

/* drop and uncatalog the database */
sqledrpd(dbAlias, &sqlca);
DB2_API_CHECK("Database -- Drop");

return 0;
} /* DbDrop */

int DbBackupAndRestore(char dbAlias[],
char restoredDbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
struct sqlfupd dbCfgParameters[1];
unsigned short logretain;
sqluint32 backupBufferSize;
sqluint32 backupMode;
sqluint32 backupType;
sqluint32 backupCallerAction;
char backupAppId[SQLU_APPLID_LEN + 1];
char backupStartTimestamp[SQLU_TIME_STAMP_LEN + 1];
sqluint32 backupBuffersNb;
struct sqlu_tablespace_bkrst_list backupTablespaceList;
struct sqlu_media_list backupTargetMediaList;
struct sqlu_media_entry backupTargetMediaEntries[1];
sqluint32 backupParallelismDegree;
sqluint32 backupImageSize;
sqluint32 restoreBufferSize;
sqluint32 rollforwardPendingState;
sqluint32 datalinkMode;
sqluint32 restoreType;
sqluint32 restoreMode;
sqluint32 restoreCallerAction;
char restoreAppId[SQLU_APPLID_LEN + 1];
char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1];
char *restoreTargetPath;
sqluint32 restoreBuffersNb;
struct sqlu_tablespace_bkrst_list restoreTablespaceList;
struct sqlu_media_list restoreSourceMediaList;
struct sqlu_media_entry restoreSourceMediaEntries[1];
sqluint32 restoreParallelismDegree;

printf("\n**************************************\n");
printf("*** BACK UP AND RESTORE A DATABASE ***\n");
printf("**************************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" sqlfudb -- Update Database Configuration\n");
printf(" sqlubkp -- Backup Database\n");
printf(" sqlurestore -- Restore Database\n");

Sample Program with Embedded SQL (dbrecov.sqc)

386 Data Recovery and High Availability Guide and Reference

printf("TO BACK UP AND RESTORE A DATABASE.\n");

printf("\n Update \'%s\' database configuration:\n", dbAlias);
printf(" - Disable the database configuration parameter LOGRETAIN\n");
printf(" i.e., set LOGRETAIN = OFF/NO\n");

/* SQLF_DBTN_LOG_RETAIN is a token of the updatable database configuration
parameter 'logretain'; it is used to update the database configuration
file */

dbCfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
dbCfgParameters[0].ptrvalue = (char *)&logretain;

/* disable the database configuration parameter 'logretain' */
logretain = SQLF_LOGRETAIN_DISABLE;

/* The API sqlfudb is used to modify individual entries in a specific
database configuration file. */

sqlfudb(dbAlias, 1, dbCfgParameters, &sqlca);
DB2_API_CHECK("Db Log Retain -- Disable");

/*******************************/
/* BACK UP THE DATABASE */
/*******************************/
printf("\n Backing up the '%s' database...\n", dbAlias);

backupBufferSize = 16; /* 16 x 4KB */
backupMode = SQLUB_OFFLINE;
backupType = SQLUB_FULL;
backupBuffersNb = 1;
backupTablespaceList.num_entry = 0; /* number of table spaces */
backupTablespaceList.tablespace = NULL;
backupTargetMediaList.media_type = SQLU_LOCAL_MEDIA;
backupTargetMediaList.sessions = 1; /* number of elements in the target */
backupTargetMediaList.target.media = backupTargetMediaEntries;
strcpy(backupTargetMediaEntries[0].media_entry, serverWorkingPath);
backupParallelismDegree = 1;

backupCallerAction = SQLUB_BACKUP;

/* The API sqlubkp creates a backup copy of a database.
This API automatically establishes a connection to the specified
database.
(This API can also be used to create a backup copy of a table space). */

sqlubkp(dbAlias,
backupBufferSize,
backupMode,
backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,
pswd,

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 387

NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */

/* depending on the sqlca.sqlcode value, user action may be */
/* required, such as mounting a new tape */

printf("\n Continuing the backup operation...\n");

backupCallerAction = SQLUB_CONTINUE;

/* back up the database */
sqlubkp(dbAlias,

backupBufferSize,
backupMode,
backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,
pswd,
NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");
}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n", backupImageSize);
printf(" - backup image path : %s\n",

backupTargetMediaEntries[0].media_entry);
printf(" - backup image time stamp: %s\n",

backupStartTimestamp);

/******************************/
/* RESTORE THE DATABASE */
/******************************/

Sample Program with Embedded SQL (dbrecov.sqc)

388 Data Recovery and High Availability Guide and Reference

restoreBufferSize = 1024; /* 1024 x 4KB */
rollforwardPendingState = SQLUD_NOROLLFWD;
datalinkMode = SQLUD_NODATALINK;
restoreType = SQLUD_FULL;
restoreMode = SQLUD_OFFLINE;
strcpy(restoreTimestamp, backupStartTimestamp);
restoreTargetPath = NULL;
restoreBuffersNb = 1;
restoreTablespaceList.num_entry = 0; /* number of table spaces */
restoreTablespaceList.tablespace = NULL;
restoreSourceMediaList.media_type = SQLU_LOCAL_MEDIA;
restoreSourceMediaList.sessions = 1; /* number of elements in the target */
restoreSourceMediaList.target.media = restoreSourceMediaEntries;
strcpy(restoreSourceMediaEntries[0].media_entry, serverWorkingPath);
restoreParallelismDegree = 1;

printf("\n Restoring a database ...\n");
printf(" - source image alias : %s\n", dbAlias);
printf(" - source image time stamp: %s\n", restoreTimestamp);
printf(" - target database : %s\n", restoredDbAlias);

restoreCallerAction = SQLUD_RESTORE;

/* The API sqlurestore is used to restore a database that has been backed
up using the API sqlubkp. */

sqlurestore(dbAlias,
restoredDbAlias,
restoreBufferSize,
rollforwardPendingState,
datalinkMode,
restoreType,
restoreMode,
restoreCallerAction,
restoreAppId,
restoreTimestamp,
restoreTargetPath,
restoreBuffersNb,
NULL,
&restoreTablespaceList,
&restoreSourceMediaList,
user,
pswd,
NULL,
0,
NULL,
restoreParallelismDegree,
NULL,
NULL,
NULL,
&sqlca);

/* DB2_API_CHECK("database restore -- start"); */
EXPECTED_WARN_CHECK("database restore -- start");

while (sqlca.sqlcode != 0)

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 389

{
/* continue the restore operation */
printf("\n Continuing the restore operation...\n");

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape */

restoreCallerAction = SQLUD_CONTINUE;

/* restore the database */
sqlurestore(dbAlias,

restoredDbAlias,
restoreBufferSize,
rollforwardPendingState,
datalinkMode,
restoreType,
restoreMode,
restoreCallerAction,
restoreAppId,
restoreTimestamp,
restoreTargetPath,
restoreBuffersNb,
NULL,
&restoreTablespaceList,
&restoreSourceMediaList,
user,
pswd,
NULL,
0,
NULL,
restoreParallelismDegree,
NULL,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("database restore -- continue");
}

printf("\n Restore finished.\n");

return 0;
} /* DbBackupAndRestore */

int DbBackupAndRedirectedRestore(char dbAlias[],
char restoredDbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
struct sqlfupd dbCfgParameters[1];
unsigned short logretain;
sqluint32 backupBufferSize;
sqluint32 backupMode;

Sample Program with Embedded SQL (dbrecov.sqc)

390 Data Recovery and High Availability Guide and Reference

sqluint32 backupType;
sqluint32 backupCallerAction;
char backupAppId[SQLU_APPLID_LEN + 1];
char backupStartTimestamp[SQLU_TIME_STAMP_LEN + 1];
sqluint32 backupBuffersNb;
struct sqlu_tablespace_bkrst_list backupTablespaceList;
struct sqlu_media_list backupTargetMediaList;
struct sqlu_media_entry backupTargetMediaEntries[1];
sqluint32 backupParallelismDegree;
sqluint32 backupImageSize;
sqluint32 restoreBufferSize;
sqluint32 rollforwardPendingState;
sqluint32 datalinkMode;
sqluint32 restoreType;
sqluint32 restoreMode;
sqluint32 restoreCallerAction;
char restoreAppId[SQLU_APPLID_LEN + 1];
char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1];
char *restoreTargetPath;
sqluint32 restoreBuffersNb;
struct sqlu_tablespace_bkrst_list restoreTablespaceList;
struct sqlu_media_list restoreSourceMediaList;
struct sqlu_media_entry restoreSourceMediaEntries[1];
sqluint32 restoreParallelismDegree;

printf("\n**************************\n");
printf("*** REDIRECTED RESTORE ***\n");
printf("**************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" sqlfudb -- Update Database Configuration\n");
printf(" sqlubkp -- Backup Database\n");
printf(" sqlecrea -- Create Database\n");
printf(" sqlurestore -- Restore Database\n");
printf(" sqlbmtsq -- Tablespace Query\n");
printf(" sqlbtcq -- Tablespace Container Query\n");
printf(" sqlbstsc -- Set Tablespace Containers\n");
printf(" sqlefmem -- Free Memory\n");
printf(" sqledrpd -- Drop Database\n");
printf("TO BACK UP AND DO A REDIRECTED RESTORE OF A DATABASE.\n");

printf("\n Update \'%s\' database configuration:\n", dbAlias);
printf(" - Disable the database configuration parameter LOGRETAIN \n");
printf(" i.e., set LOGRETAIN = OFF/NO\n");

/* SQLF_DBTN_LOG_RETAIN is a token of the updatable database configuration
parameter 'logretain'; it is used to update the database configuration
file */

dbCfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
dbCfgParameters[0].ptrvalue = (char *)&logretain;

/* disable the database configuration parameter 'logretain' */
logretain = SQLF_LOGRETAIN_DISABLE;

/* The API sqlfudb is used to modify individual entries in a specific
database configuration file. */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 391

sqlfudb(dbAlias, 1, dbCfgParameters, &sqlca);
DB2_API_CHECK("Db Log Retain -- Disable");

/*******************************/
/* BACK UP THE DATABASE */
/*******************************/
printf("\n Backing up the '%s' database...\n", dbAlias);

backupBufferSize = 16; /* 16 x 4KB */
backupMode = SQLUB_OFFLINE;
backupType = SQLUB_FULL;
backupBuffersNb = 1;
backupTablespaceList.num_entry = 0; /* number of table spaces */
backupTablespaceList.tablespace = NULL;
backupTargetMediaList.media_type = SQLU_LOCAL_MEDIA;
backupTargetMediaList.sessions = 1; /* number of elements in the target */
backupTargetMediaList.target.media = backupTargetMediaEntries;
strcpy(backupTargetMediaEntries[0].media_entry, serverWorkingPath);
backupParallelismDegree = 1;

backupCallerAction = SQLUB_BACKUP;

/* The API sqlubkp creates a backup copy of a database.
This API automatically establishes a connection to the specified
database.
(This API can also be used to create a backup copy of a table space). */

sqlubkp(dbAlias,
backupBufferSize,
backupMode,
backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,
pswd,
NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape */

Sample Program with Embedded SQL (dbrecov.sqc)

392 Data Recovery and High Availability Guide and Reference

printf("\n Continuing the backup operation...\n");

backupCallerAction = SQLUB_CONTINUE;

/* back up the database */
sqlubkp(dbAlias,

backupBufferSize,
backupMode,
backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,
pswd,
NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");
}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n", backupImageSize);
printf(" - backup image path : %s\n",

backupTargetMediaEntries[0].media_entry);
printf(" - backup image time stamp: %s\n",

backupStartTimestamp);

/* To restore a remote database, you will first need to create an empty
database if the client's code page is different from the server's
code page.
If this is the case, uncomment the call to DbCreate(). It will create
an empty database on the server with the server's code page. */

/*
rc = DbCreate(dbAlias, restoredDbAlias);
if (rc != 0)
{
return rc;
}

*/

/******************************/
/* RESTORE THE DATABASE */
/******************************/

restoreBufferSize = 1024; /* 1024 x 4KB */
rollforwardPendingState = SQLUD_NOROLLFWD;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 393

datalinkMode = SQLUD_NODATALINK;
restoreType = SQLUD_FULL;
restoreMode = SQLUD_OFFLINE;
strcpy(restoreTimestamp, backupStartTimestamp);
restoreTargetPath = NULL;
restoreBuffersNb = 1;
restoreTablespaceList.num_entry = 0; /* number of table spaces */
restoreTablespaceList.tablespace = NULL;
restoreSourceMediaList.media_type = SQLU_LOCAL_MEDIA;
restoreSourceMediaList.sessions = 1; /* number of elements in the target */
restoreSourceMediaList.target.media = restoreSourceMediaEntries;
strcpy(restoreSourceMediaEntries[0].media_entry, serverWorkingPath);
restoreParallelismDegree = 1;

printf("\n Restoring a database ...\n");
printf(" - source image alias : %s\n", dbAlias);
printf(" - source image time stamp: %s\n", restoreTimestamp);
printf(" - target database : %s\n", restoredDbAlias);

restoreCallerAction = SQLUD_RESTORE_STORDEF;

/* The API sqlurestore is used to restore a database that has been backed
up using the API sqlubkp. */

sqlurestore(dbAlias,
restoredDbAlias,
restoreBufferSize,
rollforwardPendingState,
datalinkMode,
restoreType,
restoreMode,
restoreCallerAction,
restoreAppId,
restoreTimestamp,
restoreTargetPath,
restoreBuffersNb,
NULL,
&restoreTablespaceList,
&restoreSourceMediaList,
user,
pswd,
NULL,
0,
NULL,
restoreParallelismDegree,
NULL,
NULL,
NULL,
&sqlca);

/* DB2_API_CHECK("database restore -- start"); */
EXPECTED_WARN_CHECK("database restore -- start");

while (sqlca.sqlcode != 0)
{

/* continue the restore operation */
printf("\n Continuing the restore operation...\n");

Sample Program with Embedded SQL (dbrecov.sqc)

394 Data Recovery and High Availability Guide and Reference

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape */

if (sqlca.sqlcode == SQLUD_INACCESSABLE_CONTAINER)
{

/* redefine the table space container layout */
printf("\n Find and redefine inaccessable containers.\n");
rc = InaccessableContainersRedefine(serverWorkingPath);
if (rc != 0)
{

return rc;
}

}

restoreCallerAction = SQLUD_CONTINUE;

/* restore the database */
sqlurestore(dbAlias,

restoredDbAlias,
restoreBufferSize,
rollforwardPendingState,
datalinkMode,
restoreType,
restoreMode,
restoreCallerAction,
restoreAppId,
restoreTimestamp,
restoreTargetPath,
restoreBuffersNb,
NULL,
&restoreTablespaceList,
&restoreSourceMediaList,
user,
pswd,
NULL,
0,
NULL,
restoreParallelismDegree,
NULL,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("database restore -- continue");
}

printf("\n Restore finished.\n");

/* drop the restored database */
rc = DbDrop(restoredDbAlias);

return 0;
} /* DbBackupAndRedirectedRestore */

int InaccessableContainersRedefine(char serverWorkingPath[])

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 395

{
int rc = 0;
struct sqlca sqlca;
sqluint32 numTablespaces;
struct SQLB_TBSPQRY_DATA **ppTablespaces;
sqluint32 numContainers;
struct SQLB_TBSCONTQRY_DATA *pContainers;
int tspNb;
int contNb;
char pathSep[2];

/* The API sqlbmtsq provides a one-call interface to the table space query
data. The query data for all table spaces in the database is returned
in an array. */

sqlbmtsq(&sqlca,
&numTablespaces,
&ppTablespaces,
SQLB_RESERVED1,
SQLB_RESERVED2);

DB2_API_CHECK("tablespaces -- get");

/* refedine the inaccessible containers */
for (tspNb = 0; tspNb < numTablespaces; tspNb++)
{

/* The API sqlbtcq provides a one-call interface to the table space
container query data. The query data for all the containers in a table
space, or for all containers in all table spaces, is returned in an
array. */

sqlbtcq(&sqlca, ppTablespaces[tspNb]—>id, &numContainers, &pContainers);
DB2_API_CHECK("tablespace containers -- get");

for (contNb = 0; contNb < numContainers; contNb++)
{

if (!pContainers[contNb].ok)
{

/* redefine inaccessible container */
printf("\n Redefine inaccessible container:\n");
printf(" - table space name: %s\n",

ppTablespaces[tspNb]—>name);
printf(" - default container name: %s\n",

pContainers[contNb].name);
if (strstr(pContainers[contNb].name, "/"))
{ /* UNIX */

strcpy(pathSep, "/");
}
else
{ /* Intel */

strcpy(pathSep, "\\");
}
switch (pContainers[contNb].contType)
{

case SQLB_CONT_PATH:
printf(" - container type: path\n");

sprintf(pContainers[contNb].name, "%s%sSQLT%04d.%d",

Sample Program with Embedded SQL (dbrecov.sqc)

396 Data Recovery and High Availability Guide and Reference

serverWorkingPath, pathSep,
ppTablespaces[tspNb]—>id,
pContainers[contNb].id);

printf(" - new container name: %s\n",
pContainers[contNb].name);
break;

case SQLB_CONT_DISK:
case SQLB_CONT_FILE:
default:

printf(" Unknown container type.\n");
break;

}
}

}

/* The API sqlbstsc is used to set or redefine table space containers
while performing a 'redirected' restore of the database. */

sqlbstsc(&sqlca,
SQLB_SET_CONT_FINAL_STATE,
ppTablespaces[tspNb]—>id,
numContainers,
pContainers);

DB2_API_CHECK("tablespace containers -- redefine");

/* The API sqlefmem is used here to free memory allocated by DB2 for use
with the API sqlbtcq (Tablespace Container Query). */

sqlefmem(&sqlca, pContainers);
DB2_API_CHECK("tablespace containers memory -- free");

}

/* The API sqlefmem is used here to free memory allocated by DB2 for
use with the API sqlbmtsq (Tablespace Query). */

sqlefmem(&sqlca, ppTablespaces);
DB2_API_CHECK("tablespaces memory -- free");

return 0;
} /* InaccessibleContainersRedefine */

int DbBackupRestoreAndRollforward(char dbAlias[],
char rolledForwardDbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
struct sqlfupd dbCfgParameters[1];
unsigned short logretain;
sqluint32 backupBufferSize;
sqluint32 backupMode;
sqluint32 backupType;
sqluint32 backupCallerAction;
char backupAppId[SQLU_APPLID_LEN + 1];
char backupStartTimestamp[SQLU_TIME_STAMP_LEN + 1];
sqluint32 backupBuffersNb;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 397

struct sqlu_tablespace_bkrst_list backupTablespaceList;
struct sqlu_media_list backupTargetMediaList;
struct sqlu_media_entry backupTargetMediaEntries[1];
sqluint32 backupParallelismDegree;
sqluint32 backupImageSize;
sqluint32 restoreBufferSize;
sqluint32 rollforwardPendingState;
sqluint32 datalinkMode;
sqluint32 restoreType;
sqluint32 restoreMode;
sqluint32 restoreCallerAction;
char restoreAppId[SQLU_APPLID_LEN + 1];
char restoreTimestamp[SQLU_TIME_STAMP_LEN + 1];
char *restoreTargetPath;
sqluint32 restoreBuffersNb;
struct sqlu_tablespace_bkrst_list restoreTablespaceList;
struct sqlu_media_list restoreSourceMediaList;
struct sqlu_media_entry restoreSourceMediaEntries[1];
sqluint32 restoreParallelismDegree;
struct rfwd_input rfwdInput;
struct rfwd_output rfwdOutput;
char rollforwardAppId[SQLU_APPLID_LEN + 1];
sqlint32 numReplies;
struct sqlurf_info nodeInfo;

printf("\n****************************\n");
printf("*** ROLLFORWARD RECOVERY ***\n");
printf("****************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" sqlfudb -- Update Database Configuration\n");
printf(" sqlubkp -- Backup Database\n");
printf(" sqlecrea -- Create Database\n");
printf(" sqlurestore -- Restore Database\n");
printf(" sqluroll -- Rollforward Database\n");
printf(" sqledrpd -- Drop Database\n");
printf("TO BACK UP, RESTORE, AND ROLL A DATABASE FORWARD. \n");

printf("\n Update \'%s\' database configuration:\n", dbAlias);
printf(" - Enable the configuration parameter LOGRETAIN \n");
printf(" i.e., set LOGRETAIN = RECOVERY/YES\n");

dbCfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
dbCfgParameters[0].ptrvalue = (char *)&logretain;

/* enable the configuration parameter 'logretain' */
logretain = SQLF_LOGRETAIN_RECOVERY;

/* The API sqlfudb is used to modify individual entries in a specific
database configuration file. */

sqlfudb(dbAlias, 1, dbCfgParameters, &sqlca);
DB2_API_CHECK("Db Log Retain -- Enable");

/* start the backup operation */
printf("\n Backing up the '%s' database...\n", dbAlias);

Sample Program with Embedded SQL (dbrecov.sqc)

