

IBM Configuration Management Version Control

Server Administration and Installation

Version 2 Release 3

SC09-1631-02

IBM IBM Configuration Management Version Control

Server Administration and Installation

Version 2 Release 3

SC09-1631-02

 Note

Before using this document, read the general information under “Notices” on page ix.

Second Edition (December 1994)

This edition applies to Version 2 Release 3 of IBM Configuration Management Version Control/6000, program number 5765-207; IBM
Configuration Management Version Control for Sun systems, program number 5622-063; IBM Configuration Management Version
Control for HP systems, program number 5765-202; IBM Configuration Management Version Control for Solaris systems, program
number 5765-397; and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Order publications by phone or fax. The IBM Software Manufacturing Company takes publication orders between 8:30 a.m. and
7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800) 284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
 Department TC3

PO BOX 60000
CARY NC 27511-8519

 USA

You can fax comments to (919) 469-7718.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks . ix

About This Book . xi
Who Should Read This Book . xi
What You Should Know . xi
Organization of This Book . xii
Highlighting Style . xii
Related Publications . xii

Chapter 1. Network Overview . 1
System Configuration . 1

User Interfaces . 2
Roles in CMVC . 2

Part 1. Installing Your CMVC Products . 5

Chapter 2. Hardware and Software Requirements 7
Requirements for the CMVC Servers . 7

CMVC/6000 . 8
CMVC for Sun Systems . 9
CMVC for HP Systems . 10
CMVC for Solaris Systems . 11

Chapter 3. Installing the CMVC Servers . 13
CMVC Packaging . 13

CMVC/6000 Packaging . 14
Prerequisite Tasks for Installing the CMVC Server Code 14

CMVC for Sun Systems . 14
Installing the CMVC Server Code from Tape . 15

CMVC/6000 . 15
CMVC for Sun, Solaris, and HP Systems . 16

Installing the CMVC Server Code from CD-ROM 16
CMVC/6000 . 17
CMVC for Sun Systems . 17
CMVC for Solaris Systems . 18
CMVC for HP Systems . 18

Chapter 4. The NetLS Software . 19
Installing the NetLS Software on the Server . 19
Understanding How CMVC Implements NetLS Licensing 20

Part 2. Configuring Your CMVC Environment . 21

Chapter 5. Configuring Your Version Control System 23
Overview . 23
Your Version Control Environment . 23

File Versioning . 23
Binary Files . 24

 Copyright IBM Corp. 1993, 1994 iii

Version Labels . 24
PVCS and SCCS Commands . 24

Customizing Your Environment to Use the PVCS Version Manager 24
Installing PVCS Version Manager . 24
Resetting the PVCS Version Manager Executables 24
Configuring the PVCS Version Manager Executables 25
Using vconfig to Configure the PVCS Executables 25
Registering Users to the PVCS License Administration Database 25

Optional Customization of Your Environment . 27
PVCS Configuration Parameters . 27
Creating a Local Configuration File . 28
Modifying Your Local Configuration Files . 29

Chapter 6. Creating a CMVC Family . 31
Preconfiguration Planning . 31

Prerequisite Tasks or Conditions . 32
Configuring the CMVC Server . 32

Configuration as Root . 33
Configuration as the Familyname User . 34
Mandatory Environment Variables in Your Login Profile 35
Optional Environment Variables in Your Login Profile 39
Using the mkfamily Command . 41
Using the mkdb Command . 43
Using the rmfamily Command . 45
Using the rmdb Command . 46

Chapter 7. Configurable Fields . 47
Overview . 47

Properties of Configurable Fields . 47
Using Configurable Fields . 48

Default Configurable Fields Shipped by IBM . 48
Feature Table . 49
Defect Table . 50

Creating and Modifying Configurable Fields . 51
Running the chfield Program with the -source Option 52
Running the chfield Program with the -object Flag Only 53
Updating Reports . 55

Chapter 8. Configuring Components and Releases 59
Planning Your Component Structure . 59
Planning Your Release Groupings . 59
Planning Your Processes . 60

Configuring Component Processes . 60
Configuring Release Processes . 61

Configuring Processes . 63
The cfgcomproc.ld and cfgrelproc.ld Files . 63
Conditions Applying to Configurable Processes 65
Migration from CMVC Version 1 . 66

Chapter 9. Configuring Authority Groups . 67
Controlling Access Authority . 67

Base Authority . 67
Implicit Authority . 67
Explicit Authority . 67

iv Server Administration and Installation

Restricted Authority . 67
The CMVC Superuser Privilege . 68

Grouping Actions into Authority Groups . 68
Configuring CMVC Actions into Authority Groups 69

Editing the authority.ld File . 69
Using the chauth Script to Reload the Authority Table 70

Chapter 10. Configuring Interest Groups . 73
Controlling Notification of Actions . 73

Automatic Notification . 73
Explicit Notification . 73
Subscribers . 73

Grouping Actions into Interest Groups . 74
Configuring Interest Groups . 74

Editing the interest.ld File . 75
Using the chintr Script to Reload the Interest Table 75

Chapter 11. Modifying Your Configuration Table 77
The Configuration Database Table . 77

Configuration Types . 78
Modifying the Config Table . 78

Editing the config.ld File . 83
Using the chcfg Script to Reload the Config Table 84

Chapter 12. Providing User Exits . 87
Configuring User Exits . 87

Editing the userExits File . 87
Writing User Exit Programs . 88

Part 3. Working with CMVC . 93

Chapter 13. CMVC Server Daemons . 95
Starting the CMVC Server cmvcd Daemons . 95

Prerequisite Tasks . 95
Starting cmvcd . 95
Starting cmvcd in Maintenance Mode . 96

Starting the CMVC Server notifyd Daemon . 97
Starting the CMVC Server Daemons on System Reboot 97
Stopping the CMVC Server Daemons . 98

Stopping the CMVC Server Daemons on System Shutdown 98
Recycling the CMVC Server Daemons . 99

Chapter 14. Ongoing Maintenance . 101
Audit Log . 101
Mail . 101

Mail Addressing . 102
Addressing Using a Central Database of Names and Addresses 102
Addressing Using Domain Name Addressing 102
Mail Queue–Processing Interval . 102
Restored Mail . 102

Aging Defects and Features . 103
The Age Shell Script . 103
The resetAge Program . 104

 Contents v

Monitoring the Performance of Your CMVC Server 104
Tuning Your CMVC Server . 105
Monitoring the CMVC Server Daemons . 105

Monitoring the Activity of the CMVC Server 108
Determining Which Users Issue Time Consuming Reports 108
Monitoring the Number of Requests Serviced 109
Monitoring Server Daemon Problems . 109
Cleaning Up Shared Memory . 109

Version Control Path Finder Tool . 110
Managing Level Maps . 111

Level Map File . 112
Maintaining the Maps Directory . 112

Errors . 112

Chapter 15. The CMVC Audit Log . 115
Managing the CMVC Audit Log . 115

Prerequisite Tasks or Conditions . 115
Cleaning Up the Log File . 115

Format of the CMVC Audit Log . 116

Chapter 16. Bringing SCCS Files under CMVC Control 121
Options for Bringing SCCS Files into CMVC 121

The SCCS File Migration Function . 121
The SCCS File Import Function . 122
Deciding to Migrate or Import SCCS Files 122

Preliminary Requirements and Planning . 123
Prerequisites . 123
Comparing SCCS Files and CMVC Files 123
Planning Your Component and Release Structures 123
Migration and Import Requirements . 125

The SCCS File Migration Function . 125
Stage 1: Running the Filemap Shell Script 126
Stage 2: Running the Filemigrate Shell Script 130
Stage 3: Running the Commands in the file.migrate File 131
Post-Migration Activities . 132

The SCCS File Import Function . 133
Stage 1: Running the Filemap Shell Script 133
Stage 2: Running the Fileimport Shell Script 133
Stage 3: Running the Commands in the file.import File 134
Post-Migration Activities . 135

Chapter 17. Backup and Recovery . 137
Backing Up the CMVC Server . 137

Backing Up CMVC Family Database Tables, Views, and Indexes 138
Recovering CMVC . 140

Chapter 18. Archiving and Restoring . 141
Archiving and Restoring CMVC Data . 141

Archive Functions . 143
Restore Functions . 143

Archive and Restore Preparation . 143
Level Archive Prerequisites . 144
Release Archive Prerequisites . 145
Restore Prerequisites . 146

vi Server Administration and Installation

Archive and Restore Limitations . 146
Archive and Restore Procedures . 147

Using the cmvcarchive Program . 147
Using the cmvcrestore Program . 149
Resetting Operating System Semaphores 150

Appendix A. Error Messages and Recovery 151

Appendix B. Migrating to CMVC Version 2.3 179
Databases Supported by Versions of CMVC 179
Migration Utilities . 180
Using the dbConvert.v1r1m1 Utility . 181
Using the dbConvert.v2r1 Utility . 181

Pre-Migration Tasks . 181
Migration Tasks . 184

Appendix C. Converting Existing CMVC Server from ORACLE6 to
ORACLE7 . 195

Prerequisites . 195
Steps for Migration . 195

Exporting from ORACLE6 . 195
Importing to ORACLE7 . 195
Run the Database Conversion Routine . 197

Appendix D. Migrating to CMVC Server/6000 V2.3.0 for DB2/6000 199
Prerequisites . 199
Steps for Migration . 199
Steps Required to Perform the Database Migration 200

Estimating the additional disk space . 200
Installing the DB2/6000 database . 203
Stopping the cmvcd and notifyd daemons 203
Backing up the database . 203
Installing the CMVC Server/6000 V2.3.0 for DB2/6000 203
Running the conversion . 203
Update Releases Table . 206
Starting the cmvcd and notifyd daemons 206
Verifying the data of your family . 206
Reclaiming disk space . 207

Appendix E. Authority Groups Worksheet 209

Appendix F. Interest Groups Worksheet 215

Appendix G. Configurable Processes Worksheets 219

Appendix H. User Exit Parameters . 221
Parameters Passed to User Exit Programs . 221
User Exit Parameter Definitions . 235

Glossary . 241

Index . 247

 Contents vii

viii Server Administration and Installation

 Notices

Warning: You must not issue operating system or version control system
commands against the files in the version control directories. Any tampering with
these files can result in discrepancies between the information stored in the
relational database on the CMVC server and the information in the version control
directories.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both. These
changes will be incorporated in new editions of the publication.

 Trademarks
The following terms, denoted by an asterisk (*) on their first occurrence in this
publication, are trademarks of the IBM Corporation in the United States or other
countries:

The following terms, denoted by a double asterisk (**) on their first occurrence in
this publication, are trademarks of other companies:

HP Hewlett-Packard Company
HP-UX Hewlett-Packard Company
INFORMIX Informix Software, Inc.
NCS Apollo Computer, Inc.
NetLS Apollo Computer, Inc.
Network File System Sun Microsystems Inc.
Network License System Apollo Computer, Inc.
NFS Sun Microsystems Inc.
ORACLE Oracle Corporation
ORACLE7 Oracle Corporation
OSF/Motif Open Software Foundation, Inc.
PVCS Version Manager INTERSOLV, Inc.

AIX AIX/6000 Common User Access
CUA DATABASE 2 DB2
DB2/6000 IBM IBMLink
Operating System/2 OS/2 PROFS
PowerServer RISC System/6000

 Copyright IBM Corp. 1993, 1994 ix

SoftBench Hewlett-Packard Company
Solaris Sun Microsystems, Inc.
SPARCserver Sun Microsystems, Incorporated
SPARCstation Sun Microsystems, Incorporated
SQL*Loader Oracle Corporation
SQL*Plus Oracle Corporation
Sun Sun Microsystems Inc.
SunOS Sun Microsystems Inc.
SYBASE Sybase, Inc.
SYBASE Open Client DB-Library/C Sybase, Inc.
SYBASE SQL Server Sybase, Inc.
UNIX UNIX is a registered trademark in the

United States and other countries, licensed
exclusively through X/Open Company
Limited.

Windows Microsoft Corporation

x Server Administration and Installation

About This Book

This book is part of the library that supports the IBM* Configuration Management
Version Control (CMVC) licensed programs for CMVC clients and servers.

It describes how to install, configure, and maintain the CMVC server. For
information about installing, configuring, and maintaining the CMVC clients, read
the following books

� IBM CMVC UNIX Client Installation and Configuration
� IBM CMVC Client/2 Getting Started.
� IBM CMVC Getting Started Using the DOS/Windows** Client.

Who Should Read This Book
This book describes all administrative tasks required to customize, maintain, and
support the CMVC server within your development environment. The administrative
tasks should be the responsibility of one or two persons who are familiar with
database concepts and system administration. Users doing any of the following
tasks should read this book:

� Hardware configuration planning
� Installation of the relational database
� Installation of the CMVC server
� Preconfiguration planning and configuration of a CMVC family
� Maintenance and backup activities.

What You Should Know
The administrator must also know how to use CMVC. See the books IBM CMVC
User’s Guide and the IBM CMVC Commands Reference for a detailed description
of how to use CMVC. Before continuing with this book, read IBM CMVC Concepts
for a description of the concepts and processes involved in using CMVC.

You should be familiar with system administration procedures for your operating
system. You also must be familiar with one of the following relational database
management systems:

� IBM DATABASE 2* AIX/6000* (DB2/6000*)
� ORACLE** Relational Database Management System
� INFORMIX**-Online relational database
� SYBASE SQL Server** relational database.

Review the documentation for the relational database at your site before starting
installation.

 Copyright IBM Corp. 1993, 1994 xi

Organization of This Book
This book is designed to lead the administrator through each of the steps that are
required to install, configure, and maintain a CMVC server.

The information in this book is divided into the following parts:

� Part 1, “Installing Your CMVC Products,” outlines your CMVC server hardware
and software requirements. It also describes how to install the CMVC server
and the Network License System** (NetLS**) software.

� Part 2, “Configuring Your CMVC Environment,” describes the post-installation
planning needed for each CMVC family. It also shows how to configure your
version control environment and your CMVC server, and shows how to
establish authority groups, interest groups, and the configuration defaults for
your family.

� Part 3, “Working with CMVC,” outlines the activities that you can perform after
your initial setup. These activities include starting your CMVC server, migrating
files from SCCS, managing the audit log, using the mail facility, monitoring
daemon activity, aging defects, backing up and recovering data, and archiving
and restoring releases and levels.

 Highlighting Style
The following highlighting style is used in this book:

Bold Commands, flags, files, directories, field names, and other items
predefined by CMVC are in bold. Valid abbreviations for commands
also are in bold.

Italic Arguments or options whose names or values must be supplied by you
are in italics. Italics are also for emphasis, for the first occurrence in text
of items that are in the glossary, and for the titles of manuals.

Monotype Examples of specific data values, examples of displayed text,
messages, menu items that you select to initiate an action, or
information that you should type are in monotype.

 Related Publications
The following books contain additional information about CMVC and are shipped
with the server.

� IBM CMVC Concepts, SC09-1633, provides the basis for your understanding of
CMVC. It describes in detail the concepts and processes involved in using
CMVC.

� IBM CMVC User’s Guide, SC09-1634, describes all CMVC actions as
implemented in the graphical user interface (GUI) on the AIX, Sun-OS, Solaris,
and HP-UX platforms.

� IBM CMVC User’s Reference, SC09-1597, contains the reference lists, tables,
and state diagrams for CMVC. It also describes how the message-integrated
CMVC uses the Broadcast Message Server (BMS) to fully integrate with other
integrated development environment tools.

xii Server Administration and Installation

� IBM CMVC Commands Reference, SC09-1635, describes all CMVC
commands, their syntax and use, as implemented in the command-line
interface.

� IBM CMVC UNIX Client Installation and Configuration, SC09-1596, contains
detailed information needed to install and configure the CMVC clients.

� NetLS Quick Start Guide, SC09-1661, provides the information needed to set
up the Network License System (NetLS) software to work with CMVC.

� Managing Software Products with the Network License System, SC09-1660,
provides the information needed to manage the use of the NetLS software with
CMVC.

� Managing NCS** Software, SC09-1834, provides additional information for
managing the NetLS software.

IBM CMVC Client/2 Getting Started, SC09-1599, is shipped with the OS/2
workstation client for CMVC and can be ordered separately. It contains detailed
information about installing and configuring the OS/2 workstation client for CMVC.

IBM CMVC Getting Started Using the DOS/Windows Client, SC09-3000, is shipped
with the DOS/Windows workstation client for CMVC and can be ordered separately.
It contains detailed information about installing and configuring the DOS/Windows
workstation client for CMVC.

When necessary, refer to your operating system or relational database
documentation while installing or using CMVC.

 About This Book xiii

xiv Server Administration and Installation

 Chapter 1. Network Overview

This chapter introduces IBM Configuration Management Version Control (CMVC)
and briefly describes the system configuration, the user interfaces, and the three
main user roles within a CMVC environment.

 System Configuration
CMVC consists of the following products:

 � CMVC/6000
� CMVC for HP** systems
� CMVC for Sun** systems
� CMVC for Solaris** systems

Each product comprises a server and clients. Designed for use in a networked
environment, each of the CMVC products is based on a client-server model, as
shown in Figure 1.

.

CMVC s erver CMVC c lient

CMVC c lient CMVC c lient

Network

Figure 1. Example of a Client-Server Network of CMVC

A CMVC server is a workstation that runs the CMVC server software that controls
all data within the CMVC environment. Files are stored in a file system in
combination with a version control system on the CMVC server. All other
development data is stored in a relational database on the CMVC server. The
CMVC server handles this database as a local database. A CMVC client is a
workstation that runs the CMVC client software to access the information and files
stored on the CMVC server. With this client-server architecture, users can access
project files and data without needing to know where the networked resources
physically reside.

 Copyright IBM Corp. 1993, 1994 1

 User Interfaces
CMVC supports two graphical user interfaces (GUIs) based on the OSF/Motif**
window manager, one GUI for the OS/2 and DOS/Windows clients that is based on
IBM’s Common User Access* (CUA*) 1991 guidelines, and a command-line
interface.

The two OSF/Motif GUIs are:

� A non-message-integrated GUI for operation in your development environment.

� A message-integrated GUI for operation with the following environments:

– The IBM AIX* Software Development Environment (SDE) WorkBench/6000
product

– The HP SoftBench** and HP SoftBench for Sun and Solaris products

For more information about the OSF/Motif GUIs, see the book CMVC User’s
Guide. For more information about the OS/2 GUI, see the book IBM CMVC
Client/2 Getting Started. For more information about the DOS/Windows GUI,
see the book Getting Started Using the DOS/Windows Client.

� A command-line interface is provided for use from an operating system shell.
For more information about this interface, see the book IBM CMVC Commands
Reference.

Note: When using the DOS/Windows client, you cannot issue CMVC
commands from a DOS prompt. However, you can issue CMVC commands
from within the GUI.

Roles in CMVC
The roles of users within the CMVC environment can be divided into three main
categories:

 � System administrator
 � Family administrator
 � End user.

For the purposes of all documentation within the CMVC library, the roles are
defined as follows.

 System Administrator
The system administrator is responsible for:

� Installing, maintaining, and backing up the CMVC server
� Installing, maintaining, and backing up the relational database used by CMVC
� Planning, maintaining, and configuring all client and server hardware.

The system administrator has root access to the CMVC server and database
administration access to the relational database.

 Family Administrator
The family administrator is responsible for:

� Planning and configuring one or more CMVC families
� Managing user access to one or more CMVC families
� Maintaining one or more CMVC families.

2 Server Administration and Installation

The family administrator has root access to the CMVC server and database
administration access to the relational database.

 End User
The end user uses CMVC within one or more families. This user has access to
one or more CMVC clients.

 Chapter 1. Network Overview 3

4 Server Administration and Installation

Part 1. Installing Your CMVC Products

This part of the book outlines the CMVC server hardware and software
requirements. It also describes how to install the CMVC server and the NetLS
software.

 Copyright IBM Corp. 1993, 1994 5

6 Server Administration and Installation

Chapter 2. Hardware and Software Requirements

CMVC consists of the following products:

 � CMVC/6000
� CMVC for HP systems
� CMVC for Sun systems
� CMVC for Solaris systems

Each product comprises a server and clients. This chapter lists the hardware and
software requirements for the CMVC servers. Refer to the following books for
information on the hardware and software requirements for the CMVC clients:

� IBM CMVC Client Installation and Configuration
� IBM CMVC Client/2 Getting Started
� IBM CMVC Getting Started Using the DOS/Windows Client.

Requirements for the CMVC Servers
CMVC supports these servers: the CMVC/6000 server, the CMVC for Solaris
systems server, the CMVC for Sun systems server, and the CMVC for HP systems
server.

The minimum amount of internal memory required to run a CMVC server is
16 megabytes (MB), not including the memory required to run the database
products and the operating system. However, performance may be affected by
total system memory and the amount of fixed-disk storage available. See
“Preconfiguration Planning” on page 31 for recommended disk space requirements
relative to the size of your CMVC family.

The following are the minimum hard disk storage required to install the CMVC
server for the various platforms:

After you install the CMVC server code, you must register and obtain the NetLS
password before you can install the NetLS server and use CMVC. The NetLS
software is an integral part of CMVC and is for use only with CMVC. The NetLS
password is unique and is based on the machine ID where the NetLS server or
servers are installed, the product and version number, and the number of
concurrent user licenses purchased.

You can obtain the NetLS passwords by contacting the IBM Registration Center.
Before contacting the IBM Registration Center, read the document Read This First
that comes with your copy of the CMVC product. Then complete the relevant
sections of the Product Registration Information Form that is included in the
document.

Server Platform Minimum Hard Disk Requirements

RISC System/6000 12 MB

Sun systems 18 MB

HP systems 16 MB

Solaris systems 30 MB

 Copyright IBM Corp. 1993, 1994 7

For more information about the NetLS product, see the book Managing Software
Programs with the Network Licensing Software, SC09-1660.

 CMVC/6000
The CMVC/6000 server code requires the following hardware:

� Any IBM RISC System/6000* PowerServer* workstation Model 320 or higher

� Any terminal supported by the RISC System/6000 workstation

� Any token-ring or Ethernet Local Area Network (LAN) adapter card supported
by the RISC System/6000 workstation that supports Transmission Control
Protocol/Internet Protocol (TCP/IP)

 � Keyboard

 � Printer (optional).

The CMVC/6000 server code requires the following software:

� Any supported CMVC Version 2.3 client (corequisite product)

� AIX Version 3.2 for RISC System/6000 operating system which includes TCP/IP
and Network File System** (NFS**) software or a later release of Version 3

� One of the following version control systems:

– Source Code Control System (SCCS), which comes with the AIX Base
Application Development Toolkit

– INTERSOLV PVCS Version Manager** Version 5.1 (only required if using
the PVCS Version Manager software instead of SCCS).

� One of the following relational databases operating on AIX Version 3.2 or a
later release of Version 3:

– IBM Database 2 AIX/6000 (DB2/6000) (Program No. 5765-172)

Note: The DB2/6000 database requires AIX version 3.2.4 or 3.2.3 with a
program temporary fix (PTF).

– INFORMIX relational database

- INFORMIX-OnLine (Runtime) Version 5.00 or a later release of Version
5 and the corresponding release of

- INFORMIX-SQL (Development) software.

– ORACLE relational database

- Oracle RDBMS (runtime) Version 7 and the corresponding release of

- ORACLE (Transaction Processing Options) TPO (Runtime)

 - SQL*Plus** (Runtime).

– SYBASE** relational database

- SYBASE SQL Server V4.9.2, or a later release of Version 4, or
SYBASE SQL Server System 10 and the corresponding release of

- SYBASE Open Client DB-Library/C**.

Note: If you are using a DB2/6000 database, the recommended requirement
is to get a license for the database server with at least 4 connections.
One of the connections is for the notifyd daemon while at least one

8 Server Administration and Installation

token is required to run the cmvcd daemon. You can use the other two
connections to run various CMVC server tools including: age, chfield,
cmvcarchive, cmvcrestore, mkdb, chintr, chcfg, chcomproc, chrelproc,
vcPath, and resetAge. The connections are needed for the duration of
the running of each tool. The actual number of connections required is
dependent on the number of cmvcd daemons you intend to run.

The minimum user license required by the database vendors is a 2-8
user license for the ORACLE and SYBASE databases, and a 2-16 user
license for the INFORMIX database. However, the number of user
licenses required depends on the number of CMVC/6000 server
daemons started by the CMVC administrator. This number varies
depending on the number of CMVC clients simultaneously requesting
service from the CMVC/6000 server.

CMVC for Sun Systems
The CMVC for Sun systems server code requires the following hardware:

� A SPARCserver** 10 workstation or any binary compatible SPARCserver
workstation

� Any display supported by the SPARCserver workstation

� Any token-ring or Ethernet LAN adapter card supported by the SPARCserver
workstation that supports TCP/IP

 � Keyboard

 � Printer (optional).

The CMVC for Sun systems server code requires the following software:

� Any supported CMVC Version 2.3 client (corequisite product)

� SunOS** Version 4.1.3

� A Korn shell, required to run the SCCS Migration and Import tools, and the
sample scripts

� One of the following relational databases operating on the SunOS operating
system:

– ORACLE relational database

- ORACLE RDMBS (Runtime) Version 7 and the corresponding release
of

- ORACLE (Transaction Processing Options) TPO (Runtime)

 - SQL*Plus (Runtime).

– INFORMIX relational database

- INFORMIX-OnLine (Runtime) Version 5.00 or a later release of Version
5 and the corresponding release of

- INFORMIX-SQL (Development) software.

– SYBASE relational database

- SYBASE SQL Server V4.9.2, or a later release of Version 4, or
SYBASE SQL Server System 10 and the corresponding release of

- SYBASE Open Client DB-Library/C.

 Chapter 2. Hardware and Software Requirements 9

Note: The minimum user license required by the database vendors is a 2-8
user license for the ORACLE database and a 2-16 user license for the
INFORMIX database. However, the number of user licenses required
depends on the number of CMVC server daemons started by the CMVC
administrator. This number varies depending on the number of CMVC
clients simultaneously requesting service from the CMVC server.

For users of the CMVC for Sun systems server code in conjunction with SCCS,
SCCS comes with the SunOS operating system.

Note: CMVC for Sun systems does not support INTERSOLV’s PVCS Version
Manager software.

CMVC for HP Systems
The CMVC for HP systems server code requires the following hardware:

� Any HP 9000 Series 700 or 800 workstation

� Any display supported by the Series 700 or 800 workstation

� Any token-ring or Ethernet LAN adapter card supported by the Series 700 or
800 workstation that supports TCP/IP

 � Keyboard

 � Printer (optional).

The CMVC for HP systems server code requires the following software:

� Any supported CMVC Version 2.3 client (corequisite product)

� HP-UX** Version 9.0, or later, which includes TCP/IP and NFS software

� One of the following relational databases operating on the HP-UX operating
system:

– ORACLE relational database

- ORACLE RDBMS (Runtime) Version 7 and the corresponding release
of

- ORACLE (Transaction Processing Options) TPO (Runtime)

- SQL*Plus (Runtime) software.

– INFORMIX relational database

- INFORMIX-OnLine (Runtime) Version 5.00 or a later release of Version
5 and the corresponding release of

- INFORMIX-SQL (Development) software.

Note: The minimum user license required by the database vendors is a
2-8 user license for the ORACLE database and a 2-16 user license
for the INFORMIX database. However, the number of user licenses
required depends on the number of CMVC server daemons started
by the CMVC administrator. This number varies depending on the
number of CMVC clients simultaneously requesting service from the
CMVC server.

For users of the CMVC for HP systems server code with SCCS, SCCS comes
with the HP-UX operating system.

10 Server Administration and Installation

Note: CMVC for HP systems does not support INTERSOLV’s PVCS Version
Manager software.

CMVC for Solaris Systems
The CMVC for Solaris systems server code requires the following hardware:

� A SPARCserver 10 workstation or any binary compatible SPARCserver
workstation

� Any display supported by the above SPARCserver workstation

� Any Token Ring or Ethernet LAN adapter card supported by the above
SPARCserver workstation that supports TCP/IP

 � Keyboard

 � Printer (optional).

The CMVC for Solaris systems server code requires the following software:

� Any supported CMVC Version 2.3 client (corequisite product)

� Solaris Version 2.3 operating system

� One of the following relational databases operating on the Solaris operating
system:

– ORACLE relational database

- ORACLE RDMBS (Runtime) Version 7 and the corresponding release
of

- ORACLE (Transaction Processing Options) TPO (Runtime)

 - SQL*Plus (Runtime).

– SYBASE relational database

- SYBASE SQL Server V4.9.2, or a later release of Version 4, or
SYBASE SQL Server System 10 and the corresponding release of

- SYBASE Open Client DB-Library/C.

Note: The minimum user license required by the database vendor is a 2-8
user license for the ORACLE and SYBASE databases. However, the
number of user licenses required depends on the number of CMVC
server daemons started by the CMVC administrator. This number varies
depending on the number of CMVC clients simultaneously requesting
service from the CMVC server.

For users of the CMVC for Solaris systems code in conjunction with SCCS, SCCS
is available with the Solaris operating system.

Note: CMVC for Solaris systems does not support INTERSOLV’s PVCS Version
Manager software.

 Chapter 2. Hardware and Software Requirements 11

12 Server Administration and Installation

Chapter 3. Installing the CMVC Servers

You can install the CMVC server code from tape or from CD-ROM. This chapter
describes the packaging for the CMVC server code, the system requirements for its
installation, and the procedures for installing it.

Note: If you are migrating from CMVC Version 1.1, the installation process
overwrites your existing CMVC server code. Be prepared to restore the
original Version 1.1 server code, either from a backup copy of your server
or from the original product tape.

After installing the Version 2, Release 3 server code, refer to Appendix B,
“Migrating to CMVC Version 2.3” on page 179 for instructions on converting
the relational database to the new format.

Before installing the CMVC servers, read the book IBM CMVC Concepts for a
thorough understanding of components, releases, and files in the CMVC
environment.

 CMVC Packaging
The IBM CMVC servers are packaged on tapes as well as a CD-ROM.

Each tape includes all the files for one server and one client:

� IBM CMVC/6000 server code, IBM CMVC/6000 client code, and NetLS
Runtime Kit for RISC System/6000 workstations

� IBM CMVC for Sun systems server code, IBM CMVC for Sun systems client
code, and NetLS Runtime Kit for Sun SPARCstation** workstations

� IBM CMVC for HP systems server code, IBM CMVC for HP systems client
code, and NetLS Runtime Kit for HP 9000 Series 700 workstations.

� IBM CMVC for Solaris systems server code, IBM CMVC for Solaris systems
client code, and NetLS Runtime Kit for Sun SPARCstation workstations

The CD-ROM includes all the files for:

� IBM CMVC/6000 server code
� IBM CMVC for Sun systems server code
� IBM CMVC for HP systems server code
� IBM CMVC for Solaris systems server code
� IBM CMVC/6000 client code
� IBM CMVC for Sun systems client code
� IBM CMVC for HP systems client code
� IBM CMVC for Solaris systems client code
� NetLS Runtime Kits for these platforms.

You must know the installp image names in the CMVC server package only if you
are installing the CMVC/6000 server code. The installp image names for the
CMVC/6000 server code are listed in the following section.

 Copyright IBM Corp. 1993, 1994 13

 CMVC/6000 Packaging
The CMVC/6000 server consists of the following installp images:

The package may also contain update files.

Installp Image Description of Contents

cmvcsrvm language .msg The CMVC/6000 server message catalog, where language,
for example, is equal to En_US for US English.

cmvcsrvdb2.obj The CMVC/6000 server software with support for an
DB2/6000 relational database.

cmvcsrvora7.obj The CMVC/6000 server software with support for an
ORACLE7** relational database.

cmvcsrvinfx.obj The CMVC/6000 server software with support for an
INFORMIX relational database.

cmvcsrvsyb.obj The CMVC/6000 server software with support for a
SYBASE relational database.

NetLS.Ark The NetLS Runtime Kit for RISC System/6000 workstations.

Prerequisite Tasks for Installing the CMVC Server Code
For all CMVC servers, you must do the following prerequisite tasks:

1. Log in as root.

2. Install the appropriate operating system for your server code:

 3. Install TCP/IP.

4. Install the NFS software.

Note: If you are installing the CMVC/6000 server code for use with a DB2/6000
relational database, you need to run the database’s db2ln command as well. Refer
to the installation guide of the DB2/6000 database for more information.

Server Code What to Install

CMVC/6000 server AIX Base Operating System (BOS)
Runtime. (It is part of the IBM AIX Version
3 Release 2 for RISC System/6000 licensed
program.)

CMVC for Sun systems server SunOS Version 4.1.3

CMVC for HP systems server HP-UX Version 9.0

CMVC for Solaris systems server Solaris 2.3

CMVC for Sun Systems
For the CMVC for Sun systems server code, install a Korn shell if you plan to use
the SCCS migration or import scripts, or any of the sample scripts shipped with the
CMVC server code. The CMVC for Sun systems server code does not require a
Korn shell. The SCCS migration and import scripts and all sample scripts shipped
with the CMVC server code, however, must be run under a Korn shell. If you do
not have a Korn shell, you cannot use these scripts.

14 Server Administration and Installation

These scripts were tested with the Unix System Laboratories Inc. Korn Shell
Version 88 Release f. No testing has been done with the Korn shells supplied by
other software vendors.

Installing the CMVC Server Code from Tape
This section describes how to install the CMVC server code from tape. To install
your CMVC server code from CD-ROM, see “Installing the CMVC Server Code
from CD-ROM” on page 16.

Each tape contains the code for a server, a client, and a NetLS Runtime Kit. For
instructions on installing the CMVC clients, refer to the book IBM CMVC UNIX
Client Installation and Configuration.

 CMVC/6000
To install the CMVC/6000 server code from tape:

1. Log in as root.

2. Insert the tape containing the CMVC/6000 server installp images into the tape
drive.

3. Type the following on your command line:

smit startup

This command starts the System Management Interface Tool (SMIT), which
presents a menu-driven environment for the installation process. For
information on SMIT, refer to your AIX operating system documentation.

4. Follow the directions and answer the prompts in the SMIT installation menus to
select the one installp image that is relevant for your database. Only select
one image because the first selected image is overwritten by the next selected
image.

5. Follow the directions on the SMIT installation menus to install the
cmvcsrvm language .msg installp image, such as cmvcsrvmEn_US.msg.

6. Follow the directions on the SMIT installation menus to install the NetLS.Ark
installp image, if you want to install the NetLS software on the CMVC server.
For information on completing the NetLS software installation, refer to
Chapter 4, “The NetLS Software.”

Installp Image Description of Contents

cmvcsrvdb2.obj CMVC/6000 server for DB2/6000

cmvcsrvora7.obj CMVC/6000 server for ORACLE7

cmvcsrvinfx.obj CMVC/6000 server for INFORMIX

cmvcsrvsyb.obj CMVC/6000 server for SYBASE

 Chapter 3. Installing the CMVC Servers 15

CMVC for Sun, Solaris, and HP Systems
To install the CMVC for Sun systems server code, the Solaris server code, or the
CMVC for HP systems server code from tape:

1. Log in as root.

2. Insert the tape containing the CMVC files into your tape drive.

3. Create a directory for the CMVC server code files, for example, /usr/lpp/cmvc.

4. Determine the device name for your tape drive.

Figure 2 shows common device names for the Sun, HP, and Solaris platforms.
Verify the device name with your system administrator before proceeding.

Figure 2. Common Device Names for Tape Drives

Tape Mode Sun Device Name HP Device Name Solaris Device
Name

Rewind /dev/rst0 /dev/rmt/0m /dev/rmt/0m

Non-rewind /dev/nrst0 /dev/rmt/0mn /dev/rmt/0mn

5. Assuming that TAPEDEV is the name of the device used to access your tape
drive in a nonrewinding mode, enter the following commands for HP-UX:

cd /usr/lpp/cmvc

mt -t TAPEDEV rewind

dd if=TAPEDEV skip=ð > cmvcinstall

chmod u+x cmvcinstall

./cmvcinstall

Enter the following commands for SunOS or Solaris:

cd /usr/lpp/cmvc

mt -f TAPEDEV rewind

dd if=TAPEDEV skip=ð > cmvcinstall

chmod u+x cmvcinstall

./cmvcinstall

The cmvcinstall script prompts you for the name of the device used to access
your tape drive in nonrewind mode and in rewind mode. You must supply the
correct values to run the installation script successfully.

6. To install either the CMVC server or the NetLS Runtime Kit, follow the
instructions and answer the prompts presented by the cmvcinstall script.

Note: The NetLS software supplied with CMVC for HP systems can only be
installed on HP Series 700 and Series 800 workstations. You must run the
CMVC-supplied NetLS software instead of the HP-supplied NetLS software.

Installing the CMVC Server Code from CD-ROM
This section describes how to install the CMVC server code from CD-ROM. To
install your CMVC server code from tape, see “Installing the CMVC Server Code
from Tape” on page 15.

The CD-ROM contains the software for the UNIX CMVC servers and CMVC clients.
For instructions on installing the UNIX CMVC clients, refer to the book IBM CMVC
UNIX Client Installation and Configuration.

16 Server Administration and Installation

The terms and conditions for using the CMVC servers are in the file cpyright.inf on
the CD-ROM. You can display or print cpyright.inf , which is in ASCII format, from
your workstation.

If you are installing the CMVC for HP systems server code, all file names are
displayed in uppercase.

 CMVC/6000
To install the CMVC/6000 server code from CD-ROM:

1. Log in as root.

2. Insert the CD-ROM in the CD-ROM drive.

3. Type the following on the AIX command line:

smit

This command starts the System Management Interface Tool (SMIT) which
presents a menu-driven environment for system administration tasks. For more
information on SMIT, see your AIX operating system documentation.

4. Use SMIT to mount the CD-ROM as a file system. Mount the file system into a
directory such as /cdrom.

5. Run the standard software installation procedure from SMIT. Specify the
source directory that you created in step 4.

6. Follow the directions and answer the prompts in the SMIT installation menus to
select the one installp image that is relevant for your database. Only select
one image because the first selected image is overwritten by the next selected
image.

7. Follow the directions on the SMIT installation menus to install the
cmvcsrvm language .msg installp image.

8. Follow the directions on the SMIT installation menus to install the NetLS.Ark
installp image, if you want to install the NetLS software on the CMVC server.

Note: For information on completing the NetLS software installation, refer to
Chapter 4, “The NetLS Software.”

Installp Image Description of Contents

cmvcsrvdb2.obj CMVC/6000 server for DB2/6000

cmvcsrvora7.obj CMVC/6000 server for ORACLE7

cmvcsrvinfx.obj CMVC/6000 server for INFORMIX

cmvcsrvsyb.obj CMVC/6000 server for SYBASE

CMVC for Sun Systems
To install the CMVC for Sun systems server code from CD-ROM:

1. Insert the CD-ROM into the CD-ROM drive.

2. Log in as root and type the following commands:

mkdir /cdrom

mount -r -t hsfs /dev/srð /cdrom

cd /cdrom

./cmvcinst

 Chapter 3. Installing the CMVC Servers 17

3. Follow the instructions in the installation script to install the appropriate CMVC
server or the NetLS Runtime Kit, or both.

4. After the installation is completed, type the following commands:

umount /cdrom

eject /dev/srð

CMVC for Solaris Systems
To install the CMVC for Solaris systems server code from CD-ROM:

1. Insert the CD-ROM into the CD-ROM drive. The Solaris volume management
automatically mounts the CD-ROM as /cdrom/cmvc_230.

2. Log in as root and type the following commands:

cd /cdrom/cmvc_23ð

./cmvcinst

3. Follow the instructions in the installation script to install the appropriate CMVC
server or the NetLS Runtime Kit, or both.

4. After the installation is completed, type the following command:

eject cdrom

Note: If volume management is not running, contact your system administrator for
instructions on mounting the CD-ROM.

CMVC for HP Systems
To install the CMVC for HP systems server code from CD-ROM:

1. Insert the CD-ROM into the CD-ROM drive.

2. Log in as root and use System Administration Manager (SAM) to mount the
CD-ROM as a file system under a directory, such as /cdrom.

3. Type the following commands:

cd /cdrom

./CMVCINST

4. Follow the instructions in the installation script to install the appropriate CMVC
server or the NetLS Runtime Kit, or both.

Note: The NetLS software supplied with CMVC for HP systems can only be
installed on HP Series 700 workstations. You must run the CMVC-supplied
NetLS software instead of the HP-supplied NetLS software.

5. After the installation is completed, type the following command:

umount /cdrom

18 Server Administration and Installation

Chapter 4. The NetLS Software

This chapter gives a brief overview of the Network License System (NetLS)
software and provides guidelines for installing and configuring it.

CMVC uses the Network License System (NetLS) software to license usage. The
number of concurrent CMVC users that can access CMVC is determined by the
number of concurrent licenses, or tokens, purchased with CMVC. The NetLS
software enforces the usage of these tokens. This type of licensing has several
benefits:

� The CMVC server does not need any license control. The number of CMVC
server instances is controlled by the number of database licenses.

� The CMVC UNIX clients require a NetLS token to operate. The CMVC client
software can be run from any machine on the network, provided that the client
has access to a NetLS license server.

For more detailed information about the NetLS software, refer to the following
NetLS documentation that is shipped with CMVC:

� NetLS Quick Start Guide
� Managing Software Products with the Network License System
� Managing NCS Software.

You can also refer to the README.NetLS file in the usr/ipp/cmvc/install directory
for additional information about NetLS.

Installing the NetLS Software on the Server
The NetLS Runtime Kit (ARK) contains the NetLS server daemon, netlsd , and
administration software. The NetLS software must be installed on a network node
before a user can issue any CMVC commands or start the CMVC GUI.

Because each CMVC command consults the NetLS license server, it is
recommended that you have:

� More than one instance of the NetLS license server serving the entire network

� A separate NetLS license server for each distinct network.

Do the following to install the NetLS software for use with CMVC.

1. Determine the computers to use as NetLS license servers.

2. If you have not already installed the NetLS code from the distribution media, for
example, CD-ROM or tape, refer to Chapter 3, “Installing the CMVC Servers”
on page 13 for instructions.

3. Start the NetLS system by running the /usr/lib/netls/conf/netls_config shell
script or by following the manual instructions in the NetLS Quick Start Guide.
For netlsd options, refer to Managing Software Products with the Network
License System. Because CMVC uses the concurrent license scheme, refer to
the concurrent scheme sections in the NetLS documentation.

 Copyright IBM Corp. 1993, 1994 19

4. Obtain the target ID of each computer that will act as a NetLS license server by
running the ls_targetid program. By default, the ls_targetid program is in the
/usr/lib/netls/bin directory after installation.

5. If you are running more than one NetLS license server, you must determine the
number of tokens you want to have available on each license server.

6. Contact IBM to receive your NetLS passwords. A NetLS password is unique
and is based on the planar ID of each computer that will act as the NetLS
license server, the product and version number, and the number of concurrent
licenses purchased.

Note: You must provide IBM with the information requested on the IBM
Product Registration Information Form, which is included in the CMVC
package. Contact information for IBM is provided on the IBM Product
Registration Information Form.

7. Run the license administration program, ls_admin , to install the NetLS
licenses. By default, the ls_admin program is in the /usr/lib/netls/bin directory
after installation.

