
 

DB2 DataJoiner IBM

 

Generic Access API Reference
Version 2 Release 1

 
 
 
 SC26-9147-00



 



DB2 DataJoiner IBM

Generic Access API Reference
Version 2 Release 1

 
 
 
 SC26-9147-00



First Edition (October 1997)

This edition applies to Version 2 of IBM DB2 DataJoiner, 5765-C36, and to any subsequent releases until otherwise
indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



 Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Cross-Platform Terminology Conventions . . . . . . . . . . . . . . . . . . . . . .  vii

About This Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix
DataJoiner, DB2 for CS, and Replication Library Publications . . . . . . . . . . . .  ix
Publication Ordering, Viewing, and Printing Instructions . . . . . . . . . . . . . . .  xii
World Wide Web and Internet Information Resources . . . . . . . . . . . . . . . .  xii

What's New in DataJoiner Version 2? . . . . . . . . . . . . . . . . . . . . . .  xiv

Chapter 1. Introduction to the Generic Access API . . . . . . . . . . . . . . .  1
Example of a Custom Data Access Module . . . . . . . . . . . . . . . . . . . . .  1
Elements of the Generic Access API . . . . . . . . . . . . . . . . . . . . . . . . .  2

Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Environment, Connection, and Statement Handles . . . . . . . . . . . . . . . .  3
Data Type Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
Function Return Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Chapter 2. Writing a Generic Driver . . . . . . . . . . . . . . . . . . . . . . . .  5
Role of DataJoiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
State Transitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Establishing Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Data Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Establishing a Connection to a Data Source . . . . . . . . . . . . . . . . . . .  6

Processing an SQL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
Allocating a Statement Handle . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Executing an SQL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
Supporting Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Extensions for SQL Statements . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Returning Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Binding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Determining the Characteristics of a Result Set . . . . . . . . . . . . . . . . .  9
Returning Result Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Supporting Cursors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Returning Status and Error Information . . . . . . . . . . . . . . . . . . . . . .  10
Return Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Error Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Constructing Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Terminating Transactions and Connections . . . . . . . . . . . . . . . . . . . .  12
Terminating Statement Processing . . . . . . . . . . . . . . . . . . . . . . .  12
Terminating Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Terminating Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

 Copyright IBM Corp. 1995, 1997  iii



Chapter 3. Required Functions  . . . . . . . . . . . . . . . . . . . . . . . . . 13
SQLAllocConnect - Allocate Connection Handle . . . . . . . . . . . . . . . . . .  15
SQLAllocEnv - Allocate Environment Handle . . . . . . . . . . . . . . . . . . .  19
SQLAllocStmt - Allocate a Statement Handle . . . . . . . . . . . . . . . . . . .  22
SQLBindCol - Bind a Column to DataJoiner Storage . . . . . . . . . . . . . . .  24
SQLConnect - Connect to a Data Source . . . . . . . . . . . . . . . . . . . . .  27
SQLDescribeCol - Describe Column Attributes . . . . . . . . . . . . . . . . . .  30
SQLDisconnect - Disconnect from a Data Source . . . . . . . . . . . . . . . . .  35
SQLError - Retrieve Error Information . . . . . . . . . . . . . . . . . . . . . . .  37
SQLExecDirect - Execute a Statement Directly . . . . . . . . . . . . . . . . . .  41
SQLExecute - Execute a Statement . . . . . . . . . . . . . . . . . . . . . . . .  45
SQLFetch - Fetch Next Row . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
SQLFreeConnect - Free Connection Handle . . . . . . . . . . . . . . . . . . . .  55
SQLFreeEnv - Free Environment Handle . . . . . . . . . . . . . . . . . . . . .  57
SQLFreeStmt - Free (or Reset) a Statement Handle . . . . . . . . . . . . . . .  59
SQLGetCursorName - Get Cursor Name . . . . . . . . . . . . . . . . . . . . .  61
SQLGetInfo - Get General Information . . . . . . . . . . . . . . . . . . . . . . .  66
SQLNumResultCols - Get Number of Result Columns . . . . . . . . . . . . . .  71
SQLPrepare - Prepare a Statement . . . . . . . . . . . . . . . . . . . . . . . .  73
SQLRowCount - Get Row Count . . . . . . . . . . . . . . . . . . . . . . . . . .  79
SQLSetParam - Set Parameter . . . . . . . . . . . . . . . . . . . . . . . . . .  82
SQLTransact - Transaction Management . . . . . . . . . . . . . . . . . . . . .  87

Appendix A. General Diagnostic Information . . . . . . . . . . . . . . . . .  89
Return Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
SQLSTATE Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . .  89

Appendix B. Data Conversion  . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Other C Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96
Precision  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Scale  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Length  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Display Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Supported Data Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Converting Data from SQL to C Data Types . . . . . . . . . . . . . . . . . . . .  102

Converting Character SQL Data to C Data . . . . . . . . . . . . . . . . . . .  103
Converting Graphic SQL Data to C Data . . . . . . . . . . . . . . . . . . . .  104
Converting Numeric SQL Data to C Data . . . . . . . . . . . . . . . . . . . .  105
Converting Date SQL Data to C Data . . . . . . . . . . . . . . . . . . . . . .  106
Converting Time SQL Data to C Data . . . . . . . . . . . . . . . . . . . . .  107
Converting Timestamp SQL Data to C Data . . . . . . . . . . . . . . . . . .  107
SQL to C Data Conversion Examples . . . . . . . . . . . . . . . . . . . . . .  108

Converting Data from C to SQL Data Types . . . . . . . . . . . . . . . . . . . .  109
Converting Character C Data to SQL Data . . . . . . . . . . . . . . . . . . .  110
Converting Numeric C Data to SQL Data . . . . . . . . . . . . . . . . . . . .  111
Converting Date C Data to SQL Data . . . . . . . . . . . . . . . . . . . . . .  112
Converting Time C Data to SQL Data . . . . . . . . . . . . . . . . . . . . .  112

iv DataJoiner Version 2 Generic Access API Reference  



Converting Timestamp C Data to SQL Data . . . . . . . . . . . . . . . . . .  113
C to SQL Data Conversion Examples . . . . . . . . . . . . . . . . . . . . . .  113

Appendix C. Command Line Interface Include File . . . . . . . . . . . . . .  115

Appendix D. State Transition Tables . . . . . . . . . . . . . . . . . . . . . .  124

Appendix E. Incompatibilities between Versions of DataJoiner . . . . . . .  127
Definition of Incompatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
System Catalog Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

Columns and Values in System Catalog Tables . . . . . . . . . . . . . . . .  127
How Users Modify System Catalog Tables . . . . . . . . . . . . . . . . . . .  129

Appendix F. DataJoiner Education and Service . . . . . . . . . . . . . . . .  131
DataJoiner Education  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Using DataJoiner  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DataJoiner Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

DataJoiner Service Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
First Phase: Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
Second Phase: Implementation . . . . . . . . . . . . . . . . . . . . . . . . .  132

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

  Contents v



 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any of the intellectual property rights
of IBM may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information which has
been exchanged, should contact IBM Corporation, Department J01, 555 Bailey Avenue,
San Jose, CA 95161-9023. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

vi  Copyright IBM Corp. 1995, 1997



Advanced Peer-to-Peer Networking (APPN)
Advanced Program-to-Program
 Communication (APPC)
AIX
AIXwindow
AIX/6000
APPN
AS/400
Customer Information Control System (CICS)
CICS/6000
DATABASE 2
DataGuide
DataJoiner
DataPropagator
DB2
DB2/2
DB2/400
DB2/6000
DFSMS
Distributed Relational Database Architecture
DRDA

Extended Services for OS/2
IBM
IIN
IMS
MVS
IMS/ESA
MVS/ESA
MVS/XA
Operating System/2
Operating System/400
OS/2
OS/390
OS/400
RACF
RS/6000
SQL/DS
SQL/400
System/390
System Modification Program Extended (SMP/E)
VisualAge
VisualGen
Virtual Telecommunications
 Access Method (VTAM)

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks
of Microsoft Corporation.

Intel and Pentium are trademarks of the Intel Corporation.

HP-UX is a registered trademark of Hewlett-Packard.

Solaris is a registered trademark of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Cross-Platform Terminology Conventions
Some product names in the documentation refer to more than one product; other
names refer to specific product levels. This list contains the most frequently used
product definitions.

DataJoiner  Refers to DB2 DataJoiner Version 2. References specific to or including
DataJoiner Version 1 will include the version.

DB2 Family  Refers to all DataJoiner- supported versions of DATABASE 2 (DB2)
database server products on all platforms (DB2 for OS/390, DB2 for VM,
DB2 for common servers, DataJoiner, and so on). Supported versions are

  Notices vii



listed in the DataJoiner Planning, Installation, and Configuration Guide for
your platform.

DB2 By itself, refers to any one or all of the DB2 for common server Version 2
database server products on all platforms, which includes DataJoiner.

If a DB2 reference is qualified with a specific operating system or version,
the reference applies only to that particular version.

DB2 for CS  Refers to any DB2 for common servers Version 2 database server product.
This term is often used when describing DataJoiner and DB2 for common
servers functional differences

viii DataJoiner Version 2 Generic Access API Reference  



About This Library

To understand the organization of the DataJoiner library, it is important to understand
the relationship between DataJoiner and DB2 for CS. DataJoiner provides a “superset”
of DB2 for CS. The two products share common functions and syntax; therefore,
information that is common to DataJoiner and DB2 for CS is documented in the DB2 for
CS books. The DataJoiner books listed in Table 1 document the function and syntax
that DataJoiner has in addition to the function and syntax it shares with DB2 for CS.

DataJoiner, DB2 for CS, and Replication Library Publications
Table 1 lists the DataJoiner, DB2 for CS, and Replication manuals applicable to
installing, configuring, administrating, using, and running applications against
DataJoiner. The DataJoiner for AIX Planning, Installation, and Configuration Guide and
the DataJoiner for Windows NT Systems Planning, Installation, and Configuration Guide
books are provided with DataJoiner. The remaining books are provided in softcopy
formats on the product CD-ROM. All listed books are provided in PostScript; most are
provided in HTML (the two exceptions are the DB2 for CS Software Developer Kit
publications). Additionally, most of the DB2 for CS books are provided in INF format
(see Table 1).

Table 1 does not list all of the DB2 for CS books. View or print a DB2 for CS book to
see the publications list for all DB2 for CS books.

If you order Classic Connect, you will receive additional books (the DataJoiner Classic
Connect Planning, Installation, and Configuration Guide, the DataJoiner Classic
Connect data mapper Sample for Windows Installing and Using Guide, and the
DataJoiner Messages and Problem Determination Guide) and a program directory.

Table 1 (Page 1 of 4). DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner

Book Name Form Number File Prefix INF

DataJoiner Version 2.1 Books

DataJoiner for Windows NT Systems Planning,
Installation, and Configuration Guide

SC26-9150 DJXN1 no

This book covers capacity planning, resource management, installation, and configuration tasks for
IBM DataJoiner on Microsoft Windows NT operating systems.

DataJoiner for AIX Systems Planning,
Installation, and Configuration Guide

SC26–9145 DJXG5 no

This book covers capacity planning, resource management, installation, and configuration tasks for
IBM DataJoiner on AIX operating systems.

DataJoiner Administration Guide SC26–9146 DJXD4 no

 Copyright IBM Corp. 1995, 1997  ix



Table 1 (Page 2 of 4). DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner

Book Name Form Number File Prefix INF

This book provides information that assists DBAs and other system administrators of DataJoiner,
IBM's heterogeneous data access product, to perform administrative tasks. It includes a product
overview section, security considerations, data source identification steps, database utility notes,
performance considerations, database system monitor reference data, large object information and
explain tool examples.

DataJoiner Application Programming and SQL
Reference Supplement

SC26–9148 DJXK4 no

This book provides SQL statements, descriptions of system catalog data, guidelines, and other
information for application programmers. With this information, application programmers can use
DataJoiner to perform multiple tasks in a distributed database environment—tasks such as
creating nicknames by which to reference tables and views, invoking functions and stored
procedures, passing SQL directly to databases for processing, and using server options to
optimize query performance.

DataJoiner Generic Access API Reference SC26–9147 DJXM4 no

This book explains how to create a generic access module that allows you to use existing drivers
or to create new drivers to gain access to an unlimited set of data sources.

DataJoiner Classic Connect Planning,
Installation, and Configuration Guide

GC26–8869 DJXC4 no

This book provides information on the DataJoiner Classic Connect for MVS product. The audience
for this information includes application programmers, database administrators, network
administrators, system administrators, and system programmers. The book documents key tasks
required to set up Classic Connect in the MVS operating environment: planning your setup,
installing components via SMP/E, configuring the kernel, DMSIs, and network communications,
managing instances, and creating relational data maps for IMS and VSAM data.

DataJoiner Classic Connect data mapper
Sample for Windows Installing and Using Guide

GC26–8873 DJXZ2 no

This book provides information on the DataJoiner Classic Connect data mapper sample for
Windows. The audience for this information includes system programmers, DBAs, or anyone that
needs to produce relational maps (USE grammar) for IMS and VSAM data. The book documents
key tasks required to set up and use the data mapper in the Windows environment: installing
product files, starting the product, and generating USE grammar statements for input to DataJoiner
Classic Connect projection utilities.

DataJoiner Messages and Problem
Determination Guide

SC26–9149 DJXP4 no

This book describes the messages and codes issued by DataJoiner and Classic Connect
instances. For messages that report errors, the book explains the cause of the errors and
recommends corrective actions. The book also provides guidelines on using diagnostic tools to
isolate and understand problems.

DB2 for CS and Replication Books

DB2 Information and Concepts Guide SH20–4664 SQLG0 no

x DataJoiner Version 2 Generic Access API Reference  



Table 1 (Page 3 of 4). DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner

Book Name Form Number File Prefix INF

Provides product and conceptual information to anyone who needs a comprehensive overview of
the DB2 products. It is useful when deciding which DB2 products suit your environment. It also
includes a glossary of terms used in the book

DB2 Administration Guide S20H-4580 SQLD0 yes

Contains information required to design, implement, and maintain a database to be accessed
either locally or in a client/server environment.

DB2 Database System Monitor Guide and
Reference

S20H–4871 SQLF0 yes

Includes a description of how to use the Database System Monitor and a description of all the data
elements for which information can be collected.

DB2 Command Reference S20H–4645 SQLN0 yes

Provides the reference information needed to use system commands and the DB2 command line
processor to execute database administrative functions. Describes the commands that can be
entered at an operating system command prompt or in a shell script to access the database
manager. Explains how to invoke and use the command line processor, and describes the
command line processor options. Provides a description of all the database manager commands.

DB2 API Reference S20H–4984 SQLB0 yes

Provides information about the use of application programming interfaces (APIs) to execute
database administrative functions. Presents a description of APIs and the data structures used
when calling APIs, as well as detailed information on the use of database manager API calls in
applications written in the supported programming languages.

DB2 SQL Reference S20H–4665 SQLS0 yes

Is intended to serve as a reference for syntax and rules governing the use of SQL statements.
Syntax diagrams, semantic descriptions, rules and examples are provided for the SQL statements.
Catalog views, product maximums, release-to-release incompatibilities, and a glossary are also
included in this book.

DB2 Application Programming Guide S20H–4643 SQLA0 yes

Discusses the application development process and how to code, compile, and execute application
programs that use embedded SQL to access the database. It includes discussions on
programming techniques and performance considerations for the application programmer.

DB2 Call Level Interface Guide and Reference S20H–4644 SQLL0 yes

Is a guide and reference manual for programmers using the Call Level Interface. DB2 Call Level
Interface is a callable SQL interface based on the X/Open** CLI specification and is compatible
with Microsoft** Corporation's ODBC.

DB2 Messages Reference S20H–4808 SQLM0 yes

Lists messages and explanations. Each explanation includes the action to be taken when a
message or code is issued.

  About This Library xi



Table 1 (Page 4 of 4). DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner

Book Name Form Number File Prefix INF

DB2 Problem Determination Guide S20H–4779 SQLP0 yes

Provides information that helps in determining the source of errors, recovering from problems, and
describing and reporting defects.

DDCS User's Guide S20H–4793 SQLC0 yes

Provides concepts, programming and general information about the DDCS products.

DB2 Replication Guide and Reference S95H–0999 DB2E0 no

Describes how to plan, configure, administer, and operate IBM replication products, including
Apply and Capture.

DB2 for CS Platform-Specific Books

DB2 SDK for AIX Building Your Applications S20H-4780 SQLA3 yes

This manual provides environment setup information and step-by-step instructions to compile and
link DB2 applications on an Windows 95 and NT, Version 2.

DB2 SDK for Windows 95 and NT Building
Your Applications

S33H-0310 SQLA6 yes

This manual provides environment setup information and step-by-step instructions to compile and
link DB2 applications on an Windows 95 and NT, Version 2.

Publication Ordering, Viewing, and Printing Instructions
Use order number SBOF-5289 to request one hardcopy of each of the DataJoiner, DB2
for CS, and Replication books shown in the previous sections.

To view online documentation, follow the instructions located in the README files on
the CD-ROM. Most of the books (in Table 1 on page ix) are provided as HTML files
and can be viewed with an HTML browser. You can also view INF versions of many
DB2 for CS books. Instructions for installing the INF reader on AIX is provided in the
DB2 README files; on NT operating systems, the INF reader is installed automatically.
DataJoiner and Replication information is not provided in INF format.

To print individual books, follow the instructions provided in the README files on the
CD-ROM. PostScript files for all the books shown in previous sections are provided.

World Wide Web and Internet Information Resources
The following electronic resources provide additional information about DataJoiner.

World Wide Web  The following DataJoiner-specific web site contains general and
technical (frequently-asked-questions) product information. The HTTP
address is:

http://www.software.ibm.com/data/datajoiner/

xii DataJoiner Version 2 Generic Access API Reference  



Internet Newsgroups  DataJoiner questions, answers, and discussions can be found in:

 � bit.listserv.db2-l
 � comp.databases
 � comp.databases.ibm-db2

  About This Library xiii



What's New in DataJoiner Version 2?

DataJoiner Version 2 offers many new features and enhancements. This chapter
describes some of the major changes for this version, and points you to sources of
more information in the DataJoiner and DB2 libraries. Major enhancements include:

DB2 Version 2 functionality
DataJoiner is built on the DB2 Version 2 code base, which means that
DataJoiner provides all the major functional enhancements provided by DB2,
including:

� Extended SQL capabilities
� An enhanced SQL optimizer
� Improved database performance
� Systems management support
� Robust integrity and data protection
� Object relational capabilities
� National language support (NLS)

See the DB2 Administration Guide for detailed information about these
features.

DataJoiner for Windows NT
DataJoiner has extended its reach to provide an industrial strength
heterogeneous database management system to the Windows NT platform.
DataJoiner for Windows NT supports the same SQL and features as
DataJoiner for UNIX-based platforms.

Expanded DataJoiner SQL support
This version of DataJoiner contains many new and modified SQL statements.
New DDL statements provide greater flexibility and safety in defining your
DataJoiner environment—users can create, alter, and drop mappings for data
sources, users, user-defined and built-in functions, and data types.
Additionally, new SQL DML statements provide enhanced functions for local
and distributed queries; an example is the CASE expression, which is useful
for selecting an expression based on the evaluation of one or more
conditions.

Distributed heterogeneous update support
DataJoiner now allows you to update multiple heterogeneous data sources
within a distributed unit of work while maintaining transaction atomicity. This
task is accomplished through adherence to the two-phase commit model.
Supported data sources include most versions of the DB2 Family and, with
the appropriate XA libraries, various other data sources as well.

New graphical installation, configuration, and administration tools
A variety of new tools is available to help you accomplish most administrative
chores. TaskGuides walk you through common tasks, such as configuring
communications and data source access. The Administrator's Toolkit provides
a collection of tools designed to assist you with the day-to-day operation of
DataJoiner. It consists of the following components:

xiv  Copyright IBM Corp. 1995, 1997



The Command Line Processor  A system command prompt used to access
and manipulate databases.

The Database Director  Allows you to perform configuration, backup and
recovery, directory management, and media management tasks.

Visual Explain  A tool for graphically viewing and navigating complex SQL
access plans.

The DB2 Performance Monitor  Monitors the performance of your DB2
system for tuning purposes.

Stored procedures
DataJoiner now supports stored procedures at remote data sources as well
as the local DataJoiner database. Use stored procedures to speed application
performance. For example, applications that process huge amounts of data at
a server but return smaller result sets should run faster as stored procedures.
Another benefit is that stored procedures usually reduce network traffic
between clients and databases.

DataJoiner stored procedures can augment standard data security. For
example, in a 3-tier environment, data can be retrieved from a remote server
and then processed at the DataJoiner server; only a subset of data needs to
available to the client.

Heterogeneous data replication
DataJoiner now provides replication administration as an integrated
component. You can define, automate, and manage replication data from a
single control point across your enterprise. A GUI provides administrative
support for the replication environment, with objects and actions that define
and manage source and target table definitions. DataJoiner's Apply
component performs the actual replication, tailoring and enhancing data as
you specify, and serving as the interface point to and from your various data
sources.

System catalog information available in views
DataJoiner provides views from which you can access system catalog
information about each DataJoiner database. Some of these views contain
data—for example, data about tables, indexes, and servers—that was
accessible only from tables in previous versions of DataJoiner. Other views
contain data—for example, data about stored procedures, server options, and
server functions—that is now available in Version 2.

RDB Support
With Version 2, DataJoiner continues to increase the number of natively
supported data sources. Oracle RDB is the most recent addition.

Performance Enhancements
In addition to general engine performance improvements, this latest version
offers new query rewrite capabilities, improved pushdown performance, and
remote query caching.

  What's New in DataJoiner Version 2? xv



xvi DataJoiner Version 2 Generic Access API Reference  



Chapter 1. Introduction to the Generic Access API

IBM DataJoiner is a multidatabase server that provides client access to diverse data
sources that reside on different platforms. DataJoiner supports a variety of data
sources; however there might be times when you want to access a source that
DataJoiner doesn't support. To access these data sources you can create your own
connection to a specific data source.

DataJoiner provides two methods of accessing data sources that it does not natively
support.

� Use of a third-party gateway such as CrossAccess

� Creation of a custom data access module for that data source by either purchasing
an Open Database Connectivity (ODBC) or X/Open CLI-compliant driver for your
platform or writing a driver that supports the Generic Access API defined in this
manual

This book describes how you can create a custom data access module with
DataJoiner's generic access API.

Example of a Custom Data Access Module
To take a fictional example: Suppose that Datex is a type of data source that
DataJoiner doesn't support. To enable DataJoiner to access data stored in a Datex data
source, you must create a custom data access module.

A custom data access module consists of DataJoiner's generic access API component
and a driver, as shown in Figure 1.

Figure 1. Custom Data Access Module

To create a custom data access module, you must:

1. Supply a driver that supports the generic access API. This can be a driver you
purchase that is X/Open CLI compliant or provides at least the ODBC core level of
function. It can also be a generic driver you write that supports the generic access
API defined in this manual. The driver is installed on the same system as
DataJoiner, which means that any communication with the server containing the
data is left to the driver you provide.

The X/Open CLI and Microsoft's ODBC are specifications for call level interfaces
that provide application programmers with an alternative to dynamic embedded
SQL. An X/Open CLI or ODBC compliant driver supports the specifications so that

 Copyright IBM Corp. 1995, 1997  1



programmers can build and run applications using the function calls defined by the
specifications.

DataJoiner's Generic Access API is a specification for the function calls that the
Generic Access API component uses to perform operations against a data source.
This specification is a subset of the X/Open CLI and ODBC. Therefore, DataJoiner
can use an X/Open CLI or ODBC compliant driver.

2. Link-edit the driver with DataJoiner's generic access API component.

3. Configure DataJoiner so it recognizes your new access module. Information about
configuring DataJoiner is in the DataJoiner for AIX Planning, Installation, and
Configuration Guide.

4. Test your access module by using DataJoiner's pass-through capability to exercise
function. Later you can define and use nicknames.

In addition to reading and understanding this manual, familiarize yourself with the
Microsoft ODBC interface. Before you get started on the steps described above, you
need some information on the API, which you will get in the next section.

Elements of the Generic Access API
The name of each function supported by the generic access API starts with the prefix
“SQL.” Each function includes one or more arguments.

 Functions
The generic access API includes required and optional functions. DataJoiner requires
the following functions:

The optional functions are:

 � SQLColumns
 � SQLDriverConnect

Required functions are described in Chapter 3, “Required Functions” on page 13.

SQLAllocConnect SQLAllocEnv
SQLAllocStmt SQLBindCol
SQLConnect SQLDescribeCol
SQLDisconnect SQLError
SQLExecDirect SQLExecute
SQLFetch SQLFreeConnect
SQLFreeEnv SQLFreeStmt
SQLGetCursorName SQLNumResultCols
SQLPrepare SQLRowCount
SQLSetParam SQLTransact

 Buffers
DataJoiner passes data to a generic driver in an input buffer and retrieves data from an
output buffer. DataJoiner allocates memory for both input and output buffers. When

2 DataJoiner Version 2 Generic Access API Reference  



DataJoiner uses the buffer to send or retrieve string data, the buffer includes space for
the null termination byte.