398 Data Recovery and High Availability Guide and Reference

backupBufferSize = 16; /* 16 x 4KB */
backupMode = SQLUB_OFFLINE;
backupType = SQLUB_FULL;
backupBuffersNb = 1;
backupTablespaceList.num_entry = 0; /* number of table spaces */
backupTablespaceList.tablespace = NULL;
backupTargetMediaList.media_type = SQLU_LOCAL_MEDIA;
backupTargetMediaList.sessions = 1; /* number of elements in the target */
backupTargetMediaList.target.media = backupTargetMediaEntries;
strcpy(backupTargetMediaEntries[0].media_entry, serverWorkingPath);
backupParallelismDegree = 1;

backupCallerAction = SQLUB_BACKUP;

/* The API sqlubkp creates a backup copy of a database.
This API automatically establishes a connection to the specified
database.
(This API can also be used to create a backup copy of a table space). */

sqlubkp(dbAlias,
backupBufferSize,
backupMode,
backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,
pswd,
NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */
printf("\n Continuing the backup operation...\n");

/* depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape. */

backupCallerAction = SQLUB_CONTINUE;

/* back up the database */
sqlubkp(dbAlias,

backupBufferSize,
backupMode,

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 399

backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,
pswd,
NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");
}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n", backupImageSize);
printf(" - backup image path : %s\n",

backupTargetMediaEntries[0].media_entry);
printf(" - backup image time stamp: %s\n",

backupStartTimestamp);

/* To restore a remote database, you will first need to create an empty
database if the client's code page is different from the server's
code page.
If this is the case, uncomment the call to DbCreate(). It will create
an empty database on the server with the server's code page. */

/*
rc = DbCreate(dbAlias, rolledForwardDbAlias);
if (rc != 0)
{

return rc;
}

*/

/******************************/
/* RESTORE THE DATABASE */
/******************************/

restoreBufferSize = 1024; /* 1024 x 4KB */
rollforwardPendingState = SQLUD_ROLLFWD;
datalinkMode = SQLUD_NODATALINK;
restoreType = SQLUD_FULL;
restoreMode = SQLUD_OFFLINE;
strcpy(restoreTimestamp, backupStartTimestamp);
restoreTargetPath = NULL;
restoreBuffersNb = 1;
restoreTablespaceList.num_entry = 0; /* number of table spaces */
restoreTablespaceList.tablespace = NULL;

Sample Program with Embedded SQL (dbrecov.sqc)

400 Data Recovery and High Availability Guide and Reference

restoreSourceMediaList.media_type = SQLU_LOCAL_MEDIA;
restoreSourceMediaList.sessions = 1; /* number of elements in the target */
restoreSourceMediaList.target.media = restoreSourceMediaEntries;
strcpy(restoreSourceMediaEntries[0].media_entry, serverWorkingPath);
restoreParallelismDegree = 1;

printf("\n Restoring a database ...\n");
printf(" - source image alias : %s\n", dbAlias);
printf(" - source image time stamp: %s\n", restoreTimestamp);
printf(" - target database : %s\n", rolledForwardDbAlias);

restoreCallerAction = SQLUD_RESTORE;

/* The API sqlurestore is used to restore a database that has been backed
up using the API sqlubkp. */

sqlurestore(dbAlias,
rolledForwardDbAlias,
restoreBufferSize,
rollforwardPendingState,
datalinkMode,
restoreType,
restoreMode,
restoreCallerAction,
restoreAppId,
restoreTimestamp,
restoreTargetPath,
restoreBuffersNb,
NULL,
&restoreTablespaceList,
&restoreSourceMediaList,
user,
pswd,
NULL,
0,
NULL,
restoreParallelismDegree,
NULL,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("database restore -- start");

while (sqlca.sqlcode != 0)
{

/* continue the restore operation */
printf("\n Continuing the restore operation...\n");

/* Depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape. */

restoreCallerAction = SQLUD_CONTINUE;

/* restore the database */
sqlurestore(dbAlias,

rolledForwardDbAlias,

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 401

restoreBufferSize,
rollforwardPendingState,
datalinkMode,
restoreType,
restoreMode,
restoreCallerAction,
restoreAppId,
restoreTimestamp,
restoreTargetPath,
restoreBuffersNb,
NULL,
&restoreTablespaceList,
&restoreSourceMediaList,
user,
pswd,
NULL,
0,
NULL,
restoreParallelismDegree,
NULL,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("database restore -- continue");
}

printf("\n Restore finished.\n");

/******************************/
/* ROLLFORWARD RECOVERY */
/******************************/

printf("\n Rolling '%s' database forward ...\n", rolledForwardDbAlias);

rfwdInput.version = SQLUM_RFWD_VERSION;
rfwdInput.pDbAlias = rolledForwardDbAlias;
rfwdInput.CallerAction = SQLUM_ROLLFWD_STOP;
rfwdInput.pStopTime = SQLUM_INFINITY_TIMESTAMP;
rfwdInput.pUserName = user;
rfwdInput.pPassword = pswd;
rfwdInput.pOverflowLogPath = serverWorkingPath;
rfwdInput.NumChngLgOvrflw = 0;
rfwdInput.pChngLogOvrflw = NULL;
rfwdInput.ConnectMode = SQLUM_OFFLINE;
rfwdInput.pTablespaceList = NULL;
rfwdInput.AllNodeFlag = SQLURF_ALL_NODES;
rfwdInput.NumNodes = 0;
rfwdInput.pNodeList = NULL;
rfwdInput.NumNodeInfo = 1;
rfwdInput.DlMode = 0;
rfwdInput.pReportFile = NULL;
rfwdInput.pDroppedTblID = NULL;
rfwdInput.pExportDir = NULL;

Sample Program with Embedded SQL (dbrecov.sqc)

402 Data Recovery and High Availability Guide and Reference

rfwdOutput.pApplicationId = rollforwardAppId;
rfwdOutput.pNumReplies = &numReplies;
rfwdOutput.pNodeInfo = &nodeInfo;

/* rollforward database */
/* The API sqluroll rollforward recovers a database by

applying transactions recorded in the database log files. */
sqluroll(&rfwdInput, &rfwdOutput, &sqlca);
DB2_API_CHECK("rollforward -- start");

printf(" Rollforward finished.\n");

/* drop the restored database */
rc = DbDrop(rolledForwardDbAlias);

return 0;
} /* DbBackupRestoreAndRollforward */

int DbLogRecordsForCurrentConnectionRead(char dbAlias[],
char user[],
char pswd[],
char serverWorkingPath[])

{
int rc = 0;
struct sqlca sqlca;
struct sqlfupd dbCfgParameters[1];
unsigned short logretain;
sqluint32 backupBufferSize;
sqluint32 backupMode;
sqluint32 backupType;
sqluint32 backupCallerAction;
char backupAppId[SQLU_APPLID_LEN + 1];
char backupStartTimestamp[SQLU_TIME_STAMP_LEN + 1];
sqluint32 backupBuffersNb;
struct sqlu_tablespace_bkrst_list backupTablespaceList;
struct sqlu_media_list backupTargetMediaList;
struct sqlu_media_entry backupTargetMediaEntries[1];
sqluint32 backupParallelismDegree;
sqluint32 backupImageSize;
SQLU_LSN startLSN;
SQLU_LSN endLSN;
char *logBuffer;
sqluint32 logBufferSize;
SQLU_RLOG_INFO readLogInfo;
int i;

printf("\n*****************************\n");
printf("*** ASYNCHRONOUS READ LOG ***\n");
printf("*****************************\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" sqlfudb -- Update Database Configuration\n");
printf(" sqlubkp -- Backup Database\n");
printf(" sqlurlog -- Asynchronous Read Log\n");
printf("AND THE SQL STATEMENTS:\n");
printf(" CONNECT\n");

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 403

printf(" ALTER TABLE\n");
printf(" COMMIT\n");
printf(" INSERT\n");
printf(" DELETE\n");
printf(" ROLLBACK\n");
printf(" CONNECT RESET\n");
printf("TO READ LOG RECORDS FOR THE CURRENT CONNECTION.\n");

printf("\n Update \'%s\' database configuration:\n", dbAlias);
printf(" - Enable the database configuration parameter LOGRETAIN \n");
printf(" i.e., set LOGRETAIN = RECOVERY/YES\n");

dbCfgParameters[0].token = SQLF_DBTN_LOG_RETAIN;
dbCfgParameters[0].ptrvalue = (char *)&logretain;

/* enable LOGRETAIN */
logretain = SQLF_LOGRETAIN_RECOVERY;

/* The API sqlfudb is used to modify individual entries in a specific
database configuration file. */

sqlfudb(dbAlias, 1, dbCfgParameters, &sqlca);
DB2_API_CHECK("Db Log Retain -- Enable");

/* start the backup operation */
printf("\n Backing up the '%s' database...\n", dbAlias);

backupBufferSize = 16; /* 16 x 4KB */
backupMode = SQLUB_OFFLINE;
backupType = SQLUB_FULL;
backupBuffersNb = 1;
backupTablespaceList.num_entry = 0; /* number of table spaces */
backupTablespaceList.tablespace = NULL;
backupTargetMediaList.media_type = SQLU_LOCAL_MEDIA;
backupTargetMediaList.sessions = 1; /* number of elements in the target */
backupTargetMediaList.target.media = backupTargetMediaEntries;
strcpy(backupTargetMediaEntries[0].media_entry, serverWorkingPath);
backupParallelismDegree = 1;

backupCallerAction = SQLUB_BACKUP;

/* The API sqlubkp creates a backup copy of a database.
This API automatically establishes a connection to the specified
database.
(This API can also be used to create a backup copy of a table space). */

sqlubkp(dbAlias,
backupBufferSize,
backupMode,
backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,

Sample Program with Embedded SQL (dbrecov.sqc)

404 Data Recovery and High Availability Guide and Reference

pswd,
NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");

while (sqlca.sqlcode != 0)
{

/* continue the backup operation */
printf("\n Continuing the backup operation...\n");

/* Depending on the sqlca.sqlcode value, user action may be
required, such as mounting a new tape. */

backupCallerAction = SQLUB_CONTINUE;

/* back up the database */
sqlubkp(dbAlias,

backupBufferSize,
backupMode,
backupType,
backupCallerAction,
backupAppId,
backupStartTimestamp,
backupBuffersNb,
&backupTablespaceList,
&backupTargetMediaList,
user,
pswd,
NULL,
0,
NULL,
backupParallelismDegree,
&backupImageSize,
NULL,
NULL,
&sqlca);

DB2_API_CHECK("Database -- Backup");
}

printf(" Backup finished.\n");
printf(" - backup image size : %d MB\n", backupImageSize);
printf(" - backup image path : %s\n",

backupTargetMediaEntries[0].media_entry);
printf(" - backup image time stamp: %s\n",

backupStartTimestamp);

/* connect to the database */
rc = DbConn(dbAlias, user, pswd);
if (rc != 0)

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 405

{
return rc;

}

/* invoke SQL statements to fill database log */
printf("\n Invoke the following SQL statements:\n"

" ALTER TABLE emp_resume DATA CAPTURE CHANGES;\n"
" COMMIT;\n"
" INSERT INTO emp_resume\n"
" VALUES('000777', 'ascii', 'This is a new resume.');\n"
" ('777777', 'ascii', 'This is another new resume');\n"
" COMMIT;\n"
" DELETE FROM emp_resume WHERE empno = '000777';\n"
" DELETE FROM emp_resume WHERE empno = '777777';\n"
" COMMIT;\n"
" DELETE FROM emp_resume WHERE empno = '000140';\n"
" ROLLBACK;\n"
" ALTER TABLE emp_resume DATA CAPTURE NONE;\n"
" COMMIT;\n");

EXEC SQL ALTER TABLE emp_resume DATA CAPTURE CHANGES;
EMB_SQL_CHECK("SQL statement 1 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 2 -- invoke");

EXEC SQL INSERT INTO emp_resume
VALUES('000777', 'ascii', 'This is a new resume.'),

('777777', 'ascii', 'This is another new resume');
EMB_SQL_CHECK("SQL statement 3 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 4 -- invoke");

EXEC SQL DELETE FROM emp_resume WHERE empno = '000777';
EMB_SQL_CHECK("SQL statement 5 -- invoke");

EXEC SQL DELETE FROM emp_resume WHERE empno = '777777';
EMB_SQL_CHECK("SQL statement 6 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 7 -- invoke");

EXEC SQL DELETE FROM emp_resume WHERE empno = '000140';
EMB_SQL_CHECK("SQL statement 8 -- invoke");

EXEC SQL ROLLBACK;
EMB_SQL_CHECK("SQL statement 9 -- invoke");

EXEC SQL ALTER TABLE emp_resume DATA CAPTURE NONE;
EMB_SQL_CHECK("SQL statement 10 -- invoke");

EXEC SQL COMMIT;
EMB_SQL_CHECK("SQL statement 11 -- invoke");

Sample Program with Embedded SQL (dbrecov.sqc)

406 Data Recovery and High Availability Guide and Reference

printf("\n Start reading database log.\n");

logBuffer = NULL;
logBufferSize = 0;

/* The API sqlurlog (Asynchronours Read Log) is used to extract records
from the database logs, and to query the log manager for current
log state information.
This API can only be used on recoverable databases. */

/* Query the log manager for current log state information: */
rc = sqlurlog(SQLU_RLOG_QUERY,

&startLSN,
&endLSN,
logBuffer,
logBufferSize,
&readLogInfo,
&sqlca);

/* DB2_API_CHECK("database log info -- get"); */
EXPECTED_WARN_CHECK("database log info -- get");

logBufferSize = 64 * 1024;
logBuffer = (char *)malloc(logBufferSize);

memcpy(&startLSN, &(readLogInfo.initialLSN), sizeof(startLSN));
memcpy(&endLSN, &(readLogInfo.curActiveLSN), sizeof(endLSN));

/* Extract a log record from the database logs, and
read the first log sequence asynchronously: */

rc = sqlurlog(SQLU_RLOG_READ,
&startLSN,
&endLSN,
logBuffer,
logBufferSize,
&readLogInfo,
&sqlca);

if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

DB2_API_CHECK("database logs -- read");
}
else
{

if (readLogInfo.logRecsWritten == 0)
{

printf("\n Database log empty.\n");
}

}

/* display log buffer */
rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

while (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

/* read the next log sequence */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 407

memcpy(&startLSN, &(readLogInfo.lastReadLSN), sizeof(startLSN));
/* increase startLSN by 1 */
startLSN.lsnChar[5] = startLSN.lsnChar[5] + 1;
i = 5;
while (startLSN.lsnChar[i] == 0 && i > 0)
{

startLSN.lsnChar[i - 1] = startLSN.lsnChar[i - 1] + 1;
i = i - 1;

}

/* Extract a log record from the database logs, and
read the next log sequence asynchronously: */
rc = sqlurlog(SQLU_RLOG_READ,

&startLSN,
&endLSN,
logBuffer,
logBufferSize,
&readLogInfo,
&sqlca);

if (sqlca.sqlcode != SQLU_RLOG_READ_TO_CURRENT)
{

DB2_API_CHECK("database logs -- read");
}

/* display log buffer */
rc = LogBufferDisplay(logBuffer, readLogInfo.logRecsWritten);

}

/* free the log buffer */
free(logBuffer);

/* disconnect from the database */
rc = DbDisconn(dbAlias);
if (rc != 0)
{

return rc;
}

return 0;
} /* DbLogRecordsForCurrentConnectionRead */

int LogBufferDisplay(char *logBuffer, sqluint32 numLogRecords)
{

int rc = 0;
sqluint32 logRecordNb;
sqluint32 recordSize;
sqluint16 recordType;
sqluint16 recordFlag;
char *recordBuffer;

/* initialize recordBuffer */
recordBuffer = logBuffer + sizeof(SQLU_LSN);

for (logRecordNb = 0; logRecordNb < numLogRecords; logRecordNb++)
{

Sample Program with Embedded SQL (dbrecov.sqc)

408 Data Recovery and High Availability Guide and Reference

recordSize = *(sqluint32 *)(recordBuffer);
recordType = *(sqluint16 *)(recordBuffer + 4);
recordFlag = *(sqluint16 *)(recordBuffer + 6);

rc = LogRecordDisplay(recordBuffer, recordSize, recordType, recordFlag);
/* update recordBuffer */
recordBuffer = recordBuffer + recordSize + sizeof(SQLU_LSN);

}

return 0;
} /* LogBufferDisplay */

int LogRecordDisplay(char *recordBuffer,
sqluint32 recordSize,
sqluint16 recordType,
sqluint16 recordFlag)

{
int rc = 0;
sqluint32 logManagerLogRecordHeaderSize;
char *recordDataBuffer;
sqluint32 recordDataSize;
char *recordHeaderBuffer;
sqluint8 componentIdentifier;
sqluint32 recordHeaderSize;

/* determine logManagerLogRecordHeaderSize */
if ((char)recordType == 'C')
{ /* compensation */

if (recordFlag & 0x0002)
{ /* propagatable */

logManagerLogRecordHeaderSize = 32;
}
else
{

logManagerLogRecordHeaderSize = 26;
}

}
else
{ /* non compensation */

logManagerLogRecordHeaderSize = 20;
}

switch ((char)recordType)
{

case 'E':
case 'M':
case 'A':

recordDataBuffer = recordBuffer + logManagerLogRecordHeaderSize;
recordDataSize = recordSize - logManagerLogRecordHeaderSize;
rc = SimpleLogRecordDisplay(recordType,

recordFlag,
recordDataBuffer,
recordDataSize);

break;
case 'N':

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 409

case 'C':
recordHeaderBuffer = recordBuffer + logManagerLogRecordHeaderSize;
componentIdentifier = *(sqluint8 *)recordHeaderBuffer;
switch (componentIdentifier)
{

case 1:
recordHeaderSize = 6;
break;

default:
printf(" Unknown complex log record: %lu %c %u\n",

recordSize, recordType, componentIdentifier);
return 1;

}
recordDataBuffer = recordBuffer +

logManagerLogRecordHeaderSize +
recordHeaderSize;

recordDataSize = recordSize -
logManagerLogRecordHeaderSize -
recordHeaderSize;

rc = ComplexLogRecordDisplay(recordType,
recordFlag,
recordHeaderBuffer,
recordHeaderSize,
componentIdentifier,
recordDataBuffer,
recordDataSize);

break;
default:

printf(" Unknown log record: %lu %c\n",
recordSize, (char)recordType);

break;
}

return 0;
} /* LogRecordDisplay */

int SimpleLogRecordDisplay(sqluint16 recordType,
sqluint16 recordFlag,
char *recordDataBuffer,
sqluint32 recordDataSize)

{
int rc = 0;
sqluint32 timeTransactionCommited;
sqluint16 authIdLen;
char authId[129];

switch ((char)recordType)
{

case 'E':
printf("\n Record type: Local pending list\n");
timeTransactionCommited = *(sqluint32 *)(recordDataBuffer);
authIdLen = *(sqluint16 *)(recordDataBuffer + 4);
memcpy(authId, (char *)(recordDataBuffer + 6), authIdLen);
authId[authIdLen] = '\0';
printf(" %s: %lu\n",

Sample Program with Embedded SQL (dbrecov.sqc)

410 Data Recovery and High Availability Guide and Reference

"UTC transaction committed (in seconds since 01/01/70)",
timeTransactionCommited);

printf(" authorization ID of the application: %s\n", authId);
break;

case 'M':
printf("\n Record type: Normal commit\n");
timeTransactionCommited = *(sqluint32 *)(recordDataBuffer);
authIdLen = (sqluint16) (recordDataSize - 4);
memcpy(authId, (char *)(recordDataBuffer + 4), authIdLen);
authId[authIdLen] = '\0';
printf(" %s: %lu\n",

"UTC transaction committed (in seconds since 01/01/70)",
timeTransactionCommited);

printf(" authorization ID of the application: %s\n", authId);
break;

case 'A':
printf("\n Record type: Normal abort\n");
authIdLen = (sqluint16) (recordDataSize);
memcpy(authId, (char *)(recordDataBuffer), authIdLen);
authId[authIdLen] = '\0';
printf(" authorization ID of the application: %s\n", authId);
break;

default:
printf(" Unknown simple log record: %c %lu\n",

(char)recordType, recordDataSize);
break;

}

return 0;
} /* SimpleLogRecordDisplay */

int ComplexLogRecordDisplay(sqluint16 recordType,
sqluint16 recordFlag,
char *recordHeaderBuffer,
sqluint32 recordHeaderSize,
sqluint8 componentIdentifier,
char *recordDataBuffer,
sqluint32 recordDataSize)

{
int rc = 0;
sqluint8 functionIdentifier;
/* for insert, delete, undo delete */
sqluint32 RID;
sqluint16 subRecordLen;
sqluint16 subRecordOffset;
char *subRecordBuffer;
/* for update */
sqluint32 newRID;
sqluint16 newSubRecordLen;
sqluint16 newSubRecordOffset;
char *newSubRecordBuffer;
sqluint32 oldRID;
sqluint16 oldSubRecordLen;
sqluint16 oldSubRecordOffset;
char *oldSubRecordBuffer;

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 411

/* for alter table attributes */
sqluint32 alterBitMask;
sqluint32 alterBitValues;

switch ((char)recordType)
{

case 'N':
printf("\n Record type: Normal\n");
break;

case 'C':
printf("\n Record type: Compensation\n");
break;

default:
printf("\n Unknown complex log record type: %c\n", recordType);
break;

}

switch (componentIdentifier)
{

case 1:
printf(" component ID: DMS log record\n");
break;

default:
printf(" unknown component ID: %d\n", componentIdentifier);
break;