Warning:

� To shut down a NetLS server, you must stop the following daemons in the
order listed:

 – NetLS (netlsd)
– Global Location Broker (glbd)
– Local Location Broker (llbd)

� We recommend that you do not run the nrglbd daemon from NCS with CMVC.

Understanding How CMVC Implements NetLS Licensing
To help you better utilize CMVC, the following lists some ways in which CMVC
implements NetLS licensing:

� By default, the duration of a NetLS token is a minimum of 15 minutes.
However, you can increase this time.

� Each time a CMVC request is issued by a unique userid/groupid/hostid
combination, a new token is acquired.

� When a userid/groupid/hostid that already has a token issues a request, that
same token is kept but its time-out period is reset to the specified time-out
period.

� When a user exits the CMVC GUI or a line command completes, the token is
not released until its time-out period expires.

� A token must be available to issue any CMVC command.

� Because CMVC GUI actions frequently initiate CMVC commands, the GUI
generally requires a continuous token while it is being used.

� When CMVC tokens are not available, a request issued by a new
userid/groupid/hostid is queued until one becomes available.

� By default, the CMVC client cannot acquire tokens outside its local network. If
you want to use a NetLS license server that is outside the client’s local
network, refer to the Managing NCS Software book for more information.

20 Server Administration and Installation

Part 2. Configuring Your CMVC Environment

This part of the book describes the post-installation planning needed for each
CMVC family. It also shows how to configure your version control environment and
your CMVC server and shows how to establish authority groups, interest groups,
and the configuration defaults for your family.

 Copyright IBM Corp. 1993, 1994 21

22 Server Administration and Installation

Chapter 5. Configuring Your Version Control System

CMVC supports two different version control systems: SCCS and PVCS Version
Manager. Decide which system you intend to use, before you configure the CMVC
server.

CMVC for Sun systems, CMVC for Solaris systems, and CMVC for HP systems
support SCCS only.

 Overview
The chosen version control system must be installed and initialized before using
CMVC. When this has been accomplished and once the CMVC server
environment has been initialized with the appropriate environment variables, the
version control system will become transparent to users of CMVC.

After the version control system is established and the CMVC environment is made
available to users, the version control directories and files on the familyname
account should not be altered in any way.

Warning: You must not issue operating system or version control system
commands against the files in the version control directories. Any tampering with
these files can result in discrepancies between the information stored in the
relational database on the CMVC server and the information in the version control
directories.

Refer to your PVCS documentation for additional information regarding PVCS
Version Manager. CMVC controls the directories in which PVCS Version Manager
files will be created, therefore there is no need to create special directories as
suggested in the PVCS Version Manager documentation.

Your Version Control Environment
The version control system is transparent to users of CMVC once the environment
has been configured. However, the following areas are handled differently by
SCCS and PVCS Version Manager.

 File Versioning
The PVCS Version Manager and SCCS use different version numbering methods.
CMVC will work with either method.

Usually PVCS file revisions begin with 1.0, whereas SCCS file versions begin with
1.1. For consistency, CMVC will request PVCS file revisions to begin at 1.1. When
project complexity increases and the file branching occurs, CMVC does not
intervene with either PVCS Version Manager or SCCS; it allows the version control
mechanisms to branch as designed. Therefore, if a branch is made between
revision 1.1 and 1.2 of a file when using PVCS Version Manager, the resulting
version number will be 1.1.1.0, whereas the same branch using SCCS would result
in a version number of 1.1.1.1.

 Copyright IBM Corp. 1993, 1994 23

 Binary Files
When storing binary files within a CMVC environment that uses PVCS Version
Manager as its underlying version control mechanism, CMVC handles the run-time
modification of the configuration parameters that control keyword expansion and
carriage-return-line-feed (cr/lf) translation. When storing binary files within CMVC
using SCCS, CMVC supports delta versioning but not keyword expansion.

 Version Labels
The PVCS Version Manager enables the user to assign a version label to the
revisions. CMVC contains a similar function but uses a different mechanism to
accomplish the same result. For this reason, any version label assigned to a PVCS
Version Manager file is not used by CMVC. SCCS assigns no version labels.

PVCS and SCCS Commands
Do not use operating system or version control system commands which modify the
contents of or remove the files in the version control directories of your familyname
account. Using these commands results in discrepancies between the information
stored in the relational database and the files stored in these directories. Use only
CMVC commands to maintain the files in the version control directories.

Customizing Your Environment to Use the PVCS Version Manager
The following steps should be performed to configure PVCS Version Manager and
prepare your environment for use of CMVC.

Installing PVCS Version Manager
Install PVCS Version Manager in setuid mode, with primary group system (the
same as each CMVC family account). After the PVCS Version Manager
executables are installed, make a directory, titled sem , relative to the directory
where the executables are stored. That is, if the PVCS Version Manager
executables are stored in /usr/pvcs , enter the following command:

mkdir /usr/pvcs/sem

This directory will be used to store all the semaphore files (logfile, journal) that are
created and used by PVCS Version Manager. Log in as root, modify the directory
permissions to 775, and set the group of the directory to system so that the CMVC
families that operate within the system group can write to the /usr/pvcs/sem
directory.

Resetting the PVCS Version Manager Executables
Reset the PVCS Version Manager executables to use only the default configuration
parameters supplied with the PVCS Version Manager. To do this, log in to the user
ID which owns the PVCS Version Manager executables and enter the following:

vconfig -u /usr/pvcs/\

If you installed the executables in a directory other than /usr/pvcs , replace
/usr/pvcs with the name of that directory.

24 Server Administration and Installation

Configuring the PVCS Version Manager Executables
Refer to your PVCS documentation to gain an understanding of the various PVCS
Version Manager configuration options and procedures. Both a master
configuration file and a local configuration file were installed with CMVC. These
files are in the /usr/lpp/cmvc/install directory.

The Master Configuration File
The master configuration file is called cmvc_master.cfg. You must use the master
configuration file in order to use PVCS Version Manager as the version control
system for CMVC. The file contains the PVCS Version Manager configuration
parameter settings that are compatible with the operation of CMVC. You must not
alter the values in the master configuration file, except to edit the line
SEMAPHOREDIR=/usr/pvcs/sem if the path is not correct for your system.

Figure 3 on page 26 is a copy of the master configuration file, cmvc_master.cfg.
If, for any reason, your version of the cmvc_master.cfg file is corrupted use
Figure 3 to recreate a master configuration file.

Using vconfig to Configure the PVCS Executables
You must configure the PVCS Version Manager executables to use the master
configuration file for operation of CMVC with the PVCS Version Manager software.
To accomplish this, log in to the user ID that owns the PVCS Version Manager
executables and issue the following command:

vconfig -sn -c/usr/lpp/cmvc/install/cmvc_master.cfg /usr/pvcs/\

This will configure all PVCS Version Manager executables in the /usr/pvcs
directory to treat the file /usr/lpp/cmvc/install/cmvc_master.cfg as the master
configuration file.

Do not delete the master configuration file or alter it in any way once the vconfig
command has been issued. The vconfig command embeds only the name of a
master configuration file within the PVCS Version Manager executables, not the
contents. Therefore, the master configuration file itself must always be available for
each invocation of any executable so configured.

Registering Users to the PVCS License Administration Database
The CMVC family name and all CMVC users must be registered as licensed users
of PVCS. This generally happens automatically; but if you need to register users
manually, you use the PVCS ladmin command. For example, enter the following
command:

ladmin -a<familyName> PVCS serial_number

Refer to your PVCS documentation for information on the ladmin command.

Also, you must register the uid being specified in the -uid attribute flag of the
Release -extract or Level -extract command as the licensed user of PVCS. This
uid will either be registered automatically to the PVCS administration database or it
must be registered manually depending on how PVCS was configured on your
CMVC server. If you must manually register the uid to the PVCS administration
database, you must obtain the user name represented by that uid on the CMVC
server and add that user name to the PVCS administration database.

 Chapter 5. Configuring Your Version Control System 25

PVCS Master Configuration File for use with CMVC
#
--
CMVC handles access control for files. There
is no need for the Enhanced Access Control Database or Access
List.
#
DISALLOW ACCESSDB ACCESSLIST
--
CMVC handles branching of files. PVCS version
labels are ignored by CMVC.
#
DISALLOW BASEVERSION BRANCHVERSION DEFAULTVERSION
--
Use the default settings: CASE, CHECKLOCK, COMMENTPREFIX=" "
DELETEWORK, NOEXCLUSIVELOCK,
NOFORCEUNLOCK, NOIGNOREPATH,
LOGSUFFIX=??v__, MESSAGESUFFIX=??@__,
LOGWORK, NEWLINE="\r\n",NOSIGNON,
VERBOSE, VCSDIR=cwd
Disallow the resetting of these default values.
#
DISALLOW NOCASE NOCHECKLOCK COMMENTPREFIX NODELETEWORK
DISALLOW EXCLUSIVELOCK FORCEUNLOCK IGNOREPATH LOGSUFFIX
DISALLOW MESSAGESUFFIX NOLOGWORK NEWLINE OWNER REFERENCEDIR
DISALLOW SIGNON QUIET NOWRITEPROTECT VCSDIR
--
To permit PVCS logfiles to have both multiple locks per
revision and multiple locks per user, specify MULTILOCK with
no parameters and disallow the NOMULTILOCK configuration
parameter.
#
MULTILOCK
DISALLOW NOMULTILOCK
--
To conserve space, delete the message file after the file is
checked back into PVCS.
#
DELETEMESSAGEFILE
DISALLOW NODELETEMESSAGEFILE
--
PVCS validates logins by HOST, VCSID and UNKNOWN.
Disallow the resetting of these to maintain security.
#
LOGIN HOST,VCSID,UNKNOWN
DISALLOW LOGIN
--
Indicate the directory to be used for SEMAPHORE files.
Disallow the resetting of this directory. Note that this
directory must be created if it does not already exist. The
CMVC family must have write access to this directory.
#
SEMAPHOREDIR=/usr/pvcs/sem
DISALLOW SEMAPHOREDIR
--
ENDMASTER

Figure 3. Master Configuration File, cmvc_master.cfg for CMVC/6000

26 Server Administration and Installation

Figure 4 illustrates an example of which user name must be registered to the
PVCS administration database:

Figure 4. Registering a User Name to the PVCS Administration Database

Uid User Name on the CMVC Server
To Be Registered to the PVCS
Administration Database

User Name on the Workstation
Corresponding to the -uid Attribute
Flag

222 Srv222 Clt222

In this example, you must register Srv222, not Clt222, to the PVCS administration
database.

Optional Customization of Your Environment
You can customize your PVCS environment for each CMVC family by creating
individual local configuration files containing PVCS configuration parameters.

PVCS Configuration Parameters
For a description of all PVCS Version Manager parameters, refer to your PVCS
documentation. The following are optional configuration parameters that can be set
within the local configuration file:

 Compression
You can specify whether deltas and workfiles are compressed when stored in
PVCS Version Manager. There are three parameters that control compression:

 � [NO]COMPRESS
 � [NO]COMPRESSDELTA
 � [NO]COMPRESSWORKIMAGE

The advantage of compression is that space is conserved. The disadvantage is
that it may take longer to check out or check in a file because additional processing
will be performed. The default is NOCOMPRESS.

 PVCS Keywords
You can specify whether keywords embedded in text files are expanded when the
files are checked out or extracted from the PVCS Version Manager. The parameter
that controls keyword expansion is [NO]EXPANDKEYWORDS . The default is
EXPANDKEYWORDS . Regardless of the setting of this parameter, the CMVC
user can control keyword expansion on an individual file basis from the CMVC
client. For more information on PVCS Version Manager keywords, refer to your
PVCS documentation. A list of supported PVCS Version Manager keywords is
included in the IBM CMVC User’s Reference.

 Semaphores
You can set the following PVCS Version Manager configuration parameters that are
related to PVCS Version Manager semaphores:

� SEMAPHOREDELAY [=] number
� SEMAPHORERETRY [=] number

 Chapter 5. Configuring Your Version Control System 27

The default semaphore delay is 1 second and the default semaphore retry is 3.
For more information about PVCS Version Manager semaphores, refer to your
PVCS documentation.

 Translate
You can set the PVCS Version Manager configuration parameter so that the
end-of-line sequence within text files is translated from line-feed to carriage-return
plus line-feed. The parameter that controls translation is [NO]TRANSLATE .

The default is TRANSLATE .

 Working Directory
You can set the PVCS Version Manager configuration parameter that controls
where PVCS Version Manager will create temporary files. The parameter that
controls the working directory is WORKDIR [=] directory .

The default is the current working directory. The PVCS executables must have
access to write to the directory that is specified.

 Journal
You can set the PVCS Version Manager configuration parameter that controls
whether PVCS Version Manager makes journal entries for every commit action
taken by a PVCS Version Manager command that modifies a logfile. The
parameter that controls journal entries is JOURNAL and can be set in one of two
ways:

� JOURNAL [= < journaldir >]
� JOURNAL [= < journalfile >]

If this parameter is not set then no journal entries will be made. The PVCS
executables must have access to write to the directory or file that is specified.

Creating a Local Configuration File
Creating a local configuration file involves the home directory of the account you
will create in Chapter 6, “Creating a CMVC Family” on page 31. Return to this
section after you have configured your CMVC family.

If you, as the family administrator, choose to set optional configuration parameters
for PVCS Version Manager, then these parameters will be set for all users within
your CMVC family. Therefore, you must decide which settings will be appropriate
for all users of each CMVC family.

To assign values to these parameters, a local configuration file must be created
and placed in the familyname account home directory on the CMVC server. If you
have more than one CMVC family, the local configuration file can be different for
each family, if so desired.

A local configuration file, cmvc_local.cfg , exists in the /usr/lpp/cmvc/install
directory. This is a sample of what a local configuration file can contain and does
not necessarily have to be established for your CMVC family. If you wish to use a
local configuration file, copy it to the familyname account's home directory and
modify it to suit the needs of the CMVC family. This is a text file that can be
created or modified by a text editor and can be renamed as appropriate.

28 Server Administration and Installation

Figure 5 shows the local configuration file shipped by IBM.

#
PVCS Local Configuration File for use with CMVC
#
COMPRESS
SEMAPHOREDELAY=60
SEMAPHORERETRY=3

Figure 5. Local Configuration File, cmvc_local.cfg for CMVC/6000

When a local configuration file is created, the VCSCFG environment variable must
be set so that PVCS Version Manager reads the contents of the local configuration
file when PVCS Version Manager executables are invoked. The command:

VCSCFG=$HOME/cmvc_local.cfg

export VCSCFG

should be added to the family's environment to set the VCSCFG environment
variable. Note that $HOME should be replaced with the name of the directory on
the CMVC server where the local configuration file resides. The PVCS executables
must have access to read the local configuration file.

Modifying Your Local Configuration Files
The configuration parameters that control compression, keyword expansion and
translation are PVCS Version Manager attribute parameters. The value of these
parameters is set in the logfile when a file is created. If you modify the local
configuration file and alter these parameters after they have been in use for some
time, the new settings will only be in effect for newly created logfiles. If you wish to
modify the behavior of existing logfiles so that they match the new settings in your
local configuration file, then the PVCS Version Manager vcs command must be
invoked against the existing logfiles in the CMVC family's version control
directories. For more information on the vcs command, refer to your PVCS
documentation.

 Chapter 5. Configuring Your Version Control System 29

30 Server Administration and Installation

Chapter 6. Creating a CMVC Family

A single installation of the CMVC server can support multiple CMVC families. You
must create each CMVC family from the operating system shell on the workstation
where the CMVC server software is installed.

This chapter explains what to do to prepare for configuring your environment. It
also describes in detail the configuration activities you must perform when creating
each CMVC family.

 Preconfiguration Planning
All CMVC objects in a family are related implicitly to one another and cannot relate
to CMVC objects in another family. Each family has its own set of users, data, and
its own organizational structure.

Within your CMVC environment, you can create one or more families. The projects
you group within each CMVC family must be planned carefully. Consider the
following issues:

� Group all development projects that share source data within the same family.
Each family has its own database tables and its own version control (vc) tree;
information cannot be shared between families.

� Consider where each development project is heading in future releases. Will a
project depend upon other projects? If so, group these projects within the
same family because they must share information.

� Designate a server that can handle your future needs. As a family grows, so
do the database tables and the vc file system.

To help you estimate the size of the file systems that you will create, Figure 6
provides sizes of three sample families for CMVC/6000.

Figure 6. File System Size Estimates of Sample Families for CMVC/6000

Item name Algorithm Family A Family B Family C

Number of files x 30000 10000 5000

Number of defects 0.20x 6000 2000 1000

Size of $HOME 25000x 750MB 250MB 125MB

Size of SQL tables and
indexes

5000x 150MB 50MB 25MB

x is the number of files.

Note: The estimates in Figure 6 do not include the space required for the
relational database nor the CMVC executable files.

 Copyright IBM Corp. 1993, 1994 31

Prerequisite Tasks or Conditions
The CMVC server code and the supported DB2/6000, ORACLE6, ORACLE7,
INFORMIX, or SYBASE relational database must be installed. The relational
database you are using must be running before you continue with the configuration
of the CMVC server software. For information on installing CMVC, see Chapter 3,
“Installing the CMVC Servers” on page 13.

Configuring the CMVC Server
The family administrator usually configures the CMVC server for each family. As
the family administrator you must have root access to the CMVC server.
Configuring the CMVC server involves both the configuration as root and the
configuration as the familyname user.

Figure 7 summarizes the configuration activities you must perform.

server
configuration

family
configuration

Edit your login profile

Refresh your
login profile

Optionally create a file
system for the familyname’s
home directory.

Log out of root

family configuration

Set up an alias and
provide the port number
and network type indicator
for your accountfamilyname

Log in as root

Run: mkfamily [-h][-s]

Run: mkdb [-h][-s][-d]

Copy the following files from
to the

home directory

and optionally modify

familyname
$CMVC_HOME/Install

authority.ld
config.ld
interest.ld
cfgcomproc.ld
cfgrelproc.ld

Set up a
account

familyname

Log in as the
userfamilyname

Figure 7. Configuration Flowchart for the CMVC Server

32 Server Administration and Installation

Configuration as Root
Log in as root and perform the following steps:

1. Read the file /usr/lpp/cmvc/install/README.first before proceeding.

2. Optionally create and mount a file system for the home directory of the family
account that you create in step 3.

3. Choose a name for your CMVC family, and create an account for that name
with the primary group of ID 0 to prevent other groups from accessing files in
the CMVC family. For example, the primary group of ID 0 on AIX systems is
system; the group of ID 0 in SunOS and Solaris systems is root.

If you are using a DB2/6000 server:

� Add the DB2 group ID as a secondary group for the CMVC family account.
Set the group of the family user ID to that of the owner of the DB2/6000
database instance that the CMVC family will use. For example, if the group
ID of the DB2/6000 database instance owner db2 is sysadm, the group ID of
the CMVC family should be sysadm.

� Ensure that the CMVC family name does not contain uppercase characters.

� The length of the password must be less than or equal to 18 characters.

4. Verify that the home directory for your CMVC family has the following
properties:

name The home directory path

mode 755

owner The familyname created in step 3

group ID 0 (and if DB2, the group of the owner of the DB2/6000 database
instance)

5. Add the familyname as an alias of the CMVC server workstation in your TCP/IP
naming environment. Add the name through the network information system, a
name server, or by changing the entry in your /etc/hosts file.

For example, the family called cmvcfam1 is defined as an alias to the machine
cmvcserv, which is the designated CMVC server workstation. The family is
defined as follows:

9.25.16.12 cmvcserv cmvcfam1

Note: This example is for /etc/hosts only.

6. Add an entry to the end of the /etc/services file containing your familyname,
the TCP/IP port number for your family, and the network type indicator tcp. For
example, the following line establishes the port number for the family cmvcfam1:

cmvcfam1 1221/tcp

The number 1221 is arbitrary, but it must be unique and it must match the entry
in the /etc/services file on each client workstation.

7. Log out of root.

 Chapter 6. Creating a CMVC Family 33

Configuration as the Familyname User
Now that you have created an account for your family, perform the following steps:

1. Log on to the CMVC family account using the family user ID.

2. For security reasons, change the permissions of your login profile to 700.

3. Add the mandatory environment variables to your login profile, including those
for your database, as described in the section “Mandatory Environment
Variables in Your Login Profile” on page 35.

4. Add the optional environment variables for your database, as described in the
section “Optional Environment Variables in Your Login Profile” on page 39.

5. If you are using PVCS, you can create a local configuration file for optional
configuration parameters. See “Creating a Local Configuration File” on
page 28 for more information about the optional parameters for a PVCS
environment.

6. Refresh your login profile to pick up the new environment variables.

7. Run the mkfamily command, as described in “Using the mkfamily Command”
on page 41.

8. Copy the following files from /usr/lpp/cmvc/install into the familyname
account’s home directory:

 � authority.ld
 � config.ld
 � interest.ld
 � cfgcomproc.ld
 � cfgrelproc.ld

9. Optionally configure additional fields for the defect, feature, file, and user
objects. See Chapter 7, “Configurable Fields” on page 47 for more information.

10. Optionally configure your components and releases. See Chapter 8,
“Configuring Components and Releases” on page 59 for more information.

11. Optionally configure your authority groups. See Chapter 9, “Configuring
Authority Groups” on page 67 for more information.

12. Optionally configure your interest groups. See Chapter 10, “Configuring
Interest Groups” on page 73 for more information.

13. Optionally modify the configuration database table. See Chapter 11,
“Modifying Your Configuration Table” on page 77 for more information.

14. Optionally define your user exists. See Chapter 12, “Providing User Exits” on
page 87 for more information.

15. Run the mkdb command as described in “Using the mkdb Command” on
page 43.

16. Start the CMVC server daemons for each CMVC family. See Chapter 13,
“CMVC Server Daemons” on page 95 for more information.

34 Server Administration and Installation

Mandatory Environment Variables in Your Login Profile
Add the following mandatory environment variables to your login profile:

Note: The environment variables CMVC_SUPERUSER, CLIENT_HOSTNAME, and
CLIENT_LOGIN initiate the first CMVC user ID for this family. These variables
are used only when the mkdb command is run to initialize the database.

Environment Variable Description

PATH Add /usr/lpp/cmvc/install , /usr/lpp/cmvc/bin ,
/usr/lpp/cmvc/samples and $HOME/bin , where
$HOME is the home directory of the CMVC family’s
account.

If you are using PVCS, add the directory name that
contains the PVCS executable files to access the
PVCS executable files from the CMVC family
directories.

CMVC_HOME Add the /usr/lpp/cmvc directory.

Example: export CMVC_HOME=/usr/lpp/cmvc

CMVC_SUPERUSER Add the CMVC user ID of the first CMVC user to be
created.

Example: export CMVC_SUPERUSER=johndoe

CLIENT_HOSTNAME Add the client host name of the first CMVC user to
be created.

Example: export CLIENT_HOSTNAME=cmvcclt1

CLIENT_LOGIN Add the client login of the first CMVC user to be
created.

Example: export CLIENT_LOGIN=jdoe

CMVC_VCBIN Add the full path to either the SCCS or the PVCS
executable files, depending on the version control
mechanism you have selected to use.

If you are using SCCS and have installed the
executable files in the /usr/bin directory:

Example: export CMVC_VCBIN=/usr/bin

For Solaris: export CMVC_VCBIN=usr/ccs/bin

If you are using PVCS and have installed the
executable files in the /usr/pvcs directory:

Example: export CMVC_VCBIN=/usr/pvcs

CMVC_VCTYPE Indicate the version control mechanism you have
selected. Use lowercase letters when defining the
type.

Examples:

 export CMVC_VCTYPE=pvcs

 export CMVC_VCTYPE=sccs

CMVC_VCLOGIN If you are using PVCS, indicate the name of the user
on the CMVC server who owns the PVCS executable
files.

Example: export CMVC_VCLOGIN=pvcs

 Chapter 6. Creating a CMVC Family 35

The first CMVC user for each family is automatically a CMVC superuser
and can therefore create user IDs for any other users.

The following sections discuss the various mandatory environment variables that
you can add to your login profile that pertain to your relational database.

For a DB2/6000 Server
If you are using a DB2/6000 server, add the following environment variables to your
login profile:

Environment
Variable

Description

DB2INSTANCE The DB2 instance name that the CMVC family uses.

Example: export DB2INSTANCE=db2

DB2_HOME The home directory of the DB2 instance that the CMVC family
uses.

Example: export DB2_HOME=/u/db2

DB2_PASS The password of the UNIX CMVC family user.

Note: This is not the password of the DB2 administration user.

The length of the family's AIX password cannot be longer than 18
characters.

Example: export DB2_PASS=cmvcdev1

DB2_DBPATH The path on which to create the CMVC database. If you do not
specify a path, the database is created in the default path, that is,
the HOME directory of the owner of DB2/6000 instance that the
family is using. The pathname can have a maximum of 215
characters. For more information, refer to the DB2/6000 Command
Reference book.

Note: Ensure that the DB2/6000 instance owner has write
permission to DB2_DBPATH. The CMVC database requires at
least 15 megabytes of hard disk space in the file system.

Example: export DB2_DBPATH=/u/db2/dbspace/cmvc23

PATH Include the following search paths:

$CMVC_HOME/bin

$CMVC_HOME/install

$CMVC_HOME/samples

$DB2_HOME/sqllib/bin

$DB2_HOME/sqllib/adm

For an ORACLE Server
If you are using an ORACLE relational database, add the following environment
variables to your login profile.

Environment
Variable

Description

ORACLE_HOME The ORACLE home directory that the CMVC family uses.

Example: export ORACLE_HOME=/usr/oracle

36 Server Administration and Installation

Environment
Variable

Description

ORACLE_DBA The user ID and password of the ORACLE DBA.

Note: The ORACLE_DBA environment variable is needed only for
the mkdb , chfield , and rmdb commands. You can remove
this environment variable from your login profile after these
commands run successfully.

Example: export ORACLE_DBA=system/manager

ORACLE_PASS The password of the UNIX CMVC family user.

Note: This is not the password of the ORACLE administration
user.

Note: The ORACLE_PASS environment variable is needed only
for the mkdb , chfield , and rmdb commands. You can
remove this environment variable from your login profile
after these commands run successfully.

No password has yet been established; choose a password for
your family at this point. This password will be used when you run
mkdb in step 15 on page 34.

Example: export ORACLE_PASS=cmvcdev1

ORACLE_SID The ORACLE SID.

Example: export ORACLE_SID=SID

For an INFORMIX Server
If you are using an INFORMIX relational database, add the following environment
variable to your login profile:

See “Mandatory Environment Variables in Your Login Profile” on page 35 for more
information on the other mandatory environment variables for the login profile.

Environment
Variable

Description

INFORMIXDIR Name of the INFORMIX home directory.

Example: export INFORMIXDIR=/usr/informix

For a SYBASE Server
If you are using a SYBASE relational database, add the following environment
variables to your login profile:

Environment
Variable

Description

SYBASE Name of the SYBASE home directory.

Example: export SYBASE=/usr/sybase

 Chapter 6. Creating a CMVC Family 37

If you have multiple SYBASE SQL servers, by default, the server with the name of
SYBASE is used. Optionally, you can set the SYBASE server name in the DSQUERY

environment variable to the SYBASE server containing the CMVC relational
database, for example:

export DSQUERY=SYBASE

Reminder: Return to step 4 on page 34 to continue configuring the CMVC server.

Environment
Variable

Description

SYBASE_PASS The password of the UNIX CMVC family user.

Note: This is not the password of the SYBASE administration
user.

No password has yet been established; choose a password for
your CMVC family at this point. This password is used when you
run mkdb in step 15 on page 34.

Example: export SYBASE_PASS=cmvcdev1

SYBASE_SA_PASS Password of the SYBASE System Administrator (SA) login.

Note: The SYBASE_SA_PASS environment variable is needed only
for the mkdb , chfield , and rmdb commands. You can
remove this environment variable from your login profile
after these commands run successfully.

Example: export SYBASE_SA_PASS=sapasswd

38 Server Administration and Installation

Optional Environment Variables in Your Login Profile
CMVC creates its own tables and indexes in the database. You can use the
optional environment variables described below to have these tables and indexes
created in the previously created tablespaces (the ORACLE database), dbspaces
(the INFORMIX database), or database devices (the SYBASE database) rather
than the system default ones.

 For CMVC
For CMVC, the following environment variable is optional:

Environment Variable Description

CMVC_BINARY_THRESHOLD Used for binary delta versioning in SCCS only. This
variable specifies a threshold of the maximum number of
different contiguous bytes between two binary files. When
the threshold is reached, the entire binary file is stored
instead of being versioned.

In case of performance degradation, you can set this
environment variable to a lower value. If you do not specify
this variable, the default value of 15000 bytes is used.

Example: export CMVC_BINARY_THRESHOLD=15ððð

For DB2/6000 Server
If you are using the DB2/6000 relational database, you can add in your profile the
db2profile script (for Bourne and Korn shells) or the db2cshrc script (for C shell)
to setup the environment for DB2.

For ORACLE Server
If you are using the ORACLE relational database, by default, these tables and
indexes are created in the default tablespace, for example, SYSTEM. Optionally,
you can have these tables and indexes stored in previously created tablespaces by
setting the following environment variables:

Environment
Variable

Description

ORACLE_TBLSP Add this for the ORACLE tables.

Example: export ORACLE_TBLSP=mytblsp

ORACLE_NDXSP Add this for the ORACLE indexes.

Example: export ORACLE_NDXSP=myndxsp

For INFORMIX Server
If you are using the INFORMIX relational database, by default, these tables and
indexes are created in a database stored in the default dbspace, for example,
rootdbs. Optionally, you can have the database stored in a previously created
dbspace by setting the following environment variable:

Environment
Variable

Description

INFORMIX_DBSP Add this for the INFORMIX dbspace.

Example: export INFORMIX_DBSP=mydbsp

 Chapter 6. Creating a CMVC Family 39

For SYBASE Server
If you are using the SYBASE relational database, by default, the CMVC family
database and log are created in the SYBASE default device, for example, master.
Optionally, you can have the database or log created in previously created devices
by setting the following environment variables:

Note: The SYBASE_DBDEV (database device) must have a minimum of
5 megabytes of disk space. If SYBASE_LOGDEV (log device) is not set,
the SYBASE log is created in the SYBASE database device you defined, in
SYBASE_DBDEV , or in master by default.

Reminder: Return to step 5 on page 34 to continue configuring the CMVC server.

Environment
Variable

Description

SYBASE_DBDEV Add this for the SYBASE database device.

Example:

export SYBASE_DBDEV="devName = n, devName = n ..."

SYBASE_LOGDEV Add this for the SYBASE log device.

Example:

export SYBASE_LOGDEV="devName = n, devName = n ..."

Where:

devName is a SYBASE device name
n is the device size in megabytes.

40 Server Administration and Installation

Using the mkfamily Command
The mkfamily shell script creates the mandatory subdirectories listed in Figure 8
as local file systems, relative to the home directory of your CMVC family account.
If the $HOME/bin directory does not exist, run the mkfamily command to create it.

If you want to create the subdirectories as separate file systems, manually create
the subdirectories and set their owner to your CMVC family name and their group
to ID 0 or SYSADM if needed. Set their file mode to 75ð, except for the vc directory,
which must have a file mode of 755.

Figure 8. CMVC Mandatory Subdirectories

Mandatory Subdirectory Description

vc Contains the versioned files and deltas (also referred to as
the version control (vc) file system).

audit Contains the audit log of CMVC transactions.

queue Contains the instruction files for notification delivery.

queue/messages Contains the message files for notification delivery.

maps Contains the level maps.

config Contains the user exit definition file. A sample of the file is
in /usr/lpp/cmvc/install/userExits . Copy the userExits file
to the config subdirectory if you created config manually.

The mkfamily shell script creates a local file system structure for the familyname
account created in step 3 of “Configuration as Root” on page 33. The syntax for
the mkfamily command is shown in Figure 9.

Syntax:

Figure 9. Syntax for the mkfamily Command

mkfamily [–h] [–s] [familyname]

Where:

–h Indicates help is needed

–s Runs the command in silent (no prompt) mode

familyname Names the CMVC family

Note: If this shell script fails, make sure that you either choose another
familyname or run the rmfamily command before running the mkfamily
command again. See “Using the rmfamily Command” on page 45 for a
description of the rmfamily command.

If you are using PVCS, do the following:

1. Log in to the root account on the CMVC server.

2. Issue the following command:

chown -R <pvcsOwner>.system /<familyHomeDir>/vc

 Chapter 6. Creating a CMVC Family 41

Where pvcsOwner is the name of the user on the CMVC server who owns the
PVCS executable files (for example, pvcs), and familyHomeDir is the home
directory of your family.

3. Log out of root.

Reminder: Return to step 8 on page 34 to continue configuring the CMVC server.

42 Server Administration and Installation

Using the mkdb Command
The mkdb shell script creates and initializes the CMVC family database tables,
views, and indexes. For information on configuring the CMVC database tables, see
Chapter 7, “Configurable Fields.” The syntax for the mkdb command is shown in
Figure 10.

Syntax:

Figure 10. Syntax Statement for the mkdb Command

mkdb [–h] [–s] [–d] [familyname]

Where:

–h Indicates help is needed.

–s Runs the command in silent (no prompt) mode.

–d Loads the default configurable fields shipped by IBM for the Defect and
Feature tables. Existing configurable field properties are cleared. If the -d
flag is omitted, the existing configurable fields are installed.

familyname Names the CMVC family.

Note: If the mkdb shell script is not successful, you might have to run the rmdb
script before running the mkdb script again. See “Using the rmdb
Command” on page 46 for a description of the rmdb command.

Depending on the database you use, the following files are created when you run
the mkdb command:

 � ORACLE

Files are created in the family account’s home directory when the mkdb
command uses the SQL*Loader** utility to load the Authority, Config, Interest,
and Configurable Process tables.

Each of the following files contains all records that the SQL*Loader utility
attempted to insert but could not:

 – bad.authority
 – bad.config
 – bad.interest
 – bad.cfgcomproc
 – bad.cfgrelproc

Each of the following files contains a detailed summary of the SQL*Loader
execution:

 – authority.log
 – config.log
 – interest.log
 – cfgcomproc.log
 – cfgrelproc.log

For more information about the contents of these files, refer to your ORACLE
documentation.

 Chapter 6. Creating a CMVC Family 43

 � SYBASE

Files are created in the family account’s home directory when the mkdb
command uses the bcp command to load the Authority, Config, Interest, and
Configurable Process tables. Each of the following files is SYBASE’s bcp error
file:

 – authority.log
 – config.log
 – interest.log
 – cfgcomproc.log
 – cfgrelproc.log

For more information about the contents of these files, refer to your SYBASE
documentation.

 � INFORMIX

The mkdb script displays an error log when errors occur.

 � DB2

The mkdb script displays an error log when errors occur.

Reminder: Return to step 9 on page 34 to continue configuring the CMVC server.

44 Server Administration and Installation

Using the rmfamily Command
If you are using PVCS and you want to use the rmfamily script to remove the
directories that have been created for your CMVC family, do the following:

1. Log in to the root account on the CMVC server.
2. Issue the following command:

chown -R <familyname>.system /<familyHomeDir>/vc

Where familyname is the name of your CMVC family and familyHomeDir is the
home directory of your family.

3. Log out of root.

The rmfamily shell script removes the file system structure for the specified
familyname account. Run this command while you are logged in to the familyname
account. The syntax for the rmfamily command is shown in Figure 11.

Syntax:

Figure 11. Syntax Statement for the rmfamily Command

rmfamily [–h] [–s] [familyname]

Where:

–h Indicates help is needed

–s Runs the command in silent (no prompt) mode

familyname Names the CMVC family

Use the rmfamily command in the following cases:

� When the mkfamily command fails after it creates part of the file system
structure for the newly created family. After you correct the problem that
caused the mkfamily command to fail, run the rmfamily command to remove
the partially created file system structure, and run the mkfamily command
again.

� You no longer need the data in the file system structure for an existing family.
After you back up the files, run the rmfamily command to remove the file
system structure created by the mkfamily command.

Warning: The contents of your family is destroyed when you run the rmfamily
command.

 Chapter 6. Creating a CMVC Family 45

Using the rmdb Command
The rmdb shell script removes the CMVC database tables, views, and indexes for
the specified familyname account. Run this command while you are logged in to
the familyname account. The syntax for the rmdb command is shown in
Figure 12.

Figure 12. Syntax for the rmdb Command

rmdb [–h] [–s] [–f] [familyname]

Where:

–h Indicates help is needed

–s Runs the command in silent (no prompt) mode

–f Forces removal of the database if another familyname with the same letter
sequence was found

familyname Names the CMVC family

Use the rmdb command in the following cases:

� When the mkdb command fails after it creates part of the CMVC family
database tables, views, and indexes. After you correct the problem that
caused the mkdb command to fail, run the rmdb command to remove the
partially created database tables, views, and indexes, and run the mkdb
command again.

Note: The rmdb command might produce error messages because it attempts
to remove some of the tables, views, and indexes that might not have
been created when the mkdb command failed.

� You no longer need the data in the CMVC family database tables, views, and
indexes. After you back up the database tables, views, and indexes, you can
run the rmdb command to remove them.

Note: The contents of your family will be destroyed when you run the rmdb
command.

46 Server Administration and Installation

 Chapter 7. Configurable Fields

With CMVC, family administrators can configure existing fields in the Defect and
Feature tables, or create additional fields for the Defect, Feature, File, and User
tables. The customized fields can be used as command attributes, and can be
accessed from the GUI as well as displayed in reports. In this way, CMVC users
can store information that is customized for their development environment and
terminology. For more information on customizing the attributes of CMVC objects,
refer to Chapter 11, “Modifying Your Configuration Table” on page 77.

Warning: We strongly recommend that you back up the CMVC family account
and the corresponding database before attempting to do any changes to the
configurable fields.

 Overview
You can install the default configurable fields shipped by IBM by running the mkdb
command with the -d flag. For more information on the mkdb command, see
“Using the mkdb Command” on page 43. The shipped defaults for the Defect and
Feature tables contain configurable fields. The CMVC administrator can create
additional configurable fields in these tables, and the File and User tables, or
modify the existing fields by running the configurable fields installation program,
chfield . For instructions on running the chfield program, see the section “Creating
and Modifying Configurable Fields” on page 51.

After configurable fields are created by the system administrator, they are displayed
like any predefined field. They can be accessed from the command line or through
the GUI. All configurable fields can be used as search criteria in the Report
command.

Properties of Configurable Fields
The CMVC family administrator can specify the following properties for the
configurable fields:

Active This flag indicates whether the field is active. A value of yes
means the field is active, and no means it is inactive.

DB Column Name This is the column name as defined in the database table.

CMD Attribute This name is used as the command attribute on the
command line.

Field Label This name appears in the GUI dialog boxes for the Defect
and Feature -open and -modify actions, the User -create
and -modify actions, and the File -modify action.

Title This name appears in the header title for the object window.
If this name is not provided, the configurable field is not
displayed in the object window.

Create This flag shows whether the field is one of the attributes
within the User -create , Defect -open , or Feature -open
actions. A value of yes means the field is included as an
attribute, and no means it is not included.

 Copyright IBM Corp. 1993, 1994 47

Required This flag indicates whether the field is required for the
-create or -open actions. A value of yes means the field is
mandatory, and no means it is not mandatory.

Type This name appears in the type column of the database
configuration file config.ld . Default values can be defined in
the config.ld file.

Using Configurable Fields
The following conditions apply to the use of configurable fields:

� All CMVC daemons must be stopped before configurable fields are created or
modified.

� Configurable fields for defect, feature, and user objects are effective only on
-create , -open , and -modify actions, with the exception of the File command,
for which they are effective only for the -modify action.

� No more than 20 active configurable fields are allowed per object.

� The content of any configurable field cannot exceed 85 characters in length
and cannot contain spaces.

Note: If you are using the DB2/6000 database server, there is a DB2/6000
row length limitation of 4,005 bytes that limits the number of
configurable fields which can be added to certain CMVC objects. The
File object can have up to 17 configurable fields, while the Defect and
Feature objects can have up to a combined total of 19 configurable
fields.

If you are using a SYBASE database, it is recommended that you
configure up to a maximum of 10 new fields for any of the CMVC
objects supporting configurable fields. Setting up more than 10
configurable fields for each CMVC object may result in a SYBASE error
(416).

� No more than 50 fields are allowed in the reports containing the configurable
fields.

� The data type of all configurable fields is character.

� Configurable fields are not used by any CMVC process logic. They can only
be used for reports.

� The CMVC usage statements apply only to the default settings shipped by IBM.
The usage statements do not reflect the updated command usage after the
properties of the configurable fields are altered.

Default Configurable Fields Shipped by IBM
Fields in the Feature and Defect tables can be modified. As shipped, they have the
default values shown in Figure 13 on page 49, and Figure 16 on page 50.

Note: There are no IBM shipped configurable fields for the File table or User
table.

48 Server Administration and Installation

 Feature Table
As shipped, the configurable fields in the Feature table have the properties shown
in Figure 13.

Figure 13. Defaults Shipped by IBM for Feature Table Configurable Fields

Active

DB
Column
Name

CMD
Attribute

Field
Label Title Create Required Type

yes priority priority Priority: Priority no no priority

yes target target Target: Target no no

Stanza Report Format for the Feature Table
The stanza format shipped by IBM for the Feature table is shown in Figure 14.

à ð
 prefix %s

 name %s

 reference %s

 abstract %s

 duplicate %s

 component %s

 state %-25.25s priority %-2ð.2ðs

 target %-25.25s age %ld

 addDate %-25.25s assignDate %-2ð.2ðs

 lastUpdate %-25.25s responseDate %-2ð.2ðs

 endDate %-25.25s

ownerLogin %-25.25s originLogin %-2ð.2ðs

 ownerName %-25.25s originName %-2ð.2ðs

 ownerArea %-25.25s originArea %-2ð.2ðs

á ñ

Figure 14. Stanza Report Format Shipped by IBM for the Feature Table

Note: To understand the format specification, see “Updating Reports” on page 55
for an example.

Table Report Format for the Feature Table
The table format shipped by IBM for the Feature table is shown in Figure 15.

à ð
%-4.4s %-15.15s %-15.15s %-8.8s %-8.8s %-8.8s %-3.3ld %-4.4s %-8.8s %-5ð.5ðs

pref name compName state originLo ownerLog age prio target abstract

---- --------------- --------------- -------- -------- -------- --- ---- ------- --------------------

á ñ

Figure 15. Table Report Format Shipped by IBM for the Feature Table

 Chapter 7. Configurable Fields 49

 Defect Table
As shipped, the configurable fields in the Defect table have the properties shown in
Figure 16.

Figure 16. Defaults Shipped by IBM for Defect Table Configurable Fields

Active

DB
Column
Name

CMD
Attribute

Field
Label Title Create Required Type

yes symptom symptom Symptom: yes yes symptom

yes phaseFound phaseFound Phase
found:

yes yes phase

yes phaseInject phaseInject Phase
injected:

no no phase

yes priority priority Priority: Priority no no priority

yes target target Target: Target no no

Stanza Report Format for the Defect Table
The stanza format shipped by IBM for the Defect table is shown in Figure 17.