 Input Buffers
DataJoiner passes the address and length of an input buffer to a generic driver. The
length of the buffer will be one of the following values:

� A length greater than or equal to zero. This is the actual length of the data in the
input buffer (excluding the null termination byte if the data is a string). For string
data, a length of zero indicates that the data is an empty (zero length) string. This
is different from a null pointer.

� SQL_NTS. This specifies that the data value is a null-terminated string.

� SQL_NULL_DATA. This tells the generic driver to ignore the value in the input
buffer and use a NULL data value instead. It is valid only when the input buffer is
used to provide the value of a parameter in an SQL statement.

Unless it is specifically prohibited in the description of a given function, the address of
an input buffer can be a null pointer. When the address of an input buffer is a null
pointer, the value of the corresponding buffer length argument must be ignored.

 Output Buffers
DataJoiner passes the following arguments to the generic driver, so that it can return
data in an output buffer:

� The address of the buffer.

� The length of the buffer. This can be ignored by the generic driver if the returned
data has a fixed width in C, such as an integer, real number, or date structure.

� The address of a variable in which the generic driver must return the length of the
data. The returned length of the data is SQL_NULL_DATA if the data is a NULL
value in a result set. Otherwise, it is the available number of bytes of data (not
including the null termination byte if the data is a string).

If the output buffer is too small, the generic driver should attempt to truncate the data. It
should truncate the data and return SQL_SUCCESS_WITH_INFO if the truncation does
not cause a loss of significant data. It should leave the buffer untouched and returns
SQL_ERROR if the truncation will cause a loss of significant data. DataJoiner will call
SQLERROR to retrieve information about the truncation or the error.

Environment, Connection, and Statement Handles
The generic driver can allocate storage for information about the generic access API
environment, each connection, and each SQL statement. The handles to these storage
areas are returned to DataJoiner. DataJoiner uses one or more of these handles in
each call to a function.

The generic access API defines three types of handles:

� An environment handle identifies memory storage for global information, including
the valid connection handles and current active connection handle. It is a variable

  Chapter 1. Introduction to the Generic Access API 3



of type HENV. DataJoiner uses a single environment handle per use; it will request
this handle prior to connecting to a data source.

� Connection handles identify memory storage for information about a particular
connection. They are variables of type HDBC. DataJoiner will request a connection
handle prior to connecting to a data source. Each connection handle is associated
with the environment handle. Each environment handle can, however, have
multiple statement handles associated with it.

� Statement handles identify memory storage for information about an SQL
statement. They are variables of type HSTMT. DataJoiner will request a statement
handle prior to submitting SQL requests. Each statement handle is associated with
exactly one connection handle. Each connection handle can, however, have
multiple statement handles associated with it.

For more information on connection handles, see “Establishing a Connection to a Data
Source” on page 6. For more information on statement handles, see “Processing an
SQL Statement” on page 6.

Data Type Support
The generic access API defines SQL data types and C data types. A generic driver
should support these data types in the following ways:

� Accepts DataJoiner SQL and C data types as arguments in function calls.

� Translates DataJoiner SQL data types to SQL data types acceptable by the data
source, if necessary.

� Converts C data from DataJoiner to the SQL data type required by the data
source.

� Converts SQL data from a data source to the C data type requested by DataJoiner.

� Provides access to data type information through the SQLDescribeCol function.

For more information on data types, see Appendix B, “Data Conversion” on page 95.
The C data types are defined in sqlcli.h found in Appendix C, “Command Line
Interface Include File” on page 115.

Function Return Codes
The generic driver must return a predefined code after function execution. These return
codes should indicate success, warning, or failure status. The return codes expected
are:

 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_NO_DATA_FOUND
 � SQL_ERROR
 � SQL_INVALID_HANDLE

If the function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, DataJoiner can
call SQLError to retrieve additional information. For a complete description of return
codes and error handling, see “Returning Status and Error Information” on page 10.

4 DataJoiner Version 2 Generic Access API Reference  



Chapter 2. Writing a Generic Driver

Each generic driver must support the required generic access API functions. These
functions perform tasks such as allocating and deallocating memory, transmitting or
processing SQL statements, and returning results and errors.

Role of DataJoiner
DataJoiner calls the generic driver when needed and performs the loading and
unloading of the custom data access module. DataJoiner uses only valid function
arguments and controls state transitions.

Required function calls must be supported by the generic driver. If a function is not
supported, a custom data access module cannot be created using that generic driver.

 Arguments
The following items describe the valid arguments or types of arguments used by
DataJoiner.

� Environment, connection, and statement handles are not null pointers and are the
correct type of handle for the argument.

� Other required arguments are not null pointers.

� Option flags that cannot be extended by a generic driverspecify only valid options.

� Argument values that specify a column or parameter number are greater than 0.
The generic driver should check the upper limit of these argument values based on
the limits of the data source to which they provide access.

� Buffer length arguments values are appropriate for the corresponding buffer in the
context of the given function.

 State Transitions
The following items discuss the state transitions controlled by DataJoiner.

� The state of the hdbc is valid in the context of the function's requirement.

� Function calls are checked to ensure that the order in which functions are called is
valid.

� Function calls comply with the state transitions found in Appendix D, “State
Transition Tables” on page 124.

 Establishing Connections
This section describes how DataJoiner and the generic driver work together to establish
a connection to a data source.

 Copyright IBM Corp. 1995, 1997  5



 Data Sources
A data source consists of the data a user wants to access, its associated DBMS, the
platform on which the DBMS resides, and the network (if any) used to access that
platform. The generic driver must provide certain information to the data source in order
to connect to it. At the core level, this is defined to be the name of the data source, a
user ID, and a password.

Establishing a Connection to a Data Source
All generic drivers must support the following connection-related functions:

� SQLAllocEnv allows the generic driver to allocate storage for environment
information.

� SQLAllocConnect allows the generic driver to allocate storage for connection
information.

� SQLConnect allows an application to establish a connection with the data source.
DataJoiner passes the following information in the call to SQLConnect:

– Data source name

– User ID - optional

– Authentication string (password) - optional

Table 2 shows the command flow between DataJoiner and a generic driver.

Table 2. Connection Flow Between DataJoinerand a Generic Driver

DataJoiner Executes Generic Driver Executes

SQLAllocEnv  

SQLAllocConnect  

SQLSetConnectOption  

SQLConnect SQLAllocEnv → SQLAllocConnect →
SQLSetConnectOption → SQLConnect

processing SQL processing SQL

SQLDisconnect SQLDisconnect → SQLDisconnect →
SQLFreeConnect → SQLFreeEnv

SQLFreeConnect  

SQLFreeEnv  

Processing an SQL Statement
Figure 2 on page 7 shows a simple sequence of calls to execute SQL statements.

6 DataJoiner Version 2 Generic Access API Reference  



Figure 2. SQL Processing

  Chapter 2. Writing a Generic Driver 7



Allocating a Statement Handle
Before DataJoiner can submit an SQL statement, it calls SQLAllocStmt to request that
the generic driver allocate storage for the statement. DataJoiner passes a connection
handle and the address of a variable of type HSTMT to the generic driver. The generic
driver must allocate storage for the statement, associate a statement with the
connection referenced by the connection handle, and return the statement handle in the
variable.

A generic driver must use the statement handle to reference storage for names,
parameter and binding information, error messages, and other information related to a
statement processing stream.

Executing an SQL Statement
DataJoiner can submit an SQL statement for execution in two ways:

� Prepared — used if the same SQL statement will be executed more than once or if
information about the result set is needed prior to execution.

� Direct — used if an SQL statement will be executed only once and no information
about the result set is needed prior to execution.

 Prepared Execution
If supported by the data source, preparing a statement before it is executed has the
following advantages:

� It is the most efficient way to execute the statement more than once, especially if
the statement is complex. The data source compiles the statement, produces an
access plan, and returns an access plan identifier to the data access module. The
data source minimizes processing time by using the access plan each time it
executes the statement.

� It allows the generic driver to send an access plan identifier instead of an entire
statement each time the statement is executed. This minimizes network traffic.

� The generic driver can return information about a result set before executing the
statement.

If the data source does not support prepared execution, the generic drivermust emulate
it to the extent possible.

A generic driver must support prepared execution through SQLPrepare, SQLSetParam,
and SQLExecute. SQLPrepare and SQLSetParam can be called in any order after
SQLAllocStmt has been called and before SQLExecute is called.

 Direct Execution
The SQLExecDirect function supports direct execution. If necessary, the generic driver
can translate the statement to the form of SQL used by the data source. It then sends
the SQL string to the data source.

8 DataJoiner Version 2 Generic Access API Reference  



 Supporting Transactions
Generic drivers should support manual-commit for transactions.

Extensions for SQL Statements
This section describes extension functions related to processing SQL statements.

To return information about data, a generic driver can support the catalog function,
SQLColumns. SQLColumns returns a result set that lists the column names in a
specified table. DataJoiner retrieves these results by calling SQLBindCol and
SQLFetch.

DataJoiner will submit the following date, time and timestamp syntax to the generic
driver:

 � date yyyy-mm-dd

� time hh12:mm:ss AM or hh24:mm:ss

� timestamp hh12:mm:ss.nnnnnn AM or hh24:mm.ss.nnnnnn

The generic driver does not need to check the validity of the syntax except as needed
to translate it to syntax specific to the data source.

 Returning Results
A generic access API function, such as SQLColumns, returns data. Other SQL
statements do not return result sets. For these statements, the code returned by the
generic driver from SQLExecute or SQLExecDirect is usually the only source of
information as to whether the statement was successful.

DataJoiner might or might not know the form of an SQL statement prior to execution.
Therefore, generic drivers must support functions that allow DataJoiner to request
information about the result set.

 Binding
DataJoiner assigns storage for result columns before or after submitting an SQL
statement. A generic driver must bind storage to result columns on the basis of
information passed to it through SQLBindCol. The generic driver should:

� Accept pointer arguments that reference storage areas.
� Associate each column with the given storage area.
� Store information about the data type to which to convert the result data.

The generic driver must use this information during subsequent fetch operations.

Determining the Characteristics of a Result Set
Each generic driver must support the following core functions:

� SQLNumResultsCols returns the number of columns in the result set.

� SQLDescribeCol provides information about a column in the result set.

  Chapter 2. Writing a Generic Driver 9



� SQLRowCount returns the number of rows affected by an SQL statement.

Returning Result Data
DataJoiner binds columns of the result set to storage locations with SQLBindCol. It
retrieves a row of data with SQLFetch. Each time SQLFetch is called, a generic driver
should:

1. Move the cursor to the next row.

2. Retrieve the data from the data source.

3. Convert the data for each bound column to the form specified by the fCType
argument in SQLBindCol. The generic driver might need to truncate the data for
some data type conversions.

4. Place the converted data for each bound column in the storage pointed to by the
rgbValue argument in SQLBindCol. For some data types, the generic driver might
truncate the data if the storage location is too small. See Appendix B, “Data
Conversion” on page 95.

 Supporting Cursors
A generic driver must support multiple simultaneous cursors per connection. A generic
driver must maintain a cursor to keep track of its position in the result set. Each time
DataJoiner calls SQLFetch, the generic driver should move the cursor to the next row
and return that row. The cursor only scrolls forward, one row at a time.

Positioned update and delete statements require cursor names. The generic driver must
generate the cursor name and associate it with the SQL statement. To retrieve the
cursor name for an hstmt, DataJoiner calls SQLGetCursorName.

Returning Status and Error Information
This section presents information about return codes and error messages.

 Return Codes
When DataJoiner calls a function, the generic driver must return a predefined code.
These return codes indicate success, warning, or failure status. The following table
lists all possible return codes for the generic access API functions.

10 DataJoiner Version 2 Generic Access API Reference  



Table 3. Return Codes

Return Code Explanation

SQL_SUCCESS The function completed successfully; no
additional SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully, with a
warning or other information. Call SQLError()
to receive the SQLSTATE and any other error
information. The SQLSTATE will have a class
of '01', see Table 47 on page 89.

SQL_NO_DATA_FOUND The function returned successfully, but no
relevant data was found.

SQL_ERROR The function failed. Call SQLError() to receive
the SQLSTATE and any other error
information.

SQL_INVALID_HANDLE The function failed due to an invalid input
handle (environment, connection or statement
handle).

 Error Messages
If a function other than SQLError returns SQL_SUCCESS_WITH_INFO or
SQL_ERROR, DataJoiner will call SQLError to obtain additional information. Additional
error or status information can come from one of two sources:

� Error or status information from a function, indicating that a programming error was
detected.

� Error or status information from the data source, indicating that an error occurred
during SQL statement processing.

The generic driver must buffer errors or messages for the function it is currently
executing. The generic driver's error buffer should store multiple errors for a function.
After the generic driver has executed the function, DataJoiner can call SQLError to
return error messages for the function. Each time DataJoiner calls SQLError, the
generic driver should return the next error message in the buffer. When DataJoiner
calls a different function, the generic driver should discard the current contents of the
error message buffer.

The information returned by SQLError is in the format of SQLSTATE. For a list of error
codes and the functions that return them, see Appendix A, “General Diagnostic
Information” on page 89.

Constructing Error Messages
The error messages that the generic driver provides must include the SQLSTATE and
corresponding error text. Error messages returned by SQLError come from two
sources: data sources and the components in a generic driver connection. If a
component in a generic driver connection receives an error message from a data
source, it must identify the data source as the source of the error. It must also identify
itself as the component that received the error.

  Chapter 2. Writing a Generic Driver 11



The following are examples of two formats for the error text returned by SQLError: one
for errors that occur in a data source and one for errors that occur in other components
in the generic driver connection. For errors that do not occur in a data source, the error
text format can be:

[vendor-identifier] component-supplied-text

 For errors that do occur in a data source, the error text format can be:

[vendor-identifier] [data-source-identifier] data-source-supplied-text

Terminating Transactions and Connections
The generic access API allows termination of SQL transactions, statement-processing
connections (hstmts), connections (hdbcs), and environment connections (henvs).

Terminating Statement Processing
The SQLFreeStmt function releases resources associated with a statement handle. It
has two options:

 � SQL_CLOSE

Close the cursor if one exists, and discard pending results. DataJoiner can use the
statement handle again later.

 � SQL_DROP

Close the cursor, if one exists, discard pending results, and free all resources
associated with the statement handle.

 Terminating Transactions
The SQLTransact function requests a commit or rollback operation for the current
transaction. The generic driver must submit a commit or rollback request for all
operations associated with the specified hdbc; this includes operations for all hstmts
associated with hdbc.

 Terminating Connections
To allow DataJoiner to terminate the connection to a generic driver and the data
source, the generic driver must support the following three functions:

 � SQLDisconnect

Closes a connection. DataJoiner can then use the handle to reconnect to the same
or a different data source.

 � SQLFreeConnect

Releases the connection handle and frees all resources associated with the
handle.

 � SQLFreeEnv

Releases the environment handle and frees all resources associated with the
handle.

12 DataJoiner Version 2 Generic Access API Reference  



 Chapter 3. Required Functions

This chapter provides a description of each function. Each description has the following
sections.

 � Purpose
 � Syntax
 � Function Arguments
 � Usage
 � Return Codes
 � Diagnostics
 � Restrictions
 � Example
 � References

Each section is explained below. The function descriptions follow immediately after.

Purpose
This section gives a brief overview of what the function does. It also indicates if
any functions are called before and after calling the function being described.

Syntax
This section contains the 'C' prototype for the function under discussion.

Function Arguments
This section lists each function argument, along with its data type, a
description and whether it is an input or output argument.

Each argument is either an input argument or an output argument. The generic
driver should modify only those arguments that are indicated as output.

Some functions contain input or output arguments which are known as
deferred or bound arguments. These arguments are pointers to buffers
allocated by DataJoiner, and are associated with (or bound to) either a
parameter in an SQL statement, or a column in a result set. The data areas
that are specified by the function are accessed by the generic access API at a
later time. DataJoiner assures that these deferred data areas are still valid at
the time that the generic driver accesses them.

Usage
This section provides information about how this function is used, and any
special considerations. Possible error conditions are listed in the diagnostics
section.

Return Codes
This section lists all the possible function return codes. When the generic
driver returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, DataJoiner
obtains error information by calling SQLError().

Refer to “Returning Status and Error Information” on page 10 for more
information about return codes.

 Copyright IBM Corp. 1995, 1997  13



Diagnostics
This section contains a table that lists the SQLSTATEs explicitly returned by
the generic access API (SQLSTATEs generated by the DBMS can also be
returned) and indicates the cause of the error. These values are obtained by
calling SQLError() after the function returns a SQL_ERROR or
SQL_SUCCESS_WITH_INFO.

Some SQLSTATEs are labeled optional. The errors that cause these optional
SQLSTATEs should never occur. However, you can still test for their
occurrence.

An “*” in the first column indicates that the SQLSTATE is returned only by the
generic access API, and will not be returned by other ODBC drivers.

Refer to “Returning Status and Error Information” on page 10 for more
information about diagnostics. For a cross reference table, see Appendix A,
“General Diagnostic Information” on page 89.

Restrictions
This section indicates any differences or limitations between the generic
access API and ODBC that can affect DataJoiner.

Example
This section is a code fragment that demonstrates the use of the function.

References
This section lists related generic access API functions.

14 DataJoiner Version 2 Generic Access API Reference  



SQLAllocConnect

SQLAllocConnect - Allocate Connection Handle

 Purpose
SQLAllocConnect() allocates a connection handle and associated resources within the
environment identified by the input environment handle.

DataJoiner calls SQLAllocEnv() before calling this function. DataJoiner calls this
function before calling SQLConnect() or SQLDriverConnect().

 Syntax
SQLRETURN SQLAllocConnect (SQLHENV henv,

 SQLHDBC \phdbc);

 Function Arguments

Table 4. SQLAllocConnect Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle

SQLHDBC * phdbc output Pointer to connection handle

 Usage
The output connection handle is used by the generic access API to reference all
information related to the connection, including information about the general status of
the connection, the transaction state, and errors.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

If SQL_ERROR is returned, the phdbc argument will be set to SQL_NULL_HDBC.
DataJoinerwill call SQLError() with the environment handle (henv) and with hdbc and
hstmt arguments set to SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

 Diagnostics

Table 5 (Page 1 of 2). SQLAllocConnect SQLSTATEs

CLI SQLSTATE Description Explanation

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1009 (optional) Invalid argument
value.

phdbc was a null pointer.

  Chapter 3. Required Functions 15



SQLAllocConnect

Table 5 (Page 2 of 2). SQLAllocConnect SQLSTATEs

CLI SQLSTATE Description Explanation

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

S1014 * Out of handles. A connection handle already exists for DataJoiner.

 Restrictions
None.

 Example
The following example shows how to obtain diagnostic information for the connection
and the environment.

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ initialize

\\ - allocate environment handle

\\ - allocate connection handle

\\ - prompt for server, user id, & password

\\ - connect to server

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc)

{

SQLCHAR server[SQL_MAX_DSN_LENGTH],

 uid[3ð],

 pwd[3ð];

SQLRETURN rc;

SQLAllocEnv (henv); /\ allocate an environment handle \/

if (rc != SQL_SUCCESS )

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

SQLAllocConnect (\henv, hdbc); /\ allocate a connection handle \/

if (rc != SQL_SUCCESS )

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

printf("Enter Server Name:\n");

 gets(server);

printf("Enter User Name:\n");

 gets(uid);

printf("Enter Password Name:\n");

 gets(pwd);

if (uid[ð] == '\ð')

{ rc = SQLConnect (\hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS )

16 DataJoiner Version 2 Generic Access API Reference  



SQLAllocConnect

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

 }

 else

{ rc = SQLConnect (\hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

if (rc != SQL_SUCCESS )

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

 }

}/\ end initialize \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc)

{

SQLRETURN rc;

print_error(henv, hdbc, hstmt);

 switch (frc){

case SQL_SUCCESS : break;

case SQL_ERROR :

 case SQL_INVALID_HANDLE:

printf("\n \\ FATAL ERROR, Attempting to rollback transaction \\\n");

rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

if (rc != SQL_SUCCESS)

printf("Rollback Failed, Exiting application\n");

 else

printf("Rollback Successful, Exiting application\n");

 terminate(henv, hdbc);

 exit(frc);

 break;

case SQL_SUCCESS_WITH_INFO :

printf("\n \\ Warning Message, application continuing\n");

 break;

case SQL_NO_DATA_FOUND :

printf("\n \\ No Data Found \\ \n");

 break;

 default :

printf("\n \\ Invalid Return Code \\ \n");

printf(" \\ Attempting to rollback transaction \\\n");

SQLTransact(henv, hdbc, SQL_ROLLBACK);

 terminate(henv, hdbc);

 exit(frc);

 break;

 }

 return(SQL_SUCCESS);

}

  Chapter 3. Required Functions 17



SQLAllocConnect

 References
� “SQLAllocEnv - Allocate Environment Handle” on page 19
� “SQLConnect - Connect to a Data Source” on page 27
� “SQLDisconnect - Disconnect from a Data Source” on page 35
� “SQLFreeConnect - Free Connection Handle” on page 55

18 DataJoiner Version 2 Generic Access API Reference  



SQLAllocEnv

SQLAllocEnv - Allocate Environment Handle

 Purpose
SQLAllocEnv() allocates an environment handle and associated resources. There can
only be one environment active at any one time per end user connection to DataJoiner.

DataJoiner calls this function prior to SQLAllocConnect() or any other generic access
API functions. The henv value is passed in all subsequent function calls that require an
environment handle as input.

 Syntax
SQLRETURN SQLAllocEnv (SQLHENV \phenv);

 Function Arguments

Table 6. SQLAllocEnv Arguments

Data Type Argument Use Description

SQLHENV * phenv output Pointer to environment handle

 Usage
There can be only one environment active at any one time per end user connection to
DataJoiner. Any calls to SQLAllocEnv() will be rejected while a valid environment
handle still exists.

As long as a valid environment handle is returned to DataJoiner, DataJoiner will issue a
SQLFreeEnv() to invalidate the environment handle and free up the resources
associated with the handle.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR

If SQL_ERROR is returned and phenv is equal to SQL_NULL_HENV, DataJoiner will
not call SQLError() because there is no handle with which to associate additional
diagnostic information.

If the return code is SQL_ERROR and the pointer to the environment handle is not
equal to SQL_NULL_HENV, then the handle is a restricted handle. This means the
handle can only be used in a call to SQLError() to obtain more error information, or to
SQLFreeEnv().

  Chapter 3. Required Functions 19



SQLAllocEnv

 Diagnostics

Table 7. SQLAllocEnv SQLSTATEs

SQLSTATE Description Explanation

58004 System error The code page of the environment that DataJoiner is running in is
not supported by the driver.

 Restrictions
None.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = initterm.c

\\ - demonstrate initialization and termination step.

\\ - error handling has been ignored for simplicity.

\\

\\ Functions used:

\\

\\ SQLAllocConnect SQLDisconnect

\\ SQLAllocEnv SQLFreeConnect

\\ SQLConnect SQLFreeEnv

\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

#include <stdio.h>

#include "sqlcli1.h"

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

#define MAX_UID_LENGTH 3ð

#define MAX_PWD_LENGTH 3ð

int main()

{

SQLHENV henv;

SQLHDBC hdbc;

 initialize(&henv, &hdbc);

/\\\\\\\\\ Start Processing Step \\\\\\\\\\\\\\\\\\\\\\\\\/

/\ allocate statement handle, execute statement, etc. \/

/\\\\\\\\\ End Processing Step \\\\\\\\\\\\\\\\\\\\\\\\\\\/

 terminate(henv, hdbc);

20 DataJoiner Version 2 Generic Access API Reference  



SQLAllocEnv

 return (SQL_SUCCESS);

}

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc)

{

SQLRETURN rc;

SQLCHAR server[SQL_MAX_DSN_LENGTH + 1],

uid[MAX_UID_LENGTH + 1],

pwd[MAX_PWD_LENGTH + 1];

printf("Enter Server Name:\n");

 gets(server);

printf("Enter User Name:\n");

 gets(uid);

printf("Enter Password Name:\n");

 gets(pwd);

SQLAllocEnv (henv); /\ allocate an environment handle \/

SQLAllocConnect (\henv, hdbc); /\ allocate a connection handle \/

rc = SQLConnect (\hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

if (rc != SQL_SUCCESS)

 { printf("Error while connecting to database\n");

 return(SQL_ERROR);

 }

 else

 return (SQL_SUCCESS);

}

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int terminate(SQLHENV henv,

 SQLHDBC hdbc)

{

SQLDisconnect (hdbc); /\ disconnect from database \/

SQLFreeConnect (hdbc); /\ free connection handle \/

SQLFreeEnv (henv); /\ free environment handle \/

 return(SQL_SUCCESS);

}

 References
� “SQLAllocConnect - Allocate Connection Handle” on page 15
� “SQLFreeEnv - Free Environment Handle” on page 57

  Chapter 3. Required Functions 21



SQLAllocStmt

SQLAllocStmt - Allocate a Statement Handle

 Purpose
SQLAllocStmt() allocates a new statement handle and associates it with the connection
specified by the connection handle.