}

functionIdentifier = *(sqluint8 *)(recordHeaderBuffer + 1);
switch (functionIdentifier)
{

case 106:
printf(" function ID: Delete Record\n");
RID = *(sqluint32 *)(recordDataBuffer + 2);
subRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
subRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
printf(" RID: %lu\n", RID);
printf(" subrecord length: %u\n", subRecordLen);
printf(" subrecord offset: %u\n", subRecordOffset);
subRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(subRecordBuffer, subRecordLen);
break;

case 111:
printf(" function ID: Undo Delete Record\n");
RID = *(sqluint32 *)(recordDataBuffer + 2);
subRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
subRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
printf(" RID: %lu\n", RID);
printf(" subrecord length: %u\n", subRecordLen);
printf(" subrecord offset: %u\n", subRecordOffset);
subRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(subRecordBuffer, subRecordLen);
break;

case 118:
printf(" function ID: Insert Record\n");
RID = *(sqluint32 *)(recordDataBuffer + 2);

Sample Program with Embedded SQL (dbrecov.sqc)

412 Data Recovery and High Availability Guide and Reference

subRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
subRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
printf(" RID: %lu\n", RID);
printf(" subrecord length: %u\n", subRecordLen);
printf(" subrecord offset: %u\n", subRecordOffset);
subRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(subRecordBuffer, subRecordLen);
break;

case 120:
printf(" function ID: Update Record\n");
oldRID = *(sqluint32 *)(recordDataBuffer + 2);
oldSubRecordLen = *(sqluint16 *)(recordDataBuffer + 6);
oldSubRecordOffset = *(sqluint16 *)(recordDataBuffer + 10);
newRID = *(sqluint32 *)(recordDataBuffer +

12 + oldSubRecordLen + recordHeaderSize + 2);
newSubRecordLen = *(sqluint16 *)(recordDataBuffer +

12 + oldSubRecordLen +
recordHeaderSize + 6);

newSubRecordOffset =
*(sqluint16 *)(recordDataBuffer + 12 + oldSubRecordLen +

recordHeaderSize + 10);
printf(" oldRID: %lu\n", oldRID);
printf(" old subrecord length: %u\n", oldSubRecordLen);
printf(" old subrecord offset: %u\n",

oldSubRecordOffset);
oldSubRecordBuffer = recordDataBuffer + 12;
rc = LogSubRecordDisplay(oldSubRecordBuffer, oldSubRecordLen);
printf(" newRID: %lu\n", newRID);
printf(" new subrecord length: %u\n", newSubRecordLen);
printf(" new subrecord offset: %u\n",

newSubRecordOffset);
newSubRecordBuffer = recordDataBuffer +

12 + oldSubRecordLen + recordHeaderSize + 12;
rc = LogSubRecordDisplay(newSubRecordBuffer, newSubRecordLen);
break;

case 124:
printf(" function ID: Alter Table Attribute\n");
alterBitMask = *(sqluint32 *)(recordDataBuffer + 2);
alterBitValues = *(sqluint32 *)(recordDataBuffer + 6);
if (alterBitMask & 0x00000001)
{

/* Alter the value of the 'propagation' attribute: */
printf(" Propagation attribute is changed to: ");
if (alterBitValues & 0x00000001)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00000002)
{

/* Alter the value of the 'pending' attribute: */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 413

printf(" Pending attribute is changed to: ");
if (alterBitValues & 0x00000002)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00010000)
{

/* Alter the value of the 'append mode' attribute: */
printf(" Append Mode attribute is changed to: ");
if (alterBitValues & 0x00010000)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00200000)
{

/* Alter the value of the 'LF Propagation' attribute: */
printf(" LF Propagation attribute is changed to: ");
if (alterBitValues & 0x00200000)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
if (alterBitMask & 0x00400000)
{

/* Alter the value of the 'LOB Propagation' attribute: */
printf(" LOB Propagation attribute is changed to: ");
if (alterBitValues & 0x00400000)
{

printf("ON\n");
}
else
{

printf("OFF\n");
}

}
break;

default:
printf(" unknown function identifier: %u\n",

functionIdentifier);
break;

}

Sample Program with Embedded SQL (dbrecov.sqc)

414 Data Recovery and High Availability Guide and Reference

return 0;
} /* ComplexLogRecordDisplay */

int LogSubRecordDisplay(char *recordBuffer, sqluint16 recordSize)
{

int rc = 0;
sqluint8 recordType;
sqluint8 updatableRecordType;
sqluint16 userDataFixedLength;
char *userDataBuffer;
sqluint16 userDataSize;

recordType = *(sqluint8 *)(recordBuffer);
if (recordType != 0 && recordType != 4)
{

printf(" Unknown subrecord type.\n");
}
else if (recordType == 4)
{

printf(" subrecord type: Special control\n");
}
else
{

/* recordType == 0 */
printf(" subrecord type: Updatable, ");
updatableRecordType = *(sqluint8 *)(recordBuffer + 4);
if (updatableRecordType != 1)
{

printf("Internal control\n");
}
else
{

printf("Formatted user data\n");
userDataFixedLength = *(sqluint16 *)(recordBuffer + 6);
printf(" user data fixed length: %u\n",

userDataFixedLength);
userDataBuffer = recordBuffer + 8;
userDataSize = recordSize - 8;
rc = UserDataDisplay(userDataBuffer, userDataSize);

}
}

return 0;
} /* LogSubRecordDisplay */

int UserDataDisplay(char *dataBuffer, sqluint16 dataSize)
{

int rc = 0;

sqluint16 line, col;

printf(" user data:\n");

for (line = 0; line * 10 < dataSize; line = line + 1)

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 415

{
printf(" ");
for (col = 0; col < 10; col = col + 1)
{

if (line * 10 + col < dataSize)
{

printf("%02X ", dataBuffer[line * 10 + col]);
}
else
{

printf(" ");
}

}
printf("*");
for (col = 0; col < 10; col = col + 1)
{

if (line * 10 + col < dataSize)
{

if (isalpha(dataBuffer[line * 10 + col]) ||
isdigit(dataBuffer[line * 10 + col]))

{
printf("%c", dataBuffer[line * 10 + col]);

}
else
{

printf(".");
}

}
else
{

printf(" ");
}

}
printf("*");
printf("\n");

}

return 0;
} /* UserDataDisplay */

int DbRecoveryHistoryFileRead(char dbAlias[])
{

int rc = 0;
struct sqlca sqlca;
struct db2HistoryOpenStruct dbHistoryOpenParam;
sqluint32 numEntries;
sqluint16 recoveryHistoryFileHandle;
sqluint32 entryNb;
struct db2HistoryGetEntryStruct dbHistoryEntryGetParam;
struct db2HistoryData histEntryData;

printf("\n***\n");
printf("*** READ A DATABASE RECOVERY HISTORY FILE ***\n");
printf("***\n");
printf("\nUSE THE DB2 APIs:\n");

Sample Program with Embedded SQL (dbrecov.sqc)

416 Data Recovery and High Availability Guide and Reference

printf(" db2HistoryOpenScan -- Open Recovery History File Scan\n");
printf(" db2HistoryGetEntry -- Get Next Recovery History File Entry\n");
printf(" db2HistoryCloseScan -- Close Recovery History File Scan\n");
printf("TO READ A DATABASE RECOVERY HISTORY FILE.\n");

/* initialize the data structures */
dbHistoryOpenParam.piDatabaseAlias = dbAlias;
dbHistoryOpenParam.piTimestamp = NULL;
dbHistoryOpenParam.piObjectName = NULL;
dbHistoryOpenParam.iCallerAction = DB2HISTORY_LIST_HISTORY;

dbHistoryEntryGetParam.pioHistData = &histEntryData;
dbHistoryEntryGetParam.iCallerAction = DB2HISTORY_GET_ALL;
rc = HistoryEntryDataFieldsAlloc(&histEntryData);
if (rc != 0)
{

return rc;
}

/***/
/* OPEN THE DATABASE RECOVERY HISTORY FILE */
/***/
printf("\n Open recovery history file for '%s' database.\n", dbAlias);

/* open the recovery history file to scan */
db2HistoryOpenScan(db2Version710, &dbHistoryOpenParam, &sqlca);
DB2_API_CHECK("database recovery history file -- open");

numEntries = dbHistoryOpenParam.oNumRows;

/* dbHistoryOpenParam.oHandle returns the handle for scan access */
recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;
dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;

/**/
/* READ AN ENTRY IN THE RECOVERY HISTORY FILE */
/**/
for (entryNb = 0; entryNb < numEntries; entryNb = entryNb + 1)
{

printf("\n Read entry number %u.\n", entryNb);

/* get the next entry from the recovery history file */
db2HistoryGetEntry(db2Version710, &dbHistoryEntryGetParam, &sqlca);
DB2_API_CHECK("database recovery history file entry -- read")

/* display the entries in the recovery history file */
printf("\n Display entry number %u.\n", entryNb);
rc = HistoryEntryDisplay(histEntryData);

}

/**/
/* CLOSE THE DATABASE RECOVERY HISTORY FILE */
/**/
printf("\n Close recovery history file for '%s' database.\n", dbAlias);

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 417

/* The API db2HistoryCloseScan ends the recovery history file scan and
frees DB2 resources required for the scan. */

db2HistoryCloseScan(db2Version710, &recoveryHistoryFileHandle, &sqlca);
DB2_API_CHECK("database recovery history file -- close");

/* free the allocated memory */
rc = HistoryEntryDataFieldsFree(&histEntryData);

return 0;
} /* DbRecoveryHistoryFileRead */

int HistoryEntryDataFieldsAlloc(struct db2HistoryData *pHistEntryData)
{

int rc = 0;
sqluint32 tsNb;

strcpy(pHistEntryData—>ioHistDataID, "SQLUHINF");

pHistEntryData—>oObjectPart.pioData = malloc(17 + 1);
pHistEntryData—>oObjectPart.iLength = 17 + 1;

pHistEntryData—>oEndTime.pioData = malloc(12 + 1);
pHistEntryData—>oEndTime.iLength = 12 + 1;

pHistEntryData—>oFirstLog.pioData = malloc(8 + 1);
pHistEntryData—>oFirstLog.iLength = 8 + 1;

pHistEntryData—>oLastLog.pioData = malloc(8 + 1);
pHistEntryData—>oLastLog.iLength = 8 + 1;

pHistEntryData—>oID.pioData = malloc(128 + 1);
pHistEntryData—>oID.iLength = 128 + 1;

pHistEntryData—>oTableQualifier.pioData = malloc(128 + 1);
pHistEntryData—>oTableQualifier.iLength = 128 + 1;

pHistEntryData—>oTableName.pioData = malloc(128 + 1);
pHistEntryData—>oTableName.iLength = 128 + 1;

pHistEntryData—>oLocation.pioData = malloc(128 + 1);
pHistEntryData—>oLocation.iLength = 128 + 1;

pHistEntryData—>oComment.pioData = malloc(128 + 1);
pHistEntryData—>oComment.iLength = 128 + 1;

pHistEntryData—>oCommandText.pioData = malloc(128 + 1);
pHistEntryData—>oCommandText.iLength = 128 + 1;

pHistEntryData—>poEventSQLCA =
(struct sqlca *)malloc(sizeof(struct sqlca));

pHistEntryData—>poTablespace = (db2Char *)malloc(3 * sizeof(db2Char));
for (tsNb = 0; tsNb < 3; tsNb = tsNb + 1)
{

pHistEntryData—>poTablespace[tsNb].pioData = malloc(18 + 1);

Sample Program with Embedded SQL (dbrecov.sqc)

418 Data Recovery and High Availability Guide and Reference

pHistEntryData—>poTablespace[tsNb].iLength = 18 + 1;
}

pHistEntryData—>iNumTablespaces = 3;

return 0;
} /* HistoryEntryDataFieldsAlloc */

int HistoryEntryDisplay(struct db2HistoryData histEntryData)
{

int rc = 0;
char buf[129];
sqluint32 tsNb;

memcpy(buf, histEntryData.oObjectPart.pioData,
histEntryData.oObjectPart.oLength);

buf[histEntryData.oObjectPart.oLength] = '\0';
printf(" object part: %s\n", buf);

memcpy(buf, histEntryData.oEndTime.pioData,
histEntryData.oEndTime.oLength);

buf[histEntryData.oEndTime.oLength] = '\0';
printf(" end time: %s\n", buf);

memcpy(buf, histEntryData.oFirstLog.pioData,
histEntryData.oFirstLog.oLength);

buf[histEntryData.oFirstLog.oLength] = '\0';
printf(" first log: %s\n", buf);

memcpy(buf, histEntryData.oLastLog.pioData,
histEntryData.oLastLog.oLength);

buf[histEntryData.oLastLog.oLength] = '\0';
printf(" last log: %s\n", buf);

memcpy(buf, histEntryData.oID.pioData, histEntryData.oID.oLength);
buf[histEntryData.oID.oLength] = '\0';
printf(" ID: %s\n", buf);

memcpy(buf, histEntryData.oTableQualifier.pioData,
histEntryData.oTableQualifier.oLength);

buf[histEntryData.oTableQualifier.oLength] = '\0';
printf(" table qualifier: %s\n", buf);

memcpy(buf, histEntryData.oTableName.pioData,
histEntryData.oTableName.oLength);

buf[histEntryData.oTableName.oLength] = '\0';
printf(" table name: %s\n", buf);

memcpy(buf, histEntryData.oLocation.pioData,
histEntryData.oLocation.oLength);

buf[histEntryData.oLocation.oLength] = '\0';
printf(" location: %s\n", buf);

memcpy(buf, histEntryData.oComment.pioData,
histEntryData.oComment.oLength);

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 419

buf[histEntryData.oComment.oLength] = '\0';
printf(" comment: %s\n", buf);

memcpy(buf, histEntryData.oCommandText.pioData,
histEntryData.oCommandText.oLength);

buf[histEntryData.oCommandText.oLength] = '\0';
printf(" command text: %s\n", buf);
printf(" history file entry ID: %u\n", histEntryData.oEID.ioHID);
printf(" table spaces:\n");

for (tsNb = 0; tsNb < histEntryData.oNumTablespaces; tsNb = tsNb + 1)
{

memcpy(buf, histEntryData.poTablespace[tsNb].pioData,
histEntryData.poTablespace[tsNb].oLength);

buf[histEntryData.poTablespace[tsNb].oLength] = '\0';
printf(" %s\n", buf);

}

printf(" type of operation: %c\n", histEntryData.oOperation);
printf(" granularity of the operation: %c\n", histEntryData.oObject);
printf(" operation type: %c\n", histEntryData.oOptype);
printf(" entry status: %c\n", histEntryData.oStatus);
printf(" device type: %c\n", histEntryData.oDeviceType);
printf(" SQLCA:\n");
printf(" sqlcode: %ld\n", histEntryData.poEventSQLCA—>sqlcode);
memcpy(buf, histEntryData.poEventSQLCA—>sqlstate, 5);
buf[5] = '\0';
printf(" sqlstate: %s\n", buf);
memcpy(buf, histEntryData.poEventSQLCA—>sqlerrmc,

histEntryData.poEventSQLCA—>sqlerrml);
buf[histEntryData.poEventSQLCA—>sqlerrml] = '\0';
printf(" message: %s\n", buf);

return 0;
} /* HistoryEntryDisplay */

int HistoryEntryDataFieldsFree(struct db2HistoryData *pHistEntryData)
{

int rc = 0;
sqluint32 tsNb;

free(pHistEntryData—>oObjectPart.pioData);
free(pHistEntryData—>oEndTime.pioData);
free(pHistEntryData—>oFirstLog.pioData);
free(pHistEntryData—>oLastLog.pioData);
free(pHistEntryData—>oID.pioData);
free(pHistEntryData—>oTableQualifier.pioData);
free(pHistEntryData—>oTableName.pioData);
free(pHistEntryData—>oLocation.pioData);
free(pHistEntryData—>oComment.pioData);
free(pHistEntryData—>oCommandText.pioData);
free(pHistEntryData—>poEventSQLCA);

for (tsNb = 0; tsNb < 3; tsNb = tsNb + 1)
{

Sample Program with Embedded SQL (dbrecov.sqc)

420 Data Recovery and High Availability Guide and Reference

free(pHistEntryData—>poTablespace[tsNb].pioData);
}

free(pHistEntryData—>poTablespace);

return 0;
} /* HistoryEntryDataFieldsFree */

int DbFirstRecoveryHistoryFileEntryUpdate(char dbAlias[],
char user[],
char pswd[])

{
int rc = 0;
struct sqlca sqlca;
struct db2HistoryOpenStruct dbHistoryOpenParam;
sqluint16 recoveryHistoryFileHandle;
struct db2HistoryGetEntryStruct dbHistoryEntryGetParam;
struct db2HistoryData histEntryData;
char newLocation[DB2HISTORY_LOCATION_SZ + 1];
char newComment[DB2HISTORY_COMMENT_SZ + 1];
struct db2HistoryUpdateStruct dbHistoryUpdateParam;

printf("\n***\n");
printf("*** UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY ***\n");
printf("***\n");
printf("\nUSE THE DB2 APIs:\n");
printf(" db2HistoryOpenScan -- Open Recovery History File Scan\n");
printf(" db2HistoryGetEntry -- Get Next Recovery History File Entry\n");
printf(" db2HistoryUpdate -- Update Recovery History File\n");
printf(" db2HistoryCloseScan -- Close Recovery History File Scan\n");
printf("TO UPDATE A DATABASE RECOVERY HISTORY FILE ENTRY.\n");

/* initialize data structures */
dbHistoryOpenParam.piDatabaseAlias = dbAlias;
dbHistoryOpenParam.piTimestamp = NULL;
dbHistoryOpenParam.piObjectName = NULL;
dbHistoryOpenParam.iCallerAction = DB2HISTORY_LIST_HISTORY;
dbHistoryEntryGetParam.pioHistData = &histEntryData;
dbHistoryEntryGetParam.iCallerAction = DB2HISTORY_GET_ALL;
rc = HistoryEntryDataFieldsAlloc(&histEntryData);
if (rc != 0)
{

return rc;
}

/***/
/* OPEN THE DATABASE RECOVERY HISTORY FILE */
/***/
printf("\n Open the recovery history file for '%s' database.\n", dbAlias);

/* The API db2HistoryOpenScan starts a recovery history file scan */
db2HistoryOpenScan(db2Version710, &dbHistoryOpenParam, &sqlca);
DB2_API_CHECK("database recovery history file -- open");

/* dbHistoryOpenParam.oHandle returns the handle for scan access */

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 421

recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;
dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;

/***/
/* READ THE FIRST ENTRY IN THE RECOVERY HISTORY FILE */
/***/
printf("\n Read the first entry in the recovery history file.\n");

/* The API db2HistoryGetEntry gets the next entry from the recovery
history file. */

db2HistoryGetEntry(db2Version710, &dbHistoryEntryGetParam, &sqlca);
DB2_API_CHECK("first recovery history file entry -- read");
printf("\n Display the first entry.\n");

/* HistoryEntryDisplay is a support function used to display the entries
in the recovery history file. */

rc = HistoryEntryDisplay(histEntryData);

/* update the first history file entry */
rc = DbConn(dbAlias, user, pswd);
if (rc != 0)
{

return rc;
}

strcpy(newLocation, "this is the NEW LOCATION");
strcpy(newComment, "this is the NEW COMMENT");
printf("\n Update the first entry in the history file:\n");
printf(" new location = '%s'\n", newLocation);
printf(" new comment = '%s'\n", newComment);
dbHistoryUpdateParam.piNewLocation = newLocation;
dbHistoryUpdateParam.piNewDeviceType = NULL;
dbHistoryUpdateParam.piNewComment = newComment;
dbHistoryUpdateParam.iEID.ioNode = histEntryData.oEID.ioNode;
dbHistoryUpdateParam.iEID.ioHID = histEntryData.oEID.ioHID;

/* The API db2HistoryUpdate can be used to update the location,
device type, or comment in a history file entry. */

/* Call this API to update the location and comment of the first
entry in the history file: */

db2HistoryUpdate(db2Version710, &dbHistoryUpdateParam, &sqlca);
DB2_API_CHECK("first history file entry -- update");

rc = DbDisconn(dbAlias);
if (rc != 0)
{

return rc;
}

/**/
/* CLOSE THE DATABASE RECOVERY HISTORY FILE */
/**/
printf("\n Close recovery history file for '%s' database.\n", dbAlias);

Sample Program with Embedded SQL (dbrecov.sqc)

422 Data Recovery and High Availability Guide and Reference

/* The API db2HistoryCloseScan ends the recovery history file scan and
frees DB2 resources required for the scan. */

db2HistoryCloseScan(db2Version710, &recoveryHistoryFileHandle, &sqlca);
DB2_API_CHECK("database recovery history file -- close");

/**/
/* RE-OPEN THE DATABASE RECOVERY HISTORY FILE */
/**
printf("\n Open the recovery history file for '%s' database.\n", dbAlias);

/* starts a recovery history file scan */
db2HistoryOpenScan(db2Version710, &dbHistoryOpenParam, &sqlca);
DB2_API_CHECK("database recovery history file -- open");

recoveryHistoryFileHandle = dbHistoryOpenParam.oHandle;

dbHistoryEntryGetParam.iHandle = recoveryHistoryFileHandle;
printf("\n Read the first recovery history file entry.\n");

