
DB2 DataJoiner ®

Administration Supplement
Version 2 Release 1 Modification 1

SC26-9146-01

IBM

DB2 DataJoiner ®

Administration Supplement
Version 2 Release 1 Modification 1

SC26-9146-01

IBM

Note
Before using this information and the product it supports, please read the general information under “Notices” on
page 171.

Second Edition (July 1998)

This edition replaces and makes obsolete the previous edition, SC26-9146-00. The technical changes for this edition
are summarized under “What’s New in DataJoiner Version 2?” on page xiii, and are indicated by a vertical bar to the
left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3
P. O. Box 49023
San Jose, CA 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book . ix
Who Should Use This Book ix
Terms for Products . ix
Highlighting Conventions . x
How to Read the Syntax Diagrams. x

What’s New in DataJoiner Version 2? xiii

Chapter 1. Overview . 1
The DataJoiner Environment 1
Product Components . 2

Databases . 3
Nicknames. 3
System Catalog Scope and Views 3
Directories . 4
Configuration Files . 4

DataJoiner Data Management 5
Application Program Interfaces (APIs) 6
Transaction Support. 7

Concurrency Control . 8
Data Integrity . 9

Pass-Through Support . 9
System Management Facilities 10

Database Director . 10
Visual Explain. 10
DB2 Explain . 10
Performance Monitor . 11
Problem Diagnosis Facilities 11

Managing Multiple Instances 11
Security . 12

Chapter 2. Security . 13
Overview . 13
DataJoiner and Data Source Authentication 14

Authentication. 14
Determining Security Requirements 18
ID and Password Validation and Flow Considerations 20

General Operational Considerations for Authentication 25
Operating System Considerations for Authentication 26

Groups . 26
User and Group Requirements 26

Data Source-Specific Considerations for Authentication 27
Informix 5 Considerations for AIX Operating Systems. 27
Classic Connect Considerations. 28

Authentication and Connection Commands and Syntax 28
Querying for the Authentication Type 28

© Copyright IBM Corp. 1995, 1998 iii

Connecting to the DataJoiner Database 28
Authorization, Authorities, and Privileges 31

Authorities . 32
Privileges . 33

Options for Controlling Access to Distributed Database Objects 37
Examples . 37

Two Remote Data Sources With Similar IDs and Passwords 37
Two Remote Data Sources: Mixed IDs and Passwords 38

Chapter 3. Node and Database Directories 41
Node Directory . 41

Cataloging Remote Nodes 42
Uncataloging Remote Nodes 42

Database Directories . 42
System Database Directory 42
Local Database Directory 43

Relationships between Node and Database Directories 43
Client and DataJoiner Nodes and Directories 43
DataJoiner and Data Source Nodes and Directories 44

Managing Your Database Directories 45
Cataloging a Database. 46
Uncataloging a Database 46

Chapter 4. Identifying Existing Nicknames and Data Sources 47
Identifying a Nickname and Its Data Source 47
Identifying All Nicknames Known to DataJoiner 48

Chapter 5. Data Access Considerations and Restrictions 49
Large Objects (LOBs) . 49

How DataJoiner Retrieves LOBs 49
How Applications Can Use LOB Handles. 51
How DataJoiner Supports LOB Operations at Data Sources 51
How Pass-Through Supports LOBs 52
Mappings between LOB and Non-LOB Data Types 53

Nicknames. 53
General . 53
Considerations and Restrictions 53

Stored Procedures . 54
Triggers. 55
User-Defined Functions (UDFs) and User-Defined Types (UDTs) 55

UDFs . 55
UDTs . 57

Chapter 6. Distributed Unit of Work (DUOW) Transactions 59
Terminology and Concepts 59

Terminology . 59
Two-Phase Commit Processing Concepts 62

Typical Configurations . 63
DataJoiner as a Sub-TM 64

iv DB2 DataJoiner Version 2 Administration Supplement

DataJoiner as a TM . 65
Costs, Considerations, and Prerequisites. 66
DataJoiner 1PC and 2PC Processing Rules 67
Data Source Requirements, Restrictions, and Considerations 69

All Data Sources . 69
DRDA Data Sources . 70
Informix Data Sources . 71
Sybase SQL Server Data Sources 71
Oracle Data Sources . 71

Preparing Data Sources for DUOW Transactions 71
Start Logs at DataJoiner and Data Sources 72
Set Data Source two_phase_commit Option Values 72

Performance Considerations 73
DUOW Error Recovery . 74

Recovering from Problems 74
Resynchronization Processing 74
Manually Determining Transaction States. 76
Manually Recovering Indoubt Transactions (Heuristic Processing) 77

Using DataJoiner with a Non-DB2 Transaction Manager. 78

Chapter 7. System and Query Tuning 79
DataJoiner System Monitoring and Tuning 79

DataJoiner Monitoring . 79
DataJoiner Tuning . 80
Collating Sequence Considerations 83

Tuning Query Processing . 85
The DataJoiner SQL Compiler 85
Pushdown Analysis . 87
Global Optimization . 92
Remote Query Caching 98
Remote Plan Hints . 99

Tuning DataJoiner Network Usage 99
fold_id and fold_pw Options of SYSCAT.SERVER_OPTIONS 99
Match Client I/O Block Size and Packet Size 100
Match Sybase TDS Packet Size to Network TCP/IP Packet Size 100
Increase Network Operating System Prioritization 100

Tuning Data Source Configurations 101
Classic Connect . 101
Microsoft SQL Server . 101
SQL Anywhere . 101

Chapter 8. Data Movement and Analysis Utilities 103
IMPORT . 103
EXPORT . 104
RUNSTATS (Update Statistics) 104
REORGCHK (Determine Whether to Reorganize a Table or Nickname). 105
BACKUP and RESTORE . 105

Chapter 9. Database System Monitor 107

Contents v

Purpose of the Database System Monitor 107
Element Summary by DataJoiner Object 108

General Information . 108
Data Source Database Status 108
Data Source Application Status 109

Data Elements Detail by Function 110
General Information . 111
Data Source Database-Related Information 112
Data Source Application-Related Information 128

Appendix A. SQL Explain Utilities 145
DB2 Explain (db2expln) . 145
db2expln Output . 145
Dynamic Explain (dynexpln) Sample Shell Script on AIX. 150
Visual Explain (db2vexp) . 150
db2vexp Output . 150

Appendix B. Resolving Problems Encountered by Applications That Predate
Version 2.1.1 . 155

Linking DataJoiner Libraries to Clients and Data Sources in AIX 155
Change . 156
Problem. 156
Resolution . 156

Starting and Stopping Classic Connect Instances 156
Change . 156
Problem. 156
Resolution . 156

Querying System Catalog Tables and Views. 157
Changes . 157
Problems . 159
Resolution . 159

Modifying System Catalog Tables 160
Change . 160
Problem. 160
Resolution . 160

Appendix C. Where to Find Out More about DataJoiner, DB2 for CS, and
Replication Products . 161

DataJoiner, DB2 for CS, and Replication Publications 161
How to Order, View, and Print Publications 165
Internet Resources . 165

Appendix D. DataJoiner Classes and Services 167
DataJoiner Classes . 167

Using DataJoiner. 167
DataJoiner Administration 168

DataJoiner Services. 168
First Phase: Planning . 168
Second Phase: Implementation 169

vi DB2 DataJoiner Version 2 Administration Supplement

Notices . 171
Trademarks . 173

Index . 175

Readers’ Comments — We’d Like to Hear from You 183

Contents vii

viii DB2 DataJoiner Version 2 Administration Supplement

About This Book

This book focuses on the administration of a heterogeneous, multidatabase
environment with DataJoiner. Among other topics, it contains DataJoiner-specific
information about:

v Security

v Identifying data sources

v Data access considerations

v Distributed unit of work considerations

v Tuning DataJoiner systems and queries

v Utilities

v System monitoring

v SQL explain facilities

This book focuses on information specific to DataJoiner. Complete information on the
administration of the local database workstation environment is in the DATABASE 2
Administration Guide.

Who Should Use This Book

This book is intended for database administrators, system administrators, security
administrators, and system operators who need to design, implement, and maintain a
heterogeneous database environment. It can also be used by programmers and other
users who require an understanding of the administration and operation of DataJoiner.

Terms for Products

Some product names in the documentation refer to more than one product, some refer
to specific product levels, and some are shortened versions of full names. These
product names are:

DataJoiner
Refers to DB2 DataJoiner Version 2. References specific to or including
DataJoiner Version 1 will include the version.

DB2 By itself, refers to any one or all of the DB2 for common server Version 2
database server products on all platforms, which includes DataJoiner.

If a DB2 reference is qualified with a specific operating system or version, the
reference applies only to that particular version.

DB2 Family
Refers to all DataJoiner-supported versions of DATABASE 2 (DB2) database
server products on all platforms (DB2 for OS/390, DB2 for VM, DB2 for

© Copyright IBM Corp. 1995, 1998 ix

|

|
|
|

|
|
|

common servers, DataJoiner, and so on). Supported versions are listed in the
DataJoiner Planning, Installation, and Configuration Guide for your platform.

DB2 for CS
Refers to any DB2 for common servers Version 2 database server product.
This term is often used when describing DataJoiner and DB2 for common
servers functional differences.

RDB Refers to Oracle RDB Version 6 or above.

SQL Anywhere
Refers to Sybase SQL Anywhere Version 5.

Highlighting Conventions

This book uses these highlighting conventions:

Boldface type
Indicates commands and graphical user interface (GUI) controls (for example,
names of fields, names of folders, menu choices). Boldface type also indicates
examples of SQL keywords in the Application Programming and SQL
Reference Supplement.

Monospace type
Indicates examples of coding or of text that you type.

Italic type
Indicates variables that you should replace with a value. Italic type also
indicates book titles and emphasizes words.

UPPERCASE TYPE
Indicates SQL keywords and names of objects (for example, tables, views, and
servers).

How to Read the Syntax Diagrams

The following rules apply to the syntax diagrams used in this book:

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

ÊÊ─── Indicates the beginning of a statement.

───Ê Indicates that the statement syntax is continued on the next line.

Ê─── Indicates that a statement is continued from the previous line.

───ÊÍ Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
Ê─── symbol and end with the ───Ê symbol.

x DB2 DataJoiner Version 2 Administration Supplement

||

|
|

|
|
|
|

|
|

Conventions

v SQL commands appear in uppercase.

v Variables appear in italics (for example, column-name). They represent
user-defined parameters or suboptions.

v When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

v Enter punctuation marks (slashes, commas, periods, parentheses, quotation
marks, equal signs) and numbers exactly as given.

v Footnotes are shown by a number in parentheses, for example, (1).

v A � symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

ÊÊ REQUIRED-ITEM ÊÍ

Optional items
Optional items appear below the main path.

ÊÊ REQUIRED-ITEM
optional-item

ÊÍ

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

ÊÊ
optional-item

REQUIRED-ITEM ÊÍ

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

ÊÊ REQUIRED-ITEM
required-choice1
required-choice2

ÊÍ

If choosing one of the items is optional, the entire stack appears below the
main path.

ÊÊ
optional-choice1
optional-choice2

ÊÍ

Repeatable items
An arrow returning to the left above the main line indicates that an item can be
repeated.

About This Book xi

ÊÊ » REQUIRED-ITEM repeatable-item ÊÍ

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

ÊÊ »

,

REQUIRED-ITEM repeatable-item ÊÍ

A repeat arrow above a stack indicates that you can specify more than one of
the choices in the stack.

Default keywords
IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

ÊÊ
default-choice

optional-choice1
optional-choice2

ÊÍ

xii DB2 DataJoiner Version 2 Administration Supplement

What’s New in DataJoiner Version 2?

DataJoiner Version 2 offers new features and enhancements. They include:

DB2 Version 2 functionality
DataJoiner is built on the DB2 Version 2 code base, which means that
DataJoiner provides all the major functional enhancements provided by DB2,
including:

v Extended SQL capabilities

v An enhanced SQL optimizer

v Improved database performance

v Systems management support

v Robust integrity and data protection

v Object relational capabilities

v National language support (NLS)

v Support for the Java Development Kit (JDK) 1.1 for the Java Database
Connectivity (JDBC) API

For detailed information about many of these features, see the DB2
Administration Guide.

DataJoiner for Windows NT
DataJoiner has extended its reach to provide industrial strength heterogeneous
database management on Windows NT systems. DataJoiner for Windows NT
supports the same SQL and features as DataJoiner for UNIX-based platforms.

Support for Oracle 8, RDB, and SQL Anywhere
With Version 2, DataJoiner continues to increase the number of
natively-supported data sources. The most recent additions are:

v Oracle 8 (on any system that DataJoiner accesses from AIX or Windows
NT)

v Oracle RDB Version 6 and above (on any system that DataJoiner accesses
from Windows NT)

v Sybase SQL Anywhere Version 5.0 (on any system that DataJoiner
accesses from Windows NT)

Spatial Extender
DataJoiner now supports geographic information system (GIS) data (also
known as spatial or geographic data). New data types, spatially-enabled
columns, and spatial join capability allow you to take advantage of geographic
data in your applications. Included are powerful two-dimensional functions that
allow you to create specific relationships among the geographic objects you
define. Included with the spatial extender are the following components:

v A set of spatial data types

v A set of spatial operations and predicates

© Copyright IBM Corp. 1995, 1998 xiii

|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|

v A set of spatial index data types

v An administration tool suite for the spatial extender

v Sample programs

You can also take advantage of existing geographic data stores using the load
and transform capability of the Spatial Extender.

Expanded DataJoiner SQL support
This version of DataJoiner contains many new and modified SQL statements.
New DDL statements provide greater flexibility and safety in defining your
DataJoiner environment—users can create, alter, and drop mappings for data
sources, users, user-defined and built-in functions, and data types. Additionally,
new SQL DML statements provide enhanced functions for local and distributed
queries; an example is the CASE expression, which is useful for selecting an
expression based on the evaluation of one or more conditions.

DataJoiner SQL for creating, altering, and deleting data source tables
Version 2 includes a new DataJoiner SQL statement for creating tables in
different types of data sources. If the native SQL for creating tables in these
data sources includes a unique option—for example, the option in DB2 for
OS/390 for specifying what database you want a table to reside in—you can
code this option in the new DataJoiner statement. If you create a data source
table with this new statement, you can also alter and delete it with DataJoiner
SQL.

Heterogeneous data replication
DataJoiner now provides replication administration as an integrated
component. You can define, automate, and manage replication data from a
single control point across your enterprise. The replication administration tool
provides administrative support for the replication environment, with objects
and actions that define and manage source and target table definitions.
DataJoiner’s Apply component performs the actual replication, tailoring and
enhancing data as you specify, and serving as the interface point to and from
your various data sources. DataJoiner also supplies an executable, IBM DB2
DataPropagator for Microsoft Jet, that allows you to replicate server data for
browsing and updating in LAN, occasionally connected, and mobile
environments.

Distributed heterogeneous update support
DataJoiner now allows you to update multiple heterogeneous data sources
within a distributed unit of work while maintaining transaction atomicity. This
task is accomplished through adherence to the two-phase commit model.
Supported data sources include most versions of the DB2 Family and, with the
appropriate XA libraries, various other data sources as well.

New graphical installation, configuration, and administration tools
A variety of new tools is available to help you accomplish administrative
chores. Wizards walk you through data source configuration. And the
Administrator’s Toolkit provides a collection of tools designed to assist you with
the day-to-day operation of DataJoiner. It includes the following components:

xiv DB2 DataJoiner Version 2 Administration Supplement

|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

The Database Director
Allows you to perform configuration, backup and recovery, directory
management, and media management tasks.

Visual Explain
A tool for graphically viewing and navigating complex SQL access
plans.

The DB2 Performance Monitor
Monitors the performance of your DB2 system for tuning purposes.

Stored procedures
DataJoiner now supports stored procedures at remote data sources as well as
the local DataJoiner database. Use stored procedures to speed application
performance. For example, applications that process huge amounts of data at
a server but return smaller result sets should run faster as stored procedures.
Another benefit is that stored procedures usually reduce network traffic
between clients and databases.

DataJoiner stored procedures can augment standard data security. For
example, in a 3-tier environment, data can be retrieved from a remote server
and then processed at the DataJoiner server; only a subset of data needs to
be available to the client.

System catalog information available in views
DataJoiner provides views from which you can access system catalog
information about each DataJoiner database. Some of these views contain
data—for example, data about tables, indexes, and servers—that was
accessible only from tables in previous versions of DataJoiner. Other views
contain data—for example, data about stored procedures, server options, and
server functions—that is now available in Version 2.

Performance enhancements
In addition to general engine performance improvements, this latest version
offers new query rewrite capabilities, improved pushdown performance, and
remote query caching.

What’s New in DataJoiner Version 2? xv

|
|
|

|
|
|

|
|

xvi DB2 DataJoiner Version 2 Administration Supplement

Chapter 1. Overview

DataJoiner is a multidatabase server that provides a new level of remote data access.
DataJoiner provides client access to diverse data sources that reside on different
platforms, both IBM and multi-vendor, relational and nonrelational. DataJoiner integrates
access to distributed data and presents a single database image of a heterogeneous
environment to its users. With DataJoiner, you can access all data, remote and diverse,
as though the data were local.

Figure 1 shows clients and data sources that are supported by DataJoiner.

The DataJoiner Environment

A typical DataJoiner environment consists of a database server, one or more clients
(local or remote), and one or more data sources. Users submit queries via clients to
DataJoiner; results are returned from data sources. Figure 2 on page 2 provides an
overview of DataJoiner query processing.

Figure 1. DataJoiner and Its Supported Clients and Data Sources

© Copyright IBM Corp. 1995, 1998 1

|
|

|
|
|
||
|

DataJoiner supports functional compensation and distributed application processing.
Functional compensation occurs, for example, when a query contains a function that a
data source does not support. For example, many data sources do not support
recursive SQL. In this case, data source data is collected at DataJoiner for processing.
In other cases, operations are pushed-down to data sources. Pushdown capabilities are
one way to distribute processing across data sources and improve query performance.
For example, performing sort operations at data sources can reduce the flow of data
across a network and speed query results.

From a traditional DB2 for CS client/server environment perspective, DataJoiner is at
one node. Applications running on different platforms, via DB2 for CS clients, can
transparently and concurrently access data on data sources via this node. From a
Distributed Relational Database Architecture (DRDA) perspective, DataJoiner can serve
as both a DRDA Application Requestor (DRDA AR) or a DRDA Application Server
(DRDA AS). DataJoiner’s ability to serve as a DRDA AS lets DRDA AR clients on
OS/390, MVS, VSE, and VM access the DataJoiner node and request data from data
sources.

Product Components

This section describes DataJoiner components and the relationships between those
components.

Figure 2. DataJoiner Environment

2 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
||

|
|

Databases

DataJoiner’s local database capability provides the local data store with full relational
database management system support. Typical operations (back-up, restore,
transaction processing, and so on) are all provided in addition to DataJoiner remote
data access capabilities.

In a DataJoiner environment, databases can be located at the DataJoiner instance itself
(local database) and at data sources (data source databases). Data source databases
are managed by their data source (for example, by DB2 for MVS and Sybase** SQL
Server), but they can be accessed by DataJoiner.

Each DataJoiner instance must have at least one local database. This local database is
the database to which DataJoiner users connect. The local database or databases
contain nicknames for data and stored procedures located in data sources. The local
DataJoiner database, together with the data source databases, appears to end users as
a single database.

Nicknames

DataJoiner uses a nickname scheme that allows users to map a two or three-part table
(such as SERVER.REMOTE_AUTHID.TABLENAME), view, or stored procedure name to a
nickname. Users can subsequently use the nickname in an SQL statement whenever
access to the remote table, view, or stored procedure is required. Nicknames are used
to provide location transparency—the ability to separate the data source location from
the address for that data source.

System Catalog Scope and Views

DataJoiner maintains its own system catalog of metadata, which describes the data
objects in DataJoiner’s integrated database. The catalog contains information about
objects in local databases as well as objects that are stored at data sources. Because
the catalog contains information about objects in multiple systems, it is often referred to
as a global catalog.

Certain column information in the system catalog can be updated. This information can
be updated with data definition language (DDL) statements. The system catalog can be
easily queried through system catalog views. DataJoiner creates and maintains a set of
system catalog views for each DataJoiner database. They contain information about
indexes, views, tables, packages, columns, and so on. These views are similar to the
system catalog views documented in the DATABASE 2 SQL Reference. DataJoiner,
however, has several additional catalog views and in many cases has extended DB2 for
CS views to accommodate DataJoiner functions. The unique and modified views, and
their columns, are documented in the DataJoiner Application Programming and SQL
Reference Supplement.

System catalog views are changed during normal database operations and also by
users through DDL commands (DataJoiner SQL commands are also documented in the

Chapter 1. Overview 3

|
|
|
|

|
|
|
|
|

|
|
|
|
|
||

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

DataJoiner Application Programming and SQL Reference Supplement).

Directories

Directories identify DB2 Family databases to which users can directly connect.
Directories are necessary for accessing both local and remote DB2 Family databases.
When the directory information is complete, access to the database is transparent to
the user or application, regardless of where the database physically resides.

DataJoiner uses two types of database directories plus a node directory. A database
directory is a file that identifies the location of one or more databases. A node directory
is a file that contains network connection information for remote databases. The node
directory contains entries for all DB2 Family nodes to which DataJoiner can connect.
Only TCP/IP and APPC nodes for the DB2 Family must be cataloged. Each entry
contains the remote node’s name and its communication information.

DataJoiner also contains a DCS directory, which is used exclusively by Distributed
Database Connection Services (DDCS). See the DDCS User’s Guide for more
information on the DCS directory.

These directories are useful for DB2 Family access and IBM replication software
operations. For example, by using DataJoiner DDCS or DB2 Connect with the Apply
and Capture replication programs, DataJoiner can be used as a DDCS data source for
data propagation.

See the DDCS User’s Guide for information on DDCS connections between clients and
host databases. See the DataJoiner Planning, Installation, and Configuration Guide for
your platform for information about configuring DataJoiner to access data sources. See
“Chapter 3. Node and Database Directories” on page 41 for additional information about
directories.

Configuration Files

DataJoiner has two configuration files that define resources owned by DataJoiner but
not associated with configured data sources. The configuration files contain parameter
values that define the resources allocated to a DataJoiner instance and to the local
databases created under that instance. The two types of configuration files are
DataJoiner’s database manager configuration file, for a DataJoiner instance, and the
database configuration file, for each local DataJoiner database. To access these two
configuration files, use the following DB2 commands:

GET DATABASE MANAGER CONFIGURATION
GET DATABASE CONFIGURATION

See the DATABASE 2 Command Reference for more information on these commands.

DataJoiner’s database manager configuration file is created when an instance of
DataJoiner is created. The file affects the system resources allocated to DataJoiner for
an individual instance. The file’s parameters have global applicability, independent of

4 DB2 DataJoiner Version 2 Administration Supplement

|

|
|
|
|

any one database stored on the system. You can change many of the parameters from
the system default values to improve performance or increase capacity, depending on
the workstation configuration.

The database configuration file for a local DataJoiner database is created when the
database is created and resides where the local database physically resides. (There is
one configuration file per database.) This file’s parameters specify the amount of
resources to be allocated to that database. You can change many of the parameters to
improve performance or increase capacity. Different changes might be required
depending on the type of activity in that specific local database.

DataJoiner Data Management

In any database, there is data that needs to be managed—imported, exported, backed
up, restored, and more. There are two types of data you can manage in DataJoiner:

Catalog data The DataJoiner catalog contains most of the data that describes your
multidatabase environment. This data includes server definitions,
nicknames, and security information.

User data This is the data stored in any table created in a DataJoiner local
database.

There is a third type of data available to DataJoiner: the data available at a DataJoiner
data source (the servers defined in SYSCAT.SERVERS). In some cases, DataJoiner
does provide a way to manage the data in these data sources; however, this data
source management capability is limited. Utilities supported at data sources are noted in
Table 1 on page 6.

DataJoiner provides utilities to help you manage and maintain the catalog and user
data. You can access these utilities through:

v DataJoiner commands run from the command line processor (CLP).

You invoke the command line processor with the DB2 command, which is described in
the DATABASE 2 Command Reference.

v Application Program Interfaces (APIs) run from an application program.

v The Database Director

This utility provides a graphical user interface for accomplishing common database
administration tasks. It is described in the DATABASE 2 Command Reference.

You cannot use the Database Director to configure a data source. See the
DataJoiner Planning, Installation, and Configuration Guide for your platform to learn
about configuring data sources.

Table 1 on page 6 lists data management utilities and indicates where they are
supported.

Chapter 1. Overview 5

Table 1. DataJoiner Utilities

Utility Supported at Description

BACKUP DATABASE DataJoiner only Makes a backup copy of a local database.

EXPORT All data sources Copies data from a DataJoiner table or view to
another database or spreadsheet program.

LOAD DataJoiner only Loads data from files, tapes, or named pipes into a
DataJoiner table.

IMPORT All data sources that support LOCK
TABLE, DELETE, INSERT, and
UPDATE SQL statements

Copies data from another database or spreadsheet
program into a DataJoiner table or view.

REORG TABLE DataJoiner only Rearranges the data of a table in a local database
into a physical sequence according to a specified
index. This reorganization can provide faster
access to the data, and thereby improve
performance. A table can become fragmented due
to many updates, causing performance to
deteriorate. You should run this utility if you notice
a performance impact when accessing a table.

REORGCHK All data sources Calculates statistics on the database to determine
if tables require reorganization.

RESTORE DATABASE DataJoiner only Rebuilds a local database to the state it was in
when the backup copy was made. Also, copies a
local database to another file system or
workstation. You cannot use this utility to restore a
data source database.

ROLLFORWARD
DATABASE

DataJoiner only Takes the changes made to the tables that
DataJoiner has been recording in a log, and
applies these changes to the local database after it
is restored with the RESTORE DATABASE utility.

RUNSTATS All data sources Updates statistics about the physical characteristics
of a table and its indexes. Also, it can gather
statistics about data source tables by querying a
nickname and then storing statistical data derived
from that nickname locally. This utility updates only
DataJoiner statistics.

See “Chapter 8. Data Movement and Analysis Utilities” on page 103 for additional
information on these utilities in a DataJoiner environment. See the DATABASE 2
Command Reference for information on running the utilities, and the DATABASE 2
Administration Guide for general information on these utilities.

Application Program Interfaces (APIs)

APIs provide access to DataJoiner facilities from compiled application programs running
on the client, the DataJoiner server, or both. APIs typically manipulate the DataJoiner
database environment, not the data in the DataJoiner local database.

6 DB2 DataJoiner Version 2 Administration Supplement

Environment APIs allow manipulation of the DataJoiner environment, including creating
and deleting DataJoiner local databases and scanning database directories.

Utility APIs are used to import and export data, back up and restore local DataJoiner
databases, gather statistics for the optimizer, and reorganize the data.

Configuration APIs are used to display or change the DataJoiner configuration file or
individual DataJoiner database configuration files.

Client/Server APIs support client-server specific operations, such as stored procedures.
They are also known as database application remote interfaces.

Runtime Service APIs provide the run-time interface for precompiled SQL statements.
These APIs are not usually called directly by the application programmer; instead, they
are inserted into the modified source file by the precompiler after processing. They can
also be used by programmers who want to write their own precompilers.

Database System Monitor APIs allow applications to gather statistical information
regarding the operation of the local DataJoiner database and DataJoiner itself.
Information gathered through these APIs can be used to assess the status of individual
databases, tables, and individual applications.

See the DATABASE 2 Command Reference for more information on APIs.

Transaction Support

For IBM relational database products, a transaction is commonly called a unit of work. A
unit of work is a recoverable sequence of operations within an application process. It is
the basic building block used to ensure that a database is in a consistent state. Any
reading or writing to the database is done within a unit of work. A point of consistency
(or commit point) is a time when all recoverable data that an application accesses is
consistent with related data.

A unit of work (transaction) can involve one or more databases. If a transaction involves
two or more databases, it is a distributed unit of work (DUOW) transaction.

The DataJoiner database provides a single database image that is composed of
nicknames that can represent many different tables at different data sources. It is
possible that an application connecting to the DataJoiner database and then reading or
updating data sources via nicknames will start a DUOW transaction.

Applications that successfully connect to a DataJoiner database must end transactions
by issuing either a COMMIT or a ROLLBACK statement. The COMMIT statement
makes permanent all changes made within the transaction. The ROLLBACK statement
restores data to the state it was in at the prior commit point. If an application ends
normally, without a COMMIT or ROLLBACK statement, a COMMIT will be issued
implicitly. If an application ends abnormally while in the middle of a unit of work, the unit

Chapter 1. Overview 7

|
|
|
|

of work is automatically rolled back. Once issued, a COMMIT or ROLLBACK cannot be
stopped. A COMMIT makes all updates to the data sources referenced in the
transaction permanent, whether it is the local DataJoiner database or the data source
databases.

DataJoiner also provides functionality to guarantee transaction atomicity when there are
updates to multiple data sources (because it provides a single database image of data
in one or more data sources). All data sources must commit the transaction or all data
sources must rollback the transaction. The functionality DataJoiner uses to guarantee
transaction atomicity is called two-phase commit.

Two-phase commit protocol ensures atomicity by splitting the commit processing into
two phases: prepare and commit. During the prepare phase, DataJoiner polls data
sources to ensure they are ready to commit the transaction. The responses to the first
phase drive the second phase. In phase two, if all data sources voted that they can
commit the transaction, it is committed. If one or more data sources voted that they
cannot commit the transaction, the transaction (and associated data source updates) is
rolled-back.

For more information on DUOW transactions, see “Chapter 6. Distributed Unit of Work
(DUOW) Transactions” on page 59. For additional information on general transaction
support, see the DATABASE 2 Administration Guide.

Concurrency Control

Concurrent processing means that multiple processes or applications can access the
same database at the same time. The locking component in DataJoiner is used locally
to maintain data integrity during concurrent processing. Locking

v Guarantees that a transaction maintains control over a DataJoiner database row until
it has finished

v Prevents another application from changing a row before the ongoing change is
complete

DataJoiner relies on the concurrency control protocols of its data sources for
concurrency control at the data source.

DataJoiner provides both table-level and row-level locking for its local database.
Row-level locking provides finer granularity and better concurrency support; however, it
requires more overhead. If concurrent access is not a prime concern, use the LOCK
TABLE statement instead to lock the entire table until the transaction is committed or
rolled back.

DataJoiner tables and rows can be locked in either share or exclusive mode. If you
choose share mode, other applications can retrieve data as read-only.

DataJoiner uses the isolation-level option to determine the basic locking scheme for
cursors in an application. When pushing queries to data sources, DataJoiner attempts

8 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|

|
|
|
|
|
|
|

to ensure that the isolation level you request is mapped correctly on the data source
database. DataJoiner provides the same levels of isolation as DB2 for CS by
formulating requests to the data sources to provide logically “close” degrees of isolation.
For information on isolation levels, see “Isolation Levels and Locking” in the DataJoiner
Application Programming and SQL Reference Supplement. For information on using
locks in application programs, see the DATABASE 2 Application Programming Guide.

A deadlock can occur in a DataJoiner database when two or more transactions are
each waiting for data locked by the other. A deadlock detector is periodically activated in
the background to check the locks currently in the system to determine if there is a
deadlock situation. If a deadlock is present, the deadlock detector randomly selects one
of the transactions involved in the deadlock and stops it. This transaction is rolled back,
and the other transactions can proceed. The frequency of the deadlock detector activity
is controlled by a parameter in the database configuration file.

DataJoiner can detect deadlocks involving only local data. DataJoiner relies on its data
sources to detect deadlocks between their own resources, and on data source timeout
mechanisms to break multidatabase deadlocks.

Data Integrity

Data integrity refers to the accuracy of the values within database tables.

In general, DataJoiner relies on the recovery mechanisms inherent in data source
databases to maintain data integrity. DataJoiner also relies on data sources for the
roll-forward recovery support of their data.

For DUOW transactions, DataJoiner relies on its two-phase commit functionality and the
DUOW support provided in each data source. See “Chapter 6. Distributed Unit of Work
(DUOW) Transactions” on page 59 for more information.

DataJoiner ensures data integrity of local data through transaction support, concurrency
control, and roll-forward recovery. Roll-forward recovery provides the ability to recover
lost online data due to a media failure, such as a hard disk crash. Roll-forward recovery
applies log journal information against the restored database. Log journals contain the
changes made to the database since the last backup. After these journals are applied,
the database is in the same state as it was prior to the failure.

Pass-Through Support

DataJoiner’s pass-through function, lets you pass an SQL statement directly to a data
source. You might use this function for:

v Data Definition Language, where the types of objects supported vary, depending on
the data source

v Data Manipulation Language, where the statement is not supported by DataJoiner

Chapter 1. Overview 9

For additional information on pass-through operations, see the DataJoiner Application
Programming and SQL Reference Supplement.

System Management Facilities

DataJoiner provides several facilities for managing your DataJoiner environment:

v Database Director

v Visual Explain

v DB2 Explain

v Performance Monitor

DataJoiner also provides facilities for diagnosing problems. Each facility is summarized
in following sections.

Database Director

The Database Director helps you find and select database objects. It also provides
information about the relationships between objects. Visual Explain and other utilities
can be started from the Database Director.

A key component of the Database Director is the DBA Utility. It helps you perform
common DataJoiner administrative tasks against objects selected in the Database
Director. You can configure instances, backup databases, recover table spaces, and so
on.

Most of the information for the Database Director is provided in its help system. For
more information, start the tool (use the db2dd command or select the Database
Director icon) and invoke the online help facility.

Visual Explain

Visual Explain helps you analyze and tune SQL statements in a GUI environment. Use
it to view the access plan chosen by the DataJoiner optimizer for an explained SQL
statement selected from the Database Director. You can also call this utility from the
command line (use the db2vexp command) to explain a dynamic SQL statement.

Most of the information for Visual Explain is provided in help. For more information,
start the Database Director tool (use the db2dd command or select the Database
Director icon) and invoke the online help facility.

DB2 Explain

DB2 explain (SQL explain) describes the access plan selected for static SQL
statements in the packages stored in the system catalog. It is useful for obtaining an
explanation of the chosen access plan for packages that do not have existing explain
data.

10 DB2 DataJoiner Version 2 Administration Supplement

|
|
|

|
|
|
|

|
|
|
|

DB2 explain is also used to analyze remote plans from data sources. Remote plans are
the access plans chosen by data sources to evaluate queries sent to data sources by
DataJoiner. DB2 explain (use the db2expln command) and dynamic explain (use the
dynexpln file) are the only tools that can retrieve remote plans from data sources.

DB2 Explain information is provided in text. For more information about DB2 explain,
see “Appendix A. SQL Explain Utilities” on page 145.

Performance Monitor

The performance monitor helps you gather information about DataJoiner and database
application performance.

Invoke the database system monitor from the Database Director. For more information,
start the Database Director tool (use the db2dd command or select the Database
Director icon) and invoke the online help facility.

“Chapter 9. Database System Monitor” on page 107 describes system monitor elements
applicable for a heterogeneous database environment.

Problem Diagnosis Facilities

DataJoiner problem diagnosis facilities include:

v Online messages

v Error logging facilities

v An independent trace facility

v A process status utility

Some diagnostic facilities are designed to be used under the direction of IBM Service in
diagnosing problems.