DataJoiner calls SQLConnect() or SQLDriverConnect() before calling this function.

DataJoiner calls this function before SQLSetParam(), SQLPrepare(), SQLExecute(),
SQLExecDirect(), or any other function that has a statement handle as one of its input
arguments.

 Syntax
SQLRETURN SQLAllocStmt (SQLHDBC hdbc,

 SQLHSTMT \phstmt);

 Function Arguments

Table 8. SQLAllocStmt Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

SQLHSTMT phstmt * output Pointer to statement handle

 Usage
The generic access API uses each statement handle to relate all the descriptors, result
values, cursor information, and status information to the SQL statement processed.
Although each SQL statement must have a statement handle, you can reuse the
handles for different statements.

A call to this function requires that hdbc reference an active database connection.

To execute a positioned update or delete, DataJoineruses different statement handles
for the SELECT statement and the UPDATE or DELETE statement.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

If SQL_ERROR is returned, the phstmt argument will be set to SQL_NULL_HSTMT.
DataJoiner will call SQLError() with the same hdbc and with the hstmt argument set to
SQL_NULL_HSTMT.

22 DataJoiner Version 2 Generic Access API Reference  



SQLAllocStmt

 Diagnostics

Table 9. SQLAllocStmt SQLSTATEs

SQLSTATE Description Explanation

08003 Connection not
open.

The connection specified by the hdbc argument was not open. The
connection must be established successfully (and the connection
must be open) for the driver to allocate an hstmt.

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1009 (optional) Invalid argument
value.

phstmt was a null pointer.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

S1014 * Out of handles. No more statement handles are available for allocation.

 Restrictions
None.

 Example
Refer to “Example” on page 49.

 References
� “SQLFreeStmt - Free (or Reset) a Statement Handle” on page 59

  Chapter 3. Required Functions 23



SQLBindCol

SQLBindCol - Bind a Column to DataJoiner Storage

 Purpose
SQLBindCol() is used to associate (bind) DataJoiner storage buffers to columns in a
result set. This enables data to be transferred from generic driver to DataJoiner when
SQLFetch() is called. This function is also used to specify any data conversion required.
It is called once for each column in the result set that DataJoinerneeds to retrieve.

DataJoiner usually calls SQLPrepare() or SQLExecDirect() before this function. It can
also be necessary to call SQLDescribeCol().

DataJoiner calls SQLBindCol() before SQLFetch(), to transfer data to the storage buffers
specified by this call.

 Syntax
SQLRETURN SQLBindCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER \pcbValue);

 Function Arguments

Table 10 (Page 1 of 2). SQLBindCol Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLSMALLINT icol input Number identifying the column. Columns are numbered
sequentially, from left to right, starting at 1.

SQLSMALLINT fCType input The C data type for column number icol in the result set.
The following types are supported:

 � SQL_C_CHAR
 � SQL_C_DATE
 � SQL_C_DOUBLE
 � SQL_C_FLOAT
 � SQL_C_LONG
 � SQL_C_SHORT
 � SQL_C_TIME
 � SQL_C_TIMESTAMP
 � SQL_C_DEFAULT

Specifying SQL_C_DEFAULT causes data to be
transferred to its default C data type. SQL_C_DEFAULT
can not be specified for DECIMAL, NUMERIC or any of
the graphic data types.

SQLPOINTER rgbValue output
(deferred)

Pointer to buffer where the generic access API is to
store the column data when the fetch occurs.

24 DataJoiner Version 2 Generic Access API Reference  



SQLBindCol

Table 10 (Page 2 of 2). SQLBindCol Arguments

Data Type Argument Use Description

SQLINTEGER cbValueMax input Size of rgbValue buffer in bytes available to store the
column data.

If fCType is either SQL_C_CHAR or SQL_C_DEFAULT,
then cbValueMax must be > 0.

SQLINTEGER * pcbValue output
(deferred)

Pointer to value which indicates the number of bytes the
generic access API has available to return in the
rgbValue buffer.

SQLFetch() returns SQL_NULL_DATA in this argument if
the data value of the column is null.

Note: 

For this function, both rgbValue and cbValue are deferred outputs, meaning that the
storage locations that these pointers point to do not get updated until SQLFetch() is
called. As a result, the locations referenced by these pointers remain valid until
SQLFetch() is called.

 Usage
DataJoiner calls SQLBindCol() once for each column in the result set that it wants to
retrieve. When SQLFetch() is called, the data in each of these bound columns is placed
in the assigned location (given by the pointers rgbValue and cbValue).

DataJoiner can query the attributes (such as data type and length) of the column by
first calling SQLDescribeCol(). This information can then be used to specify the correct
data type of the storage locations, or to indicate data conversion to other data types.

Columns are identified by numbers assigned sequentially from left to right, starting at 1.
The number of columns in the result set can be determined by calling
SQLNumResultCols().

DataJoiner will bind every column of the result set.

DataJoiner ensures that enough storage is allocated for the data to be retrieved. If the
buffer is to contain variable length data, DataJoiner allocates as much storage as the
maximum length of the bound column requires; otherwise, the data can be truncated. If
data conversion is specified, the required size can be affected. See Appendix B, “Data
Conversion” on page 95 for more information.

If string truncation does occur, SQL_SUCCESS_WITH_INFO should be returned and
pcbValue will be set to the actual size of rgbValue available for return to DataJoiner.

If the column to be bound is a SQL_GRAPHIC, SQL_VARGRAPHIC or
SQL_LONGVARGRAPHIC type, then fCType will be set to SQL_C_CHAR or an error
will occur. Furthermore, the length of the rgbValue buffer (cbValueMax) will be a
multiple of 2.

  Chapter 3. Required Functions 25



SQLBindCol

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 11. SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement completion unknown. The communication link between the driver and the data
source to which the driver was connected failed before
the function completed processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation failure. The driver is unable to allocate memory required to
support execution or completion of the function.

S1002 Invalid column number.

The value specified for the
argument icol exceeded the
maximum number of columns
supported by the data source.

S1003 (optional) Program type out of range. fCType was not a valid data type or SQL_C_DEFAULT.

S1009 (optional) Invalid argument value. The value specified for the argument cbValueMax is less
than 1 and the argument fCType is either SQL_C_CHAR
or SQL_C_DEFAULT.

S1013 * Memory management problem. The driver was unable to access memory required to
support execution or completion of the function.

S1C00 Driver not capable. The driver recognizes, but does not support, the data
type specified in the argument fCType (see also S1003).

 Restrictions
None.

 Example
Refer to “Example” on page 49.

 References
� “SQLExecDirect - Execute a Statement Directly” on page 41
� “SQLExecute - Execute a Statement” on page 45
� “SQLFetch - Fetch Next Row” on page 47
� “SQLPrepare - Prepare a Statement” on page 73

26 DataJoiner Version 2 Generic Access API Reference  



SQLConnect

SQLConnect - Connect to a Data Source

 Purpose
SQLConnect() establishes a connection to the target database. DataJoiner supplies a
target SQL database and, optionally, an authorization-name and an
authentication-string. The database must be cataloged before DataJoiner can connect
to it.

DataJoiner calls SQLAllocConnect() before calling this function.

DataJoiner calls this function before calling SQLAllocStmt().

 Syntax
SQLRETURN SQLConnect (SQLHDBC hdbc,

 SQLCHAR \szDSN,

 SQLSMALLINT cbDSN,

 SQLCHAR \szUID,

 SQLSMALLINT cbUID,

 SQLCHAR \szAuthStr,

 SQLSMALLINT cbAuthStr);

 Function Arguments

Table 12. SQLConnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

SQLCHAR * szDSN input Data Source: The name or alias-name of the database.

SQLSMALLINT cbDSN input Length of contents of szDSN argument

SQLCHAR * szUID input Authorization-name (user identifier)

SQLSMALLINT cbUID input Length of contents of szUID argument

SQLCHAR * szAuthStr input Authentication-string (password)

SQLSMALLINT cbAuthStr input Length of contents of szAuthStr argument

 Usage
The target database (also known as data source) is the database-alias.

The data sources need to be cataloged only once.

The input length arguments to SQLConnect() (cbDSN, cbUID, cbAuthStr) can be set to
the actual length of their associated data (not including any null-terminating character)
or to SQL_NTS to indicate that the associated data is null-terminated.

  Chapter 3. Required Functions 27



SQLConnect

Leading and trailing blanks in the szDSN and szUID argument values should be
stripped before processing unless they are enclosed in quotes.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 13. SQLConnect SQLSTATEs

SQLSTATE Description Explanation

08001 Unable to connect to data source. The driver was unable to establish a connection with the
data source (server).

08002 (optional) Connection is used. The specified hdbc has already been used to establish a
connection with a data source and the connection is still
open.

08004 Data source rejected
establishment of connection.

The data source (server) rejected the establishment of
the connection.

28000 Invalid authorization specification. The value specified for the argument szUID or the value
specified for the argument szAuthStr violated restrictions
defined by the data source.

58004 System error. Unrecoverable system error.

S1001 Memory allocation failure. The driver is unable to allocate memory required to
support execution or completion of the function.

S1009 (optional) Invalid argument value. The value specified for argument cbDSN was less than
0, but not equal to SQL_NTS and the argument szDSN
was not a null pointer.

The value specified for argument cbUID was less than 0,
but not equal to SQL_NTS and the argument szUID was
not a null pointer.

The value specified for argument cbAuthStr was less
than 0, but not equal to SQL_NTS and the argument
szAuthStr was not a null pointer.

A non-matching double quote (") was found in either the
szDSN, szUID, or szAuthStr argument.

S1013 * Memory management problem. The driver was unable to access memory required to
support execution or completion of the function.

S1501 * Invalid data source name. An invalid data source name was specified in argument
szDSN.

28 DataJoiner Version 2 Generic Access API Reference  



SQLConnect

 Restrictions
DataJoiner calls SQLConnect() or SQLDriverConnect() before any SQL statements are
executed.

 Example
Refer to “Example” on page 20.

 References
� “SQLAllocConnect - Allocate Connection Handle” on page 15
� “SQLAllocStmt - Allocate a Statement Handle” on page 22

  Chapter 3. Required Functions 29



SQLDescribeCol

SQLDescribeCol - Describe Column Attributes

 Purpose
SQLDescribeCol() returns the result descriptor information (column name, type,
precision) for the indicated column in the result set generated by a SELECT statement.

DataJoiner calls either SQLPrepare() or SQLExecDirect() before calling this function.

 Syntax
SQLRETURN SQLDescribeCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLCHAR \szColName,

 SQLSMALLINT cbColNameMax,

 SQLSMALLINT \pcbColName,

 SQLSMALLINT \pfSqlType,

 SQLINTEGER \pcbColDef,

 SQLSMALLINT \pibScale,

 SQLSMALLINT \pfNullable);

 Function Arguments

Table 14 (Page 1 of 2). SQLDescribeCol Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLSMALLINT icol input Column number to be described

SQLCHAR * szColName output Pointer to column name buffer

SQLSMALLINT cbColNameMax input Size of szColName buffer

SQLSMALLINT * pcbColName output Bytes available to return for szColName
argument. Truncation of column name
(szColName) to cbColNameMax - 1 bytes
occurs if pcbColName is greater than or
equal to cbColNameMax.

SQLSMALLINT * pfSqlType output SQL data type of column.

SQLINTEGER * pcbColDef output Precision of column as defined in the
database.

If fSqlType denotes a graphic SQL data
type, then this variable indicates the
maximum number of double-byte
characters the column can hold.

SQLSMALLINT * pibScale output Scale of column as defined in the
database (only applies to SQL_DECIMAL,
SQL_NUMERIC, SQL_TIMESTAMP).
Refer to Table 53 on page 99 for the
scale of each of the SQL datatypes.

30 DataJoiner Version 2 Generic Access API Reference  



SQLDescribeCol

Table 14 (Page 2 of 2). SQLDescribeCol Arguments

Data Type Argument Use Description

SQLSMALLINT * pfNullable output Indicates whether NULLS are allowed for
this column

 � SQL_NO_NULLS
 � SQL_NULLABLE

 Usage
Columns are identified by a number, are numbered sequentially from left to right
starting with 1, and can be described in any order.

A valid pointer and buffer space will be made available for the szColName argument. If
a null pointer is specified for any of the remaining pointer arguments, the generic
access API assumes that the information is not needed by DataJoiner and nothing is
returned.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics
If SQLDescribeCol() returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, one
of the following SQLSTATEs can be obtained by calling the SQLError() function.

Table 15 (Page 1 of 2). SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument szColName was longer
than the value specified in the argument cbColNameMax. The
argument pcbColName contains the length of the full column name.
(Function returns SQL_SUCCESS_WITH_INFO.)

07005 * Not a SELECT
statement.

The statement associated with the hstmt did not return a result set.
There were no columns to describe. (Call SQLNumResultCols() first
to determine if there are any rows in the result set.)

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

  Chapter 3. Required Functions 31



SQLDescribeCol

Table 15 (Page 2 of 2). SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

S1002 (optional) Invalid column
number.

The value specified for the argument icol was less than 1.

The value specified for the argument icol was greater than the
number of columns in the result set.

S1009 (optional) Invalid argument
value.

The length specified in argument cbColNameMax less than 1.

The argument szColName was a null pointer.

S1010 (optional) Function sequence
error.

The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the hstmt.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

S1C00 Driver not capable. The SQL data type of column icol is not recognized by the generic
access API.

 Restrictions
None.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = typical.c

...

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ display_results

\\

\\ - for each column

\\ - get column name

\\ - bind column

\\ - display column headings

\\ - fetch each row

\\ - if value truncated, build error message

\\ - if column null, set value to "NULL"

\\ - display row

\\ - print truncation message

\\ - free local storage

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

display_results(SQLHSTMT hstmt,

 SQLSMALLINT nresultcols)

{

SQLCHAR colname[32];

SQLSMALLINT coltype;

SQLSMALLINT colnamelen;

SQLSMALLINT nullable;

SQLINTEGER collen[MAXCOLS];

SQLSMALLINT scale;

SQLINTEGER outlen[MAXCOLS];

32 DataJoiner Version 2 Generic Access API Reference  



SQLDescribeCol

SQLCHAR \ data[MAXCOLS];

SQLCHAR errmsg[256];

SQLRETURN rc;

SQLINTEGER i;

SQLINTEGER displaysize;

for (i = ð; i < nresultcols; i++)

 {

SQLDescribeCol (hstmt, i+1, colname, sizeof (colname),

&colnamelen, &coltype, &collen[i], &scale, NULL);

/\ get display length for column \/

 NULL, &displaysize);

/\ set column length to max of display length, and column name

length. Plus one byte for null terminator \/

collen[i] = max(displaysize, strlen((char \) colname) ) + 1;

printf ("%-\.\s", collen[i], collen[i], colname);

/\ allocate memory to bind column \/

data[i] = (SQLCHAR \) malloc (collen[i]);

/\ bind columns to program vars, converting all types to CHAR \/

SQLBindCol (hstmt, i+1, SQL_C_CHAR, data[i], collen[i], &outlen[i]);

 }

 printf("\n");

/\ display result rows \/

while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA_FOUND)

 {

errmsg[ð] = '\ð';

for (i = ð; i < nresultcols; i++)

 {

/\ Build a truncation message for any columns truncated \/

if (outlen[i] >= collen[i])

{ sprintf ((char \) errmsg + strlen ((char \) errmsg),

"%d chars truncated, col %d\n",

 outlen[i]-collen[i]+1, i+1);

 }

if (outlen[i] == SQL_NULL_DATA)

printf ("%-\.\s", collen[i], collen[i], "NULL");

 else

printf ("%-\.\s", collen[i], collen[i], data[i]);

} /\ for all columns in this row \/

printf ("\n%s", errmsg); /\ print any truncation messages \/

} /\ while rows to fetch \/

/\ free data buffers \/

for (i = ð; i < nresultcols; i++)

 {

  Chapter 3. Required Functions 33



SQLDescribeCol

 free (data[i]);

 }

}/\ end display_results

 References
� “SQLExecDirect - Execute a Statement Directly” on page 41
� “SQLNumResultCols - Get Number of Result Columns” on page 71
� “SQLPrepare - Prepare a Statement” on page 73

34 DataJoiner Version 2 Generic Access API Reference  



SQLDisconnect

SQLDisconnect - Disconnect from a Data Source

 Purpose
SQLDisconnect() closes the connection associated with the database connection
handle.

DataJoiner calls SQLTransact() before calling SQLDisconnect() if an outstanding
transaction exists on this connection.

After calling this function, DataJoiner calls either (1) SQLConnect() or
SQLDriverConnect() to connect to another database, or (2) SQLFreeConnect().

 Syntax
SQLRETURN SQLDisconnect (SQLHDBC hdbc);

 Function Arguments

Table 16. SQLDisconnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

 Usage
If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the disconnect
from the database is successful, additional error-specific or implementation-specific
information is available. Such information, for example, might be that a problem was
encountered on the cleanup subsequent to the disconnect, or that there is no current
connection because of an event that occurred independently of DataJoiner (such as
communication failure).

After a successful SQLDisconnect() call, DataJoinercan reuse hdbc to make another
SQLConnect() or SQLDriverConnect() request.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

  Chapter 3. Required Functions 35



SQLDisconnect

Table 17. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurred during the disconnect. However, the
disconnect succeeded. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 (optional) Connection not open. The connection specified in the argument hdbc was not
open.

25000 (optional) Invalid transaction state. There was a transaction in process on the connection
specified by the argument hdbc. The transaction remains
active, and the connection cannot be disconnected.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to
support execution or completion of the function.

S1013 * Memory management
problem.

The driver was unable to access memory required to
support execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 20.

 References
� “SQLAllocConnect - Allocate Connection Handle” on page 15
� “SQLConnect - Connect to a Data Source” on page 27
� “SQLTransact - Transaction Management” on page 87

36 DataJoiner Version 2 Generic Access API Reference  



SQLError

SQLError - Retrieve Error Information

 Purpose
SQLError() returns the diagnostic information associated with the most recently invoked
generic access API function for a particular statement, connection or environment
handle.

The information consists of a standardized SQLSTATE, native error code, and a text
message. Refer to “Returning Status and Error Information” on page 10 for more
information.

DataJoiner calls SQLError() after receiving a return code of SQL_ERROR or
SQL_SUCCESS_WITH_INFO from another function call.

Note:  Some database servers can provide product-specific diagnostic information after
returning SQL_NO_DATA_FOUND from the execution of a statement.

 Syntax
SQLRETURN SQLError (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLCHAR \szSqlState,

 SQLINTEGER \pfNativeError,

 SQLCHAR \szErrorMsg,

 SQLSMALLINT cbErrorMsgMax,

 SQLSMALLINT \pcbErrorMsg);

 Function Arguments

Table 18 (Page 1 of 2). SQLError Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle. To obtain diagnostic information
associated with an environment, DataJoiner will pass a
valid environment handle. It will also set hdbc and hstmt
to SQL_NULL_HDBC and SQL_NULL_HSTMT
respectively.

SQLHDBC hdbc input Database connection handle. To obtain diagnostic
information associated with a connection, DataJoiner will
also pass a valid database connection handle, and set
hstmt to SQL_NULL_HSTMT. The henv argument is
ignored.

SQLHSTMT hstmt input Statement handle. To obtain diagnostic information
associated with a statement, DataJoiner will pass a valid
statement handle. The henv and hdbc arguments are
ignored.

  Chapter 3. Required Functions 37



SQLError

Table 18 (Page 2 of 2). SQLError Arguments

Data Type Argument Use Description

SQLCHAR * szSqlState output SQLSTATE as a string of 5 characters terminated by a
null character. The first 2 characters indicate error class;
the next 3 indicate subclass.

SQLINTEGER * pfNativeError output Native error code. In the generic access API, the
pfNativeError argument will contain the SQLCODE value
returned by the DBMS. If the error is generated by the
generic access API and not the DBMS, then this field will
be set to -99999.

SQLCHAR * szErrorMsg output Pointer to buffer to contain the implementation defined
message text. In the generic access API, only the DBMS
generated messages will be returned; the generic access
API itself will not return any message text describing the
problem.

SQLSMALLINT * pcbErrorMsg output Pointer to total number of bytes available to return to the
szErrorMsg buffer. This does not include the null
termination character.

 Usage
The SQLSTATEs are those defined by the X/OPEN SQL and the X/Open SQL CLI
snapshot.

To obtain diagnostic information associated with an environment, DataJoiner passes a
valid environment handle and sets hdbc and hstmt to SQL_NULL_HDBC and
SQL_NULL_HSTMT, respectively. To obtain diagnostic information associated with a
connection, DataJoiner passes a valid database connection handle and sets hstmt to
SQL_NULL_HSTMT. The henv argument is ignored. To obtain diagnostic information
associated with a statement, DataJoiner passes a valid statement handle. The henv
and hdbc arguments are ignored.:

If diagnostic information generated by one generic access API function is not retrieved
before a function other than SQLError() is called with the same handle, the information
for the previous function call is lost. This is true whether or not diagnostic information
is generated for the second generic access API function call.

Multiple diagnostic messages can be available after a given generic access API
function call. These messages are retrieved one at a time by repeatedly calling
SQLError(). For each message retrieved, SQLError() returns SQL_SUCCESS and
removes it from the list of messages available. When there are no more messages to
retrieve, SQL_NO_DATA_FOUND should return, the SQLSTATE is set to “00000,”
pfNativeError is set to 0, and pcbErrorMsg and szErrorMsg are undefined.

Diagnostic information stored under a given handle is cleared when a call is made to
SQLError() with that handle, or when another generic access API function call is made
with that handle. However, information associated with a given handle type is not
cleared by a call to SQLError() with an associated but different handle type: for

38 DataJoiner Version 2 Generic Access API Reference  



SQLError

example, a call to SQLError() with a connection handle input will not clear errors
associated with any statement handles under that connection.

SQL_SUCCESS should be returned even if the buffer for the error message
(szErrorMsg) is too short since DataJoinerwill not be able to retrieve the same error
message by calling SQLError() again. The actual length of the message text is returned
in the pcbErrorMsg.

To avoid truncation of the error message, DataJoinerdeclares a buffer length of
SQL_MAX_MESSAGE_LENGTH + 1. The message text should never be longer than
this.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND should be returned if no diagnostic information is available for
the input handle, or if all of the messages have been retrieved via calls to SQLError().

 Diagnostics
SQLSTATEs are not defined, since SQLError() does not generate diagnostic
information for itself.

 Restrictions
None.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = typical.c

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt)

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

SQLINTEGER sqlcode;

SQLSMALLINT length;

while ( SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS )

 {

printf("\n \\\\ ERROR \\\\\\n");

printf(" SQLSTATE: %s\n", sqlstate);

printf("Native Error Code: %ld\n", sqlcode);

printf("%s \n", buffer);

  Chapter 3. Required Functions 39



SQLError

 };

 return (ð);

}

 References
None.

40 DataJoiner Version 2 Generic Access API Reference  



SQLExecDirect

SQLExecDirect - Execute a Statement Directly

 Purpose
SQLExecDirect() directly executes the specified SQL statement. The statement can be
executed only once. Also, the connected database server must be able to prepare the
statement.

 Syntax
SQLRETURN SQLExecDirect (SQLHSTMT hstmt,

 SQLCHAR \szSqlStr,

 SQLINTEGER cbSqlStr);

 Function Arguments

Table 19. SQLExecDirect Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt.

SQLCHAR * szSqlStr input SQL statement string. The connected database server
must be able to prepare the statement.

SQLINTEGER cbSqlStr input Length of contents of szSqlStr argument. The length will
be set to either the exact length of the statement, or if
the statement is null-terminated, set to SQL_NTS.

 Usage
The SQL statement cannot be a COMMIT or ROLLBACK. Instead, SQLTransact() must
be called to issue COMMIT or ROLLBACK.

The SQL statement string can contain parameter markers. A parameter marker is
represented by a “?” character, and is used to indicate a position in the statement
where the value of DataJoiner storage is to be substituted, when SQLExecDirect() is
called. SQLSetParam() is used to bind (or associate) DataJoiner storage to each
parameter marker, and to indicate if any data conversion should be performed at the
time the data is transferred. All parameters will be bound before calling
SQLExecDirect().

If the SQL statement is a SELECT, SQLExecDirect() will generate a cursor name and
open the cursor.

To retrieve a row from the result set generated by a SELECT statement, DataJoiner
calls SQLFetch() after SQLExecDirect() returns successfully.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row and must be defined on a
separate statement handle under the same connection handle.

  Chapter 3. Required Functions 41



SQLExecDirect

There must not already be an open cursor on the statement handle.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND should be returned if the SQL statement is a Searched
UPDATE or Searched DELETE and no rows satisfy the search condition.

 Diagnostics

Table 20 (Page 1 of 3). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

01504 * No WHERE clause. szSqlStr contained an UPDATE or DELETE statement
which did not contain a WHERE clause. (Function
returns SQL_SUCCESS_WITH_INFO or
SQL_NO_DATA_FOUND if there were no rows in the
table).