/**/
/* READ THE FIRST ENTRY IN THE RECOVERY HISTORY FILE AFTER MODIFICATION */
/**/
db2HistoryGetEntry(db2Version710, &dbHistoryEntryGetParam, &sqlca);
DB2_API_CHECK("first recovery history file entry -- read");

printf("\n Display the first entry.\n");
rc = HistoryEntryDisplay(histEntryData);

/**/
/* CLOSE THE DATABASE RECOVERY HISTORY FILE */
/**/
printf("\n Close the recovery history file for '%s' database.\n",

dbAlias);

/* ends the recovery history file scan */
db2HistoryCloseScan(db2Version710, &recoveryHistoryFileHandle, &sqlca);
DB2_API_CHECK("database recovery history file -- close");

/* free the allocated memory */
rc = HistoryEntryDataFieldsFree(&histEntryData);

return 0;
} /* DbFirstRecoveryHistoryFileEntryUpdate */

int DbRecoveryHistoryFilePrune(char dbAlias[], char user[], char pswd[])
{

int rc = 0;
struct sqlca sqlca;
struct db2PruneStruct histPruneParam;
char timeStampPart[14 + 1];

printf("\n***************************************\n");
printf("*** PRUNE THE RECOVERY HISTORY FILE ***\n");
printf("***************************************\n");

Sample Program with Embedded SQL (dbrecov.sqc)

Appendix E. Recovery Sample Programs 423

printf("\nUSE THE DB2 API:\n");
printf(" db2Prune -- Prune Recovery History File\n");
printf("AND THE SQL STATEMENTS:\n");
printf(" CONNECT\n");
printf(" CONNECT RESET\n");
printf("TO PRUNE THE RECOVERY HISTORY FILE.\n");

/* Connect to the database: */
rc = DbConn(dbAlias, user, pswd);
if (rc != 0)
{

return rc;
}

/* Prune the recovery history file: */
printf("\n Prune the recovery history file for '%s' database.\n",

dbAlias);

/* timeStampPart is a pointer to a string specifying a time stamp or
log sequence number. Time stamp is used here to select records for
deletion. All entries equal to or less than the time stamp will be
deleted. */

histPruneParam.piString = timeStampPart;
strcpy(timeStampPart, "2010"); /* year 2010 */

/* The action DB2PRUNE_ACTION_HISTORY removes history file entries: */
histPruneParam.iAction = DB2PRUNE_ACTION_HISTORY;

/* The option DB2PRUNE_OPTION_FORCE forces the removal of the last backup: */
histPruneParam.iOptions = DB2PRUNE_OPTION_FORCE;

/* db2Prune can be called to delete entries from the recovery history file
or log files from the active log path. Here we call it to delete
entries from the recovery history file.
You must have SYSADM, SYSCTRL, SYSMAINT, or DBADM authority to prune
the recovery history file. */

db2Prune(db2Version710, &histPruneParam, &sqlca);
DB2_API_CHECK("recovery history file -- prune");

/* Disconnect from the database: */
rc = DbDisconn(dbAlias);
if (rc != 0)
{

return rc;
}

return 0;
} /* DbRecoveryHistoryFilePrune */

Sample Program with Embedded SQL (dbrecov.sqc)

424 Data Recovery and High Availability Guide and Reference

Appendix F. Recovery CLP Script

The following DB2 command script shows how to use CLP commands to:
v Back up a database
v Restore the database
v Rollforward recover the database

Ensure that the SAMPLE database exists and is not in use. For detailed
information about the SAMPLE database, see the SQL Reference. For general
information about the DB2 command line processor, see the Command
Reference.

Both a Windows-compatible and a UNIX-compatible version of the script are
described.

Sample Command Script for Windows Operating Systems

To run the script on Windows NT or Windows 2000:
1. Save the script to a file named, for example, backrest.db2.
2. If the database manager is not running, issue the db2start command from

a DB2 command window. To open a CLP-enabled DB2 window, and
initialize the DB2 command line environment on the Windows operating
system, issue db2cmd from a command prompt.

3. Enter db2 -f backrest.db2 -t.

The following is an example of the output that this script returns:
D:\>db2 -f backrest.db2 -t
This is CLP script: backrest.db2

Deleting old SAMPLE database backup images...

process SAMPLE.0\DB2\NODE0000\CATN0000
process 20010403

Updating the database configuration parameter LOGRETAIN to 'ON'...

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
DB21026I For most configuration parameters, all applications must disconnect
from this database before the changes become effective.

Backing up the SAMPLE database...

© Copyright IBM Corp. 2001 425

Backup successful. The timestamp for this backup image is : 20010403131027

Restoring the SAMPLE database as TESTBACK (1st pass)...

SQL1277N Restore has detected that one or more table space containers are
inaccessible, or has set their state to 'storage must be defined'.
DB20000I The RESTORE DATABASE command completed successfully.

Listing the table spaces for the TESTBACK database...

Tablespaces for Current Database

Tablespace ID = 0
Name = SYSCATSPACE
Type = System managed space
Contents = Any data
State = 0x2001100

Detailed explanation:
Restore pending
Storage must be defined
Storage may be defined

Tablespace ID = 1
Name = TEMPSPACE1
Type = System managed space
Contents = System Temporary data
State = 0x2001100

Detailed explanation:
Restore pending
Storage must be defined
Storage may be defined

Tablespace ID = 2
Name = USERSPACE1
Type = System managed space
Contents = Any data
State = 0x2001100

Detailed explanation:
Restore pending
Storage must be defined
Storage may be defined

Defining new table space containers for Tablespace 2...

DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

Listing table space containers for Tablespace 2 (TESTBACK database)...

Tablespace Containers for Tablespace 2

Sample Command Script for Windows Operating Systems

426 Data Recovery and High Availability Guide and Reference

Container ID = 0
Name = c:\ts2con1
Type = Path

Restoring the SAMPLE database as TESTBACK (2nd pass)...

DB20000I The RESTORE DATABASE command completed successfully.

Rolling the TESTBACK database forward...

Rollforward Status

Input database alias = testback
Number of nodes have returned status = 1

Node number = 0
Rollforward status = not pending
Next log file to be read =
Log files processed = -
Last committed transaction = 2001-04-03-03.16.07.000000

DB20000I The ROLLFORWARD command completed successfully.

Dropping the TESTBACK database...

DB20000I The DROP DATABASE command completed successfully.

Terminating the command line processor's back-end process...

DB20000I The TERMINATE command completed successfully.

D:\>

Following is the source listing for the script:
-- Before proceeding, ensure that:
-- The database manager is running
-- The SAMPLE database exists and is not in use.

-- Run the script by issuing:
-- db2 -f backrest.db2 -t
-- where -f tells the command line processor to read command input
-- from a file instead of from standard input, and
-- -t tells the command line processor to use a semicolon (;)
-- as the statement termination character.

!ECHO This is CLP script: backrest.db2;

-- Ensure that the DB2 profile registry variable DB2_ENABLE_LDAP
-- is set to 'NO':
!db2set DB2_ENABLE_LDAP=NO;

Sample Command Script for Windows Operating Systems

Appendix F. Recovery CLP Script 427

!ECHO Deleting old SAMPLE database backup images...;
!rd! SAMPLE.0\DB2\NODE0000\CATN0000;

!ECHO Updating the database configuration parameter LOGRETAIN to 'ON'...;
update db cfg for sample using logretain on;

!ECHO Backing up the SAMPLE database...;
backup db sample;

!ECHO Restoring the SAMPLE database as TESTBACK (1st pass)...;
restore db sample into testback redirect;

!ECHO Listing the table spaces for the TESTBACK database...;
list tablespaces;

!ECHO Defining new table space containers for Tablespace 2...;
set tablespace containers for 2 using (path "c:\ts2con1");

!ECHO Listing table space containers for Tablespace 2 (TESTBACK database)...;
list tablespace containers for 2;

!ECHO Restoring the SAMPLE database as TESTBACK (2nd pass)...;
restore db sample continue;

!ECHO Rolling the TESTBACK database forward...;
rollforward db testback stop;

!ECHO Dropping the TESTBACK database...;
drop db testback;

!ECHO Terminating the command line processor's back-end process...;
terminate;

-- End file

Sample Command Script for UNIX Based Systems

To run the script on a UNIX based operating system:
1. Save the script to a file named, for example, backrest.db2.
2. If the database manager is not running, issue the db2start command from

a command prompt.
3. Enter db2 -f backrest.db2 -t.

The following is an example of the output that this script returns:
sunfish /export/home2/falexand/samples/clp>db2 -f backrest.db2 -t
This is CLP script: backrest.db2

Deleting old SAMPLE database backup images...

Updating the database configuration parameter LOGRETAIN to 'ON'...
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

Sample Command Script for Windows Operating Systems

428 Data Recovery and High Availability Guide and Reference

DB21026I For most configuration parameters, all applications must disconnect
from this database before the changes become effective.

Backing up the SAMPLE database...

Backup successful. The timestamp for this backup image is : 20010531172525

Restoring the SAMPLE database as TESTBACK (1st pass)...
SQL1277N Restore has detected that one or more table space containers are
inaccessible, or has set their state to 'storage must be defined'.
DB20000I The RESTORE DATABASE command completed successfully.

Listing the table spaces for the TESTBACK database...

Tablespaces for Current Database

Tablespace ID = 0
Name = SYSCATSPACE
Type = System managed space
Contents = Any data
State = 0x2001100

Detailed explanation:
Restore pending
Storage must be defined
Storage may be defined

Tablespace ID = 1
Name = TEMPSPACE1
Type = System managed space
Contents = System Temporary data
State = 0x2001100

Detailed explanation:
Restore pending
Storage must be defined
Storage may be defined

Tablespace ID = 2
Name = USERSPACE1
Type = System managed space
Contents = Any data
State = 0x2001100

Detailed explanation:
Restore pending
Storage must be defined
Storage may be defined

Defining new table space containers for Tablespace 2...
DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

Listing table space containers for Tablespace 2 (TESTBACK database)...

Tablespace Containers for Tablespace 2

Sample Command Script for UNIX Based Systems

Appendix F. Recovery CLP Script 429

Container ID = 0
Name = /export/home2/falexand/falexand...

.../NODE0000/SQL00020/ts2con1
Type = Path

Restoring the SAMPLE database as TESTBACK (2nd pass)...
DB20000I The RESTORE DATABASE command completed successfully.

Rolling the TESTBACK database forward...

Rollforward Status

Input database alias = testback
Number of nodes have returned status = 1

Node number = 0
Rollforward status = not pending
Next log file to be read =
Log files processed = -
Last committed transaction = 2001-05-29-21.20.16.000000

DB20000I The ROLLFORWARD command completed successfully.

Dropping the TESTBACK database...
DB20000I The DROP DATABASE command completed successfully.

Terminating the command line processor's back-end process...
DB20000I The TERMINATE command completed successfully.

Following is the source listing for the script:
-- Before proceeding, ensure that:
-- The database manager is running
-- The SAMPLE database exists and is not in use.

-- Run the script by issuing:
-- db2 -f backrest.db2 -t
-- where -f tells the command line processor to read command input
-- from a file instead of from standard input, and
-- -t tells the command line processor to use a semicolon (;)
-- as the statement termination character.

echo This is CLP script: backrest.db2;

-- Ensure that the DB2 profile registry variable DB2_ENABLE_LDAP
-- is set to 'NO':
!db2set DB2_ENABLE_LDAP=NO;

echo Deleting old SAMPLE database backup images...;
!rm -f ./SAMPLE.0.*;

echo Updating the database configuration parameter LOGRETAIN to 'ON'...;

Sample Command Script for UNIX Based Systems

430 Data Recovery and High Availability Guide and Reference

update db cfg for sample using logretain on;

echo Backing up the SAMPLE database...;
backup db sample;

echo Restoring the SAMPLE database as TESTBACK (1st pass)...;
restore db sample into testback redirect;

echo Listing the table spaces for the TESTBACK database...;
list tablespaces;

echo Defining new table space containers for Tablespace 2...;
set tablespace containers for 2 using (path "ts2con1");

echo Listing table space containers for Tablespace 2 (TESTBACK database)...;
list tablespace containers for 2;

echo Restoring the SAMPLE database as TESTBACK (2nd pass)...;
restore db sample continue;

echo Rolling the TESTBACK database forward...;
rollforward db testback stop;

echo Dropping the TESTBACK database...;
drop db testback;

echo Terminating the command line processor's back-end process...;
terminate;

-- End file

Sample Command Script for UNIX Based Systems

Appendix F. Recovery CLP Script 431

Sample Command Script for UNIX Based Systems

432 Data Recovery and High Availability Guide and Reference

Appendix G. Tivoli Storage Manager

When invoking the DB2 backup or the restore utility, you can specify that you
want to use the Tivoli Storage Manager (TSM, formerly ADSM) product to
manage the backup or the restore operation.. You can use TSM client Version
3.1.x.3 and later with DB2.

Setting up a Tivoli Storage Manager Client on UNIX Based Platforms

Before the database manager can use the TSM option, the following setup
activities must be performed:
1. On SunOS and Solaris environments, perform the following steps. (For

other UNIX based platforms, begin at step 2.)
a. Ensure that the required operating system level is installed: SunOS

5.5.1 or Solaris 2.5.1.
b. Install the TSM client Version 3.1.x.3 or later. Ensure that you remove

all previous TSM packages before installing this version of the client.
c. Verify that TSM is installed in the directories /opt/IBMDSMap5,

/opt/IBMDSMba5, and /opt/IBMDSMsa5.
d. Create the following symbolic links in the directory /usr/lib, if they

do not already exist:
libApiDS.so —> libApiDS.so.1
libApiDS.so.1 —> /opt/IBMDSMap5/api/libApiDS.so.2

2. Create or modify the TSM user configuration options file
/usr/sbin/dsm.opt, and the TSM system configuration options file
/usr/sbin/dsm.sys to suit your environment.

3. On SunOS and Solaris environments, perform the following steps. (For
other UNIX based platforms, continue at step 4.)
a. Copy /usr/sbin/dsm.opt and /usr/sbin/dsm.sys to the directory

/opt/IBMDSMap5.
b. Copy /opt/IBMDSMap5/solaris/dsmaptica to the directory

/opt/IBMDSMap5.
4. Set the environment variables used by TSM:

DSMI_DIR Identifies the user-defined directory path where the API
trusted agent file (dsmapicta or dsmtca) is located. On
SunOS and Solaris environments, this should be set to
/opt/IBMDSMap5.

DSMI_CONFIG
Identifies the user-defined directory path to the dsm.opt

© Copyright IBM Corp. 2001 433

file, which contains the TSM user options. Unlike the other
two variables, this variable should contain a fully qualified
path and file name. On SunOS and Solaris environments,
this should be set to /opt/IBMDSMap5/dsm.opt.

DSMI_LOG Identifies the user-defined directory path where the error
log (dsierror.log) will be created.

5. Establish the TSM password.
For a Tivoli client to be able to interface with a TSM server, it must have a
password for the server. The executable file dsmapipw is installed in the
INSTHOME/sqllib/adsm directory of the instance owner. This executable
allows you to establish and reset the TSM password.
To execute the dsmapipw command, you must be logged in as the “root”
user. When this command is executed, you will be prompted for the
following information:
v Old password, which is the current password for the TSM node, as

recognized by the TSM server. The first time that you execute this
command, the password will be the one provided by the TSM
administrator at the time your node was registered on the TSM server.

v New password, which is the new password for the TSM node, stored at
the TSM server. (Note that you will be prompted twice for the new
password, to check for input errors.)

Note: Users invoking the backup or the restore utility do not need to
know this password. You only need to run the dsmapipw command
to establish a password for the initial connection, and after the
password has been reset on the TSM server.

6. If the database manager is running, you should:
v Stop the database manager using the db2stop command.
v Start the database manager using the db2start command.

Setting up a Tivoli Storage Manager Client on Other Platforms

Before the database manager can use the TSM option, the following setup
activities must be performed:
1. Set the environment variables used by TSM:

DSMI_DIR Identifies the user-defined directory path where the API
trusted agent file (dsmapicta or dsmtca) is located.

DSMI_CONFIG
Identifies the user-defined directory path to the dsm.opt
file, which contains the TSM user options. Unlike the other
two variables, this variable should contain a fully qualified
path and file name.

Setting up a TSM Client on UNIX Based Platforms

434 Data Recovery and High Availability Guide and Reference

DSMI_LOG Identifies the user-defined directory path where the error
log (dsierror.log) will be created.

2. If applicable to your operating system, create (or modify) the TSM system
configuration options file (dsm.sys).

3. Create (or modify) the dsm.opt TSM user configuration options file. The
environment variable DSMI_CONFIG points to this file.

4. Establish the TSM password.
For a Tivoli client to be able to interface with a TSM server, it must have a
password for the server. The executable file dsmapipw is installed in the
\sqllib\adsm directory of the instance owner. This executable allows you
to establish and reset the TSM password.
To execute the dsmapipw command, you must be logged in as the local
administrator. When this command is run, you will be prompted for the
following information:
v Old password, which is the current password for the TSM node, as

recognized by the TSM server. The first time that you invoke this
command, the password will be the one provided by the TSM
administrator at the time your node was registered on the TSM server.

v New password, which is the new password for the TSM node, stored at
the TSM server. (Note that you will be prompted twice for the new
password, to check for input errors.)

Note: Users invoking the backup or the restore utility do not need to
know this password. You only need to run the dsmapipw command
to establish a password for the initial connection, and after the
password has been reset on the TSM server.

5. If the database manager is running, you should:
v Stop the database manager using the db2stop command.
v Start the database manager using the db2start command.

Considerations for Using Tivoli Storage Manager

To use specific features within TSM, you may be required to give the fully
qualified path name of the object using the feature. (Remember that on the
Windows NT operating system and OS/2, \ will be used instead of /.) The
fully qualified path name of:
v A full database backup object is:

/<database>/NODEnnnn/FULL_BACKUP.timestamp.seq_no

v A table space backup object is:
/<database>/NODEnnnn/TSP_BACKUP.timestamp.seq_no

v A load copy object is: /<database>/NODEnnnn/LOAD_COPY.timestamp.seq_no

Setting up a TSM Client on Other Platforms

Appendix G. Tivoli Storage Manager 435

where <database> is the database alias name, and NODEnnnn is the node
number. The names shown in uppercase characters must be entered as shown.
v In the case where you have multiple backup images using the same

database alias name, the time stamp and sequence number become the
distinguishing part of a fully qualified name. You will need to query TSM
to determine which backup version to use.

v Individual backup images are not known to the TSM graphical user
interface. Backup images are pooled into file spaces that TSM manages.
Individual backup images can only be manipulated through the TSM APIs,
or through db2adutl which uses these APIs (see “db2adutl - Work with
TSM Archived Images” on page 302).

v The TSM server will time out a session if the Tivoli client does not respond
within the period of time specified by the COMMTIMEOUT parameter in the
server’s configuration file. Three factors can contribute to a timeout
problem:
– The COMMTIMEOUT parameter may be set too low at the TSM server. For

example, during a restore operation, a timeout can occur if large DMS
table spaces are being created. The recommended value for this
parameter is 6000 seconds.

– The DB2 backup or restore buffer may be too large.
– Database activity during an online backup operation may be too high.

v The database manager uses the TSM full backup option; TSM incremental
backup operations are not supported.

v Use multiple sessions to increase throughput.
v On non-UNIX based systems, the DB2 backup and restore utilities do not

allow more than one TSM session.

Current Tivoli clients on Windows operating systems and OS/2 support
reentrancy, and so multiple I/O sessions can safely be created with the
backup, restore, or load utilities from a single machine. However, users must
confirm that their installed version of the TSM client supports this function.

In a single-node configuration, if a user attempts to issue a BACKUP
DATABASE command such as:

db2 backup db sample use tsm open 3 sessions

DB2 will detect that multiple sessions are not supported by TSM, and will
return an error message. (This also applies to load operations invoked with
the COPY YES option, using TSM.)

Be aware, however, that in a multiple logical node (MLN) configuration on
Windows NT, DB2 may not be able to detect the use of multiple sessions on a
single machine if each logical node attempts to create only one session. For
this reason it is very important for MLN configurations to verify that their

Considerations for Using TSM

436 Data Recovery and High Availability Guide and Reference

TSM client supports reentrancy. If multiple logical nodes are being backed up,
restored, or loaded in parallel using TSM, DB2 will allow the operation to
proceed if each node attempts to use a single session, even though the logical
nodes actually reside on the same hardware. This can lead to failed backup
attempts, and hung load processes, and should not be attempted without the
most recent TSM client.

Managing Backups and Log Archives on TSM
The db2adutl utility allows you to query, extract, and delete backup images,
logs, and load copy images that were saved using TSM. The utility is installed
in the INSTHOME/sqllib/misc directory on UNIX based systems, and in the
\sqllib\misc directory on Windows operating systems and on OS/2. For
detailed information about this utility, see “db2adutl - Work with TSM
Archived Images” on page 302.

The QUERY option allows you to list backup images, load copy images, or
logs. You can select a range of logs to be listed. You can also request to see the
inactive backup images.