For more information on diagnosing problems, see the DataJoiner Messages and
Problem Determination Guide.

Managing Multiple Instances

An individual DataJoiner server is called an instance. Each instance can contain one or
more databases, with users connected at each instance.

Only one DB2 installation/version can exist on an NT operating system; however, one
or more instances can exist for each installation. On UNIX operating systems, one or
more DB2 installations can exist with one or more DB2 instances.

See the DataJoiner Planning, Installation, and Configuration Guide for AIX for
information on creating, configuring, and managing several instances of DataJoiner on

Chapter 1. Overview 11

|
|
|
|

|

|
|
|

one workstation. See the DATABASE 2 Application Programming Guide for information
on programming applications to access a particular instance of DataJoiner.

Security

DataJoiner provides authentication and privilege-based security facilities. It also
provides additional flexibility to cover database security needs in a distributed
environment.

Authentication is the process that DataJoiner uses to ensure that the user is really the
person they claim to be. Authentication occurs when users attempt to access a
database. DataJoiner authorization IDs (or user names) and passwords can be
authenticated at:

v The client

v DataJoiner

v Data sources

v A combination of the client, DataJoiner, and data sources

DataJoiner server authentication settings, along with the CREATE USER MAPPING
statement and server options, can be used to create a secure environment appropriate
for your distributed data.

DataJoiner lets administrators define privileges for local objects (such as tables, views,
and nicknames). Users must have the appropriate privileges to perform operations
against nicknames (similar to table privileges).

DataJoiner privileges apply only to local objects—they do not override or replace data
source object privileges. Authorized users can grant privileges for their own objects to
other users, but these local privileges do not override privileges on data source objects.

It is possible to use a combination of nickname privileges and pass-through facility
privileges to limit access to data source tables. Additional information is provided in
“Chapter 2. Security” on page 13

12 DB2 DataJoiner Version 2 Administration Supplement

|

|
|

|
|
|

|
|
|
|

|

|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

Chapter 2. Security

This chapter describes how to control access to DataJoiner, how DataJoiner controls
access within itself, and how to control access to other data sources. It also describes
how you can customize access to the databases in your DataJoiner system.

The chapter topics are:

v “Overview”

v “DataJoiner and Data Source Authentication” on page 14

v “General Operational Considerations for Authentication” on page 25

v “Operating System Considerations for Authentication” on page 26

v “Data Source-Specific Considerations for Authentication” on page 27

v “Authentication and Connection Commands and Syntax” on page 28

v “Authorization, Authorities, and Privileges” on page 31

v “Options for Controlling Access to Distributed Database Objects” on page 37

v “Examples” on page 37

Overview

As shown in “Chapter 1. Overview” on page 1, a traditional, three-tier DataJoiner
environment typically involves clients, the DataJoiner database management system,
and one or more data sources. Data sources are usually accessed when clients
connect to a DataJoiner database containing nicknames. When a user performs SQL
operations against a nickname, the object represented by that nickname (such as a
table or view) is accessed at the data source. Data sources are typically remote
database systems that are managed by other IBM or non-IBM database management
systems. Typically, you will have one or more remote data sources and possibly one or
more local DataJoiner databases (containing nicknames and other data).

Understanding DataJoiner security requires that you understand two broad topics:
managing client access to DataJoiner and managing client access to remote data
sources through DataJoiner.

Managing client access to DataJoiner is similar to managing client access to DB2 for
CS. First, a user is authenticated. Then, the database manager determines if the user
has sufficient privileges to perform operations (SELECT, ALTER, and so on) against
database objects. At this point, a user can perform operations against DataJoiner
databases and issue SQL statements against DataJoiner objects. This level of
distinction is important. A nickname is a DataJoiner object; the object at a data source
that is represented by a nickname is not a DataJoiner object.

© Copyright IBM Corp. 1995, 1998 13

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

Managing client access to data sources requires some additional planning and may
require a bit more work. After you enable users to access DataJoiner databases, the
next step is to consider the security in place for your remote data sources. Most require
a user ID and password to access data. Additionally, most require that the user ID and
password have a specific authority level or privileges required for viewing and
manipulating data after a user is authenticated. Additionally, if you are accessing DB2
for OS/390 or other DRDA data sources using advanced program-to-program
communications (APPC), APPC network security rules must be followed.

In summary, you must consider:

v Authentication processing between clients and DataJoiner

v Authentication processing between DataJoiner clients and data sources

v DataJoiner database privileges

v Object privileges at data sources

v Additional requirements (APPC security or security elements unique to your
environment)

The rest of this chapter provides information on authentication processing and privileges
from a DataJoiner perspective.

DataJoiner and Data Source Authentication

The first step is to ensure that users can access DataJoiner. The process of validating
users is called authentication.

Authentication

Access to an instance is first validated outside the database manager. This process,
known as Authentication, verifies that users are really who they claim to be. All
users/applications must be authenticated before database requests are processed.

Figure 3 on page 15 shows how user information is passed to DataJoiner (and possibly
on to data sources).

14 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|
|

|
|

|
|
|

Authentication can take place at multiple locations (client, DataJoiner, data sources, or
a combination).

Where authentication takes place depends on:

v The client authentication type.

v The DataJoiner authentication type. The authentication type of the DataJoiner
database must match the authentication type that is specified when the client
catalogs the DataJoiner database.

v Whether a data source is configured to expect a password.

v Whether the DataJoiner password server option is set to send a password to a data
source

v APPC security (that is specified for the APPC connections between the client and
DataJoiner, and between DataJoiner and the data source).

DataJoiner offers functions helping you enable end-to-end authentication processing
(user/client to DataJoiner to data sources). Consider the situation when a user’s ID and
password are the same for accessing DataJoiner and also for accessing a
non-DataJoiner data source. DataJoiner can send the user ID and password used for a
connection to DataJoiner directly to the data source. If the password is similar (perhaps
only the case changes) a server option (fold_pw) can handle this situation. Of course, if

Figure 3. Authentication and Privilege Processing: Overview

Chapter 2. Security 15

|

|

|
|
|

|

|
|

|
|

the user ID and password for DataJoiner and the data source are completely different,
that situation can be handled as well. Remote user IDs and passwords can be created
with CREATE USER MAPPING statements.

In all cases, the DataJoiner password server option needs to be consistent with how the
data source is configured. If the a data source is configured to validate passwords, the
password server option needs to be set so that the password will flow to the data
source. Data source password options are set in DataJoiner using the CREATE
SERVER OPTION statement.

Authentication Types

System administrators can specify the authentication type. It determines where and how
users are verified. The authentication type:

v Is assigned to the DataJoiner instance when it is created or cataloged (at the client).

v Works with the APPC security type to determine where validation takes place.

The formal definitions for DataJoiner authentication types are:

SERVER Authentication occurs at DataJoiner. Authentication can also occur at
the data source, depending on whether the data source was
configured to validate users. The ″password″ server option must be
set so that it is consistent with the data source. SERVER is the
default setting.

Because the authorization name and password flow from the client to
DataJoiner, they are available to flow from DataJoiner to the data
source. See “What Authorization names and Passwords Flow from
DataJoiner to Data Sources?” on page 23 for more information.

CLIENT Authentication occurs at the client (on the node where the application
is started) and can also occur at the data source. The authorization
name and password specified during a connection attempt are
compared with the valid authorization name and password
combinations on the client node. They determine if the authorization
name is permitted access to the database. An example is when the
application issues a CONNECT TO statement. DataJoiner assumes
that the user is authenticated at the location they first sign on to. No
further authentication takes place at DataJoiner.

When authentication is set to CLIENT, the password used to
authenticate the client does not flow to DataJoiner. If a password is
required for authentication at a data source, a password must exist in
SYSCAT.REMOTEUSERS for the data source. You can add entries to
SYSCAT.REMOTEUSERS with CREATE USER MAPPING
statements.See “What Authorization names and Passwords Flow from
DataJoiner to Data Sources?” on page 23 for more information.

DCS A DCS setting is similar to SERVER. The difference is that a DCS
setting causes authentication to take place where the data is located

16 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

(at a data source). Authentication does not take place at DataJoiner.
Similar to SERVER, a password is expected. The password can be
passed from the client to the data source (via DataJoiner); or, a
password stored at DataJoiner can be sent. Use the CREATE USER
MAPPING statement to store passwords at DataJoiner.

OS/2 Client Note: Client workstations running under Extended Services for OS/2 2.0
and DB2 for OS/2 Version 1 cannot specify an authentication type; therefore,
DataJoiner assumes that the authentication type for these clients is SERVER.

DOS or WINDOWS Client Note: You cannot authenticate authorization names or
passwords at the client. Authorization names and passwords that are assigned to the
DB2USERID and DB2PASSWORD environment variables are sent to DataJoiner
unvalidated.

Specifying Authentication for an Instance and Databases

Before you create instances or change authentication settings, consider operating
system group and user security for the instance and associated databases. One user
must own an instance, and that user’s primary group becomes the group that is used to
designate the administrators for that instance. This group is critical. Members can
perform all possible tasks for that instance and databases within that instance (for
example, starting and stopping the instance).

Local operating system commands create the users and groups that will access
DataJoiner instances. For specific examples, see the DataJoiner Planning, Installation,
and Configuration Guide for your platform.

The authentication type for a DataJoiner instance is set when the instance is created.
Databases created under an instance inherit instance authentication settings. Use the
db2icrt command to create instances.

If you need to change the authentication setting, use the UPDATE DATABASE
MANAGER COMMAND . See the DATABASE 2 Command Reference for more
information about updating an instance.

Matching Authentication Settings: Server and Clients

Use the CATALOG DATABASE command at client workstations to store information
about remote or local database authentication settings. This command catalogs
information about databases the client will connect to.

The authentication type specified when the client database is cataloged must match the
authentication type specified for the DataJoiner instance databases the client will
connect to. The client and DataJoiner authentication types are compared every time the
client connects to DataJoiner. DataJoiner refuses the connection request if the
authentication types do not match.

Chapter 2. Security 17

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

Determining Security Requirements

This section is a work sheet to help you determine your security requirements. It
answers three important security questions:

v Do I need authorization names and passwords at the DataJoiner server for all my
DataJoiner users?

v Should I configure my DataJoiner server with authentication set to CLIENT, SERVER,
or DCS?

v Do I need to use CREATE SERVER MAPPING statements to maintain entries in
SYSCAT.REMOTEUSERS?

Security at the DataJoiner Server

Questions in this section apply to your DataJoiner server. The answers to these
questions can help you determine if your DataJoiner server must be password
protected. Use the prefix area before the question to mark 'Y' or 'N'. You will need these
answers in “Putting It All Together” on page 19.

__A1. Will your DataJoiner server contain user data that must be password
protected? That is, will you use the local data store option of DataJoiner to store
user data?

__A2. If the answer to A1 is Yes, will that data require password protection or can
anyone with access to the server read it? In most cases, if it contains user data, that
data must be password protected.

__A3. Will any of the system data stored in the DataJoiner catalog require
password protection? Is it acceptable to allow DataJoiner users to select from the
DataJoiner system catalog and see table and view names, column names and
attributes, statistics, and so on?

Authorization names at the Data Sources

Questions in this section apply to your authorization names at the data sources. Include
your DataJoiner server as a data source for the purpose of these questions, which can
help you determine if SYSCAT.REMOTEUSERS needs to be maintained. Use the prefix
area before the question to mark 'Y' or 'N'. You will need these answers in “Putting It All
Together” on page 19.

__B1. Are authorization names consistent across all data sources? That is, for all
users, are their authorization names exactly the same on all data sources?

__B2. If the answer to B1 is No, is the only difference case (entirely lowercase
names versus uppercase names)? For example, DB2 for OS/390 data sources
require uppercase authorization names; Sybase SQL Server data source
authorization names are usually in lowercase. If all authorization names for a given
user were converted to uppercase, would they be exactly the same?

18 DB2 DataJoiner Version 2 Administration Supplement

|
|

|
|

|
|
|
|

Passwords at the Data Sources

Questions in this section apply to password requirements for your data sources. Do not
include your DataJoiner server as a data source for the purpose of these questions
(unless instructed to do so later in Step 2). Answers to these questions can help you
determine if SYSCAT.REMOTEUSERS needs to be maintained. The answers will also
help determine the impact of this maintenance on answers to the previous questions.
Use the prefix area before the question to mark 'Y' or 'N'. You will need these answers
in “Putting It All Together”.

__C1. Are passwords needed on any data source?

__C2. If the answer to C1 is Yes, then considering only those servers in which
passwords are required, are passwords consistent across all those servers? That is,
for all users, are their passwords exactly the same on all data sources that require
passwords?

__C3. If the answer to C2 is No, then is the only difference case (entirely
lowercase passwords versus entirely uppercase ones)? For example DB2 for
OS/390 data sources require uppercase passwords; Sybase SQL Server data
source authorization names are usually in lowercase. If all passwords for a given
user were converted to uppercase, would they be exactly the same?

Putting It All Together

Use the results of the questions from the previous sections to determine the correct
authentication approach, and whether entries are needed in SYSCAT.REMOTEUSERS.

1. If you answered Yes to C1 and No to both C2 and C3, then the same password
provided to DataJoiner cannot be used for all data sources. DataJoiner must use
SYSCAT.REMOTEUSERS to identify the correct password for those users. Set your
answer to A2 to Yes if it is not currently Yes. Your users must maintain
SYSCAT.REMOTEUSERS to allow DataJoiner to select the correct password for
each user/data source pair.

2. If you answered Yes to A1, A2, or both, change your answers to questions C1
through C3. This time include your DataJoiner server as a data source. Your answer
to question C1 should be Yes, so you should also answer questions C2 and C3.
Reread Step 1 with your new answers to C1, C2, and C3 in mind.

3. If your answers to questions B1 and B2 were both No, then the authorization name
provided to DataJoiner cannot be used for all data sources. Your users must
maintain SYSCAT.REMOTEUSERS to allow DataJoiner to identify the correct
authorization name for each user/data source pair.

4. If you answered Yes to questions A1, A2, or both, your DataJoiner database must
be configured with authentication set to SERVER. Skip directly to step 8.

5. If you answered No to question C1, then your DataJoiner database must be
configured with authentication set to CLIENT. You are finished.

6. If you answered Yes to question C2, C3, or both, your DataJoiner database must be
configured with authentication set to DCS. You are finished.

Chapter 2. Security 19

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

7. Your DataJoiner database must be configured with authentication set to SERVER.
Continue with 8.

8. If your DataJoiner database has been configured with authentication set to SERVER
then a local authorization name and password is required on the DataJoiner server
for each DataJoiner user.

ID and Password Validation and Flow Considerations

This section shows how passwords are validated and then passed to data sources in a
three-tier environment.

Password Validation Matrixes

In this section, Table 2 through Table 5 describe several authentication (password
validation) scenarios. The scenarios differ, based on the communication protocol used.
In the tables, an ’x’ indicates that authentication takes place at the client, DataJoiner
server, or data source. An ’m’ indicates that authentication might take place at the
DataJoiner server or a data source. A blank entry indicates that authentication does not
take place at the client, DataJoiner server, or data source.

v Table 2 shows how password validation occurs for a non-SNA data source with a
TCP/IP client.

v Table 3 shows how password validation occurs for a non-SNA data source with an
APPC client.

v Table 4 shows how password validation occurs for a SNA data source with a TCP/IP
client.

v Table 5 shows how password validation occurs for a SNA data source with an APPC
client.

Table 2. Password Validation: Non-SNA Data Source with TCP/IP Client

Client DataJoiner Server
Data

Source

Authentication Verify TCP/IP———> Authentication Verify Password SEND Verify

CLIENT x authorization
name
—————>

CLIENT N authorization
name
—————>

CLIENT x authorization
name
—————>

CLIENT Y authorization
name

—————>
password

m

SERVER authorization
name

—————>
password

SERVER x N authorization
name

—————>

20 DB2 DataJoiner Version 2 Administration Supplement

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

Table 2. Password Validation: Non-SNA Data Source with TCP/IP Client (continued)

Client DataJoiner Server
Data

Source

Authentication Verify TCP/IP———> Authentication Verify Password SEND Verify

DCS authorization
name

—————>
password

DCS N authorization
name

—————>

SERVER authorization
name

—————>
password

SERVER x Y authorization
name

—————>
password

m

DCS authorization
name

—————>
password

DCS Y authorization
name

—————>
password

m

Table 3. Password Validation: Non-SNA Data Source with APPC Client

Client DataJoiner Server
Data

Source

Authentication Verify

Node
Directory
Security

APPC/
———>
APPN Authentication Verify Password SEND Verify

CLIENT x None or Same authorization
name

—————>

CLIENT N authorization
name

—————>

CLIENT x None or Same authorization
name

—————>

CLIENT Y authorization
name

—————>
password

m

SERVER None, Same,
or Program

authorization
name

—————>
password

SERVER x N authorization
name

—————>

DCS None, Same,
or Program

authorization
name

—————>
password

DCS N authorization
name

—————>

SERVER None, Same,
or Program

authorization
name

—————>
password

SERVER x Y authorization
name

—————>
password

m

DCS None, Same,
or Program

authorization
name

—————>
password

DCS Y authorization
name

—————>
password

m

Chapter 2. Security 21

Table 4. Password Validation: SNA Data Source with TCP/IP Client

Client DataJoiner Server
Data

Source

Authentication Verify
TCP/IP
———> Authentication Verify Password

Node
Directory
Security

APPC/
—————>
APPN Verify

CLIENT x authorization
name

—————>

CLIENT N Same authorization
name

—————>

CLIENT x authorization
name

—————>

CLIENT Y Program authorization
name

—————>
password

m

SERVER authorization
name

—————>
password

SERVER x N Same authorization
name

—————>

DCS authorization
name

—————>
password

DCS N Same authorization
name

—————>

SERVER authorization
name

—————>
password

SERVER x Y Program authorization
name

—————>
password

m

DCS authorization
name

—————>
password

DCS Y Program authorization
name

—————>
password

m

Table 5. Password Validation: SNA Data Source with APPC Client

Client DataJoiner Server
Data

Source

Authentication Verify

Node
Directory
Security

APPC/
———>
APPN Authentication Verify Password

Node
Directory
Security

APPC/
———>
APPN Verify

CLIENT x None or
Same

authorization
name

—————>

CLIENT N Same authorization
name

—————>

CLIENT x None or
Same

authorization
name

—————>

CLIENT Y Program authorization
name

—————>
password

m

SERVER None, Same,
or Program

authorization
name

—————>
password

SERVER x N Same authorization
name

—————>

22 DB2 DataJoiner Version 2 Administration Supplement

Table 5. Password Validation: SNA Data Source with APPC Client (continued)

Client DataJoiner Server
Data

Source

Authentication Verify

Node
Directory
Security

APPC/
———>
APPN Authentication Verify Password

Node
Directory
Security

APPC/
———>
APPN Verify

DCS None, Same,
or Program

authorization
name

—————>
password

DCS N Same authorization
name

—————>

SERVER None, Same,
or Program

authorization
name

—————>
password

SERVER x Y Program authorization
name

—————>
password

m

DCS None, Same,
or Program

authorization
name

—————>
password

DCS Y Program authorization
name

—————>
password

m

What Authorization names and Passwords Flow from DataJoiner to
Data Sources?

DataJoiner can send either the authorization name used to connect to DataJoiner or an
authorization name defined at DataJoiner. By default, the authorization name used to
connect to DataJoiner is sent to data sources. However, if you define a remote
authorization ID for a particular user and server, that authorization ID is sent instead.
You can define remote authorization IDs with the CREATE USER MAPPING statement.

Password flow logic is similar to authorization flow logic. The exception is that you can
decide if passwords flow to data sources in addition to specifying a remote authorization
password.

If the DataJoiner password server option is set to ’Y’ for a particular data source server,
a password can be sent to that data source. The default value is ’N’ (no). You can
change server options with the ALTER SERVER OPTION statement.

If a password is sent to a data source, the default action is to send the password that is
associated with the authorization name that connected to DataJoiner. However, if you
define a remote password for a particular user and server, that password will be sent
instead. You can define remote passwords with the CREATE USER MAPPING
statement.

When a DataJoiner database has an authentication setting of CLIENT, this means that
a password does not flow from the client to DataJoiner. If a password is required for a
data source, you must define a password at DataJoiner and set the password server
option to ’Y’. Define remote passwords with the CREATE USER MAPPING statement.
See the DataJoiner Application Programming and SQL Reference Supplement for more
information on DataJoiner DDL statements.

Chapter 2. Security 23

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

When Are Entries Required in SYSCAT.REMOTEUSERS?

Entries in SYSCAT.REMOTEUSERS are required when:

v The authorization name at the data source differs from the authorization name at
DataJoiner (other than the case).

v The password at the data source differs from the password at DataJoiner (other than
the case).

If the authorization name or password differences are simply a matter of case
(uppercase or lowercase), you don’t have to add an entry in SYSCAT.REMOTEUSERS.
DataJoiner can fold authorization names and passwords to uppercase, as described in
“Folding Authorization Names and Passwords”.

Folding Authorization Names and Passwords

Authorization names and passwords flow from DataJoiner to the data sources. In many
cases, no action is required on your part; however, in some cases the names and
passwords may need to change. Different data sources have different authorization
name and password requirements (regarding the use of uppercase or lowercase).

DataJoiner provides two server options that can help you resolve naming differences
(you can view them in the SYSCAT.SERVER_OPTIONS catalog view). The option
names are fold_id and fold_pw , and their settings are:

’U’ DataJoiner folds the authorization name or password to uppercase before
sending it to the data source.

’N’ DataJoiner does not fold the authorization name or password.

’L’ DataJoiner folds the authorization name or password to lowercase before
sending it to the data source.

null DataJoiner first sends the authorization name or password as uppercase; if
that fails, DataJoiner folds it to lowercase and sends it again.

The null setting may seem attractive because it covers many possibilities. However,
from a performance perspective, it is best to set these options so that only one attempt
is made for connections. If both the fold_id and fold_pw options are set to null, it is
possible that DataJoiner will make four attempts to send the authorization name and
password:

1. Both authorization name and password in uppercase.

2. Authorization name in uppercase and password in lowercase.

3. Authorization name in lowercase and password in uppercase.

4. Both authorization name and password in lowercase.

24 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|

|
|
|

|||
|

|||

||
|

||
|

|
|
|
|
|

|

|

|

|

There are some special situations that affect your use of these options. For DUOW
transactions, the user ID and password used to access a Sybase SQL Server data
source (specified with a CREATE USER MAPPING statement) must match the actual
user ID and password at the data source server (same case). Consider setting the
server options (using SET SERVER OPTION SQL statements) fold_pw and fold_id for
this server to N. Alternatively, if the user ID and password are all in one case, then you
could set fold_pw and fold_id to L or U, depending on the case.

Additional information on setting the fold_id and fold_pw server options is in the
DataJoiner Application Programming and SQL Reference Supplement.

General Operational Considerations for Authentication

Operational considerations for authentication include:

v The default setting for the password server option is ’N’. This server option must be
changed if a data source expects a password.

v Exercise extreme caution when using CLIENT authentication. Consider this form of
authentication only for secure networks. A user has SYSADM authority for the
DataJoiner database when the following conditions are met:

– Authentication is set to CLIENT

– The user has root status at the client.

– The user knows the SYSADM’s authorization name.

– The user defines an authorization name on the client that is the same as the
SYSADM’s on DataJoiner.

v Exercise caution when authentication is set to DCS. Authentication is not done at
either the client or at DataJoiner. Any user who knows the SYSADM authentication
name can assume SYSADM authority for theDataJoiner database.

v An authorization name can be defined with the same name as a group name.
DBADM authority is given to the user and not the group if both exist at run time. To
avoid this situation, make sure that the group name is not the same as an
authorization name.

v A DB2 for OS/2 application that connects to several databases can be ported to
DataJoiner, as is, with certain restrictions. Authentication must be set to CLIENT, and
the user must be signed on prior to running the application.

v The effective authorization name is used to verify the user’s authorization to perform
those functions that do not require a prior connection to a database. Examples
include FORCE, CATALOG and CREATE commands. The connection ID is used
once a connection has been established.

v Because the Database Application Remote Interface (DARI) requires a connection,
the connection ID is used for all functions whether or not the function itself requires a
prior connection.

v You cannot perform SYSADM functions with the DARI when authentication is set to
CLIENT. Users, when using DARI, can manipulate databases other than the one to
which they are connected. The other database might have an authentication type

Chapter 2. Security 25

|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|
|

|
|
|

|
|
|

|
|
|
|

different from the authentication type of the database to which the user is connected.
This restriction helps maintain a secure environment.

v On AIX operating systems, if a server is a Network Information Service (NIS) or
Network Information Service Plus (NIS +) client, the SYSADM group should be
defined at the NIS or NIS + server and not at the client. To tell if NIS or NIS + is
running, use the ypwhich command. ypwhich reports the name of the NIS or NIS +
server if NIS or NIS + is running.

Operating System Considerations for Authentication

This section addresses operating system group and user security considerations.

Groups

DataJoiner can consider group membership when determining what authorization a
particular user has. DataJoiner group support is optional and varies by operating
system.

Windows NT Operating Systems

DataJoiner group support on NT matches DB2 for CS group support. Users in the NT
Administrators group have SYSADM authority for the instance.

AIX Operating Systems

Group support for DataJoiner on AIX operating systems is available. It is controlled
using the DB2GROUPS setting in the db2profile shell script. By default, group support
is set to OFF because the AIX mkgroup command (by default) is available to any user.

To ensure only authorized groups are recognized by DataJoiner, either:

v Change the permission on the mkgroup command so that only trusted users can
make groups. To do this:

1. login as root

2. enter

cd /usr/bin

(or equivalent)

3. enter

chmod u-s mkgroup

v Leave DataJoiner group support OFF

User and Group Requirements

Users accessing DataJoiner, when authentication is set to SERVER, must have an
authorization name and password defined using the operating system security facilities.

26 DB2 DataJoiner Version 2 Administration Supplement

|
|
|

|

|
|

Authorization names and passwords are not required if the authentication setting is
CLIENT or DCS.

If group names are used to grant authorizations to database resources (see “Groups”
on page 26), then these groups must be defined and managed using the operating
system security facilities. For group authorizations, authorization names are required
even if authentication is set to CLIENT or DCS.

Any user or group names defined at DataJoiner must be defined in lowercase within the
DataJoiner operating system security facilities. Don’t use delimited identifiers when
referring to these names.

For information on situations in which DataJoiner converts the case of authorization
names, group names, and passwords sent to data sources, see “Folding Authorization
Names and Passwords” on page 24.

OS/2 and DOS Client Note: Because those client’s security facilities always convert
authorization names and passwords to uppercase, adhere to the following rules when
you create a user:

v Create the user with an authorization name that is the lowercase version of the OS/2
or DOS client.

v Assign this user a password that is the uppercase version of the password for the
OS/2 or DOS client authorization name.

Data Source-Specific Considerations for Authentication

This section covers authentication information specific to particular data sources.

Informix 5 Considerations for AIX Operating Systems

Specify a login and password in the .netrc file of any UNIX operating system user
running applications that connect to Informix 5 databases. Either the .netrc file or the
/etc/hosts and /etc/hosts.equiv files must be set up. This section assumes you are using
a .netrc file.

A DataJoiner instance is an Informix application if it access an Informix database.
Therefore, when accessing an Informix 5 database, an instance needs an entry in its
.netrc file for the system where the Informix 5 database resides. The impact of this
relationship is:

v DataJoiner does not use the entries in SYSCAT.REMOTEUSERS for Informix 5
databases because Informix 5 only uses the information from .netrc.

v All DataJoiner users share the same .netrc login and password when accessing an
Informix 5 database from a given DataJoiner instance.

v The DataJoiner authentication type has no impact on password flow to Informix 5.

Chapter 2. Security 27

|
||

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

v All DataJoiner users have the same authorizations at Informix because there can be
only one entry in .netrc related to a given Informix 5 database.

This situation could pose a potential security problem; however, DataJoiner provides
authorization control on nicknames and PASSTHRU SQL statements. Use REVOKE
PASSTHRU SQL statements to ensure that users cannot pass-through to an Informix
5 database. Then, have all Informix authorizations granted to the login specified in
.netrc. The DataJoiner Application Programming and SQL Reference Supplement
contains more information about DataJoiner SQL statements.

See your Informix books for more information about the security requirements of an
Informix 5 database.

Classic Connect Considerations

Sessions running under unguarded resident services are handled with no authorization
checking. If you configure a DMSI to run as an unguarded service, do not create
DataJoiner databases with authentication set to DCS. With authentication set to DCS,
neither DataJoiner or Classic Connect will check authorizations for your data.

For more information, see the DataJoiner Classic Connect Planning, Installation, and
Configuration Guide.

Authentication and Connection Commands and Syntax

Querying for the Authentication Type

You can retrieve the authentication type by using the following command line processor
command:

GET DB MANAGER CONFIGURATION

ÊÊ GET DATABASE MANAGER CONFIGURATION
DB MANAGER CONFIG
DBM CFG

ÊÍ

The authentication type is returned.

See the DATABASE 2 Command Reference for a command output sample.

Connecting to the DataJoiner Database

To use DataJoiner’s database, you must connect to it either implicitly or explicitly. An
implicit connection occurs when you issue an SQL statement without being connected
to any database (and implicit connect is enabled). DataJoiner connects you to the
default database. To connect to a database other than the default, you must use the
CONNECT command to explicitly connect to the database of your choice.

28 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|

|
|
|
|

CONNECT

CONNECT

ÊÊ CONNECT Ê

Ê
TO server-name

host-variable lock-block (1)
authorization

RESET
authorization

ÊÍ

authorization

USER authorization-name
host-variable

USING password
host-variable

lock-block

IN SHARE MODE

IN EXCLUSIVE MODE

Notes:

1. This form is only valid if implicit connect is enabled.

Table 6 on page 30 shows various forms of CONNECT and how they relate to
authentication. Table 6 on page 30 also lists the connect type of each statement. There
are two connect types:

Connect Type 1 DataJoiner uses the authorization name and
password specified on the CONNECT statement.

Connect Type 2 DataJoiner uses the local authorization name on the
CONNECT statement. See “What Authorization
names and Passwords Flow from DataJoiner to
Data Sources?” on page 23 for information on
authorization names that flow from DataJoiner to a
data source.

Chapter 2. Security 29

Table 6. Connection and Authentication

Statement Notes Authentication
Type Supported

Connect Type

CONNECT TO server-name
USER authorization name
USING password

v Server name explicitly supplied.

v Authorization name and password
explicitly supplied.

v User may or may not be signed
on.

v SERVER

v CLIENT

v DCS

Type 1

CONNECT USER authorization
name USING password

v Server name not supplied.

v Authorization name and password
explicitly supplied.

v If there is not an existing
connection, the default database is
used (as specified by the
environment variable DB2DBDFT).

v If there is an existing connection,
the existing database is connected
to again.

v SERVER

v CLIENT

v DCS

Type 1

CONNECT TO server-name v Authorization name or password
are not specified.

v SERVER and DCS cannot be
supported if the client is remote
since the password is not
available. SERVER and DCS are
supported if the client is local.

v CLIENT is supported but only if the
user is signed on.

v CLIENT

v SERVER and
DCS can be
supported if the
client is local.

Type 2

30 DB2 DataJoiner Version 2 Administration Supplement

Table 6. Connection and Authentication (continued)

Statement Notes Authentication
Type Supported

Connect Type

CONNECT v User is not connected to any
database.

v Implicit connect must be enabled.

v Default database is used.

v Authentication information is
retrieved from the security system.

v SERVER and DCS cannot be
supported because the password
is not available.

v CLIENT supported if the user is
signed on.

v CLIENT

v SERVER and
DCS can be
supported if the
client is local.

Type 2

CONNECT v If user is connected, this form is
used to query who is connected.

v No actions related to authentication
are taken.

N/A N/A

CONNECT v User is not connected.

v The implicit connect environment
variable (DB2DBDFT) is not defined.

v No action related to authentication
needs to be taken.

N/A N/A

Authorization, Authorities, and Privileges

Authenticated users must also have the appropriate authorization to access DataJoiner
databases and objects (nicknames, tables, views, and so on). Authorization to access
objects is managed by authority levels and privileges. Authority levels provide a method
of grouping privileges and higher level database manager operations. Named
authorities are used to group specific sets or privileges (the SYSADM authority is the
highest authority level). Privileges are set at a lower level and manage authorization to
specific database objects and resources. Individual privileges are granted to users.

One way to understand the relationship between authentication, local DataJoiner
authorities and privileges, and data source privileges is to consider security from four
levels:

Chapter 2. Security 31

|
|
|
|
|
|
|

|

DataJoiner Access can be controlled with the workstation user
name and password. User must meet authentication
requirements.

DataJoiner data The user must have access to both the DataJoiner
database and the appropriate data (tables and
nicknames) within that database. An authenticated
user must have privileges (such as SELECT) for
DataJoiner objects or the appropriate authority level.

Data sources The user may need to authenticate their user
name/password at the data source as well as at
DataJoiner.

Data source data The user must have been granted access to the
appropriate data source data to perform operations
against that data. Privileges granted at DataJoiner
do not imply that a user has the same level of
privileges at the data source. If a user has the
SELECT privilege at DataJoiner for a nickname but
lacks privileges for the data source table referenced
by that nickname, the query will fail.

Privileges and authorities combine to form a controlled access system for database
objects. Given access to a database, a user has access to the database objects only
as permitted by the privileges granted to the user.

A user can be authorized for any combination of individual privileges or administrative
authorities. When a privilege is associated with a resource, that resource must already
exist. For example, a user cannot be given the SELECT privilege on a table unless that
table has previously been created.

See the DATABASE 2 Command Reference, the DATABASE 2 Application
Programming Guide, or the DataJoiner Application Programming and SQL Reference
Supplement for information about required authorities or privileges for a particular
command or SQL statement.

Authorities

Administrative authorities are sets of privileges covering a set of objects. Four
administrative authorities are supported: SYSADM, SYSCTRL, DBADM and SYSMAINT.
Users with these authorities can grant or revoke privileges to or from other users.

There are four administrative authorities (that are fully documented in the DATABASE 2
Administration Guide). DataJoiner-specific concepts for each authority are:

SYSADM authority SYSADM is the highest level, with control over all
resources created and maintained by DataJoiner.
This authority level is assigned to the group
specified by the sysctrl_adm configuration

32 DB2 DataJoiner Version 2 Administration Supplement

||
|
|

||
|
|
|
|

||
|
|

||
|
|
|
|
|
|
||

parameter. See the DataJoiner Planning,
Installation, and Configuration Guide for your
platform for instructions on adding users to groups.

A single user can have SYSADM authority for a
number of instances of DataJoiner on the same
node. Only users with SYSADM, SYSCTRL, or
SYSMAINT authority can start and stop DataJoiner.

SYSCTRL authority SYSCTRL is the highest level of system control
authority. Give users this authority when they must
perform utility and maintenance operations against a
database manager and databases containing
sensitive information. This authority level is
assigned to the group that is specified by the
sysctrl_group configuration parameter. See the
DataJoiner Planning, Installation, and Configuration
Guide for your platform for instructions on adding
users to groups.