01508 * Statement disqualified for blocking. The statement was disqualified for blocking for reasons
other than storage.

07001 (optional) Wrong number of parameters. The number of parameters bound to DataJoiner storage
using SQLSetParam() was less than the number of
parameter marker in the SQL statement contained in the
argument szSqlStr.

07006 Restricted data type attribute
violation.

Transfer of data between the generic access API and
DataJoiner storage would result in incompatible data
conversion.

21S01 Insert value list does not match
column list.

szSqlStr contained an INSERT statement and the
number of values to be inserted did not match the
degree of the derived table.

21S02 Degrees of derived table does not
match column list.

szSqlStr contained a CREATE VIEW statement and the
number of names specified is not the same degree as
the derived table defined by the query specification.

22001 String data right truncation. A character string assigned to a character type column
exceeded the maximum length of the column.

22003 (optional) Numeric value out of range. A numeric value assigned to a numeric type column
caused truncation of the whole part of the number, either
at the time of assignment or in computing an
intermediate result.

szSqlStr contained an SQL statement with an arithmetic
expression which caused division by zero.

Note:  As a result DataJoiner will treat the cursor state
as if it were undefined.

42 DataJoiner Version 2 Generic Access API Reference  



SQLExecDirect

Table 20 (Page 2 of 3). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

22005 Error in assignment. szSqlStr contained an SQL statement with a parameter
or literal and the value was incompatible with the data
type of the associated table column.

The argument fSQLType used in SQLSetParam() denoted
an SQL graphic data type, but the deferred length
argument (pcbValue) contains an odd length value. The
length value must be even for graphic data types.

22007 * Invalid date time format. szSqlStr contained an SQL statement with an invalid
datetime format; that is, an invalid string representation
or value was specified, or the value was an invalid date.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an
arithmetic operation on a date or timestamp has a result
that is not within the valid range of dates, or a datetime
value cannot be assigned to a bound variable because it
is too small.

22012 Division by zero. szSqlStr contained an SQL statement with an arithmetic
expression that caused division by zero.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted
because the execution would cause integrity constraint
violation in the DBMS.

24000 (optional) Invalid cursor state. The cursor is not in the appropriate state for the
execution of this SQL statement.

24504 *
(optional)

Invalid cursor state. Results were pending on the hstmt from a previous
SELECT statement or a cursor associated with the hsmt
had not been closed.

34000 (optional) Invalid cursor name. szSqlStr contained a Positioned DELETE or a Positioned
UDPATE and the cursor referenced by the statement
being executed was not open.

37xxx Syntax error or access violation. szSqlStr contained one or more of the following:

 � a COMMIT
 � a ROLLBACK
� an SQL statement that the connected database

server could not prepare
� a statement containing a syntax error

40000 * Serialization failure. The transaction to which this SQL statement belonged
was rolled back due to a deadlock or timeout.

40003 * Statement completion unknown. The communication link between the driver and the data
source to which the driver was connected failed before
the function completed processing.

42504 Syntax error or access violation. The current user did not have permission to execute the
SQL statement contained in szSqlStr.

  Chapter 3. Required Functions 43



SQLExecDirect

Table 20 (Page 3 of 3). SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

44000 Integrity constraint violation. szSqlStr contained an SQL statement which contained a
parameter or literal. This parameter value was NULL for
a column defined as NOT NULL in the associated table
column, or a duplicate value was supplied for a column
constrained to contain only unique values, or some other
integrity constraint was violated.

58004 System error. Unrecoverable system error.

S0001 Base table or view already exists. szSqlStr contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified
already existed.

S0002 Table or view not found. szSqlStr contained an SQL statement that references a
table name or view name which does not exist.

S0011 Index already exists. szSqlStr contained a CREATE INDEX statement and the
specified index name already existed.

S0012 Index not found. szSqlStr contained a DROP INDEX statement and the
specified index name did not exist.

S0021 Column already exists. szSqlStr contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or
identified an existing column in the base table.

S0022 Column not found. szSqlStr contained an SQL statement that references a
column name which does not exist.

S1001 Memory allocation failure. The driver is unable to allocate memory required to
support execution or completion of the function.

S1009 (optional) Invalid argument value. szSqlStr was a null pointer.

The argument cbSqlStr was less than 1 but not equal to
SQL_NTS.

S1013 * Memory management problem. The driver was unable to access memory required to
support execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 49.

 References
� “SQLExecute - Execute a Statement” on page 45
� “SQLFetch - Fetch Next Row” on page 47
� “SQLSetParam - Set Parameter” on page 82

44 DataJoiner Version 2 Generic Access API Reference  



SQLExecute

SQLExecute - Execute a Statement

 Purpose
SQLExecute() executes a statement that was successfully prepared using SQLPrepare
(), once or multiple times. The statement is executed using the current values of any
DataJoiner storage locations that were bound to parameter markers by SQLSetParam().

 Syntax
SQLRETURN SQLExecute (SQLHSTMT hstmt);

 Function Arguments

Table 21. SQLExecute Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt.

 Usage
The SQL statement string can contain parameter markers. A parameter marker is
represented by a “?” character, and is used to indicate a position in the statement
where the value of DataJoiner storage is to be substituted, when SQLExecute() is
called. SQLSetParam() is used to bind (or associate) DataJoiner storage to each
parameter marker, and to indicate if any data conversion should be performed at the
time that the data is transferred. All parameters must be bound before calling
SQLExecute().

Once DataJoiner has processed the results from the SQLExecute() call, it can execute
the statement again with new (or the same) values in the DataJoiner storage.

A statement executed by SQLExecDirect() cannot be re-executed by calling
SQLExecute(); SQLPrepare() must be called first.

If the prepared SQL statement is a SELECT, SQLExecute() will generate a cursor name
and open the cursor.

To execute a SELECT statement more than once, DataJoinercloses the cursor by
calling call SQLFreeStmt() with the SQL_CLOSE option. There must not be an open
cursor on the statement handle when calling SQLExecute().

To retrieve a row from the result set generated by a SELECT statement, DataJoiner
calls SQLFetch() after SQLExecute() returns successfully.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row at the time that SQLExecute()

  Chapter 3. Required Functions 45



SQLExecute

is called, and must be defined on a separate statement handle under the same
connection handle.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND should be returned if the SQL statement is a Searched
UPDATE or Searched DELETE and no rows satisfy the search condition.

 Diagnostics
The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() (refer to
Table 20 on page 42) except for S1009, and with the addition of the SQLSTATE in the
table below.

Table 22. SQLExecute SQLSTATEs

SQLSTATE Description Explanation

S1010 (optional) Function sequence error. The specified hstmt was not in prepared state.
SQLExecute() was called without first calling SQLPrepare.

Note:  SQLExecute() also returns the states in Table 20 on page 42, except for S1009.

 Restrictions
None.

 Example
Refer to “Example” on page 75.

 References
� “SQLExecDirect - Execute a Statement Directly” on page 41
� “SQLBindCol - Bind a Column to DataJoiner Storage” on page 24
� “SQLPrepare - Prepare a Statement” on page 73
� “SQLFetch - Fetch Next Row” on page 47
� “SQLSetParam - Set Parameter” on page 82

46 DataJoiner Version 2 Generic Access API Reference  



SQLFetch

SQLFetch - Fetch Next Row

 Purpose
SQLFetch() advances the cursor to the next row of the result set and retrieves any
bound columns.

SQLFetch() is used to receive the data directly into DataJoiner storage specified with
SQLBindCol(). Data conversion is also performed when SQLFetch() is called, if
conversion was indicated when the column was bound.

 Syntax
SQLRETURN SQLFetch (SQLHSTMT hstmt);

 Function Arguments

Table 23. SQLFetch Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

 Usage
SQLFetch() can only be called if the most recently executed statement on hstmt, was a
SELECT.

The number of storage locations bound to DataJoiner with SQLBindCol() will not
exceed the number of columns in the result set or SQLFetch() will fail.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does not
return data to DataJoiner, but just advances the cursor. Data in unbound columns is
discarded when SQLFetch() advances the cursor to the next row.

If any bound variables are not large enough to hold the data returned by SQLFetch(),
the data will be truncated. If character data is truncated, SQL_SUCCESS_WITH_INFO
should be returned, and an SQLSTATE is generated indicating truncation. The
SQLBindCol() deferred output argument pcbValue will contain the actual length of the
column data retrieved from the server. DataJoiner compares the output length to the
input length (pcbValue and cbValueMax arguments from SQLBindCol()) to determine
which character columns have been truncated.

Truncation of numeric data types is not reported if the truncation involves digits to the
right of the decimal point. If truncation occurs to the left of the decimal point, an error
should be returned (refer to the diagnostics section).

Truncation of graphic data types is treated the same as character data types, except
that the rgbValue buffer is filled to the nearest multiple of two bytes that is still less than
or equal to the cbValueMax specified in SQLBindCol().

  Chapter 3. Required Functions 47



SQLFetch

When all the rows have been retrieved from the result set, or the remaining rows are
not needed, SQLFreeStmt() will be called to close the cursor and discard the remaining
data and associated resources.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE
 � SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND should be returned if there are no rows in the result set, or if
previous SQLFetch() calls have fetched all the rows from the result set.

 Diagnostics

Table 24 (Page 1 of 2). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns was truncated. String
values are right truncated. (SQL_SUCCESS_WITH_INFO is should
be returned if no error occurred.)

07002 * (optional) Invalid column
number.

A column number specified in the binding for one or more columns
was greater than the number of columns in the result set.

07006 Restricted data
type attribute
violation.

The data value could not be converted to the data type specified by
fCType in SQLBindCol.

A call to SQLBindCol was made with a value of SQL_C_DEFAULT
for the argument fCType and the SQL data type of the
corresponding column is one of SQL_DECIMAL, SQL_NUMERIC,
SQL_GRAPHIC, SQL_VARGRAPHIC, or SQL_LONGVARGRAPHIC.

22002 (optional) Invalid length
buffer.

The pointer value specified for the argument pcbValue in
SQLBindCol was a null pointer and the value of the corresponding
column is null. There is no means to report SQL_NULL_DATA.

22003 Numeric value out
of range.

Returning the numeric value (as numeric or string) for one or more
columns would have caused the whole part of the number to be
truncated either at the time of assignment or in computing an
intermediate result.

A value from an arithmetic expression was returned which resulted
in division by zero.

Note:  As a result, DataJoiner will treat the cursor as if it were
undefined.

22005 Error in
assignment.

A returned value was incompatible with the data type of binding.

22007 * Invalid date time
format.

szSqlStr contained an SQL statement with an invalid datetime
format; that is, an invalid string representation or value was
specified, or the value was an invalid date.

48 DataJoiner Version 2 Generic Access API Reference  



SQLFetch

Table 24 (Page 2 of 2). SQLFetch SQLSTATEs

SQLSTATE Description Explanation

22008 Datetime field
overflow.

Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within the
valid range of dates, or a datetime value cannot be assigned to a
bound variable because it is too small.

22012 Division by zero. A value from an arithmetic expression was returned which resulted
in division by zero.

24000 (optional) Invalid cursor
state.

The previous SQL statement executed on the hstmt was not a
SELECT.

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1010 (optional) Function sequence
error.

The specified hstmt was not in an executed state. The function was
called without first calling SQLExecute or SQLExecDirect.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

S1C00 Driver not capable. The driver or data source does not support the conversion specified
by the combination of the fCType in SQLBindCol() and the SQL data
type of the corresponding column.

A call to SQLBindCol() was made for a column data type which is
not supported by the driver.

 Restrictions
None.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = fetch.c

\\

\\ Example of executing an SQL statement.

\\ SQLBindCol & SQLFetch is used to retrieve data from the result set

\\ directly into application storage.

\\

\\ Functions used:

\\

\\ SQLAllocConnect SQLFreeConnect

\\ SQLAllocEnv SQLFreeEnv

\\ SQLAllocStmt SQLFreeStmt

\\ SQLConnect SQLDisconnect

\\

  Chapter 3. Required Functions 49



SQLFetch

\\ SQLBindCol SQLFetch

\\ SQLTransact SQLExecDirect

\\ SQLError

\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

#include <stdio.h>

#include <string.h>

#include "sqlcli1.h"

#define MAX_STMT_LEN 255

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ main

\\ - initialize

\\ - terminate

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

SQLCHAR sqlstmt[MAX_STMT_LEN + 1]="";

 SQLRETURN rc;

rc = initialize(&henv, &hdbc);

if (rc == SQL_ERROR) return(terminate(henv, hdbc));

 {SQLHSTMT hstmt;

SQLCHAR sqlstmt[]="SELECT deptname, location from org

where division = 'Eastern'";

 SQLCHAR deptname[15],

 location[14];

 SQLINTEGER rlength;

rc = SQLAllocStmt(hdbc, &hstmt);

if (rc != SQL_SUCCESS )

50 DataJoiner Version 2 Generic Access API Reference  



SQLFetch

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname, 15,

 &rlength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) location, 14,

 &rlength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

printf("Departments in Eastern division:\n");

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

 {

printf("%-14.14s %-13.13s \n", deptname, location);

 }

if (rc != SQL_NO_DATA_FOUND )

check_error (henv, hdbc, hstmt, rc);

rc = SQLFreeStmt(hstmt, SQL_DROP);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 }

rc = SQLTransact(henv, hdbc, SQL_COMMIT);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 terminate(henv, hdbc);

 return (ð);

}/\ end main \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ initialize

\\ - allocate environment handle

\\ - allocate connection handle

\\ - prompt for server, user id, & password

\\ - connect to server

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc)

{

SQLCHAR server[SQL_MAX_DSN_LENGTH],

  Chapter 3. Required Functions 51



SQLFetch

 uid[3ð],

 pwd[3ð];

SQLRETURN rc;

rc = SQLAllocEnv (henv); /\ allocate an environment handle \/

if (rc != SQL_SUCCESS )

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

rc = SQLAllocConnect (\henv, hdbc); /\ allocate a connection handle \/

if (rc != SQL_SUCCESS )

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

printf("Enter Server Name:\n");

 gets(server);

printf("Enter User Name:\n");

 gets(uid);

printf("Enter Password Name:\n");

 gets(pwd);

if (uid[ð] == '\ð')

{ rc = SQLConnect (\hdbc, server, SQL_NTS, NULL, SQL_NTS, NULL, SQL_NTS);

if (rc != SQL_SUCCESS )

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

 }

 else

{ rc = SQLConnect (\hdbc, server, SQL_NTS, uid, SQL_NTS, pwd, SQL_NTS);

if (rc != SQL_SUCCESS )

check_error (\henv, \hdbc, SQL_NULL_HSTMT, rc);

 }

 return(SQL_SUCCESS);

}/\ end initialize \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ terminate

\\ - disconnect

\\ - free connection handle

\\ - free environment handle

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int terminate(SQLHENV henv,

 SQLHDBC hdbc)

{

SQLRETURN rc;

rc = SQLDisconnect (hdbc); /\ disconnect from database \/

if (rc != SQL_SUCCESS )

print_error (henv, hdbc, SQL_NULL_HSTMT);

rc = SQLFreeConnect (hdbc); /\ free connection handle \/

if (rc != SQL_SUCCESS )

print_error (henv, hdbc, SQL_NULL_HSTMT);

rc = SQLFreeEnv (henv); /\ free environment handle \/

if (rc != SQL_SUCCESS )

52 DataJoiner Version 2 Generic Access API Reference  



SQLFetch

print_error (henv, hdbc, SQL_NULL_HSTMT);

 return(rc);

}/\ end terminate \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ - print_error - call SQLError(), display SQLSTATE and message

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt)

{

SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1];

SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

SQLINTEGER sqlcode;

SQLSMALLINT length;

while ( SQLError(henv, hdbc, hstmt, sqlstate, &sqlcode, buffer,

SQL_MAX_MESSAGE_LENGTH + 1, &length) == SQL_SUCCESS )

 {

printf("\n \\\\ ERROR \\\\\\n");

printf(" SQLSTATE: %s\n", sqlstate);

printf("Native Error Code: %ld\n", sqlcode);

printf("%s \n", buffer);

 };

return ( SQL_ERROR);

} /\ end print_error \/

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ - check_error - call print_error(), checks severity of return code

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc)

{

SQLRETURN rc;

print_error(henv, hdbc, hstmt);

 switch (frc){

case SQL_SUCCESS : break;

case SQL_ERROR :

 case SQL_INVALID_HANDLE:

printf("\n \\ FATAL ERROR, Attempting to rollback transaction \\\n");

rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

if (rc != SQL_SUCCESS)

printf("Rollback Failed, Exiting application\n");

 else

  Chapter 3. Required Functions 53



SQLFetch

printf("Rollback Successful, Exiting application\n");

 terminate(henv, hdbc);

 exit(frc);

 break;

case SQL_SUCCESS_WITH_INFO :

printf("\n \\ Warning Message, application continuing\n");

 break;

case SQL_NO_DATA_FOUND :

printf("\n \\ No Data Found \\ \n");

 break;

 default :

printf("\n \\ Invalid Return Code \\ \n");

printf(" \\ Attempting to rollback transaction \\\n");

SQLTransact(henv, hdbc, SQL_ROLLBACK);

 terminate(henv, hdbc);

 exit(frc);

 break;

 }

 return(SQL_SUCCESS);

} /\ end check_error \/

 References
� “SQLBindCol - Bind a Column to DataJoiner Storage” on page 24
� “SQLExecute - Execute a Statement” on page 45
� “SQLExecDirect - Execute a Statement Directly” on page 41

54 DataJoiner Version 2 Generic Access API Reference  



SQLFreeConnect

SQLFreeConnect - Free Connection Handle

 Purpose
SQLFreeConnect() invalidates and frees the connection handle. All the generic access
API resources associated with the connection handle are freed.

DataJoiner calls SQLDisconnect() before calling this function.

Next, DataJoiner calls either SQLFreeEnv() to continue terminating the DataJoiner
connection, or SQLAllocHandle(), to allocate a new connection handle.

 Syntax
SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

 Function Arguments

Table 25. SQLFreeConnect Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Connection handle

 Usage
If this function is called when a connection still exists, SQL_ERROR should be
returned, and the connection handle remains valid.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 26. SQLFreeConnect SQLSTATEs

SQLSTATE Description Explanation

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1010 (optional) Function sequence
error.

The function was called prior to SQLDisconnect() for the hdbc.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

  Chapter 3. Required Functions 55



SQLFreeConnect

 Restrictions
None.

 Example
Refer to “Example” on page 20.

 References
� “SQLDisconnect - Disconnect from a Data Source” on page 35
� “SQLFreeEnv - Free Environment Handle” on page 57

56 DataJoiner Version 2 Generic Access API Reference  



SQLFreeEnv

SQLFreeEnv - Free Environment Handle

 Purpose
SQLFreeEnv() invalidates and frees the environment handle. All the generic access API
resources associated with the environment handle are freed.

DataJoiner calls SQLFreeConnect() before calling this function.

This function is the last step that DataJoiner needs to perform before terminating the
connection.

 Syntax
SQLRETURN SQLFreeEnv (SQLHENV henv);

 Function Arguments

Table 27. SQLFreeEnv Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle

 Usage
If this function is called when there is still a valid connection handle, SQL_ERROR
should be returned, and the environment handle will remain valid.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 28. SQLFreeEnv SQLSTATEs

SQLSTATE Description Explanation

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1010 (optional) Function sequence
error.

There is an hdbc which is in allocated or connected state. Call
SQLDisconnect and SQLFreeConnect for the hdbc before calling
SQLFreeEnv.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

  Chapter 3. Required Functions 57



SQLFreeEnv

 Restrictions
None.

 Example
Refer to “Example” on page 20.

 References
� “SQLFreeConnect - Free Connection Handle” on page 55

58 DataJoiner Version 2 Generic Access API Reference  



SQLFreeStmt

SQLFreeStmt - Free (or Reset) a Statement Handle

 Purpose
SQLFreeStmt() ends processing on the statement referenced by the statement handle.
This function is used to close a cursor, or to drop the statement handle and free the
generic access API resources associated with the statement handle.

DataJoiner calls SQLFreeStmt() after executing an SQL statement and processing the
results.

 Syntax
SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,

 SQLSMALLINT fOption);

 Function Arguments

Table 29. SQLFreeStmt Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLSMALLINT fOption input Option which specified the manner of freeing the
statement handle. The option must have one of the
following values:

 � SQL_CLOSE
 � SQL_DROP

 Usage
SQLFreeStmt() can be called with the following options:

SQL_CLOSE The cursor (if any) associated with the statement handle (hstmt) is
closed and all pending results are discarded. DataJoiner can reopen
the cursor by calling SQLExecute() with the same or different values
in DataJoiner storage locations (if any) that are bound to hstmt. The
cursor name is retained until the statement handle is dropped. If no
cursor has been associated with the statement handle, this option
has no effect (no warning or error is generated).

SQL_DROP DataJoiner's Generic Access API resources associated with the input
statement handle are freed, and the handle is invalidated. The open
cursor, if any, is closed and all pending results are discarded.

If you want to reuse a statement handle to execute a different statement, and if the
previous statement was a SELECT, you must close the cursor. Alternatively, you can
drop the statement handle and allocate a new one.

  Chapter 3. Required Functions 59



SQLFreeStmt

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if fOption is set to SQL_DROP, since
there would be no statement handle to use when SQLError() is called.

 Diagnostics

Table 30. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument
value.

The value specified for the argument fOption was not SQL_CLOSE,
or SQL_DROP.

 Restrictions
None.

 Example
Refer to “Example” on page 49.

 References
� “SQLAllocStmt - Allocate a Statement Handle” on page 22
� “SQLBindCol - Bind a Column to DataJoiner Storage” on page 24
� “SQLFetch - Fetch Next Row” on page 47
� “SQLFreeConnect - Free Connection Handle” on page 55
� “SQLSetParam - Set Parameter” on page 82

60 DataJoiner Version 2 Generic Access API Reference  



SQLGetCursorName

SQLGetCursorName - Get Cursor Name

 Purpose
SQLGetCursorName() returns the cursor name associated with the input statement
handle.

 Syntax
SQLRETURN SQLGetCursorName (SQLHSTMT hstmt,

 SQLCHAR \szCursor,

 SQLSMALLINT cbCursorMax,

 SQLSMALLINT \pcbCursor);

 Function Arguments

Table 31. SQLGetCursorName Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLCHAR * szCursor output Cursor name

SQLSMALLINT cbCursorMax input Length of buffer szCursor

SQLSMALLINT * pcbCursor output Amount of bytes available to return for szCursor

 Usage
SQLGetCursorName() will return a cursor name only if a SELECT statement was
executed on the statement handle. Otherwise, calling SQLGetCusorName() will result in
an error.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 32 (Page 1 of 2). SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name returned in szCursor was longer than the value in
cbCursorMax, and is truncated to cbCursorMax - 1 bytes. The
argument pcbCursor contains the length of the full cursor name
available for return. The function returns
SQL_SUCCESS_WITH_INFO.

  Chapter 3. Required Functions 61



SQLGetCursorName

Table 32 (Page 2 of 2). SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1009 (optional) Invalid argument
value.

szCursor was a null pointer.

The value specified for the argument cbCursorMax is less than 1.

S1010 (optional) Function sequence
error.

The statement hstmt is not in execute state. Call SQLExecute() or
SQLExecDirect() before calling SQLGetCursorName().

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

S1015 No cursor name
available.

There was no open cursor on the hstmt. The statement associated
with hstmt does not support the use of a cursor.

 Restrictions
None.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = getcurs.c

\\

\\ Example of directly executing a SELECT and positioned UPDATE SQL statement.

\\ Two statement handles are used, and SQLGetCursor is used to retrieve the

\\ generated cursor name.