The EXTRACT option allows you to copy backup images or logs from TSM to
your current directory. You can select which backup images or logs to extract.

The DELETE option allows you to deactivate backup images or to delete logs
from TSM. You can select which backup images or logs to process. You can
use the KEEP n option to keep the most recent n backup images. You can also
use the OLDER THAN timestamp or n DAYS option to tailor the DELETE
request.

Tivoli Space Manager Integration with Data Links

DB2 Data Links Manager can use Tivoli Space Manager (TSM) and its virtual
file system (FSM), which layers itself on top of the native journaled file
system (JFS). FSM can be accessed and configured in the same manner as JFS.

This feature benefits users who have file systems with large files that must
periodically be moved to tertiary storage. The space for these file systems
must be managed on a regular basis. DB2 Data Links Manager support of
TSM provides greater flexibility in managing the space for DATALINK files.
Rather than pre-allocating enough storage in the DB2 Data Links Manager file
system for all files that may be stored there, TSM allows allocations of the
Data Links managed file system to be adjusted over a period of time without
the risk of inadvertently filling up the file system during normal usage.

Restrictions and Limitations
v This feature is currently supported on AIX only.

Considerations for Using TSM

Appendix G. Tivoli Storage Manager 437

v Selective migration (dsmmigrate) and recall of an FC (read permission
database) linked file should be done by a root user only.
Selective migration can only be performed by the file owner which, in the
case of read permission database files, is the DataLink Manager
Administrator (dlfm). To access such files, a token is required from the host
database. The only user who does not require a token is the “root” user. It
is easier for a “root” user to perform selective migration and recall on such
files. The dlfm user can only migrate an FC file using a valid token the first
time. The second time that migration is attempted (after a recall), the
operation fails with error message “ANS1028S Internal program error.
Please see your service representative.” If a non-root user tries to run
dsmmigrate on an FC file, the operation does not succeed. This limitation is
minor, because it is typically administrators who access files on the file
server.

v The stat and statfs system calls show Vfs-type as fsm rather than dlfs, even
though dlfs is mounted over fsm.
This behavior supports the normal functionality of dsmrecalld daemons,
which run statfs on the file system to determine whether or not its Vfs-type
is fsm.

v The dsmls command does not show any output if a file having the
minimum inode number is FC (read permission database) linked.
The dsmls command is similar to the ls command: it lists the files being
administered by TSM. No user action is required.

TSM Integration with Data Links

438 Data Recovery and High Availability Guide and Reference

Appendix H. User Exit for Database Recovery

You can develop a user exit program to automate log file archiving and
retrieval. (On OS/2, user exit programs can also be used for backup and
restore operations.) Before invoking a user exit program for log file archiving
or retrieval, ensure that the userexit database configuration parameter has been
set to YES. This also enables your database for rollforward recovery.

When a user exit program is invoked, the database manager passes control to
the executable file, db2uext2. (On OS/2, backup and restore operations call
db2uexit.cmd first, which in turn calls db2uext2.) The database manager
passes parameters to db2uext2 and, on completion, the program passes a
return code back to the database manager. Because the database manager
handles a limited set of return conditions, the user exit program should be
able to handle error conditions (see “Error Handling” on page 444). And
because only one user exit program can be invoked within a database
manager instance, it must have a section for each of the operations it may be
asked to perform.

The following topics are covered:
v “Sample User Exit Programs”
v “Calling Format” on page 441
v “Backup and Restore Considerations (DB2 for OS/2 only)” on page 443
v “Error Handling” on page 444

Sample User Exit Programs

Sample user exit programs are provided for all supported platforms. You can
modify these programs to suit your particular requirements. The sample
programs are well commented with information that will help you to use
them most effectively.

You should be aware that user exit programs must copy log files from the
active log path to the archive log path. Do not remove log files from the active
log path. (This could cause problems during database recovery.) DB2 removes
archived log files from the active log path when these log files are no longer
needed for recovery.

Following is a description of the sample user exit programs that are shipped
with DB2.
v UNIX based systems

© Copyright IBM Corp. 2001 439

The user exit sample programs for DB2 for UNIX based systems are found
in the sqllib/samples/c subdirectory. Although the samples provided are
coded in C, your user exit program can be written in a different
programming language.
Your user exit program must be an executable file whose name is db2uext2.
There are four sample user exit programs for UNIX based systems:
– db2uext2.cadsm

This sample uses Tivoli Storage Manager to archive and retrieve database
log files.

– db2uext2.ctape

This sample uses tape media to archive and retrieve database log files .
– db2uext2.cdisk

This sample uses the operating system COPY command and disk media
to archive and retrieve database log files.

– db2uxt2.cxbsa

This sample uses the Legato NetWorker** Version 4.2.5 program,
available from Legato** Systems, Inc. It can be used to archive and
retrieve database log files. This sample is only supported on AIX.

v Windows operating systems

The user exit sample programs for DB2 for Windows operating systems are
found in the sqllib\samples\c subdirectory. Although the samples
provided are coded in C, your user exit program can be written in a
different programming language.
Your user exit program must be an executable file whose name is db2uext2.
There are two sample user exit programs for Windows operating systems:
– db2uext2.cadsm

This sample uses Tivoli Storage Manager to archive and retrieve database
log files.

– db2uext2.cdisk

This sample uses the operating system COPY command and disk media
to archive and retrieve database log files.

v OS/2

The user exit sample programs for DB2 for OS/2 are found in the instance
subdirectory of the \sqllib\samples\rexx directory. (The dbuexit.CAD
program is an exception: it is found in the instance subdirectory of the
\sqllib\samples\c directory.) Although the samples provided are mostly
REXX command files, your user exit program can be written in a different
programming language.
The sample that you choose to implement should be renamed db2uexit,
with an extension of either .cmd or .exe. Move the renamed file to the
\sqllib\bin directory.

Sample User Exit Programs

440 Data Recovery and High Availability Guide and Reference

There are five OS/2 sample user exit programs:
– db2uexit.ex1

This sample uses the Sytos Premium** Version 2.2 program, available
from Seagate** Software Inc. It can be used to store data on, and retrieve
data from, an IBM external tape device. Only Version 2.2 of the Sytos
Premium product is currently supported. (You need OS/2 FixPak 26 to
use this product.) Review the sample program listing to learn about
other requirements.

– db2uexit.ex2

This sample uses the Filesafe** program, available from the Mountain**
Corporation. It can be used to store data on, and retrieve data from, a
Mountain tape device. A unique volume label is assigned to each backup
copy of a database, so that multiple backup images from one or more
databases can be stored on the same tape.

– db2uexit.ex3

This sample uses the MaynStream** program, available from the
Maynard** Corporation. It can be used to store data on, and retrieve data
from, a Maynard tape device. MaynStream does not support redirecting
the database restore operation to a drive other than the one on which the
database was backed up.

– db2uexit.ex4

This sample uses the OS/2 XCOPY command. The storage device can be
any device supported by OS/2, such as a fixed disk, diskette, or optical
cartridge. These devices can be LAN-redirected drives if the workstation
is configured appropriately.
XCOPY cannot be used for backing up and restoring databases.

– db2uexit.CAD

This sample, written in C, is equivalent to the Tivoli Storage Manager
(TSM) sample program. It can be used to archive and retrieve database
log files.

Calling Format

When the database manager calls a user exit program, it passes a set of
parameters (of data type CHAR) to the program. The calling format is
dependent on your operating system.
v Calling Format for UNIX Based Operating Systems or Windows NT/2000:

db2uext2 -OS<os> -RL<db2rel> -RQ<request> -DB<dbname>
-NN<nodenum> -LP<logpath> -LN<logname> -AP<tsmpasswd>
-SP<startpage> -LS<logsize>

os Specifies the platform on which the instance is running.
Valid values are: AIX, Solaris, HP-UX, SCO, Linux, Dynix/ptx,
SGI, and NT.

Sample User Exit Programs

Appendix H. User Exit for Database Recovery 441

db2rel Specifies the DB2 release level. For example, SQL07020.

request Specifies a request type. Valid values are: ARCHIVE and
RETRIEVE.

dbname Specifies a database name.

nodenum Specifies the local node number, such as 5, for example.

logpath Specifies the fully qualified path to the log files. The path
must contain the trailing path separator. For example,
/u/database/log/path/, or d:\logpath\.

logname Specifies the name of the log file that is to be archived or
retrieved, such as S0000123.LOG, for example.

tsmpasswd Specifies the TSM password. (If a value for the database
configuration parameter tsm_password has previously been
specified, that value is passed to the user exit program.)

startpage Specifies the number of 4-KB offset pages of the device at
which the log extent starts.

logsize Specifies the size of the log extent, in 4-KB pages. This
parameter is only valid if a raw device is used for logging.

v Calling Format for OS/2:
action drive db_alias log_path log_file indicator

action Valid values are: BACKUP, RESTORE, ARCHIVE, and RETRIEVE.

drive For a backup operation, specifies the drive on which the
database that is to be backed up is located. For a restore
operation, specifies the drive to which the database is to be
restored. For an archiving or a retrieval operation, specifies
the drive on which the database is located. In each case,
specify a drive letter followed by a colon (for example, C:).

db_alias Specifies the database alias (or the database name, if no
alias exists).

log_path For a backup or a restore operation, specifies the fully
qualified name of a response file, which contains a list of
files to be backed up or restored. Each name in the list is a
fully qualified file name that may contain wild card
characters. For restore operations, the drive letter and the
path represent the source drive and the path for the
database file when it was backed up. For example, if
C:\SQLUTIL\dbname.MH1 is contained in the response file, it
means that the dbname.MH1 file was backed up from
C:\SQLUTIL.

Calling Format

442 Data Recovery and High Availability Guide and Reference

For an archiving or a retrieval operation, specifies the log
path directory. For example, C:\SQL00001\SQLOGDIR\.

log_file For a backup operation, specifies a media label that was
generated by the backup utility. This label is composed of
the database alias name and a time stamp. For a restore
operation, specifies the path name of the database
subdirectory to which the files are to be restored. The drive
letter is not included, because it is specified through the
drive parameter. The format is \SQLnnnnn\.

For an archiving or a retrieval operation, specifies the log
file name. For example, S0000001.LOG.

indicator Specifies an indicator that can be used to support multiple
calls during a backup or a restore operation. The first call
has a character value of 1, and subsequent calls have a
character value of 2.

The user exit program is called multiple times during a
backup or a restore operation. The first call backs up or
restores media header (.MHn) files, and the second call backs
up or restores the entire set of database files.

This parameter is not used for archiving or retrieval
operations.

Backup and Restore Considerations (DB2 for OS/2 only)

The following considerations apply if you are writing a user exit program that
is called from the backup or the restore utility:
v A non-zero return code returned by a user exit program causes the utility to

fail, and no retry is attempted.
v Use only supported wild card characters in fully qualified file names. For

example, C:\SQL00001*.* and C:*.MH* are both acceptable search criteria.
v The user exit program must handle the response file format of one fully

qualified file name per line, with each line terminated by a carriage return
and line feed character. There is no end-of-file character in the file.

v If multiple backup images for the same database are to be placed on one
medium, the user exit program should be able to select the correct image
during a restore operation. (See the description of db2uexit.ex2 in “Sample
User Exit Programs” on page 439.)

v Two concurrently running backup operations that are sharing one backup
device must be serialized.

v If a backup image spans more than one medium, the prompting for media
must be handled by the user exit program, or by an application that it calls.

Calling Format

Appendix H. User Exit for Database Recovery 443

To support this feature, the backup and the restore utilities open an
operating system foreground session to call the user exit program.

v The user exit program must not back up any subdirectory within the
database directory.

v When restoring a database with a user exit program, the restore utility
requires complete control over that database. However, the workstation can
have active connections to databases other than the one being restored.

v If a database is being backed up or restored with a user exit program, and
another operation is using the same tape device, the backup or restore
operation may fail, and will need to be restarted. To avoid this situation,
you can ensure that no other databases that call the user exit program for
logging are in use while a backup or a restore operation is in progress, or
you can ensure that the user exit program retries the backup or the restore
operation at a later time if a device is not ready.

v During a restore operation, the drive letter and the path can be different
than those that were specified during the backup operation. For example, if
file dbname.MH1 is backed up from C:\SQLUTIL, you can restore it to
D:\SQLUTIL2.

Error Handling

Your user exit program should be designed to provide specific and
meaningful return codes, so that the database manager can interpret them
correctly. Because the user exit program is called by the underlying operating
system command processor, the operating system itself could return error
codes. And because these error codes are not remapped, use the operating
system message help utility to obtain information about them.

On OS/2, any non-zero code returned by a user exit program causes the
backup or the restore utility to fail, and no retry is attempted. The utilities
report a general SQLCODE -2029, whose message text displays the code
returned by the user exit program or the operating system.

Table 24 shows the codes that can be returned by a user exit program, and
describes how these codes are interpreted by the database manager. If a return
code is not listed in the table, it is treated as if its value were 32.

Table 24. User Exit Program Return Codes. Applies to archiving and retrieval
operations only.

Return Code Explanation

0 Successful.

4 Temporary resource error encountered.a

8 Operator intervention is required.a

Backup and Restore Considerations (OS/2)

444 Data Recovery and High Availability Guide and Reference

Table 24. User Exit Program Return Codes (continued). Applies to archiving and
retrieval operations only.

Return Code Explanation

12 Hardware error.b

16 Error with the user exit program or a software function used by the
program.b

20 Error with one or more of the parameters passed to the user exit
program. Verify that the user exit program is correctly processing the
specified parameters.b

24 The user exit program was not found. On OS/2, this error message
can also mean that a file needed to complete a restore operation could
not be found on the current backup media.b

28 Error caused by an input/output (I/O) failure, or by the operating
system.b

32 The user exit program was terminated by the user.b

255 Error caused by the user exit program not being able to load the
library file for the executable.c

Backup and Restore Considerations (OS/2)

Appendix H. User Exit for Database Recovery 445

Table 24. User Exit Program Return Codes (continued). Applies to archiving and
retrieval operations only.

Return Code Explanation
a For archiving or retrieval requests, a return code of 4 or 8 causes a retry in five
minutes. If the user exit program continues to return 4 or 8 on retrieve requests for
the same log file, DB2 hangs. (This applies to rollforward operations, or calls to the
sqlurlog API, which is used by the replication utility.)

b User exit requests are suspended for five minutes. During this time, all requests are
ignored, including the request that caused the error condition. Following this
five-minute suspension, the next request is processed. If this request is processed
without error, processing of new user exit requests continues, and DB2 reissues the
archive request that failed or was suspended previously. If a return code greater than
8 is generated during the retry, requests are suspended for an additional five minutes.
The five-minute suspensions continue until the problem is corrected, or the database
is stopped and restarted. Once all applications have disconnected from the database,
DB2 issues an archive request for any log file that may not have been successfully
archived previously. If the user exit program fails to archive log files, your disk may
become filled with log files, and performance may be degraded. Once the disk
becomes full, the database manager will not accept further application requests for
database updates. If the user exit program was called to retrieve log files, rollforward
recovery is suspended, but not stopped, unless the ROLLFORWARD STOP option
was specified. If the STOP option was not specified, you can correct the problem and
resume recovery.

c If the user exit program returns error code 255, it is likely that the program cannot
load the library file for the executable. To verify this, manually invoke the user exit
program. More information is displayed.

Note: During archiving and retrieval operations, an alert message is issued for all
return codes except 0, 4, and 24. The alert message contains the return code from the
user exit program, and a copy of the input parameters that were provided to the user
exit program.

Backup and Restore Considerations (OS/2)

446 Data Recovery and High Availability Guide and Reference

Appendix I. Backup and Restore APIs for Vendor Products

DB2 provides interfaces that can be used by third-party media management
products to store and retrieve data for backup and restore operations. This
function is designed to augment the backup and restore data targets of
diskette, disk, tape, and Tivoli Storage Manager, that are supported as a
standard part of DB2.

These third-party media management products will be referred to as vendor
products in the remainder of this appendix.

DB2 defines a set of function prototypes that provide a general purpose data
interface to backup and restore that can be used by many vendors. These
functions are to be provided by the vendor in a shared library on UNIX based
systems, or DLL on OS/2 or the Windows operating system. When the
functions are invoked by DB2, the shared library or DLL specified by the
calling backup or restore routine is loaded and the functions provided by the
vendor are called to perform the required tasks.

This appendix is divided into four parts:
v Operational overview of DB2’s interaction with vendor products.
v Detailed descriptions of DB2’s vendor APIs.
v Information on the data structures used in the API calls.
v Details on invoking backup and restore using vendor products.

Operational Overview

Five functions are defined to interface DB2 and the vendor product:
v sqluvint - Initialize and Link to Device
v sqluvget - Reading Data from Device
v sqluvput - Writing Data to Device
v sqluvend - Unlink the Device
v sqluvdel - Delete Committed Session

DB2 will call these functions, and they should be provided by the vendor
product in a shared library on UNIX based systems, or in a DLL on OS/2 or
the Windows operating system.

© Copyright IBM Corp. 2001 447

Note: The shared library or DLL code will be run as part of the database
engine code. Therefore, it must be reentrant and thoroughly debugged.
An errant function may compromise data integrity of the database.

The sequence of functions that DB2 will call during a specific backup or
restore operation depends on:
v The number of sessions that will be utilized.
v Whether it is a backup or a restore operation.
v The PROMPTING mode that is specified on the backup or restore

operation.
v The characteristics of the device on which the data is stored.
v The errors that may be encountered during the operation.

Number of Sessions
DB2 supports the backup and restore of database objects using one or more
data streams or sessions. A backup or restore using three sessions would
require three physical or logical devices to be available. When vendor device
support is being used, it is the vendor’s functions that are responsible for
managing the interface to each physical or logical device. DB2 simply sends or
receives data buffers to or from the vendor provided functions.

The number of sessions to be used is specified as a parameter by the
application that calls the backup or restore database function. This value is
provided in the INIT-INPUT structure used by sqluvint (see “sqluvint -
Initialize and Link to Device” on page 456).

DB2 will continue to initialize sessions until the specified number is reached,
or it receives an SQLUV_MAX_LINK_GRANT warning return code from an
sqluvint call. In order to warn DB2 that it has reached the maximum number
of sessions that it can support, the vendor product will require code to track
the number of active sessions. Failure to warn DB2 could lead to a DB2
initialize session request that fails, resulting in a termination of all sessions
and the failure of the entire backup or restore operation.

When the operation is backup, DB2 writes a media header record at the
beginning of each session. The record contains information that DB2 uses to
identify the session during a restore operation. DB2 uniquely identifies each
session by appending a sequence number to the name of the backup image.
The number starts at one for the first session, and is incremented by one each
time another session is initiated with an sqluvint call for a backup or a restore
operation. For more details, see “INIT-INPUT” on page 474.

When the backup operation completes successfully, DB2 writes a media trailer
to the last session it closes. This trailer includes information that tells DB2

Operational Overview

448 Data Recovery and High Availability Guide and Reference

how many sessions were used to perform the backup operation. During a
restore operation, this information is used to ensure all the sessions, or data
streams, have been restored.

Operation with No Errors, Warnings or Prompting
For backup, the following sequence of calls is issued by DB2 for each session.

sqluvint, action = SQLUV_WRITE

followed by 1 to n
sqluvput

followed by 1
sqluvend, action = SQLUV_COMMIT

When DB2 issues an sqluvend call (action SQLUV_COMMIT), it expects the
vendor product to appropriately save the output data. A return code of
SQLUV_OK to DB2 indicates success.

The DB2-INFO structure, used on the sqluvint call, contains the information
required to identify the backup (see “DB2-INFO” on page 470). A sequence
number is supplied. The vendor product may choose to save this information.
DB2 will use it during restore to identify the backup that will be restored.

For restore, the sequence of calls for each session is:
sqluvint, action = SQLUV_READ

followed by 1 to n
sqluvget

followed by 1
sqluvend, action = SQLUV_COMMIT

The information in the DB2-INFO structure used on the sqluvint call will
contain the information required to identify the backup. A sequence number is
not supplied. DB2 expects that all backup objects (session outputs committed
during a backup) will be returned. The first backup object returned is the
object generated with sequence number 1, and all other objects are restored in
no specific order. DB2 checks the media tail to ensure that all objects have
been processed.

Note: Not all vendor products will keep a record of the names of the backup
objects. This is most likely when the backups are being done to tapes,
or other media of limited capacity. During the initialization of restore
sessions, the identification information can be utilized to stage the
necessary backup objects so that they are available when required; this

Operational Overview

Appendix I. Backup and Restore APIs for Vendor Products 449

may be most useful when juke boxes or robotic systems are used to
store the backups. DB2 will always check the media header (first record
in each session’s output) to ensure that the correct data is being
restored.

PROMPTING Mode
When a backup or a restore operation is initiated, two prompting modes are
possible:
v WITHOUT PROMPTING or NOINTERRUPT, where there is no opportunity

for the vendor product to write messages to the user, or for the user to
respond to them.

v PROMPTING or INTERRUPT, where the user can receive and respond to
messages from the vendor product.

For PROMPTING mode, backup and restore define three possible user
responses:
v Continue

The operation of reading or writing data to the device will resume.
v Device terminate

The device will receive no additional data, and the session is terminated.
v Terminate

The entire backup or restore operation is terminated.