SYSMAINT authority SYSMAINT is the second level of system control
authority. Grant users this authority when they must
perform a subset of utility and maintenance
operations (such as running a trace) against a
database manager and databases containing
sensitive information. This authority level is
assigned to the group specified by the
sysmaint_group configuration parameter. See the
DataJoiner Planning, Installation, and Configuration
Guide for your platform for instructions on adding
users to groups.

DBADM authority DBADM is the second highest level of administrative
authority. It is specific to a single DataJoiner
database. DBADM authority can be given to any
user or group.

Privileges

The capability to create or access a resource is a privilege. A privilege permits an
authorization name to act on a type of object. There are several privilege types:

v Database privileges control the access and creation of databases.

v Table privileges control the access and creation of tables.

v View privileges control the access and creation of views. You can use views to
control access to a table. By granting access to a view instead of to the underlying
tables, you can restrict access to the rows and columns selected by the view
definition.

v Nickname privileges control the access and creation of nicknames.

v Package privileges control the creation, modification, and execution of packages.

Chapter 2. Security 33

|
|
|
|
|
|
|
|
|
|
|

v Index privileges control the creation of indexes.

v The pass-through privilege controls direct access to data sources.

Database resources are hierarchical, and so are the access privileges of those
resources. Figure 4 illustrates the hierarchical relationship of access authorities and
privileges.

See the DATABASE 2 Administration Guide for more information on authorities and
privileges.

Ownership (CONTROL) privileges
The CONTROL privilege is automatically granted to
the creator of an object (although some views are
exceptions to this rule). This privilege is equivalent
in all respects to ownership of the object. It includes
the right to access an object in any way and to
grant privileges on the object. Privileges are
controlled by users with ownership or administrative
authority. These users can grant or revoke
privileges to or from other users.

Individual privileges Individual privileges allow a specific function,
sometimes on a specific object.

Figure 4. Hierarchy of Authorities and Privileges

34 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|
|
|
|

Implicit privileges Users can be implicitly allowed to exercise
privileges if they have the privilege to execute a
package that requires those privileges. This kind of
authorization is controlled by privileges to create
and execute packages.

Two SQL statements control privileges. The GRANT statement gives privileges to a
user, and REVOKE takes them away.

It is possible to use DataJoiner privileges to control access to data sources. See
“Options for Controlling Access to Distributed Database Objects” on page 37 for details.

Nickname, Stored Procedure Nickname, Table, and View Privileges

Nickname, stored procedure nickname, table, and view privileges limit the actions
authorized users can perform on those objects. Accessing objects requires the
appropriate privileges at both the data source and at DataJoiner.

Additional information on authorization requirements is in the DATABASE 2
Administration Guide.

For stored procedure nicknames, the authorized user creating the nickname must have
the SELECT privilege on the data source’s system catalogs. The user must also have
authorized access to the stored procedure itself. Sybase SQL Server, in addition,
requires that users have the EXECUTE privilege for remote procedures.

Some table privileges are not valid for views or nicknames, as shown in Figure 4 on
page 34 . For more information on creating nicknames, see the DataJoiner Application
Programming and SQL Reference Supplement.

Package Privileges

Package privileges govern the ability to control, bind, and execute packages.
DataJoiner package privileges and overall package behavior is similar to information
documented in the DATABASE 2 Administration Guide with some differences.

If a package contains nicknames, the package owner must have the appropriate
privileges or authority level for the nicknames within the package. At a minimum, the
package owner requires SELECT authority.

Users or applications that use a package containing nicknames don’t need additional
privileges or an authority level for the nicknames within the package. However, package
users connecting to DataJoiner to process the package must have the EXECUTE
privilege for that package.

The package owner does not need privileges or an authority level for objects referenced
by the nicknames at data sources. However, package users must have the appropriate
privileges or authority levels for data source objects at the data source.

Chapter 2. Security 35

|
|
|

|
|
|
|

|
|
||

|

|
|
|

|
|
|

|
|
|
|

|
|
|

It is possible that DataJoiner packages may require additional authorization steps
because DataJoiner uses dynamic SQL when communicating with DB2 data sources.
The authorization ID running the package at the data source must have the appropriate
authority to execute the package dynamically at that data source. See the DataJoiner
Application Programming and SQL Reference Supplement for more information about
how DataJoiner processes static and dynamic SQL.

Index Privileges

Index privileges involve the ability to create and drop indexes. Index privileges can be
defined for index information maintained by DataJoiner that was retrieved from a data
source when a nickname was created. Note that the indexes do not exist at DataJoiner.

Pass-through Privileges

DataJoiner pass-through privileges control which authorization IDs can issue SQL
statements directly to data sources. Use them to control the ability to pass DDL and
DML statements directly to data sources.

DataJoiner provides four SQL statements to support pass-through operations:

v GRANT PASSTHRU, which grants the authority to issue PASSTHRU SQL
statements against a data source

v REVOKE PASSTHRU, which revokes the authority to issue PASSTHRU SQL
statements against a data source

v SET PASSTHRU, which establishes a pass-through session

v SET PASSTHRU RESET, which ends a pass-through session

A sample statement granting pass-through authorization to the user Shawn for the
server ORACLE1 is:

GRANT PASSTHRU ON SERVER oracle1 TO USER shawn

For complete information on the syntax of these statements, see the DataJoiner
Application Programming and SQL Reference Supplement.

Pass-through Operations and Security

Within any pass-through session:

v DataJoiner processes all static SQL statements.

v Dynamic SQL statements prepared within the pass-through session are processed at
the data source.

If an SQL statement prepared within the pass-through session executes after the
session ends, the statement ends in SQLCODE -901.

v Dynamic SQL statements not prepared within the pass-through session are
processed by DataJoiner.

36 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|

|
|
||

|

|
|
|

|

|
|

|
|

|

|

|
|

|

|
||

|

|

|

|
|

|
|

|
|
|

Options for Controlling Access to Distributed Database Objects

The DataJoiner environment introduces several new security concepts that extend
standard DB2 for CS database object control. Some options/ideas to consider include:

v Limiting authorization for pass-through sessions. If your environment requires that
many applications have direct (pass-through) access to a data source (complex DDL
operations, unique SQL syntax), consider limiting pass-through privileges. Set up one
ID at the data source with the privileges required by all incoming applications. Then,
restrict access to that data source ID with PASSTHRU statements at DataJoiner.

v Single user approach. One possible security approach is to ensure that only one user
at the DataJoiner database has SELECT privileges on nicknames. Then, revoke
PASSTHRU privileges for all other users. That one user (excepting SYSADM and
DBADM users) is the only user that can access all the DataJoiner data sources.

v Providing access to system catalog views. Users may need access to DataJoiner
catalog views (or perhaps selected columns within those views) when creating
applications. Although the method for granting access to DataJoiner catalog views is
similar to that for DB2 for CS catalog views, there are several new views and new
columns. See the DataJoiner Application Programming and SQL Reference
Supplement for information on the catalog views unique to, or modified by,
DataJoiner.

v Creating multi-location views. Because DataJoiner can access data in multiple data
sources, a typical practice is to create multi-location views, where the view definition
is composed of metadata from one or more data sources. Such views are useful
when joining information in columns of sensitive tables across a distributed
environment.

Examples

The following examples provide an overview of two security scenarios and outline
required steps to ensure user access to data.

Two Remote Data Sources With Similar IDs and Passwords

In this scenario, the task is to enable user Shawn to perform a UNION operation
against two nicknames (SYREM1 and DB2REM1). The nicknames represent two tables
at different data sources. One data source is a Sybase SQL Server where Shawn’s ID
and password are expected in lower case. The other data source is DB2 for OS/390
where Shawn’s ID and password are expected in upper case. DataJoiner authentication
is set to SERVER. The DataJoiner database name is DJ1. Shawn will access
DataJoiner from a Windows NT client across a TCP/IP connection. The connection from
DataJoiner to DB2 for OS/390 is TCP/IP.

Assuming that Shawn has the proper privileges at both data sources, first ensure that
DataJoiner is expecting a password and that a password is being sent. Also, ensure

Chapter 2. Security 37

|
|

|
|

|
|
|
|
||

|
|
|
||

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|

that the client and server authentication types match. Check the DataJoiner server
authentication type by issuing the command:

GET DATABASE MANAGER CONFIGURATION

from the DataJoiner server. Check the client authentication type by issuing the
command:

LIST DATABASE DIRECTORY

from the client. In both cases, you would look for authentication set to SERVER. If the
setting for the client is DCS or CLIENT, you can change it by using the UNCATALOG
DATABASE and CATALOG DATABASE commands.

Next, ensure that passwords will be sent to the data sources. Issue the commands:

CREATE SERVER OPTION password FOR SERVER SYBASE1 SETTING 'Y'
CREATE SERVER OPTION password FOR SERVER MVS1 SETTING 'Y'

Assume that Shawn logs in to Windows NT each day with a valid user ID and
password. The next step is to define privileges allowing Shawn to connect to DJ1 and
select the specified nicknames. Login at DataJoiner with a user ID that has one of the
administrative authorities (SYSADM or DBADM) and issue the SQL statements:

GRANT CONNECT ON DATABASE DJ1 To SHAWN;
GRANT SELECT ON syrem1 TO USER SHAWN;
GRANT SELECT ON db2rem1 TO USER SHAWN;

Now, enable access to the DB2 for OS/390 data source. There are several steps
required to set up access to a DB2 for OS/390 data source. Details are in the Planning,
Installation, and Configuration Guide for your platform. For now, realize that you must
catalog the TCP/IP node at DataJoiner using correct security settings. An example
catalog command is:

DB2 CATALOG TCPIP NODE db2node REMOTE DB2TCP SERVER MVS1

Now, create server options to change the case of Shawn’s ID and password. You set
them with the commands:

CREATE SERVER OPTION fold_id TO 'L' FOR SERVER SYBASE1
CREATE SERVER OPTION fold_pw TO 'L' FOR SERVER SYBASE1
CREATE SERVER OPTION fold_id TO 'U' FOR SERVER MVS1
CREATE SERVER OPTION fold_pw TO 'U' FOR SERVER MVS1

At this point, Shawn can access data on both data sources.

Two Remote Data Sources: Mixed IDs and Passwords

In this scenario, the task is to enable user Shawn to perform a JOIN operation against
two nicknames (MSREM1 and ORAREM1). They represent two tables at different data
sources. Microsoft SQL Server is the first data source. It expects Shawn’s ID and
password in lower case. The other data source is managed by an Oracle 7 database

38 DB2 DataJoiner Version 2 Administration Supplement

|
|

|

|
|

|

|
|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|

|
|
|
|

manager. For Oracle, an ID and password are required and both are different from the
ID and password that are used for DataJoiner. DataJoiner authentication is set to
SERVER. The DataJoiner database name is DJ1. Shawn will access DataJoiner from a
Windows NT client across a TCP/IP connection.

Assuming that Shawn has the proper privileges at both data sources, ensure that
DataJoiner is expecting a password and that a password is being sent. Also, ensure
that the client and server authentication types match. Check the DataJoiner server
authentication type by issuing the command:

GET DATABASE MANAGER CONFIGURATION

from the DataJoiner server. Check the client authentication type by issuing the
command:

LIST DATABASE DIRECTORY

from the client. In both cases, you would look for authentication set to SERVER. If the
setting for the client is DCS or CLIENT, you can change it by using the UNCATALOG
DATABASE and CATALOG DATABASE commands.

Next, ensure that passwords will be sent to the data sources. Issue the commands:

CREATE SERVER OPTION password FOR SERVER ORA1 SETTING 'Y'
CREATE SERVER OPTION password FOR SERVER MS1 SETTING 'Y'

Now, define privileges allowing Shawn to connect to DJ1 and select the specified
nicknames. Login at DataJoiner with a user ID that has one of the administrative
authorities (SYSADM or DBADM) and issue the SQL statements:

GRANT CONNECT ON DATABASE DJ1 To SHAWN;
GRANT SELECT ON MSREM1 TO USER SHAWN;
GRANT SELECT ON ORAREM1 TO USER SHAWN;

Enable DataJoiner to map Shawn’s DataJoiner ID and password to the correct
password for Oracle.

CREATE USER MAPPING FROM "SHAWN" TO SERVER ORA1 AUTHID "scott"
PASSWORD "tiger"

Create server options to control the case of Shawn’s ID and password when they are
sent from DataJoiner to the data sources. Use the commands:

CREATE SERVER OPTION fold_id TO 'N' FOR SERVER ORA1
CREATE SERVER OPTION fold_pw TO 'N' FOR SERVER ORA1
CREATE SERVER OPTION fold_id TO 'L' FOR SERVER MS1
CREATE SERVER OPTION fold_pw TO 'L' FOR SERVER MS1

At this point, Shawn can access data on both data sources.

Chapter 2. Security 39

|
|
|
|

|
|
|
|

|

|
|

|

|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|

40 DB2 DataJoiner Version 2 Administration Supplement

Chapter 3. Node and Database Directories

This chapter describes the organization of the DataJoiner node and database
directories, and their relationship to the SYSCAT.SERVERS and
SYSCAT.REMOTEUSERS catalog views. Node and database directories provide
communication information used by clients when accessing DataJoiner and DataJoiner
when accessing data sources.

The focus of this chapter is communication flows between DataJoiner and data sources.
For information about setting up your communications protocol to support database
clients, see the section about configuring clients to DataJoiner in the DataJoiner
Planning, Installation, and Configuration Guide for your platform.

Node Directory

Each DataJoiner instance maintains one node directory. The node directory contains
entries for all nodes containing DB2 Family database directories that DataJoiner can
access. The node directory is used to obtain communication information for network
connections when the database being accessed is remote. DataJoiner creates or
updates the node directory when remote nodes are cataloged. In a DataJoiner
environment, the 'NODE' column in SYSCAT.SERVERS references the node directory
for information on DB2RA 1 and DRDA protocols. Only TCP/IP and APPC nodes for the
DB2 Family must be cataloged.

DB2 Data Source Access Note: DataJoiner provides access to DB2RA and DRDA
data sources (DB2) in two ways: using nicknames and pass-through statements or
using DRDA Application Requester (DRDA AR) functionality provided in DataJoiner.
Your decision to use one or both methods depends on application requirements. Using
DRDA AR functionality, for example, is appropriate for use with existing DDCS
applications. Configuration information is provided in the DataJoiner Planning,
Installation, and Configuration Guide for your platform.

DataJoiner automatically creates the node directory when the first remote node is
cataloged. The node directory file is placed in the a directory owned by the DataJoiner
instance. The user does not need to be connected to a database when cataloging a
remote node.

Node Note: Nodes for data source databases other than the DB2 Family of databases
(for example Sybase and Oracle) should not be cataloged in the node directory, even if
DataJoiner will reference them.

1. DB2RA refers to the DB2 format and protocol sent between clients and servers. It is proprietary in nature and analogous to Oracle’s
SQL*NET and Sybase’s Open Client/Open Server formats and protocols, which are also proprietary. DataJoiner uses DB2RA to
natively communicate between clients and DataJoiner, and between DataJoiner and DB2 for CS data sources.

© Copyright IBM Corp. 1995, 1998 41

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

Cataloging Remote Nodes

Cataloging a remote node creates an entry in the node directory of the local instance of
DataJoiner. The node entry contains the information required to establish the
connection between DataJoiner and a remote IBM database. Parameters specified in
the node directory must correspond to the parameters specified in the communication
definitions. Only a user with SYSADM authority can catalog a remote node.

To establish a connection between the DataJoiner node and the data source node, you
only need to catalog the data source node in DataJoiner’s node directory. You do not
need to catalog the DataJoiner nodes in the data source’s node directory.

Uncataloging Remote Nodes

Uncataloging a remote node deletes the node name from the node directory on a file
system. After a remote node has been uncataloged, any IBM databases residing on the
remote node can no longer be accessed from DataJoiner. A user must have SYSADM
authority to uncatalog a remote node.

Database Directories

Database names and locations must be stored at each system that accesses the
databases. The database directories maintain this information. Database directories
contain entries for all databases that can be accessed from the local system.

In general, only DataJoiner databases need to cataloged in the database directory. The
exception is the DB2 Family databases that need to be accessed using DataJoiner
DRDA AR functionality. If data source databases are going to be accessed using
nicknames, they do not need to be cataloged. Data source databases other than the
DB2 Family (such as Sybase and Oracle) never need to be cataloged in the database
directory.

DataJoiner creates database directories when creating databases or processing catalog
database commands. These directories are maintained outside of the database. In a
DataJoiner environment, there are two types of database directories:

v System

v Local

System Database Directory

The system database directory is created in a directory owned by the DataJoiner
instance. There is one system database directory per DataJoiner instance. It is used to
access databases created for that instance of DataJoiner. It is also used to access
remote databases that are using the DataJoiner DRDA AR functionality. Entries are not
required for DB2 Family data source databases accessed through nicknames or
pass-through sessions.

42 DB2 DataJoiner Version 2 Administration Supplement

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

Each system database directory entry contains the database name, the database alias
name, the entry type, where the local database directory is located (if indirect), the
name of the node where the database is located (if remote), and other system
information.

Local Database Directory

The local database directory resides in every subdirectory that contains a locally
created database. It contains the name of the database and its physical location. An
entry is added to it when a local database is created.

It is used to access the databases in that subdirectory. Each local database directory
entry contains the database name, the database alias name, the entry type, the name
of the file system directory where the database files are stored, and other system
information. The database alias name is always the same as the database name in this
directory. The entry type is always specified as “Home.”

Relationships between Node and Database Directories

The first two sections in this chapter described node directories and database
directories, and how they are used in a DataJoiner environment. This section illustrates
how these directories are related.

Client and DataJoiner Nodes and Directories

Figure 5 on page 44 shows the relationship between the node and database directories
at the client, and the database directories at the DataJoiner instance.

Chapter 3. Node and Database Directories 43

|
|
|

|
|
|
|
|

Figure 5 Notes:

v The client’s node directory identifies which DataJoiner instances this client can talk
to.

v The client’s database directory contains an entry for each DataJoiner database to
which this client can connect.

v There is a 1:n ratio between entries in the client’s node directory and the client’s
database directory. In this example, for Client 1, the node directory shows one entry
for DJ1, and three entries in the database directory for databases A, B, and C.

v DataJoiner’s database directories contain information about the databases on this
instance. There is usually a 1:1 ratio of DataJoiner database directories and
databases.

DataJoiner and Data Source Nodes and Directories

Figure 6 on page 45 shows the relationship between DataJoiner’s node and database
directories, and the database directories at IBM data sources.

Figure 5. Client and DataJoiner Node and Database Directories

44 DB2 DataJoiner Version 2 Administration Supplement

Figure 6 Notes:

v DataJoiner’s node directory identifies which IBM data sources this DataJoiner
instance can talk to.

v DB2 for OS/390, DB2 for OS/400, and DB2 for VM and VSE data sources do not
have database directories. After you connect to one of these systems, you can
access any database within that system. Therefore, database directory entries are
not required for those data sources.

v The SYSCAT.SERVERS catalog view describes which databases this DataJoiner
instance can connect to. For example, if Database C on DJ1 connects to the
databases on DB2 for MVS and the two databases on DB2 for AIX, Database C’s
SYSCAT.SERVERS catalog view would contain three entries: one for the entire DB2
for MVS system and two for the databases located at the DB2 for AIX instance.

v The 'NODE' column in SYSCAT.SERVERS identifies the node directory entry to use
for that server.

DB2 for OS/390 Note: Do not confuse DataJoiner’s node and database directories with
the DB2 for MVS directory, which is a database and not related to DataJoiner’s
directories.

Managing Your Database Directories

To add or delete entries to your database directories, use the following commands:

v CATALOG DATABASE

v UNCATALOG DATABASE

Figure 6. DataJoiner and Data Source Nodes and Directories

Chapter 3. Node and Database Directories 45

|
|
|

The following sections discuss cataloging and uncataloging databases in your system
database directory. For more information about the commands listed above, see the
DATABASE 2 Command Reference.

Cataloging a Database

When you catalog a database, information about the database is stored in the database
directories. The database might have been created at another location. When a
database is created, the database is cataloged on the local node automatically.
Therefore, the only time you need to catalog a database is:

v When the database was not created on the local node

v To catalog a database with a different alias name

v To catalog a database entry that was previously deleted

You must have SYSADM authority at the node you are cataloging on to catalog a
database.

Cataloging a database creates an entry in the system database directory. If the system
database directory does not exist when you catalog the database, this directory file is
created.

DataJoiner creates the system database directory automatically when the first database
is created or cataloged on a specific node. You do not need to be connected to a
database to catalog a database. When databases are cataloged on a node, the
databases can be referred to by an alias. Two databases with the same alias cannot
exist within the same instance of DataJoiner. DataJoiner must identify each database by
a unique identifier. When you catalog a database at a node, the alias you assign is the
database’s unique identifier. By specifying aliases, users can distinguish between
databases originally created with the same name but on different nodes. Users with
SYSADM authority can use this feature to assign their own naming scheme to the
various databases. DataJoiner uses the database alias as the database name for
remote databases.

Uncataloging a Database

Uncataloging a database deletes a database entry from the system database directory
on a specific node. You must have SYSADM authority to uncatalog a database. A
database is uncataloged only in the system database directory. An entry in the local
database directory can be deleted only when the database is erased by the drop
database command.

46 DB2 DataJoiner Version 2 Administration Supplement

Chapter 4. Identifying Existing Nicknames and Data Sources

This chapter provides SQL examples of how to identify nicknames and data sources in
your DataJoiner environment.

Some of the steps involved in installing DataJoiner include:

v Configuring clients and data sources

v Creating nicknames

v Updating the catalogs with DataJoiner SQL statements, such as CREATE SERVER
MAPPING and CREATE USER MAPPING.

After these tasks have been completed, there will likely be times when a DBA or other
administrator must identify to which data source a given nickname corresponds; or,
perhaps the administrator wants to identify all nicknames at a given data source.

The sections that follow provide examples on how you can query the communications
control views to obtain this information.

Identifying a Nickname and Its Data Source

This example assumes that you know the nickname (PAYROLL) and who created it
(acctg), but need additional information about the data source. Use the following SQL
statement to first obtain information about what PAYROLL is known as at its data
source (REMOTE_SERVER).

SELECT REMOTE_SERVER, REMOTE_TABSCHEMA, REMOTE_TABNAME
FROM SYSCAT.TABLES
WHERE TABNAME='PAYROLL' AND TABSCHEMA='acctg';

The answer set from this statement is DB2_MVS, FINANCE, DEPTJ35_PAYROLL. We now
know that PAYROLL is the nickname for the table called DEPTJ35_PAYROLL owned by
FINANCE at the server named DB2_MVS. We can use this information in a subsequent
SELECT statement as follows:

SELECT NODE, DBNAME, SERVER_TYPE
FROM SYSCAT.SERVERS
WHERE SERVER='DB2_MVS';

The answer set from this statement is REGIONW, DB2MVSDB3, DB2/MVS. We now know
that the table DEPTJ35_PAYROLL is located on a DB2 for MVS system, in a database
named DB2MVSDB3, on a node called REGIONW.

With this information, you can use the LIST NODE DIRECTORY command to obtain
information about the REGIONW node, such as the communications protocol and
security type used. If the node had been for a data source other than the DB2 Family,
you would need to check that data source’s configuration files to find similar

© Copyright IBM Corp. 1995, 1998 47

|
|

|
|
|

|
|
|

information. For example, if the node had been an Oracle or Sybase data source, you
would get similar information from the Oracle tnsnames.ora file and the Sybase
interfaces file.

For information on the tnsnames.ora and interfaces files, see the DataJoiner Planning,
Installation, and Configuration Guide for your platform. For information on the system
catalog views, see the DataJoiner Application Programming and SQL Reference
Supplement.

Identifying All Nicknames Known to DataJoiner

The following SQL statement provides a list of all nicknames known to DataJoiner,
including the creator of the nickname and the remote server information.

SELECT TABNAME, DEFINER, REMOTE_SERVER, REMOTE_TABSCHEMA, REMOTE_TABNAME
FROM SYSCAT.TABLES
WHERE REMOTE_SERVER IS NOT NULL;

You can modify this statement to identify all nicknames at a particular data source,
when you know the data source. Simply change the WHERE clause to WHERE
REMOTE_SERVER IS 'remote_server'.

48 DB2 DataJoiner Version 2 Administration Supplement

Chapter 5. Data Access Considerations and Restrictions

This chapter contains DataJoiner-specific administration information applicable to
accessing information at data sources and then retrieving or using data source
information. Considerations and restrictions are organized by DataJoiner components.

Large Objects (LOBs)

DataJoiner supports three types of LOBs: character large objects (CLOBs), double-byte
character large objects (DBCLOBs) and binary large objects (BLOBs). For general
information about these LOBs, see the following DB2 books:

v DATABASE 2 Application Programming Guide

v DATABASE 2 SQL Reference

v DATABASE 2 Administration Guide

DataJoiner provides additional support so that DB2 functionality to access and
manipulate LOBs works for similar objects at remote data sources.

Because LOBs can be very large, the transfer of LOBs from a remote data source can
be time consuming. DataJoiner attempts to minimize the transfer of LOB data between
the data source and DataJoiner and also attempts to deliver requested LOB data
directly from the data source to the requesting application without materializing the LOB
at DataJoiner.

This section discusses:

v How DataJoiner retrieves LOBs

v How applications can use LOB handles

v How DataJoiner supports remote inserts, updates, and deletions of LOBs

v How pass-through supports LOBs

v Mappings between LOB and non-LOB data types

How DataJoiner Retrieves LOBs

DataJoiner uses three mechanisms to retrieve LOBs:

v LOB streaming

v LOB deferred retrieval

v LOB materialization

© Copyright IBM Corp. 1995, 1998 49

|

|

|

|

|

|
|

|

|

LOB Streaming

In LOB streaming, LOB data is retrieved piecemeal. DataJoiner uses LOB streaming for
data in result sets of queries that are completely pushed down. For example, consider
the query:

SELECT EMPNAME,PICTURE FROM O_T1 WHERE EMPNO = '01192345'

where PICTURE is a LOB column and O_T1 is a nickname referencing an Oracle table.
The DataJoiner optimizer would mark the picture column for streaming if it decides to
execute this query in its entirety at the Oracle data source. At execution time, when
DataJoiner notes that a LOB is marked for streaming, it retrieves the LOB piecemeal
from the data source. DataJoiner then transfers the data to either the application
memory space or a file (as requested by the application).

LOB Deferred Retrieval

In LOB deferred retrieval, retrieval of a LOB is postponed until the LOB is assigned to a
location in user space—a host variable or a file on disk. For example, in a join between
two remote tables where LOB deferred retrieval is enabled, DataJoiner retrieves LOB
values only for the rows that meet the join criteria. This approach can substantially
boost query performance while reducing network traffic.

Remote deferred LOB retrieval is valid for a LOB column if all the following conditions
are true:

v The deferred_lob_retrieval server option for the data source is set to ’y’ (yes). For all
data sources, this option’s initial setting is ’n’. This setting is the default because
deferred LOB retrieval cannot be guaranteed by most data sources. If the
correctness of the deferred LOB retrieval can be guaranteed by the data source,
change the server option to ’y’. To change it for a single session between an
application and the data source, use the SET SERVER OPTION statement. To
change it so that it remains in effect indefinitely over multiple sessions, use the
CREATE SERVER OPTION statement. For information about these statements, see
the Application Programming and SQL Reference Supplement.

Note on static LOB data: If your LOB data at a data source is relatively static, you
can set the deferred_lob_retrieval server option for that data source to ’y’ even if the
correctness of deferred LOB retrieval for that data source cannot be guaranteed.

v The LOB column is not marked for streaming.

v No local DataJoiner functions are being applied on the remote LOB column.

v The remote LOB column is uniquely identified on the remote table by either a
ROWID or a unique index. For example, in Oracle data sources, the ROWID is used
as a remote LOB locator.

If LOB columns can be retrieved on a deferred basis, DataJoiner retrieves LOB locators
for the columns rather than the columns themselves. Each locator uniquely identifies its
respective column. DataJoiner then does SQL processing, such as joins, predicate
evaluation, and so on, on the columns; this processing is based on the plan generated
by the DataJoiner global optimizer. When DataJoiner needs to transfer the LOB values

50 DB2 DataJoiner Version 2 Administration Supplement

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

from the columns to the application space, it uses the LOB locators to retrieve these
values. If the values are being transferred to a file on the application side, they are
streamed piecemeal from the remote data source directly to the file without being stored
at DataJoiner.

LOB Materialization

In LOB materialization, remote LOB data is retrieved by DataJoiner and stored locally.
LOB materialization occurs when:

v A local function must be applied to a LOB column, which happens when DataJoiner
compensates for unavailable functions at a remote data source. For example,
Sybase SQL Server does not provide a SUBSTR function for LOB columns. To
compensate, DataJoiner materializes the LOB column locally and applies the
DataJoiner SUBSTR function to the retrieved LOB.

v The LOB column cannot be deferred or streamed.

How Applications Can Use LOB Handles

Applications can request LOB handles for LOBs stored in remote data sources. See the
DATABASE 2 Application Programming Guide for general information about LOB
handles.

DataJoiner can retrieve LOBs from remote data sources, store them at DataJoiner, and
then issue a LOB handle against the stored LOB. LOB handles are released when:

v Applications issue ″FREE LOCATOR″ SQL statements.

v Applications issue COMMIT statements.

v DataJoiner is restarted.

How DataJoiner Supports LOB Operations at Data Sources

DataJoiner supports operations (inserts, updates, deletes) on LOBs at Informix,
Microsoft SQL Server, Oracle (Version 7.2 or lower), and Sybase data sources.

When DataJoiner is ready to insert a LOB into a data source table, or to update a LOB
in a data source table, the new or updated LOB will be transferred to the table in one of
two ways. If the LOB is stored in a file, DataJoiner attempts to transfer the LOB directly
from the application space. If the LOB is stored in the application space, it is transferred
to DataJoiner and then to the table. The transfer to the table is done piecemeal if
possible.

When DataJoiner is ready to append data to an existing remote LOB, DataJoiner can
perform the append either at the data source (provided that the data source supports
appends) or in DataJoiner’s own environment. In the second case, the LOB is
materialized at DataJoiner, the append is performed, and then the LOB, now enlarged
by the append, is inserted back into the data source.

Chapter 5. Data Access Considerations and Restrictions 51

|
|
|
|

|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

When you want to insert, update, or delete remote LOBs, you need to be aware of the
following data source restrictions and requirements:

Microsoft SQL Server

For Microsoft SQL Server data sources accessed with the dblib protocol, you need to
observe the requirements that apply to Sybase data sources accessed with dblib (see
“Sybase”). For Microsoft SQL Server data sources accessed with ODBC, there are no
requirements for, or restrictions on, LOB operations.

Oracle 7.2 and Previous Versions

For Oracle data sources version 7.2 and lower, there is no mechanism to insert or
update LOBs in a piecemeal fashion.

Sybase

For an application to insert a LOB into a Sybase table, or to update a LOB in this table
or in a view based on the table, the following requirements must be met:

v If the table resides at a data source accessed with the ctlib protocol:

– There must be a unique index over one or more of the table’s columns.

– This index must be locally defined to DataJoiner.

– When the application inserts or updates a LOB in the table, it must also insert or
update an associated value in the indexed column or columns.

v If the table resides at a data source accessed with the dblib protocol:

– There must be a unique index over one or more of the table’s columns.

– This index must be locally defined to DataJoiner.

– The table must have a column for time stamps.

– When the application inserts or updates a LOB in the table, it must also insert or
update an associated value in the indexed column or columns. When the insertion
or update is made, a time stamp is automatically generated in the time stamp
column.

For example, suppose that Table T1 resides at a Sybase server accessed with the ctlib
protocol. T1 has a column, PICTURE, for photographs of employees, but no unique
index. So that an application can populate PICTURE, you:

v Define a unique index for T1. Assume that you define it over two columns,
SOC_SEC_NO and EMP_NO.

v Program the application so that when it inserts data for an employee’s photo into
PICTURE, it also inserts the employee’s social security and employee numbers into
SOC_SEC_NO and EMP_NO.

How Pass-Through Supports LOBs

52 DB2 DataJoiner Version 2 Administration Supplement

|
|

|
|
|
|

|
||

|

|
|

|

|

|

|
|

|

|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|

|

LOBs are supported in pass-through mode. LOB functionality is limited by the
functionality supported by the remote data source.

LOB handles are not supported in pass-through mode.

Mappings between LOB and Non-LOB Data Types

There are few cases in which you can map a DataJoiner (that is, a DB2 for CS) LOB
data type to a non-LOB data type at a data source. When you need to create a
mapping between a DataJoiner LOB type and a counterpart at a data source, we
recommend that you use a LOB type as the counterpart if at all possible.

Nicknames

This section contains nickname information and restrictions.

General

DataJoiner uses a nickname scheme that allows users to map a two or three-part table
or view name (such as SERVER.REMOTE_AUTHID.TABLENAME) or a stored procedure name
to a data source. Users can subsequently use the nickname in an SQL statement
whenever the remote table, view or stored procedure is referenced.

You can define more than one nickname for the same table or view.

When a nickname is defined, catalog data from the remote server is retrieved and
stored in DataJoiner’s local catalog. For tables and views, this catalog data includes
table and column definitions, and, if available, index definitions and statistics.

Nickname privileges can be used as ″initial line″ of defense for securing access to data
sources. See “Options for Controlling Access to Distributed Database Objects” on
page 37 for more information.

SQL DDL statements are provided to CREATE, ALTER, and DROP nicknames.
Information about the SQL statements is in the DataJoiner Application Programming
and SQL Reference Supplement.

Considerations and Restrictions

There are several considerations and restrictions to bear in mind when you want to:

v Define, change, and drop nicknames

v Reference objects by their nicknames

v Perform operations on objects that are referenced by nicknames

Chapter 5. Data Access Considerations and Restrictions 53

|

|

|
|
|
|

|

|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|

|

|

Defining, Changing, and Dropping Nicknames
v The objects for which you can define nicknames include tables, views, and stored

procedures. To define a nickname associated with a table or view, use the CREATE
NICKNAME statement. To define a nickname associated with a stored procedure,
use the CREATE STORED PROCEDURE NICKNAME statement.

v You can define more than one nickname for the same table, view, or stored
procedure.

v The ALTER TABLE statement cannot be used with a nickname. To change a
nickname, use the ALTER NICKNAME statement.

v Dropping a nickname causes any views defined using the nickname to be dropped
and invalidates any plans that are dependent upon it.

Referencing Objects by Nickname
v If an object is identified by a nickname, DDL statements can reference the object by

the nickname, with one exception. A trigger definition can reference a table by its
name or alias, but not by its nickname.

v Any reference to a remote table must use the defined nickname (except within a
pass-through session). For example, if you define the nickname DEPT to represent
the remote table DB2MVS1.PERSON.DEPT, the statement SELECT * FROM DEPT
is allowed, but SELECT * FROM DB2MVS1.PERSON.DEPT is not allowed.