\\

\\ Functions used:

\\

\\ SQLAllocConnect SQLFreeConnect

\\ SQLAllocEnv SQLFreeEnv

\\ SQLAllocStmt SQLFreeStmt

\\ SQLConnect SQLDisconnect

\\

\\ SQLBindCol SQLFetch

\\ SQLTransact SQLError

\\ SQLExecDirect SQLGetCursorName

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "sqlcli1.h"

#define MAX_STMT_LEN 255

62 DataJoiner Version 2 Generic Access API Reference  



SQLGetCursorName

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN frc);

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ main

\\ - initialize

\\ - terminate

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLRETURN rc,

 rc2;

rc = initialize(&henv, &hdbc);

if (rc != SQL_SUCCESS) return(terminate(henv, hdbc));

 {SQLHSTMT hstmt1,

 hstmt2;

SQLCHAR sqlstmt[]="SELECT name, job from staff for update of job";

SQLCHAR updstmt[MAX_STMT_LEN + 1];

 SQLCHAR name[1ð],

 job[6],

 newjob[6],

 cursor[19];

 SQLINTEGER rlength;

 SQLSMALLINT clength;

rc = SQLAllocStmt(hdbc, &hstmt1);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

/\ allocate second statement handle for update statement \/

rc2 = SQLAllocStmt(hdbc, &hstmt2);

if (rc2 != SQL_SUCCESS )

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

  Chapter 3. Required Functions 63



SQLGetCursorName

rc = SQLExecDirect(hstmt1, sqlstmt, SQL_NTS);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt1, rc);

/\ Get Cursor of the SELECT statement's handle \/

rc = SQLGetCursorName(hstmt1, cursor, 19, &clength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt1, rc);

/\ bind name to first column in the result set \/

rc = SQLBindCol(hstmt1, 1, SQL_C_CHAR, (SQLPOINTER) name, 1ð,

 &rlength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt1, rc);

/\ bind job to second column in the result set \/

rc = SQLBindCol(hstmt1, 2, SQL_C_CHAR, (SQLPOINTER) job, 6,

 &rlength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt1, rc);

printf("Job Change for all clerks\n");

while ((rc = SQLFetch(hstmt1)) == SQL_SUCCESS)

 {

printf("Name: %-9.9s Job: %-5.5s \n", name, job);

printf("Enter new job or return to continue\n");

 gets(newjob);

if (newjob[ð] != '\ð')

 {

 sprintf( updstmt,

"UPDATE staff set job = '%s' where current of %s",

 newjob, cursor);

rc2 = SQLExecDirect(hstmt2, updstmt, SQL_NTS);

if (rc2 != SQL_SUCCESS )

check_error (henv, hdbc, hstmt2, rc);

 }

 }

if (rc != SQL_NO_DATA_FOUND )

check_error (henv, hdbc, hstmt1, rc);

 SQLFreeStmt(hstmt1, SQL_CLOSE);

 }

 printf("Commiting Transaction\n");

rc = SQLTransact(henv, hdbc, SQL_COMMIT);

if (rc != SQL_NO_DATA_FOUND )

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 terminate(henv, hdbc);

 return (ð);

}/\ end main \/

64 DataJoiner Version 2 Generic Access API Reference  



SQLGetCursorName

 References
� “SQLExecute - Execute a Statement” on page 45
� “SQLExecDirect - Execute a Statement Directly” on page 41

  Chapter 3. Required Functions 65



SQLGetInfo

SQLGetInfo - Get General Information

 Purpose
SQLGetInfo() returns general information, (including supported data conversions) about
the DBMS that the application is currently connected to.

 Syntax
SQLRETURN SQLGetInfo (SQLHDBC hdbc,

 SQLSMALLINT fInfoType,

 SQLPOINTER rgbInfoValue,

 SQLSMALLINT cbInfoValueMax,

 SQLSMALLINT \pcbInfoValue);

 Function Arguments

Table 33. SQLGetInfo Arguments

Data Type Argument Use Description

SQLHDBC hdbc input Database connection handle

SQLSMALLINT fInfoType input The type of information desired.

SQLPOINTER rgbInfoValue output (also
input)

Pointer to buffer where this function will store the desired
information. Depending on the type of information being
retrieved, 4 types of information can be returned:

� 16 bit integer value
� 32 bit integer value
� 32 bit binary value
� null-terminated character string

SQLSMALLINT cbInfoValueMax input Maximum length of the buffer pointed by rgbInfoValue
pointer.

SQLSMALLINT * pcbInfoValue output Pointer to location where this function will return the total
number of bytes available to return the desired
information. In the case of string output, this size does
not include the null terminating character.

If the value in the location pointed to by pcbInfoValue is
greater than the size of the rgbInfoValue buffer as
specified in cbInfoValueMax, then the string output
information would be truncated to cbInfoValueMax - 1
bytes and the function would return with
SQL_SUCCESS_WITH_INFO.

 Usage
Data conversion is discussed in Table 34 on page 67.

In addition to the fInfoType values in the table above, specifying the values in the table
below will indicate whether the data type can be converted to other data types.

66 DataJoiner Version 2 Generic Access API Reference  



SQLGetInfo

When SQLGetInfo() is called with one of the conversion fInfoTypes from the left
column, a 32 bit mask is returned. This mask can then be compared (using a logical
and) with any  of the values from the right column.

Notice that the symbolic names in both columns are identical except that CONVERT
has been replaced with CVT.

Table 34. Data Conversion Values for SQLGetInfo()

fInfoType Comparison Mask

SQL_CONVERT_CHAR [56] SQL_CVT_CHAR
SQL_CONVERT_NUMERIC [63] SQL_CVT_NUMERIC
SQL_CONVERT_DECIMAL [58] SQL_CVT_DECIMAL
SQL_CONVERT_INTEGER [61] SQL_CVT_INTEGER
SQL_CONVERT_SMALLINT [65] SQL_CVT_SMALLINT
SQL_CONVERT_FLOAT [60] SQL_CVT_FLOAT
SQL_CONVERT_REAL [64] SQL_CVT_REAL
SQL_CONVERT_DOUBLE [59] SQL_CVT_DOUBLE
SQL_CONVERT_VARCHAR [70] SQL_CVT_VARCHAR
SQL_CONVERT_LONGVARCHAR [62] SQL_CVT_LONGVARCHAR
SQL_CONVERT_BINARY [54] SQL_CVT_BINARY
SQL_CONVERT_VARBINARY [69] SQL_CVT_VARBINARY
SQL_CONVERT_BIT [55] SQL_CVT_BIT
SQL_CONVERT_TINYINT [68] SQL_CVT_TINYINT
SQL_CONVERT_BIGINT [53] SQL_CVT_BIGINT
SQL_CONVERT_DATE [57] SQL_CVT_DATE
SQL_CONVERT_TIME [66] SQL_CVT_TIME
SQL_CONVERT_TIMESTAMP [67] SQL_CVT_TIMESTAMP
SQL_CONVERT_LONGVARBINARY [71] SQL_CVT_LONGVARBINARY
Note:  Since graphic data types are not supported by ODBC, they are not supported by SQLGetInfo().

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 35 (Page 1 of 2). SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The requested information was returned as a null-terminated string
and its length exceeded the length of the application buffer as
specified in cbInfoValueMax. The argument pcbInfoValue contains
the actual (not truncated) length of the requested information.
(Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open.

The type of information requested in fInfoType requires an open
connection. Only SQL_ODBC_VER does not require an open
connection.

  Chapter 3. Required Functions 67



SQLGetInfo

Table 35 (Page 2 of 2). SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1009 Invalid argument
value.

The value specified for argument cbInfoValueMax was less than 0.

An invalid fInfoType was specified.

The argument rgbInfoValue was a null pointer.

The fInfoType was SQL_DRIVER_HSTMT and the value pointed to
by rgbInfoValue was not a valid handle.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

S1103 Direction option
out of range.

S1C00 Driver not capable. The value specified in the argument fInfoType is not supported by
either the driver or the data source.

 Restrictions
The ODBC SQLSTATE S1090 will not be returned. Instead, the X/Open S1009
SQLSTATE will be returned.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = getinfo.c

\\ - Connect to a database and display database and driver information.

\\ - error handling has been ignored for simplicity.

\\

\\ Functions used:

\\

\\ SQLAllocConnect SQLDisconnect

\\ SQLAllocEnv SQLFreeConnect

\\ SQLRConnect SQLFreeEnv

\\

\\ SQLGetFunctions SQLGetInfo

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

#include <stdio.h>

#include "sqlcli1.h"

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc);

int terminate(SQLHENV henv,

68 DataJoiner Version 2 Generic Access API Reference  



SQLGetInfo

 SQLHDBC hdbc);

int main()

{

SQLHENV henv;

SQLHDBC hdbc;

SQLRETURN rc;

SQLCHAR buffer[255];

SQLSMALLINT output;

SQLSMALLINT outlen,

 supported;

 initialize(&henv, &hdbc);

/\ Check to see if SQLGetInfo() is supported \/

rc = SQLGetFunctions(hdbc, SQL_API_SQLGETINFO, &supported);

 if (supported)

{ /\ get information about current connection \/

rc = SQLGetInfo(hdbc, SQL_DATA_SOURCE_NAME, buffer, 255, & outlen);

printf(" Server Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DATABASE_NAME, buffer, 255, &out len);

printf(" Database Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_SERVER_NAME, buffer, 255, &outle n);

printf(" Instance Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DBMS_NAME, buffer, 255, &outlen) ;

printf(" DBMS Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DBMS_VER, buffer, 255, &outlen);

printf(" DBMS Version: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DRIVER_NAME, buffer, 255, &outle n);

printf(" Driver Name: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_DRIVER_VER, buffer, 255, &outlen );

printf("Driver Version: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_ODBC_API_CONFORMANCE, &output,

 sizeof(output), &outlen);

 switch (output){

case ð : strcpy(buffer, "CORE");

 break;

case 1 : strcpy(buffer, "Level 1");

 break;

case 2 : strcpy(buffer, "Level 2");

 break;

default: printf("Error calling getinfo!");

 return(SQL_ERROR);

 }

printf("ODBC API Conformance Level: %s\n", buffer);

rc = SQLGetInfo(hdbc, SQL_ODBC_SQL_CONFORMANCE, &output,

 sizeof(output), &outlen);

 switch (output){

case ð : strcpy(buffer, "Minimum Grammar");

 break;

case 1 : strcpy(buffer, "Core Grammar");

 break;

case 2 : strcpy(buffer, "Extended Grammar");

 break;

default: printf("Error calling getinfo!");

  Chapter 3. Required Functions 69



SQLGetInfo

 return(SQL_ERROR);

 }

printf("ODBC SQL Conformance Level: %s\n", buffer);

 }

 else

{ printf("SQLGetInfo is not supported!\n");

 }

/\\\\\\\\\ Start Processing Step \\\\\\\\\\\\\\\\\\\\\\\\\/

/\ allocate statement handle, execute statement, etc. \/

/\\\\\\\\\ End Processing Step \\\\\\\\\\\\\\\\\\\\\\\\\\\/

 terminate(henv, hdbc);

 return (SQL_SUCCESS);

}

 References
None.

70 DataJoiner Version 2 Generic Access API Reference  



SQLNumResultCols

SQLNumResultCols - Get Number of Result Columns

 Purpose
SQLNumResultCols() returns the number of columns in the result set associated with the
input statement handle.

DataJoiner calls SQLPrepare() or SQLExecDirect() before calling this function.

After calling this function, DataJoinercan call SQLDescribeCol(), SQLBindCol() or
SQLGetData().

 Syntax
SQLRETURN SQLNumResultCols (SQLHSTMT hstmt,

 SQLSMALLINT \pccol);

 Function Arguments

Table 36. SQLNumResultCols Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLSMALLINT * pccol output Number of columns in the result set

 Usage
The function sets the output argument to zero if the last statement executed on the
input statement handle is not a SELECT.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 37 (Page 1 of 2). SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

  Chapter 3. Required Functions 71



SQLNumResultCols

Table 37 (Page 2 of 2). SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

S1009 (optional) Invalid argument
value.

pcbCol was a null pointer.

S1010 (optional) Function sequence
error.

The function was called prior to calling SQLPrepare or
SQLExecDirect for the hstmt.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 80.

 References
� “SQLBindCol - Bind a Column to DataJoiner Storage” on page 24
� “SQLDescribeCol - Describe Column Attributes” on page 30
� “SQLExecDirect - Execute a Statement Directly” on page 41
� “SQLPrepare - Prepare a Statement” on page 73

72 DataJoiner Version 2 Generic Access API Reference  



SQLPrepare

SQLPrepare - Prepare a Statement

 Purpose
SQLPrepare() associates an SQL statement with the input statement handle and sends
the statement to the DBMS to be prepared. DataJoiner references this prepared
statement by passing the statement handle to other functions.

If the statement handle has been previously used with a SELECT statement,
DataJoiner calls SQLFreeStmt() to close the cursor, before calling SQLPrepare().

 Syntax
SQLRETURN SQLPrepare (SQLHSTMT hstmt,

 SQLCHAR \szSqlStr,

 SQLINTEGER cbSqlStr);

 Function Arguments

Table 38. SQLPrepare Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle. There must not be an open cursor
associated with hstmt.

SQLCHAR * szSqlStr input SQL statement string

SQLINTEGER cbSqlStr input Length of contents of szSqlStr argument.

This will be set to either the exact length of the SQL
statement in szSqlstr, or to SQL_NTS if the statement
text is null-terminated.

 Usage
Once a statement has been prepared using SQLPrepare(), DataJoiner can request
information about the format of the result set (if it was a SELECT statement) by calling:

 � SQLNumResultCols()

 � SQLDescribeCol()

A prepared statement can be executed once, or multiple times by calling SQLExecute().
The SQL statement remains associated with the statement handle until the handle is
used with another SQLPrepare() call or SQLExecDirect().

The SQL statement string can contain parameter markers. A parameter marker is
represented by a "?" character, and is used to indicate a position in the statement
where the value DataJoiner storage is to be substituted, when SQLExecute() is called.
SQLSetParam() is used to bind (or associate) DataJoiner storage to each parameter
marker, and to indicate if any data conversion should be performed at the time that the
data is transferred.

  Chapter 3. Required Functions 73



SQLPrepare

The SQL statement cannot be a COMMIT or ROLLBACK. SQLTransact() must be
called to issue COMMIT or ROLLBACK.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement will be defined on a separate statement handle under the
same connection handle.

 Return Codes
 � SQL_SUCCESS
 � SQL_SUCCESS_WITH_INFO
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 39 (Page 1 of 2). SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

01504 * No WHERE
clause.

szSqlStr contained an UPDATE or DELETE statement which did not
contain a WHERE clause.

01508 * No blocking. The statement was disqualified for blocking for reasons other than
storage.

21S01 Insert value list
does not match
column list.

szSqlStr contained an INSERT statement and the number of values
to be inserted did not match the degree of the derived table.

21S02 Degrees of derived
table does not
match column list.

szSqlStr contained a CREATE VIEW statement and the number of
names specified is not the same degree as the derived table defined
by the query specification.

24000 (optional) Invalid cursor
state.

There was an open cursor on the specified hstmt.

34000 Invalid cursor
name.

szSqlStr contained a Positioned DELETE or a Positioned UDPATE
and the cursor referenced by the statement being executed was not
open.

37xxx Syntax error or
access violation.

szSqlStr contained one or more of the following:

 � a COMMIT
 � a ROLLBACK
� an SQL statement that the connected database server could not

prepare
� a statement containing a syntax error

40000 * Serialization
failure.

The transaction to which this SQL statement belonged was rolled
back due to deadlock or timeout.

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

42xxx Syntax error or
access violation.

The current user did not have permission to execute the SQL
statement in szSqlstr.

74 DataJoiner Version 2 Generic Access API Reference  



SQLPrepare

Table 39 (Page 2 of 2). SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

58004 System error. Unrecoverable system error.

S0001 Base table or view
already exists.

szSqlStr contained a CREATE TABLE or CREATE VIEW statement
and the table name or view name specified already existed.

S0002 Table or view not
found.

szSqlStr contained an SQL statement that references a table name
or a view name which did not exist.

S0011 Index already
exists.

szSqlStr contained a CREATE INDEX statement and the specified
index name already existed.

S0012 Index not found. szSqlStr contained a DROP INDEX statement and the specified
index name did not exist.

S0021 Column already
exists.

szSqlStr contained an ALTER TABLE statement and the column
specified in the ADD clause was not unique or identified an existing
column in the base table.

S0022 Column not found. szSqlStr contained an SQL statement that references a column
name which did not exist.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1009 (optional) Invalid argument
value.

szSqlStr was a null pointer.

The argument cbSqlStr was less than 1, but not equal to SQL_NTS.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

Note:  Not all DBMSs report all of the above diagnostic messages at prepare time.
Therefore DataJoiner also handles these conditions when calling SQLExecute().

 Restrictions
None.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = prepare.c

\\

\\ Example of preparing then repeatedly executing an SQL statement.

\\

\\ Functions used:

\\

\\ SQLAllocConnect SQLFreeConnect

\\ SQLAllocEnv SQLFreeEnv

\\ SQLAllocStmt SQLFreeStmt

\\ SQLConnect SQLDisconnect

\\

\\ SQLBindCol SQLFetch

\\ SQLTransact SQLError

\\ SQLPrepare SQLSetParam

  Chapter 3. Required Functions 75



SQLPrepare

\\ SQLExecute

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "sqlcli1.h"

#define MAX_STMT_LEN 255

int initialize(SQLHENV \henv,

 SQLHDBC \hdbc);

int terminate(SQLHENV henv,

 SQLHDBC hdbc);

int print_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt);

int check_error (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLRETURN rc);

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ main

\\ - initialize

\\ - terminate

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int main()

{

 SQLHENV henv;

 SQLHDBC hdbc;

SQLCHAR sqlstmt[MAX_STMT_LEN + 1]="";

 SQLRETURN rc;

rc = initialize(&henv, &hdbc);

if (rc == SQL_ERROR) return(terminate(henv, hdbc));

 {SQLHSTMT hstmt;

SQLCHAR sqlstmt[]="SELECT deptname, location from org where division = ?";

 SQLCHAR deptname[15],

 location[14],

 division[11];

 SQLINTEGER rlength,

 plength;

rc = SQLAllocStmt(hdbc, &hstmt);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

76 DataJoiner Version 2 Generic Access API Reference  



SQLPrepare

/\ prepare statement for multiple use \/

rc = SQLPrepare(hstmt, sqlstmt, SQL_NTS);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

/\ bind division to parameter marker in sqlstmt \/

rc = SQLSetParam(hstmt, 1, SQL_C_CHAR, SQL_CHAR, 1ð, 1ð, division,

 &plength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

/\ bind deptname to first column in the result set \/

rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER) deptname, 15,

 &rlength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER) location, 14,

 &rlength);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

printf("\nEnter Division Name or 'q' to quit:\n");

printf("(Eastern, Western, Midwest, Corporate)\n");

 gets(division);

plength = SQL_NTS;

while(division[ð] != 'q')

 {

rc = SQLExecute(hstmt);

if (rc != SQL_SUCCESS )

check_error (henv, hdbc, hstmt, rc);

printf("Departments in %s Division:\n", division);

 printf("DEPTNAME Location\n");

 printf("-------------- -------------\n");

while ((rc = SQLFetch(hstmt)) == SQL_SUCCESS)

 {

printf("%-14.14s %-13.13s \n", deptname, location);

 }

if (rc != SQL_NO_DATA_FOUND )

check_error (henv, hdbc, hstmt, rc);

 SQLFreeStmt(hstmt, SQL_CLOSE);

printf("\nEnter Division Name or 'q' to quit:\n");

printf("(Eastern, Western, Midwest, Corporate)\n");

 gets(division);

 }

 }

rc = SQLTransact(henv, hdbc, SQL_ROLLBACK);

if (rc != SQL_SUCCESS )

  Chapter 3. Required Functions 77



SQLPrepare

check_error (henv, hdbc, SQL_NULL_HSTMT, rc);

 terminate(henv, hdbc);

 return (ð);

}/\ end main \/

 References
� “SQLDescribeCol - Describe Column Attributes” on page 30
� “SQLExecDirect - Execute a Statement Directly” on page 41
� “SQLExecute - Execute a Statement” on page 45
� “SQLNumResultCols - Get Number of Result Columns” on page 71

78 DataJoiner Version 2 Generic Access API Reference  



SQLRowCount

SQLRowCount - Get Row Count

 Purpose
SQLRowCount() returns the number of rows in a table that were affected by an UPDATE,
INSERT, or DELETE statement executed against the table, or a view based on the
table.

DataJoiner calls SQLExecute() or SQLExecDirect() before calling this function.

 Syntax
SQLRETURN SQLRowCount (SQLHSTMT hstmt,

 SQLINTEGER \pcrow);

 Function Arguments

Table 40. SQLRowCount Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLINTEGER * pcrow output Pointer to location where the number of rows affected is
stored.

 Usage
If the last executed statement referenced by the input statement handle was not an
UPDATE, INSERT, or DELETE statement, or if it did not execute successfully, then the
function sets the contents of pcrow to -1.

Any rows in other tables that can have been affected by the statement (for example,
cascading deletes) are not included in the count.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 41 (Page 1 of 2). SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

  Chapter 3. Required Functions 79



SQLRowCount

Table 41 (Page 2 of 2). SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1009 (optional) Invalid argument
value.

pcrow was a null pointer.

S1010 (optional) Function sequence
error.

The function was called prior to calling SQLExecute or
SQLExecDirect for the hstmt.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ file = typical.c

\\

\\ process_stmt

\\ - allocates a statement handle

\\ - executes the statement

\\ - determines the type of statement

\\ - if there are no result columns, therefore non-select statement

\\ - if rowcount > ð, assume statement was UPDATE, INSERT, DELETE

\\ else

\\ - assume a DDL, or Grant/Revoke statement

\\ else

\\ - must be a select statement.

\\ - display results

\\ - frees the statement handle

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

int process_stmt (SQLHENV henv,

 SQLHDBC hdbc,

 SQLCHAR \sqlstr)

{

SQLHSTMT hstmt;

SQLSMALLINT nresultcols;

SQLINTEGER rowcount;

SQLRETURN rc;

SQLAllocStmt (hdbc, &hstmt); /\ allocate a statement handle \/

/\ execute the SQL statement in "sqlstr" \/

80 DataJoiner Version 2 Generic Access API Reference  



SQLRowCount

rc = SQLExecDirect (hstmt, sqlstr, SQL_NTS);

if (rc != SQL_SUCCESS)

if (rc == SQL_NO_DATA_FOUND) {

printf("\nStatement executed without error, however,\n");

printf("no data was found or modified\n");

 return (SQL_SUCCESS);

 }

 else

check_error (henv, hdbc, hstmt, rc);

rc = SQLNumResultCols (hstmt, &nresultcols);

if (rc != SQL_SUCCESS)

check_error (henv, hdbc, hstmt, rc);

/\ determine statement type \/

if (nresultcols == ð) /\ statement is not a select statement \/

 {

rc = SQLRowCount (hstmt, &rowcount);

if (rowcount > ð ) /\ assume statement is UPDATE, INSERT, DELETE \/

 {

printf ("Statement executed, %ld rows affected\n", rowcount);

 }

else /\ assume statement is GRANT, REVOKE or a DLL statement \/

 {

printf ("Statement completed successful\n");

 }

 }

else /\ display the result set \/

 {

 display_results(hstmt, nresultcols);

} /\ end determine statement type \/

SQLFreeStmt (hstmt, SQL_DROP ); /\ free statement handle \/

 return (ð);

}/\ end process_stmt \/

 References
� “SQLExecDirect - Execute a Statement Directly” on page 41
� “SQLExecute - Execute a Statement” on page 45
� “SQLNumResultCols - Get Number of Result Columns” on page 71

  Chapter 3. Required Functions 81



SQLSetParam

SQLSetParam - Set Parameter

 Purpose
SQLSetParam() associates (binds) DataJoiner storage to a parameter marker in an SQL
statement. When the statement is later executed, the contents of the bound variables
are sent to the database server. This function is also used to specify any required data
conversion.

 Syntax
SQLRETURN SQLSetParam (SQLHSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT fCType,

 SQLSMALLINT fSqlType,

 SQLINTEGER cbParamDef,

 SQLSMALLINT ibScale,

 SQLPOINTER rgbValue,

 SQLINTEGER \pcbValue);

 Function Arguments

Table 42 (Page 1 of 3). SQLSetParam Arguments

Data Type Argument Use Description

SQLHSTMT hstmt input Statement handle

SQLSMALLINT ipar input Parameter marker number

SQLSMALLINT fCType input C data type of argument. The following types are
supported:

 � SQL_C_CHAR
 � SQL_C_DATE
 � SQL_C_DEFAULT
 � SQL_C_DOUBLE
 � SQL_C_FLOAT
 � SQL_C_LONG
 � SQL_C_SHORT
 � SQL_C_TIME
 � SQL_C_TIMESTAMP

Specifying SQL_C_DEFAULT causes data to be
transferred from its default C data type for the type
indicated in fSqlType. SQL_C_DEFAULT can not be
specified for DECIMAL, NUMERIC or any of the graphic
data types.

82 DataJoiner Version 2 Generic Access API Reference  



SQLSetParam

Table 42 (Page 2 of 3). SQLSetParam Arguments

Data Type Argument Use Description

SQLSMALLINT fSqlType input SQL Data Type of column. The supported types are:

 � SQL_CHAR
 � SQL_DATE
 � SQL_DECIMAL
 � SQL_DOUBLE
 � SQL_FLOAT
 � SQL_GRAPHIC
 � SQL_INTEGER
 � SQL_LONGVARCHAR
 � SQL_LONGVARGRAPHIC
� SQL_NUMERIC (SQL/400 only)

 � SQL_REAL
 � SQL_SMALLINT
 � SQL_TIME
 � SQL_TIMESTAMP
 � SQL_VARCHAR
 � SQL_VARGRAPHIC

If the SQL data type for the column is SQL_GRAPHIC,
SQL_VARGRAPHIC, or SQL_LONGVARGRAPHIC then
fCType is not allowed to be anything else except
SQL_C_CHAR; otherwise, an error will occur during the
execution of the statement (and an SQLSTATE of 07006
will be generated).

SQLINTEGER cbParamDef input Precision of the corresponding parameter marker.