à ð

prefix %s

name %s

reference %s

abstract %s

duplicate %s

state %-25.25s priority %-2ð.2ðs

severity %-25.25s target %-2ð.2ðs

age %ld

compName %-25.25s answer %-2ð.2ðs

release %-25.25s symptom %-2ð.2ðs

envName %-25.25s phaseFound %-2ð.2ðs

level %-25.25s phaseInject %-2ð.2ðs

addDate %-25.25s assignDate %-2ð.2ðs

lastUpdate %-25.25s responseDate %-2ð.2ðs

endDate %-25.25s

ownerLogin %-25.25s originLogin %-2ð.2ðs

ownerName %-25.25s originName %-2ð.2ðs

ownerArea %-25.25s originArea %-2ð.2ðs

á ñ

Figure 17. Stanza Report Format Shipped by IBM for the Defect Table

Note: To understand the format specification, see “Updating Reports” on page 55
for an example.

50 Server Administration and Installation

Table Report Format for the Defect Table
The table format shipped by IBM for the Defect table is shown in Figure 18.

à ð
%-4.4s %-15.15s %-15.15s %-8.8s %-8.8s %-8.8s %-3.3s %-3.3ld %-4.4s %-55.55s

pref name compName state originLo ownerLog sev age prio abstract

---- --------------- --------------- -------- -------- -------- --- --- ---- ---------------------

á ñ

Figure 18. Table Report Format Shipped by IBM for the Defect Table

Displaying Configurable Field Properties
The properties of active the configurable fields can be displayed with the following
commands:

� Defect -configInfo -family familyName [-raw]

� Feature -configInfo -family familyName [-raw]

� File -configInfo -family familyName [-raw]

� User -configInfo -family familyName [-raw]

If the -raw flag is selected, the information is organized in a fixed ASCII table
format as follows:

Field Label|Title|Attribute|DB Column Name|Create|Required|Type

Note: The properties of both the Prefix and Severity non-configurable fields will
also be displayed for Defects, whereas the Prefix field will be displayed for
Features.

Creating and Modifying Configurable Fields
The family administrator uses the configurable field installation program chfield to
create or modify the properties of the configurable fields. Use the chfield program
to modify or create configurable fields for an existing family, to create configurable
fields for a new family, or to update reports.

You must stop all CMVC daemons before running chfield .

Figure 19 on page 52 displays the syntax for the chfield command.

 Chapter 7. Configurable Fields 51

Figure 19. Syntax Statement for the chfield Command

chfield -object Name [-source Name -s]

Where:

object Indicates the object to configure. The Name parameter must be one of
Defect, Feature, File, or User.

source Indicates where to find the system generated file for the configurable fields.
If the -source flag is used, the program reconfigures CMVC according to the
information in the specified file. The Name parameter must be either
default, an existing family name, or the full path of an existing family name.

Note: If only an existing family name is used, then the directory path of the
current CMVC family is used.

s This flag can only be used if the -source flag is selected. The -s flag turns
on silent mode. The program is run without a request for user confirmation.

System files residing at the family home directory are generated or updated after
the configurable fields have been installed into CMVC. The system-generated files
are:

� For the Defect object:

 – configField/DefectConfigTbl
 – configField/DefectConfigFormat

� For the Feature object:

 – configField/FeatureConfigTbl
 – configField/FeatureConfigFormat

� For the File object:

 – configField/FileConfigTbl
 – configField/FileConfigFormat

� For the User object:

 – configField/UserConfigTbl
 – configField/UserConfigFormat

Note: These system-generated files are maintained by the chfield program. Do
not modify them manually.

Running the chfield Program with the -source Option
You can use this option to import the configurable fields from an existing family
(called the source family) to your current CMVC family (called the target family).
The install program uses the information in the system-generated file that
corresponds to the object specified by the -object flag for the indicated family. The
report format is also imported. If default is specified, the corresponding shipped
defaults are imported.

If the source family is on a different machine than the target family, copy the
system-generated files from the source family for the specified object to the target
family. Then run the chfield program, as follows:

chfield -object <objectName> -source <TargetFamilyName>

52 Server Administration and Installation

The program displays information about the configurable fields to be imported.
Figure 20 on page 53 shows the display layout.

à ð
Active DB Column Name CMD Attribute Field Label Title Create Required Type

yes target target Target: Target no no

yes phaseFound phaseFound Phase found: yes yes phase

no phaseInject phaseInject Phase inject: no no phase

You have selected to import the above configurable fields, press [Y] to continue:

á ñ

Figure 20. The chfield Display When Importing Configurable Field Information

If a configuration table is already in the target family, a warning message is
displayed. You are prompted to confirm that you want to overwrite the existing
settings.

Running the chfield Program with the -object Flag Only
If you run chfield with only the -object flag, the current configurable field
information is displayed. You are prompted to select one of the following options:

1. Create a configurable field
2. Modify a configurable field
3. Update report details

 4. Display help
 5. Quit

Creating a New Field
If you select the option to create a new field, you are prompted to type the
information needed to create the field.

Figure 21 on page 54 shows the display on which you type the configurable field
information.

 Chapter 7. Configurable Fields 53

à ð
Active DB Column Name CMD Attribute Field Label Title Create Required Type

yes target target Target: Target no no

yes phaseFound phaseFound Phase found: yes yes phase

no phaseInject phaseInject Phase inject: no no phase

Select one of the following actions:

1. Create a configurable field

2. Update a configurable field

3. Update report details

4. Display HELP

Q. Exit

Please enter command number [1,2,3,4,Q] : 1

You have selected to create a new field.

Enter DB Column Name : developer

Enter CMD Attribute : developer

Enter Field Label : Developer:

Enter Title :

Is it an attribute for "create/open" action [Y/N] : yes

Is it a required field for "create/open" action [Y/N] : no

Enter the field type :

á ñ

Figure 21. The chfield Display When Configurable Field Information Is Typed

After you type the information, the new configurable fields and the existing
configurable fields are displayed and you are prompted to confirm that you want to
create the new field. The database tables are then altered.

Note: If you are using INFORMIX-Online, creating a new configurable field may be
time-consuming. Free disk space in the INFORMIX logs is also needed.
You require free space that is twice the size of the table that is related to
the object for which you are creating a new configurable field. Figure 22
shows the CMVC object names and their related table names.

CMVC Object CMVC Database Table

Defect Defects

Feature Defects

File Files

User Users

Figure 22. CMVC Objects and Their Related Tables

Updating an Existing Field
If you choose to update an existing configurable field, you are prompted to enter
the updated information.

After you type the information, the updated configurable fields and the unmodified
configurable fields are displayed.

54 Server Administration and Installation

 Updating Reports
You can customize the report stanza and table formats. Select the Update stanza

and table reports option of the chfield program.

You edit report formats using the system editor vi , which is started by the chfield
program when you select the option to update reports.

Stanza format The stanza format consists of a format section and a column
section (see Figure 24 on page 57).

Table format The table format consists of a format section, column section,
and header section (see Figure 25 on page 57).

The format section specifies the layout of the report using the string format as used
in the C programming language. For example, a format specification of %-25.25s
indicates the following:

% Start of format specification.
- The output is left-justified. If you do not include this character, the output is

right-justified.
25 The minimum number of characters (bytes) of output.
.25 The maximum number of characters (bytes) printed for all or part of the output

field, or minimum number of digits printed for integer values.
s Type of data:

s for strings
ld for integers

The column section describes the column name of each of the labels specified in
the format section. The columns must appear in the same order in the format and
column sections.

If no reports exist for the object corresponding to the -object flag, a basic report
screen with no configurable fields is displayed.

The report editing screen is divided into 5 sections. The sections are separated by
colons (:). Figure 23 on page 56 shows a sample report format for the Defect
table after configurable fields have been added. The changes are noted in bold
font.

The sections are:

� Stanza format, such as ViewStanzaFMT
� Stanza columns, such as ViewStanzaCOL
� Table format, such as ViewTableFMT
� Table columns, such as ViewTableCOL
� Table header, such as ViewTableHDR

 Chapter 7. Configurable Fields 55

à ð
ViewStanzaFMT

prefix %s

name %s

reference %s

abstract %s

duplicate %s

state %-25.25s priority %-2ð.2ðs

severity %-25.25s target %-2ð.2ðs

age %ld

compName %-25.25s answer %-2ð.2ðs

release %-25.25s symptom %-2ð.2ðs

envName %-25.25s phaseFound %-2ð.2ðs

level %-25.25s phaseInject %-2ð.2ðs

addDate %-25.25s assignDate %-2ð.2ðs

lastUpdate %-25.25s responseDate %-2ð.2ðs

endDate %-25.25s

developer %-25.25s

ownerLogin %-25.25s originLogin %-2ð.2ðs

ownerName %-25.25s originName %-2ð.2ðs

ownerArea %-25.25s originArea %-2ð.2ðs

:

ViewStanzaCOL

prefix,name,reference,abstract,duplicate,state,priority,severity,target,age,compName,

answer,releaseName,symptom,envName,phaseFound,levelName,phaseInject,addDate,

assignDate,lastUpdate,responseDate,endDate,developer,ownerLogin,originLo gin,ownerName,
originName,ownerArea,originArea

:

ViewTableFMT

%-4.4s %-15.15s %-15.15s %-8.8s %-9.9s %-8.8s %-8.8s %-3.3s %-3.3ld %-4.4s %-55.55s
:

ViewTableCOL

prefix,name,compName,state,developer,originLogin,ownerLogin,severity,age,priority,abstract
:

ViewTableHDR

pref name compName state developer originLo ownerLog sev age prio abstract
---- --------------- --------------- -------- --------- -------- -------- --- --- ---- -----------
:

á ñ

Figure 23. Sample Report Format after Adding Configurable Fields

In Figure 23, the Defect format shipped by IBM has been modified as follows:

� Added a new label in the stanza format section (ViewStanzaFMT), developer

and the format specification %-25.25s (after endDate)

� Added the column name in the stanza column section (ViewStanzaCOL),
developer (after endDate)

� Altered the table format section (ViewTableFMT) and put %-9.9s in the
corresponding position for the developer entry

� Added the column name in the table column section (ViewTableCOL),
developer (after state)

� Added a new label in the table header section (ViewTableHDR), developer

(after state) and added the corresponding dashes in the following line

The stanza report format shown in Figure 23 displays the report shown in
Figure 24 on page 57. To display the report, enter the command:

Defect -view 3168

56 Server Administration and Installation

à ð

prefix ptr

name 3168

reference testcase_ð99

abstract Compilation error occurred.

duplicate

state open priority

severity 2 target level_ð2ð

age 9

compName demoComponent answer

release demoRelease symptom compile_failed

envName phaseFound prototyping

level level_ð19 phaseInject

addDate 93/ð4/ð1 11:32:47 assignDate 93/ð4/ð4 18:45:41

lastUpdate 93/ð4/13 11:54:15 responseDate 93/ð4/ð3 11:29:59

endDate

developer johnDoe

ownerLogin annHar originLogin martin

ownerName Ann Harrison originName Martin Karland

ownerArea Development originArea Testing

á ñ

Figure 24. Sample Stanza Report Displayed after Adding Configurable Fields

The table report format shown in Figure 23 on page 56 displays the report shown
in Figure 25. To display the report, enter the command:

Report -view DefectView -where "name='3168'" -table

à ð
pref name compName state developer originLo ownerLog sev age prio abstract

---- ------------- --------------- -------- --------- -------- -------- --- --- ---- ------------------

ptr 3168 demoComponent open johnDoe martin annHar 2 ðð9 Compilation error.

á ñ

Figure 25. Sample Table Report Displayed after Adding Configurable Fields

 Chapter 7. Configurable Fields 57

58 Server Administration and Installation

Chapter 8. Configuring Components and Releases

For a complete understanding of the CMVC objects discussed in this chapter read
IBM CMVC Concepts.

Once your family has been created, the initial management and structure needs to
be planned. Within each family, data is organized into groups called components.
Components are the focal point for information retrieval, access control, problem
reporting, and data organization. All files that make up a single version of a
product are also grouped into categories called releases. Releases are defined
separately from components to ease the maintenance of multiple versions of a
product. You can define the processes that your users can select for each
component or release to tailor CMVC to your requirements.

Planning the component structure, organizing the initial release groupings, and
defining the processes to be used are an important part of family administration.

Planning Your Component Structure
Each CMVC family has its own component structure.

Components are the main management entity within your family. The component
structure provides hierarchical access control for all CMVC objects.

Careful planning of a component hierarchy that will work best for your organization
is the key to the effective use of CMVC. You should plan an initial structure that
reflects the composition of your development organization. You can modify this
structure as your organization grows or as your needs change. An important part
of planning this structure is determining the users who will own each component.
Again, this can reflect the composition of your development organization.

Planning Your Release Groupings
Each CMVC family contains unique releases.

Releases are the main project organizational entity within your family. Plan the
initial component structure and then plan your release structure by organizing your
development files into product-related groups.

Careful planning of the release groupings that will work best for your organization is
the key to the effective use of CMVC. You should plan initial releases that reflect
the projects under development. You can modify these releases or create new
releases as your organization grows or as your projects change. An important part
of planning your CMVC environment is determining the users who will own each
release and the component that will manage each release. Again, this can reflect
the composition of your development organization.

 Copyright IBM Corp. 1993, 1994 59

Planning Your Processes
The family administrator chooses the CMVC subprocesses that can be used by the
family by assigning a process name to a group of one or more CMVC
subprocesses. Project or release leaders can choose from the process names
when creating or modifying components or releases. The group of CMVC
subprocesses appears to users as a single process. CMVC is shipped with
preconfigured processes; however, administrators can create new processes, or
modify or delete the defaults. You can configure processes by editing the
cfgcomproc.ld file and the cfgrelproc.ld file. See “Configuring Processes” on
page 63 for details on how to configure processes for use by your organization.

When configuring processes, you must tailor the configurable processes shipped by
IBM to your organization. The configurable processes shipped with CMVC cover a
wide range of situations and all processes may not be appropriate for a particular
organization.

You can tailor CMVC to suit different development cycles, methodologies, or
organizational structures while maintaining control of the processes being used on
a family or corporate basis. By selecting the processes that are required for
components and releases, you can optimize CMVC for the stage of your
development cycle or the size of your organization.

The extra flexibility provided by configurable processes requires some forethought
by family administrators, component owners, and release leaders. Administrators
must notify users of the processes that are appropriate for each stage in their
projects.

Configuring Component Processes
Configure processes for components by selecting the CMVC subprocesses that
users can apply when creating or modifying components. Users do not choose the
individual subprocesses. Instead, they select from the processes that you have
configured for them.

A feature is a CMVC object used to monitor proposed design changes and record
information about the design change implementation. A defect is a CMVC object
used to monitor reported problems and record information about the problem
resolution. Each feature or defect is opened for a component for evaluation,
management, and resolution. The subprocesses that can be applied for a
component are design, size, review (grouped as one subprocess called DSR), and
verify.

 Examples
During the early stages of the development cycle or during a prototyping stage,
users can select processes that do not include the DSR subprocess while still using
features and defects. In this situation, users select the prototype default process.
This avoids imposing administrative overhead while the program is still in a state of
flux.

In later stages of development, users can select processes which include the DSR
subprocess to enforce more control over development resources. These include
the test and preship default processes.

60 Server Administration and Installation

You should review the default processes shipped by IBM to ensure that they
provide enough choices for your users. If the default processes are not adequate
or appropriate, you can create new processes or modify the existing ones.

Configuring Release Processes
A release is a logical organization of files that are related to a particular version of
a product. Each file must be managed by at least one component and grouped in
at least one release. Configure processes for releases by selecting the CMVC
subprocesses that users can apply when creating or modifying releases. Users do
not choose the subprocesses. Instead, they select from the processes that you
have configured for them.

Change control involves controlling all changes made to files. CMVC uses tracks
to link changes in files to features or defects. A track is the CMVC object that links
changes to files in a release to a particular feature or defect.

When you create a release, your most critical decision is whether to use a process
that includes the track subprocess, for example, the track_level or track_full

processes. When a process that includes the track subprocess is selected for a
release, information about changes to files under CMVC control is linked to a defect
or feature that is in the working state.

The change control requirements for each release within a family may differ.
Tracks provide a way to manage the stages involved in the development of a
release. The file-change process can be refined by selecting a process which
includes any of the following subprocesses, all of which have the track subprocess
as a prerequisite:

 � Approval subprocess
 � Fix subprocess
 � Level subprocess
 � Test subprocess.

Each of these subprocesses adds a higher level of control over changes and
provides more information for managing change control. If you have configured the
processes appropriately, users may select processes containing these
subprocesses at any point during the development of a release. If you are defining
new processes containing these subprocesses, you must also include the track
subprocess. The highest level of control is exercised by requiring users to choose
the track_full process when creating or modifying a release.

Tracks can be used to monitor file changes to a release, even if all four optional
subprocesses are not used. For example, if you use the default processes shipped
by IBM, users may select the track_only default process. This allows file changes
to be tracked against a particular defect or feature, without imposing administrative
overhead that may not be required for a particular project or stage of development.

 Examples
The ability to select processes allows different configurations of CMVC to be used
during different stages of the development cycle. The amount of administrative
control required can be varied to match the availability of resources. The following
examples assume that you have installed the default processes shipped by IBM.

One possible scenario is as follows:

 Chapter 8. Configuring Components and Releases 61

� At the beginning of a project, users can select a process such as prototype
that does not include the track subprocess. There is no need to link features
and defects to specific files because the files will be in a state of flux.

� During later stages of development, users can select a process such as
track_only, which includes the track subprocess but not the approval, test,
level and fix subprocesses. This allows features and defects to be linked to the
required changes in files without forcing a lot of administrative overhead.

� After the code becomes stable or the project is in beta test, users can select a
process such as track_level, which includes the track, fix, and level
subprocesses. This allows a level of a release to be recreated at any point in
the future.

� For the final stages of a project, users may select a process such as
track_full, which includes the track, approval, level, test and fix subprocesses.
This allows more control to be exercised against development resources, which
may be limited at the final stage of a project, or when you wish to enforce a
freeze on code changes.

Configurable processes also allow you to configure CMVC for the size of an
organization. A tighter level of control may be required to manage changes made
by a large development team. The same control may not be necessary for a small
development team. Figure 26 shows an example of how CMVC might be
configured for different sizes of organizations.

Figure 26. Configurable Processes by Size of Organization

Organization Size
Process Shipped by
IBM

CMVC Release Subprocesses

Track Approval Level Fix Test

Small track_only x

Medium track_level x x x

Large track_full x x x x x

Figure 26 is based on the following organizational sizes.

Small Represents an organization where the originator and owner of features
and defects is usually the same person and there is no independent test
team. The level subprocess is not required. You can select a process
that includes the level subprocess when you wish to capture a baseline
release.

Medium Represents an organization where the originator and owner of features
and defects are not necessarily the same person and there is no
independent test team.

Large Represents an organization with concurrent releases doing multiplatform
development, and having a test department with separate build and
change teams and a committee that approves changes to releases.

62 Server Administration and Installation

 Configuring Processes
The family administrator must define names for the processes that will be used by
the family members. CMVC users cannot select CMVC subprocesses for releases
or components; they must use the processes that have been configured by the
family administrator.

Processes are defined by mapping a combination of CMVC subprocesses to a
name designated as a configurable process. As family administrator, you can
name your own processes or use the defaults shipped by IBM. If you choose to
name your own processes, the names you choose must be between 1 and 15
characters long, with no tabs, blanks or vertical separators.

Blank worksheets for recording the configurable processes for your family can be
found in Appendix G, “Configurable Processes Worksheets” on page 219.

For a table showing the default processes shipped by IBM, refer to the IBM CMVC
User’s Reference.

The cfgcomproc.ld and cfgrelproc.ld Files
Information about configurable processes for components is stored in the
cfgcomproc.ld file. Information about configurable processes for releases is
stored in the cfgrelproc.ld file. Both files are in the /usr/lpp/cmvc/install directory
and are copied into familyname account’s home directory during CMVC server
configuration. If you plan to change the default processes shipped by IBM, you
should edit these files before running the mkdb command. The mkdb command
creates the configurable process tables, based on the settings in the
cfgcomproc.ld and cfgrelproc.ld files. If you need to modify the configurable
process tables after running the mkdb command, you must modify the .ld files and
then run the chcomproc or chrelproc commands.

Editing the cfgcomproc.ld and cfgrelproc.ld Files
To edit the cfgcomproc.ld or cfgrelproc.ld file:

1. Log on to the family account on the CMVC server.

2. Change directory to the family’s home directory.

3. Make the proposed changes by editing the cfgcomproc.ld or cfgrelproc.ld
files.

Each line in the file consists of two fields: a configurable process name and a
CMVC subprocess in the following format:

configurable process name|CMVC subprocess name

The CMVC subprocess name is one of: none, verifyDefect, verifyFeature,
dsrDefect, or dsrFeature for the cfgcomproc.ld file; or none, track, approval, fix,
level, or test for the chrelproc.ld file. The configurable process name can be up
to 15 characters long and cannot have tabs or blanks.

Note: The CMVC subprocess field cannot be left blank. However, CMVC is
shipped with a configurable process named prototype for which all CMVC
subprocesses are turned off by specifying none in the subprocess field.

 Chapter 8. Configuring Components and Releases 63

Only CMVC subprocesses listed in the cfgcomproc.ld or cfgrelproc.ld files are
used for a configurable process. CMVC subprocesses not listed are not used for
that configurable process.

The Root Process
An initial process called root is assigned to the root component when it is created
by mkdb . The root process consists of the dsrFeature, verifyFeature, and
verifyDefect subprocesses. The root process does not appear initially in the
cfgcomproc.ld file.

If the root process is not in the cfgcomproc.ld file, the Report -view cfgcomproc
command will not display this process, even though it is used by the root
component. You can associate any process with the root component, as long as
the process is defined in the cfgcomproc.ld file.

You can change the subprocesses associated with the root process by adding it to
the cfgcomproc.ld file and modifying the included subprocesses.

Executing the chcomproc and chrelproc Shell Scripts
After the mkdb command completes, the configurable process tables contain
values for the configurable processes. The chcomproc shell script allows the
family administrator to reload the contents of the configurable component process
table after running the mkdb command. The equivalent shell script for releases is
chrelproc .

These shell scripts replace the contents of the appropriate configurable process
table with the contents of the cfgcomproc.ld or cfgrelproc.ld files. If you have to
create or modify the configurable processes after a family has been created, you
must first edit the cfgcomproc.ld or cfgrelproc.ld file and then run the appropriate
shell script. The shell scripts are found in the /usr/lpp/cmvc/install directory on
the CMVC server.

Note: We strongly recommend that you stop the CMVC daemons before issuing
these shell scripts.

To execute one of the shell scripts:

1. Log in to the familyname account on the CMVC server.
2. Run the chcomproc or chrelproc script.

The syntax for the chcomproc and chrelproc shell scripts is shown in Figure 27.

Figure 27. Syntax for the chcomproc and chrelproc Commands

chcomproc [–h] [–s] or chrelproc [–h] [–s]

Where:

–h Indicates help is needed

–s Runs the command in silent (no prompt) mode

64 Server Administration and Installation

 Verification
Duplicate entries in the cfgcomproc.ld or cfgrelproc.ld file or an entry with a
CMVC subprocess that is not valid will cause the shell script to fail or only partially
load the configurable process database table.

If you are using a DB2/6000 or an INFORMIX database, the scripts display an error
log when errors occur.

If you are using an ORACLE relational database, check the following files:

� bad.cfgcomproc for components and bad.cfgrelproc for releases

These files contain all records that SQL*Loader attempted to insert but could
not.

� cfgcomproc.log for components and cfgrelproc.log for releases

These files contain a detailed summary of the SQL*Loader execution.

If you are using a SYBASE relational database, the following files are created when
the chcomproc or chrelproc command uses the bcp command to load the
configurable process table:

� cfgcomproc.log for components
� cfgrelproc.log for releases

These files are the SYBASE bcp error file.

To verify that the shell script successfully modified the configurable process tables,
you can create a report using the GUI or the CMVC Report command from the
command-line interface. You can do this only from a CMVC client workstation.

If the configurable process tables did not load correctly, make the necessary
changes to the cfgcomproc.ld or cfgcomproc.ld files and run the shell script
again.

Conditions Applying to Configurable Processes
The following conditions apply to configurable processes:

� To avoid confusion for end users, do not modify configurable processes after
they are created. If changes (additions or deletions of subprocesses) must be
made to an existing configurable process, a new configurable process should
be created.

� Do not delete a configurable process that is being used by any component or
release in your family.

� Changes to configurable processes do not take effect until:

– A component or release is modified using the configurable process name.
– A component or release is created using the configurable process name.

� If a configurable process that includes the approval subprocess is chosen for a
release, and if an approver list is not created for the release, an error message
is displayed prompting the user to create an approver list entry consisting of at
least one name or to include the approver in the command for creating the
release.

� If a configurable process that includes the test subprocess is chosen for a
release, and an environment list has not been created for that release, an error

 Chapter 8. Configuring Components and Releases 65

message is displayed prompting the user to create an environment list entry
consisting of at least one name or to include the environment in the command
for creating the release.

Migration from CMVC Version 1
The -binding flag of the Release command has been removed from CMVC
Version 2 Release 1. Users migrating from CMVC Version 1 should use the
cfgrelproc.ld file shipped by IBM. Previous processes have been mapped to the
no_track, track_level, track_test, track_approve and track_full configurable
processes. These processes should not be deleted before a migration from
Version 1 has been performed.

Users migrating from CMVC Version 1 should use the cfgcomproc.ld file shipped
by IBM. Previous processes have been mapped to the default configurable
process. This process should not be deleted before a migration from Version 1 has
been performed.

For instructions on migrating from CMVC Version 1, refer to Appendix B, “Migrating
to CMVC Version 2.3” on page 179.

66 Server Administration and Installation

Chapter 9. Configuring Authority Groups

There are over one hundred actions that can be performed with CMVC commands.
Grouping these actions for access control is done through the authority groups
within each family.

This chapter describes the different types of authority and the groups that are used
to control and configure the CMVC actions.

Controlling Access Authority
Access to perform any action within CMVC is based on authority.

Within CMVC there are four types of authority:

� Base authority
 � Implicit authority
 � Explicit authority
 � Restricted authority.

 Base Authority
All users in the family have the authority to perform the following actions as soon
as a user ID is created for them: DefectOpen, DefectComment, FeatureOpen,
FeatureComment, FileResolve, Report, and UserView.

 Implicit Authority
The implicit access to perform certain actions against a CMVC object is
automatically granted to the user who owns the object.

For a detailed list of all CMVC actions and who can implicitly perform them, refer to
the IBM CMVC User’s Reference.

 Explicit Authority
Users who are not CMVC superusers and who do not own the specified object
need to be granted the authority to perform most actions. Explicit authority to each
development object is managed through the access list of the component that
manages the specified object. The owner of each component creates entries in the
access list designating users with specific explicit authority at that component.

 Restricted Authority
A superuser, a component owner, or a user with AccessRestrict authority can
restrict the access of a user or an authority group for a specific component. The
user can restrict this authority group access for all inherited users or for specific
inherited users. Restricted authority is not inherited and does not affect the user's
implicit authority or superuser authority.

 Copyright IBM Corp. 1993, 1994 67

The CMVC Superuser Privilege
A user with CMVC superuser privilege can perform any action without being
granted any explicit authority. Restricted authority does not affect superuser
authority. Since a CMVC superuser is the only user who can add or delete a user,
this privilege should only be granted to a user who will perform administrative tasks.
Only a CMVC superuser can grant superuser privilege to another user. Minimize
the number of users who have this privilege.

Grouping Actions into Authority Groups
Authority groups are used to group CMVC actions for access control purposes.
Only the family administrator should create or modify authority groups. Any number
of authority groups can be configured and any number of actions can be contained
within one group. Each group represents the actions a particular type of user
would use. For example, in Figure 28 three authority groups are created:
developer, releaselead, and manager.

CMVC actions:

releaselead

manager

developer

CompView
FileAdd
FileForcein
FileExtract
FileView
LevelView
ReleaseCreate
ReleaseDelete
ReleaseExtract
ReleaseModify
ReleaseView
TrackFix
TrackIntegrate
TrackView

The family administrator, Steve,
wants to set up an authority group
for users who work on files. He
creates an authority group of

composed of a set of
CMVC actions. The managers of
the project decide they want access
to view the status of all CMVC objects
and the team leaders need access to
all release activities. Steve configures
the authority groups and

as well.These groups can
now be used on the access lists
within this family.

Figure 28. Grouping CMVC Actions into Authority Groups

Once these groups are configured they can be used to control the type of actions
performed on objects by individual users.

Access lists pair user IDs with authority groups to grant users the authority to
perform the actions contained in the specified authority group. There is one access
list for each component. The authority granted on an access list pertains to all
objects managed by that component and any descendant components, unless the
authority has been restricted for those components.

As family administrator, you can configure your authority groups to reflect the
development roles within your organization. For more information on granting
access, refer to the IBM CMVC Concepts manual.

68 Server Administration and Installation

 Restricting Authority
A user with the proper authority can restrict access to a component for an authority
group, or for specific users in that group, by using the Access -restrict command.
This makes it easier to control the use of confidential information in CMVC, by
allowing owners of components to control which users inherit access authority from
the parent components. CMVC notifies users whose authority is restricted or who
are subscribers of the AccessRestrict action for that component. If all inherited
users are restricted at that component, then only those users who have subscribed
to the AccessRestrict action are notified.

Restricted authority can be removed by using the Access -delete command.

Configuring CMVC Actions into Authority Groups
Authority groups require careful planning and should be configured to the needs of
each family. Once the authority groups for your family are configured, careful
management of access is needed at each component to ensure the security of your
files, and other objects managed by the components.

Authority groups are defined by mapping any configuration of CMVC actions to a
name designated as an authority group name. As a family administrator, you can
designate your own authority groups for your family or use the defaults shipped by
IBM. If you choose to designate your own, the names you choose for the groups
must be between 1 and 15 characters in length with no blanks, tabs, or vertical
separators. A blank worksheet for recording your own authority group
configurations can be found in Appendix E, “Authority Groups Worksheet” on
page 209.

The CMVC action names to which you can map these groups and the access
authority groups shipped by IBM are listed in the IBM CMVC User’s Reference.

To create your own authority groups, edit the file authority.ld found in the
familyname account's home directory prior to running the mkdb command during
configuration of the CMVC environment.

Editing the authority.ld File
To edit the authority.ld file:

1. Log on to the familyname account on the CMVC server.
2. Change directory to the familyname’s home directory.
3. Make the proposed changes by editing the authority.ld file.

When adding new access authority groups or when adding more low-level actions
for an existing access authority group, follow the existing format of the file:

AuthorityGroup|CMVCActionName

The authority.ld file can only have these two fields. The AuthorityGroup field
cannot have tabs or blanks, and it must be between 1 and 15 characters in length.
The CMVCActionName field cannot have tabs or blanks and will only accept one
of the CMVC actions specified in the table of access authority groups shipped by
IBM, in the IBM CMVC User’s Reference. Certain CMVC actions cannot be
included within an authority group. The IBM CMVC User’s Reference describes
these actions and describes how to perform them.

 Chapter 9. Configuring Authority Groups 69

Using the chauth Script to Reload the Authority Table
Once the mkdb command has been performed, the Authority table will contain
values for authority groups. The chauth shell script allows the family administrator
to reload the contents of the Authority table without rerunning the mkdb command.

The chauth shell script replaces the contents of the Authority table with the values
found in the authority.ld file which you have already copied into the familyname
account's home directory. To modify the access authority groups after the CMVC
server software is configured, you must first edit the authority.ld file and then run
the chauth shell script.

The authority.ld file was copied to your family home directory during the CMVC
server configuration. The chauth shell script is found in the /usr/lpp/cmvc/install
directory on the CMVC server.

CAUTION:
Do not remove authority groups from the authority.ld file without checking if
any users reference the group being considered for deletion.

Executing the chauth Shell Script
Note: We strongly recommend that you stop the CMVC daemons before issuing

this shell script.

To execute the chauth shell script:

1. Log in to the familyname account on the CMVC server.
2. Run the chauth script.

The syntax for the chauth shell script is shown in Figure 29.

Figure 29. Syntax for the chauth Command

chauth [–h] [–s]

Where:

–h Indicates help is needed

–s Runs the command in silent (no prompt) mode

 Verification
Duplicate entries in the authority.ld file or an entry with a CMVC action that cannot
be included in an authority group will cause the chauth shell script to fail or only
partially load the Authority database table.

If you are using a DB2/6000 or an INFORMIX database, the shell script displays an
error log when errors occur.

If you are using an ORACLE relational database, check the following files:

 � bad.authority

This file contains all records that SQL*Loader attempted to insert but could not.

 � authority.log

This file contains a detailed summary of the SQL*Loader execution.

70 Server Administration and Installation

If you are using a SYBASE relational database, the authority.log file is created
when the chauth script uses the bcp command to load the Authority table. This
file is the SYBASE bcp error file.

To verify that the shell script successfully modified the Authority table you can
generate a report on the Authority table using the GUI or the CMVC Report
command from the command-line interface. This can only be done from a CMVC
client workstation.

If the Authority table did not load correctly, make the necessary changes to the
authority.ld file and run chauth again.

 Chapter 9. Configuring Authority Groups 71

72 Server Administration and Installation

Chapter 10. Configuring Interest Groups

There are over one hundred actions that can be issued with CMVC commands.
Interest groups provide configurable control of the users who are notified when
certain actions are performed against certain objects.

This chapter describes the process of configuring interest groups for individual
families.

Controlling Notification of Actions
Users are not notified every time an action is performed within their family. With
over one hundred actions possible, even a small family would generate too many
notifications.

Therefore, when an action is performed users get notified in one of two ways:

 � Automatic notification

 � Explicit notification.

 Automatic Notification
A user who owns a CMVC object is automatically notified of certain actions being
performed against that object by other users in the family. Users also receive
notification when certain actions are performed by other users that affect their
CMVC user ID. For example, a user receives automatic notification when their
CMVC user ID is added to an access list or when their access to an object is
restricted.

 Explicit Notification
Users who do not own a specified CMVC object need to be specified as
subscribers to receive notification when actions are performed against that object.
Users must subscribe to the AccessRestrict action for a component to ensure that
they are notified if their access to that component is restricted.

For a detailed list of all CMVC actions and who is notified when they are
performed, refer to the IBM CMVC User’s Reference.

 Subscribers
A subscriber is a user who is to be notified when a specific action is performed
against a specific development object. Users do not subscribe to individual CMVC
actions, instead they subscribe to interest groups which contain a set of CMVC
actions. Subscribers to each development object are managed through the
notification list of the component that manages that object.

 Copyright IBM Corp. 1993, 1994 73

Grouping Actions into Interest Groups
Interest groups are used to group CMVC actions for notification purposes. Only the
family administrator should create or modify interest groups. Each group should
represent the actions a particular type of user would want to be notified about. The
family administrator can configure and control the actions that each type of user
receives notification about by using interest groups. For example, in Figure 30,
three interest groups are created: low, high and builder.

CMVC actions:

builder

high

low

CompDelete
DefectAccept
DefectCancel
DefectClose
FileAdd
FileCheckin
FileLock
LevelCommit
LevelComplete
LevelCreate
ReleaseCreate
ReleaseModify

Steve wants to set up an interest
group for those users who only want
to be notified about build related
actions. He creates an interest group
of composed of a set of
CMVC actions. The managers
decide that an interest group for
those users who want to be notified
about all actions is needed as well as
one for users who want very little
notification. Steve set up the interest
groups and . These
groups can now be used on the
notification lists within this family.

Figure 30. Grouping CMVC Actions into Interest Groups

The component owners can then use these notification interest groups to specify
individual users as subscribers on notification lists. For more information on using
notification interest groups, see IBM CMVC Concepts.

Configuring Interest Groups
Interest groups take careful planning and should be configured to the needs of
each user.

Interest groups are defined by mapping any configuration of CMVC actions to a
name designated as an interest group name. As family administrator, you can
designate your own interest groups or use the defaults shipped by IBM. A blank
worksheet for recording the interest configuration for your family can be found in
Appendix F, “Interest Groups Worksheet” on page 215.

The CMVC action names to which you can map these groups and the notification
interest groups shipped by IBM are listed in the IBM CMVC User’s Reference.

To create your own interest groups, edit the interest.ld file found in the familyname
account’s home directory prior to running the mkdb command during configuration
of the CMVC environment.

74 Server Administration and Installation

Editing the interest.ld File
To edit the interest.ld file:

1. Log in to the family account on the CMVC server.

2. Change directory to the family’s home directory.

3. Make the proposed changes by editing the interest.ld file.

When adding new interest groups or when adding more low level actions for an
existing notification interest group, follow the existing format of the file:

InterestGroup|CMVCActionName

The interest.ld file can only have these two fields. The InterestGroup field cannot
have tabs or blanks and it must be between 1 and 15 characters in length. The
CMVCActionName field cannot have tabs or blanks and only accepts one of the
CMVC actions specified in the table of notification interest groups shipped by IBM.
Certain CMVC actions cannot be included within an interest group. These actions
and information regarding the type of notification they relate to are also described in
the IBM CMVC User’s Reference.

Using the chintr Script to Reload the Interest Table
After the mkdb command completes, the interest table contains values for interest
groups. The chintr shell script allows the family administrator to reload the
contents of the Interest table without rerunning the mkdb command.

The chintr shell script replaces the contents of the Interest table with the values
found in the interest.ld file in your familyname home directory. If there is a need to
modify the interest groups once the CMVC server is configured, you must first edit
the interest.ld file and then run the chintr shell script.

The interest.ld file was copied to the familyname account's home directory during
the CMVC server configuration. The chintr shell script is found in the
/usr/lpp/cmvc/install directory on the CMVC server.

CAUTION:
Do not remove interest groups from the interest.ld file without checking if any
users reference the group being considered for deletion.

Executing the chintr Shell Script
Note: We strongly recommend that you stop the CMVC daemons before issuing

this shell script.

To run the chintr shell script:

1. Log in to the familyname account on the CMVC server.

2. Run the chintr shell script.

The syntax for the chintr shell script is shown in Figure 31 on page 76.

 Chapter 10. Configuring Interest Groups 75

Figure 31. Syntax for the chintr Command

chintr [–h] [–s]

Where:

–h Indicates help is needed

–s Runs the command in silent (no prompt) mode

 Verification
Duplicate entries in the interest.ld file or an entry with a CMVC action that cannot
be included in an interest group will cause the chintr shell script to fail or only
partially load the Interest database table.

If you are using a DB2/6000 or an INFORMIX database, the script displays an error
log when errors occur.

If you are using an ORACLE relational database, check the following files:

 � bad.interest

This file contains all records that SQL*Loader attempted to insert but could not.

 � interest.log

This file contains a detailed summary of the SQL*Loader execution.

If you are using a SYBASE relational database, the interest.log file is created
when the chintr command uses the bcp command to load the Interest table. This
file is the SYBASE bcp error file.

To verify that the shell script successfully modified the Interest table you can
generate a report on the Interest table by using the GUI or the CMVC Report
command from the command-line interface. This can only be done from a CMVC
client workstation.

If the Interest table did not load correctly, make the necessary changes to the
interest.ld file and run chintr again.

76 Server Administration and Installation

Chapter 11. Modifying Your Configuration Table

The configuration database table defines values for CMVC object attributes. These
values should be configured to represent the information important to your
development organization.

This chapter describes how to modify the configuration database table and the
information that needs to be included in this table.

The Configuration Database Table
The database table for configuration is called the Config table. The Config table is
divided into six columns:

type The type field represents configuration type values for defect,
feature, and level attributes. You can create new types and you can
configure how many name entries each type has in the database
table. There must be at least one entry per type. Type entries
cannot have blank spaces or tabs. Types shipped by IBM are:
priority, leveltype, severity, answerAccept, answerReturn,
defectPrefix, featurePrefix, phase, and symptom.

name The name field represents the choices the user has within the
configuration type. The defaults shipped by IBM may not be
adequate for your CMVC family. You can create new types and add
as many names as you want for each configuration type. Name
entries cannot have spaces or tabs.

Note: The name of a type cannot be the prefix for another name of
the same type. For example:

severity|123|yes|ð|ð|desc

123 is a valid type name. If it exists in your Config table, then
the following would be considered INVALID type names:

severity|1|no|ð|ð|desc

severity|12|no|ð|ð|desc

1 and 12 are prefixes of 123 and are thus invalid.

dflt The dflt field indicates the defined names that are used as the
default when the user does not enter a value for the configuration
type when performing defect, feature, or level related activities. The
dflt must be either a yes or no and only one name for each
configuration type may have its dflt field set to yes. The Config table
shipped by IBM does not have any of the values set as defaults.

value1 and value2
Must be set to 0. Reserved for future use.

description The description field provides a description of each name value. It
must be less than or equal to 63 characters and can be set to null.

 Copyright IBM Corp. 1993, 1994 77

 Configuration Types
The entries in the configuration table are provided to help your organization
structure your problem tracking information. How you choose to use each type is
configurable for each family. The following descriptions are recommendations:

priority An indication of the timing or scheduling requirements for
resolving a defect or feature.

leveltype The type of level the defect or feature resolution should be
included in.

severity An indication of the severity of a defect.

answerAccept The answer to the defect or feature, used by the defect or
feature owner when accepting to work on a defect or
consider a feature.

answerReturn The answer to the defect or feature, used by the defect or
feature owner when returning a defect or feature to the
originator.

defectPrefix A prefix indicating the type of a defect. The prefix attribute of
a defect or feature can be used to identify a problem as
either a defect or a feature when looking at information
regarding both. Use unique prefixes for defects.

featurePrefix A prefix indicating the type of feature. The prefix attribute of
a defect or feature can be used to identify a problem as
either a defect or a feature when looking at information
regarding both. Use unique prefixes for features.

phase The development phase in progress when the defect was
discovered or the development phase in progress when the
defect was injected into the code.

symptom An indication of the symptom of the problem.

Note: If the default configurable fields shipped by IBM are not installed, then the
types priority, phase, and symptom are not used.

Modifying the Config Table
To modify the Config table prior to running the mkdb command, edit the file
config.ld found in the familyname account’s home directory.

To modify the configuration table after the family has been configured see “Using
the chcfg Script to Reload the Config Table” on page 84.

Figure 32 on page 79 shows the values shipped by IBM for the configuration table.