Performing Operations on Objects That Have Nicknames
v COMMENT ON, IMPORT, and EXPORT statements are valid against a nickname or

columns defined on nicknames. The COMMENT ON statement updates the system
catalog at the DataJoiner database; it doesn’t update data source catalogs.

v INSERT, UPDATE, and DELETE statements are valid against a nickname whose
source permits update.

v GRANT and REVOKE statements are valid against a nickname for all privileges and
users. However, DataJoiner does not issue a corresponding GRANT or REVOKE
against the underlying remote table or view. Therefore, the overall desired result
might not be accomplished by a nickname GRANT or REVOKE alone. For example,
a GRANT DELETE statement on a nickname causes DataJoiner to accept a delete
statement against the nickname, but the data source might deny access if a
corresponding GRANT DELETE statement was not issued for the remote table
represented by the nickname.

v You can use the LOCK TABLE statement with a nickname only if the data source
supports the LOCK TABLE statement.

v The LOAD and REORGANIZE TABLE utilities cannot be used with a nickname.

v A view with UNION ALL statements for multiple nicknames cannot be updated.
Attempts to update such views can cause unpredictable behavior.

Stored Procedures

When working with stored procedures:

54 DB2 DataJoiner Version 2 Administration Supplement

|
|
|

|

v Ensure that the number of DARI processes (MAXDARI) for the DataJoiner database
is set to a value permitting stored procedure processing. The default setting is 0.

v When executing a stored procedure against a DRDA or DB2RA data source, it is
possible that the CALL statement will return an error indicating that a package is not
found. If this occurs, BIND the package sqllib/bnd/db2cliv2.bnd against the data
source using the SQLERROR CONTINUE bind option. Then, retry executing the
stored procedure.

Triggers

Triggers will work on local tables; however, you cannot define a trigger on a nickname.

Triggers defined on local database tables that affect nicknames will work. In other
words, a trigger defined on a local DataJoiner table that updates a nickname is allowed.

DataJoiner triggers maintain database integrity differently than DB2 for CS. DataJoiner
will rollback the entire unit of work associated with a trigger if the trigger fails; DB2 for
CS rolls-back only the trigger and the events caused by that trigger (other statements
are not affected).

User-Defined Functions (UDFs) and User-Defined Types (UDTs)

The following sections introduce:

v User-defined functions (UDFs) and the way to make them and new built-in functions
accessible from DataJoiner

v User-defined data types (called user-defined types [UDTs] for short) and the way to
make them known to DataJoiner

UDFs

This section provides an overview of UDFs and discusses the mappings through which
DataJoiner accesses them and new built-in functions from data sources.

Overview of UDFs

Application developers often need to create their own suite of functions specific to their
application or domain. They can use user-defined scalar functions for this purpose.

For example, a retail store could define a PRICE data type for tracking the cost of items
that it sells. This store might also want to define a SALES_TAX function, which would
take a given price value as input, compute the applicable sales tax, and return this data
to the requesting user or application.

Chapter 5. Data Access Considerations and Restrictions 55

|

|
|

|

|
|

|
||

|
|

These functions can operate over all database types, including large object types and
distinct types. UDFs allow queries to contain powerful computation and search
predicates to filter irrelevant data close to the source of the data, thereby reducing
response time. The SQL optimizer treats UDFs exactly like built-in functions such as
SUBSTR and LENGTH. Applications can be developed using different application
language environments, such as C, C++, COBOL, and FORTRAN, while sharing a set
of SQL UDFs.

UDFs can not only manipulate data but also perform actions. For example, a UDF
might be enabled to send an electronic message or to update a flat file.

In DB2, UDFs can include:

v Functions that you define from scratch.

v Functions in the SYSFUN schema. Examples include mathematical functions such as
SIN, COS, and TAN; scientific functions such as RADIANS, LOG10, and POWER;
and general purpose functions such as LEFT, DIFFERENCE, and UCASE.

For information on how to create new UDFs and how to make use of the UDFs in
SYSFUN, see the DB2 SQL Reference.

Enabling DataJoiner to Access UDFs and New Built-In Functions at
Data Sources

You can use DataJoiner in connection with UDFs when:

v Under DataJoiner, you want to directly invoke a UDF at a data source. You can do
this in a pass-through session.

v You want DataJoiner to access either a UDF at a data source or a built-in function
that resides at a data source and that’s unknown to DataJoiner.

Before you can use DataJoiner to invoke a user-defined or unknown built-in function at
a data source, DataJoiner must associate this function with a function specification
stored in the DataJoiner database. The signature in this specification must correspond
to the signature of the function that you want to invoke. A signature is the combination
of a function’s name and input parameters. Signatures correspond if they contain the
same names and the same number of parameters, and if the data type of each
parameter in one signature is the same as, or can be converted to, the data type of the
corresponding parameter in the other signature.

There are two conditions under which DataJoiner can associate a function specification
at its database with a user-defined or unknown built-in function at a data source:

v If the DataJoiner database contains a function whose signature corresponds to that
of the signature of the user-defined or built-in function, you can map one function to
the other.

v If the DataJoiner database doesn’t contain a function with the requisite signature, you
can define to the database a UDF template that contains this signature. (A template,
in this context, is a minimal specification without any associated executable code.)
Then you map the template to the function that you want to invoke.

56 DB2 DataJoiner Version 2 Administration Supplement

To define a UDF template to the DataJoiner database, use the CREATE FUNCTION
statement. To map a function or a UDF template at the DataJoiner database to a
user-defined or built-in function at a data source, use the CREATE FUNCTION
MAPPING statement.

UDTs

This section provides an overview of UDTs and discusses the mappings that enable
DataJoiner to recognize UDTs at data sources.

Overview of UDTs

A UDT is a distinct user-defined data type that shares its internal representation with an
existing type, but is considered to be a separate and incompatible type for semantic
purposes. For example, a user might want to define a PICTURE type, a TEXT type,
and an AUDIO type, all of which have quite different semantics, but which all use the
predefined data type binary large object (BLOB) for their internal representation.

One of the benefits of UDTs is strong typing. Strong typing guarantees that only
functions and operations defined on the distinct type can be applied to the type. For
example, the system would not allow you to directly compare a PICTURE type with an
AUDIO type even though they share the same underlying type. If you did want to do
such a comparison, you would need to first convert values of one type to values of the
other. For information about this process, called casting, see SQL Reference for
common servers.

User-defined types, like built-in types, can be used for columns of tables as well as
parameters of functions. For example, a user can define a data type such as ANGLE
(which varies between 1 and 360) and a set of UDFs to act on it, such as SINE,
COSINE and TANGENT.

Enabling DataJoiner to Recognize UDTs at Data Sources

In some cases, the definition of a table, view, or function at a data source might include
a UDT that DataJoiner doesn’t recognize. So that DataJoiner can recognize the UDT
(and consequently access the table, view, or function), you must map the UDT to a
corresponding one at the DataJoiner database. If the DataJoiner database doesn’t
contain a corresponding UDT, you can create one with the DB2 CREATE DISTINCT
TYPE statement. To create the mapping, use the DataJoiner CREATE TYPE MAPPING
statement.

Chapter 5. Data Access Considerations and Restrictions 57

|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

58 DB2 DataJoiner Version 2 Administration Supplement

Chapter 6. Distributed Unit of Work (DUOW) Transactions

This chapter covers DUOW transaction topics:

v “Terminology and Concepts”

v “Typical Configurations” on page 63

v “Costs, Considerations, and Prerequisites” on page 66

v “DataJoiner 1PC and 2PC Processing Rules” on page 67

v “Data Source Requirements, Restrictions, and Considerations” on page 69

v “Preparing Data Sources for DUOW Transactions” on page 71

v “Performance Considerations” on page 73

v “DUOW Error Recovery” on page 74

v “Using DataJoiner with a Non-DB2 Transaction Manager” on page 78

This chapter assumes that you understand basic transaction and DUOW transaction
concepts. If you don’t, read “Transaction Support” on page 7 first for a basic overview
of transactions. Also, If needed, additional conceptual information about transactions is
in the DATABASE 2 Administration Guide.

Terminology and Concepts

DataJoiner uses two-phase commit protocol for its DUOW transaction support.
Specifically, DataJoiner uses the industry standard X/Open XA protocol (two-phase
commit) to coordinate DUOW transaction processing between data sources.

Terminology

The XA model has several key terms:

Transaction Identifier A transaction identifier (xid) uniquely identifies a
distributed transaction. An xid is used by the
transaction manager and one or more resource
managers to synchronize the work they do on
behalf of a DUOW.

Transaction Manager The transaction manager (TM) coordinates a
distributed transaction. The TM generates the
DUOW transaction xid and is responsible for
coordinating the decision to commit or rollback the
DUOW transaction. The TM also coordinates failure
recovery—it knows about all the resource managers
(RMs) involved within the TM’s branch of a global
transaction. The TM for any one DUOW transaction

© Copyright IBM Corp. 1995, 1998 59

|
|
|

is identified by the TM_DATABASE variable
(database manager configuration variable) or, if the
keyword 1ST_CONN is used, the TM is the first
database connected to by the application. More
information about database manager variables is
documented in the DATABASE 2 Administration
Guide.

DataJoiner is the TM for a DUOW transaction if the
name of the DataJoiner database is specified in the
TM_DATABASE variable and the application
SYNCPOINT is TWOPHASE.

Depending on the specifics of a DUOW transaction,
DataJoiner can be the TM, a sub-TM, or both.

Sub-Transaction Manager A sub-transaction manager (sub-TM) helps
coordinate DUOW transactions on behalf of the TM.
A sub-TM is actually a resource manager (RM)
performing some TM functions on behalf of the TM.
DataJoiner often plays the role of a sub-TM
because even when the TM_DATABASE variable
does not specify the DataJoiner database that is
accessing nicknames, DataJoiner must guarantee
the data integrity and atomicity of its data sources.
For example, DataJoiner must log information about
the remote data sources. DataJoiner must also track
data source information in the event of a transaction
failure and help coordinate failure recovery steps.
DataJoiner performs these functions because the
TM is unaware of the data sources connected to
DataJoiner.

Resource Manager A resource manager (RM) manages a portion of the
data accessed by the DUOW transaction. For
example, if the DataJoiner database has a
nickname that refers to a table at a remote data
source, the process that manages that remote data
source is an RM. These RM processes associate
xids with the work done on behalf of the DUOW
transaction. RMs are not usually aware of the entire
transaction. RMs follow the instructions provided by
TMs to commit or rollback a transaction.

Resource Manager Note: An RM becomes a
sub-TM if it coordinates one or more RMs.

Transaction Branch A transaction branch represents a portion of a
DUOW controlled by a sub-TM. The top part of the
branch is the sub-TM; the bottom part is an RM
controlled by that sub-TM. The sub-TM is
responsible for maintaining transaction atomicity for

60 DB2 DataJoiner Version 2 Administration Supplement

|
|

the RMs and sub-TMs under its control. This
structure is shown in Figure 7

Clients connect to the DataJoiner database using one of two connection types:

TYPE 1 An application can connect to only one database.

TYPE 2 An application can connect to one or more databases. This
connection type is typical for DUOW transactions.

Connections also have syncpoint settings:

SYNCPOINT NONE Specifies that no TM is to be used to perform
two-phase commit. Single update, multiple read
rules are not enforced. A commit is sent to each
participating database. The application is
responsible for error recovery if any commits fail.

SYNCPOINT ONEPHASE DUOW transactions with updates to multiple data
sources are not supported. TYPE 1 connections are
always set to SYNCPOINT ONEPHASE. In this
case, a TM will not be used for two-phased commit
processing.

If an application connects to DataJoiner with
SYNCPOINT ONEPHASE or NONE, and the
CONNECT TYPE is either 1 or 2, two-phase commit
processing is not used externally to DataJoiner;
however, DataJoiner will maintain (internally)
transaction atomicity and use two-phase commit
processing between DataJoiner and its data
sources to maintain data integrity.

SYNCPOINT TWOPHASE DUOW transactions with updates to multiple data
sources are supported. A TYPE 2 connection can
be set to SYNCPOINT ONEPHASE or SYNCPOINT

Figure 7. Transaction Processing Tree Structure

Chapter 6. Distributed Unit of Work (DUOW) Transactions 61

TWOPHASE. It is also possible to have a TYPE 1
connection with SYNCPOINT TWOPHASE.

SYNCPOINT Note: In effect, SYNCPOINT settings apply to the connection from the
client to DataJoiner. These settings do not apply to the connections made by
DataJoiner to data sources. DataJoiner DUOW processing between data sources is
driven by two_phase_commit server option settings. In other words, the stated rules
apply to databases connected to by the application; however, DataJoiner will enforce
single update, multiple read rules for the data sources it connects to on behalf of
applications.

Two-Phase Commit Processing Concepts

DataJoiner tries to guarantee data consistency and atomicity of the data sources it’s
managing. Therefore:

v If an application with a TYPE 2 connection connects to DataJoiner, then there’s the
possibility that a data source outside of DataJoiner’s control will get updated;
therefore DataJoiner will only allow updates to data sources that support two-phase
commit. Only read operations are allowed against one-phase commit data sources.

v If an application does not connect with a TYPE 2 connection, then the only possibility
for multi-site update is within the control of DataJoiner. In that case, DataJoiner will
allow the update of one-phase commit data source, as long as it is the only data
source updated.

v DataJoiner takes a conservative approach when considering possible ″update″
requests. An update is:

– SQL DML

– SQL DDL

– Remote stored procedure calls, because the contents of the remote stored
procedure could contain an update operation

One exception on handling possible update requests is UDF processing. A remote
UDF could cause updates. DataJoiner could treat every remote UDF as an update
call, but this restriction is somewhat severe because remote UDFs can be used in
SELECT SQL statements. Therefore, UDFs are not treated as updates.

UDF Note: Ensure that UDFs used in read operations do not cause updates to the data
source. If a UDF does update a data source object, issue a COMMIT before performing
other update operations.

In summary: when a client uses a TYPE 1 phase connection (DataJoiner is the TM),
DataJoiner controls DUOW activity within its own processes. All DUOW considerations
are then controlled by DataJoiner. When a client uses a TYPE 2 connect, it means that
the DUOW transaction could involve updates to other two-phase commit databases
(other than the data sources controlled by DataJoiner). The DataJoiner database will be
the TM if the TM_DATABASE variable specifies the DataJoiner database; otherwise,
DataJoiner is the sub-TM. The connection type affects the way DataJoiner can update
data sources. For example, DataJoiner will not allow any updates to one-phase commit

62 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

data sources under its control if a client uses a TYPE 2 connection.

Typical Configurations

With DataJoiner, there are two typical DUOW configuration scenarios. Each one is
described in this section.

A key point for both configurations: DataJoiner CREATE SERVER OPTION or SET
SERVER OPTION SQL statements dictate how two-phase commit processing is done
between DataJoiner and its data sources . An application provides connection
information—but the DataJoiner server option settings determine if a data source can
be updated. The connection data supplied by the application is useful when DataJoiner
must determine if one of its 1PC data sources can be updated; however, this
information does not determine if a 1PC or a 2PC connection is used for that data
source.

Chapter 6. Distributed Unit of Work (DUOW) Transactions 63

|

DataJoiner as a Sub-TM

If a client connects to the DataJoiner database using a TYPE 2 connect with
SYNCPOINT TWOPHASE, the client must have specified a TM for the application
(using the TM_DATABASE variable). DataJoiner is a sub-TM whenever the DataJoiner
database is not specified in the TM_DATABASE variable for the client.

This configuration is the most typical. The TM database is usually a separate database
whose primary role is to perform DUOW transaction logging and to coordinate failure
recovery.

Figure 8. DataJoiner as a Sub-TM

64 DB2 DataJoiner Version 2 Administration Supplement

DataJoiner as a TM

If a client connects to the DataJoiner database using a TYPE 1 connect or a TYPE 2
connect with SYNCPOINT ONEPHASE, the DataJoiner database is the TM. Another
case is when a TYPE 2 connection is made to DataJoiner with SYNCPOINT
TWOPHASE and the DataJoiner database is specified as the TM (using the

Figure 9. DataJoiner as a TM

Chapter 6. Distributed Unit of Work (DUOW) Transactions 65

TM_DATABASE variable). As the TM, DataJoiner coordinates all commit processing for
RMs and also for data sources that are updated or read. The entire process is
transparent to the application: DataJoiner provides a single database image even
though multiple data sources may be updated.

Costs, Considerations, and Prerequisites

Two-phase commit processing provides substantial application flexibility. Multiple data
sources can be read and updated in a single DUOW transaction. Transaction atomicity
is maintained throughout the process.

Two-phase commit processing, however, does incur processing overhead, particularly
during commit operations. If you know that your applications will not need DUOW
transaction support to update data sources, then set the two_phase_commit server
option for each data source server to ’N’ (for no). If DUOW update support is needed
for only a few data sources, set the two-phase commit server option for each data
source server to ’Y’ (for yes). Setting data source server options for DUOW processing
is discussed in “Preparing Data Sources for DUOW Transactions” on page 71.

Before setting a data source two_phase_commit server option to ’Y’, ensure that your
target data source supports two-phase commit and that you have all the necessary
product features. Table 7 shows which data sources support two-phase commit and
additional features required for certain data sources. The second column indicates if a
data source, with the listed constraints, can participate in a DUOW transaction. The
third column indicates if the data source supports the creation of new objects at the
data source (using a pass through session) while participating in a DUOW transaction.

Table 7. Data Sources Supporting Two–Phase Commit

Data Source Supports two-phase
commit?

Supports two-phase
commit DDL?

Classic Connect No No

Cross Access No No

DB2 CS and DataJoiner, Version 1.2 Yes Yes

DB2 CS and DataJoiner, Version 2 Yes Yes

DB2 for OS/390, Version 3 and higher (with APARs PN67179 and
PN70102)

Yes Yes

DB2 for OS/400, before Version 3.1 No No

DB2 for OS/400, Version 3.1 and higher Yes Yes

EDA/SQL No No

Generic Access API data sources No No

Informix Version 5 Yes Yes

Informix, Versions 7.1 and 7.2, with TP/XA library Yes Yes

MS SQL Server (DBLIB) No No

66 DB2 DataJoiner Version 2 Administration Supplement

Table 7. Data Sources Supporting Two–Phase Commit (continued)

Data Source Supports two-phase
commit?

Supports two-phase
commit DDL?

MS SQL Server 4.2 (CTLIB) with XA library No No

MS SQL Server 6.5 (ODBC), using DataJoiner on NT No No

MS SQL Server 6.5 (ODBC), using DataJoiner V2 on UNIX operating
systems

No No

Oracle V7 and higher, without the XA library distributed database
option

No No

Oracle V7 and higher, with the XA library and the distributed database
option on UNIX operating systems

Yes No

Oracle V7.3 and higher, on Windows NT 3.51 and 4.0 operating
systems (requires V7.3.3 Oracle Client at DataJoiner on NT operating
systems)

Yes No

Oracle RDB (all levels) No No

SQL Anywhere No No

SQL/DS, before Version 4.1 No No

SQL/DS, Version 4.1 and higher Yes Yes

Sybase SQL Server (CTLIB) with XA library Yes No

Sybase SQL Server (DBLIB) No No

Additional technical requirements include:

v XA support/libraries for data source client software is required at the DataJoiner
server.

v If you are connecting to a DRDA data source for 2PC processing, and your
DataJoiner instance is running on AIX, ensure that you are using AIX SNA Server
V2.1 with APAR fixes IX50393 and IX51831 or a later version. You can use
Communications Server on AIX instead of AIX SNA Server. These fixes are required
for the SNA Syncpoint Manager.

v The previous SNA requirement also applies to users connecting to DB2 for CS data
sources over SNA using the DRDA protocol.

DataJoiner 1PC and 2PC Processing Rules

Several factors determine how a DUOW transaction is processed by DataJoiner. Critical
factors include application SYNCPOINT settings, actions done for other data sources
accessed during the transaction (for example, has a data source that does not support
two-phase commit been updated?), and data source server option settings for each
server that corresponds to a nickname touched during a DUOW transaction.

Server option settings refer to the values (Y, N, or D) that correspond to the
two-phase-commit server option. If the two-phase-commit server option is set to Y for a
server, it is referred to as a 2PC database for that server (two-phase commit is

Chapter 6. Distributed Unit of Work (DUOW) Transactions 67

|||

|
|

enabled). If the two-phase-commit server option is set to N or D for a server, it is
referred to as a 1PC server (two-phase commit is disabled).

DataJoiner allows a mix of 1PC and 2PC data sources. In order to guarantee the
atomicity of transactions, several rules are enforced (see Figure 10).

Figure 10. DataJoiner DUOW Transaction Atomicity Logic

68 DB2 DataJoiner Version 2 Administration Supplement

As the flow chart shows, DataJoiner can support transactions accessing a mix of data
sources set to either 1PC or 2PC. The processing rules are:

v Read operations are always permitted for 1PC and 2PC data sources.

v 1PC and 2PC database updates cannot be mixed in one DUOW transaction. If a
SYNCPOINT 1 connection is made to the DataJoiner database, because DataJoiner
is the only database referenced in the transaction, one 1PC data source can be
updated as long as no other 1PC or 2PC data source is updated. However, if
SYNCPOINT TWOPHASE is used, because another data source could be updated
without DataJoiner’s knowledge, DataJoiner will prevent all 1PC updates.

v Two 1PC data sources cannot be updated in one DUOW transaction.

v The local DataJoiner database is always considered a 2PC data source.

Special conditions influence how processing rules are evaluated:

v Although triggers are not supported on nicknames, DataJoiner supports the firing of
triggers that refer to a nickname as a result of local table updates; however, if the
data source (trigger target) is set to 1PC (the server option two-phase-commit is set
to N or D), it will fail during the base table update. Similarly, if a 1PC data source
fires a trigger that updates a different 1PC data source, the update will fail.

v DataJoiner supports the use of user-defined functions (UDFs). In general, because
local DataJoiner UDFs cannot contain SQL or call stored procedures, update
requests are not caused by UDFs. However, DataJoiner supports the mapping of a
local UDF to a nickname server UDF. The remote UDF could cause an update—;and
DataJoiner does not police this use of remote UDFs.

Remote UDF Note: Do not map remote UDFs to local UDFs if they contain update
statements—database integrity could be compromised. Only map remote UDFs to
local UDFs when they are read-only functions.

Data Source Requirements, Restrictions, and Considerations

This section contains general and data source-specific information for two-phase
commit operations.

All Data Sources

Common requirements include:

v A transaction resolution password and ID for resynch operations. Specifically, a
special user name and password with the authority to COMMIT and ROLLBACK
transactions must exist at the data source instance, and this ID and password must
be identified to DataJoiner using the CREATE USER MAPPING SQL statement.

DataJoiner will always use the special ID, SYSTMDB, for the resynch agent that
connects to RMs during resynch processing. This ID must be mapped to a remote
user ID and password that has the authority to commit or rollback the transaction
initiated on remote tables by users through DataJoiner.

For information on using CREATE USER MAPPING SQL statements, see the
DataJoiner Application Programming and SQL Reference Supplement.

Chapter 6. Distributed Unit of Work (DUOW) Transactions 69

|
|
|

Common restrictions include:

v DDL restrictions. See Table 7 on page 66.

v You cannot use cursor with hold statements for remote tables in 2PC data sources.

v A view with UNION all statements for multiple nicknames cannot be updated.
Attempts to update such views can cause unpredictable behavior.

v Do not access the data source via multiple paths (in the same transaction) with
two-phase commit processing. Results can be unpredictable.

v Multi-site update restrictions are enforced even when one update is done by the
database manager on your behalf. For example, it is possible for an application to
receive an SQLCODE -752, which indicates that a multi-site update occurred even
though the application did not explicitly issue updates to more than one location in a
single transaction. The -752 can appear because if a plan or package is invalidated
(a table, view, or nickname associated with the plan or package was dropped or
created after the application was bound to DataJoiner), DataJoiner will perform an
auto-bind on behalf of the application. The auto-bind updates the system catalog at
the local database. Therefore, subsequent SQL statements that update other
locations cause DataJoiner to detect a multi-site update and issue a rollback.

One solution is to manually bind the invalid packages again. After the manual bind,
verify the validity of packages by issuing the statement:

SELECT pkgname, valid FROM syscat.packages

For each package name, the column VALID should contain a ’Y’. Now, run the
application again.

DRDA Data Sources

DRDA data source restrictions include:

v Transactions must go through a DDCS gateway to access two-phase commit data
sources. The DDCS gateway can be a separate gateway or DataJoiner itself
(configured as a DDCS gateway). For either case, the DDCS Sync Point Manager
must be enabled. More information on DDCS configuration is in the DataJoiner
Planning, Installation, and Configuration Guide for your platform.

v DataJoiner cannot serve as a two-phase commit DRDA2 application server (AS)—it
cannot support 2PC as a DRDA AS.

v When you are using DataJoiner as a DRDA application requestor (AR), you cannot
use two-phase commit protocol for applications sent to a DRDA AS via TCP/IP.

DRDA data source considerations include: when enforcing 2PC across DRDA AS data
sources (two_phase_commit is set to ’Y’), DataJoiner will return an error if the actual
data source supports only 1PC transactions or if the path to the data source only
supports a 1PC connection. DataJoiner does not attempt to continue the transaction by
switching the remote data source designation to 1PC and then re-trying the transaction.

70 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

Informix Data Sources

DataJoiner cannot access an Informix data source with a mix of one-phase and
two-phase commit settings (see “Set Data Source two_phase_commit Option Values”
on page 72) with the same data access module. To change the setting for an Informix
data source from one-phase to two-phase commit, DataJoiner must be stopped (to
unload the Informix data access module) and then restart the DataJoiner instance.

An entry must exist in the .netrc file for storing the ID and password (used for
two-phase commit).

Sybase SQL Server Data Sources

Ensure that the user ID and password used to access a Sybase SQL Server data
source (specified with a CREATE USER MAPPING SQL statement) match the actual
user ID and password at the data source server (same case). Also, set the server
options (using SET SERVER OPTION SQL statements) fold_pw and fold_id for this
server to N. Alternatively, if the user ID and password are all in one case, then you
could set fold_pw and fold_id to L or U, depending on the case.

For a Sybase SQL Server data source to act as an RM to DataJoiner, a logical
resource manager (LRM) entry must exist in the xa_config file under the Sybase
directory that maps the RM name to the Sybase SQL Server name (more information is
available in Sybase SQL Server XA documentation). The LRM name is used by
DataJoiner in the XA Open string. DataJoiner will use the Sybase SQL Server node
name for the LRM name. If the DataJoiner user has write authority on the xa_config file,
then DataJoiner will automatically create an LRM entry in the xa_config file during
CREATE SERVER MAPPING SQL execution. If the DataJoiner user does not have
write authority on xa_config, then the Sybase administrator will need to create LRM
entries manually

If errors are encountered during XA processing, the error information is logged in the
sybase_xa.log file located in the sqllib/db2dump directory.

Oracle Data Sources

Oracle must be linked with the XA code turned on (XA library distributed database
option).

Preparing Data Sources for DUOW Transactions

Before you run DUOW applications, it is essential that you enable your DataJoiner
instance logs and set data source 2PC options.

Chapter 6. Distributed Unit of Work (DUOW) Transactions 71

|
|
|
|
|

|
|

Start Logs at DataJoiner and Data Sources

Transaction logs are required for recording COMMIT/ROLLBACK status for, and at,
data sources. If you intend to use 2PC processing, ensure that:

v Standard transaction logging is enabled at DataJoiner

v Standard transaction logging is enabled at the 2PC data sources controlled by
DataJoiner (as a sub-TM or the TM)

Set Data Source two_phase_commit Option Values

There are two ways to initially set two_phase_commit values. To set a value that
persists for multiple connections (creating a server default value), use CREATE
SERVER OPTION SQL statements to set values for each data source server.
Alternatively, to set a value that persists only for the duration of individual application
client connections (dynamic setting), use SET SERVER OPTION SQL statements. You
can also use ALTER SERVER OPTION SQL statements to update values set by
CREATE SERVER OPTION SQL statements. All three statements are documented in
the DataJoiner Application Programming and SQL Reference Supplement.

DataJoiner supports three values for a server’s two_phase_commit option. The
two_phase_commit option values are:

’Y’ Yes. Two-phase commit is used to connect to the remote server.

’N’ No. Two-phase commit is not used to connect to the remote server.

’D’ Disabled. Indicates that two_phase_commit cannot be used to connect to the
remote database.

Use this option value in CREATE SERVER OPTION SQL statements to ensure
that applications cannot dynamically change a server’s two_phase_commit
option value to ’Y’ for a connection. This value is different from ’N’ because an
’N’ value can be overridden by SET SERVER OPTION SQL statements. In any
case, if a database server option is set to disabled, applications that try and
access a data source with a 2PC connection will fail when the nickname for
that data source is accessed.

DataJoiner internally sets the two-phase commit option to disabled if it doesn’t
support two-phase commit access to a remote data source.

Using CREATE SERVER OPTION SQL Statements to Enable a 2PC
Setting

After you identify a data source to DataJoiner with the CREATE SERVER MAPPING
SQL statement, you can set options for that server with the CREATE SERVER OPTION
SQL statement. Current option settings are stored in SYSCAT.SERVER_OPTIONS.

To change the two_phase_commit option, use the ALTER SERVER OPTION SQL
statement to define the option being changed and the new setting for that option. For
example, to enable 2PC processing for the server DB2V21, the SQL statement is:

72 DB2 DataJoiner Version 2 Administration Supplement

ALTER SERVER OPTION two_phase_commit FOR SERVER DB2V21 SETTING 'Y'

Additional information is in the DataJoiner Application Programming and SQL Reference
Supplement.

Using SET SERVER OPTION SQL Statements to Enable/Disable a
2PC Setting for a Specific Connection

DataJoiner also supports a connection-specific method for enabling/disabling 2PC
access to a data source; however, this method is not supported for data sources that
currently have their two-phase-commit option set to ’D’.

Use SET SERVER OPTION SQL statements, for example, when:

v Your application must issue DDL against a data source that does not support DDL
within an 2PC transaction

v You wish to leave the data source 2PC setting ″as is″ for the majority of your
transactions

To issue SET SERVER OPTION SQL statements:

v Connect to the DataJoiner database.

v Issue a SET SERVER OPTION SQL statement to set 2PC access for this
transaction. For example, to change the data source DB2V21 from 2PC to 1PC
processing for the duration of the connection. The SQL statement is:

SET SERVER OPTION two_phase_commit to 'N' FOR SERVER server-name

v Issue your application SQL statements.

Note: Issue SET SERVER OPTION SQL statements before any other SQL
statements; otherwise, an error is returned.

Additional information is in the DataJoiner Application Programming and SQL Reference
Supplement.

Performance Considerations

There are facets of two-phase commit performance: its general impact on commit
processing and two-phase commit-specific process performance:

v For information on general impact to query performance, see “Costs, Considerations,
and Prerequisites” on page 66.

v For two-phase commit-specific process performance information, see the DATABASE
2 Administration Guide. Examine the sections on the resync_interval and
spm_max_resync parameters.

Chapter 6. Distributed Unit of Work (DUOW) Transactions 73

DUOW Error Recovery

The following topics introduce DUOW error recovery concepts, critical processes, and
options for resolving indoubt transactions:

Recovering from Problems

DataJoiner standard recovery procedures closely match DB2 for CS recovery
procedures. If a problem occurs, both DB2 for CS and DataJoiner will attempt to
recover from the error automatically through resynchronization processing. A general
discussion is provided in the DATABASE 2 Administration Guide.

There are, however, some high-level differences between DB2 for CS DUOW error
handling and DataJoiner DUOW error handling:

v When enforcing 2PC across DRDA AS data sources (two_phase_commit is set to
’Y’), DataJoiner will return an error if the actual data source supports only 1PC
transactions or if the path to the data source only supports a 1PC connection. DB2
for CS, however, attempts to continue the transaction by switching the remote data
source designation to 1PC and then attempting the transaction.

v DB2 for CS DUOW error handling assumes that all involved data sources are DB2
Family data sources. This assumption is not correct for DataJoiner. DataJoiner’s
support for non-IBM data sources means:

– If DataJoiner is the TM, DB2 data sources that are DataJoiner RMs will inquire
about the status of a failed DUOW. Other data sources, such as Oracle, will not
come back to the DataJoiner TM.

– DataJoiner administrators attempting to manually recover indoubt transactions
may need to manually trace xids to determine transaction states for non-DB2 data
sources.

Resynchronization Processing

Resynchronization processing tracks and resolves DUOW transaction states. It takes
necessary actions, when possible, to commit or rollback DUOW transactions in the
background without user intervention.

When a DUOW transaction fails during commit processing, such as losing
communication to a database server after prepare processing but before commit
processing, the transaction cannot complete. From the perspective of the RM that has
lost contact with the application, the transaction is now indoubt because the RM is
prepared to commit the transaction but has not been told by the TM to actually commit
it. At this point, resynchronization processing can start.

RM Note: RMs can actively or passively participate in resynchronization processing. An
RM can initiate resynchronization (ask the TM if it should commit or rollback the DUOW
transaction provided that communication with the TM is restored); or, it can wait for the
TM and keep the resources associated with this transaction branch locked.

74 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|

Initialization

Resynchronization processing starts when:

v During normal commit or rollback processing, the commit or rollback to one or more
data sources fails during the second phase.

v During database restart processing, the database logs indicate that transactions are
not complete.

In both cases, transaction information is copied to the resync list. The transaction xid
and state are recorded.

The actual transaction state could be indoubt (the decision to commit or rollback the
transaction is unknown) or known, depending upon where resynchronization processing
is taking place. At the TM level, the transaction state is known. At the sub-TM level, the
transaction state might be known. The transaction is indoubt if the sub-TM has
completed the PREPARE phase but has not heard from the TM if it should COMMIT or
ROLLBACK the transaction. The transaction is not indoubt if the sub-TM received a
decision from the TM but was unable to propagate that decision to all its RMs.

If the decision to commit the DUOW transaction was recorded in DataJoiner’s log, the
list of DataJoiner RMs associated with the transaction are added to the resync list. This
RM resync list helps DataJoiner maintain a single database image for the transaction
even if it involved multiple data sources.

Processes

The resynchronization process periodically checks the resync list. This interval is set by
the database manager configuration parameter resync_interval. It attempts to resolve
indoubt transactions and then commit or rollback transactions whose state is resolved.

If the failed transaction has a known state (not indoubt), the resync process connects to
the RM database for that transaction and issues a commit or a rollback. If the RM is a
DataJoiner database (actually, a sub-TM), DataJoiner issues commit or rollback
requests to the data sources that participated in that DUOW transaction.

For transactions that are indoubt, and the TM is a DB2 or DataJoiner database, the
resynchronization process contacts the TM database of that transaction to resolve the
state of the transaction. The TM database responds by indicating if the transaction
should be committed or rolled-back based on its log. If the TM database indicates that
the transaction is to be committed, the resync manager process updates the transaction
state and waits for the TMDB to drive the resync commit processing. However, if the
TM database indicates that the transaction is to be rolled-back, the resync process
updates the transaction state and connects to the DataJoiner sub-TM that has the
indoubt transaction and issues a rollback. The DataJoiner database then goes through
the list of 2PC databases that it has updated as a part of this transaction and issues a
rollback.

Chapter 6. Distributed Unit of Work (DUOW) Transactions 75

TM Processing Note: If the TM database is a non-DB2 database, the
resynchronization process waits for the TM to drive resync actions. The RMs and
sub-TMs do not actively request TMDB transaction state information.

Manually Determining Transaction States

When a transaction is sent through DataJoiner, DataJoiner does not externalize the
actual data sources that are a part of the transaction. If you are tracing an indoubt
transaction, the only way you can determine the actual data source that failed is to
capture the xid for the failed transaction and then look for that xid in all the data source
database managers that DataJoiner may have accessed as a part of the DUOW
transaction.