The use of the PROMPTING and WITHOUT PROMPTING modes is
discussed in the sections that follow.

Device Characteristics
For purposes of the vendor device support APIs, two general types of devices
are defined:
v Limited capacity devices requiring user action to change the media; for

example, a tape drive, diskette, or CDROM drive.
v Very large capacity devices, where normal operations do not require the

user to handle media; for example, a juke box, or an intelligent robotic
media handling device.

A limited capacity device may require that the user be prompted to load
additional media during the backup or restore operation. Generally DB2 is not
sensitive to the order in which the media is loaded for either backup or
restore operations. It also provides facilities to pass vendor media handling
messages to the user. This prompting requires that the backup or restore
operation be initiated with PROMPTING on. The media handling message
text is specified in the description field of the return code structure.

Operational Overview

450 Data Recovery and High Availability Guide and Reference

If PROMPTING is on, and DB2 receives an SQLUV_ENDOFMEDIA or an
SQLUV_ENDOFMEDIA_NO_DATA return code from a sqluvput (write) or a
sqluvget (read) call, DB2:
v Marks the last buffer sent to the session to be resent, if the call was

sqluvput. It will be put to a session later.
v Calls the session with sqluvend (action = SQLUV_COMMIT). If successful

(SQLUV_OK return code), DB2:
– Sends a vendor media handling message to the user from the return

code structure that signaled the end-of-media condition.
– Prompts the user for a continue, device terminate, or terminate response.

v If the response is continue, DB2 initializes another session using the sqluvint
call, and if successful, begins writing data to or reading data from the
session. To uniquely identify the session when writing, DB2 increments the
sequence number. The sequence number is available in the DB2-INFO
structure used with sqluvint, and is in the media header record, which is
the first data record sent to the session.
DB2 will not start more sessions than requested when a backup or a restore
operation is started, or indicated by the vendor product with a
SQLUV_MAX_LINK_GRANT warning on an sqluvint call.

v If the response is device terminate, DB2 does not attempt to initialize another
session, and the number of active sessions is reduced by one. DB2 does not
allow all sessions to be terminated by device terminate responses; at least
one session must be kept active until the backup or the restore operation
completes.

v If the response is terminate, DB2 terminates the backup or the restore
operation. For more information on exactly what DB2 does to terminate the
sessions, see “If Error Conditions Are Returned to DB2” on page 452.

Because backup or restore performance is often dependent on the number of
devices being used, it is important that parallelism be maintained. For backup
operations, users are encouraged to respond with a continue, unless they
know that the remaining active sessions will hold the data that is still to be
written out. For restore operations, users are also encouraged to respond with
a continue until all media have been processed.

If the backup or the restore mode is WITHOUT PROMPTING, and DB2
receives an SQLUV_ENDOFMEDIA or an SQLUV_ENDOFMEDIA_NO_DATA
return code from a session, it will terminate the session and not attempt to
open another session. If all sessions return end-of-media to DB2 before the
backup or the restore operation is complete, the operation will fail. Because of
this, WITHOUT PROMPTING should be used carefully with limited capacity
devices; it does, however, make sense to operate in this mode with very large
capacity devices.

Operational Overview

Appendix I. Backup and Restore APIs for Vendor Products 451

It is possible for the vendor product to hide media mounting and switching
actions from DB2, so that the device appears to have infinite capacity. Some
very large capacity devices operate in this mode. In these cases, it is critical
that all the data that was backed up be returned to DB2 in the same order
when a restore operation is in progress. Failure to do so could result in
missing data, but DB2 assumes a successful restore operation, because it has
no way of detecting the missing data.

DB2 writes data to the vendor product with the assumption that each buffer
will be contained on one and only one media (for example, a tape). It is
possible for the vendor product to split these buffers across multiple media
without DB2’s knowledge. In this case, the order in which the media is
processed during a restore operation is critical, because the vendor product
will be responsible for returning reconstructed buffers from the multiple
media to DB2. Failure to do so will result in a failed restore operation.

If Error Conditions Are Returned to DB2
When performing a backup or a restore operation, DB2 expects that all
sessions will complete successfully; otherwise, the entire backup or restore
operation fails. A session signals successful completion to DB2 with an
SQLUV_OK return code on the sqluvend call, action = SQLUV_COMMIT.

If unrecoverable errors are encountered, the session is terminated by DB2.
These can be DB2 errors, or errors returned to DB2 from the vendor product.
Because all sessions must commit successfully to have a complete backup or
restore operation, the failure of one causes DB2 to terminate the other sessions
associated with the operation.

If the vendor product responds to a call from DB2 with an unrecoverable
return code, the vendor product can optionally provide additional
information, using message text placed in the description field of the
RETURN-CODE structure. This message text is presented to the user, along
with the DB2 information, so that corrective action can be taken.

There will be backup scenarios in which a session has committed successfully,
and another session associated with the backup operation experiences an
unrecoverable error. Because all sessions must complete successfully before a
backup operation is considered successful, DB2 must delete the output data in
the committed sessions: DB2 issues a sqluvdel call to request deletion of the
object. This call is not considered an I/O session, and is responsible for
initializing and terminating any connection that may be necessary to delete
the backup object.

The DB2-INFO structure will not contain a sequence number; sqluvdel will
delete all backup objects that match the remaining parameters in the
DB2-INFO structure.

Operational Overview

452 Data Recovery and High Availability Guide and Reference

Warning Conditions
It is possible for DB2 to receive warning return codes from the vendor
product; for example, if a device is not ready, or some other correctable
condition has occurred. This is true for both read and write operations.

On sqluvput and sqluvget calls, the vendor can set the return code to
SQLUV_WARNING, and optionally provide additional information, using
message text placed in the description field of the RETURN-CODE structure.
This message text is presented to the user so that corrective action can be
taken. The user can respond in one of three ways: continue, device terminate,
or terminate:
v If the response is continue, DB2 attempts to rewrite the buffer using

sqluvput during a backup operation. During a restore operation, DB2 issues
an sqluvget call to read the next buffer.

v If the response is device terminate or terminate, DB2 terminates the entire
backup or restore operation in the same way that it would respond after an
unrecoverable error (for example, it will terminate active sessions and
delete committed sessions).

Operational Hints and Tips

This section provides some hints and tips for building vendor products.

Recovery History File
The recovery history file can be used as an aid in database recovery
operations. It is associated with each database, and is automatically updated
with each backup or restore operation. For more information about the
recovery history file, see “Understanding the Recovery History File” on
page 48 . Information in the file can be viewed, updated, or pruned through
the following facilities:
v Control Center
v Command line processor (CLP)

– LIST HISTORY command
– UPDATE HISTORY FILE command
– PRUNE HISTORY command

v APIs
– db2HistoryOpenScan
– db2HistoryGetEntry
– db2HistoryCloseScan
– db2HistoryUpdate
– db2Prune

Operational Overview

Appendix I. Backup and Restore APIs for Vendor Products 453

For information about the layout of the file, see “Data Structure: db2HistData”
on page 352.

When a backup operation completes, one or more records is written to the
file. If the output of the backup operation was directed to vendor devices, the
DEVICE field in the history record contains a O, and the LOCATION field
contains either:
v The vendor file name specified when the backup operation was invoked.
v The name of the shared library, if no vendor file name was specified.

For more information about specifying this option, see “Invoking a Backup or
a Restore Operation Using Vendor Products” on page 479.

The LOCATION field can be updated using the Control Center, the CLP, or an
API. The location of backup information can be updated if limited capacity
devices (for example, removable media) have been used to hold the backup
image, and the media is physically moved to a different (perhaps off-site)
storage location. If this is the case, the recovery history file can be used to
help locate a backup image if a recovery operation becomes necessary.

Functions and Data Structures

The following sections describe the generic functions and data structures
available for use by vendor products.

The APIs for vendor products are:
v “sqluvint - Initialize and Link to Device” on page 456
v “sqluvget - Reading Data from Device” on page 460
v “sqluvput - Writing Data to Device” on page 463
v “sqluvend - Unlink the Device and Release its Resources” on page 466
v “sqluvdel - Delete Committed Session” on page 468

The data structures used by the vendor APIs are:

“DB2-INFO” on page 470
Contains information that identifies DB2 to the vendor device.

“VENDOR-INFO” on page 473
Contains information that identifies the vendor and version of the
device.

“INIT-INPUT” on page 474
Sets up a logical link between DB2 and the vendor device.

“INIT-OUTPUT” on page 476
Contains output from the device.

Operational Hints and Tips

454 Data Recovery and High Availability Guide and Reference

“DATA” on page 477
Contains data that was transferred between DB2 and the vendor
device.

“RETURN-CODE” on page 478
Contains a return code and an explanation of the error.

Functions and Data Structures

Appendix I. Backup and Restore APIs for Vendor Products 455

sqluvint - Initialize and Link to Device
This function is called to provide information for initialization and
establishment of a logical link between DB2 and the vendor device.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sql.h

C API Syntax

API Parameters

Init_input
Input. Structure that contains information provided by DB2 to
establish a logical link with the vendor device.

Init_output
Output. Structure that contains the output returned by the vendor
device.

Return_code
Output. Structure that contains the return code to be passed to DB2,
and a brief text explanation.

Usage Notes
For each media I/O session, DB2 will call this function to obtain a device
handle. If for any reason, the vendor function encounters an error during
initialization, it will indicate it via a return code. If the return code indicates
an error, DB2 may choose to terminate the operation by calling the sqluvend
function. Details on possible return codes, and the DB2 reaction to each of
these, is contained in the return codes table (see Table 25 on page 457).

/* File: sqluvend.h */
/* API: Initialize and Link to Device */
/* ... */
int sqluvint (

struct Init_input *,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvint - Initialize and Link to Device

456 Data Recovery and High Availability Guide and Reference

The INIT-INPUT structure contains elements that can be used by the vendor
product to determine if the backup or restore can proceed:
v size_HI_order and size_LOW_order

This is the estimated size of the backup. They can be used to determine if
the vendor devices can handle the size of the backup image. They can be
used to estimate the quantity of removable media that will be required to
hold the backup. It might be beneficial to fail at the first sqluvint call if
problems are anticipated.

v req_sessions
The number of user requested sessions can be used in conjunction with the
estimated size and the prompting level to determine if the backup or
restore operation is possible.

v prompt_lvl
The prompting level indicates to the vendor if it is possible to prompt for
actions such as changing removable media (for example, put another tape
in the tape drive). This might suggest that the operation cannot proceed
since there will be no way to prompt the user.
If the prompting level is WITHOUT PROMPTING and the quantity of
removable media is greater than the number of sessions requested, DB2 will
not be able to complete the operation successfully (see “PROMPTING
Mode” on page 450 and “Device Characteristics” on page 450 for more
information).

DB2 names the backup being written or the restore to be read via fields in the
DB2-INFO structure. In the case of an action = SQLUV_READ, the vendor
product must check for the existence of the named object. If it cannot be
found, the return code should be set to SQLUV_OBJ_NOT_FOUND so that
DB2 will take the appropriate action.

After initialization is completed successfully, DB2 will continue by issuing
other data transfer functions, but may terminate the session at any time with
an sqluvend call.

Return Codes

Table 25. Valid Return Codes for sqluvint and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput, sqluvget (see
comments)

If action = SQLUV_WRITE, the next call will be
sqluvput (to BACKUP data). If action =
SQLUV_READ, verify the existence of the named
object prior to returning SQLUV_OK; the next call
will be sqluvget to RESTORE data.

SQLUV_LINK_EXIST Session activated
previously.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvint - Initialize and Link to Device

Appendix I. Backup and Restore APIs for Vendor Products 457

Table 25. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

SQLUV_COMM_ ERROR Communication error
with device.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_VERSION The DB2 and vendor
products are
incompatible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_ACTION Invalid action is
requested. This could
also be used to indicate
that the combination of
parameters results in an
operation which is not
possible.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NO_DEV_
AVAIL

No device is available for
use at the moment.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJ_NOT_
FOUND

Object specified cannot
be found. This should be
used when the action on
the sqluvint call is ’R’
(read) and the requested
object cannot be found
based on the criteria
specified in the
DB2-INFO structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_OBJS_FOUND More than 1 object
matches the specified
criteria. This will result
when the action on the
sqluvint call is ’R’ (read)
and more than one object
matches the criteria in
the DB2-INFO structure.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_USERID Invalid userid specified. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_
PASSWORD

Invalid password
provided.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INV_OPTIONS Invalid options
encountered in the
vendor options field.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_INIT_FAILED Initialization failed and
the session is to be
terminated.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_DEV_ERROR Device error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvint - Initialize and Link to Device

458 Data Recovery and High Availability Guide and Reference

Table 25. Valid Return Codes for sqluvint and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

SQLUV_MAX_LINK_
GRANT

Max number of links
established.

sqluvput, sqluvget (see
comments)

This is treated as a warning by DB2. The warning
tells DB2 not to open additional sessions with the
vendor product, because the maximum number of
sessions it can support has been reached (note: this
could be due to device availability). If action =
SQLUV_WRITE (BACKUP), the next call will be
sqluvput. If action = SQLUV_READ, verify the
existence of the named object prior to returning
SQLUV_MAX_LINK_GRANT; the next call will be
sqluvget to RESTORE data.

SQLUV_IO_ERROR I/O error. no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

SQLUV_NOT_
ENOUGH_SPACE

There is not enough
space to store the entire
backup image; the size
estimate is provided as a
64-bit value in bytes.

no further calls Session initialization fails. Free up memory
allocated for this session and terminate. A
sqluvend call will not be received, since the
session was never established.

sqluvint - Initialize and Link to Device

Appendix I. Backup and Restore APIs for Vendor Products 459

sqluvget - Reading Data from Device
After initialization, this function can be called to read data from the device.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqluvend.h

C API Syntax

API Parameters

pVendorCB
Input. Pointer to space allocated for the DATA structure (including the
data buffer) and Return_code.

Data Input/output. A pointer to the data structure.

Return_code
Output. The return code from the API call.

obj_num
Specifies which backup object should be retrieved.

buff_size
Specifies the buffer size to be used.

/* File: sqluvend.h */
/* API: Reading Data from Device */
/* ... */
int sqluvget (

void * pVendorCB,
struct Data *,
struct Return_code *);

/* ... */

typedef struct Data
}

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

{ Data;

sqluvget - Reading Data from Device

460 Data Recovery and High Availability Guide and Reference

actual_buff_size
Specifies the actual bytes read or written. This value should be set to
output to indicate how many bytes of data were actually read.

dataptr
A pointer to the data buffer.

reserve
Reserved for future use.

Usage Notes
This function is used by the restore utility.

Return Codes

Table 26. Valid Return Codes for sqluvget and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvget DB2 processes the data

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_WARNING Warning. This should not be
used to indicate end-of-media
to DB2; use
SQLUV_ENDOFMEDIA or
SQLUV_ENDOFMEDIA_NO_
DATA for this purpose.
However, device not ready
conditions can be indicated
using this return code.

sqluvget, or sqluvend, action =
SQLU_ABORT

See the explanation of DB2’s
handling of warnings in
“Warning Conditions” on
page 453.

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_MORE_DATA Operation successful; more data
available.

sqluvget

SQLUV_ENDOFMEDIA_NO_
DATA

End of media and 0 bytes read
(for example, end of tape).

sqluvend See the explanation of DB2’s
handling of end-of-media
conditions under
“PROMPTING Mode” on
page 450, and “Device
Characteristics” on page 450.

SQLUV_ENDOFMEDIA End of media and > 0 bytes
read, (for example, end of
tape).

sqluvend DB2 processes the data, and
then handles the end-of-media
condition as described under
“PROMPTING Mode” on
page 450, and “Device
Characteristics” on page 450.

sqluvget - Reading Data from Device

Appendix I. Backup and Restore APIs for Vendor Products 461

Table 26. Valid Return Codes for sqluvget and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

Next call:

a If the next call is an sqluvend, action = SQLU_ABORT, this session and all other active sessions will be terminated.

sqluvget - Reading Data from Device

462 Data Recovery and High Availability Guide and Reference

sqluvput - Writing Data to Device
After initialization, this function can be used to write data to the device.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqluvend.h

C API Syntax

API Parameters

pVendorCB
Input. Pointer to space allocated for the DATA structure (including the
data buffer) and Return_code.

Data Output. Data buffer filled with data to be written out.

Return_code
Output. The return code from the API call.

obj_num
Specifies which backup object should be retrieved.

buff_size
Specifies the buffer size to be used.

/* File: sqluvend.h */
/* API: Writing Data to Device */
/* ... */
int sqluvput (

void * pVendorCB,
struct Data *,
struct Return_code *);

/* ... */

typedef struct Data
}

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

{ Data;

sqluvput - Writing Data to Device

Appendix I. Backup and Restore APIs for Vendor Products 463

actual_buff_size
Specifies the actual bytes read or written. This value should be set to
indicate how many bytes of data were actually read.

dataptr
A pointer to the data buffer.

reserve
Reserved for future use.

Usage Notes
This function is used by the backup utility.

Return Codes

Table 27. Valid Return Codes for sqluvput and Resulting DB2 Action
Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. sqluvput or sqluvend, if
complete (for example, DB2 has
no more data)

Inform other processes of
successful operation.

SQLUV_COMM_ERROR Communication error with
device.

sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_ACTION Invalid action is requested. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_DEV_HANDLE Invalid device handle. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_INV_BUFF_SIZE Invalid buffer size specified. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_ENDOFMEDIA End of media reached, for
example, end of tape.

sqluvend See the explanation of DB2’s
handling of end-of-media
conditions under
“PROMPTING Mode” on
page 450, and “Device
Characteristics” on page 450.

SQLUV_DATA_RESEND Device requested to have buffer
sent again.

sqluvput DB2 will retransmit the last
buffer. This will only be done
once.

SQLUV_DEV_ERROR Device error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_WARNING Warning. This should not be
used to indicate end-of-media
to DB2; use
SQLUV_ENDOFMEDIA for this
purpose. However, device not
ready conditions can be
indicated using this return
code.

sqluvput See the explanation of DB2’s
handling of warnings in
“Warning Conditions” on
page 453.

SQLUV_LINK_NOT_EXIST No link currently exists. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

SQLUV_IO_ERROR I/O error. sqluvend, action =
SQLU_ABORTa

The session will be terminated.

sqluvput - Writing Data to Device

464 Data Recovery and High Availability Guide and Reference

Table 27. Valid Return Codes for sqluvput and Resulting DB2 Action (continued)
Literal in Header File Description Probable Next Call Other Comments

Next call:

a If the next call is an sqluvend, action = SQLU_ABORT, this session and all other active sessions will be terminated. Committed
sessions are deleted with an sqluvint, sqluvdel, and sqluvend sequence of calls (see “If Error Conditions Are Returned to DB2” on
page 452).

sqluvput - Writing Data to Device

Appendix I. Backup and Restore APIs for Vendor Products 465

sqluvend - Unlink the Device and Release its Resources
Ends or unlinks the device, and frees all of its related resources. The vendor
must free or release unused resources (for example, allocated space and file
handles) before returning to DB2.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sql.h

C API Syntax

API Parameters

action Input. Used to commit or abort the session:
v SQLUV_COMMIT (0 = to commit)
v SQLUV_ABORT (1 = to abort)

pVendorCB
Input. Pointer to the Init_output structure.

Init_output
Output. Space for Init_output de-allocated. The data has been
committed to stable storage for a backup if action is to commit. The
data is purged for a backup if the action is to abort.

Return code
Output. The return code from the API call.

Usage Notes
This function is called for each session that has been opened. There are two
possible action codes:
v Commit

/* File: sqluvend.h */
/* API: Unlink the Device and Release its Resources */
/* ... */
int sqluvend (

sqlint32 action,
void * pVendorCB,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvend - Unlink the Device and Release its Resources

466 Data Recovery and High Availability Guide and Reference

Output of data to this session, or the reading of data from the session, is
complete.
For a write (backup) session, if the vendor returns to DB2 with a return
code of SQLUV_OK, DB2 assumes that the output data has been
appropriately saved by the vendor product, and can be accessed if
referenced in a later sqluvint call.
For a read (restore) session, if the vendor returns to DB2 with a return code
of SQLUV_OK, the data should not be deleted, because it may be needed
again.
If the vendor returns SQLUV_COMMIT_FAILED, DB2 assumes that there
are problems with the entire backup or restore operation. All active sessions
are terminated by sqluvend calls with action = SQLUV_ABORT. For a
backup operation, committed sessions receive a sqluvint, sqluvdel, and
sqluvend sequence of calls (see “If Error Conditions Are Returned to DB2”
on page 452).

v Abort
A problem has been encountered by DB2, and there will be no more
reading or writing of data to the session.
For a write (backup) session, the vendor should delete the partial output
dataset, and use a SQLUV_OK return code if the partial output is deleted.
DB2 assumes that there are problems with the entire backup. All active
sessions are terminated by sqluvend calls with action = SQLUV_ABORT,
and committed sessions receive a sqluvint, sqluvdel, and sqluvend
sequence of calls (see “If Error Conditions Are Returned to DB2” on
page 452).
For a read (restore) session, the vendor should not delete the data (because
it may be needed again), but should clean up and return to DB2 with a
SQLUV_OK return code. DB2 terminates all the restore sessions by
sqluvend calls with action = SQLUV_ABORT. If the vendor returns
SQLUV_ABORT_FAILED to DB2, the caller is not notified of this error,
because DB2 returns the first fatal failure and ignores subsequent failures.
In this case, for DB2 to have called sqluvend with action =
SQLUV_ABORT, an initial fatal error must have occurred.