78 Server Administration and Installation

Figure 32 (Part 1 of 5). Defaults Shipped by IBM for the Config Table

type characters:15 name characters:15 dflt
characters:3

value1 value2 description characters:63

answerAccept docs_defect no 0 0 Documentation needs to
be changed

answerAccept program_defect no 0 0 The problem was due to a
program error

answerAccept plans_change no 0 0 Plans or schedules need
to be changed

answerAccept new_function no 0 0 New function will be added

answerAccept redesign no 0 0 Current function needs to
be redesigned

answerAccept docs_change no 0 0 Documentation needs to
address new features

answerAccept remove_support no 0 0 Non-supported functions
need to be removed

answerAccept fix_testcase no 0 0 Testcase needs to be
fixed

answerAccept remove_code no 0 0 Obsolete code needs to
be removed

answerAccept comply_with no 0 0 Coding practices and
operation needs to comply
with standards

answerReturn fixed no 0 0 The problem is already
fixed

answerReturn future no 0 0 Future releases or
versions will address the
defect or feature

answerReturn duplicate no 0 0 This is a duplicate of an
existing defect or feature

answerReturn unrecreatable no 0 0 The problem cannot be
re-created

answerReturn as_designed no 0 0 The program works as
designed

 Chapter 11. Modifying Your Configuration Table 79

Figure 32 (Part 2 of 5). Defaults Shipped by IBM for the Config Table

type characters:15 name characters:15 dflt
characters:3

value1 value2 description characters:63

answerReturn hardware_error no 0 0 The problem is caused by
a hardware error

answerReturn deviation no 0 0 Code or documentation
will deviate from the
standards

answerReturn info_needed no 0 0 More information is
required

answerReturn limitation no 0 0 This problem is a current
limitation

answerReturn suggestion no 0 0 This problem is a
suggestion, not an error

answerReturn usage_error no 0 0 The problem is caused by
incorrect usage

defectPrefix c no 0 0 Defect reported by a
customer

defectPrefix d no 0 0 Defect reported by internal
users

featurePrefix s no 0 0 Suggestion made by
customer

featurePrefix f no 0 0 Feature requested by
internal users

leveltype development no 0 0 Development level

leveltype production no 0 0 Production level

leveltype integration no 0 0 Integration level

leveltype prototype no 0 0 Prototype level

leveltype other no 0 0 Other type of level

phase development no 0 0 Development Phase

phase design no 0 0 Design Phase

phase planning no 0 0 Planning Phase

phase strategy no 0 0 Strategic Planning Phase

80 Server Administration and Installation

Figure 32 (Part 3 of 5). Defaults Shipped by IBM for the Config Table

type characters:15 name characters:15 dflt
characters:3

value1 value2 description characters:63

phase prototyping no 0 0 Prototyping Phase

phase inspections no 0 0 Inspection Phase

phase maintenance no 0 0 Maintenance Phase

phase building no 0 0 Building, Compiling or
Module Integration Phase

phase documenting no 0 0 Documentation or
Publication Phase

phase functional_test no 0 0 Functional Test

phase regression_test no 0 0 Regression Test

phase install_test no 0 0 Install Test

phase config_test no 0 0 Configuration Test

phase integrate_test no 0 0 Integrate Test

phase quality_test no 0 0 Quality Assurance Test

phase usability_test no 0 0 Usability Test

phase ship_test no 0 0 Ship Test

phase beta_test no 0 0 Beta test

phase n/a no 0 0 Not applicable to any
particular phase

phase unit_test no 0 0 Unit Test

priority mustfix no 0 0 Defect or feature must be
resolved in this release

priority candidate no 0 0 Defect or feature is a
candidate if time permits

priority deferred no 0 0 Defect or feature deferred
to next release

priority easy no 0 0 Defect or feature is easy
to solve or implement

 Chapter 11. Modifying Your Configuration Table 81

Figure 32 (Part 4 of 5). Defaults Shipped by IBM for the Config Table

type characters:15 name characters:15 dflt
characters:3

value1 value2 description characters:63

priority moderate no 0 0 Defect or feature is
moderately difficult to
resolve

priority difficult no 0 0 Defect or feature is difficult
to solve or implement

priority n/a no 0 0 Priority does not apply to
this defect or feature

severity 1 no 0 0 Wrong results or failure;
critical to program
execution

severity 2 no 0 0 Wrong results; not critical
to program execution

severity 3 no 0 0 Unexpected behavior

severity 4 no 0 0 Suggestion or
enhancement request

symptom incorrect_i/o no 0 0 Incorrect or unexpected
input or output

symptom program_defect no 0 0 Program defect

symptom design_wrong no 0 0 Original design is
incorrect; redesign
required

symptom function_needed no 0 0 Additional function is
required

symptom plans_incorrect no 0 0 Plans need to be changed
or enhanced

symptom docs_incorrect no 0 0 Documentation is incorrect

symptom prog_suspended no 0 0 Program suspended
during normal operation

82 Server Administration and Installation

Figure 32 (Part 5 of 5). Defaults Shipped by IBM for the Config Table

type characters:15 name characters:15 dflt
characters:3

value1 value2 description characters:63

symptom core_dump no 0 0 Core dump occurred
during normal operation

symptom lost_data no 0 0 Data loss occurred during
normal operation

symptom usability no 0 0 Program or application is
not usable as is

symptom test_failed no 0 0 Test failed

symptom build_failed no 0 0 Build, compile or module
integration failed

symptom install_failed no 0 0 Installation failed

symptom obsolete_code no 0 0 Remove obsolete code

symptom intgr_problem no 0 0 Integration problems with
other applications

symptom performance no 0 0 Performance problems;
code needs to be
optimized

symptom reliability no 0 0 Reliability problems; code
needs more work

symptom non-standard no 0 0 Coding practices or
program execution is
non-standard

symptom not_to_spec no 0 0 Program or application
does not function as
specified

Editing the config.ld File
To edit the config.ld file:

1. Log in to the familyname account on the CMVC server.
2. Change directory to the family’s home directory.
3. Make the proposed changes.

When adding new values to this file, follow the existing format of the file. When
using the:

� ORACLE relational database, the format is as follows:

type|name|default|ð|ð|"description"

� INFORMIX relational database, the format is as follows:

type|name|default|ð|ð|description|

� SYBASE relational database, the format is as follows:

type|name|default|ð|ð|description

� DB2/6000 relational database, the format is as follows:

type|name|default|ð|ð|"description"

 Chapter 11. Modifying Your Configuration Table 83

Using the chcfg Script to Reload the Config Table
The chcfg script replaces the contents of the Config table with the values found in
the config.ld file. If there is a need to modify the Config table values after your
family has been configured, you must first edit the config.ld file and then run the
chcfg shell script. You must run chcfg if you are using configurable fields and
create a new type.

The config.ld file is copied to the familyname account’s home directory during the
CMVC configuration. The chcfg shell script is found in the /usr/lpp/cmvc/install
directory on the CMVC server.

Changing values in the Config table does not change values already in the CMVC
database for existing records.

Running the chcfg Shell Script
Note: We strongly recommend that you stop the CMVC daemons before issuing

this shell script.

To run the chcfg shell script:

1. Log in to the familyname account on the CMVC server.

2. Run the chcfg script.

The syntax for the chcfg shell script is shown in Figure 33.

Figure 33. Syntax for the chcfg Command

chcfg [–h] [–s]

Where:

–h Indicates help is needed

–s Runs the command in silent (no prompt) mode

 Verification
Duplicate entries in the config.Id file or entries with field widths wider than the
allowable values cause the chcfg shell script to fail or only partially load the Config
table.

If you are using a DB2/6000 or an INFORMIX relational database, the script
displays an error log when errors occur.

If you are using an ORACLE relational database, check the following files:

 � bad.config

This file contains all records that SQL*Loader attempted to insert but could not.

 � config.log

This file contains a detailed summary of the SQL*Loader execution.

If you are using a SYBASE relational database, check the config.log file. This is
the SYBASE bcp error file.

84 Server Administration and Installation

To verify that the shell script successfully modified the Config table you can
generate a report on the Config table using the GUI or the CMVC Report
command from the command-line interface. This can only be done from a CMVC
client workstation.

If the Config table did not load correctly, make the necessary changes to the
config.Id file and run chcfg again.

 Chapter 11. Modifying Your Configuration Table 85

86 Server Administration and Installation

Chapter 12. Providing User Exits

This chapter describes user exits, how they can be used and how they can be
implemented for each CMVC family. User exits are not necessary for the operation
of CMVC; they are optional and can be configured for each CMVC family.

With user exits you can specify additional actions that you want performed before
completing or proceeding with a specific CMVC action. A user exit enables the
CMVC server to call a user-defined program during the processing of CMVC
actions. Therefore, you can use CMVC as a trigger to start non-CMVC processing.
You can also use user exits to restrict certain CMVC actions based on external
considerations. For example, you might have a user exit scan C source files to
ensure that the source code conforms to the standards defined by your
development process.

CMVC provides user exits for most CMVC actions. See Appendix H, “User Exit
Parameters” on page 221 for a list of the CMVC actions that support user exits.

Configuring User Exits
Do the following to configure a user exit:

1. Stop the CMVC daemons.

2. Edit the userExits file that is in the $HOME/config directory of the CMVC
family’s account and add an entry for each user exit. See “Editing the
userExits File” for more details.

The userExits file has no defined actions until you add entries for the user
exits that your organization will use. The entries you add specify the programs
or shell scripts that you want started for specific CMVC actions.

If you do not have a $HOME/bin directory, use the mkfamily command to
create it for you. Include the $HOME/bin directory in the $PATH environment
variable for the CMVC family account so that the CMVC server can find the
user exit programs.

For more information about editing the userExits file, refer to “Using the
mkfamily Command” on page 41.

3. Create a program or shell script file in the $HOME/bin directory for each entry
in the userExits file.

4. Start the CMVC daemons. Your user exits are now available.

Editing the userExits File
Before you can implement user exits, you must edit the userExits file. For each
user exit, add an entry using the following format:

CMVCaction ExitID UEprogram UEparameters #Comments

Separate each field in the entry by one or more blank spaces. A line that begins
with a # sign is treated as a comment. You can have blank lines in the file.

 Copyright IBM Corp. 1993, 1994 87

A description of each field in the entry follows:

CMVCaction The name of the CMVC action that causes the user exit to start.

ExitID An exit ID that identifies when the user exit program is started
during the course of the CMVC action. Valid exit IDs are 0, 1, 2,
and 3, where:

0 Indicates that the user exit program starts at the beginning of
the CMVC action, before any initialization or access checking
takes place.

1 Indicates that the user exit program starts after all CMVC
checks are made and CMVC is ready to process the command.

2 Indicates that the user exit program starts after the CMVC
action is completed. At this point, the action has been
submitted to CMVC and all database or library updates have
been committed.

3 Indicates that the user exit program starts if a user exit with an
exit ID of 0 or 1 is not successful, or the CMVC action is not
successful. This exit ID allows the user exit program to clean
up what the other user exit programs started.

UEprogram The name of the user exit program. It must exist in the $HOME/bin
directory of the CMVC family.

UEparameters A variable length list of character string parameters provided to the
user exit program.

#Comments A comment about the user exit program. This field is optional.

Writing User Exit Programs
Follow these guidelines when you write user exit programs:

� Limit the length of time that the user exit program runs.

� Avoid using commands that update the database. Instead, use the Report
command or commands that have the -view action.

Note: Using commands that update the database can cause deadlock.

� Run at least two cmvcd daemons when using commands from within a user
exit.

� User exit programs do not permit user interaction (for example, from a user exit
shell script, you cannot prompt a user with a read command).

� User exit programs must reside in the $HOME/bin directory.

� Use the following command to set the executable bit for each user exit:

chmod u+x filename

� Define only one user exit program in the userExits file for each CMVC
CMVCaction and exitID combination. If you create more than one entry, CMVC
uses the last entry.

User exit programs have the following behavior:

� Each user exit shell script receives a unique list of parameters, defined as
follows:

88 Server Administration and Installation

UEprogram Name of the calling user exit (parameter $0).
UEparameters User-defined parameters in the userExits file, if any.
Action parameters The parameters passed to the user exit program from the

CMVC command.

� When a user does not enter a value in an optional GUI field or command line,
no value is passed to the user exit for that positional parameter. This is also
true for UEparameters.

For example, a user exit exists for FileCheckIn for exit ID 1. If a user does not
provide information for the Remarks parameter, then the Common release
names parameter value follows the Force flag parameter value. The
Remarks field is null.

� Positional parameters that pass true or false values, such as Break common
link (force flag), return the following:

True 1
False 0

� A nonzero return code from a user exit shell script for exit ID 0 or 1 terminates
the CMVC command. Nonzero return codes have no effect on exit ID 2 or 3.

� The userExits file is only read when the CMVC daemons are started. After a
user exit is enabled, you can change it without restarting the CMVC daemons.

The table in Appendix H, “User Exit Parameters” on page 221 lists the parameters
that are passed by each CMVC action and exit ID. The table also contains
descriptions of the parameters.

Figure 34 on page 90 is an example of the parameters passed to the user exit
program defined for the FileAdd action.

 Chapter 12. Providing User Exits 89

Figure 34. User Exit Parameters for the FileAdd Action

Exit ID CMVC Action Parameters

0 � file path name
� temp file on server

 � release name
 � component name
� file type (0 if not binary, a if binary)

 � remarks
 � fileMode
� effective CMVC user ID
� real UNIX** login

 � verbose flag

1 � file path name
� temp file on server

 � release name
 � component name
� file type (0 if not binary, a if binary)

 � remarks
 � fileMode
� effective CMVC user ID

 � verbose flag

2 � file path name
� temp file on server

 � release name
 � component name
� file type (0 if not binary, a if binary)

 � remarks
 � fileMode
� effective CMVC user ID

 � verbose flag

3 The parameters passed to exit ID 3 are the same as those passed to exit ID
0 without the real Unix login parameter, but with one additional parameter as
the last parameter. This parameter indicates that the last user exit ID that
ran successfully, (for example, exit ID 0 or 1).

You might want to have a user exit that runs when a user creates a file in CMVC.
You would include the following line in the userExits file to invoke a user exit
program called showActionParms each time a user creates a CMVC file.

FileAdd 1 showActionParms “1991, 1992” # checks for 1991 & 1992

This program runs when CMVC recognizes that the user is requesting a valid
FileAdd action, but before the FileAdd action actually starts. If the content of the
showActionParms user exit shell script in $HOME/bin is:

 #!/bin/ksh

#Show name of user exit and action parameters

echo $ð $\

 exit ð

and the command issued by the CMVC client is:

File -create fileX.c -component codeA -release ToolAv1 -family

TestFam -defect 1ðð

the output displayed in the client window is:

90 Server Administration and Installation

/home/TestFam/bin/showActionParms “1991, 1992” fileX.c

/tmp/cmvcAAGuacwxbb

ToolAv1 codeA ð Initial Version ð444 Matt ð

In the above example:

� 1991, 1992 are the UEParameters in the userExits file.
� The output beginning with fileX.c and going to the end of the statement is

defined in Figure 34 on page 90 in the section for exit ID 1.
� The temporary file created on the server is /tmp/cmvcAAGuacwxbb.
� Because no remark was specified, CMVC provided Initial Version.
� The user issuing the command is Matt.

 Chapter 12. Providing User Exits 91

92 Server Administration and Installation

Part 3. Working with CMVC

This part of the book outlines the activities that you can perform after your initial
setup. These activities include starting your CMVC server, migrating the files from
SCCS, managing the audit log, using the mail facility, monitoring the daemon
activity, aging defects, backing up and recovering data, and archiving and restoring
releases and levels.

 Copyright IBM Corp. 1993, 1994 93

94 Server Administration and Installation

Chapter 13. CMVC Server Daemons

This chapter describes how to start and stop the CMVC server daemons for each
CMVC family. The CMVC server software must be installed and configured before
you can start a CMVC server daemon.

Starting the CMVC Server cmvcd Daemons
The cmvcd daemons run on the CMVC server and handle CMVC client requests
for CMVC actions. Each daemon handles one request at a time. Determine the
number of daemons you want to start based on the load you expect the CMVC
server to handle. For information on monitoring CMVC server performance and
CMVC daemon activity, refer to Chapter 14, “Ongoing Maintenance” on page 101.

The cmvcd daemons can be run in maintenance mode to provide users with
read-only access to CMVC during backups or archiving.

Each cmvcd daemon requires a database license. CMVC will support a maximum
of 255 cmvcd daemons.

Note: Remember that you must reserve one database license for the notifyd
daemon.

 Prerequisite Tasks
Before starting the cmvcd daemons you must do the following:

1. Ensure that the relational database is installed and running.

2. Ensure that the CMVC server code is installed and configured.

3. Ensure that the NFS client daemons are running.

4. Log in to the familyname user account.

 Starting cmvcd
Issue the following command:

/usr/lpp/cmvc/bin/cmvcd <familyname> n

where familyname is the name of your family and n is the number of cmvcd
daemons you are starting for this family. If you do not specify the number of
cmvcd daemons, the default is 1. The option of 0 daemons is available for use
during problem determination.

Note: Twice the number of daemons specified are activated. However, only the
number of daemons you specify actively process requests and only the
number of daemons you specify are database users.

To start more daemons than the number with which you started cmvcd ,
stop all the cmvcd daemons and restart cmvcd specifying the new number
of daemons.

 Copyright IBM Corp. 1993, 1994 95

To verify that the cmvcd daemons are running properly, issue one of the following
commands, depending on which operating system you are using:

� For the AIX, Solaris, and HP-UX operating systems,

ps -u <familyName> | grep cmvcd

� For the SunOS operating system,

ps -ax | grep cmvcd

The cmvcd daemons and the CMVC archive and restore programs are mutually
exclusive. You cannot run the CMVC archive and restore programs while any
cmvcd daemons are running and you cannot start the cmvcd daemons while the
archive and restore programs are running.

Starting cmvcd in Maintenance Mode
Start the cmvcd daemons in maintenance mode to provide users with read-only
access to CMVC during backups or archiving. The regular cmvcd daemons must
be stopped to run the cmvcd daemons in maintenance mode. See “Stopping the
CMVC Server Daemons” on page 98 for information on stopping the cmvcd
daemons.

Issue the following command:

/usr/lpp/cmvc/bin/cmvcd -m <familyname> n

where familyname is the name of your family and n is the number of maintenance
mode cmvcd daemons you are starting for this family.

Note: Twice the number of daemons specified are activated. However, only the
number you specify actively process requests and only the number you
specify are database users.

You can start the cmvcd daemons in maintenance mode while the archive and
restore programs are running.

You can issue the following CMVC commands while cmvcd is running in
maintenance mode:

 Comp -view
 Defect -config
 Defect -view
 Feature -config
 Feature -view
 File -config
 File -extract
 File -view
 Level -view
 Release -view
 Report
 Track -view
 User -config
 User -view

96 Server Administration and Installation

Starting the CMVC Server notifyd Daemon
The notifyd daemon runs on the CMVC server and handles the routing of
notification messages to CMVC users based on the mailing address in their CMVC
user ID. There is one notifyd daemon for each CMVC family. The notifyd
daemon also requires a database license. You must satisfy the following conditions
before starting notifyd .

1. The relational database must be installed and running.
2. The CMVC server must be installed and configured.
3. The sendmail daemon must be running on the CMVC server.
4. Log in to the familyname user.
5. If you are using SYBASE SQL Server System 10, you must create a guest

account within the database so that notifyd can create sysprocs in the
database. For more information, refer to the SYBASE documentation.

To start notifyd , issue the following command:

/usr/lpp/cmvc/bin/notifyd

Starting the CMVC Server Daemons on System Reboot
Note: You must ensure that you start the database before you invoke the CMVC

daemons.

If you are using the AIX or HP-UX operating systems and you want to configure
your system to start CMVC on system reboot, add the following commands to the
bottom of the /etc/inittab file:

where n is the number of daemons. Enter each command on one line of the file.

If you are using the SunOS operating system and you want to configure your
system to start CMVC on system reboot, add the following lines to the bottom of
the /etc/rc.local file:

/usr/lpp/cmvc/bin/cmvcd <familyname> n &

/usr/lpp/cmvc/bin/notifyd &

where n is the number of daemons.

If you are using the Solaris operating system, the sample initialization scripts used
to implement init state changes for cmvcd have been supplied in the
/usr/lpp/cmvc/samples directory. These files are named S80cmvcd.rc2 and
cmvcd.init . Modify these sample files to suit your individual site needs, and place
them in the corresponding <0-3>.d directories.

cmvcðð1:2:wait:/bin/su - <familyname> -c "/usr/lpp/cmvc/bin/cmvcd <familyname> n"

cmvcðð2:2:wait:/bin/su - <familyname> -c "/usr/lpp/cmvc/bin/notifyd".

 Chapter 13. CMVC Server Daemons 97

Stopping the CMVC Server Daemons
You must do the following before stopping any of the CMVC server daemons:

1. Log in to the familyname user account.

2. Determine the process IDs for the daemon you want to stop. Issue one of the
following commands, depending on which operating system you are using:

� For the AIX, Solaris, and HP-UX operating systems,

ps -u <familyName> | grep cmvcd

� For the SunOS operating system,

ps -ax | grep cmvcd

3. For each cmvcd or notifyd daemon that you want to stop, issue the following
command:

kill <PID>

where PID is the process ID of the daemon you are stopping.

Alternatively, you can run the stopCMVC sample script which is in the
/usr/lpp/cmvc/samples directory on the CMVC server, by issuing the following
command:

/usr/lpp/cmvc/samples/stopCMVC <familyname>

This command stops any cmvcd or notifyd daemons that are running for the
CMVC family specified by familyname.

Stopping the CMVC Server Daemons on System Shutdown
Note: If you are using ORACLE, you must manually shutdown the CMVC server
daemons.

If you are using the AIX operating system and you want to stop cmvcd and notifyd
when you shut down your system, add the following line to the top of the
/etc/shutdown file:

/bin/su - <familyname> -c "/usr/lpp/cmvc/samples/stopCMVC <familyname>"

You must also stop the NetLS daemons before shutting down your system. To
shut down the NetLS daemons, you can use the kill command, as described earlier
in the previous section.

If you are using the AIX operating system and the NetLS software is installed on
the CMVC server, you can add the following lines to the top of the /etc/shutdown
file:

stopsrc -s netlsd

stopsrc -s glbd

stopsrc -s llbd

If you are using the SunOS or HP-UX operating system, you can create a personal
shutdown script which contains preshutdown procedures and the shutdown
command. You can also use the halt and reboot commands to shut down the
system. You should use the kill command to stop the NetLS daemons before
system shutdown.

98 Server Administration and Installation

If you are using the Solaris operating system, the sample termination scripts used
to implement init state changes for cmvcd have been supplied in the
/usr/lpp/cmvc/samples directory. These files are named K55cmvcd.rc0 ,
K55cmvcd.rc1 , and cmvcd.init . Modify these sample files to suit your individual
site needs, and place them in the corresponding <0-3>.d directories.

Recycling the CMVC Server Daemons
The administrator may have to recycle a cmvcd daemon if a client request is too
long. For instructions on how to recycle your cmvcd daemons, refer to
“Determining Which Users Issue Time Consuming Reports” on page 108.

 Chapter 13. CMVC Server Daemons 99

100 Server Administration and Installation

 Chapter 14. Ongoing Maintenance

This chapter describes the maintenance activities involved in administering a CMVC
family.

 Audit Log
An audit log is maintained for each CMVC family. This audit log contains an entry
for each CMVC transaction and must be carefully maintained. For a detailed
description of this facility and how to manage it, see Chapter 15, “The CMVC Audit
Log.”

 Mail
All CMVC server notifyd daemons use the sendmail command to deliver
notification messages from the CMVC server to CMVC client workstations.
Notification messages are sent to the mail address specified in each user's CMVC
user ID.

The sendmail command is part of the operating system and is installed with it.
Sendmail must be properly configured on your network for CMVC client
workstations to receive mail notification messages from the CMVC server. Refer to
your operating system documentation for more information. The sendmail
command can deliver messages to:

� Users in the local system.

� Users connected to the local system using the TCP/IP protocol.

� Users connected to the local system using the Basic Networking Utilities (BNU)
command protocol.

To deliver mail to users on the local system, additional addressing and routing
information is not required. The sendmail command routes local mail into a user's
system mailbox. The location of the mailbox is as follows:

To deliver mail in a local area network, the network must be using the TCP/IP
network protocol. To simplify the task of keeping the address information
up-to-date, you may want to set up a name server for the network. A name server
controls the addressing information for the network and connections to systems
beyond the immediate network. To deliver mail to another system connected to the
local system with a UUCP link, the link must be defined to the Basic Networking
Utilities in the BNU configuration files. The Basic Networking Utilities system is the
version of UUCP used by the operating system. The sendmail command transfers
mail to the BNU commands for delivery across a UUCP link.

Operating System Directory

AIX and SunOS /usr/spool/mail

HP-UX /usr/mail

Solaris /var/mail

 Copyright IBM Corp. 1993, 1994 101

 Mail Addressing
A user's mail address is specified when a CMVC user ID is created. This mail
address is subsequently used by the CMVC server notifyd daemon to send CMVC
notifications to the user whenever actions for which the user has subscribed, or
when actions against objects the user owns, have occurred. The subscription for
notification can be either explicit (interest in actions can be set using the notification
list of a component) or implicit (notification of certain actions is sent automatically to
the user who is an owner or originator of the object).

Addressing Using a Central Database of Names and Addresses
If the network to which your CMVC server is connected uses a central database of
names, use the following format for the user's mail address:

Login@SystemName

Addressing Using Domain Name Addressing
For networks that span large, unrelated local networks in widespread locations, a
central database of names is not possible. In this instance, use the following
format for the user's mail address:

Login@SystemName.DomainName

Mail Queue–Processing Interval
The frequency with which CMVC client workstation users receive mail notification
from the CMVC server notifyd daemon depends largely on the configuration of the
sendmail daemon on the CMVC server. The interval at which the sendmail
daemon processes the mail queue is determined by the value of the -q flag when
the sendmail daemon starts. The default value for the queue-processing interval is
usually 30 minutes and is contained in a shell script:

� /etc/rc.tcpip for the AIX operating system
� /etc/rc.local for the SunOS operating system
� /etc/netbsdsrc for the HP-UX operating system
� /etc/rc2.d/588sendmail for the Solaris operating system

This means that when running with the default sendmail configuration, client users
will only receive mail notifications from the CMVC server once every 30 minutes. If
this value does not suit your environment, or if you are unsure what the mail
queue-processing interval is on your system, refer to your operating system
documentation for more information.

 Restored Mail
Mail which cannot be delivered to a CMVC user will be returned to the mail box of
the CMVC family login. As a family administrator, you should periodically examine
the returned mail and take the appropriate action to correct the problems which
have resulted in the mail being returned.

102 Server Administration and Installation

Aging Defects and Features
There are two aging tools provided with CMVC. Both of these tools serve to
update the age value of defects and features that are in states that indicate that
work is still in progress for the resolution of defects or the implementation of
features. If neither of the age tools are used the age value for each defect and
feature will remain at zero.

The Age Shell Script
The first of these tools is a customizable shell script that uses the database SQL
interface to increment the age of defects and features. The supplied version of this
script serves to increment the age value of defects and features that are in the
open, working, design, size or review states. The states that you want to consider
for the aging of defects and features are customizable.

The age shell script can be found in the /user/lpp/cmvc/bin directory on the CMVC
server. You must be logged in as the familyname account to invoke the script. If
you are using an ORACLE or SYBASE database, run the age shell script by
entering the following:

age <familyname> dbpasswd

Where

Variable Description

familyname The name of the family for which you intend to age the
defects and features

dbpasswd The password that permits the family to login to the database.

If you are using a DB2/6000 or an INFORMIX database, run the age shell script by
entering the following from your command line:

age <familyname>

Where

Variable Description

familyname The name of the family for which you intend to age the
defects and features.

This script performs a simple increment function on every defect or feature that is in
the appropriate state each time it is invoked. Use the cron utility to establish a
daily invocation of the age script at a time when system activity is low.

If the value of the defect or feature ages loses its synchronization and becomes
incorrect, you can use the resetAge program described in the next section to reset
the age value to a correct value and then resume using the age shell script.

The age script requires a database license while it is running.

 Chapter 14. Ongoing Maintenance 103

The resetAge Program
The resetAge program calculates and resets the age of defects and features based
on their state, the date they were opened, and the selected aging methodology.

The program is found in the /usr/lpp/cmvc/bin directory on the CMVC server and
must be invoked while logged in as the familyname account. To invoke the
program enter the following on the command line:

resetAge fullweek

or

resetAge workweek

If fullweek is provided as a parameter, all defects or features that are in the open,
working, design, size and review states will be aged according to a 7-day schedule.

If workweek is provided as a parameter, all defects or features that are in the open,
working, design, size and review states will be aged according to a 5-day work
week schedule.

Before you invoke this program the CMVC_FAMILY environment variable must be
set to the name of the family to which you want to age the defects and features.
For DB2/6000, ORACLE, or SYBASE users, the DB2_PASS, ORACLE_PASS, or
SYBASE_PASS environment variable must be set to the password which permits
the family to connect to the database.

The resetAge script requires a database license while it is running.

Monitoring the Performance of Your CMVC Server
The following aspects of system loading should be considered when monitoring the
performance of your CMVC server. Refer to your operating system documentation
for more information.

 � I/O activity

Disk devices have a limit in terms of I/O throughput. When examining the
performance of your system make sure that you have not reached the limits of
the I/O bandwidth of your system.

 � CPU usage

Determine whether your CMVC server is CPU-bound. If your CPU has little or
no idle time, then you have reached the limits of your CPU.

 � Paging

For maximum performance, there should be a relatively small amount of paging
activity during normal operations of your CMVC server.

104 Server Administration and Installation

Tuning Your CMVC Server
Careful tuning of your family database can dramatically increase the performance of
your CMVC server. Refer to your database documentation for instructions on
tuning your system and database.

Run only as many cmvcd daemons as you need to adequately support the number
of clients you have. You can monitor the activity of your cmvcd daemons by using
the CMVC Activity Monitor.

Monitoring the CMVC Server Daemons
The CMVC Activity Monitor is a real-time program that permits the CMVC family
administrator to monitor the activity of the CMVC server daemons.

The CMVC Activity Monitor makes use of the server's shared memory space. Each
CMVC daemon as well as the monitor itself attaches to the same shared memory
segment. Each time a request is serviced by a CMVC server daemon, the shared
memory segment for that particular CMVC server daemon is updated with
information regarding the user who has requested the work and the nature of the
request.

The CMVC Activity Monitor can be used in a number of different ways:

� To determine the activity of the CMVC server

� To determine which users issue time consuming reports

� To determine the total number of requests serviced by the CMVC server and
the number serviced by each CMVC server daemon since the CMVC server
daemons were started

� To determine whether there is a problem with one or more of the CMVC server
daemons

� To clean up shared memory when the CMVC server daemons terminate
abruptly.

To invoke the CMVC Activity Monitor, you must be logged on to the familyname
account on the CMVC server. The monitor program is found in the
/usr/lpp/cmvc/bin directory and follows the syntax shown in Figure 35.

Figure 35. Syntax Statement for the Activity Monitor

monitor refreshInterval [width]

Where:

refreshInterval Indicates the time in seconds between successive
screen refreshes.

width Indicates the number of characters of status information
you wish to display for each CMVC server daemon. The
default is 132 characters. The maximum is also 132
characters.

An example of the CMVC Activity Monitor screen with 4 CMVC server daemons
running and 2 daemons running commands is shown in Figure 36 on page 106.

 Chapter 14. Ongoing Maintenance 105

à ð

4 of 4 cmvc daemons running. Shared mem size 2248

Press any key to quit.

Total hits=129ð2

ð1,194ð3,ð3526,

ð2,18661,ð3126,ð8/3ð/91, 12:34:38, FileDelete,gray,gray,gray,torolab,ib.

filexyz,c,fvtTest

ð3,16615,ð2982,

ð4,18924,ð3268,ð8/3ð/91.12:34:37,Report,harrison,harrison,harrison,

torolab.ib,DefectView,compName in ('fvTest') and state not in ('clos

á ñ

Figure 36. Example Activity Monitor Screen

The first line in Figure 36 is a general information line. It indicates that all four of
the CMVC server daemons are running, and that the monitor and the CMVC server
daemons are using 2448 bytes of shared memory. The shared memory information
is displayed for reference only. Some users may be concerned with shared
memory usage on the machine. This informs these users how much shared
memory the CMVC server and monitor program use. The first line also informs
users of the CMVC Activity Monitor how to exit the program. Any key can be
pressed to exit from the program.

The second line indicates the total number of requests, or hits, that have been
serviced by the CMVC server since it was last invoked.

The rest of the lines are status lines, one for each CMVC server daemon. The
format of a status line is as shown in Figure 37 on page 107.

106 Server Administration and Installation

Figure 37. Format of the Status Line in the Activity Monitor

Column Number Data Displayed Description

1 daemon index The index number of the CMVC
server daemon in the shared memory
segment.

2 daemon process id The process ID of the CMVC server
daemon.

3 number of requests
serviced

The number of requests serviced by
the daemon since the time it was
invoked.

4 date The date the request was issued.
Format is mm/dd/yy.

5 time The time the request was issued.
Format is hh:mm:ss.

6 CMVC action name The CMVC request which is being
serviced.

7 CMVC user ID The CMVC user ID which issued the
request.

8 user's operating
system login

The login ID of the user who issued
the CMVC request.

9 hostname The host from which the CMVC
request was issued.

10 status info Additional information about the
CMVC request being serviced.

If only the first three columns are displayed for a daemon, that CMVC server
daemon is not servicing a request.

The amount of data that will be displayed beyond the first three columns is
dependent on the value you entered for the width parameter. If you did not specify
a width parameter, then 132 characters in total are displayed for each CMVC
server daemon entry.

The screen is refreshed based on the refreshInterval specified. If the
refreshInterval is too long, you may never see any activity occurring because the
CMVC server daemon would receive and process the request before the refresh
interval expired. A refresh interval of 1 or 2 seconds is usually sufficient.

If one or more of the CMVC server daemons terminates gracefully, that is, a kill
-15 has been issued to stop a CMVC server daemon, the first line of the monitor
screen is updated to reflect the number of daemons that are still active. The
CMVC server daemon that terminated gracefully has -- displayed in the first column
instead of the index value. If a CMVC request was being processed by a CMVC
server daemon when it was terminated, the status for that action remains on the
screen. The monitor keeps running even if all of the daemons are gracefully
terminated. If you leave the monitor running and then restart the CMVC server
daemons, the monitor detects these new daemons as soon as they are fully
initialized and active. The CMVC Activity Monitor runs until you press any key to
exit from the program.

 Chapter 14. Ongoing Maintenance 107

If one or more of the CMVC server daemons is terminated abruptly, that is, a kill -9
has been issued to stop a CMVC server daemon, the first line of the monitor
screen is updated to reflect the number of daemons that are still active. The
CMVC server daemon that terminated abruptly has >> displayed in the first column
instead of the index value. If a CMVC request was being processed by a CMVC
server daemon when it was terminated, the status for that action remains on the
screen. The monitor keeps running, even if all of the daemons are terminated
abruptly. If you leave the monitor running and then restart the CMVC server
daemons, the monitor detects these new daemons as soon as they are fully
initialized and active. The CMVC Activity Monitor will run until you press any key to
exit from the program.

Monitoring the Activity of the CMVC Server
The CMVC Activity Monitor can be used to determine whether there are enough or
too few CMVC server daemons running for a particular family. By running the
monitor and watching the activity of each CMVC server daemon, you can determine
whether the CMVC server daemons are constantly in use or if they are rarely being
used.

If they are constantly in use, this indicates that there is a lot of activity from CMVC
users, and there may not be enough CMVC server daemons available to service
user requests. Each CMVC server daemon can process only one request at a
time. If all of the CMVC server daemons are busy servicing requests, other
requests are rejected. User's whose requests are rejected receive a message
indicating that a connection cannot be established with the family. Usually a
request can be completed very quickly, but in some cases a request can take
several seconds to complete if the data being requested is lengthy or if certain
actions such as LevelCommit are performed. If this situation is encountered, you
may want to stop CMVC and restart it with more CMVC server daemons, provided
that your database license agreement permits you to do so.

If the CMVC server daemons are rarely used, you may have started more daemons
than are necessary. In this case, stop CMVC and restart it with fewer CMVC
server daemons. This is particularly important if you are using the database for
purposes other than just CMVC. Each CMVC server daemon you start becomes a
user of the database. By starting unnecessary CMVC daemons you decrease the
number of people who can use the database for other purposes.

A minimum of 2 CMVC server daemons per family should be running. The number
of CMVC server daemons you have running per family depends on the number of
users of the family and the peak load of requests from users of CMVC. Since this
differs for each installation, the family administrator should periodically monitor the
activity of the CMVC server daemons and increase or decrease the number of
daemons as appropriate.

Determining Which Users Issue Time Consuming Reports
The CMVC Activity Monitor can also be used to determine which users are issuing
reports that are too time consuming for peak load hours. Since the monitor
displays information regarding the user who has requested the work and the nature
of the request, it is possible to determine which requests are taking a lot of time.
The family administrator can decide whether or not they will permit the user to
continue with the request or whether they would rather cancel the request and
allow the user to run such a request during non-peak hours. By issuing a kill -1

108 Server Administration and Installation

pid , where pid is the process id of the particular CMVC server daemon servicing
the request, the family administrator can recycle a CMVC server daemon. This
effectively cancels the request and prepares the CMVC server daemon for
subsequent work requests.

Monitoring the Number of Requests Serviced
The CMVC Activity Monitor displays the total number of requests, or hits, serviced
by CMVC since the CMVC server daemons were started. The total number of
requests serviced is distributed among the various CMVC server daemons. The
third value displayed on each status line is the number of requests serviced by that
particular CMVC server daemon. This data allows a family administrator to
determine the extent to which CMVC is being used.

Monitoring Server Daemon Problems
The CMVC Activity Monitor can also be used as a tool to determine whether there
is a problem with any of the CMVC server daemons. The daemons may appear to
be running, but may not be processing requests. Alternatively, one or more
daemons could be held up processing a request.

When a CMVC server daemon appears to be held up processing a request, there
could be one or more reasons for this behavior:

� A request can take a long time to process. Actions such as LevelCommit,
LevelCheck -long, LevelExtract, ReleaseExtract, and Report can be time
consuming.

� A request may be held pending the release of a lock of a database table.
Certain actions such as LevelCommit need to lock some of the database tables
so that other users do not destroy the data integrity before the command
completes. If a database table is locked and an update request for that
database table is received, the request will be held until the database table is
unlocked. An update request is any request that modifies the contents of the
information in a database table. Reports that query the contents of a locked
database table can still be completed.

Cleaning Up Shared Memory
If the CMVC server daemons terminate abruptly, shared memory could be attached
to defunct processes. If this is the case, running the CMVC Activity Monitor will
remove the shared memory so that it can be reused. If this shared memory is left
attached to defunct processes, subsequent invocation of the CMVC server
daemons may result in an inability of the monitor and the CMVC server daemons to
reattach to shared memory. This generates an error message on the server (either
on the console or in the syslog), indicating that there was a problem obtaining
shared memory. The CMVC server daemons will continue to initialize without the
use of shared memory, and the monitor functions will not be supported.

Recovery From a Shared Memory Problem
To recover from a shared memory problem, you first need to determine which
shared memory segments are still attached, and then detach them:

1. Stop the CMVC server daemons if they are running.

2. Log in to the familyname account on the CMVC server.

 Chapter 14. Ongoing Maintenance 109

3. Type ipcs and look for the entry that specifies familyname as the owner. You
will use the ID number in this entry for a parameter in step 4.

Note: The ipcs program needs root authority to run on the SunOS operating
system.

4. Type ipcrm -m ID, where ID is the ID of the shared memory used by your
family. This will detach the shared memory segment.

5. Restart the CMVC server daemons as described on page 95.

Version Control Path Finder Tool
Files that are defined in the CMVC development environment are stored in a
family-based version control file repository on the CMVC server. Each family has
its own version control file repository that consists of either SCCS or PVCS files
depending on the version control mechanism that the family is using. The version
control file repository is designed as a hierarchical directory structure as defined by
the CMVC server. The root of this directory structure is the vc directory, which is
located in the CMVC familyname account's home directory.

Due to the hierarchical nature of the directory structure, and the fact that the file
names are defined by the CMVC server and do not represent the same names as
those within the CMVC development environment, a path finder tool is available, so
that family administrators can determine the location of specific CMVC files within
the version control file repository. In most cases there is no need to know where
the file is located or by which name the file is stored within the version control file
repository, however, the tool is available in case the need arises.

You should not tamper with the files in the version control file repository.

The path finder tool, vcPath , is located in the /usr/lpp/cmvc/bin directory on the
CMVC server. To use the tool, you must be logged on to the CMVC family account
on the CMVC server. The CMVC_FAMILY environment variable must be set to the
name of the CMVC family. When using the DB2/6000, ORACLE, or SYBASE
database, the DB2_PASS, ORACLE_PASS, or SYBASE_PASS environment variable must be
set to the password that enables the family to connect to the database.

The vcPath tool requires a database connection while it is running.

Figure 38 shows the proper format for use of the vcPath command.

Figure 38. Syntax Statement for the vcPath Command

vcPath filePathName releaseName

Where:

filePathName The name of the file that exists in the CMVC
development environment.

releaseName The name of the release that the file is associated with
in the CMVC development environment

If you specify a valid file name and release name combination, a message will be
displayed informing you where the file can be located in the version control file

110 Server Administration and Installation

repository. For example, if file main.c is a text file associated with release
projectA and you enter:

vcPath main.c projectA

the following message is returned:

The file, main.c, associated with release, projectA, maps

to the file, s.ð4, in the directory, $HOME/vc/ð/ð/ð/ð,

of the CMVC family's account on the CMVC server.

If file main.cat is a binary file associated with release projectA and you enter:

vcPath main.cat projectA

the following message is returned if SCCS is being used as the version control
mechanism:

The file, main.cat, associated with release, projectA, maps to the

s.binary file in the directory, $HOME/vc/ð/ð/ð/ð/b.ð5, of the

CMVC family's account on the CMVC server.

Each delta to the binary file resides in this directory as an

individual file which is identified by its version number.

If SCCS is used and the record length of a text file is more than 510 characters (file
type is long), the vcPath command displays the above s.binary message.

The following message would be returned if PVCS is being used as the version
control mechanism:

The file, main.cat, associated with release, projectA, maps

to the file, s.ð5, in the directory, $HOME/vc/ð/ð/ð/ð,

of the CMVC family's account on the CMVC server.

If the file specified does not exist in the release specified, or if the release specified
does not exist, then a message is displayed indicating that the file could not be
found in the release.

Managing Level Maps
A CMVC level is a group of changed files in a particular release. When a level is
committed, CMVC defines a map for the level. This map contains a list of file
names, their versions, and the changes that are being committed for the level. As
development with CMVC progresses and the number of committed levels
increases, the number of maps that are created also increases.

Levels are usually cumulative in nature and only rarely will a previous level for a
release be of value. When obsolete levels exist, the family administrator can use
the cmvcarchive program to archive the maps that define those obsolete levels,
thereby freeing storage for the creation of new level maps.

Level maps are created relative to the $HOME/maps directory in the familyname
account on the CMVC server. Since maps are created for particular releases, the
individual level maps are created in the directory of the same name as the release
they were created for. The maps are created in the same name as the level they
represent. Therefore, the format of a level map pathname is:

$HOME/maps/<releaseName>/<levelName>

 Chapter 14. Ongoing Maintenance 111

Level Map File
The level map is a readable text file consisting of line entries that identify the name
of the file, the database version id, the database file id, and the type of change that
was performed on the file. Do not alter the contents of the level maps. The level
maps are used when a user requests that a level be extracted. If the maps are
tampered with the results of the extraction cannot be guaranteed.

Maintaining the Maps Directory
The number of level maps will increase as the number of committed CMVC levels
increases. Some levels will become obsolete and never be required by CMVC
users again.

The family administrator can identify the names of level maps that can be archived
by querying the list of committed levels and determining the date they were
committed and talking to the owners of those levels. The CMVC level will still be
known within the CMVC environment regardless of whether or not the level map
resides in the maps directory on the CMVC server.

Note: If it becomes necessary to free up disk space by archiving level maps or
any other CMVC files, you should only use the CMVC cmvcarchive
program.