This section provides information about tracing transaction states and xids across data
sources.

Listing Transaction Data

Use the LIST INDOUBT TRANSACTIONS command documented in the DATABASE 2
Command Reference against your application database, the DataJoiner database, and
any DB2 Family data sources involved in the DUOW transaction to discover the xid and
current transaction state for each indoubt transaction.

Use similar commands for each data source that might have been a part of the
transaction. Each data source that supports two-phase commit might use a different
command; search for the term ″xid″ in your data source command reference index.

Tracing xids Across DB2 Family and Other Data Sources

When DataJoiner is either the TM or a Sub-TM, it passes the xid to data sources during
transaction processing. Before DataJoiner sends an xid to a non-DB2 Family data
source, it modifies the xid so that the it conforms to the data source’s xid format. For
non-DB2 Family data sources, the changes are:

v Updating the branch qualifier length section of the xid

v Adding the branch qualifier section of the xid

These changes are similar for Oracle, Sybase SQL Server, Informix, and so on.

It is important that you know about these changes because you may compare xids
across several data sources. You need to know which part of the xid you can safely
compare across your environment when tracing an xid.

As an example, if the TM for a transaction is a DB2 system, entering the LIST
INDOUBT command at the TM database would return a string (hexadecimal
representation) for the transaction xid similar to:

76 DB2 DataJoiner Version 2 Administration Supplement

|
|
|

53514C2000000027 0000000050455246 000000000033C827 2833B40678000000
00010F0000000000 0000000000000000 000000

This long string is actually composed of several distinct parts:

FORMAT TID BRANCH TRANSACTION IDENTIFIER
ID LENGTH QUALIFIER

LENGTH
53514C20 00000027 00000000 50455246000000000033C827 2833B40678000000

00010F0000000000 0000000000000000 000000

Again, the values listed above are hexadecimal. For example, the TID LENGTH
(hexadecimal 27) represents the decimal value 39.

If that same xid will get passed along to a non-DB2 Family RM via DataJoiner (acting
as a sub-TM), the xid string is changed. For example, the xid passed to an Oracle data
source RM changes to:

53514C2000000027 0000000150455246 000000000033C827 2833B40678000000
00010F0000000000 0000000000000000 00000001

Examine the branch qualifier length and branch qualifier sections reformatted below:

FORMAT TID BRANCH TRANSACTION IDENTIFIER BRANCH
ID LENGTH QUALIFIER QUALIFIER

LENGTH
53514C20 00000027 00000001 50455246000000000033C827 2833B40678000000

00010F0000000000 0000000000000000 000000 01

You can see that the branch qualifier length section has a 1 and that the branch
qualifier section was added.

You can still trace the xid across different data sources by limiting your search string
input to the transaction identifier section.

Manually Recovering Indoubt Transactions (Heuristic Processing)

If you cannot wait for the TM to automatically resolve indoubt transactions, you can use
the LIST INDOUBT TRANSACTIONS command to list and then manually resolve the
transactions. This process is called ″heuristic processing.″

Consider using heuristic processing when you know why the transaction failed and
there is a pressing need to free locked resources. For example, if your communications
link between the TM and a sub-TM fails in the midst of a transaction, and you are
familiar with the transaction, you could free local resources by heuristically rolling back
the transaction.

Chapter 6. Distributed Unit of Work (DUOW) Transactions 77

|
|
|

Heuristic Processing Note: Heuristic decisions made at a TM or a sub-TM are not
propagated to RMs. Each TM, sub-TM, and RM must be handled individually. For
non-DB2 heuristic processing information, see the documentation that came with the
data source. For DB2 heuristic processing information, see the DATABASE 2
Administration Guide.

Using DataJoiner with a Non-DB2 Transaction Manager

See the DATABASE 2 Administration Guide for information about running a DataJoiner
instance under another transaction manager.

78 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|

Chapter 7. System and Query Tuning

This chapter covers performance considerations. It has information on tools used for
monitoring your system and methods for improving performance. Improving query
performance is the overall focus and comprises most of the chapter. The major topics
are:

v “DataJoiner System Monitoring and Tuning”

v “Tuning Query Processing” on page 85

v “Tuning DataJoiner Network Usage” on page 99

v “Tuning Data Source Configurations” on page 101

DataJoiner System Monitoring and Tuning

Tuning a DataJoiner system involves

v Monitoring DataJoiner database operations

v Tuning DataJoiner for maximum performance (that is, tuning the basic database
engine contained in DataJoiner)

v Setting the DataJoiner collating sequence

A bottleneck at either DataJoiner or any data source accessed by DataJoiner can
degrade performance. This section addresses local system performance. Be aware that
system problems can originate at either DataJoiner, the data source, or both.

DataJoiner Monitoring

A set of database system monitor APIs are provided that allow applications to be written
that gather statistical information regarding the operation of the database. Information
gathered through these APIs can be used to assess the status of DataJoiner, individual
databases, tables, and individual applications.

The information gathered by the monitor is generated by the internal components of
DataJoiner. The information gathered contains status information regarding the current
state of the database manager and activity information such as counters and other
measurements of database processing.

Note: The DataJoiner monitor only tracks the state of DataJoiner and its interactions
with data sources. It does not monitor the state of data sources beyond very
simple tracking of interactions with them.

The database system monitor will record point-in-time information (snapshot) on the
following components:

v Database connections

© Copyright IBM Corp. 1995, 1998 79

|
|
|
|

|

|

|

|

|
|
|

|

|

v Locks

v Buffer pool activity

v SQL statement activity

v Sorting

v Cursors

v Deadlocks

v Table activity

v Unit-of-work status

v Database status

v Communications activity

v DataJoiner activity with remote data sources

v DataJoiner use of data sources.

To set up the database system monitor, see “Chapter 9. Database System Monitor” on
page 107 .

DataJoiner Tuning

The DataJoiner database engine has the same tuning parameters as DB2 CS Version
2. See the DATABASE 2 Administration Guide for information on tuning the basic
database engine contained within DataJoiner. In general, you should start with the
engine defaults and adjust them later for specific tuning issues.

Some areas deserve special consideration. The following topics greatly affect engine
performance:

v Row blocking

v RUNSTATS utility

v REORG utility

v Configuration parameters

Each is topic is described in following sections.

Row Blocking

Row blocking, also called block fetch, is the process of fetching more than one row per
call from the data source. Applications can indirectly affect when DataJoiner can use
row blocking; however, DataJoiner makes the final determination of when to block fetch.

One of the greatest impacts on the performance of your system (and queries) is the
extent to which DataJoiner can utilize block fetch, and the size of the block to be
fetched. DataJoiner controls the size of the block used by the DRDA/DB2RA and
SQL*NET protocols. Block fetch is also used by the dblib and ctlib protocols, but
DataJoiner has no control over these. For DataJoiner, the svrioblk configuration
parameter (described in the DATABASE 2 Administration Guide) determines the size of

80 DB2 DataJoiner Version 2 Administration Supplement

|

|

|

|

|

|

|

|

|

|

|

|

the block. The parameter default is 4096 (a 4K byte block of data is fetched during
each block fetch operation). When adjusting that parameter, remember that each cursor
in your application can result in many data sources being accessed. Each cursor in
your application can result in multiple blocked cursors going to data sources; therefore,
multiple blocks of storage, of the size described in svrioblk, are allocated to service your
request.

DataJoiner typically tries to block under the same conditions as DB2 for CS blocks;
therefore, you should explicitly code your queries as FOR FETCH ONLY whenever
possible, and use the BLOCKING ALL BIND option whenever possible. The DATABASE
2 Administration Guide provides more details regarding when DB2 for CS will block.

The RUNSTATS Utility

DataJoiner relies on catalog statistics for nicknames in the same way that DB2 for CS
relies on catalog statistics for tables. These statistics are extremely important in the
query optimization phase.

The catalog statistics for nicknames are gathered in two different ways:

v If you create a nickname, the CREATE NICKNAME process will verify the presence
of the object at the data source and then attempt to gather existing data source
statistical data. Information useful to the DataJoiner optimizer is read from the data
source catalogs. Because some or all of the data source catalog information might
be used by the DataJoiner optimizer, it is advisable to update statistics (using the
data source command equivalent to RUNSTATS) at the data source before you
create a nickname.

v If you issue the RUNSTATS command against a nickname, updated statistical data
about the object referenced by the nickname is derived by first sending a query to
the data source (retrieves the table) and then running the RUNSTATS command
locally against the copy of the retrieved table. No statistical data from the data source
is used.

DataJoiner does not automatically detect changes to objects referenced by nicknames.
You may notice that an object has changed, indirectly, because of slower performance
(the optimizer is making decisions based on data that is no longer true) or incorrect
results (queries are not retrieving data from new columns added after the nickname was
created).

If the object schema has not changed, issuing the RUNSTATS command against the
nickname will update the statistical data used by the optimizer. If the object schema has
changed (for example, some columns were deleted and others were altered), run the
RUNSTATS utility equivalent at the data source. Then, drop the current nickname.
Re-create the nickname. The nickname will now have updated statistical information
consistent with the object schema.

Chapter 7. System and Query Tuning 81

The REORG TABLE Utility

Queries submitted to a data source from DataJoiner are processed by the data source
like queries received from any other application. For this reason, DataJoiner is as
susceptible to unorganized data on the data source as your normal applications.
Therefore, frequent reorganization of the data stored in DataJoiner, and reorganization
of the data stored in any accessed data source, is recommended.

Tuning Configuration Parameters

DataJoiner has a number of instance and database configuration parameters you can
tune. These parameters are similar to those found in DB2 for CS and are described in
the DATABASE 2 Administration Guide.

Some parameters, however, have special considerations in the DataJoiner environment
as compared to the DB2 for CS environment or have additional considerations that are
operating system dependent. This section discusses the special considerations for
DataJoiner that are not operating system dependent. The DataJoiner Planning,
Installation, and Configuration Guide for your platform lists operating system-specific
parameter information specific to DataJoiner (see the memory and disk requirements
sections).

Before You Change the Following Configuration Parameters: Most of the following
suggestions involve reducing resources available to the DataJoiner database. It is
recommended that you analyze your queries, and consider your requirements for spatial
data processing, before reducing resources. You might discover that:

v Some queries will complete faster if tables are materialized locally. The DataJoiner
optimizer will consider local materialization of tables if that is the least cost route. If
tables are materialized locally, you might have to increase the resources available to
the local DataJoiner database.

v Some queries will complete faster if tables are sorted locally. In some cases, sorts
must occur locally. The DataJoiner optimizer will consider local materialization of
tables if that is the least cost route. If tables are materialized locally, you might have
to increase the resources available to the local DataJoiner database. If tables are
sorted locally, you also might have to increase the resources available to the local
DataJoiner database.

v Spatial operations (enabling and then using spatial data at DataJoiner) might require
default or higher database resource settings to complete in a timely manner.
Specifically, the user defined memory size parameter should be 4096 or higher. See
the DB2 Spatial Extender Administration Guide and Reference for more information.

The DataJoiner Buffer Pool (BUFFPAGE): The DataJoiner buffer pool is only used to
cache pages from the local DataJoiner database. Information retrieved from data
sources is not cached here. Therefore, if you do not access local data, you probably will
require significantly less buffer pool storage than a standard DB2 for CS database. You
can lower the value of the buffer pool size configuration parameter (buffpage). See the
DATABASE 2 Administration Guide for more information on tuning this parameter.

82 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

DataJoiner Recovery Log: The only recovery information logged in the DataJoiner
recovery log is from operations that affect the local DataJoiner database. Therefore, if
you do not access local data, you will require significantly less log space than a
standard DB2 for CS database. You can lower the following configuration parameters:

v Size of log files (logfilsiz)

v Number of primary log files (logprimary)

v Log records to write before soft checkpoint (softmax)

v Log buffer size (logbufsz)

v Number of commits to group (mincommit)

v Location of log files (logpath)

Each of these parameters is described in the DATABASE 2 Administration Guide.

Locking: DataJoiner locks nicknames once it accesses them (one lock per usage of
any given nickname). Locking prevents the nickname from getting dropped when it is
still in use. All other local locking operations are unaffected. When a nickname is
accessed, a single local lock list entry is used, but multiple locks might be acquired at
the data source. This one to many relationship has performance implications. For
example, if you don’t access local data, you probably require significantly less lock list
space than a standard DB2 for CS database. You can lower the following configuration
parameters:

v Maximum storage for lock list (locklist)

v Maximum percent of lock list before escalation (maxlocks)

v Time interval for checking deadlock (dlchktime)

Each of these parameters is described in the DATABASE 2 Administration Guide.

Locks are acquired at data sources according to their concurrency control paradigms.

Sort (SORTHEAP): Unlike the logging, locking, and buffer-pool processes,
DataJoiner’s use of the sort facility is identical to DB2 for CS’s use of the sort facility. All
order-dependent operations that cannot be fully processed at the data source require
some sort space on the DataJoiner server. Monitor sort space as described in the
DATABASE 2 Administration Guide, regardless of whether or not you access local data.

Collating Sequence Considerations

The DataJoiner collating sequence is determined when a DataJoiner database is
created. It can be one of two values:

SYSTEM Indicates that the collating sequence is based on the current country
code (the default)

IDENTITY Indicates that the collating sequence is the identity sequence, where
strings are compared byte for byte.

Chapter 7. System and Query Tuning 83

General Collating Sequence Performance Information

Your choice of collating sequence might affect DataJoiner performance. If a data source
uses the same collating sequence as the DataJoiner database, DataJoiner can push
down order-dependent processing involving character data to the data source. If a data
source collating sequence does not match DataJoiner’s, DataJoiner must retrieve the
relevant data and do all order-dependent processing on character data (which can slow
performance).

To determine if a data source and DataJoiner have the same collating sequence,
consider the following factors:

v National language support

The collating sequence is related to the language supported on a server. Compare
the NLS information in the DataJoiner Planning, Installation, and Configuration Guide
for your platform to the data source NLS information.

v Data source characteristics

Some data sources are created using case-insensitive collating sequences, which
can yield different results from DataJoiner in order-dependent operations.

v Customization

Some data sources provide multiple options for collating sequences or allow the
collating sequence to be customized.

Choose the collating sequence for a given DataJoiner database based on the mix of
data sources that will be accessed from that database. For example:

v If a DataJoiner database will access mostly Oracle databases with the same code
page (NLS) as DataJoiner, you might want to use DataJoiner’s IDENTITY collating
sequence because Oracle uses an equivalent collating sequence.

v If a DataJoiner database will access a number of DB2 for CS databases whose
collating sequence is SYSTEM and where the code page (NLS) is the same as
DataJoiner’s, you might want to use DataJoiner’s SYSTEM collating sequence.

Colseq Option of SYSCAT.SERVER_OPTIONS

The colseq option of SYSCAT.SERVER_OPTIONS tells DataJoiner if the collating
sequence of a given data source matches the collating sequence of the DataJoiner
database. It is used when data source collating sequences differ from DataJoiner’s or
when the data source collating operations might be case insensitive. For example, in a
case insensitive data source with an English code page, TOLLESON, ToLLeSoN, and
tolleson would all be considered equal.

If you set the colseq option to “Y”, you are telling DataJoiner that the data source
collating sequence matches the DataJoiner collating sequence. This setting allows the
DataJoiner optimizer to consider order dependent processing at a data source, which
can improve performance; however, if the data source collating sequence is not the
same as the DataJoiner database collating sequence, you can receive incorrect results.
For example, if your plan uses merge joins, the DataJoiner optimizer will push down

84 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|

|
|
|
|
|
|

ordering operations to the data sources as much as possible. If the data source
collating sequence is not the same, the join results may not have a correct result set.
Set the colseq option to “N” if you are not sure that the collating sequence at the data
source is identical to the DataJoiner collating sequence.

Tuning Query Processing

This section describes:

v “The DataJoiner SQL Compiler”

v “Pushdown Analysis” on page 87

v “Global Optimization” on page 92

The DataJoiner SQL Compiler

Figure 11 on page 86 shows a simplified view of the DataJoiner SQL compiler.

Chapter 7. System and Query Tuning 85

|
|
|
|

Most of the steps in the figure match query processing steps documented in the
DATABASE 2 Administration Guide (SQL Compiler chapter). DataJoiner adds additional
steps to the process:

Figure 11. Steps Performed by the DataJoiner SQL Compiler

86 DB2 DataJoiner Version 2 Administration Supplement

v Pushdown analysis. The major task of this step is to recommend to the DataJoiner
optimizer whether an operation can be remotely evaluated. It is just a
recommendation because the DataJoiner optimizer may choose to not perform an
operation directly on a remote data source because it is less cost effective.

A secondary task is to attempt to transform the query into a form that can be better
optimized by both the DataJoiner optimizer and remote query optimizers.

v Remote SQL generation. The final plan selected by the DataJoiner optimizer can
consist of a set of steps that might operate on the remote data source. For those
operations that will be performed by each data source, the remote SQL generation
step creates an efficient SQL statement based on the data source SQL dialect. This
step helps produce a globally (all data sources) optimal plan for the query.

The remainder of this section discusses each step in detail.

Pushdown Analysis

Pushdown analysis tells the DataJoiner optimizer if an operation can be performed at a
remote data source. An operation can be a function, such as relational operator, system
or user functions, or an SQL operator (GROUP BY, ORDER BY, and so on).

Functions that cannot be pushed-down can significantly impact query performance.
Consider the effect of forcing a selective predicate to be evaluated locally instead of at
the remote data source. This approach could require DataJoiner to retrieve the entire
table from the remote data source and then filter it locally against the predicate. If your
network is constrained—and the table is large—query performance could suffer.

Operators that are not pushed-down can also significantly impact query performance.
For example, having a GROUP BY operator aggregate remote data locally could, once
again, require DataJoiner to retrieve the entire table from the remote data source.

In general, the goal is to ensure that functions and operators can be pushed-down to
data sources. Many factors can affect whether a function or an SQL operator is
evaluated at a remote data source. The key factors are discussed in three groups:
server characteristics, nickname characteristics, and query characteristics.

Server Characteristics Affecting Pushdown Opportunities

The following sections contain data source-specific factors that can affect pushdown
opportunities. In general, these factors exist because DataJoiner lets you use the rich
DB2 for CS SQL dialect to submit queries. This dialect may offer more functionality than
the SQL dialect supported by a data server accessed during a DataJoiner query.
DataJoiner can compensate for the lack of function at a data server, but doing so may
require that the operation take place at DataJoiner.

SQL Capabilities: Each data source supports a variation of the SQL dialect and
different levels of functionality. For example, consider the GROUP BY list. Most data
sources support the GROUP BY operator; but, some have restrictions on the number of
items on the GROUP BY list or restrictions on whether an expression is allowed on the

Chapter 7. System and Query Tuning 87

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

GROUP BY list. If there is a restriction at the remote data source, DataJoiner might
have to perform the GROUP BY operation locally.

SQL Restrictions: Each data source can have different SQL restrictions. For
example, some data sources require parameter markers to bind in values to remote
SQL statements. Therefore, parameter marker restrictions must be checked to ensure
that each data source can support such a bind mechanism. If DataJoiner cannot
determine a good method to bind in a value for a function, this function must be
evaluated locally.

SQL Limits: DataJoiner might allow the use of larger integers than its remote data
sources; however, limit-exceeding values cannot be embedded in statements sent to
data sources. Therefore, the function or operator that operates on this constant must be
evaluated locally.

Server Specifics: Several factors fall into this category. One example is sorting NULL
values (highest, lowest, or depending on the ordering). For example, if the NULL value
is sorted at a data source differently from DataJoiner, ORDER BY operations on a
nullable expression cannot be remotely evaluated.

DataJoiner Server Options: The previously listed server characteristics are not
usually changed or set by users. The following options, however, can be set by users at
DataJoiner and in some cases can affect query performance:

v colseq (collating sequence). If a data source has a collating sequence that differs
from DataJoiner’s collating sequence, any operation depending on DataJoiner’s
collating sequence cannot be remotely evaluated at a data source. An example is
executing MAX column functions against a nickname character column at a data
source with a different collating sequence. Because results might differ if the MAX
function is evaluated at the remote data source, DataJoiner will perform the
aggregate operation and the MAX function locally.

v varchar_no_trailing_blanks. For varying-length character strings that contain no
trailing blanks, Oracle’s non-blank-padded comparison semantics return the same
results as DataJoiner’s comparison semantics. If you are certain that all
VARCHAR/VARCHAR2 table/view columns at an Oracle data source contain no
trailing blanks, consider creating this server option for a data source. Ensure that you
consider all objects that can potentially have nicknames (including views).

DataJoiner Type and Function Mapping Factors: The default local data type
mappings provided by DataJoiner (in SYSCAT.SERVER_DATATYPES) are designed so
that sufficient buffer space is given to each data source data type (to avoid runtime
buffer overflow). A user can choose to customize the type mapping for a specific data
source to suit specific applications. For example, if you are accessing an Oracle data
source column with a DATE data type (which by default is mapped to the DataJoiner
TIMESTAMP data type), you could change the local data type to the DataJoiner DATE
data type. This change bypasses the use of a SCALAR function to extract a subset of
the total data stored in the TIMESTAMP data type.

88 DB2 DataJoiner Version 2 Administration Supplement

For function mapping, DataJoiner relies on entries in SYSCAT.SERVER_FUNCTIONS
to identify which functions are supported by a remote data source. DataJoiner will
compensate for functions not supported by a data source. There are three cases where
function compensation will occur:

v This function simply does not exist at the remote data source. The SYSFUN
functions, for example, do not exist on DB2 for OS/390 data sources, and thus
require local compensation.

v The function does exist; however, the characteristics of the operand violate function
restrictions. An example is the IS NULL relational operator. Most data sources
support it, but some may have restrictions, such as only allowing a column name on
the left hand side of the IS NULL operator.

v The function, if evaluated remotely, may return a different result. An example is the
’>’ (greater than) operator. For those data sources with different collating sequences,
the greater than operator may return different results than if it is evaluated locally by
DataJoiner.

Nickname Characteristics Affecting Pushdown Opportunities

The following sections contain nickname-specific factors that can affect pushdown
opportunities.

Local Data Type of a Nickname Column: Ensure that the local data type of a
column does not prevent a predicate from being evaluated at the data source. As
mentioned earlier, the default data type mappings are provided to avoid any possible
overflow. However, a joining predicate between two columns of different lengths might
not be considered at the data source whose joining column is shorter, depending on
how DataJoiner binds in the longer column. This situation can affect the number of
possibilities in a joining sequence evaluated by the DataJoiner optimizer. For example,
Oracle data source columns created using the INTEGER or INT data type are given the
type NUMBER(38). A nickname column for this Oracle data type will be given the local
data type FLOAT because the range of a DataJoiner integer is from 2**31 to (-2**31)-1,
which is roughly equal to NUMBER(9). In this case, joins between a DB2 for CS integer
column and an Oracle integer column cannot take place at the DB2 for CS data source
(shorter joining column); however, if the domain of this Oracle integer column can be
accommodated by the DataJoiner INTEGER data type, change its local data type with
the ALTER NICKNAME statement so that the join can take place at the DB2 for CS
data source.

VARCHAR/VARCHAR2 Columns at Oracle Data Sources: The ALTER NICKNAME
SQL statement can indicate to DataJoiner pushdown analysis that a specific Oracle
column contains no trailing blanks. The pushdown analysis step will then take this
information into account when checking all operations performed on columns so
indicated.

Based on this indication, DataJoiner may generate a different but equivalent form of a
predicate to be used in the remote SQL statement sent to an Oracle data source. A
user might see a different predicate being evaluated against the Oracle data source, but
the net result should be equivalent.

Chapter 7. System and Query Tuning 89

Query Characteristics Affecting Pushdown Opportunities

A query can reference an SQL operator that might involve nicknames from multiple data
sources. When DataJoiner must combine the results from two referenced data sources
using one operator, such as a set operator (e.g. UNION), the operation must take place
at DataJoiner. The operator cannot be evaluated at a remote data source directly.

Pushdown Analysis Trouble-Shooting

Rewriting SQL statements can provide additional pushdown opportunities for DataJoiner
query processing. This section introduces tools for determining where a query is
evaluated, lists common questions (and suggested areas to investigate) associated with
query analysis, and addresses data source upgrade issues.

Determining Where a Query is Evaluated: There are two utilities provided with
DataJoiner that show where queries are evaluated:

v Visual explain. Start it with the db2dd or the db2vexp command. Use it to view the
query access plan graph. The execution location for each operator is included in the
detailed display of an operator. You can also find the remote SQL statement
generated for each data source in the RQUERY (select operation), RINSERT (insert
into a nickname), RUPDATE (update a nickname) and RDELETE (delete a
nickname) operators. If a statement is completely evaluated at the remote data
source, you should see a SHIP operator on top of one of the above operators (based
on your statement) in the access plan graph with no other major operator.

v SQL explain. Start it with the db2expln or the dynexpln command. Use it to view
the access plan strategy as text. SQL explain does not provide a graphical user
interface; however, it can be used to verify the remote plan chosen by the remote
optimizer.

Understanding Why a Query is Evaluated at a Data Source or at DataJoiner: This
section lists typical plan analysis questions and areas to investigate to increase
pushdown opportunities. Key questions include:

v Why isn’t this predicate being evaluated remotely?

This question arises when a predicate is very selective and thus could be used to
filter rows and reduce network traffic. Remote predicate evaluation also affects
whether a join between two tables of the same data source can be evaluated
remotely.

Areas to examine include:

– Subquery predicates. Does this predicate contain a subquery that pertains to
another data source? Does this predicate contain a subquery involving an SQL
operator that is not supported by this data source? Not all data sources support
set operators in a predicate

– Predicate functions. Does this predicate contain a function that cannot be
evaluated by this remote data source? Relational operators are classified as
functions.

– Predicate bind requirements. Does this predicate, if remotely evaluated, require
bind-in of some value? If so, would it violate SQL restrictions at this data source?

90 DB2 DataJoiner Version 2 Administration Supplement

– Global optimization. The optimizer may have decided that local processing is
more cost effective. See “Global Optimization” on page 92 for more information.

v Why isn’t the GROUP BY operator evaluated remotely?

There are several areas you can check:

– Is the input to the GROUP BY operator evaluated remotely? If the answer is no,
examine the input.

– Does the data source have any restrictions on this operator? Examples include:

- Limited number of GROUP BY items

- Limited byte counts of combined GROUP BY items

- Column specification only on the GROUP BY list

– Does the data source support this SQL operator?

– Global optimization. The optimizer may have decided that local processing is
more cost effective. See “Global Optimization” on page 92 for more information.

v Why isn’t the set operator evaluated remotely?

There are several areas you can check:

– Are both of its operands completely evaluated at the same remote data source? If
the answer is no and it should be yes, examine each operand.

– Does the data source have any restrictions on this set operator? For example, are
large objects or long fields valid input for this specific set operator?

v Why isn’t the ORDER BY operation evaluated remotely?

Consider:

– Is the input to the ORDER BY operation evaluated remotely? If the answer is no,
examine the input.

– Does the ORDER BY clause contain a character expression? If yes, does the
remote data source not have the same collating sequence as DataJoiner?

– Does the data source have any restrictions on this operator? For example, is
there a limited number of ORDER BY items? Does the data source restrict
column specification to the ORDER BY list?

v Why is a remote INSERT with a subselect statement not completely evaluated at the
remote data source?

Consider:

– Could the subselect be completely evaluated on the remote data source? If no,
examine the subselect.

– Does the subselect contain a set operator? If yes, does this data source support
set operators as input to an INSERT?

– Does the subselect reference the target table? If yes, does this data source allow
this syntax?

– Does the data source support such syntax (remote INSERT with a subselect
statement)?

v Why is a remote INSERT statement not completely evaluated at the remote data
source?

Chapter 7. System and Query Tuning 91

Consider:

– Is there an expression in the VALUES list? Does this data source support an
expression in the VALUES list?

– Does the expression involve a scalar subquery? Is that syntax supported?

– Does the expression reference the target table? Is that syntax supported?

v Why is a remote, searched UPDATE statement not completely evaluated at the
remote data source?

Consider:

– Can the SET clause be completely evaluated at the remote data source? In other
words, does an update expression contain a function not supported by the remote
data source?

– Can the search condition be completely evaluated at the remote data source? If
the answer is no, examine the search condition instead.

– Does the search condition reference the target table? Does the data source allow
this syntax?

v Why is a positioned UPDATE statement not completely evaluated at the remote data
source?

This happens when DataJoiner chooses to evaluate the update expression locally
before sending the UPDATE statement to the data source. This approach should not
significantly affect performance.

v Why is a remote, searched DELETE statement not completely evaluated at the
remote data source?

Consider:

– Can the search condition be completely evaluated at the remote data source? If
the answer is no, examine the search condition instead.

– Does the search condition reference the target table? Does the data source allow
this syntax?

Data Source Upgrades and Customization: Although the DataJoiner SQL compiler
has much information about native data source SQL support, this data may need
adjustment over time because data sources can be upgraded and/or customized. In
such cases, make enhancements known to DataJoiner by changing local catalog
information. Use DataJoiner SQL DDL statements (such as CREATE FUNCTION
MAPPING and CREATE SERVER OPTION) to update the catalog. See the DataJoiner
Application Programming and SQL Reference Supplement for information on system
catalog tables and the columns that can be updated.

Global Optimization

Global optimization produces a globally optimal access strategy to evaluate a query. For
a heterogeneous query, the access strategy may involve breaking down the original
query into a set of remote query units and then combining the results.

Using the output of pushdown analysis as a recommendation, the DataJoiner optimizer
decides whether each operation will be evaluated locally at DataJoiner or remotely at

92 DB2 DataJoiner Version 2 Administration Supplement

the data source. The decision is based on the output of its sophisticated cost model,
which includes not only the cost to evaluate the operation but also the cost to transmit
the data or messages between DataJoiner and data sources.

The goal is to produce an optimized query; however, many factors can affect the output
from global optimization and thus affect query performance. The key factors are
discussed in two groups: server characteristics and nickname characteristics.

Server Characteristics Affecting Global Optimization

Data source-specific factors that can affect global optimization include the:

v Relative ratio of CPU speed

This value indicates how much faster or slower the data source CPU speed is
compared with the DataJoiner CPU. A low ratio indicates that the data source
workstation CPU is faster than the DataJoiner workstation CPU. For low ratios, the
DataJoiner optimizer will consider pushing-down CPU-intensive operations to the
data source. See the DataJoiner Application Programming and SQL Reference
Supplement for more information about this ratio.

v Relative ratio of I/O speed

This value indicates how much faster or slower the data source I/O speed is
compared with the DataJoiner I/O speed. A low ratio indicates that the data source
workstation I/O speed is faster than the DataJoiner workstation I/O speed. For low
ratios, the DataJoiner optimizer will consider pushing-down I/O-intensive operations
to the data source. See the DataJoiner Application Programming and SQL Reference
Supplement for more information about this ratio.

v Communication rate between DataJoiner and the data source

Lower communication rates (slow network communication between DataJoiner and
the data source) encourage the DataJoiner optimizer to reduce the number of
messages sent to or from this data source. If the rate is set to 0, the optimizer
produces a query requiring minimal network traffic. See the DataJoiner Application
Programming and SQL Reference Supplement for more information about this
setting.

v Data source collating sequence

If a data source collating sequence does not match the local DataJoiner database
collating sequence, the optimizer considers the data retrieved from this data source
as unordered.

To encourage sorting at data sources, set the DataJoiner system catalog collating
sequence value for a data source to Y (a data source has the same collating
sequence as DataJoiner) when one of the following is true:

1. All character data is upper case

2. All character data is lower case

3. All character data is composed of numbers

See “Collating Sequence Considerations” on page 83 for more information about
collating sequence performance issues.

Chapter 7. System and Query Tuning 93

v Information in the DataJoiner optimizer knowledge base

DataJoiner has an optimizer knowledge base that contains data about native data
sources. The DataJoiner optimizer does not generate remote access plans that
cannot be generated by specific DBMSs. In other words, DataJoiner avoids
generating plans that optimizers at remote data sources cannot understand or
accept.

Server Options Affecting Global Optimization

Server options that can affect global optimization include:

v deferred_lob_retrieval

The deferred lob_retrieval option setting enables DataJoiner to fetch LOBs after a
query is processed. This option can prevent LOBs from being materialized in
temporary relations at DataJoiner. Only those LOBs that are in the result set are then
fetched from the data source.

See the DataJoiner Application Programming and SQL Reference Supplement for
more information about this option.

v remote_query_caching

This option can improve query performance by reducing or omitting the need to
re-fetch result sets. Queries that normally re-fetch result sets when the ″bind in″ host
variable has the same value as a previous fetch can use the result set held within
the cache.

See “Remote Query Caching” on page 98 for more information about this option.

Nickname Characteristics Affecting Global Optimization

The following sections contain nickname-specific factors that can affect global
optimization.

Index Considerations:

DataJoiner uses information about indexes at data sources to optimize queries. For this
reason, it is important that the index information available to DataJoiner is current. The
index information for nicknames is initially acquired at create nickname time.

While DataJoiner can retrieve the statistical data held at a data source, it cannot
automatically detect updates to existing statistical data at data sources. Furthermore,
DataJoiner has no mechanism for handling schema changes.

If the statistical data for an object has changed, but the object schema has not
changed, issuing the RUNSTATS command against the nickname will update the
statistical data used by the optimizer. If the statistical data for an object has changed,
and the object schema has changed (for example, some columns were deleted and
others were altered), run the RUNSTATS utility equivalent at the data source. Then,

94 DB2 DataJoiner Version 2 Administration Supplement

|

|

|

|
|
|
|

|
|

|

|
|
|
|

|

drop the current nickname. Re-create the nickname. The nickname will now have
updated statistical information consistent with the object schema.

Index Management: Applications do not decide when an index should be used:
DataJoiner makes this decision based on the available table and index information.
However, DBAs play an important role in the process by creating the necessary indexes
that can improve performance.

Specific instructions for index management will differ for each remote data source.
Check the appropriate product documentation for details. The following points are
general guidelines for an enterprise indexing strategy:

v Define primary keys wherever they apply. Each primary key has a unique index. A
primary key is a unique key that is part of the table definition. It is good practice to
create one for a new table.

v Use indexes to optimize frequent queries to tables with more than 15 data pages. In
DataJoiner’s local database, one data page is a unit of storage within a table or
index. The size of a data page is 4KB. Indexes also should be used for tables with
more than 10 data pages that are primarily used as read only.

v Create an index on any columns you will use when joining tables.

v Create an index on any column from which you will be searching for particular values
on a regular basis.

v Consider not using an index for tables smaller than six pages.

v Avoid creating indexes that are partial keys of other index keys on the columns. For
example, if there is an index on columns x, y, and z, then a second index on
columns y and z is not necessarily useful.

v Use indexes on foreign keys to improve the performance of delete and update
operations on the parent table.

v It is more efficient to create an index after the table is loaded with data. This avoids
the overhead of maintaining the index during data load. This approach also
minimizes index space requirements.

Creating Indexes on Nicknames: Use CREATE INDEX statements against table
nicknames for data source tables; don’t issue CREATE INDEX statements against a
nickname for a view.