Return Codes

Table 28. Valid Return Codes for sqluvend and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. no further calls Free all memory allocated
for this session and
terminate.

SQLUV_COMMIT_FAILED Commit request failed. no further calls Free all memory allocated
for this session and
terminate.

SQLUV_ABORT_FAILED Abort request failed. no further calls

sqluvend - Unlink the Device and Release its Resources

Appendix I. Backup and Restore APIs for Vendor Products 467

sqluvdel - Delete Committed Session
Deletes committed sessions.

Authorization
One of the following:
v sysadm

v dbadm

Required Connection
Database

API Include File
sqluvend.h

C API Syntax

API Parameters

Init_input
Input. Space allocated for Init_input and Return_code.

Return_code
Output. Return code from the API call. The object pointed to by the
Init_input structure is deleted.

Usage Notes
If multiple sessions are opened, and some sessions are committed, but one of
them fails, this function is called to delete the committed sessions. No
sequence number is specified; sqluvdel is responsible for finding all of the
objects that were created during a particular backup operation, and deleting
them. Information in the INIT-INPUT structure is used to identify the output
data to be deleted. The call to sqluvdel is responsible for establishing any
connection or session that is required to delete a backup object from the
vendor device. If the return code from this call is SQLUV_DELETE_FAILED,
DB2 does not notify the caller, because DB2 returns the first fatal failure and
ignores subsequent failures. In this case, for DB2 to have called sqluvdel, an
initial fatal error must have occurred.

/* File: sqluvend.h */
/* API: Delete Committed Session */
/* ... */
int sqluvdel (

struct Init_input *,
struct Init_output *,
struct Return_code *);

/* ... */

sqluvdel - Delete Committed Session

468 Data Recovery and High Availability Guide and Reference

Return Codes

Table 29. Valid Return Codes for sqluvdel and Resulting DB2 Action

Literal in Header File Description Probable Next Call Other Comments

SQLUV_OK Operation successful. no further calls

SQLUV_DELETE_FAILED Delete request failed. no further calls

sqluvdel - Delete Committed Session

Appendix I. Backup and Restore APIs for Vendor Products 469

DB2-INFO

This structure contains information identifying DB2 to the vendor device.

Table 30. Fields in the DB2-INFO Structure. All fields are NULL-terminated strings.

Field Name Data Type Description

DB2_id char An identifier for the DB2 product. Maximum
length of the string it points to is 8 characters.

version char The current version of the DB2 product.
Maximum length of the string it points to is 8
characters.

release char The current release of the DB2 product. Set to
NULL if it is insignificant. Maximum length of
the string it points to is 8 characters.

level char The current level of the DB2 product. Set to
NULL if it is insignificant. Maximum length of
the string it points to is 8 characters.

action char Specifies the action to be taken. Maximum
length of the string it points to is 1 character.

filename char The file name used to identify the backup
image. If it is NULL, the server_id, db2instance,
dbname, and timestamp will uniquely identify
the backup image. Maximum length of the
string it points to is 255 characters.

server_id char A unique name identifying the server where
the database resides. Maximum length of the
string it points to is 8 characters.

db2instance char The db2instance ID. This is the user ID
invoking the command. Maximum length of
the string it points to is 8 characters.

type char Specifies the type of backup being taken or
the type of restore being performed. The
following are possible values:

When action is SQLUV_WRITE:

0 - full database backup
3 - table space level backup

When action is SQLUV_READ:

0 - full restore
3 - online table space restore
4 - table space restore
5 - history file restore

dbname char The name of the database to be backed up or
restored. Maximum length of the string it
points to is 8 characters.

alias char The alias of the database to be backed up or
restored. Maximum length of the string it
points to is 8 characters.

DB2-INFO

470 Data Recovery and High Availability Guide and Reference

Table 30. Fields in the DB2-INFO Structure (continued). All fields are
NULL-terminated strings.

Field Name Data Type Description

timestamp char The time stamp used to identify the backup
image. Maximum length of the string it points
to is 26 characters.

sequence char Specifies the file extension for the backup
image. For write operations, the value for the
first session is 1 and each time another session
is initiated with an sqluvint call, the value is
incremented by 1. For read operations, the
value is always zero. Maximum length of the
string it points to is 3 characters.

obj_list struct sqlu_gen_list Lists the objects in the backup image. This is
provided to the vendors for their information
only.

max_bytes_per_txn sqlint32 Specifies to the vendor in bytes, the transfer
buffer size specified by the user.

image_filename char Reserved for future use.

reserve void Reserved for future use.

nodename char Name of the node at which the backup was
generated.

password char Password for the node at which the backup
was generated.

owner char ID of the backup originator.

mcNameP char Management class.

nodeNum SQL_PDB_NODE_TYPE Node number. Numbers greater than 255 are
supported by the vendor interface.

The filename, or server_id, db2instance, type, dbname and timestamp uniquely
identifies the backup image. The sequence number, specified by sequence,
identifies the file extension. When a backup image is to be restored, the same
values must be specified to retrieve the backup image. Depending on the
vendor product, if filename is used, the other parameters may be set to NULL,
and vice versa.

DB2-INFO

Appendix I. Backup and Restore APIs for Vendor Products 471

Language Syntax
C Structure

/* File: sqluvend.h */
/* ... */
typedef struct DB2_info
{

char *DB2_id;
char *version;
char *release;
char *level;
char *action;
char *filename;
char *server_id;
char *db2instance;
char *type;
char *dbname;
char *alias;
char *timestamp;
char *sequence;
struct sqlu_gen_list *obj_list;
long max_bytes_per_txn;
char *image_filename;
void *reserve;
char *nodename;
char *password;
char *owner;
char *mcNameP;
SQL_PDB_NODE_TYPE nodeNum;

} DB2_info;
/* ... */

DB2-INFO

472 Data Recovery and High Availability Guide and Reference

VENDOR-INFO

This structure contains information identifying the vendor and version of the
device.

Table 31. Fields in the VENDOR-INFO Structure. All fields are NULL-terminated
strings.

Field Name Data Type Description

vendor_id char An identifier for the vendor. Maximum length
of the string it points to is 64 characters.

version char The current version of the vendor product.
Maximum length of the string it points to is 8
characters.

release char The current release of the vendor product. Set
to NULL if it is insignificant. Maximum length
of the string it points to is 8 characters.

level char The current level of the vendor product. Set to
NULL if it is insignificant. Maximum length of
the string it points to is 8 characters.

server_id char A unique name identifying the server where
the database resides. Maximum length of the
string it points to is 8 characters.

max_bytes_per_txn sqlint32 The maximum supported transfer buffer size.
Specified by the vendor, in bytes. This is used
only if the return code from the vendor
initialize function is SQLUV_BUFF_SIZE,
indicating that an invalid buffer size was
specified.

num_objects_in_backup sqlint32 The number of sessions that were used to
make a complete backup. This is used to
determine when all backup images have been
processed during a restore operation.

reserve void Reserved for future use.

Language Syntax
C Structure

typedef struct Vendor_info
{

char *vendor_id;
char *version;
char *release;
char *level;
char *server_id;
sqlint32 max_bytes_per_txn;
sqlint32 num_objects_in_backup;
void *reserve;

} Vendor_info;

VENDOR-INFO

Appendix I. Backup and Restore APIs for Vendor Products 473

INIT-INPUT

This structure contains information provided by DB2 to set up and to
establish a logical link with the vendor device.

Table 32. Fields in the INIT-INPUT Structure. All fields are NULL-terminated strings.

Field Name Data Type Description

DB2_session struct DB2_info A description of the session from the
perspective of DB2.

size_options unsigned short The length of the options field. When using
the DB2 backup or restore function, the data
in this field is passed directly from the
VendorOptionsSize parameter.

size_HI_order sqluint32 High order 32 bits of DB size estimate in
bytes; total size is 64 bits.

size_LOW_order sqluint32 Low order 32 bits of DB size estimate in bytes;
total size is 64 bits.

options void This information is passed from the
application when the backup or the restore
function is invoked. This data structure must
be flat; in other words, no level of indirection
is supported. Byte-reversal is not done, and
the code page for this data is not checked.
When using the DB2 backup or restore
function, the data in this field is passed
directly from the pVendorOptions parameter.

reserve void Reserved for future use.

prompt_lvl char Prompting level requested by the user when a
backup or a restore operation was invoked.
Maximum length of the string it points to is 1
character.

num_sessions unsigned short Number of sessions requested by the user
when a backup or a restore operation was
invoked.

INIT-INPUT

474 Data Recovery and High Availability Guide and Reference

Language Syntax
C Structure
typedef struct Init_input
{

struct DB2_info *DB2_session;
unsigned short size_options;
sqluint32 size_HI_order;
sqluint32 size_LOW_order;
void *options;
void *reserve;
char *prompt_lvl;
unsigned short num_sessions;

} Init_input;

INIT-INPUT

Appendix I. Backup and Restore APIs for Vendor Products 475

INIT-OUTPUT

This structure contains the output returned by the vendor device.

Table 33. Fields in the INIT-OUTPUT Structure

Field Name Data Type Description

vendor_session struct Vendor_info Contains information to identify the vendor to
DB2.

pVendorCB void Vendor control block.

reserve void Reserved for future use.

Language Syntax
C Structure

typedef struct Init_output
{

struct Vendor_info *vendor_session;
void *pVendorCB;
void *reserve;

} Init_output;

INIT-OUTPUT

476 Data Recovery and High Availability Guide and Reference

DATA

This structure contains data transferred between DB2 and the vendor device.

Table 34. Fields in the DATA Structure

Field Name Data Type Description

obj_num sqlint32 The sequence number assigned by DB2 during
a backup operation.

buff_size sqlint32 The size of the buffer.

actual_buf_size sqlint32 The actual number of bytes sent or received.
This must not exceed buff_size.

dataptr void Pointer to the data buffer. DB2 allocates space
for the buffer.

reserve void Reserved for future use.

Language Syntax
C Structure

typedef struct Data
{

sqlint32 obj_num;
sqlint32 buff_size;
sqlint32 actual_buff_size;
void *dataptr;
void *reserve;

} Data;

DATA

Appendix I. Backup and Restore APIs for Vendor Products 477

RETURN-CODE

This structure contains the return code and a short explanation of the error
being returned to DB2.

Table 35. Fields in the RETURN-CODE Structure

Field Name Data Type Description

return_codea sqlint32 Return code from the vendor function.

description char A short description of the return code.

reserve void Reserved for future use.
a This is a vendor-specific return code that is not the same as the value returned by various DB2
APIs. See the individual API descriptions for the return codes that are accepted from vendor
products.

Language Syntax
C Structure

typedef struct Return_code
{

sqlint32 return_code,
char description[60],
void *reserve,

} Return_code;

RETURN-CODE

478 Data Recovery and High Availability Guide and Reference

Invoking a Backup or a Restore Operation Using Vendor Products

Vendor products can be specified when invoking the DB2 backup or the DB2
restore utility from:
v The Control Center
v The command line processor (CLP)
v An application programming interface (API).

The Control Center
The Control Center is the graphical user interface for database administration
that is shipped with DB2.

To specify The Control Center input variable for
backup or restore operations

Use of vendor device and library name Is Use Library. Specify the library name
(on UNIX based systems) or the DLL
name (on the Windows operating system
or OS/2).

Number of sessions Is Sessions.

Vendor options Is not supported.

Vendor file name Is not supported.

Transfer buffer size Is (for backup) Size of each Buffer, and (for
restore) not applicable.

The Command Line Processor (CLP)
The command line processor (CLP) can be used to invoke the DB2 BACKUP
DATABASE or the RESTORE DATABASE command.

To specify The command line processor parameter

for backup is for restore is

Use of vendor device and
library name

library-name shared-library

Number of sessions num-sessions num-sessions

Vendor options not supported not supported

Vendor file name not supported not supported

Transfer buffer size buffer-size buffer-size

Application Programming Interface (API)
Two API function calls support backup and restore operations: sqlubkp for
backup (see “Backup Database API” on page 88, and sqlurestore for restore
(see “Restore Database API” on page 116.

Invoking a Backup or a Restore Operation Using Vendor Products

Appendix I. Backup and Restore APIs for Vendor Products 479

To specify The API parameter (for both sqlubkp
and sqlurestore) is

Use of vendor device and library name as follows: In structure sqlu_media_list,
specify a media type of
SQLU_OTHER_MEDIA, and then in
structure sqlu_vendor, specify a shared
library or DLL in shr_lib.

Number of sessions as follows: In structure sqlu_media_list,
specify sessions.

Vendor options PVendorOptions

Vendor file name as follows: In structure sqlu_media_list,
specify a media type of
SQLU_OTHER_MEDIA, and then in
structure sqlu_vendor, specify a file name
in filename.

Transfer buffer size BufferSize

Invoking a Backup or a Restore Operation Using Vendor Products

480 Data Recovery and High Availability Guide and Reference

Appendix J. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 495. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 491. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 2001 481

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 494
v “Searching Information Online” on page 498
v “Ordering the Printed Books” on page 491
v “Printing the PDF Books” on page 490

Table 36. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

482 Data Recovery and High Availability Guide and Reference

Table 36. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix J. Using the DB2 Library 483

Table 36. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

484 Data Recovery and High Availability Guide and Reference

Table 36. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
SC09-2978

db2m1x70
Volume 2
SC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0782

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix J. Using the DB2 Library 485

Table 36. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

486 Data Recovery and High Availability Guide and Reference

Table 36. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix J. Using the DB2 Library 487

Table 36. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

488 Data Recovery and High Availability Guide and Reference

Table 36. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix J. Using the DB2 Library 489

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale name
and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 36 on page 482.

490 Data Recovery and High Availability Guide and Reference

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix J. Using the DB2 Library 491

Table 37. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

492 Data Recovery and High Availability Guide and Reference

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center Help

Control Center Help

Data Warehouse Center
Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

Appendix J. Using the DB2 Library 493

Type of Help Contents How to Access...

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

494 Data Recovery and High Availability Guide and Reference

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

Appendix J. Using the DB2 Library 495

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Back up Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

496 Data Recovery and High Availability Guide and Reference

Wizard Helps You to... How to Access...

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

Appendix J. Using the DB2 Library 497

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 495 for
details.

498 Data Recovery and High Availability Guide and Reference

Appendix K. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 2001 499

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

500 Data Recovery and High Availability Guide and Reference

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix K. Notices 501

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

502 Data Recovery and High Availability Guide and Reference

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix K. Notices 503

504 Data Recovery and High Availability Guide and Reference

Index

A
active logs 31
add database wizard 496, 497
agent

high availability 257
alias address 186
ARCHIVE LOG 315
ARCHIVE LOG

(db2ArchiveLog) 328
archive logging 30
archived logs

offline 31
online 31

archiving logs on demand 45
ASYNCHRONOUS READ LOG

(sqlurlog) 349
authorities

required for backup utility 80
required for restore utility 106
required for rollforward

utility 131
automatic restart 10

B
back up database wizard 496
backup

container names 78
frequency 6
images 78
incremental 25
offline 6
online 6
storage considerations 7
to named pipes 83
to tape 81
user exit program 8

backup and restore
vendor products 447

BACKUP command
DB2 Data Links Manager

considerations 57
Backup Services APIs (XBSA) 85
backup utility

authorities and privileges
required to use 80

displaying information 81
overview 77
performance 102
restrictions 103

backup utility (continued)
troubleshooting 103

backups
active 50
expired 50
inactive 50
log chain 51
log sequence 51

base address 186
books 481, 491

C
campus clustering 263
capture logging 30, 31
cascading assignment 178
cconsole utility 263
Check Backup 306
circular logging 30
clone database

creating 174
CLOSE RECOVERY HISTORY FILE

SCAN (db2HistoryCloseScan) 331
cluster

configuration 178
management 178
monitoring 206

clustering
campus 263
continental 263

command syntax
interpreting 295

completion messages 299
configuration parameters

database logging 37
configure multisite update

wizard 496
container names 78
continental clustering 263
continuous availability 256
control methods 262
crash recovery 9
create database wizard 497
create table space wizard 497
create table wizard 497
ctelnet utility 263

D
damaged table space 11
data and parity striping by sectors

(RAID level 5) 13

DATA structure 477
data structures

used by vendor APIs 454
database

backup history file 321
non-recoverable 5
recoverable 5

database configuration parameter
autorestart 10

database logs 30
configuration parameters 37

database objects
recovery history file 4
recovery log file 4

database partition
synchronization 140

database rollforward recovery 23
DB2 Connect

prerequisites on Sun Cluster
2.2 270

DB2 Data Links Manager
backup utility considerations 57
considerations 56
crash recovery 56
datalink reconcile pending

state 65
detection of situations requiring

reconciliations 75
garbage collection 52
indoubt transactions 56
interactions with recovery 68
linked files 57
phases 56
point in time rollforward

example 67
reconciliation procedure 75
reconciling 74
removing table from datalink

reconcile not possible state 74
restore utility considerations 63
restoring databases 66, 67
restoring databases from an

offline backup without rolling
forward 65

restoring table spaces 66, 67
rollforward utility

considerations 63
rolling databases forward to a

point in time 67

© Copyright IBM Corp. 2001 505

DB2 Data Links Manager (continued)
rolling databases forward to the

end of logs 66
rolling table spaces forward to a

point in time 67
rolling table spaces forward to

the end of logs 66
two-phase commit 56
unlinked files 58

DB2 high availability agent 271
control methods for 272
hadb2tab configuration file 271
registering 271

DB2-INFO structure 470
DB2 library

books 481
Information Center 495
language identifier for

books 489
late-breaking information 490
online help 492
ordering printed books 491
printing PDF books 490
searching online

information 498
setting up document server 497
structure of 481
viewing online information 494
wizards 496

DB2 Syncpoint Manager
recovery of indoubt

transactions 19
db2adutl 302, 437
db2ArchiveLog - Archive Active

Log 328
db2ckbkp 306
db2diag.log 10
db2flsn 311
db2HistData structure 352
db2HistoryCloseScan - Close

Recovery History File Scan 331
db2HistoryGetEntry - Get Next

Recovery History File Entry 333
db2HistoryOpenScan - Open

Recovery History File Scan 337
db2HistoryUpdate - Update

Recovery History File 342
db2inidb tool 174
DB2LOADREC 138
db2mscs 314
DB2MSCS utility

DB2MSCS.CFG parameters 225
machine reboot to set PATH 224
overview 224

DB2MSCS utility (continued)
setting up a partitioned database

system 231
setting up a single-partition

database system 229
setting up two single-partition

database systems for mutual
takeover 230

db2Prune 345
DELETE COMMITTED SESSION

(sqluvdel) 468
device, tape 85
disaster recovery 21
disk

array 13
RAID (Redundant Array of

Independent Disks) 13
striping 13

disk arrays
hardware 13
software 14

disk failure
protecting against 13

disk groups 259
disk mirroring 14
disk mirroring or duplexing (RAID

level 1) 13
displaying information

backup utility 81
disruptive maintenance 196
dropped table recovery 136
DSMI_CONFIG 433, 434
DSMI_DIR 433, 434
DSMI_LOG 434
dual logging 34

E
enhanced scalability (ES) 177
Eprimary node of the SP

switch 187
error handling

log full 37
error messages

during rollforward recovery 151
overview 299

ES (enhanced scalability) 177
event monitoring 197

F
failed database partition server

identifying 18
failover

forcing connections during 233
overview 253
support on AIX 177

failover (continued)
support on Sun Cluster 2.2 253
time 285

failover support 171, 221
idle standby 173
mutual takeover 173

failure
transaction 10

fault monitoring 276
fault tolerance 256
file system

journaled 171
Find Log Sequence Number 311
flushing logs 33

G
garbage collection 50
GET NEXT RECOVERY HISTORY

FILE ENTRY
(db2HistoryGetEntry) 333

H
HA.config file 278
HA-NFS 263
HACMP (high availability cluster

multi-processing) 177
HACMP ES configuration

examples 187
hardware disk arrays 13
heartbeat 177, 254
high availability 171, 221, 253
high availability cluster

multi-processing (HACMP) 177
high availability on Sun Cluster 2.2

applications connecting to an HA
instance 265

crash recovery 270
data replication 270
database and database manager

configuration parameters 270
DB2 high availability agent 271
DB2 installation location and

options 269
disk layout for EE and EEE

instances 266
hadb2_setup command 281
home directory layout for EE and

EEE instances 267
logical hosts and DB2 UDB

EEE 268
setup 280
troubleshooting 287

hot standby configuration 178
example 184

506 Data Recovery and High Availability Guide and Reference

HP and Sun Solaris
backup and restore support 9

HTML
sample programs 489

I
images

backup 78
incremental backup and

recovery 25
index wizard 497
indoubt transactions

recovering on the host 19
recovery when not using DB2

Syncpoint Manager 20
recovery when using DB2

Syncpoint Manager 19
Information Center 495
INIT-INPUT structure 474
INIT-OUTPUT structure 476
INITIALIZE AND LINK TO DEVICE