When restoring level maps, maintain the same directory format as described on
page 111 and create the necessary directories. These directories should have
permissions of 755 and the level map files should have permissions of 644.

 Errors
Errors encountered by CMVC are recorded in the syslog facility when syslog is
activated. If syslog is not activated, error messages are sent to the console of the
CMVC server workstation. Since multiple families may be supported by a single
CMVC server, the messages logged in syslog may pertain to multiple families.

It is important to activate the syslog daemon so that CMVC errors and database
errors can be logged for subsequent problem resolution. To activate the syslog
daemon, first edit the /etc/syslog.conf file and add the following line, depending on
the operating system you are using:

Then start the syslog daemon by issuing the following command, depending on the
operating system you are using:

Operating System Line to be Added

AIX \.warning /usr/spool/syslog

Note: If you are using the DB2/6000 database, you may
want to avoid the many warning messages by setting
\.error /usr/spool/syslog

HP-UX \.warning /usr/adm/syslog

SunOS \.warning /var/log/syslog

Solaris \.warning /var/adm/messages

112 Server Administration and Installation

Notes:

1. Use the touch command to create the log file if it does not exist.

2. When creating the log file, set permissions according to the directions for the
operating system; for example in AIX, the permissions for /usr/spool/syslog
should be read-write for owner and group, and read for others, with owner root
and group system .

3. Remember to stop and restart syslogd after modifying syslog.conf and
creating the log file.

4. Refer to the /etc/syslog.conf file for the location of the syslog file. Monitor
this file at regular intervals so that any required maintenance or problem
resolution can be performed.

Operating System File

AIX /etc/syslogd

Note: Use stopsrc -s syslogd to stop
syslogd and startsrc -s syslogd to start
syslogd .

HP-UX /etc/syslogd

SunOS /usr/etc/syslogd

Solaris /usr/sbin/syslogd

 Chapter 14. Ongoing Maintenance 113

114 Server Administration and Installation

Chapter 15. The CMVC Audit Log

An audit log is maintained for each CMVC family. This audit log contains an entry
for each successful or unsuccessful CMVC transaction, and therefore provides a
history of your CMVC family. It also includes entries for each unauthorized attempt
to access the CMVC server, so it can be used to audit your system's security.

This chapter describes the CMVC audit log, the type of information it contains, and
how to manage it.

Managing the CMVC Audit Log
The audit log is in the ./audit/log file relative to the home directory of the
familyname account on the CMVC server. It contains an entry for every CMVC
transaction performed since your family was created.

Because the audit log contains information about unsuccessful transactions, it can
be used to track down the source of problems. The audit log also contains
information which can be used to identify users who make unauthorized attempts to
access the CMVC server. Administrators should review the audit log periodically to
check for unsuccessful transactions or attempts to violate the server's security.

Prerequisite Tasks or Conditions
Log in to the familyname account.

Cleaning Up the Log File
Information is continually appended to the end of the log file. To keep the audit log
from growing too large, use the cmvclog.cleanu shell script found in the
/usr/lpp/cmvc/samples directory on the CMVC server. This shell script maintains
4 progressively older copies of the log file, named log.0 , log.1 , log.2, and log.3 .
Each time the shell script is run, it moves the contents of each log file as shown
below:

1. log.2 overwrites log.3
2. log.1 overwrites log.2
3. log.0 overwrites log.1
4. log overwrites log.0

These actions remove the contents of the $HOME/audit/log file, allowing logging to
start over with a new file. You can change this shell script to create more or fewer
old copies of the log file, or rename the files to whatever you want for archive
purposes.

The cmvclog.cleanu can be invoked manually or run at specified intervals by the
cron daemon:

1. Log in to root.

2. Change the directory to crontabs by typing:

cd /usr/spool/cron/crontabs

3. Edit the file for your familyname account by adding a line in the following
format:

 Copyright IBM Corp. 1993, 1994 115

min hr day mth wkday /usr/lpp/cmvc/samples/cmvclog.cleanu > /dev/null

where min hr day mth wkday represent the time period in which you want the
shell script to run. For example, the following line would represent 8:00 AM on
the first day of every month:

ð 8 1 \ \ /usr/lpp/cmvc/samples/cmvclog.cleanu > /dev/null

If your familyname file does not exist then create one.

4. Save the file and exit from your editor.

5. Notify the cron daemon of the change made to the file by reloading the file
while still in the crontabs directory, as follows:

crontab <familyname>

Note: If you did not stop cmvcd before changing the audit log, cmvcd might not
be able to locate the new log. Logging will stop until cmvcd is stopped and
started again.

Format of the CMVC Audit Log
Information about transactions is recorded in the audit log. Figure 39 on page 117
shows an example of an audit log file. The information in the audit log file is in the
following format:

� For unauthorized transactions

– Process ID number of the CMVC daemon

– CMVC User ID of user who requested the action

– Login at hostname

 – UNAUTHORIZED

 – Date

 – Time

 – Error message.

� For authorized transactions

– Process ID number of the CMVC Daemon

 – CMVC action

– SUCCESS or FAILURE

 – Date

 – Time

– CMVC User ID

– Login at hostname

– Additional information for successful transactions or error messages for
unsuccessful transactions.

The additional information included at each entry depends on the CMVC action
specified in the entry. Figure 39 on page 117 shows an example of an audit.log
file. Figure 40 on page 117 lists the additional information for each CMVC action.

116 Server Administration and Installation

31381,ReleaseCreate,FAILURE,03/17/93,11:06:34,sccstest,gray,gray.torolab.ibm.com,
0010-427 A release already exists or previously existed with the name relC1.

Specify a new name for this release.
31410,ReleaseCreate,SUCCESS,03/17/93,11:07:05,sccstest,gray,gray.torolab.ibm.com,relH1
31417,FileAdd,FAILURE,03/17/93,11:07:32,sccstest,gray,gray.torolab.ibm.com,
0010-258 The requested action requires that you specify one or more

defects or features.
0010-263 File FILEH1.bin associated with release relC1 cannot be created.
31423,FileAdd,SUCCESS,03/17/93,11:08:18,sccstest,gray,gray.torolab.ibm.com,FILEH1.bin,relH1,1.1
31450,FileCheckOut,SUCCESS,03/17/93,11:09:03,sccstest,gray,gray.torolab.ibm.com,FILEH1.bin,relH1,1.1
31240,FileCheckIn,SUCCESS,03/17/93,11:09:56,sccstest,gray,gray.torolab.ibm.com,FILEH1.bin,relH1,1.2
31425,FileUndo,SUCCESS,03/17/93,11:11:54,sccstest,gray,gray.torolab.ibm.com,FILEH1.bin,relH1,delta,1.3
31436,ReleaseCreate,SUCCESS,03/17/93,11:32:50,sccstest,gray,gray.torolab.ibm.com,relI1
31446,FileLink,FAILURE,03/17/93,11:33:17,sccstest,gray,gray.torolab.ibm.com,
0010-052 File FILEH1.bin associated with release relI1 was not found.
31449,FileLink,SUCCESS,03/17/93,11:33:41,sccstest,gray,gray.torolab.ibm.com,FILEH1.bin,relH1,relI1,1.2
31249,FileCheckOut,SUCCESS,03/17/93,11:35:08,sccstest,gray,gray.torolab.ibm.com,FILEH1.bin,relI1,1.1.1.1
31259,FileCheckIn,SUCCESS,03/17/93,11:35:18,sccstest,gray,gray.torolab.ibm.com,FILEH1.bin,relI1,1.1.1.2
24942,Transaction from joe/gray@gray.torolab.ibm.com was UNAUTHORIZED,03/18/93,09:43:11,
0010-100 User joe was not found.

Figure 39. Sample of an Audit Log File

Figure 40 (Part 1 of 4). Additional Information Provided in the Audit Log

CMVC Action Additional Information

AccessCreate CMVC user ID, component name, authority group name

AccessDelete CMVC user ID, component name

AccessRestrict CMVC user ID, component name, authority group name

ApprovalAbstain Release name, defect/feature identifier, approver's name

ApprovalAccept Release name, defect/feature identifier, approver's name

ApprovalAssign Release name, defect/feature identifier, new approver's name

ApprovalCreate Defect/feature identifier, release name, approver's name

ApprovalDelete Defect/feature identifier, release name, approver's name

ApprovalReject Release name, defect/feature identifier, approver's name

ApproverCreate CMVC user ID, release name

ApproverDelete CMVC user ID, release name

CompCreate New component name

CompDelete Component name

CompLink Component name, new parent component name

CompModify Component name

CompRecreate Component name

CompUnlink Component name, parent component name

CompView Component name

CoreqCreate Release name, first defect/feature identifier, second defect/feature
identifier

CoreqDelete Release name, defect/feature identifier

DefectAccept Defect identifier

DefectAssign Defect identifier

DefectCancel Defect identifier

 Chapter 15. The CMVC Audit Log 117

Figure 40 (Part 2 of 4). Additional Information Provided in the Audit Log

CMVC Action Additional Information

DefectClose **This action is not audited**

DefectComment Defect identifier

DefectDesign Defect identifier

DefectModify Defect identifier

DefectOpen Defect identifier

DefectReOpen Defect identifier

DefectReturn Defect identifier

DefectReview Defect identifier

DefectSize Defect identifier

DefectVerify Defect identifier

DefectView Defect identifier

EnvCreate Tester's CMVC user ID, release name, environment name

EnvDelete Environment name, release name

EnvModify Tester's CMVC user ID, release name, environment name

FeatureAccept Feature identifier

FeatureAssign Feature identifier

FeatureCancel Feature identifier

FeatureClose **This action is not audited**

FeatureComment Feature identifier

FeatureDesign Feature identifier

FeatureModify Feature identifier

FeatureOpen Feature identifier

FeatureReOpen Feature identifier

FeatureReturn Feature identifier

FeatureReview Feature identifier

FeatureSize Feature identifier

FeatureVerify Feature identifier

FeatureView Feature identifier

FileAdd Path name, release name, SID

FileCheckIn Path name, release name, SID

FileCheckOut Path name, release name, SID

FileDelete Path name, release name

FileDestroy Path name, release name, SID

FileExtract Path name, release name, SID

FileForceIn **Audited via FileCheckIn**

FileForceOut **Audited via FileCheckOut**

FileLink Path name, release name, new release name, SID

FileLock Path name, release name, SID

118 Server Administration and Installation

Figure 40 (Part 3 of 4). Additional Information Provided in the Audit Log

CMVC Action Additional Information

FileLockForce **Audited via FileLock**

FileModify Path name, release name

FileRecreate Path name, release name

FileRecreaForce **Audited via FileRecreate**

FileRename Path name, new path name, release name

FileRenameForce **Audited via FileRename**

FileResolve Base name, release name

FileUndo Path name, release name, undo type, SID

FileUndoForce **Audited via FileUndo**

FileUnlock Path name, release name

FileView Path name, release name

FixActive Defect/feature identifier, release name, component name

FixAssign Defect/feature identifier, release name, component name

FixComplete Defect/feature identifier, release name, component name

FixCreate Defect/feature identifier, release name, component name

FixDelete Defect/feature identifier, release name, component name

HostCreate CMVC user ID, host name, user login on host

HostDelete CMVC user ID, user login on host, host name

LevelAssign Level name, release name, new level owner's CMVC user ID

LevelCheck Level name, release name

LevelCommit Level name, release name

LevelComplete Level name, release name

LevelCreate Level name, release name

LevelDelete Level name, release name

LevelExtract Level name, release name

LevelModify Level name, release name

LevelView Level name, release name

MemberCreate Level name, defect/feature identifier, release name

MemberDelete Level name, defect/feature identifier, release name

NotifyCreate CMVC user ID, component name, interest group

NotifyDelete CMVC user ID, component name,

ReleaseCreate New release name

ReleaseDelete Release name, new release name

ReleaseExtract Release name, new release name

ReleaseLink Release name, new release name

ReleaseModify Release name, new release name

ReleaseRecreate Release name, mew release name

ReleaseView Release name, new release name

 Chapter 15. The CMVC Audit Log 119

Figure 40 (Part 4 of 4). Additional Information Provided in the Audit Log

CMVC Action Additional Information

Report **With -where flag: view name, criteria
**With -help flag: help, none
**With -testClient flag: test, none
**With -testServer flag: test, none

SizeAssign Defect/feature identifier, component name, release name

SizeAccept Defect/feature identifier, component name, release name

SizeCreate Defect/feature identifier, component name, release name

SizeDelete Defect/feature identifier, component name, release name

SizeReject Defect/feature identifier, component name, release name

TestAbstain Defect identifier, release name, environment name, tester's CMVC
user ID

TestAccept Defect identifier, release name, environment name, tester's CMVC
user ID

TestAssign Defect identifier, environment name, new tester's CMVC user ID

TestReject Defect identifier, release name, environment name, tester's CMVC
user ID

TrackAssign Defect/feature identifier, release name, new track owner's CMVC
user ID

TrackCancel Defect/feature identifier, release name

TrackCheck Defect/feature identifier, release name, level name

TrackCommit Defect/feature identifier, release name

TrackComplete Defect/feature identifier, release name

TrackCreate Defect/feature identifier, release name

TrackFix Defect/feature identifier, release name

TrackIntegrate Defect/feature identifier, release name

TrackModify Defect/feature identifier, release name, target

TrackTest Defect/feature identifier, release name

TrackView Defect/feature identifier, release name

UserCreate New user ID

UserDelete User ID

UserRecreate User ID

UserModify User ID

UserView **No additional information is audited**

VerifyAbstain Defect/feature identifier, CMVC user ID

VerifyAccept Defect/feature identifier, CMVC user ID

VerifyAssign Defect/feature identifier, CMVC user ID of the new verification
record owner

VerifyReject Defect/feature identifier, CMVC user ID

120 Server Administration and Installation

Chapter 16. Bringing SCCS Files under CMVC Control

Text files that are currently being developed with SCCS commands can be brought
into the CMVC environment if the CMVC server version control environment is
SCCS.

Read IBM CMVC Concepts before continuing with this chapter. The concepts of
component, release and files within the CMVC environment must be thoroughly
understood before you can bring any SCCS files into the CMVC environment and
place them under CMVC control.

This chapter describes the processes of migrating and importing SCCS files into
the CMVC environment.

Note: If you are using CMVC for Sun systems, you need a Korn shell to run the
scripts that migrate or import files from SCCS into CMVC.

Options for Bringing SCCS Files into CMVC
Two options are available for bringing SCCS files into the CMVC environment:

� Using the SCCS File Migration Function
� Using the SCCS File Import Function.

These two options differ significantly in the amount of space they require on the
CMVC server, the amount of time it takes to copy the files, and the amount of
advance preparation that is required. The choice of which option to use should be
discussed by your entire development team and planned by the CMVC family
administrators.

Read the following sections on each option before making any decisions.

The SCCS File Migration Function
The SCCS File Migration Function imports into the CMVC environment all delta
versions, or SCCS identifiers (SIDs), for each specified SCCS file found in specified
directories. By migrating all SIDs, future development using CMVC can access all
versions of the migrated files. When the files are migrated, they are assigned to a
CMVC component for management purposes and a CMVC release for product
related activities. The current owners and administrators of SCCS files and the
person performing the migration must decide which version of each file a particular
release is going to reference. You can reference different versions of one file
through different releases; however, each version of a file does not have to be
specifically assigned to a release. The CMVC server maintains delta information in
case you wish to use other deltas of the file in the future.

 Advantages
The advantage of migrating SCCS files instead of importing them is that all
versions of all migrated files are available for future development using CMVC.
The amount of preparatory time required for migrating SCCS files is less than is
required for importing, because you do not have to decide which version of each
file is most important.

 Copyright IBM Corp. 1993, 1994 121

 Disadvantages
The disadvantage of migrating SCCS files is that more space is used on the CMVC
server. The delta information for each file that is migrated takes more space than
that used by the one version of each file that is imported.

The SCCS File Import Function
The SCCS File Import Function imports one delta version, or SCCS identifier (SID),
for each specified SCCS file found in specified directories into the CMVC
environment. By importing one SID, future development using CMVC can use this
imported version of the file as a base. When the files are imported, they are
assigned to a CMVC component for management purposes and a CMVC release
for product related activities. Any one of the current SIDs of the SCCS files can be
chosen as the one to be imported.

The goal of the import function is to allow users to access the most important
version of a file and continue developing it from an initial state instead of cluttering
the CMVC environment with information about versions of a file that may never be
accessed.

 Advantages
The advantage of importing SCCS files instead of migrating is that it saves space
on the CMVC server, because only one version of each file has to be saved and
recorded. Also, future retrievals of a file will take less time because the deltas are
compressed into one version when each file is imported. That is, if you import a
file with a SID number of 1.6 into the CMVC environment, all of the deltas that are
in that version are combined with a version number of 1.1 within the CMVC
environment. When an imported file is checked out or extracted for the first time
using CMVC, version 1.1 is retrieved. Version 1.1 has no deltas and therefore
takes less time to retrieve.

 Disadvantages
The disadvantage of importing SCCS files is that the CMVC server retains
information only about the file version that is imported. The CMVC server does not
retain delta information for other versions of the file. Therefore, a CMVC user
cannot access other versions of the file that may have existed in the original SCCS
environment.

Deciding to Migrate or Import SCCS Files
Users of CMVC must consider the advantages and disadvantages of both the
migration and the import function. If you know for certain that you will need access
to all versions of the files that are moved from the intrinsic SCCS environment, you
should consider the migration function. If there are only occasional circumstances
in which you require other versions of each file, you should consider the import
function.

When you migrate files you use more storage space in the CMVC server than you
do when you import the files. Therefore, your capacity to grow within the CMVC
environment is reduced if you migrate files rather than import them.

You can selectively use the import function and the migration function together if
you use different SCCS files for each. This allows you to import files for which you
only need one version and to migrate files for which all versions are required.

122 Server Administration and Installation

Preliminary Requirements and Planning
After choosing the function to use, you must plan your release and component
structure so that versions of files are placed within appropriate releases and
managed by appropriate components. This plan is important. Current SCCS file
owners, prospective CMVC component and release owners, the user responsible
for performing the migration or import procedure, the CMVC family administrator
and the project leaders should all be involved in this planning.

 Prerequisites
All team members involved in the planning must be thoroughly familiar with CMVC
functions and concepts. For a detailed discussion of the CMVC concepts and
functions, see IBM CMVC Concepts. Pay special attention to the way CMVC uses
components, releases, and files.

Comparing SCCS Files and CMVC Files
CMVC files are managed by different control mechanisms than files within the
native SCCS environment. A file under CMVC control is implicitly owned by the
component owner and a particular version of a file is referenced by means of a
release. Component owners decide who can access the files within their
component and give access permission to certain users by means of a component
access list.

You may be migrating or importing files that contain SCCS header flags which
restrict certain users in the SCCS environment from making deltas to a file or
retrieving certain versions of a file. When the file is migrated or imported into
CMVC, any SCCS keywords imbedded in the body of the file are retained but
SCCS header flags are removed. This is done so that CMVC can control who
accesses the file. Users of the migration and import functions must know this so
that they can decide which component should own a file and which files can be
associated together and managed by the same component. After CMVC users
have access to perform file-related activity at a component, they can work with any
file that is managed by the component. Users of the migration and import functions
should also know that all descendant components inherit access to a component,
unless the access is specifically restricted.

Planning Your Component and Release Structures
Before using the SCCS file migration or import function, you must design and
create the component and release structures within your CMVC family to meet the
needs of the development group. That is, you must define the component and
release names and the component hierarchy. You must also choose the component
and release owners and create the components and releases.

To design the structure that will work best for your team you need to have a
conceptual view of the current directories that contain SCCS files that are to be
imported or migrated. You must address the following questions:

1. Which directories contain SCCS files to be migrated or imported?

The names of the directories and the names of the files within the directories
must be made available. If directories are nested and contain subdirectories,
you have to decide whether you want to maintain this directory structure when
you move the files into CMVC. If this is the situation, you must decide the

 Chapter 16. Bringing SCCS Files under CMVC Control 123

directory to use at the top of your tree. It is often a good idea to maintain
directory structures so that when you use CMVC for build preparation activities
you can extract the files from a release or level to the workstation where you
are performing the build. The files are then extracted into the directory
structure that you have maintained.

2. Are the files being used or are they obsolete?

If the files are being used in a current development effort, then you will want to
import or migrate them. If the files are temporary files or if they have been
replaced with other files, you probably do not want to import or migrate them.

You may want to use CMVC for all projects even if they are not currently being
worked on. This will allow you to do maintenance on the files at a later date.
Optionally, you could decide not to import or migrate old projects but keep them
on backup storage media so that they are available if required and then import
or migrate the files when they are needed.

3. Who currently owns the SCCS files?

Is there a restriction on who can access the files? Can this restriction be lifted?
Can each file be associated with a CMVC component which manages many
files or must a special component be created for certain files to control access?

4. Who will own the files in the CMVC environment?

When a file is created in the CMVC environment, it is assigned to a
component. The component owner becomes the implicit owner of the file. You
must find out the CMVC component names, identify the component owners,
and design the component hierarchy. Descendant components inherit access,
unless you restrict it. Therefore, you must consider access when you design
your component hierarchy.

When a file is created in the CMVC environment, it is assigned to a release.
You must determine the CMVC release names and identify the release owners.

5. Can you import the most recently created delta or do you want a particular
version of a file?

When importing, you must decide which delta version of each SCCS file to
import into the CMVC environment.

6. Can you migrate the most recently created delta or do you want a particular
version of a file?

When migrating, you must choose the delta version of each file that is to be
associated with a release. When migrating files that have multiple branches of
development each branch should be identified with a CMVC release for future
access.

7. Will a particular version of any SCCS files need to be referenced by more than
one CMVC release?

A file with one version common to more than one release is a common file.
For a detailed description of common files, refer to the IBM CMVC Concepts
manual.

8. Do the files reside on a CMVC client workstation?

If your SCCS files reside on a machine that is not a CMVC client workstation,
you must move the SCCS files and directory structure, or both, to a CMVC
client workstation, or install the CMVC client software on that machine. This is

124 Server Administration and Installation

necessary because CMVC commands are issued in order to import or migrate
the SCCS files into the CMVC environment.

Migration and Import Requirements
The following requirements must be met before you can use the SCCS File
Migration Function or the SCCS File Import Function:

1. CMVC must be installed, configured and the CMVC daemons for your family
must be running.

2. The directories that contain SCCS files must reside on a CMVC client
workstation.

3. The user performing the import or migration requires host access from the
CMVC client workstation to the CMVC family to which you are migrating or
importing.

4. You must create the CMVC releases and components for your SCCS files
within the CMVC family to which you are migrating or importing.

5. The user performing the import or migration requires a CMVC authority group
access that includes the FileAdd and FileLink actions on the components
involved in the process.

6. No files with the same name as those to be migrated or imported can exist in
any of the CMVC releases involved in the import or migration.

7. If a process containing the track subprocess is selected for the CMVC releases
involved in the import or migration, then a defect or feature must exist with a
track in the fix state for each of the releases involved.

8. Sufficient space must exist on the CMVC server and within the underlying
database.

9. The client workstation user ID must have write access to the directory in which
the import and migration shell scripts are being run, as described in “The SCCS
File Migration Function.”

The SCCS File Migration Function
There are three stages involved in performing the SCCS File Migration:

1. Stage 1. Running the Filemap shell script

This stage consists of running a shell script that searches specified directories
for specified SCCS files and creates a map file based on the user's selection
criteria.

2. Stage 2. Running the Filemigrate shell script

This stage uses the map files that were created for one or more CMVC
releases and generates a file that contains the CMVC commands required to
migrate the files into the CMVC environment.

3. Stage 3. Running the file.migrate script

This stage consists of running the CMVC commands that were generated in
stage 2.

The following sections describe each stage in detail.

 Chapter 16. Bringing SCCS Files under CMVC Control 125

Stage 1: Running the Filemap Shell Script
Stage 1 of the SCCS File Migration function is the same as stage 1 of the SCCS
File Import function.

The map file generated from the Filemap shell script is required for stage 2 of the
migration or import. It is the means by which users of SCCS can indicate which
SCCS files are to be brought into the CMVC environment, which versions of each
file are to be associated with one or more releases, what name CMVC should give
to each file, what component should manage each file, and which track is tracking
the migration or import of the files into the CMVC environment. All of the entries in
an individual map file correspond to files that are referenced by one CMVC release.
The name of each generated map file is the name of the specified release.

Run the Filemap shell script once for each component managing files in a release.
Each time you run the Filemap script, it creates a map file under the name of the
release specified. Running it for each component that manages files that are
grouped in one release adds entries to existing map files of the same name.

If you want to migrate or import SCCS files into more than one release, you must
run the shell script with different input arguments to create map files for each
CMVC release involved in the migration or import.

The Filemap shell script generates an SCCS to CMVC file migration map for one
CMVC release. It uses values supplied by the user as selection criteria for
searching directories for SCCS files that conform to the s. filename convention.
When the script finds a file that matches the selection criteria, it makes an entry in
a map file, corresponding to the release which refers to the file within the CMVC
environment. The map file is created in the directory from which the Filemap script
is invoked.

When the Filemap script encounters errors, such as, file not found, or directory not
found, it displays an error message and attempts to continue to find files that match
the selection criteria. If no matches are made, the user is informed that a map file
was not created.

Using the Filemap Shell Script
The Filemap script is found in the directory /usr/lpp/cmvc/bin on the CMVC client
workstation. Figure 41 on page 127 displays the optional and required flags and
arguments for the Filemap shell script.

126 Server Administration and Installation

Figure 41. Filemap Syntax Statement

Filemap -p releaseName -c componentName -d sccsDirName [-w] [-r SID] [-t] ([-n
defect/feature number]...) {[pathNames][sccsfileNames]}

Where:

-p releaseName Name of the release that will reference the files within
the CMVC environment.

-c componentName Name of the component that will manage the files within
the CMVC environment.

-d sccsDirName Directory from which the search begins for SCCS files.

-w Indicates that subdirectories should be walked in search
of SCCS files.

-r SID Indicates the SID of the SCCS files that will be
referenced by the release.

-t Indicates that the most recently created delta of the
SCCS files should be referenced by the release.

-n defect/featureNumber Indicates a CMVC defect or feature identifier that is
associated with a release for which the process
includes the track subprocess.

pathNames Indicates directories relative to the sccsDirName that
should be searched for SCCS files. Each pathName
should be separated by at least one blank. pathNames
of ‘*’ are not supported.

sccsFileNames Indicates which SCCS files should be migrated or
imported. Use this parameter only to select specific files
instead of selecting all files in a pathName. Each
sccsFileName should be separated by at least one
blank, sccsFileNames of ‘*’ are not supported.

The pathNames argument or the sccsDirNames argument controls which directories
are searched and which SCCS files are selected. Only one -d flag is permitted.

The -w flag is an optional flag indicating that any subdirectories found, relative to
the specified pathNames, should also be walked so that SCCS files within those
subdirectories can also be selected. Only one -w flag is permitted.

The -r flag is an optional flag that identifies a specific SID, an SCCS release, or an
SCCS release and level of the SCCS files that will be referenced by the CMVC
release that is specified by the -p releaseName flag. See your operating system
documentation for more information about SCCS releases and levels.

If you are using the SCCS File Migration Function all versions of the file will be
migrated, but one version must be chosen as the one to be referenced by the
release. When migrating a file with multiple branches of development, you should
define a CMVC release for the tip version of each branch of the file and run
subsequent Filemap executions to generate the appropriate map file. This makes
all branches immediately accessible within CMVC without having to link a release
to them in the future.

If you are using the SCCS File Import Function, only one version of the file is
imported. This version is referenced by the release. If the specified SID does not
exist for a particular SCCS file, an error message is displayed and the script

 Chapter 16. Bringing SCCS Files under CMVC Control 127

continues to search for the next SCCS file that matches the selection criteria. Only
one -r flag is permitted.

If the -r flag is omitted, the -t flag controls the SID that is selected. If both the -r
and -t flags are absent, the SID with the largest SCCS release and level is
selected. If both the -r and the -t flags are provided, the most recently created
delta for the SCCS release and level specified is created.

The -t flag is an optional flag indicating that the most recently created delta of the
selected SCCS files should be used as the version of the files to be referenced by
the release for which the map is being generated. Only one -t flag is permitted. If
the -t flag is omitted, the -r flag controls which SID is selected. If both the -r and -t
flags are absent, the SID with the largest SCCS release and level is selected. If
both the -r and the -t flags are provided, the most recently created delta for the
SCCS release and level specified is created.

The -n flag is an optional flag identifying a CMVC defect or feature identifier that is
tracking the work done for CMVC releases for which a process that includes the
track subprocess is selected. If you are importing or migrating files into the CMVC
environment, and they are going to be grouped by releases that have the track
subprocess included in their process, you must provide the defect or feature
numbers with this flag. The track for the defect or feature in this release must be in
the fix state before the files can be migrated or imported successfully. You must
provide a separate -n flag for each defect or feature that is tracking the work done
for a particular release. When you specify a defect or feature, you provide the
identifier as an argument to the -n flag. You do not indicate whether this identifier
references a defect or a feature. The file of CMVC commands generated after
stage 2 defaults to a -defect flag.

The pathNames argument specifies the directories relative to the sccsDirName
directory that are to be searched for SCCS files. Multiple pathNames may be
specified but each should be separated by a blank space. If you want to process
the sccsDirName directory use a pathName of '.'. If you provide the -w flag, any
subdirectories that are found relative to the pathNames are also searched. Only
files within a directory that conform to the s. filename convention are considered. If
a file is encountered that is of the s. format but it is not an SCCS file an error will
be generated and the script will continue.

The sccsfileNames argument specifies the individual SCCS file names of the SCCS
files to be migrated or imported. Use this parameter only if you need to select
specific files instead of selecting all of the files in a pathName. You may specify
multiple sccsfileNames. Each should be separated by a blank space and should
specify a name or path that is relative to the sccsDirName directory. If a specified
SCCS file does not exist an error will be generated and the script will continue.

The Map File
As the Filemap script is processed, entries are made in a map file. The map file is
created in the directory from which you start the script. You can only invoke the
Filemap script from a directory for which you have write access permission. To
obtain information about the SCCS files, you must have permission to read all
SCCS files.

128 Server Administration and Installation

The name of the map file that is generated corresponds to the name of the CMVC
release that groups the files within the CMVC environment. Each entry in a map
file contains the following:

� Name of the directory in which the SCCS file resides or the name of the
directory that is being used as the top of the tree structure, if the directory
structure is to be maintained within the CMVC environment

� Name of the CMVC component that manages the file

� Name of the file, including any path name that will be associated with it within
the CMVC environment

� Version number or SID of the file which will be referred to by the CMVC release
specified by the name of the map file

� Defect or feature identifier (optional) that tracks the work being done for the
release, if the process for that release includes the track subprocess

All of the entries in a map file correspond to files that will be referenced by the
release specified by the map file name. Each entry in the map file corresponds to
the format shown in Figure 42.

Figure 42. Format of the Map Files Generated by the Filemap Shell Script

sccsDirName componentName filePathName SID [defect/feature number]

Where:

sccsDirName Same as that provided with the -d sccsDirName flag. It
indicates the top of the directory tree which contains the
SCCS file corresponding to the particular entry in the
map file.

componentName Same as that provided with the -c componentName
flag. It indicates the name of the component that
manages the file.

filePathName Represents the path name of the SCCS file relative to
sccsDirName. This is the name of the file as it will be
known in the CMVC environment.

SID Indicates the version of the file that is going to be
referred to by the CMVC release.

defect/feature number Is included only if the -n flag was supplied when the
script was processed.

Figure 43 shows an example of the contents of a map file for the CMVC release,
userA_r1.

/u/sccsTree compA UserA/include/fileAA.h 2.2.1.6 -defect 243

/u/sccsTree compA UserA/include/fileAB.h 1.5 -defect 243

/u/sccsTree compA UserA/include/fileAC.h 3.2 -defect 243

/u/sccsTree compB UserB/source/fileBA.c 2.1 -defect 243

/u/sccsTree compB UserB/source/fileBB.c 1.2 -defect 243

/u/sccsTree compC UserC/source/fileCA.c 1.2.1.1 -defect 243

/u/sccsTree compB UserB/source/fileBC.asm 1.1 -defect 243

Figure 43. Sample Map File for Release userA_r1

 Chapter 16. Bringing SCCS Files under CMVC Control 129

Do not modify the permissions of the map file. Both the Filemap script, the
Filemigrate script, and the Fileimport script must read the map file to continue
with the next stages of the SCCS File Migration function or Import Function.

Common Files and Shared Files
If you are migrating SCCS files into different CMVC releases, you should
understand the concepts of common and shared files. For a detailed description of
common and shared files, refer to the IBM CMVC Concepts manual. If you rerun
the Filemap script for several CMVC releases, and you specify the same SCCS
files with different SIDs, these files become shared files within the CMVC
environment. If you rerun the Filemap script for several CMVC releases, and you
specify the same SCCS files and the same SIDs, these files become common files
within the CMVC environment.

Rerunning the Filemap Shell Script
If you run the Filemap script for a release and make a mistake in the input
parameters, you can either change the map file manually for the corresponding
release or rerun the Filemap script for that release. If you choose to rerun the
Filemap script for a release, you must first delete the map file that was originally
generated for that release. Otherwise, the Filemap script adds your new map file
entries to the end of the existing map file and you will not achieve the results you
want.

If you proceed to stage 3, and migrate or import the SCCS files into the CMVC
environment, you should not return to this first stage and rerun the Filemap in
reference to the same SCCS files. The SCCS files are already created within the
CMVC environment after stage 3. Any attempt to migrate or import them again
produces an error indicating that these files already exist under CMVC control.
Sequential migration or import of files can occur as long as you refer to different
SCCS files each time you perform the SCCS File Migration or Import function.

Stage 2: Running the Filemigrate Shell Script
The second stage of the SCCS File Migration function uses the map files that were
created for one or more CMVC releases and generates a file that contains the
required CMVC commands needed to create files within the CMVC environment.

Using the Filemigrate Shell Script
The Filemigrate shell script is found in the /usr/lpp/cmvc/bin directory on the
CMVC client workstation.

Figure 44 displays the correct syntax for use of the Filemigrate shell script.

Figure 44. Filemigrate Syntax Statement

Filemigrate {mapfileNames...}

Where

mapfileNames Indicates the map files that are to be simultaneously
processed

If an SCCS file is to be migrated into a CMVC release, and then referenced by one
or more other releases, the releases must be processed at the same time. The

130 Server Administration and Installation

script issues a CMVC Migrate command or a CMVC File -link command, if
appropriate.

The file.migrate Commands File
The Filemigrate shell script reads and processes the map files and creates the
commands file file.migrate in the current working directory. This file contains the
CMVC commands that create the files within the CMVC environment for the
specified components and releases.

When the Filemigrate script is completed, a message is displayed that indicates an
estimate of the number of 1K blocks that are required on the CMVC server in order
to migrate the SCCS files into the CMVC environment. The system administrator
should verify that this amount of room is available on the CMVC server before the
commands in the file.migrate file are executed. The relational database you are
using also must have room to bring the files into the CMVC environment.

The contents of the file.migrate file are overwritten each time the Filemigrate
script is executed. If you are performing sequential migrations, rename the
file.migrate file after running the Filemigrate script. When you proceed to stage 3,
substitute the new name for the file.migrate file.

Stage 3: Running the Commands in the file.migrate File
Stage 3 of the SCCS File Migration function is the same as stage 3 of the SCCS
File Import function.

Stage 3 of the SCCS File Migration function consists of running the command file
which was created in stage 2. This file is called file.migrate if you ran the
Filemigrate shell script, or file.import if you ran the Fileimport shell script.
Ensure that the preliminary requirements in “Migration and Import Requirements” on
page 125 are met before running these commands files.

The files are placed in the version control directory $HOME/familyHome/vc in the
familyname account on the CMVC server. The CMVC_FAMILY and the
CMVC_BECOME environment variables should be set so that the CMVC
commands are directed towards the correct CMVC family and that the user
performing the file migration or import is using the correct CMVC user ID.

After performing these steps, you can decide which of the following approaches you
want to take:

1. Execute the commands in the foreground and wait until they complete before
terminating the login session.

2. Execute the commands in the background to free your terminal for other tasks.

3. Use the xecit script to monitor the execution of the commands in the
file.migrate or file.import file. With the xecit script, if processing of the
commands is halted for any reason, the command execution can resume from
the last successfully executed command.

Note: Use the xecit script for recovery purposes. See “Using the xecit Shell
Script” on page 132 for more information.

To execute the commands in the foreground enter file.migrate at the system
prompt, if you are using the file.migrate command file. If you are using the
file.import command file, replace file.migrate with file.import. If you renamed

 Chapter 16. Bringing SCCS Files under CMVC Control 131

the command file during stage 2, substitute that name for file.migrate or
file.import.

To execute the commands in the background, type file.migrate & at the system
prompt if you are using the file.migrate command file. If you are using the
file.import command file, replace file.migrate & with file.import &. If you
renamed the command file during stage 2, substitute that name for file.migrate or
file.import.

Each command in the command file is processed consecutively until all of the
commands are completed. The amount of time this takes is proportional to the
number of commands in your command file.

Using the xecit Shell Script
To monitor the execution of the commands, you must run the xecit script found in
the /usr/lpp/cmvc/bin directory on the CMVC client. This script reads and
processes each line in the command file. This script creates an error file for all
commands that return a nonzero exit status. After the xecit script is completed,
check the current directory for the error file xecit.errs . If the file exists, browse it to
determine the errors that were encountered during the file migration or import. If
the file does not exist, the files were successfully migrated or imported into the
CMVC environment. The xecit script also creates the file xecit.tally which is used
to keep track of the commands that are executed successfully. If the execution of
the xecit script is interrupted for any reason, you can restart the script. The tally
file indicates where the processing should be restarted.

The xecit.errs file indicates which command was executed before the interrupt
occurred. In a successful restart, both xecit.errs and xecit.tally files are removed
from the current directory.

Figure 45 displays the optional and required flags and arguments for the xecit shell
script.

Figure 45. The xecit Syntax Statement

xecit [-v] {commandfileNames...}

Where:

-v Indicates that a verbose mode is desired

commandFileNames Indicates the name of one or more command files

You can execute the xecit script from any directory, if you qualify the
commandFileName argument and provide the full directory path name so that the
xecit script can find the command files.

 Post-Migration Activities
You should perform the following activities after successfully migrating the desired
files into the CMVC environment:

� Change the access permissions to the existing directories that contain the
SCCS files that were migrated. This discourages further development using
the intrinsic SCCS commands and encourages the use of the CMVC
commands and actions.

132 Server Administration and Installation

� Keep the map files available for future reference. This allows you to discover
which files were migrated and which CMVC releases are associated with one or
more versions of the files.

� After a sufficient period of time has passed, store the directories which contain
the original SCCS files on an alternative storage media and remove them from
the file system.

� If you are migrating SCCS files into a release for which a process including the
track subprocess is selected, you should commit the files by committing a level
that includes a track with the defect or feature identifier used during the
migration process, or integrate the track if the level subprocess is not included
in the process managing the release.

The SCCS File Import Function
There are three stages involved in performing the SCCS File Import:

1. Stage 1: Running the Filemap shell script

This stage runs a shell script that searches specified directories for specified
SCCS files and generates a map file based on the user's selection criteria.

2. Stage 2: Running the Fileimport shell script

This stage uses the map files that were created for one or more CMVC
releases, creates a source tree, and generates a file that contains the CMVC
commands required to import the files into the CMVC environment.

3. Stage 3: Running the file.import script

This stage consists of running the CMVC commands that were generated in
stage 2.

The following sections describe each stage.

Stage 1: Running the Filemap Shell Script
Stage 1 of the SCCS File Import function is the same as stage 1 of the SCCS File
Migration function. See “Stage 1: Running the Filemap Shell Script” on page 126
for a detailed description of using the Filemap shell script.

Stage 2: Running the Fileimport Shell Script
The second stage of the SCCS File Import function uses the map files generated in
stage 1 and creates a source tree containing all of the versions of the files to be
imported. From this source tree it generates a file that contains the CMVC
commands that are necessary to create files within the CMVC environment.

Using the Fileimport Shell Script
The Fileimport shell script is found in the /usr/lpp/cmvc/bin directory on the
CMVC client workstation. The Fileimport script must be run from the directory that
contains the map files that were generated in stage 1.

Figure 46 on page 134 displays the optional and required flags and arguments for
the Fileimport script.

 Chapter 16. Bringing SCCS Files under CMVC Control 133

Figure 46. Fileimport Syntax Statement

Fileimport [-d workDirName] {mapFileNames...}

Where:

-d workDirName Indicates a temporary read/write working directory to be
used by the script to hold a copy of the files after they
are obtained from SCCS and before they are imported
into the CMVC environment

mapFileNames Indicates which map files are to be processed
simultaneously

The optional -d flag allows you to specify a temporary working directory which the
Fileimport script can access with read/write authority. If the flag is not provided,
the script uses the /tmp directory. A working directory is required so that
Fileimport can import the same file for more than one CMVC release. The
Fileimport script uses the workDirName or /tmp as the base directory and creates
a subdirectory for each CMVC release that it processes. The specified version of
each file is retrieved from SCCS and temporarily stored in the appropriate
subdirectory of the working directory. The current directory which contains the map
files should not be used as the temporary working directory for Fileimport .

The mapFileNames argument indicates the map files that are to be processed at
the same time by the Fileimport script. If an SCCS file is to be imported into a
CMVC release and then referenced by one or more other releases, these releases
must all be processed at the same time. This enables the script to issue a CMVC
File -add command or a CMVC File -link command, if appropriate.

The file.import Commands File
The Fileimport shell script reads and processes the map files and creates a
commands file called file.import in the current working directory. This file contains
the CMVC commands that create the files within the CMVC environment for the
specified components and releases.

When the Fileimport script is completed, a message is displayed that indicates an
estimate of the number of 1K blocks that are required on the CMVC server to
import the SCCS files into the CMVC environment. The system administrator
should verify that this space is available on the CMVC server before the commands
in the file.import file are executed. The relational database you are using also
must have room to bring the files into the CMVC environment.

The contents of the file.import file are overwritten each time the Fileimport script
is executed. If you are performing sequential imports, rename the file.import file
after running the Fileimport script. When you proceed to stage 3, substitute the
new name for the file.import file.

Stage 3: Running the Commands in the file.import File
Stage 3 of the SCCS File Import function is the same as stage 3 of the SCCS File
Migration function. See “Stage 3: Running the Commands in the file.migrate File”
on page 131 for a detailed description of how to run the commands in the
file.import file.

134 Server Administration and Installation

 Post-Migration Activities
After you have successfully imported the desired files into the CMVC environment,
you should do the following:

� Change the access permissions to the existing directories that contain the
SCCS files that were imported. This discourages further development using
the intrinsic SCCS commands and encourages the use of the CMVC
commands and actions.

� Keep the map files available for future reference. The files that are imported
are created within the CMVC environment with a version number of 1.1. If you
need to determine which version of a particular file was imported you need to
reference the map files.

� After a sufficient period of time has passed, store the directories which contain
the original SCCS files on an alternative storage media and remove them from
the file system.