For table nicknames, creating indexes is useful when:

v DataJoiner is unable to retrieve any index information from a data source, either via
system catalogs or system stored procedures regarding a nickname, during
nickname creation. SYSCAT.INDEXES would not contain any information about the
nickname for the DataJoiner optimizer to consider. Classic Connect, for example,
utilizes data sources that do not externalize index information.

v A user wants to encourage the DataJoiner optimizer to use a specific nickname as
the inner table of a nested loop join. The user can create an index on the joining
column if none exists.

Chapter 7. System and Query Tuning 95

The syntax for creating an index on a nickname is identical to the syntax for creating an
index on a local DataJoiner table.

Catalog Statistics (in SYSCAT.TABLES and SYSCAT.COLUMNS) Considerations:
This set of catalog information describes the overall size of tables/views and the range
of values in associated columns. The information includes the:

v Number of rows in a nickname object

v Number of pages that a nickname occupies

v Highest/lowest values of a column

DataJoiner provides the RUNSTATS utility to generate local statistics. These statistics
can be updated directly in DataJoiner. The RUNSTATS utility is described in
“RUNSTATS (Update Statistics)” on page 104. See the DataJoiner Application
Programming and SQL Reference Supplement for information on the DataJoiner system
catalog and the columns that can be updated.

Use caution when providing statistics manually or issuing RUNSTATS on a nickname
over a remote view. The statistical information, such as the number of rows this
nickname will return, might not reflect the real cost to evaluate this remote view and
thus might mislead the DataJoiner optimizer. Situations that can benefit from statistics
include remote views defined on a single base table with no column functions applied
on the SELECT list. Most complex views, however, might require more complex tuning
process which unfortunately might require tuning for each query. Consider ceating views
over nicknames instead so the DataJoiner optimizer knows how to derive the cost of
the view more accurately.

Index Information Considerations: Like catalog statistics, index information for a
table nickname is retrieved during nickname creation. Index information is not gathered
for view nicknames. DataJoiner allows the CREATE INDEX statement to be issued
against nicknames (both tables and views) so that additional information can be made
available to the DataJoiner optimizer when such information is not externalized by the
data source.

Be cautious when issuing CREATE INDEX statements against a nickname for a view. In
one case, if the view is a simple SELECT on a table with an index, creating indexes on
the nickname (locally) that match the indexes on the table at the data source can
significantly improve query performance. However, if indexes are created locally over
views that are not simple select statements (for example, a view created by joining two
tables), query performance may suffer. For example, if an index is created over a view
that is a join of two tables, the optimizer may choose that view as the inner element in
a nested loop join. The query will have poor performance because the join will be
evaluated several times.

Global Optimization Trouble-Shooting

This section introduces tools for analyzing query optimization and presents common
questions (and suggested areas to investigate) associated with query analysis.

96 DB2 DataJoiner Version 2 Administration Supplement

Analyzing Query Optimization: There are two utilities provided with DataJoiner that
show global access plans:

v Visual explain. Start it with the db2dd or db2vexp command. Use it to view the query
access plan graph. The execution location for each operator is included in the
detailed display of an operator. You can also find the remote SQL statement
generated for each data source in the RQUERY (select operation), RINSERT (insert
into a nickname), RUPDATE (update a nickname) and RDELETE (delete a
nickname) operators. By examining the details of each operator, you can see the
number of rows estimated by the DataJoiner optimizer as input to and output from
each operator. You can also see the estimated cost to execute each operator
including the communications cost.

v SQL explain. Start it with the db2expln or dynexpln command. Use it to view the
access plan strategy as text. SQL explain does not provide a graphical user
interface. SQL explain does not provide cost information; however, you can get the
access plan generated by the remote optimizer for those data sources supported by
the remote explain function. See “Appendix A. SQL Explain Utilities” on page 145 for
more information on the supported data source types and the prerequisites.

Understanding DataJoiner Optimization Decisions: This section lists optimization
questions and key areas to investigate to improve performance. Key questions include:

v Why isn’t a join between two nicknames of the same data source being evaluated
remotely?

Areas to examine include:

– Join operations. Can the data source support them?

– Join predicates. Can the join predicate be evaluated at the remote data source? If
the answer is no, examine the join predicate. See “Understanding Why a Query is
Evaluated at a Data Source or at DataJoiner” on page 90 for more information.

– Number of rows in the join result (with visual explain). Does the join produce a
much larger set of rows than the two nicknames combined? Do the numbers
make sense? If the answer is no, consider updating the nickname statistics with
the RUNSTATS utility.

v Why isn’t the GROUP BY operator being evaluated remotely?

Areas to examine include:

– Operator syntax—verify that the operator can be evaluated at the remote data
source. See “Understanding Why a Query is Evaluated at a Data Source or at
DataJoiner” on page 90 for more information.

– Number of rows. Check the estimated number of rows in the GROUP BY operator
input and output using visual explain. Are these two numbers very close? If the
answer is yes, the DataJoiner optimizer considers it more efficient to evaluate this
GROUP BY locally. Also, do these two numbers make sense? If the answer is no,
consider updating the nickname statistics using RUNSTATS.

v Why is the statement not being completely evaluated by the remote data source?

The DataJoiner Optimizer performs cost-based optimization. Even if pushdown
analysis indicates that every operator can be evaluated at the remote data source,
the optimizer still relies on its cost estimate to generate a globally optimal plan. There

Chapter 7. System and Query Tuning 97

|
|
|

are a great many factors that can contribute to that plan. For example, even though
the remote data source can process every operation in the original query, its CPU
speed is much slower than DataJoiner’s and thus it may turn out to be more
beneficial to perform the operations at DataJoiner instead. If results are not
satisfactory, verify your server statistics in SYSSTAT.SERVERS.

v Why does a plan generated by the optimizer, and completely evaluated at a remote
data source, have much worse performance than the original query executed directly
at the remote data source?

Areas to examine include:

– The remote SQL statement generated by the DataJoiner optimizer. Ensure that it
is identical to the original query. Check for predicate ordering changes. A good
query optimizer should not be sensitive to the predicate ordering of a query;
unfortunately, not all DBMS optimizers are identical, and thus it is likely that the
optimizer of the remote data source may generate a different plan based on the
input predicate ordering. If this is true, this is a problem inherent in the remote
optimizer. Consider either modifying the predicate ordering on the input to
DataJoiner or contacting the service organization of the remote data source for
assistance.

Also, check for predicate replacements. A good query optimizer should not be
sensitive to equivalent predicate replacements; unfortunately, not all DBMS
optimizers are identical, and thus it is possible that the optimizer of the remote
data source may generate a different plan based on the input predicate. For
example, some optimizers cannot generate transitive closure statements for
predicates.

– The number of returned rows. You can get this number from visual explain. If the
query returns a large number of rows, network traffic is a potential bottleneck.

– Additional functions. Does the remote SQL statement contain additional functions
compared with the original query? Some of the extra functions may be generated
to convert data types. Ensure that they are necessary.

Remote Query Caching

Remote query caching refers to a server option that, for certain query types, improves
query performance by reducing or omitting the need to re-fetch result sets. By enabling
this server option, queries that normally re-fetch result sets when the ″bind in″ host
variable has the same value as a previous fetch can use the result set held within the
cache. Query performance should improve when you are submitting queries that require
host variable binding. Examples include nested loop joins or correlated subqueries.

Remote query caching is enabled by setting the remote_query_caching server option
value to “Y”. Set values for this option with either the CREATE SERVER OPTION or the
SET SERVER OPTION SQL statements. For example, to enable remote query caching
for the server oracle1, enter:

SET SERVER OPTION remote_query_caching to 'Y' FOR SERVER oracle1

The cache size is set to 2 MB (cannot be changed by user). The default setting is ″N″.

98 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|

In general, if you are performing nested loop joins or other queries that reference host
variables, enabling this server option should improve run-time performance. Caching
applies to both inter-query and intra-query processing. The cache is freed up at commit
time.

Remote query caching should not be used when the DataJoiner isolation level is set
below Read Stability (see the DATABASE 2 Administration Guide for more information
on isolation levels) and the application requires the most current data on the remote
table. Also, remote query caching can consume up to 2 MB of memory per application.
Consider disabling it for memory-constrained systems.

Remote Plan Hints

Remote plan hints are statement fragments that provide extra information for data
source optimizers. This information can, for certain query types, improve query
performance. The plan hints can help the data source optimizer decide whether to use
an index, which index to use, or which table join sequence to use.

If plan hints are enabled, the query sent to the data source contains additional
information. For example, a statement sent to an Oracle optimizer with plan hints could
look like this:

SELECT /*+ INDEX (table1, t1index)*/
col1
FROM table1

The plan hint is the string /*+ INDEX (table1, t1index)*/.

Plan hints are supported by Oracle and Sybase SQL Server data sources.

Enable the use of plan hints by setting the server option plan_hints on. Server options
can be set using either the SET SERVER OPTION or CREATE SERVER OPTION SQL
statements. For example, to temporarily enable the user of plan hints for the Oracle
server ORASEB1, issue the statement:

SET SERVER OPTION plan_hints to 'Y' FOR SERVER ORASEB1

Tuning DataJoiner Network Usage

This section provides a few suggestions that might improve query performance by
optimizing DataJoiner’s use of your network.

fold_id and fold_pw Options of SYSCAT.SERVER_OPTIONS

The fold_id and fold_pw options of SYSCAT.SERVER_OPTIONS control the
transformations that occur to the user name and password sent to the specified data
source. Depending on the settings of these options, multiple attempts can be made to
access the data source with different user name/password combinations. In a worst

Chapter 7. System and Query Tuning 99

case scenario DataJoiner will attempt to access each data source 3 times before finding
the correct combination of values (this is described in “Folding Authorization Names and
Passwords” on page 24). Choosing a correct setting will minimize network load and
increase performance. It is recommended that you set fold_id and fold_pw as follows:

v fold_id

’L’ Folds to lower case if the user name at the data source is lower case
(typically true of Sybase)

’U’ Folds to upper case if the user name at the data source is upper case
(typically true for the DB2 family and Oracle)

’N’ Doesn’t fold if the user name is already in the correct case.

Use NULL minimally, if at all.

v fold_pw

L Folds to lower case if the password at the data source is lower case
(typically true of Sybase)

U Folds to upper case if the password at the data source is upper case
(typically true for the DB2 family and Oracle)

N Doesn’t fold if the user name is already in the correct case.

Use NULL minimally, if at all.

Match Client I/O Block Size and Packet Size

Settings for the client I/O block (rqrioblk) database manager parameter can affect
performance. First, ensure that the current setting is a value that can divide evenly into
the value set for your TCP/IP packet size. A mismatch can slow performance.

Also, consider the size of data being transmitted by single SQL statements. Large
objects may require an increase from the default setting (4096 bytes).

See the DATABASE 2 Administration Guide for additional information.

Match Sybase TDS Packet Size to Network TCP/IP Packet Size

You can use CONNECTSTRING entries to ensure a match between the Open Client
packet size and the packet size for your network. This information is stored in the
DataJoiner catalog (SYSCAT.SERVER_OPTIONS). CONNECTSTRING syntax is
documented in the DataJoiner Planning, Installation, and Configuration Guide for your
platform.

Increase Network Operating System Prioritization

Some operating systems allow you to assign specific resources a higher or lower
processing priority. Consider increasing the priority for network operations and lowering

100 DB2 DataJoiner Version 2 Administration Supplement

|

|

|

the priority of DataJoiner processes. This approach can yield substantial query
performance increases when multiple data sources are involved and local table
materialization is not required for join or sort operations.

Tuning Data Source Configurations

In some cases, you can change configuration information at a remote data source to
improve performance. This section is organized by data sources.

Classic Connect

It is possible to significantly enhance the performance of queries involving Classic
Connect data sources (IMS, VSAM). For detailed technical information on factors
affecting query performance, see the Classic Connect Planning, Installation, and
Configuration Guide.

Microsoft SQL Server

By default, the initial Microsoft SQL Server collating sequence setting is case
insensitive. This setting can yield unacceptable query performance because DataJoiner
will not let the data source evaluate alphabetic character comparisons. If possible, avoid
this collating sequence setting by not using the default. Specify that the database be
sensitive to case.

SQL Anywhere

By default, the initial SQL Anywhere collating sequence setting is case insensitive. This
setting can yield unacceptable query performance because DataJoiner will not let the
data source evaluate alphabetic character comparisons. All comparisons will take place
at DataJoiner (no pushdown opportunities). If possible, avoid this collating sequence
setting by not using the default. Specify that the database be sensitive to case.

SQL Anywhere also specifies, by default, that trailing blanks are significant. If possible,
specify that the database ignores trailing blanks. This step enables additional pushdown
opportunities for DataJoiner.

Chapter 7. System and Query Tuning 101

|
|
|
|
||

|

|
|
|
|
|

|
|
|

102 DB2 DataJoiner Version 2 Administration Supplement

Chapter 8. Data Movement and Analysis Utilities

This chapter provides overview information on the utilities that allow you to manipulate
data in a DataJoiner environment, including:

v IMPORT, which inserts data from an input file into a table or view, with the input file
containing data from another database or spreadsheet program.

v EXPORT, which copies data from a table or view to output files for use by another
database or spreadsheet program.

v RUNSTATS, which updates statistics on a nickname, table, or view.

v REORGCHK, which determines whether to reorganize a nickname or table.

v BACKUP and RESTORE, which help to recover a DataJoiner database.

Complete information on how to use these utilities, including syntax, is in the
DATABASE 2 Command Reference. See also the DATABASE 2 Administration Guide,
which provides additional information on using these utilities in a local database
environment.

This chapter does not discuss other vendor’s products that might be available to
manipulate or recover data.

IMPORT

The IMPORT utility inserts data into a local table, a local view, or a nickname. If the
table or view receiving the imported data already contains data, you can Replace,
Insert, or Insert_Update the data in the existing table or view with the data in the file.

Notes:

1. The Create keyword is not supported for nicknames

2. Data in an existing table cannot be replaced if the existing table is the parent table
containing a primary key that is referenced by a foreign key in a dependent table

3. Some data sources may require a primary key defined on the table referenced by
the nickname

4. The COMPOUND clause will not substantially increase performance when importing
data to a nickname

In a heterogeneous database environment, IMPORT works against all data sources that
support all four of the following SQL statements:

v LOCK TABLE

v DELETE

v INSERT

v UPDATE

© Copyright IBM Corp. 1995, 1998 103

For example, you can import to a nickname on Oracle and on DB2 databases; however,
because Sybase does not support the LOCK TABLE statement, you cannot import data
to a Sybase nickname.

The following information is required when importing data to a table or view:

v The path and the input file name in which the data to be imported is stored.

v The name of the table within the database to which the data should be imported.

v The format of the data in the input file. This format can be IXF, WSF, DEL, or ASC.
See DATABASE 2 Administration Guide for a discussion of these formats.

v The options to use when copying the data in the input file. You can insert, update,
replace or append the data in the table or view with the imported data.

v A message file name.

To import data into a new table, you must have SYSADM authority, DBADM authority,
or CREATETAB privilege for the database. To replace data in an existing nickname,
table, or view, you must have SYSADM authority, DBADM authority, CONTROL
privilege for that object. To append data to an existing nickname, table or view, you
must have SELECT and INSERT privileges for that object.

Information on how to run the IMPORT utility is in DATABASE 2 Command Reference
Additional administrative information on using IMPORT in a local database environment
is in DATABASE 2 Administration Guide.

EXPORT

The EXPORT utility exports data into an operating system file from a database. The
output file has the format specified by the data format parameter.

EXPORT can be used against all nicknames in a heterogeneous database environment.

Information on how to run the EXPORT utility is in DATABASE 2 Command Reference
Additional administrative information on using EXPORT in a local database environment
is in DATABASE 2 Administration Guide.

RUNSTATS (Update Statistics)

The RUNSTATS utility updates statistics about the physical characteristics of database
nicknames, tables, and indexes. DataJoiner uses these statistics to determine the
optimal access paths to tables.

While DataJoiner can retrieve the statistical data held at a data source (when creating
nicknames), it cannot automatically detect updates to existing statistical data at data
sources. Furthermore, DataJoiner has no mechanism for handling nickname schema
changes.

104 DB2 DataJoiner Version 2 Administration Supplement

If the statistical data for an object has changed, but the object schema has not
changed, issuing the RUNSTATS command against the nickname will update the
statistical data used by the optimizer. If the statistical data for an object has changed,
and the object schema has changed (for example, some columns were deleted and
others were altered), run the RUNSTATS utility equivalent at the data source. Then,
drop the current nickname. Re-create the nickname. The nickname will now have
updated statistical information consistent with the object schema.

Information on how to use the RUNSTATS utility is in the DATABASE 2 Command
Reference.

REORGCHK (Determine Whether to Reorganize a Table or Nickname)

REORGCHK is used to determine if a table or nickname should be reorganized. You
can use the REORGCHK utility with nicknames; however, it will use DataJoiner’s
knowledge of clustering data to determine if the nickname or table must be reorganized.
It will not use information from the data source.

REORG, however, cannot be used against a nickname. If you use REORG against a
nickname, you will receive the message SQL2212N.

BACKUP and RESTORE

DataJoiner provides the means to backup and restore a DataJoiner local database.
There are two types of data included in any backup or restore:

v Catalog data , which includes standard DB2 catalog data and catalog data unique to
DataJoiner (for example, data source data in SYSCAT.SERVERS,
SYSCAT.REMOTEUSERS, and so on).

v User data , which is stored in tables created in the local DataJoiner database.

The DataJoiner backup and restore facilities work with nickname metadata; however,
they do not backup and restore any data at data sources. In addition, DataJoiner does
not provide facilities for recovery of data source databases. For information on recovery
methods for a data source, refer to the product documentation provided by the data
source’s vendor.

For complete information on backing up and recovering a DataJoiner local database,
see the DATABASE 2 Administration Guide.

Chapter 8. Data Movement and Analysis Utilities 105

106 DB2 DataJoiner Version 2 Administration Supplement

Chapter 9. Database System Monitor

This chapter provides information about using the database system monitor in a
heterogeneous database environment.

v Database system monitor overview information

v Data source database status information

v Data source application status information

Purpose of the Database System Monitor

The database system monitor provides a wide variety of statistical information about the
operation of DataJoiner. This information can be used to help you:

v Better understand how DataJoiner works

v Improve database and application performance

v Tune database and DataJoiner configuration parameters

v Determine the source and cause of problems

v Understand user and application activity within DataJoiner

You can control and access the monitor information by:

v Coding your own programs which call the APIs provided

v Using the commands provided with the command line processor interface

In both cases, the syntax and examples required to access the monitor are provided in
the DATABASE 2 Database System Monitor Guide and Reference.

The information gathered by the database system monitor is generated by the internal
components of DataJoiner. The DataJoiner level of information is first recorded when
DataJoiner is started and is recorded until the DataJoiner instance is stopped. Database
information is first recorded when the first connection is made to the database and is
recorded until the database is quiesced, which occurs after the last application
disconnects from the database. Application information is recorded starting when the
application connects to a database and is recorded until it disconnects from the
database. The recorded information contains status information (the current state of
DataJoiner) and activity information (counters and other measurements of database
processing).

Some basic monitoring information will always be collected. The database system
monitor also allows you to selectivity collect other statistical information. Monitoring
many or all elements can slow database performance, so it is important to assess your
monitoring requirements.

© Copyright IBM Corp. 1995, 1998 107

Element Summary by DataJoiner Object

The tables in this section provide a summary of the database system monitor data
elements that apply to a heterogeneous database environment. The elements are
grouped in these tables by the API structure in which they are contained. Since the
command line processor output follows the API structures to a fairly large extent, you
can also use these tables to help you find the detailed information for a specific element
while analyzing the command line processor output.

In the column titled Resettable in the following tables, the elements whose contents
can be reset are indicated with 'Yes'.

The next section, “Data Elements Detail by Function” on page 110, provides detailed
information about the database system monitor data elements that apply to a
heterogeneous database environment.

General Information

The following elements provide general information about the data collected by the
database system monitor. (API information is returned in the sqlm_collected data
structure.)

Element Title Element API Name Monitor Group Resettable

“Data Source Database Names” on page 111 dbase_remote Basic No

“Data Source Applications” on page 112 appl_remote Basic No

Data Source Database Status

The following elements provide information about the data source database for which
status information is being collected. (API information is returned in the sqlm_dbase
data structure.)

Element Title Element API Name Monitor Group Resettable

“Data Source Name” on page 113 name Basic No

“Data Source Database Name” on page 113 dbase Basic No

“Connects” on page 114 connects Basic Yes

“Disconnects” on page 114 disconnects Basic Yes

“Commits” on page 115 commits Basic Yes

“Rollbacks” on page 115 rollbacks Basic Yes

“Queries” on page 116 queries Basic Yes

“Inserts” on page 117 inserts Basic Yes

“Updates” on page 117 updates Basic Yes

“Deletes” on page 118 deletes Basic Yes

108 DB2 DataJoiner Version 2 Administration Supplement

Element Title Element API Name Monitor Group Resettable

“Create Nicknames” on page 118 createNickname Basic Yes

“Pass-Through” on page 119 passThrus Basic Yes

“Stored Procedures” on page 120 storedProcs Basic Yes

“Rows Returned” on page 120 rowsReturned Basic Yes

“Rows Updated” on page 121 rowsUpdated Basic Yes

“Rows Deleted” on page 121 rowsDeleted Basic Yes

“Rows Inserted” on page 122 rowsInserted Basic Yes

“Rows Returned by Stored Procedures” on page 123 sprowsReturned Basic Yes

“Failed Statements” on page 123 failedStatements Basic Yes

“Query Response Time” on page 124 queryTime Basic Yes

“Insert Response Time” on page 125 insertTime Basic Yes

“Update Response Time” on page 125 updateTime Basic Yes

“Delete Response Time” on page 126 deleteTime Basic Yes

“Create Nickname Response Time” on page 126 createNicknameTime Basic Yes

“Pass-Through Time” on page 127 passthruTime Basic Yes

“Stored Procedure Time” on page 128 storedProcTime Basic Yes

Data Source Application Status

The following elements provide information about a particular application at a data
source. For DataJoiner, an application exists only during the time it is connected to the
data source database. (API information is returned in the sqlm_appl and sqlm_appl_id
data structures.)

Note: Several new elements (Agent ID through Input Database Alias) were added for
DB2 for CS V2 application snapshots that are not documented in this manual.
See the DATABASE 2 Database System Monitor Guide and Reference for
details.

Element Title Element API Name Monitor
Group

Resettable

“Application Identification” on page 129 sqlm_appl_id_info Basic No

“Data Source Name” on page 130 name Basic Yes

“Data Source Database Name” on page 130 dbase Basic Yes

“Commits” on page 130 commits Basic Yes

“Rollbacks” on page 131 rollbacks Basic Yes

“Queries” on page 132 queries Basic Yes

“Inserts” on page 132 inserts Basic Yes

“Updates” on page 133 updates Basic Yes

“Deletes” on page 134 deletes Basic Yes

Chapter 9. Database System Monitor 109

Element Title Element API Name Monitor
Group

Resettable

“Create Nicknames” on page 134 createNickname Basic Yes

“Pass-Through” on page 135 passThrus Basic Yes

“Stored Procedures” on page 135 storedProcs Basic Yes

“Rows Returned” on page 136 rowsReturned Basic Yes

“Rows Updated” on page 136 rowsUpdated Basic Yes

“Rows Deleted” on page 137 rowsDeleted Basic Yes

“Rows Inserted” on page 138 rowsInserted Basic Yes

“Rows Returned by Stored Procedures” on page 138 sprowsReturned Basic Yes

“Failed Statements” on page 139 failedStatements Basic Yes

“Query Response Time” on page 139 queryTime Basic Yes

“Insert Response Time” on page 140 insertTime Basic Yes

“Update Response Time” on page 141 updateTime Basic Yes

“Delete Response Time” on page 141 deleteTime Basic Yes

“Create Nickname Response Time” on page 142 createNicknameTime Basic Yes

“Pass-Through Time” on page 143 passthruTime Basic Yes

“Stored Procedure Time” on page 143 storedProcTime Basic Yes

Data Elements Detail by Function

The following sections contain details about the information available from the database
system monitor. It is organized by how you might use it, rather than how it is returned to
you. For example, locking information is returned in a number of different ways, but all
locking information is discussed in the same section.

Detailed information for each element includes:

v Level of information

– DataJoiner

– Database

– Table

– Application

– DCS Application

– Lock

v API element name

v API data type

v API structures in which element is returned

v Monitor group

– Basic (always monitored)

110 DB2 DataJoiner Version 2 Administration Supplement

– Sorts

– Locks

– Table activity

– Buffer pool activity

– Unit of Work

– SQL Statements

v Indicator of whether or not the data element is resettable

v Related database system monitor elements

v Description of the element contents

v Usage (how you can use the contents of this element, if appropriate)

API Note: Information about the APIs and the API structures is in the DATABASE 2
Database System Monitor Guide and Reference.

The following sections provide detailed information about the database system monitor
elements:

v “General Information”

v “Data Source Database-Related Information” on page 112

v “Data Source Application-Related Information” on page 128

General Information

The following elements provide general information in a heterogeneous database
environment:

Data Source Database Names

Information Level DataJoiner

API Element Name dbase_remote

Data Type long

API Structure(s) sqlm_collected

Monitor Group Basic

Resettable No

Related Elements None

Description: When DataJoiner connects to a data source, it gathers statistics about
that data source and its databases.

Chapter 9. Database System Monitor 111

|
|

Data Source Applications

Information Level DataJoiner

API Element Name appl_remote

Data Type long

API Structure(s) sqlm_collected

Monitor Group Basic

Resettable No

Related Elements None

Description: When DataJoiner connects to a data source database, it gathers
statistics about the application at the data source.

Data Source Database-Related Information

The following elements list information about the total access to a data source by
applications running in a DataJoiner heterogeneous database environment. They
include:

v “Data Source Name” on page 113

v “Data Source Database Name” on page 113

v “Connects” on page 114

v “Disconnects” on page 114

v “Commits” on page 115

v “Rollbacks” on page 115

v “Queries” on page 116

v “Inserts” on page 117

v “Updates” on page 117

v “Deletes” on page 118

v “Create Nicknames” on page 118

v “Pass-Through” on page 119

v “Stored Procedures” on page 120

v “Rows Returned” on page 120

v “Rows Updated” on page 121

v “Rows Deleted” on page 121

v “Rows Inserted” on page 122

v “Rows Returned by Stored Procedures” on page 123

112 DB2 DataJoiner Version 2 Administration Supplement

v “Failed Statements” on page 123

v “Query Response Time” on page 124

v “Insert Response Time” on page 125

v “Update Response Time” on page 125

v “Delete Response Time” on page 126

v “Create Nickname Response Time” on page 126

v “Pass-Through Time” on page 127

v “Stored Procedure Time” on page 128

Data Source Name

Information Level DataJoiner

API Element Name name

Data Type char [SQLM_IDENT_SZ]

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable No

Related Elements “Data Source Name” on page 130

Description: This element contains the name of the data source whose remote
access information by DataJoiner is being displayed. This element corresponds to the
'SERVER' column in SYSCAT.SERVERS.

Usage: Use this element to identify the data source whose access information has
been collected and is being returned.

Data Source Database Name

Information Level DataJoiner

API Element Name dbase

Data Type char [SQLM_IDENT_SZ]

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable No

Related Elements “Data Source Database Name” on
page 130

Chapter 9. Database System Monitor 113

Description: This element contains the name of the database at the data source
whose remote access information by DataJoiner is being displayed. This element
corresponds to the 'DBNAME' column in SYSCAT.SERVERS.

Usage: Use this element to identify the database at the data source whose access
information has been collected and is being returned.

Connects

Information Level DataJoiner

API Element Name connects

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements None

Description: This element contains a count of the total number of times DataJoiner
has connected to this data source on behalf of any application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the total number of times DataJoiner has
connected to this data source on behalf of any application. It provides information about
the relative frequency of access to the data source from this DataJoiner instance.

Disconnects

Information Level DataJoiner

API Element Name disconnects

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements None

Description: This element contains a count of the total number of times DataJoiner
has disconnected from this data source on behalf of any application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

114 DB2 DataJoiner Version 2 Administration Supplement

Usage: Use this element to determine the total number of times DataJoiner has
disconnected from this data source on behalf of any application Together with the
CONNECT count, this element provides a mechanism by which you can determine the
number of applications this instance of DataJoiner believes is currently connected to a
data source.

Commits

Information Level DataJoiner

API Element Name commits

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Commits” on page 130

Description: This element contains a count of the total number of times DataJoiner
has issued a commit to this data source on behalf of any application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the total number of times DataJoiner has
issued a commit to this data source on behalf of any application. A small rate of change
in this counter during the monitor period can indicate that applications are not doing
frequent COMMITs, which can lead to problems with data concurrency.

You can also use this element to calculate the total number of units of work created by
DataJoiner on this data source by computing the sum of this element, and the
corresponding rollback count field.

Rollbacks

Information Level DataJoiner

API Element Name rollbacks

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rollbacks” on page 131

Chapter 9. Database System Monitor 115

Description: This element contains a count of the total number of times DataJoiner
has issued a ROLLBACK to this data source on behalf of any application since the later
of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the extent to which DataJoiner applications
conflict with other applications at the data source. Try to minimize the number of
rollbacks, because a higher rollback activity results in lower throughput for the data
source.

You can also use this element to calculate the total number of units of work created by
DataJoiner on this data source by computing the sum of this element, and the
corresponding commits count field.

Queries

Information Level DataJoiner

API Element Name queries

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Queries” on page 132

Description: This element contains a count of the total number of times DataJoiner
has issued a SELECT statement to this data source on behalf of any application since
the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by DataJoiner.

You can also use this element to determine the percentage of read activity against this
data source, with the following formula:

read_activity =
SELECT statements /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

116 DB2 DataJoiner Version 2 Administration Supplement

Inserts

Information Level DataJoiner

API Element Name inserts

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Inserts” on page 132

Description: This element contains a count of the total number of times DataJoiner
has issued an INSERT statement to this data source on behalf of any application since
the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by DataJoiner.

You can also use this element to determine the percentage of write activity against this
data source by DataJoiner, with the following formula:

write_activity =
(INSERT statements + UPDATE statements + DELETE statements) /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

Updates

Information Level DataJoiner

API Element Name updates

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Updates” on page 133

Description: This element contains a count of the total number of times DataJoiner
has issued an UPDATE statement to this data source on behalf of any application since
the later of:

v The start of the DataJoiner instance, or

Chapter 9. Database System Monitor 117

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by DataJoiner.

You can also use this element to determine the percentage of write activity against this
data source by DataJoiner, with the following formula:

write_activity =
(INSERT statements + UPDATE statements + DELETE statements) /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

Deletes

Information Level DataJoiner

API Element Name deletes

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Deletes” on page 134

Description: This element contains a count of the total number of times DataJoiner
has issued a DELETE statement to this data source on behalf of any application since
the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by DataJoiner.

You can also use this element to determine the percentage of write activity against this
data source by DataJoiner, with the following formula:

write_activity =
(INSERT statements + UPDATE statements + DELETE statements) /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

Create Nicknames

Information Level DataJoiner

118 DB2 DataJoiner Version 2 Administration Supplement

API Element Name createNickname

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Create Nicknames” on page 134

Description: This element contains a count of the total number of times DataJoiner
has created a nickname over an object residing on this data source on behalf of any
application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the amount of CREATE NICKNAME activity
against this data source by this DataJoiner instance. CREATE NICKNAME processing
results in multiple queries running against the data source catalogs; therefore, if the
value of this element is high, you should determine the cause and perhaps restrict this
activity.

Pass-Through

Information Level DataJoiner

API Element Name passThrus

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Pass-Through” on page 135

Description: This element contains a count of the total number of SQL statements
that DataJoiner has passed through directly to this data source on behalf of any
application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine what percentage of your SQL statements can
be handled natively by DataJoiner, and what percentage requires pass-through mode. If
this value is high, you should determine the cause and investigate ways to better utilize
native support.

Chapter 9. Database System Monitor 119

Stored Procedures

Information Level DataJoiner

API Element Name storedProcs

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Stored Procedures” on page 135

Description: This element contains a count of the total number of stored procedures
that DataJoiner has called at this data source on behalf of any application since the
later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine how many stored procedure calls were made
locally at the DataJoiner database.

Rows Returned

Information Level DataJoiner

API Element Name rowsReturned

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Returned” on page 136

Description: This element contains the number of rows sent from the data source to
DataJoiner as a result of SQL SELECT operations since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to compute the average
number of rows sent to DataJoiner from the data source, per SELECT statement, with
the following formula:

rows per SELECT = rows returned / SELECT statements

120 DB2 DataJoiner Version 2 Administration Supplement

You can also compute the average time to return a row to DataJoiner from the data
source:

average time = rows returned / aggregate query response time

You can use these results to modify CPU speed or communication speed parameters in
SYSCAT.SERVERS. Modifying these parameters can impact whether the optimizer
does or does not send requests to the data source.

Rows Updated

Information Level DataJoiner

API Element Name rowsUpdated

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Updated” on page 136

Description: This element contains the number of rows that were updated at the data
source as a result of SQL UPDATE statements sent from DataJoiner to the data source
on behalf of any application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to determine how many rows
are affected, on average, by each UPDATE statement issued to this data source, with
the following formula:

rows_per_update = rows updated / update requests

You can also determine how long, on average, it took to update each row:

time_per_row = rows updated / aggregate update response time

Rows Deleted

Information Level DataJoiner

API Element Name rowsDeleted

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Chapter 9. Database System Monitor 121

Resettable Yes

Related Elements “Rows Deleted” on page 137

Description: This element contains the number of rows that were deleted at the data
source as a result of SQL DELETE statements sent from DataJoiner to the data source
on behalf of any application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to determine how many rows
are affected, on average, by each DELETE statement issued to this data source, with
the following formula:

rows_per_delete = rows deleted / delete requests

You can also determine how long, on average, it took to delete each row:

time_per_row = rows deleted / aggregate delete response time

Rows Inserted

Information Level DataJoiner

API Element Name rowsInserted

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Inserted” on page 138

Description: This element contains the number of rows that were inserted at the data
source as a result of SQL INSERT statements sent from DataJoiner to the data source
on behalf of any application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to determine how many rows
are affected, on average, by each INSERT statement issued to this data source, with
the following formula:

rows_per_insert = rows inserted / insert requests

You can also determine how long, on average, it took to insert each row:

time_per_row = rows inserted / aggregate insert response time

122 DB2 DataJoiner Version 2 Administration Supplement

Note that multiple rows can be inserted, per INSERT statement, because DataJoiner
can push INSERT FROM SUBSELECT to the data source, when appropriate.

Rows Returned by Stored Procedures

Information Level DataJoiner

API Element Name sprowsReturned

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Returned by Stored
Procedures” on page 138

Description: This element contains the number of rows sent from the data source to
DataJoiner as a result of stored procedure operations for this application since the later
of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to compute the average
number of rows sent to DataJoiner from the data source, per stored procedure, with the
following formula:

rows per stored procedure = rows returned / number of stored procedures invoked

You can also compute the average time to return a row to DataJoiner from the data
source for this application:

average time = rows returned / aggregate stored procedure response time

Failed Statements

Information Level DataJoiner

API Element Name failedStatements

Data Type integer

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Failed Statements” on page 139

Chapter 9. Database System Monitor 123

Description: This element contains the number of SQL statements sent to the data
source that the data source could not process successfully since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to help you identify the cause of poor performance. If
requests are sent to the data source, but are not processed, performance is impacted
due to lower throughput.