If fSqlType is:

 � SQL_CHAR, SQL_VARCHAR,
SQL_LONGVARCHAR, this is the maximum length
of the argument

 � SQL_GRAPHIC, SQL_VARGRAPHIC,
SQL_LONGVARGRAPHIC, this is the maximum
number of double-byte characters for this argument

� SQL_DECIMAL, SQL_NUMERIC, this is the
maximum decimal precision; otherwise, this
argument is unused

SQLSMALLINT ibScale input Scale of the corresponding parameter marker if fSqlType
is SQL_DECIMAL or SQL_NUMERIC. If fSqlType is
SQL_TIMESTAMP, this is the number of digits to the
right of the decimal point in the character representation
of a timestamp (for example, the scale of yyyy-mm-dd
hh:mm:ss.fff is 3).

Other than for the fSqlType values mentioned here,
ibScale is unused.

SQLPOINTER rgbValue input
(deferred)

Pointer to the location which contains (when the
statement is executed) the actual values for the
associated parameter marker.

  Chapter 3. Required Functions 83



SQLSetParam

Table 42 (Page 3 of 3). SQLSetParam Arguments

Data Type Argument Use Description

SQLINTEGER * pcbValue input
(deferred)

Pointer to the location which contains (when the
statement is executed) the length of the parameter
marker value stored at rgbValue.

To specify a null value for a parameter marker, this
storage location must contain SQL_NULL_DATA.

If fCType is SQL_C_CHAR, this storage location must
contain either the exact length of the data stored at
rgbValue, or SQL_NTS if the contents at rgbValue is
null-terminated.

If fCType indicates character data (explicitly, or implicitly
using SQL_C_DEFAULT), and this pointer is set to
NULL, DataJoiner will always provide a null-terminated
string in rgbValue. This also implies that this parameter
marker will never have a null value.

If fSqlType denotes a graphic data type, the pointer to
pcbValue can never be NULL and the contents of
pcbValue can never hold SQL_NTS. This length should
be the number of octets that the double byte data
occupies; therefore, the length should always be a
multiple of 2. In fact, if the length is odd, then an error
will occur when the statement is executed.

 Usage
Parameter markers are referenced by number (icol) and are numbered sequentially
from left to right, starting at 1.

The pointers, rgbValue and pcbValue, remain valid until the application has finished
executing the statement. The data in rgbValue must be in the form specified by the
fCType argument.

DataJoiner binds a variable to each parameter marker in the SQL statement before
executing the SQL statement. SQLSetParam() can be called before SQLPrepare if the
columns in the result set are known; otherwise, the attributes of the result set can be
obtained after the statement is prepared.

All parameters bound by this function remain in effect until SQLFreeStmt() is called with
the SQL_DROP option, or until SQLSetParam() is called again for the same parameter
ipar number.

After the SQL statement has been executed, and the results processed, DataJoiner can
reuse the statement handle to execute a different SQL statement.

The C buffer data type given by fCType must be compatible with the SQL data type
indicated by fSqlType, or an error will occur.

84 DataJoiner Version 2 Generic Access API Reference  



SQLSetParam

Since the data in the variables referenced by rgbValue and pcbValue is not verified until
the statement is executed, data content or format errors are not detected or reported
until SQLExecute() or SQLDirectExec() is called.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 43 (Page 1 of 2). SQLSetParam SQLSTATEs

SQLSTATE Description Explanation

07006 Restricted data
type attribute
violation.

The data value identified by the fCType argument cannot be
converted to the data type identified by the fSqlType argument.

The argument fCType is SQL_C_DEFAULT and the argument
fSqlType is one of SQL_DECIMAL, SQL_NUMERIC,
SQL_GRAPHIC, SQL_VARGRAPHIC, or SQL_LONGVARGRAPHIC.

40003 * Statement
completion
unknown.

The communication link between the driver and the data source to
which the driver was connected failed before the function completed
processing.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1003 Program type out
of range.

The value specified by the argument fCType not a valid data type or
SQL_C_DEFAULT.

S1004 SQL data type out
of range.

The value specified for the argument fSqlType is not a valid SQL
data type.

S1009 (optional) Invalid argument
value.

The argument rgbValue was a null pointer and the argument
pcbValue was a null pointer.

The value specified for the argument ipar was less than 1 or greater
than the maximum number of parameters supported by the data
source.

The value for the argument fSqlType was either SQL_DECIMAL or
SQL_NUMERIC and the value for the argument cbParamDef was
less than 1.

The value for the argument fSqlType is either SQL_DECIMAL or
SQL_NUMERIC and the value for the argument ibScale was less
than 0 or greater than the value for the argument cbParamDef.

The value for the argument fCType was SQL_C_TIMESTAMP and
the value for the argument fSqlType was either SQL_CHAR or
SQL_VARCHAR and the value for the argument ibScale was less
than 0 or greater than 6.

  Chapter 3. Required Functions 85



SQLSetParam

Table 43 (Page 2 of 2). SQLSetParam SQLSTATEs

SQLSTATE Description Explanation

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

S1C00 Driver not capable. The driver or data source does not support the conversion specified
by the combination of the value specified for the argument fCType
and the value specified for the argument fSqlType.

The value specified for the argument fCType or fSqlType is not
supported by either the driver or the data source.

 Restrictions
None.

 Example
Refer to “Example” on page 75.

 References
� “SQLExecDirect - Execute a Statement Directly” on page 41
� “SQLExecute - Execute a Statement” on page 45
� “SQLPrepare - Prepare a Statement” on page 73

86 DataJoiner Version 2 Generic Access API Reference  



SQLTransact

SQLTransact - Transaction Management

 Purpose
SQLTransact() commits or rolls back the current transaction in the connection.

All changes to the database performed on the connection since connect time or the
previous call to SQLTransact() (whichever is the most recent) are committed or rolled
back.

If a transaction is active on a connection, DataJoinercalls SQLTransact() before it
disconnects from the database.

 Syntax
SQLRETURN SQLTransact (SQLHENV henv,

 SQLHDBC hdbc,

 SQLSMALLINT fType);

 Function Arguments

Table 44. SQLTransact Arguments

Data Type Argument Use Description

SQLHENV henv input Environment handle.

If hdbc is a valid connection handle, henv is ignored.

SQLHDBC hdbc input Database connection handle.

If hdbc is set to SQL_NULL_HDBC, then henv will
contain the environment handle that the connection is
associated with.

SQLSMALLINT fType input The desired action for the transaction. The value for this
argument must be one of:

 � SQL_COMMIT
 � SQL_ROLLBACK

 Usage
In the generic access API, a transaction begins implicitly when a DataJoiner instance
that does not already have an active transaction issues SQLPrepare(), or
SQLExecDirect(). The transaction ends when DataJoinercalls SQLTransact().

Completing a transaction has the following effects:

� Prepared SQL statements do not survive transactions. DataJoinerprepares
statements again in order to execute them as part of a new transaction. This
means that statement handles are still valid after a call to SQLTransact(), and can
be reused for subsequent SQL statements or deallocated by calling SQLFreeStmt().

� Cursor names, bound parameters, and column bindings survive transactions.

  Chapter 3. Required Functions 87



SQLTransact

� Open cursors are closed and any result sets that are pending retrieval are
discarded.

If no transaction is currently active on the connection, calling SQLTransact() has no
effect on the database server and returns SQL_SUCCESS.

SQLTransact() can fail while executing the COMMIT or ROLLBACK due to a loss of
connection. In this case, DataJoiner can be unable to determine whether the COMMIT
or ROLLBACK has been processed, and a database administrator's help can be
required. Refer to the DBMS product information for more information on transaction
logs and other transaction management tasks.

 Return Codes
 � SQL_SUCCESS
 � SQL_ERROR
 � SQL_INVALID_HANDLE

 Diagnostics

Table 45. SQLTransact SQLSTATEs

SQLSTATE Description Explanation

08003 (optional) Connection not
open.

The hdbc was not in a connected state.

08007 Connection failure
during transaction.

The connection associated with the hdbc failed during the execution
of the function during the execution of the function and it cannot be
determined whether the requested COMMIT or ROLLBACK occurred
before the failure.

58004 System error. Unrecoverable system error.

S1001 Memory allocation
failure.

The driver is unable to allocate memory required to support
execution or completion of the function.

S1012 (optional) Invalid transaction
operation state.

The value specified for the argument fType was neither
SQL_COMMIT not SQL_ROLLBACK.

S1013 * Memory
management
problem.

The driver was unable to access memory required to support
execution or completion of the function.

 Restrictions
None.

 Example
Refer to “Example” on page 49.

88 DataJoiner Version 2 Generic Access API Reference  



SQLSTATE Cross Reference

Appendix A. General Diagnostic Information

This appendix contains information that various sections in this book refer to.

 Return Codes

Table 46. The Generic Access API Function Return Codes.

Return Code Value Description

SQL_SUCCESS 0 The function completed successfully; no additional
SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO 1 The function completed successfully, with a warning or
other information. Call SQLError() to receive the
SQLSTATE and other error information.

SQL_NO_DATA_FOUND 100 The function returned successfully, but no relevant
information was found.

SQL_ERROR -1 The function failed. Call SQLError() to receive the
SQLSTATE and any other error information.

SQL_INVALID_HANDLE -2 The function failed due to an invalid handle
(environment, connection or statement handle) passed
as an input argument.

SQLSTATE Cross Reference
Table 47 cross-references all the SQLSTATEs that are listed in the Diagnostics section
of each function description in Chapter 3, “Required Functions” on page 13.

Table 47 (Page 1 of 6). SQLSTATE Cross Reference

SQLSTATE Description Functions

01002 Disconnect error.  � SQLDisconnect()

01004 Data truncated.  � SQLDescribeCol()

 � SQLFetch()

 � SQLGetCursorName()

01504 * No WHERE clause.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

01508 * No blocking.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

07001 Wrong number of parameters.  � SQLExecDirect()

 � SQLExecute()

07002 * Invalid column number.  � SQLFetch()

 Copyright IBM Corp. 1995, 1997  89



SQLSTATE Cross Reference

Table 47 (Page 2 of 6). SQLSTATE Cross Reference

SQLSTATE Description Functions

07005 * Not a SELECT statement.  � SQLDescribeCol()

07006 Restricted data type attribute violation.  � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

 � SQLSetParam()

08001 Unable to connect to data source.  � SQLConnect()

08002 Connection is use.  � SQLConnect()

08003 Connection not open.  � SQLAllocStmt()

 � SQLDisconnect()

 � SQLTransact()

08004 Data source rejected establishment of connection.  � SQLConnect()

08007 Connection failure during transaction.  � SQLTransact()

21S01 Insert value list does not match column list.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

21S02 Degrees of derived table does not match column list.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

22001 String data right truncation.  � SQLExecDirect()

 � SQLExecute()

22002 Invalid length buffer.  � SQLFetch()

22003 Numeric value out of range.  � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

22005 Error in assignment.  � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

22007 * Invalid date time format.  � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

22008 Datetime field overflow.  � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

22012 Division by zero.  � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

23000 Integrity constraint violation.  � SQLExecDirect()

 � SQLExecute()

24000 Invalid cursor state.  � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

 � SQLPrepare()

90 DataJoiner Version 2 Generic Access API Reference  



SQLSTATE Cross Reference

Table 47 (Page 3 of 6). SQLSTATE Cross Reference

SQLSTATE Description Functions

24504 * Invalid cursor state.  � SQLExecDirect()

 � SQLExecute()

25000 Invalid transaction state.  � SQLDisconnect()

28000 Invalid authorization specification.  � SQLConnect()

34000 Invalid cursor name.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

37xxx Syntax error or access violation.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

40000 * Serialization failure.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

40003 * Statement completion unknown.  � SQLAllocStmt()

 � SQLBindCol()

 � SQLDescribeCol()

 � SQLDisconnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

 � SQLFreeStmt()

 � SQLGetCursorName()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLRowCount()

 � SQLSetParam()

42xxx Syntax error or access violation.  � SQLPrepare()

42504 Syntax error or access violation.  � SQLExecDirect()

 � SQLExecute()

44000 Integrity constraint violation.  � SQLExecDirect()

 � SQLExecute()

  Appendix A. General Diagnostic Information 91



SQLSTATE Cross Reference

Table 47 (Page 4 of 6). SQLSTATE Cross Reference

SQLSTATE Description Functions

58004 System error.  � SQLAllocEnv()

 � SQLAllocStmt()

 � SQLBindCol()

 � SQLConnect()

 � SQLDescribeCol()

 � SQLDisconnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

 � SQLFreeConnect()

 � SQLFreeEnv()

 � SQLFreeStmt()

 � SQLGetCursorName()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLRowCount()

 � SQLSetParam()

 � SQLTransact()

S0001 Base table or view already exists.  � SQLPrepare()

S0002 Table or view not found.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

S0011 Index already exists.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

S0012 Index not found.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

S0021 Column already exists.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

S0022 Column not found.  � SQLExecDirect()

 � SQLExecute()

 � SQLPrepare()

S1000 General error.  �

92 DataJoiner Version 2 Generic Access API Reference  



SQLSTATE Cross Reference

Table 47 (Page 5 of 6). SQLSTATE Cross Reference

SQLSTATE Description Functions

S1001 Memory allocation failure.  � SQLAllocConnect()

 � SQLAllocStmt()

 � SQLBindCol()

 � SQLConnect()

 � SQLDescribeCol()

 � SQLDisconnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

 � SQLFreeConnect()

 � SQLFreeEnv()

 � SQLFreeStmt()

 � SQLGetCursorName()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLRowCount()

 � SQLSetParam()

 � SQLTransact()

S1002 Invalid column number.  � SQLBindCol()

 � SQLDescribeCol()

S1003 Program type out of range.  � SQLBindCol()

 � SQLSetParam()

S1004 SQL data type out of range.  � SQLSetParam()

S1009 Invalid argument value.  � SQLAllocConnect()

 � SQLAllocStmt()

 � SQLBindCol()

 � SQLConnect()

 � SQLDescribeCol()

 � SQLExecDirect()

 � SQLFreeStmt()

 � SQLGetCursorName()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLRowCount()

 � SQLSetParam()

S1010 Function sequence error.  � SQLDescribeCol()

 � SQLExecute()

 � SQLFetch()

 � SQLFreeConnect()

 � SQLFreeEnv()

 � SQLGetCursorName()

 � SQLNumResultCols()

 � SQLRowCount()

S1012 Invalid transaction operation state.  � SQLTransact()

  Appendix A. General Diagnostic Information 93



SQLSTATE Cross Reference

Table 47 (Page 6 of 6). SQLSTATE Cross Reference

SQLSTATE Description Functions

S1013 * Memory management problem.  � SQLAllocConnect()

 � SQLAllocStmt()

 � SQLBindCol()

 � SQLConnect()

 � SQLDescribeCol()

 � SQLDisconnect()

 � SQLExecDirect()

 � SQLExecute()

 � SQLFetch()

 � SQLFreeConnect()

 � SQLFreeEnv()

 � SQLGetCursorName()

 � SQLNumResultCols()

 � SQLPrepare()

 � SQLRowCount()

 � SQLSetParam()

 � SQLTransact()

S1014 * Out of handles.  � SQLAllocConnect()

 � SQLAllocStmt()

S1015 No cursor name available.  � SQLGetCursorName()

S1103 Direction option out of range.  �

S1501 * Invalid data source name.  � SQLConnect()

S1C00 Driver not capable.  � SQLBindCol()

 � SQLDescribeCol()

 � SQLFetch()

 � SQLSetParam()

94 DataJoiner Version 2 Generic Access API Reference  



Data Types

 Appendix B. Data Conversion

This section contains tables that are used for data conversion between C and SQL data
types. This includes:

� SQL and C data types

� Precision, scale, length, and display size of each data type

� Supported data conversion

� Conversion from SQL to C data types

� Conversion from C to SQL data types

 Data Types
This section is intended to be used as a reference.

Table 48 (Page 1 of 2). SQL Data Types and Default C Data Types

SQL Type
SQL Symbolic C Symbolic

Generic C Type
ODBC C Type Actual C type

CHAR
SQL_CHAR

SQL_C_CHAR SQLCHAR
UCHAR

unsigned char

VARCHAR
SQL_VARCHAR

SQL_C_CHAR SQLCHAR
UCHAR

unsigned char

LONGVARCHAR
SQL_LONGVARCHAR

SQL_C_CHAR SQLCHAR
UCHAR

unsigned char

GRAPHIC 1
SQL_GRAPHIC

SQL_C_CHAR SQLCHAR
UCHAR

unsigned char

VARGRAPHIC 1

SQL_VARGRAPHIC
SQL_C_CHAR SQLCHAR

UCHAR
unsigned char

LONGVARGRAPHIC1

SQL_LONGVARGRAPHIC
SQL_C_CHAR SQLCHAR

UCHAR
unsigned char

SMALLINT
SQL_SMALLINT

SQL_C_SHORT SQLSMALLINT
SWORD

short int

INTEGER
SQL_INTEGER

SQL_C_LONG SQLINTEGER
SDWORD

long int

DECIMAL 1

SQL_DECIMAL
SQL_C_CHAR SQLCHAR

UCHAR
unsigned char

NUMERIC 1

SQL_NUMERIC
SQL_C_CHAR SQLCHAR

UCHAR
unsigned char

DOUBLE
SQL_DOUBLE

SQL_C_DOUBLE SQLDOUBLE
SDOUBLE

double

FLOAT
SQL_FLOAT

SQL_C_DOUBLE SQLDOUBLE
SDOUBLE

double

REAL
SQL_REAL

SQL_C_FLOAT SQLREAL
SFLOAT

float

DATE
SQL_DATE

SQL_C_DATE DATE_STRUCT see Table 49 on page 96

 Copyright IBM Corp. 1995, 1997  95



Data Types

Table 48 (Page 2 of 2). SQL Data Types and Default C Data Types

SQL Type
SQL Symbolic C Symbolic

Generic C Type
ODBC C Type Actual C type

TIME
SQL_TIME

SQL_C_TIME TIME_STRUCT See Table 49 on page 96.

TIMESTAMP
SQL_TIMESTAMP

SQL_C_TIMESTAMP TIMESTAMP_STRUCT See Table 49 on page 96.

Note:  1  SQL_C_DEFAULT cannot be used for SQL_DECIMAL, SQL_NUMERIC, SQL_GRAPHIC, SQL_VARGRAPHIC, and
SQL_LONGVARGRAPHIC. For these data types you must specify the C symbolic data type (SQL_C_CHAR) explicitly.

Table 49. C DATE, TIME, and TIMESTAMP Structures

C Type Generic Structure ODBC Structure

DATE_STRUCT typedef struct DATE_STRUCT

 {

 SQLSMALLINT year;

 SQLSMALLINT month;

 SQLSMALLINT day;

 } DATE_STRUCT;

typedef struct tagDATE_STRUCT

 {

 SWORD year;

 UWORD month;

 UWORD day;

 } DATE_STRUCT;

TIME_STRUCT typedef struct TIME_STRUCT

 {

 SQLSMALLINT hour;

 SQLSMALLINT minutes;

 SQLSMALLINT second;

 } TIME_STRUCT;

typedef struct tagTIME_STRUCT

 {

 UWORD hour;

 UWORD minutes;

 UWORD second;

 } TIME_STRUCT;

TIMESTAMP_STRUCT typedef struct TIMESTAMP_STRUCT

 {

 SQLSMALLINT year;

 SQLSMALLINT month;

 SQLSMALLINT day;

 SQLSMALLINT hour;

 SQLSMALLINT minute;

 SQLSMALLINT second;

 SQLINTEGER fraction;

 } TIMESTAMP_STRUCT;

typedef struct tagTIMESTAMP_STRUCT

 {

 SWORD year;

 UWORD month;

 UWORD day;

 UWORD hour;

 UWORD minute;

 UWORD second;

 UDWORD fraction;

 } TIMESTAMP_STRUCT;

Other C Data Types
 

Table 50. Generic Data Types and Actual C Data Types (DOS, UNIX, OS/2)

Symbolic Type Actual C Type Typical Usage

SQLPOINTER void * Pointers to storage for data and parameters.

SQLHENV long int Handle referencing environment information.

SQLHDBC long int Handle referencing database connection information.

SQLHSTMT long int Handle referencing statement information.

SQLRETURN long int Return code from the generic access API functions.

96 DataJoiner Version 2 Generic Access API Reference  



Data Types

Table 51. ODBC Argument Data Types and Actual C Data Types (Windows)

ODBC Type Actual C Type Typical Usage

PTR void FAR * Pointers to storage for data and parameters.

HENV void FAR * Handle referencing environment information.

HDBC void FAR * Handle referencing database connection information.

HSTMT void FAR * Handle referencing statement information.

RETCODE int Return code from the generic access API functions.

 Precision
The precision of a numeric column or parameter refers to the maximum number of
digits that areused by the data type of the column or parameter. The precision of a
non-numeric column or parameter generally refers to the maximum length or the
defined length of the column or parameter. The following table defines the precision for
each SQL data type.

  Appendix B. Data Conversion 97



Data Types

Table 52. Precision

fSqlType Precision

SQL_CHAR
SQL_VARCHAR

The defined length of the column or parameter. For example,
the precision of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column or parameter. a

SQL_DECIMAL
SQL_NUMERIC

The defined maximum number of digits. For example,
the precision of a column defined as NUMERIC(10,3) is 10.

SQL_SMALLINT b 5

SQL_INTEGER b 10

SQL_FLOAT b 15

SQL_REAL b 7

SQL_DOUBLE b 15

SQL_DATE b 10 (the number of characters in the yyyy-mm-dd format).

SQL_TIME b 8 (the number of characters in the hh:mm:ss format).

SQL_TIMESTAMP The number of characters in the “yyy-mm-dd hh:mm:ss[.fff[fff]]” format
used by the TIMESTAMP data type. For example, if a timestamp does not
use seconds or fractional seconds, the precision is 16 (the number of
characters in the “yyyy-mm-dd hh:mm” format). If a timestamp
uses thousandths of a second, the precision is 23 (the number of
characters in the “yyyy-mm-dd hh:mm:ss.fff” format).

SQL_GRAPHIC
SQL_VARGRAPHIC

The defined length of the column or parameter. For example, the
precision of a column defined as GRAPHIC(10) is 10.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

Note: 

a When defining the precision of a parameter of this data type with SQLSetParam , cbParamDef
should be set to the total length of the data, not the precision as defined in this table.

b The cbParamDef argument of SQLSetParam  is ignored for this data type.

 Scale
The scale of a numeric column or parameter refers to the maximum number of digits to
the right of the decimal point. Note that, for approximate floating point number columns
or parameters, the scale is undefined, since the number of digits to the right of the
decimal place is not fixed. The following table defines the scale for each SQL data type.

98 DataJoiner Version 2 Generic Access API Reference  



Data Types

Table 53. Scale

fSqlType Scale

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Not applicable.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the decimal
place. For example, the scale of a column defined as
NUMERIC(10, 3) is 3.

SQL_SMALLINT
SQL_INTEGER

0

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Not applicable.

SQL_DATE
SQL_TIME

Not applicable.

SQL_TIMESTAMP The number of digits to the right of the decimal point in the
“yyyy-mm-dd hh:mm:ss[fff[fff]]” format.
For example, if the TIMESTAMP data type uses the
“yyyy-mm-dd hh:mm:ss.fff” format, the scale is 3.

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC

Not applicable.

 Length
The length of a column is the maximum number of bytes returned to the application
when data is transferred to its default C data type. For character data, the length does
not include the null termination byte. Note that the length of a column may be different
than the number of bytes required to store the data on the data source. For a list of
default C data types, see the "Default C Data Types” section.

The following table defines the length for each SQL data type.

  Appendix B. Data Conversion 99



Data Types

Table 54. Length

fSqlType Length

SQL_CHAR
SQL_VARCHAR

The defined length of the column.
For example, the length of a column defined as CHAR(10)
is 10.

SQL_LONGVARCHAR The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The maximum number of digits plus two.
Since these data types are returned as character strings,
characters are needed for the digits, a sign, and a decimal
point. For example, the length of a column defined as
NUMERIC(10,3 is 12.

SQL_SMALLINT 2 (two bytes).

SQL_INTEGER 4 (four bytes).

SQL_REAL 4 (four bytes).

SQL_FLOAT 8 (eight bytes).

SQL_DOUBLE 8 (eight bytes).

SQL_DATE
SQL_TIME

6 (the size of the DATE_STRUCT or TIME_STRUCT
structure).

SQL_TIMESTAMP 16 (the size of the TIMESTAMP_STRUCT structure).

SQL_GRAPHIC
SQL_VARGRAPHIC

The defined length of the column times 2.
For example, the length of a column defined as
GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column times 2.

 Display Size
The display size of a column is the maximum number of bytes needed to display data
in character form. The following table defines the display size for each SQL data type.

100 DataJoiner Version 2 Generic Access API Reference  



Table 55. Display Size

fSqlType Display Size

SQL_CHAR
SQL_VARCHAR

The defined length of the column.
For example, the display size of a column defined as
CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The precision of the column plus two (a sign, precision
digits, and a decimal point). For example, the display size
of a column defined as NUMERIC(10,3) is 12.

SQL_SMALLINT 6 (a sign and 5 digits).

SQL_INTEGER 11 (a sign and 10 digits).