� If you imported SCCS files into the CMVC environment and associated them
with one or more releases managed by processes that include the track and
level subprocesses, you should commit these files by committing a level for
each of the releases or integrate the track itself if the process which manages
the release associated with the track does not include the level subprocess.
The defect or feature that was used to import the files should be specified by a
level member in the level you commit.

The directory that was used as the working directory to hold a copy of the SCCS
files after they were obtained from SCCS and prior to importing them into the
CMVC environment exists after you have completed importing. You may delete the
subdirectories within this working directory.

 Chapter 16. Bringing SCCS Files under CMVC Control 135

136 Server Administration and Installation

Chapter 17. Backup and Recovery

After CMVC is in use, your need to think about backing up your CMVC family's file
systems, directories, and files, as well as the database tables, views and indexes.
This chapter makes recommendations for a backup strategy and describes how to
recover a CMVC family.

CMVC also provides an archive function, which allows you to free up file system
and database space by archiving levels and releases. See Chapter 18, “Archiving
and Restoring” for a description of the archive function and information on how to
restore archived data.

Backing Up the CMVC Server
Your CMVC family's file systems, directories, and files, as well as the database
tables, views and indexes are critical to the operation of CMVC and represent a
significant investment of time and effort. You want to develop a backup strategy
that includes regular backups of these critical resources to ensure immediate
recovery of recent versions of files, directories, and database information when
necessary.

IBM recommends that you backup your CMVC information on a daily basis by
doing the following:

1. Issue the stopCMVC command to stop the CMVC server daemons. See
“Stopping the CMVC Server Daemons” on page 98 for more information.

2. Shut down the database. This insures data consistency during backup and
reduces the possibility of a database crash.

3. Back up all database and CMVC data. Do this in such a way that you can
easily restore them both if necessary, such as having both backups on the
same tape.

Note: To reduce the impact to users during backup, first back up the database,
then run the database and the CMVC daemons in maintenance mode
during the SCCS or PVCS data backup. This gives users read-only access
to CMVC and minimizes the time that CMVC is unavailable to them. After
the backup is complete, restart the daemons in normal mode.

You can use the backup script called backupCMVC that is in the
/usr/lpp/cmvc/samples directory to perform the backup steps. Use the
backupCMVC script as it is written to backup a DB2 database. To back up a
database other than DB2, make the appropriate changes to the script. Refer to
your operating system or database documentation to understand what changes are
appropriate for your environment.

Use the cron utility to automatically start the backupCMVC script at a time when
system activity is low. Submit the backup job using the root user ID (during the
backup, the user ID changes to the appropriate ID for each family).

Use the following syntax to run the backupCMVC script:

 Copyright IBM Corp. 1993, 1994 137

Figure 47. Syntax Statement for backupCMVC

backupCMVC <device> <family>

Where:

device Indicates the backup device (for example,/dev/rmtð)

family Is a list of family user accounts to be backed up,
separated by spaces (for example, family1 family2

family3)

Notes:

1. The CMVC_DAEMONS variable must be set in the <family> environment.
CMVC_DAEMONS determines how many cmvcd processes will be started.

2. Data will be backed up to /home/< family>/db2backup before tape backup.
/home/< family>/db2backup is created automatically.

3. DB2_PASS must be set in the <family> environment.

4. Logs are cleaned up on the first day of each month. Any mount points in /tmp
are also cleaned up.

5. Failures of the backupCMVC command return nonzero exit codes.

It is important that the information in the CMVC family directories and the CMVC
family information stored in the database are synchronized. Files created and
defined in the CMVC family are stored in the family's directories, whereas, all other
data is stored in the database. If these two sources of information become out of
sync, unexpected results can occur.

The DB2, ORACLE, INFORMIX and SYBASE databases have sophisticated utilities
to enable a recovery to the status just prior to the failure. This type of strategy will
enable correct operation of CMVC only if you are also performing frequent backups
of the CMVC family's directories during the course of a day.

Store the backup data on external media, preferably tape. The CMVC family
directories and database tables, views, and indexes should always be backed up in
the same session. If either the CMVC family directory backup or the database
backup fails, the one that succeeds is not useful until you can successfully back up
both of these sources. It is important that you keep the information synchronized.
Always check for successful completion of the backup of each of these sources.

Backing Up CMVC Family Database Tables, Views, and Indexes
Backing up the relational database tables, views and indexes that are used by your
CMVC family is an important part of your backup process. For information on how
to back up your relational database refer to the documentation supplied with the
database products you are using.

The following information describes how the CMVC family database tables, views
and indexes are organized. Use this information to decide on the best backup
process for your organization.

138 Server Administration and Installation

The DB2/6000 Database
Each CMVC family has a DB2/6000 database which is identical to the CMVC
familyname. This database was created by the mkdb CMVC server command.

The authentication of users to DB2/6000 database is done when they logon to the
AIX operating system. This means the password of the CMVC family for access to
DB2/6000 is the same of the password of CMVC family AIX user ID.

The directory path on which the CMVC family database resides is specified in the
DB2_DBPATH environment variable, if it is defined. Otherwise, it will be the HOME
directory of the owner of the DB2/6000 instance that the CMVC family is using.
The directory path can also be found using the following DB2 command:

db2 list database directory

For details of the backup and restore commands of DB2/6000, refer to the book
IBM DATABASE 2 AIX/6000 Command Reference (SC09-1575).

The ORACLE Database
Each CMVC family has an ORACLE user account which is identical to the CMVC
familyname. The password for this user account can be found in the ORACLE_PASS

environment variable in the login profile of the familyname account.

All the CMVC family tables, views, and indexes in ORACLE are owned by the
familyname ORACLE user account.

When you first created your family’s database, you either put all tables and indexes
in the default tablespace, or you specified alternate tablespaces. If you specified
alternate tablespaces then the names of these tablespaces can be found in the
ORACLE_TBLSP and ORACLE_NDXSP environment variables for tables and indexes
respectively. These environment variables exist in the login profile of your
familyname account.

The INFORMIX Database
Each CMVC family has an INFORMIX user account which is identical to the CMVC
familyname. Each family also has an INFORMIX database which was created with
the LOG and MODE ANSI options.

All the CMVC family tables, views, and indexes in INFORMIX are owned by the
INFORMIX familyname user account.

When you created your family’s database, you either stored the database in the
default dbspace or you specified an alternate dbspace. If you specified an
alternate dbspace then the name of the dbspace can be found in the
INFORMIX_DBSP environment variable. This environment variable exists in the login
profile of your familyname account.

The SYBASE Database
Each CMVC family has a SYBASE database which is identical to the familyname.
This database was created by the SYBASE system administrator (sa).

Each CMVC family also has a SYBASE login which is identical to the CMVC
familyname. You can find the password for this login in the SYBASE_PASS

environment variable in the login profile of the familyname account. The default
database for this SYBASE login is the CMVC family’s SYBASE database.

 Chapter 17. Backup and Recovery 139

An alias is created for the CMVC family’s SYBASE login to act as the database
owner (dbo) of the CMVC family’s SYBASE database. All CMVC family tables,
views and indexes in SYBASE are owned by the alias dbo of the familyname
SYBASE login.

When you created your family's database and log, you either placed them in the
SYBASE default device or specified alternate devices. If you specified alternate
devices then you can find their names in the SYBASE_DBDEV and/or SYBASE_LOGDEV
environment variables in the login profile of the familyname account.

Note: If you do not periodically back up your family database or transaction log,
then the transaction log for the database will eventually run out of space.
You can use the sp_dboption command and select the trunc. log on
chkpt. option for your family database. This command refreshes the
transaction log when the SYBASE server does a checkpoint. Your decision
should be compatible with your backup and recovery strategy. Consult your
SYBASE documentation for more information.

 Recovering CMVC
When recovering a CMVC family, it is important that the CMVC family directories
and files remain synchronized with the contents of the database otherwise
unexpected results can occur. The family’s directories contain files that have been
created and defined under CMVC control. The database contains all other data
critical to the operation of CMVC.

Refer to your operating system and database documentation for more information
on the restoring process.

If the CMVC server experiences a power shortage and this does not result in media
failure, the CMVC daemons can usually be restarted correctly without the need for
a complete recovery from your backup media. If you experience problems in the
operation of CMVC after such an event, you may have to recover the CMVC family
directories, files and database.

When performing a recovery from media failure, stop the CMVC server cmvcd and
notifyd daemons. Recover the directories and files from the backup media, and
refer to the database administrator guides for specific database recovery
procedures. After the database has been recovered and restarted, start the CMVC
server cmvcd and notifyd daemons for each CMVC family affected.

140 Server Administration and Installation

Chapter 18. Archiving and Restoring

CMVC allows administrators to reclaim file system and database space by archiving
obsolete or completed projects. Archived data can be restored as required.

The archive and restore functions are designed to be run by the CMVC family
administrator. You must know how the CMVC files, file systems, and database
tables are organized. Refer to Chapter 17, “Backup and Recovery” for more
information about the files and databases used by CMVC.

Warning:

� You must not issue operating system or version control system commands
against the files in the version control directories. Any tampering with these
files can result in discrepancies between the information stored in the relational
database on the CMVC server and the information in the version control
directories.

� We recommend a complete backup of the database and of the file system of
the CMVC family account before you attempt to use the CMVC archive
function.

Archiving and Restoring CMVC Data
Family administrators or designated users can archive and restore releases, or
selected levels of a release, and their related objects. The archive and restore
functions are provided by two programs, cmvcarchive and cmvcrestore , which
reside in /usr/lpp/cmvc/bin on the CMVC server.

Archiving and restoring must be performed from the CMVC server. To control the
integrity of the data being archived or restored, the cmvcd daemons must be
stopped before archiving or restoring. The archive and restore programs cannot be
run while the cmvcd daemons are running. Administrators can restart the cmvcd
daemons in the maintenance mode, thus providing users with read-only access to
CMVC during the archive or restore process. Any group of CMVC users who want
to archive their data must contact the family administrator and request the archive.
The family administrator can then schedule the activity during a maintenance
period.

Before running the archive program, the administrator should perform a full backup
of the CMVC family's account on the CMVC server, and should export and back up
the database tables used by the family.

When the archive program is run, the data (releases or levels and their related
objects) being archived may be removed from the CMVC family, if necessary. This
recaptures space from the database tables, as well as space within the file system
owned by the family's account on the CMVC server.

The restore function allows archived data to be restored into a new CMVC family
for maintenance activities or further development.

 Copyright IBM Corp. 1993, 1994 141

Certain prerequisites pertaining to CMVC objects must be satisfied before either of
the archive or restore programs can be executed. Refer to “Archive and Restore
Preparation” on page 143 for more information.

Figure 48 shows a simplified example of a family in which two levels have been
archived and restored.

comp3

root

Release B

Release A

Level
1

Level
2

comp1 comp 2

comp4

1.1
1.2
1.3
1.4

Files

1.1
1.2

...

...

root

Release A

Level
1

Level
2

comp 2

comp4

1.1
1.2
1.3
1.4

Files

1.1
1.2

...

...

archive restore

CMVCarchive.dbData
CVMCarchive.users
CMVCarchive.info
optionally: CMVCarchive.VCcleanup
CMVCarchive.export
CMVCarchive.notesData
CMVCarchive.versionsData
CMVCarchive.CPIOlist
maps/<release Name>/<level Name>

config.ld
authority.ld
interest.ld
cfgrelproc.ld
cfgcomproc.ld
vc/x/x/x/x/...

contains

configField/DefectConfigFormat
configField/FeatureConfigFormat
configField/UserConfigFormat
configField/FileConfigFormat

configField/DefectConfigTbl
configField/FeatureConfigTbl
configField/UserConfigTbl
configField/FileConfigTbl

Newly Restored FamilyProduction Family

Figure 48. Example of a Family in Which Two Levels Have Been Archived

142 Server Administration and Installation

 Archive Functions
Use the archive function to:

� Estimate the space required to store the archived data.

� Archive all levels in a release up to and including a specified level.

� Archive one or more CMVC releases.

� Find all CMVC objects that are related to the selected archive object or objects
and archive them.

� Allow the user to specify whether the archived objects are to be stored in a
local empty file system, or stored on media in an attached and configured
device, such as, tape or diskette.

� Allow the user to select whether the archived objects are to be removed from
the CMVC family. Only objects that have no dependencies with remaining
objects in the CMVC family will be removed.

� Create files to store information about the objects and data that were archived.
See “Files Created by cmvcarchive” on page 148 for more information.

 Restore Functions
Use the restore function to:

� Restore the archived information into a new CMVC family for maintenance
activities or for further development.

� Restore archived information that resides on a local file system, or on media
loaded in an attached and configured device, such as, tape or diskette.

� Specify the name of the local file system or device.

� Reconfigure the family, using the configuration files and by running the chfield
program as necessary.

� Populate the database tables used by the new CMVC family and restore the
archived level maps, family configuration files and version control files.

Archive and Restore Preparation
To archive objects, the status of the objects being archived must remain intact for
the complete duration of the archive activity. The status of objects can be
guaranteed in one of two ways:

� By revoking access to the CMVC development environment by stopping the
cmvcd server daemons.

� By ensuring that users only perform CMVC report operations which query the
CMVC server but do not update information.

If an archive operation is time-consuming, and there are other CMVC users who
need to access information, administrators can provide users with read-only access
to CMVC by stopping the cmvcd daemons and restarting them in the maintenance
mode, so that CMVC will accept only reporting commands. See Chapter 13,
“CMVC Server Daemons” for more information on running the cmvcd daemons in
the maintenance mode. After the archive operation is completed, the regular
cmvcd server daemons have to be restarted so that development can continue.

 Chapter 18. Archiving and Restoring 143

As mentioned in the previous section, two options can be selected when performing
an archive of CMVC objects. Each of these options must meet certain
prerequisites before the archive can proceed.

Level Archive Prerequisites
The following prerequisites must be satisfied to archive all CMVC levels up to and
including a specified level.

� The archive program can only be run against CMVC families that have
migrated to Version 2 Release 1. That is, database tables for these families
must be configured to the Version 2 Release 1 structures.

� The level to be archived must exist in the release specified.

� The specified level must be in the complete state.

� All other levels committed prior to the specified level's commit date must be in
the complete state.

� All tracks that are level members of these levels must be in the complete state.

� All tracks that were committed without levels (that is, the process managing the
release associated with the track did not include the level subprocess) must be
in the complete state.

� All levels for this release that are not being archived must contain level
members different to those that are being archived. That is, if the same level
member is associated with two or more levels for the release, all of those levels
must be included in the archive.

� The database that is being used by the family must be running.

Objects Archived by the Level Archive Option
When a level archive is selected, the related objects to be archived, in addition to
the level(s), include:

� The release associated with the levels

� The environment and approver lists associated with the release

� Level members associated with the levels

� Level maps associated with the levels

� Tracks associated with the levels, as well as any tracks that were committed
without levels during the time the first level being archived was committed and
the time the last level being archived was committed.

� Approval, fix, test and corequisite records associated with the tracks

� Change records associated with the tracks

� File records associated with the change records of the tracks, as well as files
created or changed during any nontracking period between the time the first
level being archived was committed and the time the last level being archived
was committed

� Version records of the files being archived

� Version control files (SCCS and PVCS) associated with the files being archived

� Path records associated with the files being archived

� Components associated with any of the objects being archived

144 Server Administration and Installation

� Component member relationships for the components being archived

� Defect and feature records associated with the tracks being archived

� Defect and feature notes, histories, sizes and verification records for the defect
and features being archived

� Users who own any of the objects to be archived

� Host list entries of those users

� Sequence database table entries (3 in total)

� Authority, Interest, Config, Cfgrelproc, and Cfgcomproc database LOAD files

� All configuration files for the CMVC family (for configurable fields).

Release Archive Prerequisites
The following prerequisites must be satisfied to archive CMVC releases:

� The archive program can only be run against CMVC families that have
migrated to Version 2 Release 1 or later. That is, data tables for these families
must be configured to the structures of Version 2 Release 1 or later.

� The specified release or releases must exist.

� All levels associated with the release or releases must be in the complete

state.

� All files associated with the release or releases must be checked in.

� All tracks associated with the release or releases must be in the complete

state.

� All sizing records associated with the release or releases that are in the
notReady, ready, or accept states must be deleted if the defect or feature is in
any state except verify or closed.

� The database that is being used by the family must be running.

Objects Archived by the Release Archive Option
When a release archive is selected, the related CMVC objects include:

� Environment and approver lists associated with the releases

� Levels and level members associated with the releases

� Level maps associated with the levels

� Tracks associated with the releases

� Approval, fix, test, and corequisite records associated with the tracks

� Change records associated with the tracks

� File records associated with the releases

� Version records of the files associated with the releases

� Version control files (SCCS or PVCS) associated with the files

� Path records associated with the files

� Components associated with any of the CMVC objects being archived

� Component member relationships for the components being archived

� Defect and feature records associated with the tracks

 Chapter 18. Archiving and Restoring 145

� Defect and feature notes, histories, sizes and verification records for the defect
and features being archived

� Users who own any of the objects to be archived

� Host list entries of those users

� Sequence database table entries (3 in total)

� Authority, Interest, Config, Cfgrelproc, and Cfgcomproc database LOAD files

� All configuration files for the CMVC family (for configurable fields).

 Restore Prerequisites
The following prerequisites must be satisfied to restore archived CMVC objects:

� The restore program can only be run against CMVC families that have migrated
to Version 2 Release 1 or later. That is, the new CMVC family must have been
created with the mkdb and mkfamily scripts from Version 2 Release 1 or later.

� The CMVC family being restored to must be new.

� The new family must not be configured with additional fields for the Defect,
Feature, User, and File CMVC objects. These objects assume the
characteristics of the archived objects. Any attempt to create additional fields
before running the restore program causes unpredictable results. Additional
fields can be configured after the restore is completed successfully.

� The first superuser in the new family must not have the same CMVC user ID as
any of the users who own any of the archived data that is to be restored. The
file CMVCarchive.users contains a list of all the CMVC user IDs of users that
are archived. Ensure that you select a CMVC superuser whose user ID is not
in this list.

� Sufficient space must exist in the file system for the new family to hold the
archived data.

� Sufficient space must exist in the database used by the family.

� The database that is being used by the family must be running.

� If your restore family uses PVCS as its underlying version control system, you
must keep the vc file system for the family owned by the family user. Following
the restore operation, you must change it to the PVCS owner, as detailed in
“Using the mkfamily Command” on page 41.

Archive and Restore Limitations
The limitations of the archive and restore functions include the following:

� After CMVC objects are archived and removed from a CMVC family, they
cannot be restored into the original family. They must be restored into a new,
empty, family.

� You cannot restore multiple archived packages of CMVC objects into the same
CMVC family.

� If multiple releases are archived in one package, you cannot restore individual
releases from that package. All releases in an archive package must be
restored together.

146 Server Administration and Installation

� You cannot restore data from one family into another if they use different
operating systems. For example, data archived from a CMVC family using AIX
cannot be restored into a CMVC family using SunOS.

� You cannot restore data from one family into another if they use different
database formats. For example, data archived from a CMVC family using the
INFORMIX database cannot be restored into a CMVC family using SYBASE.

� You cannot restore data from one family into another if they use different
version control systems. For example, data archived from a CMVC family
using PVCS cannot be restored into a CMVC family using SCCS.

� The cmvcarchive program does not archive the Access and Notification tables
for those components that are being archived.

� After data is restored, new defects or features opened in the restored family
use the sequence numbers that were archived, if the user does not specify the
defect or feature number. The sequence number that is used depends on the
sequence number from the archived data.

For example, if the defect number starts at 1345, users might think that defects
1-1344 are lost. This is not the case. Some defects or features are restored
from the archived data; others do not exist in the family.

Archive and Restore Procedures
Before running the archive program, the family administrator should back up the
CMVC family's account on the CMVC server, and export and back up the database
tables used by the family. This backup ensures complete recovery if the wrong
information is archived.

Using the cmvcarchive Program
1. Stop all cmvcd daemons for the CMVC family.

2. Optionally, start the cmvcd daemons in maintenance mode.

For more information on the cmvcd daemons, see Chapter 13, “CMVC Server
Daemons.”

3. Enter cmvcarchive from the familyname account on the CMVC server.

4. Select one of the following options:

a. Check archive prerequisites and estimate the storage required to perform
an archive.

If you select this option, you are prompted to choose one of the following
options:

1) Check prerequisites and estimate the storage for archiving levels of a
release up to and including a specified level.

2) Check prerequisites and estimate the storage for archiving one or more
releases.

 3) Exit.

b. Perform an archive.

 c. Exit.

 Chapter 18. Archiving and Restoring 147

5. If you choose to perform an archive, you will be prompted to select one of the
following options:

a. Archive levels of a release up to and including a specified level.
b. Archive one or more releases.

 c. Exit.

6. Depending on the option selected, the program prompts for:

a. Level and release names

b. Release names (for example, rel_1.1 rel_1.2)

7. If you choose to archive objects, you are prompted as to whether the archived
objects should be deleted from the CMVC family after the archive.

Deleting the archived objects reclaims file system space on the CMVC server
and database space used by CMVC. To improve database performance, a
separate database-specific operation to reduce fragmentation must be run.
This is a separate function that is not performed by CMVC.

8. If you choose to archive objects, you are asked where the archived objects are
to be stored:

a. In a local file system
b. On media in an external device (for example, a tape device)

9. If you choose to store the objects in a local file system, you are prompted for
the name of the file system.

If you choose to store the objects on media in an external device, you are
prompted for the name of the device and the name of a directory that can be
used as a temporary working directory.

When archiving to an external device, you may occasionally be prompted to
remove the current media and insert additional media depending on the volume
of data being archived. The archive program uses the cpio command to
archive the data to external media. The cpio program prompts you to change
or insert additional media when required.

10. After archiving is completed, stop the cmvcd maintenance-mode daemons if
they were started earlier, and start the cmvcd daemons.

Files Created by cmvcarchive
The cmvcarchive program creates several files that store information about the
objects and data that is being archived. The files created are:

 � CMVCarchive.dbData

A database command file that contains the database statements required to
populate database tables upon restore.

 � CMVCarchive.export

This file is created if your family uses the ORACLE database. It contains an
export of the family’s Notes and Versions tables.

 � CMVCarchive.info

An archive information file that contains information about the contents of the
archive.

� CMVCarchive.notesData and CMVCarchive.versionsData

148 Server Administration and Installation

These files are created if your family uses a DB2/6000, INFORMIX, or SYBASE
database. They contain the archived notes and versions records, respectively,
for your family.

 � CMVCarchive.PVCS_clean

A file created in the home directory of the archive family, if that family uses
PVCS as its version control system. This file contains a list of version control
files that can be manually removed to reclaim file system space after the
archive is completed.

 � CMVCarchive.users

A user information file containing the CMVC user IDs of the users that are
archived. Upon restore, this file can be used to select a name for the CMVC
superuser. The name cannot be one that is on this list.

 � CMVCarchive.VCcleanup

A version control file that contains the list of deltas that must be removed for
each version control file during restoration. This file is only created if you are
archiving to a device.

 � CMVCarchive.CPIOlist

A list of files copied to the device media. This file is only created if you are
archiving to a device.

These files are created in the specified local file system or working directory. If the
archive is being routed to a device, the files are deleted after the archive has
completed, except the CMVCarchive.PVCS_clean file.

Using the cmvcrestore Program
1. Create the new CMVC family by running the mkfamily and mkdb shell scripts.

Note: When running the mkdb command, you should not specify the -d
option. Nor should you configure any additional fields for defect,
feature, file, and user objects by means of the chfield program. Ensure
that no files exist in the $HOME/configField directory.

2. Verify that sufficient disk space exists in the CMVC family's home directory to
store all the level maps and version control files that are being restored. Also
verify that sufficient disk space exists in the database used by the CMVC
family.

3. Stop all cmvcd daemons.

4. Optionally, start the cmvcd daemons in the maintenance mode.

For more information on the cmvcd daemons, see Chapter 13, “CMVC Server
Daemons.”

5. Enter cmvcrestore from the familyname account on the CMVC server.

6. Select one of the following restore options:

a. Restore archived CMVC objects from a local file system.
b. Restore archived CMVC objects from media on an external device.

 c. Exit.

7. Then, depending on the restore option selected, the program prompts for:

a. The name of the file system, for example, /home/<familyName>/archive

b. The name of the device, for example, /dev/rmt1 or /dev/rfdð

 Chapter 18. Archiving and Restoring 149

When restoring from an external device, you may occasionally be prompted to
remove the current media and insert additional media depending on the volume
of data being restored.

8. If you are using PVCS as your version control system, you should change:

� The ownership (with the chown command) of the $HOME/vc files to pvcs

� The group (with the chgrp command) to system after cmvcrestore is
completed.

9. Stop the cmvcd maintenance mode daemons, if they were started earlier.

10. Start the cmvcd daemons.

11. Inform the users of the new family of its name, the server machine name, and
the port number for the family.

Resetting Operating System Semaphores
The cmvcarchive and cmvcrestore programs use an operating system semaphore
to indicate that they are currently running. There may be instances in which these
programs are terminated and the programs have not been able to remove the
semaphore. If you attempt to run either of these programs and you receive a
message similar to either of the following and you verify that the programs are not
running, you must remove the operating system semaphore before you can
successfully run these programs:

"Another cmvcarchive program is currently running."

or

"Another cmvcrestore program is currently running."

To remove the semaphore, type the following command:

ipcs

Look for the semaphore held by the name of the CMVC family and then issue the
following command to remove the semaphore:

ipcrm -s <semaphoreID>

150 Server Administration and Installation

 0010-023 � 0010-023

Appendix A. Error Messages and Recovery

The following list of error messages, generated by the CMVC server and shown on
either the CMVC client or the CMVC server, can require the attention of the CMVC
family administrator or the system administrator for resolution. Only a subset of the
CMVC messages are discussed in this chapter. Messages generated by the clients
are not discussed.

Some of these messages are routed to the console through the standard error pipe;
others, such as, problems with system subroutines, are routed to the syslog file
assuming the syslog daemon is running. The location of the syslog file depends
on the operating system. Usual locations are:

Contact your system administrator for the exact location of the file.

If the syslog daemon is not running, then the messages destined for the syslog
file are displayed on the console through the standard error pipe.

Publications mentioned in the recovery procedures refer to books provided with
your operating system.

If the problems cannot be resolved after following the recommended recovery
procedures, contact your IBM Representative for additional support.

0010-023 The extraction of level <levelName> associated with release <releaseName>
failed. The internal map for the level is not valid or the level map file is not
loaded on the CMVC server disk.

Contact the family administrator for assistance.

Explanation: This error occurs on the CMVC server when an internal map which defines
the level is empty or is not found.

User Response: Verify whether the map file exists on the CMVC server in the CMVC
family’s maps directory.

To find the map file for the level, check the CMVC family’s maps directory for the directory
that represents the release that the level is associated with. Within that directory, a map file
should exist for each committed level and have the same name as that of the level name.

If the map does not exist, it may have been archived onto external backup media. If so,
restore the map file from the backup media into the correct directory relative to the CMVC
family’s maps directory.

For example, the map file for the committed level, Prototype1, associated with release
Prototype exists in the $HOME/maps/Prototype directory with a file name of Prototype1 .

Operating System Location of syslog File

AIX /usr/spool

HP-UX /usr/adm

SunOS /var/log

Solaris /var/adm/messages
/var/log/syslog

 Copyright IBM Corp. 1993, 1994 151

 0010-025 � 0010-046

0010-025 An error occurred when the CMVC server software tried to extract files
from the version control file repository.

Explanation: The CMVC server software fails to retrieve the file from the CMVC family’s
version control directories using the SCCS or PVCS get command.

This message is displayed along with other messages that indicate the nature of the SCCS
or PVCS problem and the name of the file which was being accessed at the time of the
failure.

User Response: Refer to your operating system documentation for the SCCS recovery
procedure and your PVCS documentation for the PVCS recovery procedure.

Note: If this message is displayed with the following PVCS message:

get: License notification: user ID not authorized

Refer to “Registering Users to the PVCS License Administration Database” on
page 25 for more information.

0010-044 An error occurred when the CMVC server software tried to check out or
extract file <fileName> from the version control file repository.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software fails to retrieve the file from the CMVC family’s
version control directories using the SCCS or PVCS get command.

This message is displayed along with other messages that indicate the nature of the SCCS
or PVCS problem and the name of the file which was being accessed at the time of the
failure.

User Response: Refer to your operating system documentation for the SCCS recovery
procedure and your PVCS documentation for the PVCS recovery procedure.

0010-045 An error occurred when the CMVC server software tried to check in file
<fileName> to the version control file repository.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software fails to check in the file to the CMVC family’s
version control directories using the SCCS delta command or the PVCS put command.
This message is displayed along with other messages that indicate the nature of the SCCS
or PVCS problem and the name of the file which was being accessed at the time of the
failure.

User Response: Refer to your operating system documentation for the SCCS recovery
procedure and your PVCS documentation for the PVCS recovery procedure.

0010-046 An error occurred when the CMVC server software tried to unlock file
<fileName> in the version control file repository.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software fails to unlock the file in the CMVC family’s
version control directories using the SCCS unget command or the PVCS vcs command.

This message is displayed along with other messages that indicate the nature of the SCCS
or PVCS problem and the name of the file which was being accessed at the time of the
failure.

User Response: Refer to your operating system documentation for the SCCS recovery
procedure and your PVCS documentation for the PVCS recovery procedure.

152 Server Administration and Installation

 0010-059 � 0010-062

0010-059 The audit facility on the CMVC server cannot be initialized.

Contact the family administrator to verify the existence of the audit
directory and its access permission.

Explanation: The audit directory in the CMVC family’s home directory does not exist or
cannot be accessed by the CMVC server software.

User Response: Stop the CMVC server software cmvcd daemons if they are running.

Verify that the audit directory exists in the CMVC family’s home directory on the CMVC
server with access permission set to 750, the owner set to the CMVC family name, and the
group set to system.

Restart the CMVC server software cmvcd daemons.

0010-060 The user's host name and address cannot be resolved.

Verify that the user's host name and address are included in the CMVC
server's 'etc/hosts' file or the data files of the name server. If the host
name and address appear in either of these files, the network or name
server may be experiencing a temporary problem. If the problem persists,
contact the family administrator.

Explanation: The CMVC server software does not recognize the user's host name.

User Response: Verify that the user's host name and TCP/IP network address exist in
either the /etc/hosts file on the CMVC server or the name server's data files.

0010-061 Database error, <errorNumber> (<errorMsg>), has occurred.

If the error is a result of an invalid column name, then check the syntax of
the command. If you cannot resolve the problem, contact the family
administrator.

Explanation: The specified error occurs while accessing the database. This message is
displayed on the CMVC server console or entered into the syslog file if the syslog daemon
is running.

User Response: Refer to the administrator's guide of your database program for the
appropriate action to recover from the database error. If using DB2, type the following
command for more information:

db2 ? sqlxxxx

Where xxxx is the <errorNumber>.

If the error is due to an invalid column name, refer to the IBM CMVC User’s Reference to
determine the correct column name.

0010-062 The database cannot be initialized.

To solve the database problem, contact the family administrator.

Explanation: The CMVC server software cmvcd daemon cannot log on to the database.
This problem occurs when:

� The database is not running.

� The number of CMVC server software cmvcd daemons requested exceeds the database
licence agreement.

This error is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Message 0010-061 is also displayed on the CMVC server console or
entered into the syslog file. Take the corrective measures to resolve the database problem
indicated in message ðð1ð-ð61 and start the CMVC server software again.

 Appendix A. Error Messages and Recovery 153

 0010-063 � 0010-113

0010-063 Error, <errorMsg>, occurred when the CMVC server software attempted to
process the <functionName>() function.

To solve the operating system problem, contact the system administrator
or the family administrator.

Explanation: The operating system fails to complete the specified function on the CMVC
server.

User Response: Verify that the system is configured properly for the specified function.

0010-064 An error occurred when the CMVC server software tried to obtain memory
to service your request. The CMVC server software cannot obtain the
required memory.

To solve the problem, contact the family administrator.

Explanation: The CMVC server has insufficient memory to honor the CMVC command.
This may be caused by memory-intensive commands, for example, very large reports, or
other activities on the CMVC server.

User Response: Check for other applications on the CMVC server that may be consuming
memory.

Check the amount of free space in the file systems; pay special attention to the file system
containing the /tmp directory and the file system containing the CMVC family’s directories.
Clean up or expand these file systems if necessary.

0010-065 The action you requested cannot be completed. The CMVC server software
could not create a file to hold the results of the database query.

To correct the problem, contact the family administrator.

Explanation: A temporary file cannot be created on the CMVC server.

User Response: Message 0010-139 is displayed along with this message. Refer to
message 0010-139 for more details.

0010-112 A version control error may have caused a file to become corrupted. The
previous version control files have been restored.

Contact the family administrator for assistance.

Explanation: The CMVC server database and the version control system may be out of
synchronization. If you are using SCCS, the CMVC server restores the s.binary and
p.binary files. If you are using PVCS, the CMVC server restores the history file.

User Response: Retry your last action or request your family administrator to investigate
the CMVC family.

0010-113 *** WARNING: A Version Control Error Has Occurred. *** The previous
version control files have been restored.

Contact the family administrator for assistance.

Explanation: The CMVC server database and the version control system may be out of
synchronization. If you are using SCCS, the CMVC server restores the s.binary and
p.binary files. If you are using PVCS, the CMVC server restores the history file.

User Response: Retry your last action or request your family administrator to investigate
the CMVC family.

154 Server Administration and Installation

 0010-114 � 0010-140

0010-114 This CMVC action is completed, but has not been successfully verified. \
The previous version control files have been restored.

Contact the family administrator for assistance.

Explanation: The CMVC server database and the version control system may be out of
synchronization. If you are using SCCS, the CMVC server restores the s.binary and
p.binary files. If you are using PVCS, the CMVC server restores the history file.

User Response: Retry your last action or request your family administrator to investigate
the CMVC family.

0010-139 The temporary query file, <queryFileName>, cannot be opened. Your
request cannot be completed.

Check the permissions of the file and the directory in which it resides. If
problems persist, contact the family administrator.

Explanation: The CMVC server software fails when processing the open system
subroutine on the specified file. This problem occurs when:

� The CMVC server software does not have permission to create files in the directory
indicated in the <queryFileName>.

� The file already exists in the directory indicated in the <queryFileName>.

� The CMVC server file system on which the directory resides is full; the directory is
indicated in the <queryFileName>.

� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to access the
directory indicated in the <queryFileName>. Clean up or expand the file system on which
the directory resides if needed. Verify that the CMVC server has enough i-nodes configured.

Message 0010-350 is also displayed. Refer to message 0010-350 for more details.

0010-140 An error occurred when the CMVC server software tried to create a
temporary file with pathname, <tempFileName>, on the CMVC client.

Check that the permissions of the directory allow files to be created. Also
check that the CMVC client has sufficient storage available for file creation.

If problems persist, contact the system administrator or the family
administrator.

Explanation: The CMVC server software cannot create a temporary file on the CMVC
client. This problem occurs when:

� The CMVC server software does not have permission to create files in the directory
indicated in the <tempFileName>.

� The file already exists in the directory indicated in the <tempFileName>.

� The CMVC client file system on which the directory resides is full; the directory is
indicated in the <tempFileName>.

� There is a depletion of i-nodes on the CMVC client.

User Response: Verify that the CMVC server software has permission to access the
directory indicated in the <tempFileName>.

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC client has enough i-nodes configured.

Message 0010-350 is also displayed on the CMVC client. Refer to message 0010-350 for
more details.

 Appendix A. Error Messages and Recovery 155

 0010-141 � 0010-247

0010-141 An error occurred when the CMVC server software tried to save a backup
copy of file <fileName> to <backupFileName> on the CMVC client.

Check that the permissions of the file allow others to read it and that the
permissions of the directory allow files to be created. Also check that the
CMVC client has sufficient storage available.

If problems persist, contact the system administrator or the family
administrator.

Explanation: The CMVC server software cannot rename a file on the CMVC client in the
current working directory. This problem occurs when:

� The CMVC server software does not have permission to rename files in the current
working directory.

� The CMVC client file system on which the current working directory resides is full.

� There is a depletion of i-nodes on the CMVC client.

User Response: Verify that the CMVC server software has permission to access the
current working directory.

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC client has enough i-nodes configured.

Message 0010-063 is also displayed. Refer to message 0010-063 for more details.

0010-142 An error occurred when the CMVC server software tried to restore the
name of file <tempFileName> to <fileName> on the CMVC client.

The operating system could not complete the rename() subroutine.
Contact the system administrator or the family administrator for
assistance.

Explanation: The CMVC server software cannot rename a file on the CMVC client in the
current working directory. This problem occurs when:

� The CMVC server software does not have permission to rename files in the current
working directory.

� The CMVC client file system on which the current working directory resides is full.

� There is a depletion of i-nodes on the CMVC client.

User Response: Verify that the CMVC server software has permission to access the
current working directory.

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC client has enough i-nodes configured.

Message 0010-063 is also displayed. Refer to message 0010-063 for more details.

0010-247 The host name, <hostName>, for the CMVC server cannot be resolved.

Verify that the CMVC server's host name and address are included in the
CMVC client's '/etc/hosts' file or the data files of the name server. If the
host name and address appear in either of these files, the network or name
server may be experiencing a temporary problem.

If the problem persists, contact the family administrator.

Explanation: Unresolved host name.

User Response: Verify that the server's host name and TCP/IP network address are
included in the CMVC client's /etc/hosts file or the data files of the name server. If the host
name appears in either of these files, restart the CMVC server software daemons and retry
the command.

156 Server Administration and Installation

 0010-248 � 0010-253

0010-248 The port number of the CMVC server for family <familyName> cannot be
resolved.

Verify that the CMVC client's '/etc/services' file contains the port number of
the CMVC server for this family.

Explanation: Unresolved port number.

User Response: Verify that the CMVC client's /etc/services file contains the port number
dedicated to the CMVC family to be accessed. If the CMVC family name is not unique then
fully define the CMVC family by specifying the family as
familyName@serverHostName@serverPortNumber when setting the CMVC_FAMILY
environment variable or when setting the family name in the graphical user interface.

0010-249 The error, <errorMsg>, occurred when the CMVC client software tried to
create a socket for communication with the CMVC server software. It is
possible that the operating system ran out of file descriptor resources on
the CMVC client machine.

To solve the problem, contact the system administrator or the family
administrator.

Explanation: An error occurs while processing the socket() system function on the CMVC
server.

User Response: The error message identifies the cause of the problem.

0010-250 A connection cannot be established with family <familyName> at node
<hostName> on port <portNumber>. The error is: <errorMsg>.

To solve the problem, contact the system administrator or the family
administrator.

Explanation: An error occurs while processing the connect() system function on the CMVC
server. The connection request has been rejected by the CMVC server software.

User Response: Verify that the connection information displayed in the message is correct
and that the CMVC server software daemons are running.

If the error occurs frequently, the CMVC server software daemons may be overloaded by
incoming requests. Increase the number of CMVC server software daemons to alleviate this
problem.

0010-252 The cmvcd daemon has rolled back the previous command that it was
running and it is now restarting. Either a database error occurred and the
CMVC server software cmvcd is attempting to recover, or the cmvcd
received a SIGHUP signal.

Explanation: The CMVC server software cmvcd daemon encounters a database error or
an interrupt signal, SIGHUP, and is attempting to recover. This message is displayed on the
CMVC server console or entered into the syslog file if the syslog daemon is running.

User Response: None. The cmvcd daemon should recover on its own. More messages
will be displayed if the recovery is unsuccessful.

0010-253 The CMVC server software notifyd daemon has halted because it received
a SIGTERM signal.

Explanation: The CMVC server software notifyd daemon receives the normal termination
signal, SIGTERM, and has halted as a result.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Restart the notifyd daemon if desired.

 Appendix A. Error Messages and Recovery 157

 0010-256 � 0010-299

0010-256 An error occurred when the CMVC server software tried to process
function <functionName>. It is possible that the network or CMVC server is
experiencing problems.

If the network is operational, contact the family administrator. If it is not,
contact the system administrator.

Explanation: The CMVC client software and the CMVC server software may be
incompatible. Or your database file system may be full.

This message is displayed on the CMVC client and on the CMVC server console, or entered
into the syslog file if the syslog daemon is running on the CMVC server.

User Response: Verify that the version of the CMVC client software is the same as the
version of the CMVC server software and that the port number designated to the CMVC
family is unique on the network.

Check the amount of free space in the file systems; verify that your database file system has
sufficient space for your CMVC server operations.

Message 0010-257 is also displayed on the CMVC client and on the console of the CMVC
server, or entered in the syslog file if the syslog daemon is running.

0010-257 The communication between the CMVC client, <clientName>, and the CMVC
server has ended abnormally.

Explanation: The CMVC server software receives an unexpected end-of-file character
while reading data from the network. There may be problems with intermittent noise on the
network or incompatible CMVC client software or another application program is trying to
connect with the CMVC server software.

This message is displayed on the CMVC client and on the CMVC server console or entered
into the syslog file if the syslog daemon is running on the CMVC server.

User Response: Verify that the version of the CMVC client software is the same as the
version of the CMVC server software and that the port number designated to the CMVC
family is unique on the network.

0010-283 The CMVC server software cmvcd daemon has halted on signal <signal>.

Explanation: The CMVC server software cmvcd daemon receives the specified signal and
has halted as a result.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Restart the cmvcd daemon if desired.

0010-299 The CMVC server software could not create directory <directoryName> on
the CMVC client's machine.

Explanation: The CMVC server software cannot create the directory on the client's
machine. This problem occurs when:

� The CMVC server software does not have permission to create files in the parent
directory of <directoryName>.

� The directory already exists on the CMVC client.

� The file system containing the parent directory is full.

� There is a depletion of i-nodes on the CMVC client.

User Response: Verify that the CMVC server software has permission to access and write
in the parent directory.

Clean up or expand the file system on which the parent directory resides if necessary.

Verify that the CMVC client has enough i-nodes configured.

158 Server Administration and Installation

 0010-305 � 0010-326

Message 0010-063 is also displayed. Refer to message 0010-063 for more details.

0010-305 The type of file <fileName> associated with release <releaseName> cannot
be determined.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software fails while processing the open system
subroutine on the specified file. This problem occurs when:

� The file's type is not text or binary.

� The CMVC server software does not have permission to read files in the directory
indicated in the <fileName>.

User Response: Verify that the CMVC server software has permission to read the file
indicated in the <fileName> and that the file is not damaged.

Message 0010-350 is also displayed on the console of the CMVC server or displayed in the
syslog file on the CMVC server if the syslog daemon is running. Refer to message
0010-350 for more details.

0010-322 The view specified is valid, but no report format entry exists for it.

Explanation: An internal CMVC server software problem occurs.

User Response: Call your IBM Representative to report this problem.

0010-325 The CMVC server software cannot mount directory <directoryName> from
node <hostName>. The CMVC server software requires mount and write
access to the directory to perform a remote extraction.

Check that the directory is exported at the CMVC client and has the
appropriate access permissions. Also check that the Network File System
(NFS) server is running.

Explanation: The CMVC server software cannot mount the directory and therefore cannot
complete the remote extraction. This problem occurs when:

� The directory is not exported at the client.

� The exported directory's permission does not allow the CMVC server software to write to
it.

� The directory has been exported with limited access to certain hosts or netgroups which
do not include the CMVC server.

User Response: Check that the directory on the client has been exported with the
appropriate user and file access permission.