Query Response Time

Information Level DataJoiner

API Element Name queryTime

Data Type long

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Query Response Time” on
page 139

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to queries from all applications running on
this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference in time between the time DataJoiner
requests a row from the data source, and the time the row is available for DataJoiner to
use.

Note: Due to query blocking, not all attempts by DataJoiner to retrieve a row result in
communication processing; the request to get the next row can potentially be
satisfied from a block of returned rows. As a result, the aggregate query
response time does not always indicate processing at the data source, but it
usually indicates processing at either the data source or client.

Usage: Use this element to determine how much actual time is spent waiting for data
from this data source. This can be useful in capacity planning and tuning the CPU
speed and communication rates in SYSCAT.SERVERS. Modifying these parameters
can impact whether the optimizer does or does not send requests to the data source.

124 DB2 DataJoiner Version 2 Administration Supplement

Insert Response Time

Information Level DataJoiner

API Element Name insertTime

Data Type long

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Insert Response Time” on
page 140

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to INSERTs from all applications running
on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference in time between the time DataJoiner
submits an INSERT statement to the data source, and the time the data source
responds to DataJoiner, indicating that the INSERT has been processed.

Usage: Use this element to determine the actual amount of time that transpires
waiting for INSERTs to this data source to be processed. This information can be useful
for capacity planning and tuning.

Update Response Time

Information Level DataJoiner

API Element Name updateTime

Data Type long

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Update Response Time” on
page 141

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to UPDATEs from all applications running
on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

Chapter 9. Database System Monitor 125

v The last reset of the database monitor counters.

The response time is measured as the difference in time between the time DataJoiner
submits an UPDATE statement to the data source, and the time the data source
responds to DataJoiner, indicating the UPDATE has been processed.

Usage: Use this element to determine how much actual time transpires while waiting
for UPDATEs to this data source to be processed. This information can be useful for
capacity planning and tuning.

Delete Response Time

Information Level DataJoiner

API Element Name deleteTime

Data Type long

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Delete Response Time” on
page 141

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to DELETEs from all applications running
on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference in time between the time DataJoiner
submits a DELETE statement to the data source, and the time the data source
responds to DataJoiner, indicating the DELETE has been processed.

Usage: Use this element to determine how much actual time transpires while waiting
for DELETEs to this data source to be processed. This information can be useful for
capacity planning and tuning.

Create Nickname Response Time

Information Level DataJoiner

API Element Name createNicknameTime

Data Type long

API Structure(s) sqlm_dbase_remote

126 DB2 DataJoiner Version 2 Administration Supplement

Monitor Group Basic

Resettable Yes

Related Elements “Create Nickname Response Time”
on page 142

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to process CREATE NICKNAME statements from all
applications running on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference between the time DataJoiner started
retrieving information from the data source to process the CREATE NICKNAME
statement, and the time it took to retrieve all the required data from the data source.

Usage: Use this element to determine how much actual time was used to create
nicknames for this data source.

Pass-Through Time

Information Level DataJoiner

API Element Name passthruTime

Data Type long

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Pass-Through Time” on page 143

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to PASSTHRU statements from all
applications running on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference between the time DataJoiner submits
a PASSTHRU statement to the data source, and the time it takes the data source to
respond, indicating that the statement has been processed.

Usage: Use this element to determine how much actual time is spent at this data
source processing statements in pass-through mode.

Chapter 9. Database System Monitor 127

Stored Procedure Time

Information Level DataJoiner

API Element Name storedProcTime

Data Type long

API Structure(s) sqlm_dbase_remote

Monitor Group Basic

Resettable Yes

Related Elements “Stored Procedure Time” on
page 143

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to stored procedure statements from all
applications running on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference between the time DataJoiner submits
a stored procedure to the data source, and the time it takes the data source to respond,
indicating that the stored procedure has been processed.

Usage: Use this element to determine how much actual time is spent at this data
source processing stored procedures.

Data Source Application-Related Information

The following elements contain information about access to a data source by a given
application running in a DataJoiner instance. They include:

v “Application Identification” on page 129

v “Data Source Name” on page 130

v “Data Source Database Name” on page 130

v “Commits” on page 130

v “Rollbacks” on page 131

v “Queries” on page 132

v “Inserts” on page 132

v “Updates” on page 133

v “Deletes” on page 134

v “Create Nicknames” on page 134

v “Pass-Through” on page 135

128 DB2 DataJoiner Version 2 Administration Supplement

|
|

|

|

|

|

|

|

|

|

|

|

|

v “Stored Procedures” on page 135

v “Rows Returned” on page 136

v “Rows Updated” on page 136

v “Rows Deleted” on page 137

v “Rows Inserted” on page 138

v “Rows Returned by Stored Procedures” on page 138

v “Failed Statements” on page 139

v “Query Response Time” on page 139

v “Insert Response Time” on page 140

v “Update Response Time” on page 141

v “Delete Response Time” on page 141

v “Create Nickname Response Time” on page 142

v “Pass-Through Time” on page 143

v “Stored Procedure Time” on page 143

Agent Note: Several new elements (Agent ID through Input Database Alias) were
added for DB2 for CS application snapshots that are not documented in this manual.
See the DATABASE 2 Database System Monitor Guide and Reference for details.

Application Identification

Information Level DataJoiner

API Element Name sqlm_appl_id_info

Data Type sqlm_appl_id_info

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable No

Related Elements None

Description: This element contains the name of the application currently being
monitored.

Usage: Use this element to identify the application whose access information has
been collected and is being returned.

Chapter 9. Database System Monitor 129

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

Data Source Name

Information Level DataJoiner

API Element Name name

Data Type char [SQLM_IDENT_SZ]

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable No

Related Elements “Data Source Name” on page 113

Description: This element contains the name of the data source whose remote
access information by DataJoiner is being displayed. This element corresponds to the
'SERVER' column in SYSCAT.SERVERS.

Usage: Use this element to identify the data source whose access information has
been collected and is being returned.

Data Source Database Name

Information Level DataJoiner

API Element Name dbase

Data Type char [SQLM_IDENT_SZ]

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable No

Related Elements “Data Source Database Name” on
page 113

Description: This element contains the name of the database at the data source
whose remote access information by DataJoiner is being displayed. This element
corresponds to the 'DBNAME' column in SYSCAT.SERVERS.

Usage: Use this element to identify the database at the data source whose access
information has been collected and is being returned.

Commits

Information Level DataJoiner

API Element Name commits

130 DB2 DataJoiner Version 2 Administration Supplement

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Commits” on page 115

Description: This element contains a count of the total number of times DataJoiner
has issued a COMMIT to this data source on behalf of this application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the total number of times DataJoiner has
issued a commit to this data source on behalf of the application. A small rate of change
in this counter during the monitor period can indicate that the application is not doing
frequent COMMITs, which can lead to problems with data concurrency.

You can also use this element to calculate the total number of units of work created by
DataJoiner on this data source for this application by computing the sum of this
element, and the corresponding rollback count field.

Rollbacks

Information Level DataJoiner

API Element Name rollbacks

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rollbacks” on page 115

Description: This element contains a count of the total number of times DataJoiner
has issued a ROLLBACK to this data source on behalf of this application since the later
of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the extent to which this application conflicts
with applications at the data source. Try to minimize the number of rollbacks, because a
higher rollback activity results in lower throughput for the data source.

Chapter 9. Database System Monitor 131

You can also use this element to calculate the total number of units of work created by
DataJoiner on this data source for this application by computing the sum of this
element, and the corresponding commits count field.

Queries

Information Level DataJoiner

API Element Name queries

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Queries” on page 116

Description: This element contains a count of the total number of times DataJoiner
has issued a SELECT statement to this data source on behalf of this application since
the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by this application.

You can also use this element to determine the percentage of read activity against this
data source by this application, with the following formula:

read_activity =
SELECT statements /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

Inserts

Information Level DataJoiner

API Element Name inserts

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Inserts” on page 117

132 DB2 DataJoiner Version 2 Administration Supplement

Description: This element contains a count of the total number of times DataJoiner
has issued an INSERT statement to this data source on behalf of this application since
the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by this application.

You can also use this element to determine the percentage of write activity against this
data source by DataJoiner, with the following formula:

write_activity =
(INSERT statements + UPDATE statements + DELETE statements) /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

Updates

Information Level DataJoiner

API Element Name updates

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Updates” on page 117

Description: This element contains a count of the total number of times DataJoiner
has issued an UPDATE statement to this data source on behalf of this application since
the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by this application.

You can also use this element to determine the percentage of write activity against this
data source by DataJoiner for this application, with the following formula:

write_activity =
(INSERT statements + UPDATE statements + DELETE statements) /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

Chapter 9. Database System Monitor 133

Deletes

Information Level DataJoiner

API Element Name deletes

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Deletes” on page 118

Description: This element contains a count of the total number of times DataJoiner
has issued a DELETE statement to this data source on behalf of this application since
the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine the level of database activity directed against
this data source by this application.

You can also use this element to determine the percentage of write activity against this
data source by DataJoiner for this application, with the following formula:

write_activity =
(INSERT statements + UPDATE statements + DELETE statements) /
(SELECT statements + INSERT statements + UPDATE statements +
DELETE statements)

Create Nicknames

Information Level DataJoiner

API Element Name createNickname

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Create Nicknames” on page 118

Description: This element contains a count of the total number of times DataJoiner
has created a nickname over an object residing on this data source on behalf of this
application since the later of:

v The start of the DataJoiner instance, or

134 DB2 DataJoiner Version 2 Administration Supplement

v The last reset of the database monitor counters.

Usage: Use this element to determine the amount of CREATE NICKNAME activity
against this data source by this application. CREATE NICKNAME processing results in
multiple queries running against the data source catalogs; therefore, if the value of this
element is high, you should determine the cause and perhaps restrict this activity.

Pass-Through

Information Level DataJoiner

API Element Name passThrus

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Pass-Through” on page 119

Description: This element contains a count of the total number of SQL statements
that DataJoiner has passed through directly to this data source on behalf of this
application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine what percentage of this application’s SQL
statements can be handled natively by DataJoiner, and what percentage requires
pass-through mode. If this value is high, you should determine the cause and
investigate ways to better utilize native support.

Stored Procedures

Information Level DataJoiner

API Element Name storedProcs

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Stored Procedures” on page 120

Description: This element contains a count of the total number of stored procedures
that DataJoiner has called at this data source on behalf of this application since the
later of:

Chapter 9. Database System Monitor 135

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to determine how many stored procedure calls were made
by this application against this DataJoiner database.

Rows Returned

Information Level DataJoiner

API Element Name rowsReturned

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Returned” on page 120

Description: This element contains the number of rows sent from the data source to
DataJoiner as a result of SQL SELECT operations for this application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to compute the average
number of rows sent to DataJoiner from the data source for this application, per
SELECT statement, with the following formula:

rows per SELECT = rows returned / SELECT statements

You can also compute the average time to return a row to DataJoiner from the data
source for this application:

average time = rows returned / aggregate query response time

You can use these results to modify CPU speed or communication speed parameters in
SYSCAT.SERVERS. Modifying these parameters can impact whether the optimizer
does or does not send requests to the data source.

Rows Updated

Information Level DataJoiner

API Element Name rowsUpdated

Data Type integer

API Structure(s) sqlm_appl_remote

136 DB2 DataJoiner Version 2 Administration Supplement

Monitor Group Basic

Resettable Yes

Related Elements “Rows Updated” on page 121

Description: This element contains the number of rows that were updated at the data
source as a result of SQL UPDATE statements sent from DataJoiner to the data source
on behalf of this application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to determine how many rows
are affected, on average, by each UPDATE statement issued to this data source for this
application, with the following formula:

rows_per_update = rows updated / update requests

You can also determine how long, on average, it took to update each row:

time_per_row = rows updated / aggregate update response time

Rows Deleted

Information Level DataJoiner

API Element Name rowsDeleted

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Deleted” on page 121

Description: This element contains the number of rows that were deleted at the data
source as a result of SQL DELETE statements sent from DataJoiner to the data source
on behalf of this application since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to determine how many rows
are affected, on average, by each DELETE statement issued to this data source by this
application, with the following formula:

rows_per_delete = rows deleted / delete requests

You can also determine how long, on average, it took to delete each row:

time_per_row = rows deleted / aggregate delete response time

Chapter 9. Database System Monitor 137

Rows Returned by Stored Procedures

Information Level DataJoiner

API Element Name sprowsReturned

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Returned by Stored
Procedures” on page 123

Description: This element contains the number of rows sent from a data source to
DataJoiner as a result of stored procedure operations for this application since the later
of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to compute the average
number of rows sent to DataJoiner from the data source for this application, per stored
procedure, with the following formula:

rows per stored procedure = rows returned / number of stored procedures invoked

You can also compute the average time to return a row to DataJoiner from the data
source for this application:

average time = rows returned / aggregate stored procedure response time

Rows Inserted

Information Level DataJoiner

API Element Name rowsInserted

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Rows Inserted” on page 122

Description: This element contains the number of rows that were inserted at the data
source as a result of SQL INSERT statements sent from DataJoiner to the data source
on behalf of this application since the later of:

v The start of the DataJoiner instance, or

138 DB2 DataJoiner Version 2 Administration Supplement

v The last reset of the database monitor counters.

Usage: This element has several uses. You can use it to determine how many rows
are affected, on average, by each INSERT statement issued to this data source for this
application, with the following formula:

rows_per_insert = rows inserted / insert requests

You can also determine how long, on average, it took to insert each row:

time_per_row = rows inserted / aggregate insert response time

Note that multiple rows can be inserted, per INSERT statement, because DataJoiner
can push INSERT FROM SUBSELECT to the data source, when appropriate.

Failed Statements

Information Level DataJoiner

API Element Name failedStatements

Data Type integer

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Failed Statements” on page 123

Description: This element contains the number of SQL statements sent to the data
source on behalf of this application that the data source could not process successfully
since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Usage: Use this element to help you identify the cause of poor performance. If
requests are sent to the data source, but are not processed, performance is impacted
due to lower throughput.

Query Response Time

Information Level DataJoiner

API Element Name queryTime

Data Type long

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Chapter 9. Database System Monitor 139

Resettable Yes

Related Elements “Query Response Time” on
page 124

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to queries from this application running on
this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference in time between the time DataJoiner
requests a row from the data source, and the time the row is available for DataJoiner to
use.

Note: Due to query blocking, not all attempts by DataJoiner to retrieve a row result in
communication processing; the request to get the next row can potentially be
satisfied from a block of returned rows. As a result, the aggregate query
response time does not always indicate processing at the data source, but it
usually indicates processing at either the data source or client.

Usage: Use this element to determine how much actual time is spent waiting for data
from this data source. This can be useful in capacity planning and tuning the CPU
speed and communication rates in SYSCAT.SERVERS. Modifying these parameters
can impact whether the optimizer does or does not send requests to the data source.

Insert Response Time

Information Level DataJoiner

API Element Name insertTime

Data Type long

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Insert Response Time” on
page 125

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to INSERTs from this application running
on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

140 DB2 DataJoiner Version 2 Administration Supplement

The response time is measured as the difference in time between the time DataJoiner
submits an INSERT statement to the data source, and the time the data source
responds to DataJoiner, indicating that the INSERT has been processed.

Usage: Use this element to determine the actual amount of time that transpires
waiting for INSERTs to this data source to be processed for this application. This
information can be useful for capacity planning and tuning.

Update Response Time

Information Level DataJoiner

API Element Name updateTime

Data Type long

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Update Response Time” on
page 125

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to UPDATEs from this application running
on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference in time between the time DataJoiner
submits an UPDATE statement to the data source, and the time the data source
responds to DataJoiner, indicating the UPDATE has been processed.

Usage: Use this element to determine how much actual time transpires while waiting
for UPDATEs to this data source to be processed for this application. This information
can be useful for capacity planning and tuning.

Delete Response Time

Information Level DataJoiner

API Element Name deleteTime

Data Type long

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Chapter 9. Database System Monitor 141

Resettable Yes

Related Elements “Delete Response Time” on
page 126

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to DELETEs from this application running
on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference in time between the time DataJoiner
submits a DELETE statement to the data source, and the time the data source
responds to DataJoiner, indicating the DELETE has been processed.

Usage: Use this element to determine how much actual time transpires while waiting
for DELETEs to this data source to be processed for this application. This information
can be useful for capacity planning and tuning.

Create Nickname Response Time

Information Level DataJoiner

API Element Name createNicknameTime

Data Type long

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Create Nickname Response Time”
on page 126

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to process CREATE NICKNAME statements from this
application running on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference between the time DataJoiner started
retrieving information from the data source to process the CREATE NICKNAME
statement, and the time it took to retrieve all the required data from the data source.

Usage: Use this element to determine how much actual time was used to create
nicknames for this data source.

142 DB2 DataJoiner Version 2 Administration Supplement

Pass-Through Time

Information Level DataJoiner

API Element Name passthruTime

Data Type long

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Pass-Through Time” on page 127

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to PASSTHRU statements from this
application running on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

The response time is measured as the difference between the time DataJoiner submits
a PASSTHRU statement to the data source, and the time it takes the data source to
respond, indicating that the statement has been processed.

Usage: Use this element to determine how much actual time is spent at this data
source processing statements in pass-through mode for this application.

Stored Procedure Time

Information Level DataJoiner

API Element Name storedProcTime

Data Type long

API Structure(s) sqlm_appl_remote

Monitor Group Basic

Resettable Yes

Related Elements “Stored Procedure Time” on
page 128

Description: This element contains the aggregate amount of time, in milliseconds,
that it has taken this data source to respond to stored procedure statements from this
application running on this DataJoiner instance since the later of:

v The start of the DataJoiner instance, or

v The last reset of the database monitor counters.

Chapter 9. Database System Monitor 143

The response time is measured as the difference between the time DataJoiner submits
a stored procedure to the data source, and the time it takes the data source to respond,
indicating that the stored procedure has been processed.

Usage: Use this element to determine how much actual time is spent at this data
source processing stored procedures.

144 DB2 DataJoiner Version 2 Administration Supplement

Appendix A. SQL Explain Utilities

DataJoiner extends DB2 for CS SQL explain utility functions to a heterogeneous,
distributed database environment. DataJoiner—specific requirements and output are
described in this appendix. For basic information on the utilities, see the DATABASE 2
Administration Guide.

DB2 Explain (db2expln)

Using db2expln in a DataJoiner environment does not require special syntax or
additional keywords. The location, path, and syntax for db2expln is documented in the
DATABASE 2 Administration Guide.

If you are using db2expln in a DataJoiner environment with data sources, Table 8
describes the data sources that it supports (along with prerequisites and any usage
restrictions).

Table 8. Prerequisites for Supported Data Sources

Data Source Prerequisite Usage Restrictions

DB2/PE, DB2 for
CS, DB2 for AIX,
DB2 UDB

The remote data source must have AUTHENTICATION
set to CLIENT. There must not be a local database
named 'DJ_TDB'.

Do not use 'DJ_TDB' for any other
database name.

DB2 for OS/390 The plan table PLAN_TABLE must exist prior to running
the Explain tool.

Reserve queryno=999999999 for
DataJoiner.

Oracle A plan table named DATA_JOINER_PLAN must exist
prior to running the Explain tool.

Reserve statement_id='999999999'
for DataJoiner.

Sybase None Only English is supported

MS SQL Server
(accessed via
dblib)

None Only English is supported

Note: DB2 for CS V1 and DB2 for AIX V1 are not supported.

db2expln Output

db2expln output from DataJoiner is similar to DB2 for CS db2expln output. For each
query to be issued to a data source, its corresponding SQL statement is presented. If
the DBMS is DB2 for OS/390, DB2 for CS V2/V5, DB2/PE, DB2 for AIX, Microsoft SQL
Server (via dblib), Oracle, or Sybase, its remote access strategy is retrieved, if
available, and presented using the local format. Because each data source provides
different levels of output, the amount of information might not be consistent across all
data sources. Note that all remote access strategies are retrieved at the time db2expln
is run; therefore, data sources must be online. Each remote access strategy is
surrounded by a pair of lines that indicate the beginning and the end of the remote
plan.

© Copyright IBM Corp. 1995, 1998 145

|
|
|
|

|
|
|

Input host variables can cause the remote plan to be dynamic, because the remote
access strategy can change based on the value of the input host variable. To enable
explain processing at the data source, the host variables are replaced with default
values. As a result, the remote plan for such queries might not be accurate.

See the DATABASE 2 Administration Guide for a general description of explain output.

The rest of this section contains three db2expln examples applicable to a DataJoiner
environment.

Example 1

Figure 12 is an example of a query being completely evaluated on the remote data
source.

Example 2

Figure 13 on page 147 is an example of a query that cannot be completely evaluated
on the remote data source (because ORACLE73 is an Oracle DBMS, which uses
different VARCHAR comparison semantics).

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

select distinct c1
from oracle_nickname1

Access Table : Remote Access
| Server: ORACLE73
| Remote SQL Statement:
| |
| | SELECT DISTINCT A0."C1"
| | FROM "J15USER1"."TABLE1" A0
| |
| == Remote Plan from Server ORACLE73 ==
| |
| | Access Table Name = TABLE1
| | | Relation Scan
| | Create/Insert Into Sorted Temp Table for Duplicate Reduction
| |
| == End of Remote Plan from Server ORACLE73 ==
|
End of Section

Figure 12. Query 1 Example

146 DB2 DataJoiner Version 2 Administration Supplement

The four major steps to this plan are:

1. The nickname object ORACLE_NICKNAME1 is retrieved via a remote query sent to
ORACLE73. Its remote plan from ORACLE73 shows that a relational scan is used
to retrieve the entire object.

2. For each row retrieved from the server ORACLE73, the predicate c3 = 'San Jose'
is evaluated locally on DataJoiner. This process is indicated by the Residual
Predicate Application section.

3. If a row satisfies the predicate condition, it is then inserted into a sorted temporary
table with duplicate elimination.

-------------------- SECTION ---------------------------------------
Section = 1
SQL Statement:

select distinct c1
from oracle_nickname1
where c3 = 'San Jose'

Access Table : Remote Access
| Server: ORACLE73
| Remote SQL Statement:
| |
| | SELECT A0."C3", A0."C1"
| | FROM "J15USER1"."TABLE1" A0
| |
| == Remote Plan from Server ORACLE73 ==
| |
| | Access Table Name = TABLE1
| | | Relation Scan
| |
| == End of Remote Plan from Server ORACLE73 ==
|
Residual Predicate Application
| #Predicates = 1
Create/Insert Into Sorted Temp Table ID = t1
| #Columns = 1
| #Sort Key Columns = 1
| Sortheap Allocation Parameters:
| | #Rows = 40
| | Row Width = 12
| Piped
| Duplicate Elimination
Access Temp Table ID = t1
| #Columns = 1
| Relation Scan
| | Prefetch: Eligible
End of Section

Figure 13. Query 2 Example

Appendix A. SQL Explain Utilities 147

db2expln Note: Even though the create statement of the sorted temporary table
indicates that the result will be piped (that is, stay in memory), the access plan treats
this case as if the result was written to a real table and provides a scan of the table to
send the result to the user. This approach allows the access plan to be independent of
whether or not the results are kept in memory at execution time. The temporary table
accessed at execution time will either reside in memory or on disk.

Example 3

Figure 14 is an example of a merge join of two nicknames.

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

select *
from oracle_nickname1 x, sybase_nickname1 y
where x.c1 = y.c1

Access Table : Remote Access
| Server: ORACLE73
| Remote SQL Statement:
| |
| | SELECT A0."C1", A0."C2", A0."C3"
| | FROM "J15USER1"."TABLE1" A0
| |
| == Remote Plan from Server ORACLE73 ==
| |
| | Access Table Name = TABLE1
| | | Relation Scan
| |
| == End of Remote Plan from Server ORACLE73 ==
|

Figure 14. Query 3 Example (Part 1 of 2)

148 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|
|

The plan steps are:

1. The nickname object ORACLE_NICKNAME1 is retrieved and sorted locally at
DataJoiner

2. The nickname object SYBASE_NICKNAME1 is retrieved and sorted locally at
DataJoiner

Create/Insert Into Sorted Temp Table ID = t1
| #Columns = 3
| #Sort Key Columns = 1
| Sortheap Allocation Parameters:
| | #Rows = 1000
| | Row Width = 23
| Piped
Access Temp Table ID = t1
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
Merge Join
| Data Stream 1: Evaluate at Open
| | Not Piped
| | Access Table : Remote Access
| | | Server: SYBASE11
| | | Remote SQL Statement:
| | | |
| | | | SELECT A0.c1, A0.c2, A0.c3
| | | | FROM j15user1.table1 A0
| | | |
| | | == Remote Plan from Server SYBASE11 ==
| | | |
| | | |
| | | | Access Table Name = j15user1.table1
| | | | | Relation Scan
| | | | | Scan Direction = Forward
| | | |
| | | == End of Remote Plan from Server SYBASE11 ==
| | |
| | Create/Insert Into Sorted Temp Table ID = t2
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | Sortheap Allocation Parameters:
| | | | #Rows = 1000
| | | | Row Width = 19
| | | Not Piped
| End of Data Stream 1
| Access Temp Table ID = t2
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
End of Section

Figure 14. Query 3 Example (Part 2 of 2)

Appendix A. SQL Explain Utilities 149

3. The sorted output of these two nicknames is joined via the merge join methodology

Dynamic Explain (dynexpln) Sample Shell Script on AIX

A sample shell script (dynexpln) that provides a means for analyzing dynamic SQL is
provided in the INSTHOME/sqllib/misc directory of the instance owner. Information about
this sample is documented in the DATABASE 2 Administration Guide.

The sample has been slightly modified to allow for remote DB2 for AIX explain
processing. Do not alter or move this shell script because it is used by DataJoiner
executables.

Visual Explain (db2vexp)

Visual explain can be started from the Database Director or from the command line.
Use the db2vexp command to start visual explain from the command line.

The location, path, and syntax for db2vexp is documented in the DATABASE 2
Administration Guide.

To see information on starting visual explain, issue the command:

db2vexp -h

To start visual explain (and load the sample output shown in “db2vexp Output”), use the
command:

db2vexp
-db sb -sql"SELECT *
FROM oracle_nickname1 x, sybase_nickname1 y WHERE x.c1 = y.c1"

db2vexp Output

db2vexp output from DataJoiner is similar to DB2 for CS db2vexp output. Query
analysis results are displayed in a graphical user interface.

db2vexp displays local plans. It does not display remote access strategy information.
For example, you can display a query intended for use against a nickname for an
Oracle table to discover the global plan; however, db2vexp will not display, as an
example, the join strategy that will be used at the Oracle data source.

See the DATABASE 2 Administration Guide for a general description of db2vexp
output.

The rest of this section contains a db2vexp example applicable to a DataJoiner
environment. Figure 15 on page 151 shows part of the information available when

150 DB2 DataJoiner Version 2 Administration Supplement

|
|

analyzing a merge join of two nicknames (the same query shown previously in
Figure 14 on page 148).

You can’t see all of the query elements in this zoomed view, but the plan steps are:

1. The nickname object ORACLE_NICKNAME1 is retrieved and sorted locally at
DataJoiner

2. The nickname object SYBASE_NICKNAME1 is retrieved and sorted locally at
DataJoiner

3. The sorted output of these two nicknames is joined via the merge join methodology

The display can be scrolled upward. Figure 16 on page 152 shows the top part of the
displayed information (join).

Figure 15. Query 3 Example Shown with Visual Explain: Bottom Elements

Appendix A. SQL Explain Utilities 151

Most of the elements displayed are common to elements displayed by DB2 for CS.
Some elements are unique to DataJoiner:

SHIP Shows the cost, in timerons, of executing the remote query and
fetching the results

RINSERT Shows the cost, in timerons, of executing the remote insert operation

RUPDATE Shows the cost, in timerons, of executing the remote update operation

RDELETE Shows the cost, in timerons, of executing the remote delete operation

RQUERY Shows the cost, in timerons, of executing the remote query

Additional operator details are available. Double-click on the top operator to display the
Operator Details window (see Figure 17 on page 153).

Figure 16. Query 3 Example Shown with Visual Explain: Top Element

152 DB2 DataJoiner Version 2 Administration Supplement

The DataJoiner nicknames accessed by this query are listed in the Cumulative
Properties section. If you scroll down to the bottom of the Cumulative Properties
section, you can see a field called Comm Cost that displays the total cost of
communication with the data sources accessed by this query.

Figure 17. Operator Details Window: Visual Explain

Appendix A. SQL Explain Utilities 153

154 DB2 DataJoiner Version 2 Administration Supplement

Appendix B. Resolving Problems Encountered by Applications That
Predate Version 2.1.1

This appendix explains how to resolve problems that arise when certain applications,
such as those based on DataJoiner Version 1.2, try to perform operations that are no
longer valid in Version 2.1.1, to query or modify catalog tables that were updated for
Versions 2.1 and 2.1.1, or to query catalog views that were updated for Version 2.1.1.

The word applications here refers to a wide range of programs and instructions; for
example:

v Application program code

v Third-party utilities

v Interactive SQL queries

v Commands

v API invocation

This appendix does not describe:

v DataJoiner operations that are less likely to generate an error in Version 2.1.1 than in
Version 1.2. These operations can have only a positive impact on existing
applications.

v Inter-version differences that are common to DataJoiner and DB2. For a discussion
of problems that can result from them, see “Appendix I. Incompatibilities between
Releases”, in the DB2 SQL Reference for common servers.

The problems that this appendix addresses are those that can arise when applications
that predate DataJoiner Version 2.1.1 try to:

v Link DataJoiner libraries to certain clients and data sources in AIX

v Use the db2start and db2stop commands to start and stop Classic Connect
processes

v Query DataJoiner Version 2.1.1 catalog tables, or query DB2 for CS catalog views
that have been updated for DataJoiner Version 2.1.1

v Modify DataJoiner Version 2.1.1 catalog tables

Linking DataJoiner Libraries to Clients and Data Sources in AIX

This section indicates:

v How the method for linking DataJoiner libraries to clients and data sources has
changed in Version 2.1.1

v What problem can result when a Version 1.2 application tries to link Version 2.1.1
libraries to certain clients and data sources

v How to resolve this problem

© Copyright IBM Corp. 1995, 1998 155

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|

||

|
|

|
|

|

Change

When you use Version 1.2 in the AIX environment, you edit djxlink.makefile and run the
djxlink shell script to link DataJoiner libraries to Oracle and Sybase client libraries or to
DRDA data sources accessed through APPC. When you use Version 2.1.1 in the AIX
environment, you do not need to edit djxlink.makefile for most data sources. Simply
running djxlink.sh will link DataJoiner libraries to libraries of nearly all data sources.

Problem

Running the Version 1.2 djxlink shell script in Version 2.1.1 does not work. This script is
not shipped with Version 2.1.1.

Resolution

Run the Version 2.1.1 djxlink.sh script. For the small number of data sources that
cannot be link-edited using djxlink.sh, edit djxlink.makefile to contain the data source
library information. Then use djxlink.makefile to link libraries.

Starting and Stopping Classic Connect Instances

This section indicates:

v How the method for starting and stopping Classic Connect instances has changed in
Version 2.1.1

v What problems can result when a Version 1.2 application tries to start and stop
Classic Connect instances

v How to prevent this problem

Change

In Version 1.2, the db2start command starts Classic Connect processes and the
db2stop command stops these processes. In Version 2.1.1, the djxstart and djxstop
commands start and stop Classic Connect processes.

Problem

If, in Version 2.1.1, you issue a db2start command, the Classic Connect processes will
not start. If you issue db2stop , the Classic Connect processes will not stop.

Resolution

To start and stop Classic Connect processes for a DataJoiner instance in Version 2.1.1,
issue the djxstart and djxstop commands.

156 DB2 DataJoiner Version 2 Administration Supplement

|
|
|
|
|

|
|

|
|
|

||

|
|

|
|

|

|
|
|

|
|

|
|

Querying System Catalog Tables and Views

This section explains:

v How DataJoiner catalog tables and DB2 for CS catalog views have been updated to
support DataJoiner Version 2.1.1

v What problems can result when certain applications, such as those based on
DataJoiner Version 1.2, try to query these tables or views

v How to resolve these problems

Changes

Changes have been made to several DataJoiner system catalog tables, and to certain
DB2 for CS catalog views that support DataJoiner. This section discusses:

v Changes that could cause problems for applications designed to access catalog
tables that were used by DataJoiner Version 1.2

v Changes that could cause problems for applications designed to access DB2 for CS
views that have been updated to support the Spatial Extender.

Changes in Tables Used by DataJoiner Version 1.2

DataJoiner Version 1.2 uses three DB2 for CS catalog tables—SYSCOLUMNS,
SYSINDEXES, and SYSTABLES—and two tables specific to
DataJoiner—SYSREMOTEUSERS and SYSSERVERS. The following changes, listed
by table, were made for DataJoiner Version 2.1 and retained in Version 2.1.1:

The SYSCOLUMNS Table: The following changes, listed by column, were made to
this table:

HIGH2KEY Non-character values are now in printable format
rather than binary format.

LOW2KEY Non-character values are now in printable format
rather than binary format.

NULLS The value D (not null with default) has been
changed to N (not nullable).

REMOTE_TYPE In Version 1.2, values denoted data types of
columns of data source tables that DataJoiner
referenced by nickname. In Version 2.1.1, these
values are stored in REMOTE_TYPENAME.

The SYSINDEXES Table: In Version 1.2, the value in the CLUSTERRATIO column of
this table was -1 if statistics were not gathered. In Version 2.1.1, the value is -1 either if
statistics are not gathered or if detailed index statistics are gathered. In the latter case,
an appropriate value is added to the CLUSTERFACTOR column.

Appendix B. Resolving Problems Encountered by Applications That Predate Version 2.1.1 157

||

|
|

|
|

|

|
|

|
|

|
||

|
|
|
|

|
|

|
|
|
|

|
|
|
||

The SYSREMOTEUSERS Table: The data type for this table’s AUTHID column was
changed from CHAR to VARCHAR.

The SYSSERVERS Table: The following changes, listed by column, were made to
this table:

COLSEQ Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (colseq) in the
OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

CONNECTSTRING Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (connectstring)
in the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

CPURATIO Data type changed from DOUBLE to FLOAT.

DATEFORMAT Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value
(DATEFORMAT) in the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

FOLDID Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (fold_id) in the
OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

IORATIO Data type changed from DOUBLE to FLOAT.

PASSWORD Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (password) in
the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

TIMEFORMAT Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value (TIMEFORMAT)
in the OPTION column of the
SYSCAT.SERVER_OPTIONS catalog view.

TIMESTAMPFORMAT Deleted from SYSSERVERS. In Version 2.1.1, this
server option is denoted by a value
(TIMESTAMPFORMAT) in the OPTION column of
the SYSCAT.SERVER_OPTIONS catalog view.

The SYSTABLES Table: The following changes, listed by column, were made to this
table:

PACKED_DESC Data type changed from LONGVARCHAR to BLOB.

REL_DESC Data type changed from LONGVARCHAR to BLOB.

VIEW_DESC Data type changed from LONGVARCHAR to BLOB.