SQL_REAL 13 (a sign, 7 digits, a decimal point, the letter E, a sign, and
2 digits).

SQL_FLOAT
SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a sign,
and 3 digits).

SQL_DATE 10 (a date in the format yyyy-mm-dd).

SQL_TIME 8 (a time in the format hh:mm:ss).

SQL_TIMESTAMP 19 (if the scale of the timestamp is 0) or 20 plus the scale
of the timestamp (if the scale is greater than 0).
This is the number of characters in the
“yyyy-mm-dd hh:mm:ss[fff[fff]]” format.
For example, the display size of a column storing
thousandths of a second is 23 (the number of characters in
“yyyy-mm-dd hh:mm:ss.fff”).

SQL_GRAPHIC
SQL_VARGRAPHIC

The defined length of the column or parameter.
For example, the display size of a column defined as
CHAR(10) is 10.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter. a

Supported Data Conversion

  Appendix B. Data Conversion 101



SQL to C Data Types

Table 56. Supported Data Conversions

Source
Data
Type

L
O
N
G
V
A
R
G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

G
R
A
P
H
I
C

L
O
N
G
V
A
R
B
I
N
A
R
Y

T
I
M
E
S
T
A
M
P

T
I
M
E

D
A
T
E

B
I
G
I
N
T

T
I
N
Y
I
N
T

B
I
T

V
A
R
B
I
N
A
R
Y

B
I
N
A
R
Y

L
O
N
G
V
A
R
C
H
A
R

V
A
R
C
H
A
R

D
O
U
B
L
E

R
E
A
L

F
L
O
A
T

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

D
E
C
I
M
A
L

N
U
M
E
R
I
C

C
H
A
R

CHAR
VARCHAR

X X X 1 X X 2 X X X 3 X

LONGVARCHAR 1 1 1

GRAPHIC
VARGRAPHIC

1 X X

LONGVAR-
GRAPHIC

1 1 1

INTEGER
SMALLINT
DECIMAL
NUMERIC
DOUBLE
FLOAT

X X 2 X X X 3 X

DATE X X X X

TIME X X X X

TIMESTAMP X X X X X

Converting Data from SQL to C Data Types
The tables in the following sections describe how the driver of the data source converts
data that is retrieved from the data source. For a given SQL data type:

� The first column of the table lists the legal input values of the fCType argument in
SQLBindCol  and SQLGetData .

� The second column lists the outcomes of a test, often using the cbValueMax
argument specified in SQLBindCol  or SQLGetData , which the driver performs to
determine if it can convert the data.

� The third and fourth columns list the values (for each outcome) of the rgbValue and
pcbValue arguments specified in the SQLBindCol  or SQLGetData  after the driver
has attempted to convert the data.

� The last column lists the SQLSTATE returned for each outcome by SQLFetch  or
SQLGetData .

102 DataJoiner Version 2 Generic Access API Reference  



SQL to C Data Types

The tables list the conversions that are defined by ODBC to be valid for a given SQL
data type.

If the fCType argument in SQLBindCol  or SQLGetData  contains a value not shown in
the table for a given SQL data type, SQLFetch , or SQLGetData  returns the
SQLSTATE 07006 (Restricted data type attribute violation).

If the fCType argument contains a value that is shown in the table but that specifies a
conversion not supported by the driver, SQLFetch , or SQLGetData  returns SQLSTATE
S1C00 (Driver not capable).

Though it is not shown in the tables, the pcbValue argument contains
SQL_NULL_DATA when the SQL data value is NULL. For an explanation of the use of
pcbValue when multiple calls are made to retrieve data, see SQLGetData .

When SQL data is converted to character C data, the character count returned in
pcbValue does not include the null termination byte. If rgbValue is a null pointer,
SQLBindCol  or SQLGetData  returns SQLSTATE S1009 (Invalid argument value).

In the following tables:

Length of data
The total length of the data after it has been converted to the specified C data
type (excluding the null termination byte if the data was converted to a string).
This is true even if data is truncated before it is returned to the application.

Significant digits
The minus sign (if needed) and the digits to the left of the decimal point.

Display size
The total number of bytes needed to display data in the character format.

Converting Character SQL Data to C Data
The character SQL data types are:

 SQL_CHAR
 SQL_VARCHAR
 SQL_LONGVARCHAR

  Appendix B. Data Conversion 103



SQL to C Data Types

Table 57. Converting Character SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data <
cbValueMax

Data Length of data 00000

Length of data >=
cbValueMax

Truncated
data

Length of data 01004

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_DOUBLE

Data converted without
truncationa

Data Size of the C
data type

00000

Data converted with
truncation, but without loss
of significant digitsa

Data Size of the C
data type

01004

Conversion of data would
result in loss of significant
digitsa

Untouched Size of the C
data type

22003

Data is not a numbera Untouched Size of the C
data type

22005

SQL_C_DATE Data value is a valid datea Data 6b 00000

Data value is not a valid
datea

Untouched 6b 22007

SQL_C_TIME Data value is a valid timea Data 6b 00000

Data value is not a valid
timea

Untouched 6b 22008

SQL_C_TIMESTAMP Data value is a valid
timestamp a

Data 16 b 00000

Data value is not a valid
timestamp a

Untouched 16 b 22008

Note: 

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Graphic SQL Data to C Data
The graphic SQL data types are:

 SQL_GRAPHIC
 SQL_VARGRAPHIC
 SQL_LONGVARGRAPHIC

104 DataJoiner Version 2 Generic Access API Reference  



SQL to C Data Types

Table 58. Converting Graphic SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Number of double byte
characters * 2 <=
cbValueMax

Data Length of
data(octects)

00000

Number of double byte
characters * 2 >
cbValueMax

Truncated
data, to the
nearest even
byte that is
less than
cbValueMax.

Length of
data(octects)

01004

Note: 

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Numeric SQL Data to C Data
The numeric SQL data types are:

 SQL_DECIMAL
 SQL_NUMERIC
 SQL_SMALLINT
 SQL_INTEGER
 SQL_REAL
 SQL_FLOAT
 SQL_DOUBLE

  Appendix B. Data Conversion 105



SQL to C Data Types

Table 59. Converting Numeric SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of data 00000

Number of significant digits
< cbValueMax

Truncated
data

Length of data 01004

Number of significant digits
>= cbValueMax

Untouched Length of data 22003

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_DOUBLE

Data converted without
truncationa

Data Size of the C
data type

00000

Data converted with
truncation, but without loss
of significant digitsa

Truncated
data

Size of the C
data type

01004

Conversion of data would
result in loss of significant
digitsa

Untouched Size of the C
data type

22003

Note: 

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Date SQL Data to C Data
The date SQL data type is:

 SQL_DATE

Table 60. Converting Date SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 11 Data 10 00000

cbValueMax < 11 Untouched 10 22003

SQL_C_DATE Nonea Data 6b 00000

SQL_C_TIMESTAMP Nonea Datac 16b 00000

Note: 

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.
c The date fields of the TIMESTAMP_STRUCT structure are set to zero.

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

When the date SQL data type is converted to the character C data type, the resulting
string is in the “yyyy-mm-dd” format.

106 DataJoiner Version 2 Generic Access API Reference  



SQL to C Data Types

Converting Time SQL Data to C Data
The time SQL data type is:

 SQL_TIME

Table 61. Converting Time SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 9 Data 8 00000

cbValueMax < 9 Untouched 8 22003

SQL_C_DATE Nonea Data 6b 00000

SQL_C_TIMESTAMP Nonea Datac 16b 00000

Note: 

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.
c The date fields of the TIMESTAMP_STRUCT structure are set to zero.

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

When the time SQL data type is converted to the character C data type, the resulting
string is in the "hh:mm:ss” format.

Converting Timestamp SQL Data to C Data
The timestamp SQL data type is:

 SQL_TIMESTAMP

  Appendix B. Data Conversion 107



SQL to C Data Types

Table 62. Converting Timestamp SQL Data to C Data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of data 00000

19 <= cbValueMax <=
Display size

Truncated
Datab

Length of data 01004

cbValueMax < 19 Untouched Length of data 22003

SQL_C_DATE Nonea Truncated
datac

6e 01004

SQL_C_TIME Nonea Truncated
datad

6e 01004

SQL_C_TIMESTAMP Nonea Data 16e 00000

Note: 

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b The fractional seconds of the timestamp are truncated.
c The time portion of the timestamp is deleted.
d The date portion of the timestamp is deleted.
e This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

When the timestamp SQL data type is converted to the character C data type, the
resulting string is in the “yyyy-mm-dd hh:mm:ss[.fff[fff]]” format (regardless of the
precision of the timestamp SQL data type).

SQL to C Data Conversion Examples

108 DataJoiner Version 2 Generic Access API Reference  



C to SQL Data Types

Table 63. SQL to C Data Conversion Examples

SQL Data Type
SQL
Data Value C Data Type cbValueMax rgbValue

SQL
STATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a 00000

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a 00000

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 --- 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 00000

SQL_DECIMAL 1234.56 SQL_C_SHORT ignored 1234 01004

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 a 00000

SQL_DATE 1992-12-31 SQL_C_CHAR 10 --- 22003

SQL_DATE 1992-12-31 SQL_C_TIMESTAMP ignored 1992,12,31,
0,0,0,0 b

00000

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0 a

00000

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 18 --- 22003

Note: 

a "\0" represents a null termination character.
b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT

structure.

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Data from C to SQL Data Types
The tables in the following sections describe how the driver or data source converts
data sent to the data source. For a given C data type:

� The first column of the table lists the legal input values of the fSqlType argument in
SQLSetParam .

� The second column lists the outcomes of a test, often using the length of the
parameter data as specified in the pcbValue argument in SQLSetParam , which the
driver performs to determine if it can convert the data.

� The third column lists the SQLSTATE returned for each outcome by
SQLExecDirect  or SQLExecute .

Note:  Data is sent to the data source only if the SQLSTATE is 00000 (Success).

  Appendix B. Data Conversion 109



C to SQL Data Types

The tables list the conversions that are defined by ODBC to be valid for a given SQL
data type.

If the fSqlType argument in SQLSetParam  contains a value not shown in the table for
a given C data type, SQLSetParam  returns SQLSTATE 07006 (Restricted data type
attribute violation).

If the fSqlType argument contains a value that is shown in the table but that specifies a
conversion not supported by the driver, SQLSetParam  returns SQLSTATE S1C00
(Driver not capable).

If the rgbValue and pcbValue arguments specified in SQLSetParam  are both null
pointers, that function returns SQLSTATE S1009 (Invalid argument value).

Length of data
The total length of the data after it has been converted to the specified SQL
data type (excluding the null termination byte if the data was converted to a
string). This is true even if data is truncated before it is sent to the data source.

Column length
The maximum number of bytes returned to the application when data is
transferred to its default C data type. For character data, the length does not
include the null termination byte.

Display size
The maximum number of bytes needed to display data in character form.

Significant digits
The minus sign (if needed) and the digits to the left of the decimal point.

Converting Character C Data to SQL Data
The character C data type is:

 SQL_C_CHAR

110 DataJoiner Version 2 Generic Access API Reference  



C to SQL Data Types

Table 64. Converting Character C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data <= Column length 00000

Length of data > Column length 22001

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation 00000

Data converted with truncation, but without loss of
significant digits

22001

Conversion of data would result in loss of significant digits 22003

Data value is not a numeric value 22005

SQL_DATE Data value is a valid date 00000

Data value is not a valid date 22008

SQL_TIME Data value is a valid time 00000

Data value is not a valid time 22008

SQL_TIMESTAMP Data value is a valid timestamp 00000

Data value is not a valid timestamp 22008

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC

Length of data / 2 <= Column length 00000

Length of data / 2 < Column length 22001

Note: 

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Numeric C Data to SQL Data
The numeric C data types are:

 SQL_C_SHORT
 SQL_C_LONG
 SQL_C_FLOAT
 SQL_C_DOUBLE

  Appendix B. Data Conversion 111



C to SQL Data Types

Table 65. Converting Numeric C Data to SQL Data

fSQLType Test SQLSTATE

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation 00000

Data converted with truncation, but without loss of
significant digits

22001

Conversion of data would result in loss of significant digits 22003

SQL_CHAR
SQL_VARCHAR

Data converted without truncation. 00000

Conversion of data would result in loss of significant digits. 22003

Note: 

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Date C Data to SQL Data
The date C data type is:

 SQL_C_DATE

Table 66. Converting Date C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 10 00000

Column length < 10 22003

SQL_DATE Data value is a valid date 00000

Data value is not a valid date 22007

Note: 

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Time C Data to SQL Data
The time C data type is:

 SQL_C_TIME

112 DataJoiner Version 2 Generic Access API Reference  



C to SQL Data Types

Table 67. Converting Time C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 8 00000

Column length < 8 22003

SQL_TIME Data value is a valid time 00000

Data value is not a valid time 22008

Note: 

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

Converting Timestamp C Data to SQL Data
The timestamp C data type is:

 SQL_C_TIMESTAMP

Table 68. Converting Timestamp C Data to SQL Data

fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= Display size 00000

19 <= Column length < Display sizea 22001

Column length < 19 22003

SQL_DATE Data value is a valid dateb 22001

Data value is not a valid date 22007

SQL_TIME Data value is a valid timec 22001

Data value is not a valid time 22008

SQL_TIMESTAMP Data value is a valid timestamp 00000

Data value is not a valid timestamp 22008

Note: 

a The fractional seconds of the timestamp are truncated.
b The time portion of the timestamp is deleted.
c The date portion of the timestamp is deleted.

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

C to SQL Data Conversion Examples

  Appendix B. Data Conversion 113



C to SQL Data Types

Table 69. C to SQL Data Conversion Examples

C Data Type C Data Value SQL Data Type Column length SQL Data Value SQL STATE

SQL_C_CHAR abcdef\0 SQL_CHAR 6 abcdef 00000

SQL_C_CHAR abcdef\0 SQL_CHAR 5 abcde 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 6 1234.56 00000

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 5 1234.5 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 3 --- 22003

SQL_C_FLOAT 1234.56 SQL_FLOAT not
applicable

1234.56 00000

SQL_C_FLOAT 1234.56 SQL_INTEGER not
applicable

1234 22001

Note: 

SQLSTATE 00000 is not returned by SQLError(); rather, it is indicated when the function returns
SQL_SUCCESS.

114 DataJoiner Version 2 Generic Access API Reference  



Appendix C. Command Line Interface Include File

This is a common file used by the API to describe function calls and structures and
constants for the API. It is called SQLCLI.H and is found in <your instance
path>/sqllib/include.

/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 \

 \ Source File Name = SQLCLI.H 1.19

 \ engn/cli/sqlcli.h, engn, engn_drv_aix

 \

 \ (C) COPYRIGHT International Business Machines Corp. 1993

 \ All Rights Reserved

 \ Licensed Materials - Property of IBM

 \

 \ US Government Users Restricted Rights - Use, duplication or

 \ disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 \

 \ Function = Include File defining:

 \ CLI Interface - Constants

 \ CLI Interface - Data Structures

 \ CLI Interface - Function Prototypes

 \

 \ Operating System = Common C Include File

 \

 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

#ifndef SQL_H_SQLCLI

#define SQL_H_SQLCLI /\ Permit duplicate Includes \/

#include "sqlsystm.h" /\ System dependent defines \/

/\ generally useful constants \/

#define SQL_NTS -3 /\ NTS = Null Terminated String \/

#define SQL_SQLSTATE_SIZE 5 /\ size of SQLSTATE, not including

null terminating byte \/

#define SQL_MAX_MESSAGE_LENGTH 1ð24 /\ message buffer size \/

#define SQL_MAX_DSN_LENGTH 32 /\ maximum data source name size \/

#define SQL_MAX_ID_LENGTH 18 /\ maximum identifier name size,

e.g. cursor names \/

/\ RETCODE values \/

#define SQL_SUCCESS ð

#define SQL_SUCCESS_WITH_INFO 1

#define SQL_NO_DATA_FOUND 1ðð

#define SQL_NO_DATA SQL_NO_DATA_FOUND

#define SQL_ERROR -1

#define SQL_INVALID_HANDLE -2

/\ SQLFreeStmt option values \/

#define SQL_CLOSE ð

 Copyright IBM Corp. 1995, 1997  115



#define SQL_DROP 1

#define SQL_UNBIND 2

#define SQL_RESET_PARAMS 3

/\ SQLSetParam defines \/

#define SQL_C_DEFAULT 99

/\ SQLTransact option values \/

#define SQL_COMMIT ð

#define SQL_ROLLBACK 1

/\ Standard SQL data types \/

#define SQL_CHAR 1

#define SQL_NUMERIC 2

#define SQL_DECIMAL 3

#define SQL_INTEGER 4

#define SQL_SMALLINT 5

#define SQL_FLOAT 6

#define SQL_REAL 7

#define SQL_DOUBLE 8

#define SQL_DATE 9

#define SQL_TIME 1ð

#define SQL_TIMESTAMP 11

#define SQL_VARCHAR 12

/\ SQL extended data types \/

#define SQL_LONGVARCHAR -1

#define SQL_BINARY -2 /\ Not supported \/

#define SQL_VARBINARY -3 /\ Not supported \/

#define SQL_LONGVARBINARY -4 /\ Not supported \/

#define SQL_BIGINT -5 /\ Not supported \/

#define SQL_TINYINT -6 /\ Not supported \/

#define SQL_BIT -7 /\ Not supported \/

#define SQL_GRAPHIC -8

#define SQL_VARGRAPHIC -9

#define SQL_LONGVARGRAPHIC -1ð

/\ C data type to SQL data type mapping \/

#define SQL_C_CHAR SQL_CHAR /\ CHAR, VARCHAR, DECIMAL, NUMERIC \/

#define SQL_C_LONG SQL_INTEGER /\ INTEGER \/

#define SQL_C_SHORT SQL_SMALLINT /\ SMALLINT \/

#define SQL_C_FLOAT SQL_REAL /\ REAL \/

#define SQL_C_DOUBLE SQL_DOUBLE /\ FLOAT, DOUBLE \/

#define SQL_C_DATE SQL_DATE /\ DATE \/

#define SQL_C_TIME SQL_TIME /\ TIME \/

#define SQL_C_TIMESTAMP SQL_TIMESTAMP /\ TIMESTAMP \/

#define SQL_C_BINARY SQL_BINARY /\ Not supported \/

#define SQL_C_BIT SQL_BIT /\ Not supported \/

#define SQL_C_TINYINT SQL_TINYINT /\ Not supported \/

/\

 \ NULL status defines; these are used in SQLColAttributes, SQLDescribeCol,

116 DataJoiner Version 2 Generic Access API Reference  



 \ to describe the nullability of a column in a table.

 \/

#define SQL_NO_NULLS ð

#define SQL_NULLABLE 1

/\ Special length values \/

#define SQL_NULL_DATA -1

/\ NULL handle defines \/

#define SQL_NULL_HENV ðL

#define SQL_NULL_HDBC ðL

#define SQL_NULL_HSTMT ðL

/\ SQL portable types for C \/

#ifdef DB2WIN

typedef unsigned char UCHAR;

typedef signed char SCHAR;

typedef long int SDWORD;

typedef short int SWORD;

typedef unsigned long int UDWORD;

typedef unsigned short int UWORD;

typedef double SDOUBLE;

typedef float SFLOAT;

typedef void FAR \ PTR;

typedef void FAR \ HENV;

typedef void FAR \ HDBC;

typedef void FAR \ HSTMT;

typedef int RETCODE;

/\ The following are provided to enhance portability to/from WINDOWS \/

typedef UCHAR SQLCHAR;

typedef SDWORD SQLINTEGER;

typedef SWORD SQLSMALLINT;

typedef SDOUBLE SQLDOUBLE;

typedef SFLOAT SQLREAL;

typedef PTR SQLPOINTER;

typedef HENV SQLHENV;

typedef HDBC SQLHDBC;

typedef HSTMT SQLHSTMT;

typedef RETCODE SQLRETURN;

typedef struct tagDATE_STRUCT

 {

 SWORD year;

  Appendix C. Command Line Interface Include File 117



 UWORD month;

 UWORD day;

 } DATE_STRUCT;

typedef struct tagTIME_STRUCT

 {

 UWORD hour;

 UWORD minute;

 UWORD second;

 } TIME_STRUCT;

typedef struct tagTIMESTAMP_STRUCT

 {

 SWORD year;

 UWORD month;

 UWORD day;

 UWORD hour;

 UWORD minute;

 UWORD second;

UDWORD fraction; /\ fraction of a second \/

 } TIMESTAMP_STRUCT;

#else

typedef unsigned char SQLCHAR;

typedef long int SQLINTEGER;

typedef short int SQLSMALLINT;

typedef double SQLDOUBLE;

typedef float SQLREAL;

typedef void \ PTR;

typedef PTR SQLPOINTER;

typedef long HENV;

typedef long HDBC;

typedef long HSTMT;

typedef HENV SQLHENV;

typedef HDBC SQLHDBC;

typedef HSTMT SQLHSTMT;

typedef SQLINTEGER RETCODE;

typedef RETCODE SQLRETURN;

typedef struct DATE_STRUCT

 {

 SQLSMALLINT year;

 SQLSMALLINT month;

 SQLSMALLINT day;

 } DATE_STRUCT;

118 DataJoiner Version 2 Generic Access API Reference  



typedef struct TIME_STRUCT

 {

 SQLSMALLINT hour;

 SQLSMALLINT minute;

 SQLSMALLINT second;

 } TIME_STRUCT;

typedef struct TIMESTAMP_STRUCT

 {

 SQLSMALLINT year;

 SQLSMALLINT month;

 SQLSMALLINT day;

 SQLSMALLINT hour;

 SQLSMALLINT minute;

 SQLSMALLINT second;

 SQLINTEGER fraction; /\ fraction of a second \/

 } TIMESTAMP_STRUCT;

#endif

/\ Core Function Prototypes \/

#ifdef DB2WIN

RETCODE SQL_API_FN SQLAllocConnect (HENV henv,

 HDBC FAR \phdbc);

RETCODE SQL_API_FN SQLAllocEnv (HENV FAR \phenv);

RETCODE SQL_API_FN SQLAllocStmt (HDBC hdbc,

 HSTMT FAR \phstmt);

RETCODE SQL_API_FN SQLBindCol (HSTMT hstmt,

 UWORD icol,

 SWORD fCType,

 PTR rgbValue,

 SDWORD cbValueMax,

 SDWORD FAR \pcbValue);

RETCODE SQL_API_FN SQLConnect (HDBC hdbc,

 UCHAR FAR \szDSN,

 SWORD cbDSN,

 UCHAR FAR \szUID,

 SWORD cbUID,

 UCHAR FAR \szAuthStr,

 SWORD cbAuthStr);

RETCODE SQL_API_FN SQLDescribeCol (HSTMT hstmt,

  Appendix C. Command Line Interface Include File 119



 UWORD icol,

 UCHAR FAR \szColName,

 SWORD cbColNameMax,

 SWORD FAR \pcbColName,

 SWORD FAR \pfSqlType,

 UDWORD FAR \pcbColDef,

 SWORD FAR \pibScale,

 SWORD FAR \pfNullable);

RETCODE SQL_API_FN SQLDisconnect (HDBC hdbc);

RETCODE SQL_API_FN SQLError (HENV henv,

 HDBC hdbc,

 HSTMT hstmt,

 UCHAR FAR \szSqlState,

 SDWORD FAR \pfNativeError,

 UCHAR FAR \szErrorMsg,

 SWORD cbErrorMsgMax,

 SWORD FAR \pcbErrorMsg);

RETCODE SQL_API_FN SQLExecDirect (HSTMT hstmt,

 UCHAR FAR \szSqlStr,

 SDWORD cbSqlStr);

RETCODE SQL_API_FN SQLExecute (HSTMT hstmt);

RETCODE SQL_API_FN SQLFetch (HSTMT hstmt);

RETCODE SQL_API_FN SQLFreeConnect (HDBC hdbc);

RETCODE SQL_API_FN SQLFreeEnv (HENV henv);

RETCODE SQL_API_FN SQLFreeStmt (HSTMT hstmt,

 UWORD fOption);

RETCODE SQL_API_FN SQLGetCursorName (HSTMT hstmt,

 UCHAR FAR \szCursor,

 SWORD cbCursorMax,

 SWORD FAR \pcbCursor);

RETCODE SQL_API_FN SQLNumResultCols (HSTMT hstmt,

 SWORD FAR \pccol);

RETCODE SQL_API_FN SQLPrepare (HSTMT hstmt,

 UCHAR FAR \szSqlStr,

 SDWORD cbSqlStr);

RETCODE SQL_API_FN SQLRowCount (HSTMT hstmt,

 SDWORD FAR \pcrow);

120 DataJoiner Version 2 Generic Access API Reference  



RETCODE SQL_API_FN SQLSetParam (HSTMT hstmt,

 UWORD ipar,

 SWORD fCType,

 SWORD fSqlType,

 UDWORD cbParamDef,

 SWORD ibScale,

 PTR rgbValue,

 SDWORD FAR \pcbValue);