0010-326 The CMVC server software cannot create directory <directoryName>
relative to the destination extraction directory.

Check that the parent directory permits the CMVC server software to write
to it. Also check for the existence of the destination extraction directory
and its access permissions. If the destination extraction directory exists,
ensure that its permissions allow the CMVC server software to write to it.

Explanation: The CMVC server software cannot create the directory on the client's
machine. This problem occurs when:

� The CMVC server software does not have permission to create files in the parent
directory of <directoryName>.

� The directory already exists on the CMVC client with permissions that prevent the CMVC
server software from writing to it.

� The file system containing the parent directory is full.

 Appendix A. Error Messages and Recovery 159

 0010-335 � 0010-337

� There is a depletion of i-nodes on the CMVC client.

User Response: Verify that the CMVC server software has permission to access and write
in the parent directory.

Clean up or expand the file system on which the parent directory resides if necessary.

Verify that the CMVC client has enough i-nodes configured.

Message 0010-063 is also displayed. Refer to message 0010-063 for more details.

0010-335 The RPC ID, <id>, is out of range. The remote procedure call interface
between the CMVC client and CMVC server has failed.

To solve the problem, contact the family administrator.

Explanation: The Remote Procedure Call ID cannot be identified by the CMVC server
software. The CMVC client software may be incompatible with the CMVC server software or
another application program may be sending commands to the CMVC socket.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Verify that the version of the CMVC client software is the same as the
version of the CMVC server software and that the port number designated to the CMVC
family is unique on the network.

0010-336 The packet type is not valid. Either there is a network problem or another
application program is sending commands that are not valid to the CMVC
socket.

To solve this problem, contact the family administrator.

Explanation: The data received by the CMVC server software contains an invalid packet
type. The CMVC client software may be incompatible with the CMVC server software or
another application program may be sending commands to the CMVC socket.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Verify that the version of the CMVC client software is the same as the
version of the CMVC server software and that the port number designated to the CMVC
family is unique on the network.

0010-337 An error occurred when the CMVC server software tried to open a
temporary file on the CMVC server prior to transferring a file from the
CMVC client to the CMVC server.

Contact the family administrator for further problem resolution.

Explanation: The CMVC server software fails when processing the open system
subroutine on the specified file. This problem occurs when:

� The CMVC server software does not have permission to create files in the directory.
� The file already exists in the directory.
� The CMVC server file system on which the directory resides is full.
� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to access the
directory.

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC server has enough i-nodes configured.

Message 0010-350 is also displayed on the console of the CMVC server or entered into the
syslog file if the syslog daemon is running. Refer to message 0010-350 for more details.

160 Server Administration and Installation

 0010-339 � 0010-342

0010-339 The CMVC server software cannot unmount the directory <directoryName>
which was mounted from node <hostName>.

Contact the family administrator to unmount the directory manually.

Explanation: The CMVC server software fails to unmount the directory following file
extraction. The specified directory is still mounted on the CMVC server from the specified
host.

User Response: Unmount the directory manually.

Verify that the access permissions of the mounted directory are properly configured.

0010-340 The CMVC server software cannot remove the directory <directoryName>.
The extraction cleanup procedure cannot be completed.

Contact the family administrator to delete the directory manually.

Explanation: The CMVC server software fails to remove the specified directory from the
CMVC server following the file extraction. The access permission of the directory may have
been changed during the extraction.

User Response: Remove the directory manually.

0010-341 A mkdir() operating system subroutine failed when the CMVC server
software tried to create a file in the version control file repository.

Contact the system administrator or the family administrator for further
problem resolution.

Explanation: The CMVC server software fails when processing the mkdir system
subroutine. This problem occurs when:

� CMVC server software does not have permission to create files in the CMVC family’s
version control directories.

� The file system containing the CMVC family’s version control directories is full.

� The directory already exists in the CMVC family’s version control directories.

� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to access the
version control directories of the CMVC family (those directories relative to
/u/familyName/vc).

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC server has enough i-nodes configured.

Message 0010-063 is also displayed on the console of the CMVC server or entered into the
syslog file if the syslog daemon is running. Refer to message 0010-063 for more details.

0010-342 A symlink() operating system subroutine failed when the CMVC server
software tried to symbolically link file <fileName> to file <fileName> in the
version control file repository.

Contact the system administrator or the family administrator for further
problem resolution.

Explanation: The CMVC server software fails when processing the symlink system
subroutine on the CMVC server. This problem occurs when:

� The target file to be linked to already exists.

� The CMVC server software does not have permission to write in the CMVC family’s
version control directories.

� The file system containing the CMVC family’s version control directories is full.

 Appendix A. Error Messages and Recovery 161

 0010-343 � 0010-351

User Response: Verify that the CMVC server software has permission to access the
version control directories of the CMVC family (the vc directory and its subdirectories relative
to the CMVC family home directory).

Clean up or expand the file system on which the directory resides if necessary.

0010-343 A read() operating system subroutine failed when the CMVC server
software tried to read file <fileName> prior to copying it to file <fileName>
in the version control file repository.

Contact the system administrator or the family administrator for further
problem resolution.

Explanation: The CMVC server software fails when processing the read system subroutine
on the CMVC server. This problem occurs when the CMVC server software does not have
permission to read the file in the CMVC family’s version control directories.

User Response: Verify that your family’s version control software has been configured
correctly.

0010-344 A write() operating system subroutine failed when the CMVC server
software tried to copy file <fileName> to file <fileName> in the version
control file repository.

Contact the system administrator or the family administrator for further
problem resolution.

Explanation: The CMVC server software fails when processing the write system
subroutine on the CMVC server. This problem occurs when the CMVC server software does
not have permission to write to files in the CMVC family’s version control directories.

User Response: Verify that your family’s version control software has been configured
correctly.

0010-350 The error (<errorMsg>) occurred when the CMVC server software
processed function <functionName>() on the file with path name
<pathName>.

Check that the path name, the file permissions, and the directory
permissions are correct. If problems persist, contact the system
administrator or the family administrator.

Explanation: The CMVC server software fails to process the specified subroutine.

User Response: Check that the path name, the file permissions, and the directory
permissions are correct.

0010-351 An error occurred when the CMVC server software tried to open a
temporary file on the CMVC server prior to transferring a file from the
CMVC server to the CMVC client.

Contact the family administrator for further problem resolution.

Explanation: The CMVC server software fails when processing the open system
subroutine on the specified file. This problem occurs when:

� The CMVC server software does not have permission to create files in the directory.
� The file already exists in the directory.
� The CMVC server file system on which the directory resides is full.
� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to access the
directory.

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC server has enough i-nodes configured.

162 Server Administration and Installation

 0010-352 � 0010-381

Message 0010-350 is also displayed on the console of the CMVC server or entered into the
syslog file if the syslog daemon is running. Refer to message 0010-350 for more details.

0010-352 An error occurred when the CMVC server software tried to open the file,
<fileName>, on the CMVC client.

Check that the access permission of the file allow the CMVC server
software to read it.

Explanation: The CMVC server software cannot open the file on the CMVC client. This
problem occurs when the CMVC server software does not have permission to read the
specified file.

User Response: Verify that the CMVC server software has permission to access the file.

Message 0010-350 is also displayed on the console of the CMVC server or entered in the
syslog file if the syslog daemon is running. Refer to message 0010-350 for more details.

0010-354 An error occurred when the CMVC server software tried to open the
temporary file, <tempFileName>, on the CMVC server during a version
control check in operation.

Contact the family administrator for further problem resolution.

Explanation: The CMVC server software cannot open the temporary file on the CMVC
server. This problem occurs when the CMVC server software does not have permission to
read the file indicated by the <tempFileName>.

User Response: Verify that the CMVC server software has permission to access the file
indicated by the <tempFileName>.

Message 0010-350 is also displayed on the console of the CMVC server or entered in the
syslog file if the syslog daemon is running. Refer to message 0010-350 for more details.

0010-380 The chmod request on file <fileName> to a mode of <fileMode> failed
during the extraction.

Explanation: The CMVC server software fails when processing the chmod system
subroutine on the specified file on the CMVC client. This problem occurs when the CMVC
server software does not have permission to change the mode of the file.

User Response: Check that the path name, the file permissions, and the directory
permissions are correct.

Message 0010-350 is also displayed on the CMVC client. Refer to message 0010-350 for
more details.

0010-381 The CMVC client software is not compatible with the CMVC server software
for this action.

Contact the family administrator to upgrade the CMVC client software
installation.

Explanation: The CMVC server software receives an invalid request.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Verify that the version of the CMVC client software is the same as the
version of the CMVC server software.

 Appendix A. Error Messages and Recovery 163

 0010-475 � 0010-479

0010-475 The CMVC server software cannot obtain the required shared memory. The
following error occurred: <errorNumber>

The CMVC server software will operate normally, but the CMVC Activity
Monitor will not function.

Explanation: An error occurs when the CMVC server software processes the shmget
system subroutine on the CMVC server. The amount of available physical memory may be
insufficient to satisfy the request. This message is displayed on the CMVC server console or
entered into the syslog file if the syslog daemon is running.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-476 The CMVC server software cannot remove the shared memory that it
obtained. The following error occurred: <errorNumber>

Contact the family administrator to remove the shared memory manually.

Explanation: An error occurs when the CMVC server software processes the shmctl
system subroutine on the CMVC server.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-477 The CMVC server software cannot detach itself from shared memory. The
following error occurred: <errorNumber>

Explanation: An error occurs when the CMVC server software processes the shmdt
system subroutine on the CMVC server.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-478 The CMVC server software cannot attach itself to shared memory. The
following error occurred: <errorNumber>

The CMVC server software will operate normally, but the CMVC Activity
Monitor will not function.

Explanation: An error occurs when the CMVC server software processes the shmat
system subroutine on the CMVC server.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-479 The CMVC server software cannot attach the parent process to shared
memory. The following error occurred: <errorNumber>

Explanation: An error occurs when the CMVC server software processes the shmat
system subroutine on the CMVC server.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

164 Server Administration and Installation

 0010-489 � 0010-491

0010-489 The CMVC server software does not have write access to the directory
<directoryName> on node <hostName>.

Check the permissions of the exported directory, make the necessary
changes, and then retry your request.

If problems persist, contact the family administrator.

Explanation: The CMVC server software does not have permission to write to the specified
directory. The extraction cannot be completed. This problem occurs when:

� The exported directory's permission does not allow the CMVC server software to write to
it.

� The directory has been exported with limited access to certain hosts or netgroups which
do not include the CMVC server.

User Response: Check that the directory on the client has been exported with the
appropriate user and file access permission.

0010-490 The directory, <directoryName>, could not be created on the CMVC server.

Contact the family administrator to verify and set the CMVC server
software's permission to the directory.

Explanation: The CMVC server software cannot create the directory on the CMVC server.
This problem occurs when:

� The CMVC server software does not have permission to create files in the parent
directory of <directoryName>.

� The directory already exists on the CMVC client; its permission does not allow the
CMVC server software to write to it.

� The file system containing the parent directory is full.

� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to access and write
in the parent directory.

Clean up or expand the file system on which the parent directory resides if necessary.

Verify that the CMVC server has enough i-nodes configured.

Message 0010-063 is also displayed. Refer to message 0010-063 for more details.

0010-491 The extraction failed because the CMVC server software could not create
the directory, <directoryName>, to mount <sourceDirectory> from node
<hostName>.

Contact the family administrator to verify the directory permissions.

Explanation: The CMVC server software cannot create the directory on the CMVC server
for mounting the directory from the remote host. This problem occurs when:

� The CMVC server software does not have permission to create files in the parent
directory of <directoryName>.

� The directory already exists on the CMVC client; its permission does not allow the
CMVC server software to write to it.

� The file system containing the parent directory is full.

� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to access and write
in the parent directory.

Clean up or expand the file system on which the parent directory resides if necessary.

Verify that the CMVC server has enough i-nodes configured.

 Appendix A. Error Messages and Recovery 165

 0010-492 � 0010-510

Message 0010-063 is also displayed. Refer to message 0010-063 for more details.

0010-492 The unmount of directory <directoryName> failed.

Contact the family administrator to unmount the directory manually.

Explanation: The CMVC server software fails to unmount the specified directory from the
CMVC server. This message is displayed on the CMVC server console or entered into the
syslog file if the syslog daemon is running.

User Response: Unmount the directory manually. Message 0010-063 is also displayed.
Refer to 0010-063 for more details.

0010-494 The CMVC server software cmvcd daemon is restarting.

Explanation: An error occurs and causes the CMVC server software cmvcd daemons to
restart.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Additional error messages will be displayed to indicate the reasons for
restarting.

0010-495 The CMVC server software cannot obtain the control structure for shared
memory. The following error occurred: <errorNumber>

The CMVC server software will operate normally, but the CMVC Activity
Monitor will not function.

Explanation: An error occurs when the CMVC server software processes the shmctl
system subroutine on the CMVC server.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-510 File <fileName> could not be retrieved. A temporary file could not be
created because the CMVC server software does not have write access.

Contact the family administrator for assistance.

Explanation: The CMVC server software fails to process the open system subroutine on
the specified file on the CMVC server. This problem occurs when:

� The CMVC server software does not have permission to open the file in read-write mode
and create the file if it does not already exist.

� The file already exists on the CMVC server; its permission does not allow the CMVC
server software to read from it.

� The file system containing the parent directory is full.

� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to access the
directory indicated in the <fileName>.

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC server has enough i-nodes configured.

Message 0010-350 is also displayed on the console of the CMVC server or entered in the
syslog file if the syslog daemon is running. Refer to message 0010-350 for more details.

166 Server Administration and Installation

 0010-511 � 0010-540

0010-511 An error occurred when the CMVC server software tried to get file
<fileName>.

Contact the family administrator for assistance.

Explanation: The CMVC server software fails to retrieve the file from the CMVC family’s
version control directories using the SCCS or PVCS get command.

This message is displayed along with other messages that indicate the nature of the SCCS
or PVCS problem and the name of the file which was accessed at the time of the failure.

User Response: Refer to your operating system documentation for the SCCS recovery
procedure and your PVCS documentation for the PVCS recovery procedure.

Note: If this message is displayed with the following PVCS message:

get: License notification: user ID not authorized

Refer to “Registering Users to the PVCS License Administration Database” on
page 25 for more information.

0010-521 0010-521 The User Exit program, <programName >, was not found.

Explanation: The CMVC server software fails to locate the specified User Exit program.

User Response: Check you $home/bin directory to see if the specified program is present.
Contact your system administrator if it is not.

Check your path to see if $home/bin is included. Include this in your login profile and run the
profile. Stop and start cmvcd again for the additional path to be recognized.

0010-539 A packet error occurred. The SOH was not valid.

To solve the problem, contact the family administrator.

Explanation: The client and server communicate through packets of data. Each packet
should start with a unique header, the SOH. The CMVC server software receives a packet
with an invalid header. Another application may be sending data to the same TCP/IP port
number that is assigned to the CMVC family.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Ensure that the TCP/IP port number assigned to the CMVC family is
unique on the network.

0010-540 A packet error occurred. The header was not valid.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software receives a packet of data that has an invalid
header. Another application may be sending data to the same TCP/IP port number that is
assigned to the CMVC family.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Ensure that the TCP/IP port number assigned to the CMVC family is
unique on the network.

 Appendix A. Error Messages and Recovery 167

 0010-541 � 0010-581

0010-541 A packet error occurred. The expected block type was not found.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software expects to receive a packet of data recognized as
a *.block type. It receives something else instead. Another application may be sending
data to the same TCP/IP port number that is assigned to the CMVC family.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Ensure that the TCP/IP port number assigned to the CMVC family is
unique on the network.

0010-542 A packet error occurred. The expected string type was not found.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software expects to receive a packet of data recognized as
a string type. It receives something else instead. Another application may be sending data
to the same TCP/IP port number that is assigned to the CMVC family.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Ensure that the TCP/IP port number assigned to the CMVC family is
unique on the network.

0010-543 A packet error occurred. The expected call data type was not found.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software expects to receive a packet of data recognized as
a call data type. It receives something else instead. Another application may be sending
data to the same TCP/IP port number that is assigned to the CMVC family.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Ensure that the TCP/IP port number assigned to the CMVC family is
unique on the network.

0010-544 A packet error occurred. The expected long type was not found.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software expects to receive a packet of data recognized as
a long type. It receives something else instead. Another application may be sending data
to the same TCP/IP port number that is assigned to the CMVC family.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Ensure that the TCP/IP port number assigned to the CMVC family is
unique on the network.

0010-581 An error occurred when the CMVC server software tried to open the file
<fileName> on the CMVC client during file migration.

Check that the access permissions of the file allow the CMVC server
software to read it.

Explanation: The CMVC server software fails to execute the open system subroutine on
the specified file on the CMVC client.

This problem occurs when the CMVC server software does not have permission to open the
file in read-only mode.

168 Server Administration and Installation

 0010-583 � 0010-591

User Response: Verify that the CMVC server software has permission to access the
specified file on the CMVC client.

Message 0010-350 is also displayed. Refer to message 0010-350 for more details.

0010-583 The file migration cannot be completed. The sclean command,
<command>, failed.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software is unable to successfully run the sclean
command to prepare the SCCS input file during premigration processing.

User Response: Ensure that the sclean shell script exists in the /usr/lpp/cmvc/bin
directory of the CMVC server with executable permission.

0010-585 The file migration cannot be completed. The SCCS file, <fileName> cannot
be cleaned up appropriately for migration.

To solve the problem, contact the family administrator.

Explanation: The sclean shell script returns an error when preparing the specified SCCS
input file for migration into CMVC.

User Response: Verify that the input file is a valid SCCS file and that it is not damaged in
any way.

0010-587 A packet error occurred. The expected text type was not found.

To solve the problem, contact the family administrator.

Explanation: The CMVC server software expects to receive a packet of data recognized as
a text type. It receives something else instead. Another application may be sending data to
the same TCP/IP port number that is assigned to the CMVC family.

This message is displayed on the CMVC server console or entered into the syslog file if the
syslog daemon is running.

User Response: Ensure that the TCP/IP port number assigned to the CMVC family is
unique on the network.

0010-588 The CMVC server software cannot continue. It cannot generate new
sequence numbers.

Contact the family administrator for assistance.

Explanation: The CMVC server software has used all of the available sequence IDs with
which it identifies CMVC objects.

User Response: Create a new CMVC family and restore the current release to the newly
created family. Extract the full level or release tree and create these files in the new CMVC
family.

0010-591 The CMVC Activity Monitor cannot obtain the required shared memory.
The following error occurred: <errorMsg>

Explanation: An error occurs when the CMVC Activity Monitor processes the shmget
system subroutine on the CMVC server. The amount of available physical memory may not
be sufficient to satisfy the request.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

 Appendix A. Error Messages and Recovery 169

 0010-592 � 0010-606

0010-592 The CMVC Activity Monitor cannot attach itself to shared memory. The
following error occurred: <errorMsg>

Explanation: An error occurs when the CMVC Activity Monitor processes the shmat
system subroutine on the CMVC server.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-593 The CMVC Activity Monitor cannot remove the shared memory that it
obtained. The following error occurred: <errorMsg>

Explanation: An error occurs when the CMVC Activity Monitor processes the shmctl
system subroutine on the CMVC server.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-604 File <fileName> could not be retrieved. The CMVC server software can not
create this file on the CMVC client, <hostName>.

Check that the CMVC server software has permission to write to the
destination directory on the CMVC client, <clientName>. If the file already
exists in the destination directory, make sure that it can be overwritten by
the CMVC server software.

Explanation: The CMVC server software fails to process the open system subroutine on
the specified file on the CMVC client. This problem occurs when:

� The CMVC server software does not have permission to open the file in read-write
mode, and create the file if it does not already exist on the CMVC client.

� The file already exists on the CMVC client; its permission does not allow the CMVC
server software to read from it.

� The file system containing the parent directory is full.

� There is a depletion of i-nodes on the CMVC client.

User Response: Verify that the CMVC server software has permission to access the
directory indicated in the <fileName>.

Clean up or expand the file system on which the directory resides if necessary.

Verify that the CMVC client has enough i-nodes configured.

Message 0010-350 is also displayed on the console of the CMVC server or entered in the
syslog file if the syslog daemon is running. Refer to message 0010-350 for more details.

0010-606 The file system has run out of free blocks while attempting to receive file,
<fileName>, mounted on the CMVC host, <hostName>.

Contact the family administrator for assistance.

Explanation: The CMVC server software fails to process the open system subroutine on
the specified file on the specified host. This problem occurs when:

� The file system containing the parent directory is full. As a result, the CMVC server
software does not have permission to open the file in read-write mode and create the file
if it does not already exist.

� There is a depletion of i-nodes on the specified host.

User Response: Clean up or expand the file system on which the parent directory resides.

Verify that the specified host has enough i-nodes configured.

170 Server Administration and Installation

 0010-607 � 0010-636

0010-607 The statfs command failed with error code, <errorNumber>, while
accessing the file, <fileName> mounted on the CMVC host, <hostName>.

Contact the family administrator for assistance.

Explanation: The CMVC server software fails to process the statfs system subroutine on
the specified file on the specified host. This message is displayed on the CMVC server
console, or entered into the syslog file if the syslog daemon is running.

User Response: Refer to your operating system documentation for the error and recovery
procedures.

0010-623 The function <functionName> called by function <functionName> failed.

Explanation: This message is displayed along with various other messages when the
communication between the client and the server fails. The other messages indicate the
reason for the failure; this message is to help you trace the problem.

This message is displayed on the CMVC server console, or entered into the syslog file if the
syslog daemon is running.

User Response: Refer to the other messages that are displayed for more information.

0010-634 An error was detected when writing the map of level <levelName>,
associated with release <releaseName>.

Contact the family administrator for assistance.

Explanation: The CMVC server software fails to write the map for the associated level
during a level commit action. This problem occurs when:

� The CMVC server software does not have permission to create the directory for the map
file relative to the $HOME/maps directory on the CMVC server (where $HOME is the
home directory of the CMVC family).

� The CMVC server software does not have permission to open the map file in read-write
mode.

� The file system containing the $HOME/maps directory on the CMVC server is full (where
$HOME is the home directory of the CMVC family).

� There is a depletion of i-nodes on the CMVC server.

User Response: Verify that the CMVC server software has permission to create directories
relative to the CMVC family’s $HOME/maps directory and that the file system containing this
directory has sufficient free space available for map file creation. Also verify that the CMVC
server has enough i-nodes configured.

0010-636 Database error, <errorNumber> (<errorMsg>), has occurred.
ISAM=<errorNumber>

If the error is a result of an invalid column name, then check the syntax of
the command. If you cannot resolve the problem, contact the family
administrator.

Explanation: The specified error occurs while accessing the database. This message is
displayed on the CMVC server console or entered into the syslog file if the syslog daemon
is running.

User Response: Refer to the administrator's guide of your database program for the
appropriate action to recover from the database error. If the error is due to an invalid
column name, refer to the IBM CMVC User’s Reference to determine the correct column
name.

 Appendix A. Error Messages and Recovery 171

 0010-637 � 0010-676

0010-637 The attribute flag <attribute> is not valid because release <releaseName> is
not under tracking control.

Explanation: You are using a flag that is valid only when the release is under tracking
control.

User Response: If you want the release under tracking control, modify the process of the
release and specify one of the options that use tracking control.

0010-638 The version control type, <vcType>, is not valid.

To solve the problem, contact the family administrator.

Explanation: The CMVC_VCTYPE environment variable is either not set or is set to an
incorrect value.

User Response: Verify that the CMVC family’s account on the CMVC server has the
environment variable, CMVC_VCTYPE, set to sccs, SCCS, pvcs or PVCS depending on the
version control system being used by the CMVC family.

0010-651 A database error occurred and the database rollback failed in recovering
from this problem. The server has exited because of this error.

To solve the database problem, contact the family administrator.

Explanation: The database on the CMVC server attempted to undo the most recent
transactions but was unsuccessful in doing so. The CMVC server software daemons have
been stopped.

User Response: Restart the database and validate the integrity of the data. Restart the
CMVC daemons once the database integrity has been validated. Refer to the administrator's
guide of your database program for the appropriate actions to take to validate the integrity of
the database contents.

0010-652 The CMVC action has been aborted because the CMVC server is unable to
write to the file system <fileSystemName>.

Please notify your system administrator.

Explanation: The CMVC server software fails to write to the file system indicated in the
message.

User Response: Verify that the CMVC server software has permission to write to the file
system indicated in the message. Also verify that this file system is not full. Clean up or
expand the file system if necessary.

0010-653 The CMVC action has been aborted because the CMVC server file system,
<fileSystemName> has run out of free space.

Please notify your system administrator.

Explanation: The file system indicated in the message is full. The CMVC server software
can not complete the action it was working on.

User Response: Clean up or expand the file system on the CMVC server.

0010-676 The CMVC action was aborted because a problem occurred when trying to
obtain the file size.

Please notify your system administrator.

Explanation: The CMVC server software can not determine the size of the file when
creating a file in the CMVC environment, when checking in a file or when migrating an SCCS
file into the CMVC environment.

User Response: Verify that the file being acted upon is not corrupted and reissue the
command.

172 Server Administration and Installation

 0010-677 � 0010-684

0010-677 The CMVC action was aborted while attempting to extract file <fileName>.
A file system mounted from client <clientName> has insufficient free space.

Explanation: The file system indicated in the message is full. The CMVC server software
can not complete the extraction of the specified file.

User Response: Clean up or expand the file system that is mounted from the CMVC client.

0010-678 The CMVC action was aborted because the CMVC server could not access
the extracted file <fileName>.

Explanation: The CMVC server software could not access the file indicated in the
message. The extraction can not complete.

User Response: Verify that the destination extraction directory's permissions allow the
CMVC server software to access the files within the directory. Verify that the extracted file is
not corrupted in any way.

0010-682 An error occurred in <vcType> when the CMVC server software tried to
check out file <fileName>.

The version control failed to create a lock for this file within the version
control file tree.

Explanation: The version control system failed to create a lock on the file within the
version control file tree. The checkout action can not be completed.

User Response: Verify that the file system containing the version control file tree is not full.
If this file system is full, expand it so that the version control system has sufficient space to
create the required files that monitor file locks. Check the CMVC server's console or the
syslog for error messages indicating that the version control system is not operating
successfully and take corrective action to resolve any problems. Retry the checkout request
once corrective actions have been completed.

0010-683 An error occurred in <vctype> when the CMVC server software tried to
check in file <fileName>.

The version control failed to delete the lock for this file within the version
control file tree after the corresponding filesOut record was deleted from
the FilesOut table.

Explanation: The version control system failed to delete the lock on the file within the
version control file tree. The checkin action can not be completed. The file has been
relocked and the file changes have not been checked in.

User Response: Verify that the file system containing the version control file tree is not full.
If this file system is full, expand it so that the version control system has sufficient space to
make updates to files. Check the CMVC server's console or the syslog for error messages
indicating that the version control system is not operating successfully and take corrective
action to resolve any problems. Retry the checkin request once corrective actions have
been completed.

0010-684 An error occurred when the CMVC server software tried to check out file
<fileName>.

The CMVC server software failed to create a filesOut record for this file in
the FilesOut table after the file was successfully locked in the version
control file tree.

The file has been unlocked in the version control file tree. If problems
persist, contact the family administrator.

Explanation: The CMVC server software fails to create an entry in the FilesOut table in the
database after the file is successfully checked out from the version control system. The

 Appendix A. Error Messages and Recovery 173

 0010-685 � 0010-782

checkout action can not be completed. The file has been unlocked in the version control file
tree.

User Response: Verify that the database is operating successfully and has sufficient
resources available to add records to its' tables. Check the CMVC server's console or the
syslog for error messages indicating that the database is not operating successfully and
take corrective action to resolve any problems. Retry the checkout request once corrective
actions have been completed.

0010-685 An error occurred when the CMVC server software tried to check in file
<fileName>.

The CMVC server software failed to delete the filesOut record for this file
from the FilesOut table after the file was successfully unlocked in the
version control file tree.

The file has been relocked in the version control file tree. If problems
persist, contact the family administrator.

Explanation: The CMVC server software fails to delete an entry in the FilesOut table in the
database after the file is successfully checked in to the version control system. The checkin
action can not be completed. The file has been relocked in the version control file tree.

User Response: Verify that the database is operating successfully and has sufficient
resources available to update records within its' tables. Check the CMVC server's console
or the syslog for error messages indicating that the database is not operating successfully
and take corrective action to resolve any problems. Retry the checkin request once
corrective actions have been completed.

0010-777 The CMVC client was attempting to transmit the file: <fileName> to the
server and failed.

Explanation: The CMVC server software failed to open the file when preparing to transfer
the file from the CMVC client to the CMVC server. The CMVC action can not complete.

User Response: Check the permissions of the file and the directory that the file resides in
on the CMVC client.

0010-778 The CMVC client was unable to obtain the file size of file: <fileName>.

Explanation: The CMVC server software failed to determine the size of the file when
preparing to transfer the file from the CMVC client to the CMVC server. The CMVC action
can not complete.

User Response: Verify that the file on the CMVC client is not corrupted in any way.

0010-781 The CMVC server has determined there is inadequate file space to receive
a file of size <fileSize> bytes. Please notify your system administrator.

Explanation: The CMVC action can not be completed due to insufficient space within the
CMVC server's file systems.

User Response: Expand the file system containing the version control file tree and cleanup
or expand the file system containing the /tmp directory.

0010-782 The CMVC server has detected an error in receiving a file from the client.

The expected size was <fileSize> bytes, but the size actually received was
<fileSize> bytes.

Explanation: The CMVC action can not be completed due to a discrepancy between the
size of the file expected from the CMVC client and the size of the file received from the
client.

User Response: Verify the contents of the file on the CMVC client and reissue the request.

174 Server Administration and Installation

 0010-783 � 0010-787

0010-783 A version control error may have caused a file to become corrupt. Should
the version control file <filename> need to be restored, a recovery file has
been saved on the CMVC server with the file name <fileName>.

Please save this message and notify your family administrator.

Explanation: A version control operation may have partially but not fully completed and as
a result the file within the version control system may be corrupted.

User Response: Verify the contents of the version control file. If the file is corrupted,
replace it with the recovery file. The recovery file represents the version control file prior to
the version control operation.

0010-784 *** WARNING: A Version Control Error Has Occurred .*** Should the
version control file <filename> need to be restored, a recovery file has
been saved on the CMVC server with the file name <fileName>.

Please save this message and notify your family administrator.

Explanation: A version control operation has failed and the version control file being
operated on may be corrupted.

User Response: Verify the contents of the version control file. If the file is corrupted,
replace it with the recovery file. The recovery file represents the version control file prior to
the version control operation.

0010-785 This CMVC action completed, but was not successfully verified. Should
the version control file <fileName> need to be restored, a recovery file has
been saved on the CMVC server with the file name <fileName>.

Please save this message and notify your family administrator.

Explanation: The CMVC server software was not able to verify the contents of the version
control file after completing the version control operation.

User Response: Verify the contents of the version control file. If the file is corrupted,
replace it with the recovery file. The recovery file represents the version control file prior to
the version control operation.

0010-786 The CMVC server has determined there is inadequate file space in the
server's directory: <directoryName> to initiate this action.

Explanation: There is not enough space in the specified directory on the CMVC server.
The version control operation has not been initiated as a result. The CMVC file operation
can not complete.

User Response: Clean up or expand the file system that contains the specified directory
on the CMVC server and then retry the CMVC file operation.

0010-787 The CMVC server has determined there is inadequate file space in the
server's directory <directoryName>. The version control command
<vcCommand> was not initiated.

Explanation: There is not enough space in the specified directory on the CMVC server.
The version control operation has not been initiated as a result. The CMVC file operation
can not complete.

User Response: Clean up or expand the file system that contains the specified directory
on the CMVC server and then retry the CMVC file operation.

 Appendix A. Error Messages and Recovery 175

 0010-788 � 0010-794

0010-788 The CMVC server could not create the version control recovery file.

Contact the family administrator for assistance.

Explanation: The CMVC server software could not copy the original version control file to
another file for recovery purposes. The version control operation has not been performed.
The CMVC file operation can not complete.

User Response: Clean up or expand the file system that contains the /tmp directory on the
CMVC server. Also check that the file system that contains the version control directories
has sufficient space to expand.

0010-789 The CMVC server could not create the version control recovery comparison
file.

Contact the family administrator for assistance.

Explanation: The CMVC server software could not obtain the file from the version control
system in order to verify the contents of the file.

User Response: Verify the contents of the file in the version control file system.

0010-790 The CMVC server could not create a file necessary for error detection in
the directory <directoryName>.

Contact the family administrator for assistance.

Explanation: The CMVC server software could not create the error detection file. The
CMVC file operation can not complete.

User Response: Verify that the CMVC server software has permission to write to the
specified directory and that the directory has sufficient space for file creation.

0010-792 *** WARNING: A Version Control Error Has Occurred.*** The version
control file <fileName> should be examined.

Please save this message and notify your family administrator.

Explanation: A version control operation has failed and the version control file being
operated on may be corrupted.

User Response: Verify the contents of the version control file. If the file is corrupted,
replace it with the recovery file. The recovery file represents the version control file prior to
the version control operation.

0010-793 The CMVC action completed, but was not successfully verified. The
version control file <fileName> should be examined.

Please save this message and notify your family administrator.

Explanation: The CMVC server software was not able to verify the contents of the version
control file after completing the version control operation.

User Response: Verify the contents of the version control file. If the file is corrupted,
replace it with the recovery file. The recovery file represents the version control file prior to
the version control operation.

0010-794 The user exit program <programName > could not be executed. Ask your
family administrator to check to ensure that the PATH environment variable
in the CMVC family profile includes $HOME/bin.

Explanation: The CMVC server software was not able to execute the user exit program
specified in the message.

User Response: Verify that the user exit program is in the $HOME/bin directory, that the
PATH environment variable on the CMVC server includes $HOME/bin, and that the user exit
program has execute permissions set.

176 Server Administration and Installation

 0010-813 � 0011-037

0010-813 The CMVC server software cmvcd daemon cannot be started from root or
the family name specified is different from the current login user name.

You must be logged in to the CMVC family account to start the cmvcd
daemon and specify the same family name for the CMVC family name
parameter.

Explanation: You must be logged in to the CMVC family account to start the cmvcd
daemon.

User Response: Log in to your family’s account and start CMVC again.

0010-871 The requested action, <actionName>, cannot be completed. The CMVC
server software is in maintenance mode.

Contact the family administrator.

Explanation: When running in maintenance mode, the CMVC server software allows some
read-only actions to be performed.

User Response: Stop the maintenance mode CMVC server daemons and start CMVC in
nonmaintenance mode.

0010-876 The Archive/Restore program is running. The cmvcd daemons cannot be
started in nonmaintenance mode.

Explanation: CMVC can be run only in maintenance mode during an archive or restore.

User Response: Complete the archive or restore and start CMVC in nonmaintenance
mode.

0010-877 Cannot connect to NetLS server.

To solve the problem, contact the CMVC family administrator.

Explanation: A problem has occurred with the NetLS software that controls the number of
users who are allowed to access CMVC.

User Response: Check that the NetLS software is configured correctly. Refer to your
NetLS books for more information.

0010-878 Cannot obtain a NetLS floating license.

To solve the problem, contact the CMVC family administrator.

Explanation: A problem has occurred with the NetLS software that controls the number of
users who are allowed to access CMVC.

User Response: Check that the NetLS software is configured correctly and that there are
enough NetLS tokens to handle the number of users who are trying to use CMVC. Refer to
your NetLS books for more information.

0011-037 The environment variable DB2_HOME is not set.

Explanation: You have not added the DB2_HOME environment variable to your login profile.
This environment variable refers to the home directory of the DB2/6000 instance that the
CMVC family will use.

User Response: Add the DB2_HOME environment variable to your login profile. Run your
login profile to update your environment. Refer to “For a DB2/6000 Server” on page 36 for
more information.

 Appendix A. Error Messages and Recovery 177

 0011-038 � 0011-108

0011-038 <Database program name > is not executable. Is the DB2_HOME
environment variable set correctly?

Explanation: The DB2_HOME environment variable in your login profile is not set to the home
directory of the DB2/6000 instance that the CMVC family uses.

User Response: Check the setting of the DB2_HOME environment variable in your login
profile. Run your login profile to update your environment. Refer to “For a DB2/6000
Server” on page 36 for more information.

0011-040 The length of the CMVC DB2 family's AIX user login password cannot be
more than 18 characters.

Explanation: You have tried to set the DB2_PASS environment variable with more than 18
characters, which is the maximum allowed. The DB2_PASS environment variable is set with
the password of your CMVC family AIX user login.

User Response: Change the DB2_PASS environment variable in your login profile to less
than 18 characters. Change the CMVC family AIX login password to less than 18
characters. Run your login profile to update your environment. Refer to “For a DB2/6000
Server” on page 36 for more information.

0011-108 The environment variable DB2_PASS is not set.

Explanation: You have not added the DB2_PASS environment variable to your login profile.
This environment variable refers to the password of your CMVC family AIX user login.

User Response: Add the DB2_PASS environment variable to your login profile. Run your
login profile to update your environment. Refer to “For a DB2/6000 Server” on page 36 for
more information.

178 Server Administration and Installation

Appendix B. Migrating to CMVC Version 2.3

This chapter provides the instructions for migrating to CMVC Version 2.3. After
completing migration, you can convert from your current database to another
database.:

� To convert ORACLE6 to ORACLE7, refer to Appendix C, “Converting Existing
CMVC Server from ORACLE6 to ORACLE7” on page 195.

� To convert ORACLE6, ORACLE7, INFORMIX, or SYBASE to DB2/6000 on the
CMVC Server/6000 only, refer to Appendix D, “Migrating to CMVC Server/6000
V2.3.0 for DB2/6000” on page 199.

Note: It is important that you complete the migration tasks in this chapter
before migrating to a DB2/6000 database.

The most time-consuming migration task is backing up your family’s data. To
minimize disruptions for your users, schedule the migration for an evening or a
weekend.

After migrating to CMVC Version 2.3.0, your users can use these features:

 � Configurable processes
 � Configurable fields
� Alphanumeric defect and feature identifiers
� Ability to archive and restore CMVC data
� Ability to restrict access to a component
� Additional user exits
� Enhanced functionality in the graphical user interface.

Databases Supported by Versions of CMVC
A CMVC family has many views, tables, and indexes in its relational database.
Some of its views, tables, and indexes must be converted from earlier CMVC
versions to CMVC Version 2.3.0 to make use of CMVC”s new features.

Figure 49 shows the various versions and releases of CMVC as well as the
different databases supported by each of the releases.

 Copyright IBM Corp. 1993, 1994 179

Figure 49. Databases Supported by Versions of CMVC

Version ORACLE
7

INFORMIX SYBASE
4

SYBASE
10

DB2

CMVC Server/6000

1.1.0

1.1.1 X

1.1.2 X X

2.1.0 X X

2.1.1 X X X

2.2.0 X X X X

2.3.0 X X X X

CMVC Server for SUN

2.1.0

2.1.1 X X

2.2.0 X X

2.3.0 X X X X

CMVC Server for HP

2.1.0

2.1.1 X X

2.2.0 X X

2.3.0 X X

CMVC Server for
Solaris

2.3.0 X X X

 Migration Utilities
The following utilities have been provided to help you convert the tables, views, and
indexes to CMVC Version 2.3.0:

Table 1 (Page 1 of 2). Database conversion programs

From Version To Version Migration Tasks

1.1.0 1.1.1 or 1.1.2 Run dbConvert.v1r1m1 (see “Using the
dbConvert.v1r1m1 Utility” on page 181).

1.1.0 2.1.0 or 2.1.1 Run dbConvert.v1r1m1 (see “Using the
dbConvert.v1r1m1 Utility” on page 181). Then run
dbConvert.v2r1 (see “Using the dbConvert.v2r1
Utility” on page 181). However, do not do “Step 7.
Creating Indexes.”

180 Server Administration and Installation

Table 1 (Page 2 of 2). Database conversion programs

From Version To Version Migration Tasks

1.1.0 2.2.0 Run dbConvert.v1r1m1 (see “Using the
dbConvert.v1r1m1 Utility” on page 181). Then run
dbConvert.v2r1 (see “Using the dbConvert.v2r1
Utility” on page 181).

1.1.1 1.1.2 No conversion is required.

1.1.1 2.1.0 or 2.1.1 Run dbConvert.v2r1 (see “Using the dbConvert.v2r1
Utility” on page 181). However, do not do “Step 7.
Creating Indexes.”

1.1.1 2.2.0 Run dbConvert.v2r1 (see “Using the dbConvert.v2r1
Utility” on page 181).

1.1.2 2.1.0 or 2.1.1 Run dbConvert.v2r1 (see “Using the dbConvert.v2r1
Utility” on page 181).

1.1.2 2.2.0 Run dbConvert.v2r1 (see “Using the dbConvert.v2r1
Utility” on page 181).

2.1.0 2.1.1 No conversion is required.

2.1.0 2.2.0 Create a new index. See “Step 7. Creating Indexes”
on page 192 for more information.

2.1.1 2.2.0 Create a new index. See “Step 7. Creating Indexes”
on page 192 for more information.

2.2.0 2.3.0 1. If you are using DB2 with CMVC Version 2.2.0,
run the db2bind program from CMVC Version
2.3.0. For usage information, type db2bind.

2. Create new indexes. See “Step 7. Creating
Indexes” on page 192 for more information.

Using the dbConvert.v1r1m1 Utility
If you are migrating from CMVC Version 1.1.0, run the dbConvert.v1.r1m1 script
before you do the pre-migration tasks (see “Pre-Migration Tasks”).

Using the dbConvert.v2r1 Utility
Do the following pre-migration and migration tasks when migrating to a Version 2
level of CMVC. If you are migrating from Version 1.1.0, you must first run the
dbConvert.v1r1m1 utility.

 Pre-Migration Tasks
Before performing the migration tasks, do the following tasks:

1. Estimate the additional disk space needed in the relational database.

2. Ensure that the ORACLE rollback segment and related database logs have
enough space.

 Appendix B. Migrating to CMVC Version 2.3 181

Step 1. Estimating Additional Relational Database Storage
Estimate the additional disk space needed in the relational database. Figure 50
lists the table names that must be converted and how many additional bytes each
row needs. Also, 2 new tables, Cfgcomproc and Cfgrelproc, are created on the
CMVC server.

Figure 50. Bytes Required by Additional Rows in CMVC Database Tables

Table Name Additional Bytes Needed by Each Row

Defects 1500

Files 0035

AccessTable 0015

Releases 0046

Components 0043

Users Insignificant

Cfgcomproc Insignificant (new table)

Cfgrelproc Insignificant (new table)

Note: A new Defects table is temporarily created during the conversion.
Therefore, the additional space needed for the new Defects table is recoverable
after the conversion.

To find out how many rows a table has, you can invoke one of the following
commands in your CMVC family account to get into the respective ORACLE,
INFORMIX or SYBASE database.

� $ORACLE_HOME/bin/sqlplus familyName/$ORACLE_PASS
� $INFORMIXDIR/bin/isql familyName
� $SYBASE/bin/isql -U familyName -P $SYBASE_PASS

Then use the following SQL command:

Select count(\) From tableName

where tableName is one of the table names listed in Figure 50.