158 DB2 DataJoiner Version 2 Administration Supplement

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

Changes in DB2 for CS Views That Support the Spatial Extender

The following DB2 for CS catalog views were changed to support the Spatial Extender,
an optional facility that became available with DataJoiner Version 2.1.1. For information
about the Spatial Extender, see DataJoiner Spatial Extender Administration Guide and
Reference.

The SYSCAT.DATATYPES View: The following columns were added to this view:
EXTRA_LENGTH, TYPE_PRECEDENCE, and INSTANTIABLE.

The SYSCAT.FUNCPARMS View: The following columns were added to this view:
PARMNAME, TYPE_PRESERVING, and MUTATED.

The SYSCAT.FUNCTIONS View: The following columns were added to this view:
CONTAINS_SQL, DBINFO, RESULT_COLS, BODY, EFFECT, TYPE_PRESERVING,
FUNC_PATH, and SELECTIVITY.

The SYSCAT.TRIGDEP View: A column named DTYPE was added to
SYSCAT.TRIGDEP.

Problems

A variety of problems could occur. For example:

v If a DataJoiner Version 1.2 application does a qualified search on a column that
takes a different value than it did before (for example, a search on NULLS in
SYSIBM.SYSCOLUMNS for a value of D), the application might react differently than
expected.

v If a DataJoiner Version 1.2 application queries a column whose data type has
changed (for example, CPURATIO in SYSIBM.SYSSERVERS), too much or too little
data might be returned.

v If a DB2 for CS application uses star notation (SELECT *) to query a view with new
columns that the application doesn’t recognize (for example, SYSCAT.DATATYPES,
which has several new columns to support the Spatial Extender), the application will
receive an error.

Resolution

Review the changes listed above to decide whether they affect your applications and, if
so, what corrective action to take (for example, updating the application). So that any
problems in accessing or maintaining catalog tables can be avoided, we strongly
recommend that instead of querying these tables, you query the catalog views derived
from them.

If you need a rough approximation of the degree of clustering, select both
CLUSTERRATIO and CLUSTERFACTOR in the SYSCAT.INDEXES catalog view and
choose the greater of the two values that you retrieve.

Appendix B. Resolving Problems Encountered by Applications That Predate Version 2.1.1 159

|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

Modifying System Catalog Tables

This section explains:

v How the method for modifying system catalog tables changed in Version 2.1.1

v What problems can result when Version 1.2 applications try to modify Version 2.1.1
catalog tables

v How to resolve these problems

Change

For DataJoiner to perform operations on a specific data source, DataJoiner must
associate an identifier (specifically, a server name) with that data source. In Version 1.2,
you could create such an association by inserting appropriate values into the table
SYSIBM.SYSSERVERS. You could also modify an association by updating
SYSIBM.SYSSERVERS, and terminate an association by deleting a server name from
SYSIBM.SYSSERVERS. In Versions 2.1 and 2.1.1, you use DDL to perform these
same operations indirectly. Specifically, you create DataJoiner-to-data source
associations with the CREATE SERVER MAPPING statement, modify them with the
ALTER SERVER MAPPING statement, and terminate them with the DROP statement.
These statements operate on SYSCAT.SERVERS, a catalog view derived from
SYSIBM.SYSSERVERS. The changes that you make to the view are propagated to
SYSIBM.SYSSERVERS.

For a user to access data sources from DataJoiner, DataJoiner must associate the ID
under which the user connects to DataJoiner with the IDs under which the user
connects to these data sources. In Version 1.2, you could create such an association
by inserting appropriate values into the table SYSIBM.SYSREMOTEUSERS. You could
also modify an association by updating SYSIBM.SYSREMOTEUSERS, and terminate
an association by deleting an ID from SYSIBM.SYSREMOTEUSERS. In Versions 2.1
and 2.1.1, you use DDL to perform these same operations indirectly. Specifically, you
create associations between IDs with the CREATE USER MAPPING statement, modify
them with the ALTER USER MAPPING statement, and terminate them with the DROP
statement. These statements operate on SYSCAT.REMOTEUSERS, a catalog view
derived from SYSIBM.SYSREMOTEUSERS. The changes that you make to the view
are propagated to SYSIBM.SYSREMOTEUSERS.

Problem

If you issue an INSERT, UPDATE, or DELETE statement against
SYSIBM.SYSSERVERS, SYSIBM.SYSREMOTEUSERS, or any of DataJoiner’s other
system catalog tables, the statement will fail.

Resolution

To modify SYSIBM.SYSSERVERS or SYSIBM.SYSREMOTEUSERS, use the SERVER
MAPPING or USER MAPPING DDLs, as described in “Change”.

160 DB2 DataJoiner Version 2 Administration Supplement

||

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
||

Appendix C. Where to Find Out More about DataJoiner, DB2 for CS,
and Replication Products

This appendix lists IBM books about DataJoiner, DB2 for CS, and Replication
Administration; states how to obtain these books; and tells you where to go on the
Internet to learn more about DataJoiner.

DataJoiner, DB2 for CS, and Replication Publications

Table 9 lists the DataJoiner, DB2 for CS, and Replication books applicable to installing,
configuring, administrating, using, and running applications against DataJoiner. The
DataJoiner for AIX Planning, Installation, and Configuration Guide and the DataJoiner
for Windows NT Systems Planning, Installation, and Configuration Guide are provided
in hardcopy with DataJoiner. In addition, these two books and all other DataJoiner
books are provided in softcopy formats (PostScript, HTML, and PDF) on the product
CD-ROM. All other books in Table 9 are provided in PostScript; most are also provided
in HTML (the two exceptions are the DB2 for CS Software Developer Kit publications).
Additionally, most of the DB2 for CS books are provided in INF format (see Table 9).

To understand how the DataJoiner books in Table 9 are organized, it is important to
understand how DataJoiner and DB2 for CS are interrelated. DataJoiner provides a
“superset” of DB2 for CS. The two products share common functions and syntax;
therefore, information that is common to DataJoiner and DB2 for CS is documented in
the DB2 for CS books. The DataJoiner books listed in Table 9 document the function
and syntax that DataJoiner has in addition to the function and syntax that it shares with
DB2 for CS.

Table 9 does not list all of the DB2 for CS books. View or print a DB2 for CS book to
see the publications list for all DB2 for CS books.

If you order Classic Connect, you will receive additional books (the DataJoiner Classic
Connect Planning, Installation, and Configuration Guide, the DataJoiner Classic
Connect data mapper Sample for Windows Installing and Using Guide, and the
DataJoiner Messages and Problem Determination Guide) and a program directory.

Table 9. DataJoiner, DB2 for CS, and Replication publications applicable to DataJoiner

Book Name Form Number File Prefix INF

DataJoiner Version 2.1.1 Books

DataJoiner for Windows NT Systems Planning,
Installation, and Configuration Guide

SC26-9150 DJXN2 no

This book covers capacity planning, resource management, installation, and configuration tasks for
IBM DataJoiner on Microsoft Windows NT operating systems.

© Copyright IBM Corp. 1995, 1998 161

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

|

Table 9. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

DataJoiner for AIX Systems Planning,
Installation, and Configuration Guide

SC26–9145 DJXG6 no

This book covers capacity planning, resource management, installation, and configuration tasks for
IBM DataJoiner on AIX operating systems.

DataJoiner Administration Supplement SC26–9146 DJXD5 no

This book provides information that assists DBAs and other system administrators of DataJoiner
with performing administrative tasks. It includes a product overview section, security
considerations, data source identification steps, database utility notes, performance considerations,
database system monitor reference data, large object information, and explain tool examples.

DataJoiner Application Programming and SQL
Reference Supplement

SC26–9148 DJXK5 no

This book provides SQL statements, descriptions of system catalog data, guidelines, and other
information for application programmers. With this information, application programmers can use
DataJoiner to perform multiple tasks in a distributed database environment—tasks such as
creating nicknames by which to reference tables and views, invoking functions and stored
procedures, passing SQL directly to databases for processing, and using server options to
optimize query performance.

DataJoiner Generic Access API Reference SC26–9147 DJXM4 no

This book explains how to create a generic access module that allows you to use existing drivers
or to create new drivers to gain access to an unlimited set of data sources.

DataJoiner Classic Connect Planning,
Installation, and Configuration Guide

GC26–8869 DJXC4 no

This book provides information on the DataJoiner Classic Connect for MVS product. The audience
for this information includes application programmers, database administrators, network
administrators, system administrators, and system programmers. The book documents key tasks
required to set up Classic Connect in the MVS operating environment: planning your setup;
installing components via SMP/E, configuring the kernel, DMSIs, and network communications;
managing instances; and creating relational data maps for IMS and VSAM data.

DataJoiner Classic Connect data mapper
Sample for Windows Installing and Using Guide

GC26–8873 DJXZ2 no

This book provides information on the DataJoiner Classic Connect data mapper sample for
Windows. The audience for this information includes system programmers, DBAs, or anyone that
needs to produce relational maps (USE grammar) for IMS and VSAM data. The book documents
key tasks required to set up and use the data mapper in the Windows environment: installing
product files, starting the product, and generating USE grammar statements for input to DataJoiner
Classic Connect projection utilities.

162 DB2 DataJoiner Version 2 Administration Supplement

|

||

|

Table 9. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

DataJoiner Messages and Problem
Determination Guide

SC26–9149 DJXP4 no

This book describes the messages and codes issued by DataJoiner and Classic Connect
instances. For messages that report errors, the book explains the cause of the errors and
recommends corrective actions. The book also provides guidelines on using diagnostic tools to
isolate and understand problems.

DB2 Spatial Extender Administration Guide and
Reference

SC26–9316 DJXS1 no

This book provides instructions for spatially enabling a DataJoiner database, an introduction to
spatial capabilities using geometry data types and functions, descriptions of spatial data exchange
formats, an SQL and message reference for spatial data, and appendices containing the standard
representations of spatial reference systems.

DB2 for CS and Replication Books

DB2 Information and Concepts Guide SH20–4664 SQLG0 no

Provides product and conceptual information to anyone who needs a comprehensive overview of
the DB2 products. It is useful when deciding which DB2 products suit your environment. It also
includes a glossary of terms used in the book.

DB2 Administration Guide S20H-4580 SQLD0 yes

Contains information required to design, implement, and maintain a database to be accessed
either locally or in a client/server environment.

DB2 Database System Monitor Guide and
Reference

S20H–4871 SQLF0 yes

Includes a description of how to use the Database System Monitor and a description of all the data
elements for which information can be collected.

DB2 Command Reference S20H–4645 SQLN0 yes

Provides the reference information needed to use system commands and the DB2 command line
processor to execute database administrative functions. Describes the commands that can be
entered at an operating system command prompt or in a shell script to access the database
manager. Explains how to invoke and use the command line processor, and describes the
command line processor options. Provides a description of all the database manager commands.

DB2 API Reference S20H–4984 SQLB0 yes

Appendix C. Where to Find Out More about DataJoiner, DB2 for CS, and Replication Products 163

|
|
|||

|
|
|
|

Table 9. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

Provides information about the use of application programming interfaces (APIs) to execute
database administrative functions. Presents a description of APIs and the data structures used
when calling APIs, as well as detailed information on the use of database manager API calls in
applications written in the supported programming languages.

DB2 SQL Reference S20H–4665 SQLS0 yes

Is intended to serve as a reference for syntax and rules governing the use of SQL statements.
Syntax diagrams, semantic descriptions, rules, and examples are provided for the SQL statements.
Catalog views, product maximums, release-to-release incompatibilities, and a glossary are also
included in this book.

DB2 Application Programming Guide S20H–4643 SQLA0 yes

Discusses the application development process and how to code, compile, and execute application
programs that use embedded SQL to access the database. It includes discussions on
programming techniques and performance considerations for the application programmer.

DB2 Call Level Interface Guide and Reference S20H–4644 SQLL0 yes

Is a guide and reference manual for programmers using the Call Level Interface. DB2 Call Level
Interface is a callable SQL interface based on the X/Open CLI specification and is compatible with
Microsoft Corporation’s ODBC.

DB2 Messages Reference S20H–4808 SQLM0 yes

Lists messages and explanations. Each explanation includes the action to be taken when a
message or code is issued.

DB2 Problem Determination Guide S20H–4779 SQLP0 yes

Provides information that helps in determining the source of errors, recovering from problems, and
describing and reporting defects.

DDCS User’s Guide S20H–4793 SQLC0 yes

Provides concepts, programming guidelines, and general information about the DDCS products.

DB2 Replication Guide and Reference S95H–0999 DB3E0 no

Describes how to plan, configure, administer, and operate IBM replication products, including the
Apply and Capture programs.

DB2 for CS Platform-Specific Books

DB2 SDK for AIX Building Your Applications S20H-4780 SQLA3 yes

164 DB2 DataJoiner Version 2 Administration Supplement

Table 9. DataJoiner, DB2 for CS, and Replication publications applicable to
DataJoiner (continued)

Book Name Form Number File Prefix INF

This book provides environment setup information and step-by-step instructions to compile and link
DB2 applications on the AIX operating system.

DB2 SDK for Windows 95 and NT Building
Your Applications

S33H-0310 SQLA6 yes

This book provides environment setup information and step-by-step instructions to compile and link
DB2 applications on Windows 95 and NT operating systems.

How to Order, View, and Print Publications

Use order number SBOF-5289 to request one hardcopy of each of the DataJoiner, DB2
for CS, and Replication books shown in Table 9 on page 161.

To view online documentation, follow the instructions located in the README files on
the CD-ROM. Most of the books in Table 9 on page 161 are provided as HTML files and
can be viewed with an HTML browser. You can also view INF versions of many DB2 for
CS books. Instructions for installing the INF reader on AIX are provided in the DB2
README files; on NT operating systems, the INF reader is installed automatically.
DataJoiner and Replication information is not provided in INF format.

To print individual books, follow the instructions provided in the README files on the
CD-ROM. PostScript files for all the books are provided.

Internet Resources

The following Internet resources provide additional information about DataJoiner.

World Wide Web
The following DataJoiner-specific Web site contains general and technical
(frequently asked questions) product information. The address of the site is:

http://www.software.ibm.com/data/datajoiner/

Also available online are the most current versions of books in the DB2 library.
You can view books in the DB2 library by clicking the Library link from the
following address:

http://www.software.ibm.com/data/pubs/techinfo.html

Internet Newsgroups
DataJoiner questions, answers, and discussions can be found in:

v bit.listserv.db2-l

v comp.databases

Appendix C. Where to Find Out More about DataJoiner, DB2 for CS, and Replication Products 165

v comp.databases.ibm-db2

166 DB2 DataJoiner Version 2 Administration Supplement

Appendix D. DataJoiner Classes and Services

This appendix describes:

v Classes you can take to learn about DataJoiner

v Services to help you plan to use DataJoiner, and to install and configure it

DataJoiner Classes

IBM offers classes that teach you how to install, use, and maintain DataJoiner. These
classes are described in this section.

For more information, or to enroll in any IBM class, call 1-800-IBM-TEACH
(1-800-426-8322) and refer to the IBM US Course Code. For locations outside the
United States, contact your IBM representative.

Class descriptions will also be maintained at the DataJoiner Web site. The DataJoiner
URL is:

http://www.software.ibm.com/data/datajoiner/

Using DataJoiner

IBM US Course Code DW202

Duration
2 days

Format Lecture with classroom exercises.

This course introduces the student to DataJoiner and its powerful
multidatabase server capabilities. After completing this course, students should
be able to effectively use DataJoiner to perform simple and complex distributed
requests. They should also be able to monitor and tune SQL queries,
accounting for the capabilities and characteristics of diverse DataJoiner data
sources. Areas covered include:

v Global optimization

v Multi-vendor query considerations

v Nicknames

v Basic security

v An introduction to the DataJoiner catalog

v DataJoiner query performance

v The DataJoiner Explain tool

v The DataJoiner Database System Monitor

© Copyright IBM Corp. 1995, 1998 167

|

|

|

|

|

|
|

|
|
|

|
|

|

Who Should Take This Course
This course is appropriate for anyone who will be using, managing, installing,
or maintaining a DataJoiner multiple database environment.

Prerequisite
SQL experience. You can obtain this experience by attending the “SQL
Workshop,” IBM US Course Code CF120.

DataJoiner Administration

IBM US Course Code DW212

Duration
3 days

Format Lecture with classroom exercises.

This course trains the student to install, configure, and manage a secure
DataJoiner multidatabase server environment. Areas covered include:

v Installing DataJoiner

v Generating and managing the DataJoiner database

v Configuring DataJoiner

v Enabling DataJoiner client access to remote data sources

v DataJoiner security

v DataJoiner server performance

Who Should Take This Course
This course is appropriate for anyone who will be managing, installing, or
maintaining a DataJoiner multiple database environment.

Prerequisite
DataJoiner knowledge or experience. You can obtain this experience by
attending “Using DataJoiner,” IBM US Course Code DW202.

DataJoiner Services

IBM provides services for DataJoiner that include assistance with planning, installing,
and configuring the product. The assistance is customized to your individual
environment and takes place in two phases.

First Phase: Planning

The first phase helps you plan the installation and configuration of DataJoiner, and to
configure network systems so that DataJoiner can communicate optimally with all data
sources and clients. This phase includes:

v Assessing general readiness

v Defining clients

168 DB2 DataJoiner Version 2 Administration Supplement

|
|

|

|
|

|
|

v Defining data sources

v Assessing applications

v Defining backup and recovery strategies for DataJoiner

v Configuring DataJoiner database parameters

v Identifying test queries for system validation

v Defining security requirements

Second Phase: Implementation

The second phase focuses on implementing the plan developed in the planning phase.
It includes:

v Installing DataJoiner

v Configuring data sources

v Providing access to data source tables and views

v Installing and configuring remote clients

v Validating and documenting the environment

v Providing final turnover to the customer

At the end of this phase, active remote and local clients can access multiple data
sources through DataJoiner.

DataJoiner services can be combined with replication services if you are interested in
replicating data across a heterogeneous database environment. For more information
about DataJoiner and replication services, contact your IBM representative or see the
DataJoiner Web page. The DataJoiner URL is:

http://www.software.ibm.com/data/datajoiner/

Appendix D. DataJoiner Classes and Services 169

170 DB2 DataJoiner Version 2 Administration Supplement

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1995, 1998 171

W92/H3
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

172 DB2 DataJoiner Version 2 Administration Supplement

Trademarks

The following terms are trademarks of the International Business Machines Corporation
in the United States, or other countries, or both:

ADSTAR
Advanced Peer-to-Peer Networking
AIX
APPN
AS/400
AT
CICS
CICS/6000
Client Acces
Current
DATABASE 2
DataGuide
DataJoiner
DataPropagator
DataRefresher
DB2
DFSMS
Distributed Relational Database Architecture
DProp
DRDA
Extended Services for OS/2
HACMP/6000
IBM

IIN
IMS
IMS/ESA
Language Environment
MVS
MVS/ESA
MVS/XA
NetView
Operating System/2
Operating System/400
OS/2
OS/390
OS/400
RACF
RETAIN
RISC System/6000
RS/6000
RT
SP
SQL/DS
SQL/400
System/390
VisualAge
VTAM

Intel is a registered trademark of the Intel Corporation in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, WindowsNT®, and the Windows logo are registered trademarks of
Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of
others.

Notices 173

174 DB2 DataJoiner Version 2 Administration Supplement

Index

A
access control

authentication 14
cataloging databases 46
cataloging remote nodes 42
database objects 37
privileges 35
uncataloging a database 46
uncataloging remote nodes 42
view 33

accessing data, considerations and restrictions 49
administrative authorities 32
alias 46
application development, APIs 6
Application Program Interface (API) overview 6
authentication

CLIENT 16
connecting to database 28
DCS 16
folding authorization names and passwords 24
Informix 5 considerations on AIX 27
instance 17
matching server and clients 17
operational considerations 25
overview 14
querying the type 28
SERVER 16
specifying type 17
types 16
worksheet to determine security requirements 18

authority
required for IMPORT utility 104

authorization
Classic Connect considerations 28
definition 31
determining if entries are required in

SYSCAT.REMOTEUSERS 24
folding names and passwords 24
maintaining users 26
user name and password flow 23

B
BACKUP utility

overview 6
using 105

block fetch 80
books, ordering and viewing 165
buffer pool parameter 82
BUFFPAGE parameter 82

C
catalog data, definition 5
cataloging

authentication information 17
database 46
node directory 42

Classic Connect
security considerations 28
tuning 101

collating sequence
colseq option 84
performance information 84

COMMIT, definition 7
communication control views, querying 47
compensation 87
components, product

configuration files 4
databases 3
directories 4
nicknames 3
system catalog views 3

concurrency control, definition 8
concurrent processing 8
configuration files, definition 4
configuration parameters 82
configuring access 14
connecting

CONNECT statement 29
local database 28
Type 1 29
Type 2 29

D
data integrity, definition 9
data security

authentication of users 14
authorities 32
controlling access to DataJoiner 14
controlling access within DataJoiner 31
group authorization, AIX 26
Informix 5 AIX consideration 27
interaction between operating system and DataJoiner

facilities 17
maintaining users 26
OS/2 and DOS clients 27
overview 12, 13
privileges 33
worksheet to determine requirements 18

data sources
CPU speed and performance 93

© Copyright IBM Corp. 1995, 1998 175

data sources (continued)
database 3
definition 3
I/O speed and performance 93
identifying 47
tuning 101
updating database statistics 104

data transfer
EXPORT utility 104
IMPORT utility 103

database
cataloging 46
clients’ directories 41
data source 3
directories

database connection services 42
local 4
local database 42
overview 42
system 4
system database 42

local 3
monitoring 107
name 46
objects

access control 37
uncataloging 46

database access control
authentication 14
cataloging databases 46
cataloging remote nodes 42
database objects 37
privileges 35
uncataloging a database 46
uncataloging remote nodes 42
view 33

database alias
cataloging 46
local database directory 43
overview 46
system database directory 42

Database Application Remote Interface (DARI),
authentication considerations 25

database configuration file, definition 4
Database Director, definition 5
database manager configuration file, definition 4
database system monitor

API structure
sqlm_appl 109
sqlm_appl_id 109
sqlm_collected 108
sqlm_dbase 108

data source application information
commits 130

database system monitor (continued)
data source application information (continued)

create nickname response time 142
create nicknames 134
data source database name 130
data source name 130
delete response time 141
deletes 134
failed statements 139
insert response time 140
inserts 132
pass-through 135
pass-through response time 143
queries 132
query response time 139
rollbacks 131
rows deleted 137
rows inserted 138
rows returned 136
rows returned, stored procedures 138
rows updated 136
stored procedure time 143
stored procedures 135
update response time 141
updates 133

data source database information
commits 115
connects 114
create nickname response time 126
create nicknames 118
data source database name 113
data source name 113
delete response time 126
deletes 118
disconnects 114
failed statements 123
insert response time 125
inserts 117
pass-through 119
pass-through time 127
queries 116
query response time 124
rollbacks 115
rows deleted 121
rows inserted 122
rows returned 120
rows returned, stored procedures 123
rows updated 121
stored procedure time 128
stored procedures 120
update response time 125
updates 117

data source database status 108
element detail overview 110

176 DB2 DataJoiner Version 2 Administration Supplement

database system monitor (continued)
general information elements 108
overview of 107
tuning 79

DataJoiner
classes 167
differences between versions 155

DataJoiner WWW site 165
DB2 WWW site 165
db2dd command 10
db2expln command 11
db2vexp command 10
DBADM authority 33
deadlock detection 9
directories

database 42
database connection services 42
database directories 4
definition 4
local database 42
managing 45
node directory 4, 41
overview 41
relationship with nodes, clients 43
relationship with nodes, data sources 44
system database 42

distributed unit of work, definition 7
distributed unit of work (DUOW) transactions

1PC 67
2PC 67
concepts 62
configurations, typical

sub-TM 64
TM 65

considerations 66, 69
costs 66
DRDA data source requirements 70
error recovery 74
general data source requirements 69
heuristic processing 77
Informix data source requirements 71
listing transaction data 76
manually determining transaction states 76
manually recovering indoubt transactions 77
Oracle data source requirements 71
package/plan considerations 70
performance considerations 73
preparing data source for 71
processing rules 67
requirements 66, 69
resource manager 60
restrictions 69
resynchronization processing 74
setting the two_phase_commit option 72

distributed unit of work (DUOW) transactions (continued)
starting/using logs 72
sub-transaction manager 60
Sybase SQL Server data source requirements 71
SYNCPOINT NONE 61
SYNCPOINT ONEPHASE 61
SYNCPOINT TWOPHASE 61
terminology 59
tracing xids 76
transaction branch 60
transaction identifier 59
transaction manager 59
two_phase_commit option 72
TYPE 1 61
TYPE 2 61
using a non-DB2 transaction manager 78
using CREATE SERVER OPTION, 2PC setting 72
using SET SERVER OPTION, 2PC setting 73

dlchktime 83
DUOW 59
dynamic SQL explain tool 150
dynexpln command 11

E
electronic information 165
environment

Database Administration Utility 10
Database Director 10
DB2 Explain 10
db2dd command 10
db2expln command 11
db2vexp command 10
dynexpln command 11
facilities 10
managing multiple instances 11
overview 1
performance monitor 11
problem diagnosis facilities 11
Visual Explain 10

exclusive mode, table-level locking 8
explain, visual

understanding the output 150
use for SQL statements 150

explain tools
db2expln 145
db2vexp 150
dynexpln 150
overview 145
understanding db2expln output 145
understanding db2vexp output 150
used for dynamic SQL statements 150

EXPORT utility
overview 6
using 104

Index 177

F
fold_id

authorization considerations 24
tuning considerations 99

fold_pw
authorization considerations 24
tuning considerations 99

folding
authorization names 24
passwords 24

G
general library information 161
global catalog, definition 3
global optimization

nickname characteristics, affecting 94
overview 92
server characteristics, affecting 93
server options, affecting 94
troubleshooting 96

GRANT statement, privileges 35
group authorization, AIX 26

H
heterogeneous replication

Apply 4
Capture 4
DCS directory 4

I
identifying data sources 41
IMPORT utility

authorization and privileges required 104
information required 104
overview 6
restrictions for Sybase data source 104
used with nicknames 103
using 103

index
management 95
performance considerations 94, 96
privileges 36

Informix 5, AIX security consideration 27
instances, management 11
Internet information 165

L
library information, general 161
LOAD utility 6
local data, managing

application program interfaces 5
catalog 5
command line processor 5
data source (metadata) 5
Database Director 5

local data, managing (continued)
overview 5
user 5
utilities (overview) 6

local database 3
local database directory 43
locking

deadlock 9
deadlock detector 9
isolation levels 8
locklist 83
row-level 8
table-level 8
tuning considerations 83

locklist 83
logbufsz 83
logfilsiz 83
logpath 83
logprimary 83

M
managing local data

application program interfaces 5
catalog 5
command line processor 5
data source (metadata) 5
Database Director 5
overview 5
user 5
utilities (overview) 6

matching client and server authentication 17
maxlocks 83
mincommit 83
monitoring the database system 107
multi-location views, definition 37
multiple instances, management 11

N
network tuning 99
nicknames

considerations 53
creating indexes on 95
definition 3
EXPORT utility 104
identifying existing 47
IMPORT utility 103
privileges 35
restrictions 53
RUNSTATS utility 104

node
authority required to catalog 42
cataloging 42
directory, overview 4, 41
relationship with database directories, clients 43

178 DB2 DataJoiner Version 2 Administration Supplement

node (continued)
relationship with database directories, data sources

44
uncataloging 42

notices 171

O
optimization, global

nickname characteristics, affecting 94
overview 92
server characteristics, affecting 93
server options, affecting 94
troubleshooting 96

ordering publications 165

P
package

dynamic SQL authorization 36
privileges 35

package/plan multi-site update considerations 70
parameters

for tuning 80
svrioblk 80

pass-through
definition 9
direct access control 34
privileges 36
SQL statements 36

password validation matrixes
Non-SNA data source with APPC client 21
Non-SNA data source with TCP/IP client 20, 21
overview 20
SNA data source with APPC client 22, 23
SNA data source with TCP/IP client 22

performance
catalog statistics 96
Classic Connect 101
configuration files 4
CPU speed 93
data source configurations 101
database engine 80
database status information 79
deferred_lob_retrieval 94
global optimization 92
I/O speed 93
index considerations 94
index information considerations 96
index management 95
Microsoft SQL Server 101
monitoring systems 79
network 99
pushdown analysis 87
query processing 85
remote plan hints 99
remote query caching 98

performance (continued)
remote_query_caching 94
snapshot information 79
SQL Anywhere 101
SQL compiler, overview and steps 85
where problems can originate 79

point of consistency, definition 7
printing publications 165
privileges

ALTER 35
CONTROL on indexes 36
CONTROL on packages 35
CONTROL on tables 35
CONTROL on views 35
definition 31
GRANT statement 35
hierarchy 34
implicit for packages 34
indexes 36
individual 34
overview 33
ownership (CONTROL) 34
package 35
performing SYSADM functions with DARI 25
required for IMPORT utility 104
REVOKE statement 35
table 35
view 35

problem diagnosis
facilities 11
resynchronization processing for two-phase commit

74
working with IBM Service 11

product components
configuration files 4
databases 3
directories 4
nicknames 3
system catalog views 3

publications 165
pushdown analysis

nickname characteristics, affecting 89
overview 87
query characteristics, affecting 90
server characteristics, affecting 87
trouble-shooting 90

Q
query tuning

Classic Connect 101
data source configurations 101
database engine 80
database status information 79
global optimization 92

Index 179

query tuning (continued)
Microsoft SQL Server 101
monitoring systems 79
network 99
pushdown analysis 87
remote plan hints 99
remote query caching 98
snapshot information 79
SQL Anywhere 101
SQL compiler, overview and steps 85
where problems can originate 79

R
recovery

local data 105
log 83
overview 9

remote node
authority required to catalog 42
cataloging 42
uncataloging 42

remote plan hints 99
remote query caching 98
REORG TABLE utility

restrictions with nicknames 105
tuning considerations 82

REORGCHK utility
overview 6
restrictions with nicknames 105

replication
Apply 4
Capture 4
DCS directory 4

resource manager 60
RESTORE utility

overview 6
using 105

REVOKE statement, privileges 35
ROLLBACK, definition 7
ROLLFORWARD utility 6
row blocking 80
row-level locking 8
RUNSTATS utility

overview 6
performance evaluation 96
tuning considerations 81
use with nicknames 104

S
samples, dynamic explain SQL statements 150
samples, visual explain 150
security

authentication of users 14
authorities 32

security (continued)
controlling access to DataJoiner 14
controlling access within DataJoiner 31
Informix 5 AIX consideration 27
overview 13
privileges 33
worksheet to determine requirements 18

share mode, table-level locking 8
softmax 83
sort facility 83
sort space 83
SORTHEAP 83
SQL

communicating with DB2 data sources 36
CONNECT TO 29
dynamic 36
GRANT PASSTHRU 36
pass-through statements, overview 36
REVOKE PASSTHRU 36
static 36

stored procedures
accessing data 54
DARI processes 54
privileges 35

sub-transaction manager 60
support for transactions 7
svrioblk parameter 80
SYNCPOINT NONE 61
SYNCPOINT ONEPHASE 61
SYNCPOINT TWOPHASE 61
SYSADM authority 32
SYSCTRL authority 33
SYSMAINT authority 33
system administration (SYSADM) authority

authentication considerations 25
Network Information Service (NIS) clients 26
performing functions with DARI 25

system catalog views 37
system catalog views, definition 3
system database directory 42
system management

Database Administration Utility 10
Database Director 10
DB2 Explain 10
db2dd command 10
db2expln command 11
db2vexp command 10
dynexpln command 11
facilities 10
managing multiple instances 11
overview 1
performance monitor 11
problem diagnosis facilities 11
Visual Explain 10

180 DB2 DataJoiner Version 2 Administration Supplement

system tuning
Classic Connect 101
data source configurations 101
database engine 80
database status information 79
global optimization 92
Microsoft SQL Server 101
monitoring systems 79
network 99
pushdown analysis 87
remote plan hints 99
remote query caching 98
snapshot information 79
SQL Anywhere 101
SQL compiler, overview and steps 85
where problems can originate 79

T
table-level locking 8
trademarks 173
transaction atomicity, definition 8
transaction branch 60
transaction identifier 59
transaction manager 59
transaction support 7
triggers 55
tuning

buffer pool 82
Classic Connect 101
colseq option 84
configuration parameters 82
considerations 80
data source configurations 101
database engine 80
database status information 79
fold_id and fold_pw 99
global optimization 92
locking 83
Microsoft SQL Server 101
monitoring systems 79
network 99
parameters 80
pushdown analysis 87
recovery log 83
remote plan hints 99
remote query caching 98
REORG TABLE utility 82
row blocking 80
RUNSTATS utility 81
snapshot information 79
sort facility 83
SQL Anywhere 101
SQL compiler, overview and steps 85
where problems can originate 79

two-phase commit, definition 8
two-phase commit transactions, working with

1PC 67
2PC 67
concepts 62
configurations, typical

sub-TM 64
TM 65

considerations 66, 69
costs 66
DRDA data source requirements 70
error recovery 74
general data source requirements 69
heuristic processing 77
Informix data source requirements 71
listing transaction data 76
manually determining transaction states 76
manually recovering indoubt transactions 77
Oracle data source requirements 71
package/plan considerations 70
performance considerations 73
preparing data source for 71
processing rules 67
requirements 66, 69
resource manager 60
restrictions 69
resynchronization processing 74
setting the two_phase_commit option 72
starting/using logs 72
sub-transaction manager 60
Sybase SQL Server data source requirements 71
SYNCPOINT NONE 61
SYNCPOINT ONEPHASE 61
SYNCPOINT TWOPHASE 61
terminology 59
tracing xids 76
transaction branch 60
transaction identifier 59
transaction manager 59
two_phase_commit option 72
TYPE 1 61
TYPE 2 61
using a non-DB2 transaction manager 78
using CREATE SERVER OPTION, 2PC setting 72
using SET SERVER OPTION, 2PC setting 73

U
uncataloging remote nodes 42
unit of work, definition 7
user data, definition 5
user-defined functions

concepts 55
overview 55
use with nicknames 55

Index 181

user-defined types
concepts 55
overview 55
use with nicknames 55

utilities
BACKUP

overview 6
using 105

data transfer 103
EXPORT

overview 6
using 104

IMPORT
overview 6
using 103

LOAD 6
overview 103
REORG TABLE

overview 6
using 105

REORGCHK
overview 6
using 105

RESTORE
overview 6
using 105

ROLLFORWARD 6
RUNSTATS

overview 6
using 104

V
viewing publications 165
visual explain

understanding the output 150
use for SQL statements 150

W
workstation directory 41
WWW information 165

182 DB2 DataJoiner Version 2 Administration Supplement

Readers’ Comments — We’d Like to Hear from You

DB2 DataJoiner ®

Administration Supplement
Version 2 Release 1 Modification 1

Publication No. SC26-9146-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it

believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-9146-01

SC26-9146-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation, BWE/H3
PO Box 49023
San Jose, CA 95161-9945

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9146-01

Spine information:

IBM DB2 DataJoiner
DB2 DataJoiner Version 2
Administration Supplement

Version 2
Release 1
Modification 1

SC26-
9146-01