(sqluvint) 456
INITIALIZE TAPE 317
installing

Netscape browser 495

J
journaled file system 171

K
keepalive packets 177
keywords

syntax 295

L
language identifier

books 489
late-breaking information 490
LIST HISTORY 318
load copy location file, using

rollforward utility 138
log

file, use of in rollforward
recovery 160

mirroring 34
log chain 51
log directory

full 44
log file

listing during roll forward 145
log file management

ACTIVATE DATABASE
command 41

log sequence 51
logbufsz database configuration

parameter 39

logfilsiz database configuration
parameter 38

logging
archive 30
capture 30, 31
circular 30

logical host 258
logical network interface 258
logprimary database configuration

parameter 37
logretain database configuration

parameter 40
logs

active 31
archiving on demand 45
database 30
flushing 33
losing 47
managing 40
offline archived 31
online archived 31
storage required 8
userexit program 8

logsecond database configuration
parameter 38

losing logs 47

M
media failure

catalog node considerations 12
logs 8
reducing the impact of 12

messages
overview 299

methods
Sun Cluster 257

Microsoft Cluster Server
(MSCS) 221

migration tasks for HACMP ES 209
mincommit database configuration

parameter 39
mirroring

logs 34
MSCS (Microsoft Cluster

Server) 221
multiple instances

use with Tivoli Storage
Manager 436

mutual takeover configuration 178
example 184

N
named pipes

backing up to 83

Netscape browser
installing 495

newlogpath database configuration
parameter 40

NEWLOGPATH2 registry
variable 34

NFS server node 184
NFS server takeover configuration

example 186
node_down event 177
node synchronization 140
node_up event 177
non-disruptive maintenance 196
non-recoverable database 5

O
offline archived logs 31
on demand log archiving 45
online archived logs 31
online help 492
online information

searching 498
viewing 494

OPEN RECOVERY HISTORY FILE
SCAN (db2HistoryOpenScan) 337

operating system restrictions 9

P
parallel recovery 55
parameters

syntax 295
partitioned database environment

transaction failure recovery
in 15

PDF 490
pending states 53
performance

recovery 54
performance configuration

wizard 497
point of consistency 9
printing PDF books 490
privileges

required for backup utility 80
required for restore utility 106
required for rollforward

utility 131
protecting against disk failure 13
PRUNE HISTORY/LOGFILE 321

R
RAID (Redundant Array of

Independent Disks) 13
RAID level 1 (disk mirroring or

duplexing) 13

Index 507

RAID level 5 (data and parity
striping by sectors) 13

READING DATA FROM DEVICE
(sqluvget) 460

reconcile pending state 65
recoverable database 5
recovering a dropped table

rollforward utility 136
recovery

crash 9
damaged table spaces 11
dropped table 136
history file 4, 48
incremental 25
interaction with DB2 Data Links

Manager 68
log file 4
operating system restrictions 9
overview 3
parallel 55
performance 54
point-in-time 24
reducing logging on work

tables 36
rollforward 23
storage considerations 7
time required 7
to end of logs 24
two-phase commit protocol 15
user exit 439
version 22
without roll forward 115

recovery history file 48
recovery objects

overview 4
recovery program file for HACMP

ES 199
recovery scripts for HACMP

ES 203
redefining table space containers

restore utility 107
redirected restore 107
reducing logging on work tables 36
reducing the impact of media

failure 12
reducing the impact of transaction

failure 14
Redundant Array of Independent

Disks (RAID) 13
registry variables

DB2LOADREC 138
relationships between tables 8
release notes 490
RESTART DATABASE command 10

restore
incremental 25
table space 24

RESTORE command
DB2 Data Links Manager

considerations 63
RESTORE DATABASE command

DB2 Data Links Manager,
restoring database without
rolling forward 65

restore utility
authorities and privileges

required to use 106
overview 105
performance 127
redefining table space

containers 107
restoring to a new database 109
restoring to an existing

database 108
restrictions 127
troubleshooting 128

restore wizard 497
restoring to a new database

restore utility 109
restoring to an existing database

restore utility 108
RETURN-CODE structure 478
REWIND TAPE 323
RFWD-INPUT structure 157
RFWD-OUTPUT structure 160
ROLLFORWARD command

DB2 Data Links Manager, point
in time rollforward
example 67

DB2 Data Links Manager, rolling
forward to a point in time 67

DB2 Data Links Manager, rolling
forward to the end of logs 66

DB2 Data Links Manager
considerations 63

rollforward recovery 23
configuration file parameters

supporting 37
database 23
log management

considerations 40
log sequence 41
table space 24, 132

rollforward utility
authorities and privileges

required to use 131
load copy location file,

using 138
overview 129

rollforward utility (continued)
recovering a dropped table 136
restrictions 167
troubleshooting 167

rotating assignment 178
rules file 177

for HACMP 197
restriction 198

S
sample programs

cross-platform 489
HTML 489

scalability 177
script files for HACMP ES 201

installation 201
SDR (System Data Repository) 186
searching

online information 496, 498
seed

database 108, 109
SET TAPE POSITION 324
Set up Windows NT Failover

Utility 314
setting up document server 497
SmartGuides

wizards 496
software disk arrays 14
SP frame 178
SP switch configuration

considerations 186
split mirror

as a backup image 175
as a standby database 175

split mirror handling 173
SQL messages 299
SQLCODE

overview 299
SQLSTATE

overview 299
SQLU-LSN structure 357
SQLU-MEDIA-LIST structure 96
SQLU-RLOG-INFO structure 358
SQLU-TABLESPACE-BKRST-LIST

structure 100
sqlurlog - Asynchronous Read

Log 349
sqluvdel - Delete Committed

Session 468
sqluvend - Unlink the Device and

Release its Resources 466
sqluvget - Reading Data from

Device 460
sqluvint - Initialize and Link to

Device 456

508 Data Recovery and High Availability Guide and Reference

sqluvput - Writing Data to
Device 463

states
pending 53

storage
media failure 8
required for backup and

recovery 7
Sun Cluster 2.2

DB2 Connect prerequisites 270
Sun Cluster 2.x 253
Sun Solaris and HP

backup and restore support 9
suspended I/O

supporting continuous
availability 173

switch alias address 183
synchronization

database partition 140
node 140
recovery considerations 140

syntax diagrams
reading 295

System Data Repository (SDR) 186

T
table

relationships 8
table space

recovery 11
recovery of damaged 11
restore 24
rollforward recovery 24

tape
backing up to 81

tape device 85
time required for database

recovery 7
Tivoli Storage Manager (TSM)

backup restrictions 436
client set up (UNIX based

platforms) 433
client set up (Windows operating

systems and OS/2) 434
environment variables (UNIX

based platforms) 433
environment variables (Windows

operating systems and
OS/2) 434

managing backups and log
archives 437

setting password (UNIX based
platforms) 434

Tivoli Storage Manager (TSM)
(continued)

setting password (Windows
operating systems and
OS/2) 435

system options file (Windows
operating systems and
OS/2) 435

timeout problem resolution 436
use with BACKUP DATABASE

command 433
use with RESTORE DATABASE

command 433
user options file (Windows

operating systems and
OS/2) 435

using 435
transaction failure 10

reducing the impact of 14
transaction failure recovery

on active database partition
server 16

on the failed database partition
server 16

transactions
blocking when log directory is

full 44
two-phase commit protocol 15

U
UNLINK THE DEVICE AND

RELEASE ITS RESOURCES
(sqluvend) 466

UPDATE HISTORY FILE 325
UPDATE RECOVERY HISTORY

FILE (db2HistoryUpdate) 342
user-defined events 177, 197
user exit

archive and retrieve
considerations 42

backup and restore
considerations (OS/2) 443

calling format 441
error handling 444
sample programs 439

user exit for database recovery 439
user exit program

backup 8
logs 8

user scripts 274
userexit database configuration

parameter 40

V
variables

syntax 295
VENDOR-INFO structure 473
vendor products

backup and restore 447
DATA structure 477
DB2-INFO structure 470
DELETE COMMITTED

SESSION 468
description 447
INIT-INPUT structure 474
INIT-OUTPUT structure 476
INITIALIZE AND LINK TO

DEVICE 456
operation 447
READING DATA FROM

DEVICE 460
RETURN-CODE structure 478
sqluvdel 468
sqluvend 466
sqluvget 460
sqluvint 456
sqluvput 463
UNLINK THE DEVICE 466
VENDOR-INFO structure 473
WRITING DATA TO

DEVICE 463
version recovery 22
viewing

online information 494

W
warning messages

overview 299
Windows 95 failover

Administration Server
considerations 249

Control Center
considerations 249

Windows NT failover
communications

considerations 248
considerations for administering

DB2 242
database considerations 247
DB2MSCS utility

DB2MSCS.CFG
parameters 225

overview 224
setting up a partitioned

database system 231
setting up a single-partition

database system 229

Index 509

Windows NT failover (continued)
DB2MSCS utility (continued)

setting up two single-partition
database systems for mutual
takeover 230

fallback considerations 233
hot standby 222
limitations 251
maintaining the MSCS

system 232
mutual takeover 223
planning 221
reconciling the database drive

mapping 235
restrictions 251
running scripts, overview 243
running scripts after DB2

resource brought online 246
running scripts before DB2

resource brought online 243
setting database drive mapping

for mutual takeover in a
partitioned database
environment 233

setting up partitioned database
system for mutual takeover
example

objectives 238
preliminary tasks 239
registering database drive

mapping for ClusterA 241
registering database drive

mapping for ClusterB 241
run DB2MSCS utility 240

setting up two instances for
mutual takeover example

objectives 236
preliminary tasks 236
run DB2MSCS utility 237

starting and stopping DB2
resources 242

system time considerations 248
types 222
user and group support 247

wizard
restore database 497

wizards
add database 496, 497
back up database 496
completing tasks 496
configure multisite update 496
create database 497
create table 497
create table space 497
index 497

wizards (continued)
performance configuration 497

Work with TSM Archived
Images 302

WRITING DATA TO DEVICE
(sqluvput) 463

X
XBSA (Backup Services APIs) 85

510 Data Recovery and High Availability Guide and Reference

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 2001 511

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

512 Data Recovery and High Availability Guide and Reference

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

DATA-RCVR-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
®

D
B

2®

U
ni

ve
rs

al
D

at
ab

as
e

D
at

a
R

ec
ov

er
y

an
d

H
ig

h
Av

ai
la

bi
lit

y
G

ui
de

an
d

R
ef

er
en

ce
Ve

rs
io

n
7

	Contents
	About This Book
	Who Should Use this Book
	How this Book is Structured

	Part 1. Data Recovery
	Chapter 1. Developing a Good Backup and Recovery Strategy
	Deciding How Often to Back Up
	Storage Considerations
	Keeping Related Data Together
	Using Different Operating Systems
	Crash Recovery
	Recovering Damaged Table Spaces
	Recovering Table Spaces in Recoverable Databases
	Recovering Table Spaces in Non-recoverable Databases

	Reducing the Impact of Media Failure
	Protecting Against Disk Failure

	Reducing the Impact of Transaction Failure
	Recovering from Transaction Failures in a Partitioned Database Environment
	Transaction Failure Recovery on an Active Database Partition Server
	Transaction Failure Recovery on the Failed Database Partition Server
	Identifying the Failed Database Partition Server

	Recovering Indoubt Transactions on the Host
	Recovery when DB2 Connect Has the DB2 Syncpoint Manager Configured
	Recovery when DB2 Connect Does Not Use the DB2 Syncpoint Manager

	Disaster Recovery
	Version Recovery
	Rollforward Recovery
	Incremental Backup and Recovery
	Restoring from Incremental Backup Images
	Limitations to Automatic Incremental Restore

	Understanding Recovery Logs
	Log Mirroring
	Reducing Logging on Work Tables
	Configuration Parameters for Database Logging
	Managing Log Files
	Managing Log Files with a User Exit Program

	Blocking Transactions When the Log Directory is Full
	On Demand Log Archive
	Using Raw Logs
	Losing Logs

	Understanding the Recovery History File
	Garbage Collection

	Understanding Table Space States
	Enhancing Recovery Performance
	Parallel Recovery

	DB2 Data Links Manager Considerations
	Crash Recovery Considerations
	Backup Utility Considerations
	Choosing a Backup Method for DB2 Data Links Manager on AIX
	Choosing a Backup Method for DB2 Data Links Manager in the Solaris Operating Environment
	Choosing a Backup Method for DB2 Data Links Manager on Windows NT
	Backing up a Journaled File System on AIX

	Restore and Rollforward Utility Considerations
	Restoring Databases From an Offline Backup Without Rolling Forward
	Restoring Databases and Table Spaces, and Rolling Forward to the End of the Logs
	Restoring Databases and Table Spaces, and Rolling Forward to a Point in Time
	Point in Time Rollforward Example

	DB2 Data Links Manager and Recovery Interactions
	Removing a Table From Datalink Reconcile Not Possible State
	Reconciling Data Links
	Detection of Situations That Require Reconciliation
	Summary of Procedure for Reconciliation

	Chapter 2. Database Backup
	Backup Overview
	Privileges, Authorities, and Authorization Required to Use Backup
	Using Backup
	Before Using Backup
	Invoking Backup

	Displaying Backup Information
	Backing Up to Tape
	Backing Up to Named Pipes
	BACKUP DATABASE Command
	Backup Database API
	Data Structure: SQLU-MEDIA-LIST
	Data Structure: SQLU-TABLESPACE-BKRST-LIST
	Example Backup Sessions
	CLP Examples
	API Examples

	Optimizing Backup Performance
	Backup Restrictions
	Troubleshooting Backup

	Chapter 3. Database Restore
	Restore Overview
	Privileges, Authorities, and Authorization Required to Use Restore
	Using Restore
	Before Using Restore
	Invoking Restore

	Redefining Table Space Containers During a Restore Operation (Redirected Restore)
	Restoring to an Existing Database
	Restoring to a New Database
	RESTORE DATABASE Command
	Restore Database API
	Example Restore Sessions
	CLP Examples
	API Examples

	Optimizing Restore Performance
	Restore Restrictions
	Troubleshooting Restore

	Chapter 4. Rollforward Recovery
	Rollforward Overview
	Privileges, Authorities, and Authorization Required to Use Rollforward
	Using Rollforward
	Before Using Rollforward
	Invoking Rollforward

	Rolling Forward Changes in a Table Space
	Recovering a Dropped Table
	Using the Load Copy Location File
	Synchronizing Clocks in a Partitioned Database System
	ROLLFORWARD DATABASE Command
	Rollforward Database API
	Data Structure: RFWD-INPUT
	Data Structure: RFWD-OUTPUT
	Example Rollforward Sessions
	CLP Examples
	API Examples

	Rollforward Restrictions
	Troubleshooting Rollforward

	Part 2. High Availability
	Chapter 5. Introducing High Availability and Failover Support
	High Availability
	High Availability through Online Split Mirror and Suspended I/O Support
	Making a Clone Database
	Using the Split Mirror as a Standby Database
	Using the Split Mirror as a Backup Image

	Chapter 6. High Availability on AIX
	Cluster Configuration
	Configuring a DB2 Database Partition
	Example of a Hot Standby Configuration
	Example of a Mutual Takeover Configuration
	Configuration of an NFS Server Node
	Example of an NFS Server Takeover Configuration
	Considerations When Configuring the SP Switch
	DB2 HACMP Configuration Examples
	DB2 HACMP Startup Recommendations

	HACMP ES Event Monitoring and User-defined Events
	HACMP ES Script Files
	DB2 Recovery Script Operations with HACMP ES
	Other Script Utilities

	Monitoring HACMP Clusters
	DB2 SP HACMP ES Installation
	DB2 SP HACMP ES New Installation
	DB2 SP HACMP ES Migration
	DB2 SP HACMP ES Worksheets

	Chapter 7. High Availability on the Windows Operating System
	Failover Configurations
	Hot Standby Configuration
	Mutual Takeover Configuration

	Using the DB2MSCS Utility
	Specifying the DB2MSCS.CFG File
	Setting up Failover for a Single-Partition Database System
	Setting up a Mutual Takeover Configuration for Two Single-Partition Database Systems
	Setting up Multiple MSCS Clusters for a Partitioned Database System

	Maintaining the MSCS System
	Fallback Considerations
	Registering a Database Drive Mapping for Mutual Takeover Configurations in a Partitioned Database Environment
	Reconciling the Database Drive Mapping

	Example - Setting up Two Single-Partition Instances for Mutual Takeover
	Preliminary Tasks
	Run the DB2MSCS Utility

	Example - Setting up a Four-Node Partitioned Database System for Mutual Takeover
	Preliminary Tasks
	Run the DB2MSCS Utility
	Register the Database Drive Mapping for ClusterA
	Register the Database Drive Mapping for ClusterB

	Administering DB2 in an MSCS Environment
	Starting and Stopping DB2 Resources
	Running Scripts
	Running Scripts Before Bringing DB2 Resources Online
	Running Scripts After Bringing DB2 Resources Online

	Database Considerations
	User and Group Support
	Communications Considerations
	System Time Considerations
	Administration Server and Control Center Considerations in a Partitioned Database Environment
	Limitations and Restrictions

	Chapter 8. High Availability in the Solaris Operating Environment
	High Availability
	Fault Tolerance and Continuous Availability

	Sun Cluster 2.2
	Supported Systems
	Agents
	Logical Hosts
	Logical Network Interfaces
	Disk Groups and File Systems
	Control Methods
	Disk and File System Configuration
	HA-NFS
	The cconsole and ctelnet Utilities
	Campus Clustering and Continental Clustering
	Common Problems

	DB2 Considerations
	Applications Connecting to an HA Instance
	Disk Layout for EE and EEE Instances
	Home Directory Layout for EE and EEE Instances
	Logical Hosts and DB2 UDB EEE
	DB2 Installation Location and Options
	Database and Database Manager Configuration Parameters
	Crash Recovery
	High Availability through Data Replication
	DB2 Connect Prerequisites on Sun Cluster 2.2

	The DB2 High Availability Agent
	Registering the hadb2 Service
	The hadb2tab File
	Control Methods
	User Scripts
	Other Considerations
	Fault Monitor
	EEE Considerations
	The HA.config File
	How Control Methods Run DB2 Commands

	Setup
	Common Installation Steps
	Setup on DB2 UDB Enterprise Edition
	Setup on DB2 UDB Enterprise - Extended Edition
	The hadb2_setup Command

	Failover Time
	Troubleshooting

	Part 3. Appendixes
	Appendix A. How to Read the Syntax Diagrams
	Appendix B. Warning, Error, and Completion Messages
	Appendix C. Additional DB2 Commands
	db2adutl - Work with TSM Archived Images
	db2ckbkp - Check Backup
	db2ckrst - Check Incremental Restore Image Sequence
	db2flsn - Find Log Sequence Number
	db2inidb - Initialize a Mirrored Database
	db2mscs - Set up Windows NT Failover Utility
	ARCHIVE LOG
	INITIALIZE TAPE
	LIST HISTORY
	PRUNE HISTORY/LOGFILE
	REWIND TAPE
	SET TAPE POSITION
	UPDATE HISTORY FILE

	Appendix D. Additional APIs and Associated Data Structures
	db2ArchiveLog - Archive Active Log API
	db2HistoryCloseScan - Close Recovery History File Scan API
	db2HistoryGetEntry - Get Next Recovery History File Entry API
	db2HistoryOpenScan - Open Recovery History File Scan API
	db2HistoryUpdate - Update Recovery History File API
	db2Prune API
	sqlurlog - Asynchronous Read Log API
	Data Structure: db2HistData
	Data Structure: SQLU-LSN
	Data Structure: SQLU-RLOG-INFO

	Appendix E. Recovery Sample Programs
	Sample Program with No Embedded SQL (backrest.c)
	Sample Program with Embedded SQL (dbrecov.sqc)

	Appendix F. Recovery CLP Script
	Sample Command Script for Windows Operating Systems
	Sample Command Script for UNIX Based Systems

	Appendix G. Tivoli Storage Manager
	Setting up a Tivoli Storage Manager Client on UNIX Based Platforms
	Setting up a Tivoli Storage Manager Client on Other Platforms
	Considerations for Using Tivoli Storage Manager
	Managing Backups and Log Archives on TSM

	Tivoli Space Manager Integration with Data Links
	Restrictions and Limitations

	Appendix H. User Exit for Database Recovery
	Sample User Exit Programs
	Calling Format
	Backup and Restore Considerations (DB2 for OS/2 only)
	Error Handling

	Appendix I. Backup and Restore APIs for Vendor Products
	Operational Overview
	Number of Sessions
	Operation with No Errors, Warnings or Prompting
	PROMPTING Mode
	Device Characteristics
	If Error Conditions Are Returned to DB2
	Warning Conditions

	Operational Hints and Tips
	Recovery History File

	Functions and Data Structures
	sqluvint - Initialize and Link to Device
	sqluvget - Reading Data from Device
	sqluvput - Writing Data to Device
	sqluvend - Unlink the Device and Release its Resources
	sqluvdel - Delete Committed Session
	DB2-INFO
	VENDOR-INFO
	INIT-INPUT
	INIT-OUTPUT
	DATA
	RETURN-CODE
	Invoking a Backup or a Restore Operation Using Vendor Products
	The Control Center
	The Command Line Processor (CLP)
	Application Programming Interface (API)

	Appendix J. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix K. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