RETCODE SQL_API_FN SQLTransact (HENV henv,

 HDBC hdbc,

 UWORD fType);

#else

SQLRETURN SQL_API_FN SQLAllocConnect (SQLHENV henv,

 SQLHDBC \phdbc);

SQLRETURN SQL_API_FN SQLAllocEnv (SQLHENV \phenv);

SQLRETURN SQL_API_FN SQLAllocStmt (HDBC hdbc,

 HSTMT \phstmt);

SQLRETURN SQL_API_FN SQLBindCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLSMALLINT fCType,

 SQLPOINTER rgbValue,

 SQLINTEGER cbValueMax,

 SQLINTEGER \pcbValue);

SQLRETURN SQL_API_FN SQLConnect (SQLHDBC hdbc,

 SQLCHAR \szDSN,

 SQLSMALLINT cbDSN,

 SQLCHAR \szUID,

 SQLSMALLINT cbUID,

 SQLCHAR \szAuthStr,

 SQLSMALLINT cbAuthStr);

SQLRETURN SQL_API_FN SQLDescribeCol (SQLHSTMT hstmt,

 SQLSMALLINT icol,

 SQLCHAR \szColName,

 SQLSMALLINT cbColNameMax,

 SQLSMALLINT \pcbColName,

 SQLSMALLINT \pfSqlType,

 SQLINTEGER \pcbColDef,

 SQLSMALLINT \pibScale,

  Appendix C. Command Line Interface Include File 121



 SQLSMALLINT \pfNullable);

SQLRETURN SQL_API_FN SQLDisconnect (SQLHDBC hdbc);

SQLRETURN SQL_API_FN SQLError (SQLHENV henv,

 SQLHDBC hdbc,

 SQLHSTMT hstmt,

 SQLCHAR \szSqlState,

 SQLINTEGER \pfNativeError,

 SQLCHAR \szErrorMsg,

 SQLSMALLINT cbErrorMsgMax,

 SQLSMALLINT \pcbErrorMsg);

SQLRETURN SQL_API_FN SQLExecDirect (SQLHSTMT hstmt,

 SQLCHAR \szSqlStr,

 SQLINTEGER cbSqlStr);

SQLRETURN SQL_API_FN SQLExecute (SQLHSTMT hstmt);

SQLRETURN SQL_API_FN SQLFetch (SQLHSTMT hstmt);

SQLRETURN SQL_API_FN SQLFreeConnect (SQLHDBC hdbc);

SQLRETURN SQL_API_FN SQLFreeEnv (SQLHENV henv);

SQLRETURN SQL_API_FN SQLFreeStmt (SQLHSTMT hstmt,

 SQLSMALLINT fOption);

SQLRETURN SQL_API_FN SQLGetCursorName (SQLHSTMT hstmt,

 SQLCHAR \szCursor,

 SQLSMALLINT cbCursorMax,

 SQLSMALLINT \pcbCursor);

SQLRETURN SQL_API_FN SQLNumResultCols (SQLHSTMT hstmt,

 SQLSMALLINT \pccol);

SQLRETURN SQL_API_FN SQLPrepare (HSTMT hstmt,

 SQLCHAR \szSqlStr,

 SQLINTEGER cbSqlStr);

SQLRETURN SQL_API_FN SQLRowCount (SQLHSTMT hstmt,

 SQLINTEGER \pcrow);

SQLRETURN SQL_API_FN SQLSetParam (HSTMT hstmt,

 SQLSMALLINT ipar,

 SQLSMALLINT fCType,

 SQLSMALLINT fSqlType,

 SQLINTEGER cbParamDef,

 SQLSMALLINT ibScale,

 SQLPOINTER rgbValue,

 SQLINTEGER \pcbValue);

122 DataJoiner Version 2 Generic Access API Reference  



SQLRETURN SQL_API_FN SQLTransact (SQLHENV henv,

 SQLHDBC hdbc,

 SQLSMALLINT fType);

#endif

#endif /\ SQL_H_SQLCLI \/

  Appendix C. Command Line Interface Include File 123



Appendix D. State Transition Tables

The following tables show the effect of each generic access API function on the states
of the environment (henv), connection (hdbc) and statement (hstmt) handles.

Each entry in the tables is the result state, or set of result states, of the handle after
execution of the function. Unless noted, an error from a function causes no state
transition.

The environment can be in one of the following states:

� S0 unallocated environment
� S1 allocated environment
� S2 allocated hdbc
� S3 connected hdbc

Table 70 lists the next valid state for each function when called from the given state.
“IH” indicates an INVALID_HANDLE return code.

A statement handle (hstmt) can be in one of the following states:

� S0 Not allocated
 � S1 Allocated
 � S2 Prepared
� S3 Executed, or cursor open but not positioned on a row
� S4 Cursor positioned on a row

DataJoiner must establish a successful connection before allocating a statement.
Table 70 lists the next valid state for each function when called from a given state.
“IH” indicate and INVALID_HANDLE return code.

Table 70. Environment and Connection State Transitions

Function S0 S1 S2 S3

SQLAllocEnv S1 S1 S1 S1

SQLAllocConnect IH S2 S2 S2

SQLConnect IH IH S3 *08002*

SQLDisconnect IH IH *08003* S2
*25000*

SQLFreeConnect IH IH S1 *S1010*

SQLFreeEnv IH S0 *S1010* *S1010*

SQLTransact IH IH *08003* S3

Table 71 (Page 1 of 2). Statement Transitions

Function S0 S1 S2 S3 S4

SQLAllocStmt S1 S1 (1) S1 (1) S1 (1) S1 (1)

124  Copyright IBM Corp. 1995, 1997



Notes

1. Allocation functions should never be called for allocated handles, as the data
access module will loss any information associated with the handle and the handle
will return to the allocated state, S1.

2. Occurs when the executed statement created a result set.

3. Occurs when the executed statement did not create a result set.

4. Transition for all hstmts that are allocated with SQLAllocStmt for the same hdbc.

5. SQLDisconnect returns a SQLSTATE of 25000 (Invalid transaction state) if there is
an incomplete transaction on an hstmt associated with the hdbc.

6. The hstmt indicated by the cursor in UPDATE WHERE CURRENT OF cursor or
DELETE WHERE CURRENT OF cursor must be in state S4, or the SQLExecute or
SQLExecDirect function returns SQL_ERROR with an SQLSTATE of 24000
(Invalid cursor state). Following the positioned UPDATE or DELETE, the positioned
hstmt is left in state S4.

Table 71 (Page 2 of 2). Statement Transitions

Function S0 S1 S2 S3 S4

SQLBindCol IH S1 S2 S3 S4

SQLDescribeCol IH *S1010* S2 (2)
*24000*(3)

S3 (2)
*24000*(3)

S4 (2)
*24000*(3)

SQLDisconnect (4) S0 S0 S0 S0 (5) S0 (5)

SQLExecDirect (6) IH S3 (7) S3 (7) S3 (8) *24000*

SQLExecute (6) IH *S1010* S3 (7) S3 (8) *24000*

SQLFetch IH *S1010* *S1010* S3 (9,10),
S4,
*24000*
(3)

S3 (9), S4

SQLFreeStmt (11) IH S1 S2 S1 (12),
S2 (13)

S1 (12), S2
(13)

SQLFreeStmt (14) IH S0 S0 S0 S0

SQLFreeStmt (15) IH S1 S2 S3 S4

SQLGetCursorName IH *S1015* *S1015* S3
*S1015*

S4

SQLNumResultCols IH *S1010* S2 S3 S4

SQLPrepare (16) IH S2 S1 (17),
S2 (8)

S2 *24000*

SQLRowCount IH *S1010* *S1010* S3 (18) S4 (18)

SQLSetParam IH S1 S2 S3 (19) S4 (19)

SQLTransact (4) S0 S1 S1, S2
(20)

S1, S3
(20)

S1, S3, S4
(20)

  Appendix D. State Transition Tables 125



7. If the SQL statement associated with the hstmt contains parameters, and one or
more of the parameters have not been set, the data access module should return
SQL_ERROR with SQLSTATE 07001 (Wrong number of parameters).

8. This transition is legal only when there are no open cursors on the hstmt.

9. Transition for SQL_NO_DATA_FOUND.

10. Transition for an executed statement that was not a SELECT. SQLFetch returns
SQL_ERROR with an SQLSTATE 24000.

11. Transition for fOption equal to SQL_CLOSE.

12. Perform the transition if the query was not executed with SQLExecute. (The
execution was done by SQLExecDirect or a catalog function.)

13. Perform the transition if the query was executed with SQLExecute.

14. Transition for fOption equal to SQL_DROP.

15. Transition for fOption equal to SQL_UNBIND or SQL_RESET_PARAMS.

16. The hstmt indicated by cursor in WHERE CURRENT OF cursor must be in state
S3 or S4 for SQLPrepare. After SQLPrepare, the hstmt remains in the same state.

17. Transition where SQLPrepare is called for an hstmt that is already in the S2 state
and SQLPrepare fails for a reason other than validation.

18. Number of rows returned for INSERT, UPDATE, and DELETE statements if
available; otherwise, the data access module should return a -1 for row count
indicating number of rows not available or SQLRowCount is undefined for the SQL
statement.

19. Resetting parameters has no effect on the executed statement.

20. Transitions for data sources that can retain cursor state across transaction
boundaries.

126 DataJoiner Version 2 Generic Access API Reference  



Appendix E. Incompatibilities between Versions of DataJoiner

This appendix identifies the incompatibilities between DataJoiner version 1 and
DataJoiner version 2. We will discuss changes in system catalog tables and in
functionality, the symptoms that result when you try to use tables and functionality that
have changed, and ways to avoid or counteract these symptoms.

Definition of Incompatibility
Some tables and processes in DataJoiner version 2 are incompatible with their version
1 counterparts. Thus, if an existing application uses any of them, results might be
different than expected, an error might occur, or performance might be reduced. In this
context, the term application applies to a broad range of things; for example:

� Application program code
 � Third-party utilities
� Interactive SQL queries
� Command and/or API invocation

This appendix does not describe:

� Operations that in version 2 are less likely to generate an error than they did in
version 1. Such operations will have only a positive impact on existing applications.

� Incompatibilities common to DataJoiner and DB2. For these incompatibilities, see
the DB2 SQL Reference.

System Catalog Tables
This section discusses problems that you would encounter if you use applications
based on version 1 to query and modify version 2 system catalog tables.

Columns and Values in System Catalog Tables

 Change
Changes have been made to columns, column attributes, and the acceptable values in
several DataJoiner system catalog tables. This section discusses changes that could
cause problems for applications designed to use the version 1 form of the tables. To
ascertain other changes, you might query the version 1 tables and the version 2 system
catalog views that correspond to them, or you could read descriptions of these tables
and views. The tables are described in the version 1.2 edition of the Application
Programming and SQL Reference Supplement. The views are described in the version
2 edition of this book.

SYSCOLUMNS 

HIGH2KEY:  Non-character values are now in printable format rather
than binary format.

 Copyright IBM Corp. 1995, 1997  127



LOW2KEY:  Non-character values are now in printable format rather
than binary format.

NULLS: The value D (not null with default) has been changed to
N (not nullable).

REMOTE_TYPE: In version 1, values denoted data types of columns
of data source tables that DataJoiner referenced by
nickname. In version 2, these values are stored in
REMOTE_TYPENAME.

SYSINDEXES 

CLUSTERRATIO:  In version 1, the value in this column was -1 if
statistics were not gathered. In version 2, the value is -1
either if statistics are not gathered or if detailed index
statistics are gathered. In the latter case, an appropriate
value is added to the CLUSTERFACTOR column.

SYSSERVERS 

COLSEQ: Deleted from SYSSERVERS. In version 2, this server
option is denoted by a value (colseq) in the OPTION
column of the SYSCAT.SERVER_OPTIONS catalog
view.

CONNECTSTRING: Deleted from SYSSERVERS. In version 2, this
server option is denoted by a value (connectstring) in the
OPTION column of the SYSCAT.SERVER_OPTIONS
catalog view.

CPURATIO:  Data type changed from DOUBLE to FLOAT.

DATEFORMAT:  Deleted from SYSSERVERS. In version 2, this
server option is denoted by a value (DATEFORMAT) in
the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

FOLDID: Deleted from SYSSERVERS. In version 2, this server
option is denoted by a value (fold_id) in the OPTION
column of the SYSCAT.SERVER_OPTIONS catalog
view.

IORATIO: Data type changed from DOUBLE to FLOAT.

PASSWORD:  Deleted from SYSSERVERS. In version 2, this server
option is denoted by a value (password) in the OPTION
column of the SYSCAT.SERVER_OPTIONS catalog
view.

TIMEFORMAT:  Deleted from SYSSERVERS. In version 2, this
server option is denoted by a value (TIMEFORMAT) in
the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

128 DataJoiner Version 2 Generic Access API Reference  



TIMESTAMPFORMAT:  Deleted from SYSSERVERS. In version 2,
this server option is denoted by a value
(TIMESTAMPFORMAT) in the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

SYSREMOTEUSERS 

AUTHID Data type changed from CHAR to VARCHAR.

SYSTABLES  

PACKED_DESC:  Data type changed from LONGVARCHAR to
BLOB.

REL_DESC:  Data type changed from LONGVARCHAR to BLOB.

VIEW_DESC: Data type changed from LONGVARCHAR to BLOB.

 Symptom
Obviously, a variety of symptoms could occur.

If an existing application does a qualified search on a column that takes a different
value than it did before (for example, a search on NULLS in SYSIBM.SYSCOLUMNS
for a value of D), the application might react differently than expected.

If an existing application accesses a column whose data type has changed (for
example, CPURATIO in SYSIBM.SYSSERVERS), you might retrieve too little data or
too much.

 Resolution
Review the changes listed above to decide whether they affect your applications and, if
so, what corrective action to take (for example, updating the application). So that any
problems in accessing or maintaining catalog table data can be avoided, we strongly
recommend that you query the version 2 catalog views instead of the tables.

If you need a rough approximation of the degree of clustering, select both
CLUSTERRATIO and CLUSTERFACTOR in the SYSCAT.INDEXES catalog view and
choose the greater of the two values that you retrieve.

How Users Modify System Catalog Tables

 Change
For DataJoiner to perform operations on a specific data source, DataJoiner must
associate an identifier (specifically, a server name) with that data source. In version 1,
you could create such an association by INSERTing appropriate values into the table
SYSIBM.SYSSERVERS. You could also modify an association by UPDATing
SYSIBM.SYSSERVERS, and terminate an association by deleting a server name from
SYSIBM.SYSSERVERS. In version 2, you use DDL to perform these same operations
indirectly. Specifically, you create DataJoiner-to-data source associations with the
CREATE SERVER MAPPING statement, modify them with the ALTER SERVER
MAPPING statement, and terminate them with the DROP statement. These statements

  Appendix E. Incompatibilities between Versions of DataJoiner 129



operate on SYSCAT.SYSSERVERS, a catalog view derived from
SYSIBM.SYSSERVERS. The changes that you make to the view are propagated to
SYSIBM.SYSSERVERS.

For a user to access data sources from DataJoiner, DataJoiner must associate the ID
under which the user connects to DataJoiner with the IDs under which the user
connects to these data sources. In version 1, you could create such an association by
INSERTing appropriate values into the table SYSIBM.SYSREMOTEUSERS. You could
also modify an association by UPDATing SYSIBM.SYSREMOTEUSERS, and terminate
an association by deleting an ID from SYSIBM.REMOTEUSERS. In version 2, you use
DDL to perform these same operations indirectly. Specifically, you create associations
between IDs with the CREATE USER MAPPING statement, modify them with the
ALTER USER MAPPING statement, and terminate them with the DROP statement.
These statements operate on SYSCAT.REMOTEUSERS, a catalog view derived from
SYSIBM.REMOTEUSERS. The changes that you make to the view are propagated to
SYSIBM.REMOTEUSERS.

 Symptom
If you issue an INSERT, UPDATE, or DELETE statement against
SYSIBM.SYSSERVERS, SYSIBM.REMOTEUSERS, or any of DataJoiner's other
system catalog tables, the statement will fail.

 Resolution
To modify SYSIBM.SYSSERVERS or SYSIBM.REMOTEUSERS, use the SERVER
MAPPING or USER MAPPING DDLs, as described in “Change” on page 129.

130 DataJoiner Version 2 Generic Access API Reference  



Appendix F. DataJoiner Education and Service

This section describes the customer education courses and the types of assistance
available for DataJoiner.

 DataJoiner Education
IBM offers customer education courses that teach you how to install, use, and maintain
DataJoiner. The courses are described in this section.

For more information, or to enroll in any IBM class, call 1-800-IBM-TEACH
(1-800-426-8322) and refer to the IBM US Course Code. For locations outside the
United States, contact your IBM representative.

Course descriptions will also be maintained at the DataJoiner web site. The DataJoiner
URL is:

http://www.software.ibm.com/data/datajoiner/

 Using DataJoiner
IBM US Course Code U4253, World-Wide Code DW20

Duration  2 days

Format Lecture with classroom exercises.

This course introduces the student to DataJoiner and its powerful
multidatabase server capabilities. After completing this course, students
should be able to effectively use DataJoiner to perform simple and complex
distributed requests. They should also be able to monitor and tune SQL
queries, accounting for the capabilities and characteristics of diverse
DataJoiner data sources. Areas covered include:

 � Global optimization
� Multi-vendor query considerations

 � Nicknames
 � Basic security
� An introduction to the DataJoiner catalog
� DataJoiner query performance
� The DataJoiner Explain tool
� The DataJoiner Database System Monitor

Who Should Take This Course
This course is appropriate for anyone who will be using, managing,
installing, or maintaining a DataJoiner multiple database environment.

Prerequisite
SQL experience. You can obtain this experience by attending the “SQL
Workshop,” IBM US Course Code U4045.

 Copyright IBM Corp. 1995, 1997  131



 DataJoiner Administration
IBM US Course Code U4254, World-Wide Code DW21

Duration  3 days

Format Lecture with classroom exercises.

This course trains the student to install, configure, and manage a secure
DataJoiner multidatabase server environment. Areas covered include:

 � Installing DataJoiner
� Generating and managing the DataJoiner database

 � Configuring DataJoiner
� Enabling DataJoiner client access to remote data sources

 � DataJoiner security
� DataJoiner server performance

Who Should Take This Course
This course is appropriate for anyone who will be managing, installing, or
maintaining a DataJoiner multiple database environment.

Prerequisite
DataJoiner knowledge or experience. You can obtain this experience by
attending “Using DataJoiner,” IBM US Course Code U4253.

DataJoiner Service Providers
IBM provides services for DataJoiner that include assistance with planning, installing,
and configuring the product. The assistance is customized to your individual
environment and takes place in two phases.

First Phase: Planning
The first phase helps you plan for the installation and configuration of DataJoiner, and
configure network systems so DataJoiner can communicate optimally with all data
sources and clients. It includes:

� Assessing general readiness
 � Defining clients
� Defining data sources

 � Assessing applications
� Defining backup and recovery strategies for DataJoiner
� Configuring DataJoiner database parameters
� Identifying test queries for system validation
� Defining security requirements

Second Phase: Implementation
The second phase focuses on implementation of the plan developed in the planning
phase described above. It includes:

 � Installing DataJoiner
� Configuring data sources
� Providing access to data source tables and views

132 DataJoiner Version 2 Generic Access API Reference  



� Installing and configuring remote clients
� Validating and documenting the environment
� Providing final turnover to the customer

At the end of this phase, active remote and local clients can access multiple data
sources through DataJoiner.

DataJoiner services can be combined with replication services if you are interested in
replicating data across a heterogeneous database environment. For more information
about DataJoiner and replication services, contact your IBM representative or see the
DataJoiner web page. The DataJoiner URL is:

http://www.software.ibm.com/data/datajoiner/

  Appendix F. DataJoiner Education and Service 133



 Index

A
allocate functions

Connection Handle 15
Environment Handle 19
Statement Handle 22

B
Bind Column to Storage, function 24
books, ordering and viewing xii

C
CHAR

conversion to C 103
default SQL type 95
display size 100
length 99
precision 97
scale 98

Connect, function 27
connection handles

Allocate function 15
discussion 3
Free function 55

conventions, cross-platform terminology vii
cross-platform terminology conventions vii

D
data conversion

display size of SQL data types 100
from C to SQL data types 109
from SQL to C data types 102
length of SQL data types 99
precision of SQL data types 97
scale of SQL data types 98

DataJoiner
education 131
incompatibilities between versions 127

DataJoiner WWW site xii
DATE

conversion to C 106
default SQL type 95
display size 100

DATE (continued)
length 99
precision 97
scale 98

DECIMAL
conversion to C 105
default SQL type 95
display size 100
length 99
precision 97
scale 98

Describe Column Attributes, function 30
Disconnect, function 35
display size of SQL data types 100
DOUBLE

conversion to C 105
default SQL type 95
display size 100
length 99
precision 97
scale 98

E
electronic information xii
environment handles

Allocate function 19
discussion 3
Free function 57

Execute Statement Directly, function 41
Execute Statement, function 45

F
Fetch, function 47
FLOAT

conversion to C 105
default SQL type 95
display size 100
length 99
precision 97
scale 98

free handle functions
Connection Handle 55
Environment Handle 57
Statement Handle 59

134  Copyright IBM Corp. 1995, 1997



G
general library information ix
generic drivers 4
Get Cursor Name, function 61
Get General Information, function 66
Get Number of Result Columns, function 71
Get Row Count, function 79
GRAPHIC, conversion to C 104

H
header files 115

I
include files 115
INTEGER

conversion to C 105
default SQL type 95
display size 100
length 99
precision 97
scale 98

Internet information xii
INVALID_HANDLE 10

L
length of SQL data types 99
library information, general ix
LONGVARCHAR

conversion to C 103
default SQL type 95
display size 100
length 99
precision 97
scale 98

LONGVARGRAPHIC, conversion to C 104

N
newsgroups for DataJoiner xii
notices vi
Number of Result Columns, function 71
NUMERIC

conversion to C 105
default SQL type 95
display size 100
length 99

NUMERIC (continued)
precision 97
scale 98

O
ordering publications xii

P
precision of SQL data types 97
Prepare statement, function 73
printing publications xii
publications xii

R
REAL

conversion to C 105
default SQL type 95
display size 100
length 99
precision 97
scale 98

Retrieve Error Information, function 37
return codes 10, 89

S
scale of SQL data types 98
Set Parameter, function 82
SMALLINT

conversion to C 105
default SQL type 95
display size 100
length 99
precision 97
scale 98

SQL_C_CHAR
conversion from SQL 110
default SQL type 95

SQL_C_DATE
conversion from SQL 112
default SQL type 95

SQL_C_DOUBLE
conversion from SQL 111
default SQL type 95

SQL_C_FLOAT
conversion from SQL 111
default SQL type 95

  Index 135



SQL_C_LONG
conversion from SQL 111
default SQL type 95

SQL_C_SHORT
conversion from SQL 111
default SQL type 95

SQL_C_TIME
conversion from SQL 112
default SQL type 95

SQL_C_TIMESTAMP
conversion from SQL 113
default SQL type 95

SQL_ERROR 10
SQL_NO_DATA_FOUND 10
SQL_SUCCESS 10
SQL_SUCCESS_WITH_INFO 10
SQLAllocConnect, function 15
SQLAllocEnv, function 19
SQLAllocStmt, function 22
SQLBindCol, function 24
SQLConnect, function 27
SQLDescribeCol, function 30
SQLDisconnect, function 35
SQLError, function 37
SQLExecDirect, function 41
SQLExecute, function 45
SQLFetch, function 47
SQLFreeConnect, function 55
SQLFreeEnv, function 57
SQLFreeStmt, function 59
SQLGetCursorName, function 61
SQLGetInfo, function 66
SQLNumResultCols, function 71
SQLPrepare, function 73
SQLRowCount, function 79
SQLSetParam, function 82
SQLSTATE, function cross reference 89
SQLTransact, function 86
statement handles

Allocate function 22
discussion 3
Free function 59

T
terminology conventions, cross-platform vii
TIME

conversion to C 107
default SQL type 95
display size 100

TIME (continued)
length 99
precision 97
scale 98

TIMESTAMP
conversion to C 107
default SQL type 95
display size 100
length 99
precision 97
scale 98

trademarks vi
Transaction Management, function 86

V
VARCHAR

conversion to C 103
default SQL type 95
display size 100
length 99
precision 97
scale 98

VARGRAPHIC, conversion to C 104
viewing publications xii

W
WWW information xii

136 DataJoiner Version 2 Generic Access API Reference  





We'd Like to Hear from You

DB2 DataJoiner
Generic Access API Reference
Version 2 Release 1

Publication No. SC26-9147-00

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM
representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773 or (408) 463-4393.

� Electronic mail—Use the following network ID:

 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.



 

 Readers' Comments

DB2 DataJoiner
Generic Access API Reference
Version 2 Release 1

Publication No. SC26-9147-00

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? Ø Yes Ø No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and
consistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø



Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9147-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department W92/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-9147-00



 

 



IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9147-ðð



Spine information:

IBM DB2 DataJoiner Generic Access API Reference Version 2 Release 1

 