Increase the amount of disk space by 50% to allow for indexes and conversion.

After you know how much more disk space you need in your relational database,
ensure that you have at least that much free space in your relational database.

Figure 51 on page 183 is a sample estimate:

182 Server Administration and Installation

Figure 51. Example of Additional Space Calculation for the Relational Database

Table Name

Additional
Bytes
Required
by Each
Row

Number of
Rows Total KB

Number of
Rows in
Your
Family

Total KB
Required by
Your Family

Defects 1500 10000 15000

Files 35 100000 3500

AccessTable 15 1000 15

Releases 46 Insignificant

Components 43 Insignificant

Users Insignificant Insignificant

Total 18515

To estimate the additional disk space you require, round up the calculated figure to
the nearest megabyte and multiply it by 1.5 to allow for indexes and expansion. In
this example, the sample CMVC family needs approximately 30MB (20MB × 1.5) of
free space in the relational database for database conversion.

Ensure that this space is added to the database device that is set in the
ORACLE_TBLSP, ORACLE_NDXSP, INFORMIX_DBSP, SYBASE_DBDEV, and SYBASE_LOGDEV
environment variables, if you have them set. Otherwise, ensure that this space is
added to the default database device.

Refer to Chapter 6, “Creating a CMVC Family” for the definitions of ORACLE_TBLSP,
ORACLE_NDXSP, INFORMIX_DBSP, SYBASE_DBDEV, and SYBASE_LOGDEV environment
variables.

The conversion script may fail if you underestimate the amount of space to add to
the relational database. If the conversion script fails, it will most likely do so when
converting the Defects or Files tables. Later sections of this appendix explain how
to recover from such a failure.

Step 2: Reserving Additional Database Space
Ensure that the ORACLE rollback segments and the related database logs have
sufficient space.

Note: The ORACLE database uses rollback segments and logs. The SYBASE
and INFORMIX databases do not use rollback segments but do use logs.

The example in Figure 52 on page 184 assumes that your database has been set
up to clean the logs every time a transaction is committed.

The Defects table is updated in a loop of, at most, 10000 rows at each iteration.
The Files table is updated in a loop of, at most, 20000 rows at each iteration. If
you have more than 10000 defects or 20000 files, or both, you need approximately
20MB of disk space in your ORACLE rollback segments and the related database
logs to update these tables.

For other tables, you require disk space in the ORACLE rollback segments and the
related database logs that is equal to twice the size of the table.

 Appendix B. Migrating to CMVC Version 2.3 183

If these estimates differ, use the largest number (not the total) to set the size for
your ORACLE rollback segments and the related database logs.

Figure 52 is a sample estimate:

Figure 52. Example of Additional Space Calculation for ORACLE Rollback Segments and
Related Database Logs

Table Name

Number of
Bytes
Needed by
Each Row

Number of
Rows Total KB

Number of
Rows in
Your
Family

Total KB
Needed in
Your Family

Defects 1500 10000
each run

20000

Files 400 20000
each run

20000

AccessTable 75 1000 150

Releases 350 insignificant

Components 350 Insignificant

Users Insignificant Insignificant

The example in Figure 52 indicates that 20MB is required in the ORACLE rollback
segments and the related database logs for the conversion.

If you use the INFORMIX-Online relational database, in stage C where the Files
table is altered, you need twice the size of the Files table for the logs. In this
example, you might need more than 20MB of free space in your INFORMIX logs.

If you use the SYBASE relational database, you may need to use the sp_dboption
command to change the database option trunc. log on chkpt. to true. Then use
the sp_configure command to change the recovery interval to a smaller number
during the conversion. For details, refer to your SYBASE documentation.

 Migration Tasks
After completing the pre-migration steps, do the following to migrate to a Version 2
level of CMVC:

1. Stop the cmvcd and notifyd daemons.
2. Back up the database and the family directories.
3. Install the CMVC server code, Version 2.3 for the current database.
4. Run the dbConvert.v2r1 conversion shell script.
5. Run the chfield command.
6. Update the Authority, Interest, Cfgcomproc, and Cfgrelproc tables.
7. Create an index for the Sequence table.
8. Start the cmvcd and notifyd daemons.
9. Verify the integrity of the family’s data.

184 Server Administration and Installation

Step 1. Stopping the cmvcd and notifyd Daemons
To ensure the integrity of your CMVC family’s data, you must stop the cmvcd and
notifyd daemons before running the database conversion shell script.

Refer to Chapter 13, “CMVC Server Daemons” for instructions on stopping the
cmvcd and notifyd daemons.

Step 2. Backing Up the Database
If errors occur during the conversion of the CMVC family’s database, you may have
to restore a table or the entire database before running the conversion script again.
You must have a good backup copy of your CMVC family’s relational database.

You can back up either all of the data belonging to your CMVC family or just the
relational database.

Refer to Chapter 17, “Backup and Recovery” for recommendations on backing up
the CMVC family or its relational database, or both.

Step 3. Installing the CMVC Server Code, Version 2.3
The dbConvert.v2r1 shell script is shipped with the CMVC server code, Version 2,
Release 3. Refer to Chapter 3, “Installing the CMVC Servers” on page 13 for
instructions on how to install the CMVC server code.

Step 4. Running the dbConvert.v2r1 Conversion Script
A shell script called dbConvert.v2r1 is shipped with CMVC Version 2.3.0 and is
located in the /usr/lpp/cmvc/install directory. The CMVC family administrator can
use this script to convert the database.

This script is written in the Bourne shell so that you can browse the file to find the
SQL commands that perform the conversion.

Log in to the CMVC family account and type dbConvert.v2r1 to start the
conversion script. You are prompted to enter the stage to run. If you are running
the script for the first time, select stage A. The script will continue to run through to
the last stage, which is stage L. If the script fails at a particular stage, refer to the
error log to correct the problem, and then do one of the following:

� Recover the whole database from the backup copy and rerun the shell script
from stage A.

� Recover the affected table from the backup copy and rerun the shell script from
the stage that failed.

Note: When recovering a table, you must also rebuild its indexes if they were
not already rebuilt.

For a list of indexes for the affected table, refer to the file for the respective
database:

Database Name of File

ORACLE /usr/lpp/cmvc/install/index.db

INFORMIX /usr/lpp/cmvc/install/index.ifx

SYBASE /usr/lpp/cmvc/install/index.syb

 Appendix B. Migrating to CMVC Version 2.3 185

Copy the file to your family’s $HOME directory. Keep only the entries that
relate to the affected table, then run the command:

cat fileName | $SQL

Where

Variable Name Description

fileName Name of the file that contains the commands to
create indexes.

$SQL Set to one of the following:

 – $ORACLE_HOME/bin/sqlplus

familyName/$ORACLE_PASS

 – $INFORMIXDIR/bin/isql familyName

– $SYBASE/bin/isql -U familyName -P

$SYBASE_PASS

This command runs the SQL commands listed in the file fileName.

There is no need to recreate the views individually because all views will be
re-created in Stage L.

� Browse the dbConvert.v2r1 shell script to find the affected stage. Then
manually run the remaining commands listed in that stage. Proceed to the next
stage by running the dbConvert.v2r1 shell script from the stage after the one
that failed.

The following sections describe the stages of the dbConvert.v2r1 shell script.

 Stage A
The database conversion script assumes that you do not have a newDefects table
in your CMVC database. If you do, rename it before running the database
conversion script. Rename it back to newDefects after the conversion.

The script creates the newDefects table and fills it with the data in the original
Defects table. The following fields have been changed in the new table:

� Defect name and duplicate name are now alphanumeric fields.

� The symptom , phaseFound , phaseInject , priority , and target columns are
moved to the end of the table. These columns are now configurable fields that
are invisible to users until the chfield command is run. Refer to “Step 5.
Running the chfield Command” on page 190 for instructions on running the
chfield command to make these fields visible to users.

Note: To limit the amount of disk space required by the conversion, the Defects
table is filled in a loop with a maximum of 10000 rows per iteration.

If this stage fails, you probably do not have to recover the database from the
backup copy. To recover from the error, refer to the error log to correct the
problem, and then run dbConvert.v2r1 again from stage A. The Defects table is
not dropped in stage A because, if stage A fails, the Defects table still remains in
the database to be filled into the newDefects table.

186 Server Administration and Installation

 Stage B
In this stage, the original Defects table is dropped and the newDefects table is
renamed to Defects.

If stage B fails, manually drop the Defects table and rename the newDefects table
to Defects. Then, run dbConvert.v2r1 from stage C to continue the database
conversion. Refer to the “Procedure to run stage b” in the dbConvert.v2r1 shell
script for the commands to drop and rename the Defects table.

 Stage C
Stage C adds userLogin and fmode columns to the Files table.

If this stage fails, refer to the error log to correct the problem. You may have to
recover the Files table from the backup copy if the table is damaged. Use one of
the recovery options mentioned previously to continue the database conversion.

If you use the INFORMIX-Online relational database, you need twice the size of the
Files table for the logs.

 Stage D
This stage updates the userLogin and fmode columns in the Files table. The
userLogin is updated with the CMVC user ID of the person who has the file
checked out or locked. The fmode column is updated with the value of ð444.

If this stage fails, you probably do not have to recover the database from the
backup copy. To recover from the error, refer to the error log to correct the
problem. Then, run dbConvert.v2r1 again from stage D.

Note: To limit the amount of space required by the ORACLE rollback segment
and the related database logs, the Files table is updated in a loop with a
maximum of 20000 rows in each iteration.

 Stage E
This stage adds a new column called authorityType to the AccessTable table and
initializes it to granted.

If this stage fails, refer to the error log to correct the problem. You may have to
recover the AccessTable table from the backup copy if the table is damaged. Use
one of the recovery options mentioned previously to continue the database
conversion.

 Stage F
This stage adds and initializes some new columns to the Releases table. Refer to
the “Procedure to run stage f ” in the dbConvert.v2r1 file for the names and
attributes of the new columns and commands to initialize the new columns.

The process column is initialized with the values shown in Figure 53 on page 188.

 Appendix B. Migrating to CMVC Version 2.3 187

Figure 53. New Values for the process Column in the Releases Table

Release Setting in CMVC V1R1 Value of the process Column

No binding control no_track

Binding control without environment list or approver
list

track_level

Binding control with environment list track_test

Binding control with environment list and approver list track_full

Binding control with approver list track_approval

If this stage fails, refer to the error log to correct the problem. You may have to
recover the Releases table from the backup copy if the table is damaged. Use one
of the recovery options mentioned previously to continue the database conversion.

 Stage G
This stage adds and initializes some new columns to the Components table. Refer
to the “Procedure to run stage g” in the dbConvert.v2r1 file for the names and
attributes of the new columns and commands to initialize the new columns. The
process column is initialized with the value of default.

If this stage fails, refer to the error log to correct the problem. You may have to
recover the Components table from the backup copy if the table is damaged. Use
one of the recovery options mentioned previously to continue the database
conversion.

 Stage H
This stage inserts a special user into the Users table. Refer to the “Procedure to
run stage h” in the dbConvert.v2r1 file for the values of the columns for this
special user.

If this stage fails, probably the special user could not be inserted. Correct the
problem and run the dbConvert.v2r1 command again from this stage.

 Stage I
Stage I creates and initializes the new Cfgrelproc table. Before running this stage,
ensure that you do not have a table called Cfgrelproc in your CMVC family
database.

Figure 54 on page 189 shows the rows that are inserted into the Cfgrelproc table:

188 Server Administration and Installation

Figure 54. Rows Inserted into the Cfgrelproc Table

name Column config Column

no_track none

track_level track

track_level fix

track_level level

track_test track

track_test fix

track_test level

track_test test

track_full track

track_full fix

track_full level

track_full test

track_full approval

track_approval track

track_approval fix

track_approval level

track_approval approval

If this stage fails, correct the problem and rerun the dbConvert.v2r1 command
from this stage.

Stage J and K
Stage J creates and initializes the new Cfgcomproc table. Before running this
stage, ensure that you do not have a table called Cfgcomproc in your CMVC family
database.

Figure 55 shows the rows that are inserted into the Cfgcomproc table:

Figure 55. Rows Inserted into the Cfgcomproc Table

name Column config Column

default verifyDefect

default dsrFeature

default verifyFeature

There are indexes in the database that need to be recreated and new indexes
which must be created. Stage K drops these indexes before recreating them.

If either of these stages fail, correct the problem and rerun the dbConvert.v2r1
command from the stage that failed.

 Appendix B. Migrating to CMVC Version 2.3 189

 Stage L
Stage L drops all views before recreating them.

If this stage fails, correct the problem and rerun the dbConvert.v2r1 command
from this stage.

Step 5. Running the chfield Command
When the Defects table is converted, the symptom , phaseFound , phaseInject ,
priority and target fields are moved to the end of the table. These fields are
invisible to the users until the chfield command is run as follows:

chfield -object Defect -source default -s

chfield -object Feature -source default -s

Refer to “Creating and Modifying Configurable Fields” on page 51 for instructions
on running the chfield command.

Step 6. Updating Table Entries
CMVC Version 2.1.0 and later contains new entries in the IBM shipped authority.ld
and interest.ld files. If the authority.ld and interest.ld files in the $HOME
directory of your CMVC family’s account are identical to the copies shipped with
CMVC, Version 1, Release 1, Modification Level 2, copy the new files from the
/usr/lpp/cmvc/install directory to replace the old files. Compare your old files with
the new shipped copies before replacing the old files.

Figure 56 on page 191 shows the entries which have been added to the IBM
shipped authority.ld file. Update your authority.ld file accordingly.

190 Server Administration and Installation

developer+|DefectDesign

developer+|DefectReview

developer+|DefectSize

writer+|DefectDesign

writer+|DefectReview

writer+|DefectSize

releaselead|DefectDesign

releaselead|FeatureAccept

releaselead|ReleaseLink

releaselead|TestAbstain

releaselead|TestAccept

releaselead|TestAssign

releaselead|TestReject

componentlead|AccessRestrict

componentlead|DefectCancel

componentlead|DefectDesign

componentlead|DefectReopen

componentlead|DefectReview

componentlead|DefectSize

componentlead|DefectVerify

componentlead|FeatureCancel

componentlead|FeatureReopen

componentlead|FeatureVerify

componentlead|VerifyAbstain

componentlead|VerifyAccept

componentlead|VerifyAssign

componentlead|VerifyReject

projectlead|AccessRestrict

projectlead|DefectCancel

projectlead|DefectDesign

projectlead|DefectReopen

projectlead|DefectReview

projectlead|DefectSize

projectlead|DefectVerify

projectlead|FeatureCancel

projectlead|FeatureReopen

projectlead|FeatureVerify

projectlead|ReleaseLink

projectlead|TestAbstain

projectlead|TestAccept

projectlead|TestAssign

projectlead|TestReject

projectlead|VerifyAbstain

projectlead|VerifyAccept

projectlead|VerifyAssign

projectlead|VerifyReject

Figure 56. New Entries in the authority.ld File Shipped by IBM

Figure 57 on page 192 shows the entries which have been added to the IBM
shipped interest.ld file. Update your interest.ld file accordingly.

 Appendix B. Migrating to CMVC Version 2.3 191

med|DefectDesign

med|ReleaseLink

high|AccessRestrict

high|DefectDesign

high|DefectReview

high|DefectSize

high|ReleaseLink

Figure 57. New Entries in the interest.ld File Shipped by IBM

After editing these files run the chauth and chintr commands.

Copy /usr/lpp/cmvc/install/cfgrelproc.ld to your family’s $HOME directory. Copy
/usr/lpp/cmvc/install/cfgcomproc.ld to your family’s $HOME directory. Optionally,
modify $HOME/cfgrelproc.ld or $HOME/cfgcomproc.ld , or both.

To change the cfgrelproc.ld file, refer to Stage I for the rows that are inserted into
the Cfgrelproc table. To change these rows after you have brought your CMVC
family up again, you must use the Release -modify command to modify your
releases so the changes will take effect.

To change the cfgcomproc.ld file, refer to Stage J for the rows that are inserted
into the Cfgcomproc table. To change these rows after you have brought your
CMVC family up again, you must use the Component -modify command to modify
your components so the changes will take effect.

Run the chrelproc and chcomproc commands.

Refer to Chapter 8, “Configuring Components and Releases” for instructions on
using these commands.

 Step 7. Creating Indexes
In CMVC Server Version 2.3.0, new indexes are added. Follow this procedure to
create the new indexes:

1. Use one of the following commands to gain access to the database:

 � For DB2:

$DB2_HOME/sqllib/bin/db2 connect to familyName
$DB2_HOME/sqllib/bin/db2

 � For ORACLE:

$ORACLE_HOME/bin/sqlplus familyName/$ORACLE_PASS

 � For INFORMIX:

$INFORMIXDIR/bin/isql familyName

 � For SYBASE:

$SYBASE/bin/isql -U familyName -P $SYBASE_PASS

2. Use the following command to create a new index called XSeqName in the
Sequence table for the name attribute:

CREATE UNIQUE INDEX XSeqName ON Sequence (name)

192 Server Administration and Installation

3. Use the following command to create new indexes for the Files table:

CREATE INDEX XFilPid ON Files (pathId)

CREATE INDEX XFilesSrcId ON Files (sourceId)

4. Use the exit command to exit the database. For DB2, type terminate.

Step 8: Starting the cmvcd and notifyd Daemons
The procedure to start the cmvcd daemon has changed. You must now start it
from your CMVC family account. You no longer have to switch to root. Refer to
Chapter 13, “CMVC Server Daemons” for instructions on starting the cmvcd and
notifyd daemons.

Step 9: Verifying Your Family’s Data
Focus the verification on those commands that read or write to the converted
tables, for example, Defect , Feature , File , Access , Release , Component , and
User commands.

 Appendix B. Migrating to CMVC Version 2.3 193

194 Server Administration and Installation

Appendix C. Converting Existing CMVC Server from
ORACLE6 to ORACLE7

There are different ways to migrate an ORACLE6 database to ORACLE7. This
appendix is to help you convert your existing CMVC server from ORACLE6 to
ORACLE7 by exporting the CMVC family tables, views, and indexes from
ORACLE6, and importing them to ORACLE7. Refer to the document ORACLE7
Server Migration Guide that comes with the ORACLE7 product for more
information.

 Prerequisites
You must install the CMVC server code for ORACLE7. See Chapter 3, “Installing
the CMVC Servers” on page 13 for detailed information about the installation
procedures.

Steps for Migration
This appendix contains instructions for the three steps to convert an ORACLE6
database to an ORACLE7 database for the CMVC Version 2.3.0 server. They are:

� Export the CMVC family tables, views, and indexes from ORACLE6

� Import the CMVC family tables, views, and indexes to ORACLE7

� Run the database conversion routine for the CMVC server.

You should also create a new index for the Sequence table by following the
procedure described in “Step 7. Creating Indexes” on page 192.

Exporting from ORACLE6
To export CMVC family tables, views, and indexes from ORACLE6:

� From your CMVC family login, type:

$ORACLE_HOME/bin/exp $ORACLE_DBA BUFFER=4ðððð FILE=fileName\
GRANTS=N INDEXES=Y ROWS=Y CONSTRAINTS=N COMPRESS=Y FULL=N \

RECORD=N OWNER=familyName

Where:

Variable Description

fileName The name of the output file for the exp command.
Refer to your ORACLE6 documentation for more
information about the exp command.

familyName Your CMVC family name.

Importing to ORACLE7
To import CMVC family tables, views, and indexes to ORACLE7:

1. From your CMVC family login, enter the sqlplus command:

$ORACLE_HOME/bin/sqlplus $ORACLE_DBA

2. At the sqlplus prompt, create a CMVC family ORACLE7 user ID by typing:

 Copyright IBM Corp. 1993, 1994 195

GRANT CONNECT, RESOURCE TO familyName IDENTIFIED BY password;

Where:

Variable Description

familyName Your CMVC family name

password The password of your CMVC family ORACLE7 user ID.
This password must be the same as the one defined in the
ORACLE_PASS environment variable.

3. Do one of the following:

a. If you do not have an ORACLE7 tablespace created for your CMVC family
tables, go to Step 4.

b. If you have an ORACLE7 tablespace created for your CMVC family tables
and you have it set in the ORACLE_TBLSP environment variable, type the
following command at the sqlplus prompt:

ALTER USER familyName DEFAULT TABLESPACE tablespaceName;

Where:

Variable Description

familyName Your CMVC family name

tablespaceName The ORACLE7 tablespace name that you have created
for your CMVC family tables.

4. Exit from the sqlplus prompt by typing:

EXIT

5. Import the CMVC family tables, views, and indexes to ORACLE7 by typing:

$ORACLE_HOME/bin/imp $ORACLE_DBA BUFFER=4ðððð FILE=fileName COMMIT=Y \
SHOW=N IGNORE=N GRANTS=N ROWS=Y DESTROY=N FULL=N INDEXES=x \
FROMUSER=familyName TOUSER=familyName

Where:

Variable Description

fileName The name of the output file for the exp command.

x Select one of the following values:

� Specify a value of Y if you do not have an ORACLE7
tablespace created for your CMVC family indexes. Go
to the next procedure “Run the Database Conversion
Routine” on page 197.

� Specify N if you have a tablespace created. Go to Step
6.

familyName Your CMVC family name.

Notes:

a. The DESTROY=N argument is only available in ORACLE7, not in ORACLE6.

b. If you have to run the above command again, change the value of the
attribute IGNORE from N to Y.

c. Refer to your ORACLE7 documentation for the syntax of the imp and
sqlplus commands.

196 Server Administration and Installation

6. Run the following command to create the indexes:

sed "s/TABLESPACENAME/TABLESPACE $ORACLE_NDXSP/g" \

$CMVC_HOME/install/index.db | $ORACLE_HOME/bin/sqlplus \

familyName/$ORACLE_PASS

Where:

Variable Description

TABLESPACENAME The place-holder found in the
$CMVC_HOME/install/index.db file to be replaced
with the keyword TABLESPACE and the ORACLE7
tablespace name that you set in the ORACLE_NDXSP

environment variable.

familyName Your CMVC family name.

Run the Database Conversion Routine
After you have installed the CMVC Server version 2.3.0 for ORACLE7 and have
completed the migration of the database from ORACLE6 to ORACLE7, run one of
the following database conversion routines from your CMVC family login. Your
selection of the routines depends on the previous version of your CMVC Server for
ORACLE6 that you upgraded from.

Follow the procedure listed in “Step 7. Creating Indexes” on page 192 to create a
new index for the Sequence table, which has been added to CMVC Server Version
2.3.0.

Previous Version of CMVC Server for
ORACLE6

Database Conversion Routines

V1.1.0 (for RISC System/6000 only) dbConvert.v1r1m1 followed by
dbConvert.v2r1

V1.1.1 (for RISC System/6000 only) dbConvert.v2r1

V1.1.2 (for RISC System/6000 only) dbConvert.v2r1

V2.1.0 dbConvert.v2r1m1

V2.1.1 dbConvert.v2r1m1

V2.2.0 dbConvert.v2r1m1

 Appendix C. Converting Existing CMVC Server from ORACLE6 to ORACLE7 197

198 Server Administration and Installation

Appendix D. Migrating to CMVC Server/6000 V2.3.0 for
DB2/6000

This appendix is to help you plan the migration from CMVC Server/6000 Version
2.1.0, 2.1.1, 2.2.0 or 2.3.0 for ORACLE, ORACLE7, INFORMIX, or SYBASE
databases to CMVC Server/6000 Version 2.3.0 for DB2/6000.

 Prerequisites
� If you have CMVC Version 1.1, you must convert to CMVC Version 2.1.0,

2.1.1, 2.2.0, or 2.3.0 before following the instructions in this appendix. See
Appendix B, “Migrating to CMVC Version 2.3” on page 179 for the detailed
instructions on migrating from earlier versions of CMVC Server.

� You must install the DB2/6000 database on your CMVC Server/6000.

Steps for Migration
The following steps are required to migrate your ORACLE, ORACLE7, INFORMIX,
or SYBASE databases to CMVC Server/6000 Version 2.3.0 for DB2/6000:

 Pre-Migration Tasks
1. Estimate the additional disk space needed during migration

2. Install the DB2/6000 database

 Migration Tasks
1. Stop the cmvcd and notifyd daemons

2. Backup the database

3. Install CMVC Server/6000 Version 2.3.0 for DB2/6000

4. Run the migration

5. Start the cmvcd and notifyd daemons

6. Verify the integrity of the family's data.

 Post-Migration Task
Reclaim your disk space by dropping the previous database.

Steps 1 and 2 are pre-migration tasks that should be done before you start the
migration. It is recommended that you schedule the completion of these two tasks
ahead of the migration task. Doing them up front enables you to have enough time
to recover in the event that you do not have sufficient disk space to complete the
tasks.

During migration, the most time-consuming tasks are backing up your family's data
and migration of database. To minimize disruptions for your users, schedule the
migration for an evening or a weekend.

 Copyright IBM Corp. 1993, 1994 199

Steps Required to Perform the Database Migration

Estimating the additional disk space
You need 15MB of hard disk space to install the DB2/6000 database.

A CMVC family has 32 tables in its relational database. All of these tables must be
moved to the DB2/6000 database.

All of these tables have columns of numbers or characters. Two of these tables
namely Notes and Versions also have remarks column that takes 32KB of
characters, including | (vertical bar) and \n (new line).

The Notes and Versions tables will be fetched from the original database and
inserted into the DB2/6000 database.

As a result, you must run the mkdb command to make the CMVC database in
DB2/6000. This requires 15MB of hard disk space.

To find out how many rows a table has:

1. Invoke one of the following commands in your CMVC family account to get into
the database:

where familyName is the name of the CMVC family you are migrating.

2. Use the following SQL command:

Select count(\) from tableName

where tableName is one of the table names listed in the following sections of
this appendix.

It takes about 1KB per Notes row and 0.75KB per Versions row in a DB2/6000
database. As a result, you need the following additional disk space in your
DB2/6000 database:

Database Name Command to Use

ORACLE6, ORACLE7 $ORACLE_HOME/bin/sqlplus familyName/$ORACLE_PASS

INFORMIX $INFORMIXDIR/bin/isql familyName

SYBASE $SYBASE/bin/isql -U familyName -P $SYBASE_PASS

Figure 58. Calculating required space for Notes and Versions tables

Table name Bytes
per row

Number
of rows

Total MB Number
of rows
in your
family

Total MB
required
by your
family

Moved
to
DB2/6000

Verified
count in
DB2/6000

Notes 1000 010000 10

Versions 0750 100000 75

Total 85

200 Server Administration and Installation

The above example shows that you need 85MB in your DB2/6000 database for
Notes and Versions tables.

All other tables will be dumped to flat files from the original database and imported
into the DB2/6000 database.

These tables can be dumped to a disk all at the same time or individually, before
backing them up on tapes. Therefore, the required size of the working disk space
should be either large enough to hold the flat files for all the tables or the biggest
table.

Table 2 (Page 1 of 2). Calculating required space for all CMVC tables

Table name Bytes
per
row

Number
of
rows

Total
MB

Number
of
rows
in your
family

Total
MB
required
by
your
family

Dumped
to flat
file

Moved
to
DB2/6000

Verified
count
in
DB2/6000

AccessTable 050 00500 00.025

Approvals 065 02500 00.163

Approvers 016 00500 00.008

Authority 035 00500 00.018

Cfgcomproc 035 00500 00.018

Cfgrelproc 035 00500 00.018

Changes 055 20000 01.100

CompMembers 032 00500 00.016

Components 250 00500 00.125

Config 150 00500 00.075

Coreqs 016 00500 00.008

Defects 440 03500 01.540

Environments 040 00500 00.020

Files 285 75000 21.375

FilesOut 080 00500 00.040

Fix 075 03000 00.225

 Appendix D. Migrating to CMVC Server/6000 V2.3.0 for DB2/6000 201

Table 2 (Page 2 of 2). Calculating required space for all CMVC tables

Table name Bytes
per
row

Number
of
rows

Total
MB

Number
of
rows
in your
family

Total
MB
required
by
your
family

Dumped
to flat
file

Moved
to
DB2/6000

Verified
count
in
DB2/6000

History 050 25000 01.250

Hosts 135 00500 00.068

Interest 035 00500 00.018

LevelMembers 016 02500 00.040

Levels 150 00500 00.075

Notification 040 00500 00.020

Path 155 50000 07.750

Releases 245 00500 00.123

Sequence 020 00003 00.001

Sizes 170 00500 00.085

Tests 090 05500 00.495

Tracks 130 02500 00.325

Users 280 00500 00.140

Verify 080 02000 00.160

Total 36MB

The above example shows that you need 36MB of working disk space to dump all
the tables to flat files. If disk space is a concern, you can use a 22MB disk to hold
the biggest table (Files) and archive that file to tape before dumping other tables.

Note: If you archived the flat file for the Files table to tape, you need to unarchive
the flat file from tape before you could import the Files table.

To import these flat files in your DB2/6000 database, you need an additional 50 per
cent disk space for the indexes. Therefore, the total disk space required is:

36MB x 1.5 = 54MB

202 Server Administration and Installation

Installing the DB2/6000 database
You must install the DB2/6000 database before the conversion. Refer to the
DB2/6000 documents for detailed instructions.

Stopping the cmvcd and notifyd daemons
To ensure the integrity of your CMVC family's data, you must stop the cmvcd and
notifyd daemons before running the database conversion commands.

Refer to Chapter 13, “CMVC Server Daemons” on page 95 for instructions on
stopping these two daemons.

Backing up the database
If errors occur during the conversion of the CMVC family's database, it is very likely
that you would not need to restore the database from the backup copy. However,
you should have a good backup copy of your CMVC family's relational database for
contingency purposes.

You can backup either all the data belonging to your CMVC family or just the
relational database.

Refer to Chapter 17, “Backup and Recovery” on page 137 for recommendations on
backing up the CMVC family or its relational database or both.

Installing the CMVC Server/6000 V2.3.0 for DB2/6000
The conversion scripts are shipped with the CMVC Server/6000 for DB2/6000.
Refer to Chapter 3, “Installing the CMVC Servers” on page 13 for instructions on
how to install the CMVC server code.

If for some reason, you decided not to continue with the conversion, you must
install the CMVC Server/6000 Version 2.2.0, 2.1.1, or 2.1.0 for your database such
as ORACLE. There is no conversion script involved in upgrading CMVC from
Version 2.1.0 to versions 2.1.1 or 2.2.0.

Running the conversion

Run mkdb to create a DB2/6000 database
Before you run the conversion scripts, you must run mkdb to create the DB2/6000
database. Do not use the -d option in the mkdb command as the command needs
to read the $HOME/configField files to ensure that the Defects, Files, and Users
tables are created to whether you have had configurable fields for these objects.
Refer to “Using the mkdb Command” on page 43 for more information.

Tools shipped with CMVC Server/6000 for DB2/6000
The following shell scripts and commands are shipped with the CMVC Server/6000
for DB2/6000 code, and are located in the $CMVC_HOME/db2Convert directory. You
can use them to convert the database.

 Appendix D. Migrating to CMVC Server/6000 V2.3.0 for DB2/6000 203

From database Move
Notes/Versions

Dump tables Load tables

ORACLE orac2db2rems oracdumptbls orac2db2tbls

ORACLE7 ora72db2rems ora7dumptbls ora72db2tbls

INFORMIX infx2db2rems dbexport infx2db2tbls

SYBASE syb2db2rems sybdumptbls syb2db2tbls

Tools to move Notes and Versions tables to DB2/6000
Use the xxxx2db2rems commands to move the Notes and Versions tables to the
DB2/6000 database. You run this command in the family login:

xxxx2db2rems

Besides all the mandatory environment variables in your login profile (see
“Mandatory Environment Variables in Your Login Profile” on page 35), this
command also requires the following environment variables to be set:

The xxxx2db2rems command deletes old records from the Notes and Versions
tables in the DB2/6000 database before inserting them with the rows fetched from
the original database.

If you plan to move the DB2/6000 database to another machine after you have run
the xxxx2db2rems command, it is a good time to do a backup of the DB2/6000
database and move it to another machine before continuing the conversion.

Database Environment Variable Required

All CMVC_FAMILY and DB2_PASS

ORACLE6, ORACLE7 ORACLE_PASS

SYBASE SYBASE_PASS

Tools to dump other tables to flat files
Other tables will be dumped to flat files delimited by "|". As a result, if the value of
some of the columns contain "|", you have to replace it with something else (for
example, "!") after the dump.

ORACLE, ORACLE7 and SYBASE families: Use the xxxxdumptbls commands
to dump other tables to flat files. You run this command in the family login.

xxxxdumptbls

Besides all the mandatory environment variables in your login profile, this command
also requires the FLATFILEDIR environment variable to be set. This is the directory
name where you want the flat files to be created.

If disk space is a concern, you can make enough room to hold the biggest table in
this directory. Then you dump one table at a time and back up the table to another
medium such as an archive tape. Otherwise, you can dump all tables at the same
time.

204 Server Administration and Installation

Depending on the database you use, the following environment variables are also
required:

If you decided to dump one table at a time, check Table 2 on page 201 for the
names of tables. Mark the above table with a cross (X) once you have dumped the
table.

INFORMIX families: The INFORMIX database has a tool called dbexport that
can be used to dump the whole database to flat files. As a result, it will also dump
the Notes and Versions tables that have been moved to the DB2/6000 database.

If disk space is a concern, before you run dbexport , you can drop the Notes and
Versions tables in the INFORMIX database. (This is not applicable to the
DB2/6000 database.)

Warning: Before you do this, make sure you have a good backup of your
INFORMIX database and that you know how to recover from the backup in the
event of a contingency. As a result, the flat files will not include the Notes and
Versions tables.

To use the dbexport command, it is recommended that you invoke it as follows:

dbexport -o dirName familyName

Where dirName is the directory where you want to dump the flat files.

Then set the FLATFILEDIR environment variable, for example in a Korn shell:

export FLATFILEDIR=dirName/familyName.exp

Where familyName is the name of you family.

Database Environment Variable Required

ORACLE6, ORACLE7 ORACLE_PASS

SYBASE SYBASE_PASS

Tools to import other tables from flat files
Use the xxxx2db2tbls command to import the flat files into the DB2/6000
database. Before you import the flat files, edit the files to verify that they do not
contain the vertical bar character (|) or the next line characters (\n) as the values of
columns. If they do contain these characters, change them to something else, such
as an exclamation point (!) or blank spaces.

You run this command in the family login:

xxxx2db2tbls

This command requires the FLATFILEDIR environment variable set to the directory
where you had the flat files dumped. It also needs the DB2_HOME environment
variable to be set.

You can import all the tables at the same time if you have all flat files in the
FLATFILEDIR directory, or you can import one table at a time.

 Appendix D. Migrating to CMVC Server/6000 V2.3.0 for DB2/6000 205

If you decided to import one table at a time, check Table 2 on page 201 for the
names of tables. Mark the above table with a cross (X) once you have imported
the table.

After the import, the import log file is kept in /tmp/$$.tableName.unl where $$ is
the process ID that runs the xxxx2db2tbls command.

Make sure that you check them.

Notes:

1. Make sure that you check the import log file.

2. A common error found in the /tmp/$$.tableName.unl is that the DB2/6000
import command does not import records which has mismatched double
quotes in the character columns. You should change them to another
character, such as a blank space, and rerun xxxx2db2tbls for that table.

Update Releases Table
If you are migrating to DB2 from ORACLE6, ORACLE7, INFORMIX, or SYBASE
with CMVC version 2.1.0, 1.1.2, 1.1.1 or 1.1.0., you must set the compId, userId,
and relSize in the Releases table to 0 instead of NULL.

To do this, enter the following commands from the familyName login:

db2 connect to familyName

db2 update Releases set compId=ð, userId=ð, relSize=ð where id=ð

db2 connect reset

If you do not perform these instructions, some commands will fail, such as Defect
-assign and Level -complete.

Starting the cmvcd and notifyd daemons
Refer to Chapter 13, “CMVC Server Daemons” on page 95 for instructions on
starting the cmvcd and notifyd daemons.

Verifying the data of your family
� After you have converted to the DB2/6000 database, remove the ORACLE_HOME,

ORACLE_PASS, INFORMIXDIR, SYBASE, and SYBASE_PASS environment variables
from your profile.

� Rerun the profile to make sure that you are using the correct database.

� If you have tools to start and stop cmvcd and notifyd automatically, you should
change them accordingly.

� After you have made sure that the cmvcd daemon is running with the DB2/6000
database, verify all the objects in your family by running some Read and Write
operations on some of them.

� You might want to go to the DB2/6000 database by entering:

db2 connect to familyName

Then use

db2 "select count(\) from tableName"

206 Server Administration and Installation

to count and verify the counts you had from the original database. Mark them
in Figure 58 on page 200.

To reset from the DB2/6000 database, enter:

db2 connect reset

If you have any performance problems, refer to the documentation for the
DB2/6000 database to reorganize your database.

Reclaiming disk space
Once you are satisfied with the new database, you can drop the original database
to reclaim disk space.

 Appendix D. Migrating to CMVC Server/6000 V2.3.0 for DB2/6000 207

208 Server Administration and Installation

Appendix E. Authority Groups Worksheet

The following table lists CMVC actions. Use this table to record the authority
groups for your family if you are using groups other than those supplied by IBM.
CMVC actions that cannot be included in an authority group are marked with
information about how they can be performed.

CMVC Actions

Authority Groups for Family:_________________

AccessCreate

AccessDelete

AccessRestrict

ApprovalAbstain

ApprovalAccept

ApprovalAssign

ApprovalCreate

ApprovalDelete

ApprovalReject

ApproverCreate

ApproverDelete

CompCreate

CompDelete

CompLink

CompModify

CompRecreate

CompUnlink

CompView

CoreqCreate

CoreqDelete

DefectAccept

DefectAssign

DefectCancel

DefectClose Automatic action

DefectComment Base authority

DefectDesign

 Copyright IBM Corp. 1993, 1994 209

CMVC Actions

Authority Groups for Family:_________________

DefectModify

DefectOpen Base authority

DefectReopen

DefectReturn

DefectReview

DefectSize

DefectVerify

DefectView

EnvCreate

EnvDelete

EnvModify

FeatureAccept

FeatureAssign

FeatureCancel

FeatureClose Automatic action

FeatureComment Base authority

FeatureDesign

FeatureModify

FeatureOpen Base authority

FeatureReopen Superuser or originator implicit authority

FeatureReturn

FeatureReview

FeatureSize

FeatureVerify

FeatureView

FileAdd

FileCheckIn

FileForceIn

FileCheckOut

FileForceOut

FileDelete

FileDeleteForce

210 Server Administration and Installation

CMVC Actions

Authority Groups for Family:_________________

FileDestroy

FileExtract

FileLink

FileLock

FileLockForce

FileModify

FileRecreate

FileRecreaForce

FileRename

FileRenameForce

FileResolve Base authority

FileUndo

FileUndoForce

FileUnlock

FileView

FixActive

FixAssign

FixComplete

FixCreate

FixDelete

HostCreate Superuser or owner implicit authority

HostDelete Superuser or owner implicit authority

LevelAssign

LevelCheck

LevelCommit

LevelComplete

LevelCreate

LevelDelete

LevelExtract

LevelModify

LevelView

MemberCreate

 Appendix E. Authority Groups Worksheet 211

CMVC Actions

Authority Groups for Family:_________________

MemberDelete

NotifyCreate

NotifyDelete

ReleaseCreate

ReleaseDelete

ReleaseExtract

ReleaseLink

ReleaseModify

ReleaseRecreate

ReleaseView

Report Base authority

SizeAccept

SizeAssign

SizeCreate

SizeDelete

SizeReject

TestAbstain

TestAccept

TestAssign

TestReady Automatic action

TestReject

TrackAssign

TrackCancel

TrackCheck

TrackCommit

TrackComplete

TrackCreate

TrackFix

TrackIntegrate

TrackModify

TrackTest

TrackView

212 Server Administration and Installation

CMVC Actions

Authority Groups for Family:_________________

UserCreate Superuser implicit authority

UserDelete Superuser implicit authority

UserModify Superuser or owner implicit authority

UserRecreate Superuser implicit authority

UserView

VerifyAbstain

VerifyAccept

VerifyAssign

VerifyReady Automatic action

VerifyReject

 Appendix E. Authority Groups Worksheet 213

214 Server Administration and Installation

Appendix F. Interest Groups Worksheet

The following table lists the CMVC actions. Use this table to record the interest
groups for your family if you are using groups other than those supplied by IBM.
Those CMVC actions which cannot be included in an interest group are marked
with information about how users are notified.

CMVC Actions

Interest Groups for Family: _________

AccessCreate .

AccessDelete

AccessRestrict .

ApprovalAbstain

ApprovalAccept

ApprovalAssign

ApprovalCreate

ApprovalDelete

ApprovalReject

ApproverCreate

ApproverDelete

CompCreate New owner implicit notification

CompDelete

CompLink

CompModify

CompRecreate

CompUnlink

CompView No notification

CoreqCreate No notification

CoreqDelete No notification

DefectAccept

DefectAssign

DefectCancel

DefectClose

DefectComment

DefectDesign

DefectModify

DefectOpen

DefectReopen

 Copyright IBM Corp. 1993, 1994 215

CMVC Actions

Interest Groups for Family: _________

DefectReview

DefectReturn

DefectSize

DefectVerify

DefectView No notification

EnvCreate

EnvDelete

EnvModify

FeatureAccept

FeatureAssign

FeatureCancel

FeatureClose

FeatureComment

FeatureDesign

FeatureModify

FeatureOpen

FeatureReopen

FeatureReturn

FeatureReview

FeatureSize

FeatureVerify

FeatureView No notification

FileAdd

FileCheckIn

FileCheckOut

FileDelete

FileDestroy

FileExtract No notification

FileForceIn

FileForceOut

FileLink

FileLock

FileLockForce FileLock subscribers

FileModify

FileRecreate

216 Server Administration and Installation

CMVC Actions

Interest Groups for Family: _________

FileRecreaForce FileRecreate subscribers

FileRename

FileRenameForce FileRename subscribers

FileResolve No notification

FileUnlock

FileUndo

FileUndoForce FileUndo subscribers

FileView No notification

FixActive

FixAssign

FixComplete

FixCreate

FixDelete

HostCreate No notification

HostDelete No notification

LevelAssign

LevelCheck No notification

LevelCommit

LevelComplete

LevelCreate

LevelDelete

LevelExtract No notification

LevelModify

LevelView No notification

MemberCreate

MemberDelete

NotifyCreate No notification

NotifyDelete No notification

ReleaseCreate

ReleaseDelete

ReleaseExtract No notification

ReleaseLink

ReleaseModify

ReleaseRecreate

ReleaseView No notification

 Appendix F. Interest Groups Worksheet 217

CMVC Actions

Interest Groups for Family: _________

Report No notification

SizeAccept

SizeAssign

SizeCreate

SizeDelete

SizeReject

TestAbstain

TestAccept

TestAssign

TestReady Owner implicit notification

TestReject

TrackAssign

TrackCancel

TrackCheck No notification

TrackCommit

TrackComplete

TrackCreate

TrackFix

TrackIntegrate

TrackModify

TrackTest

TrackView No notification

UserCreate New user implicit notification

UserDelete No notification

UserModify No notification

UserUnDelete No notification

UserView No notification

VerifyAbstain

VerifyAccept

VerifyAssign

VerifyReady Owner implicit notification

VerifyReject

218 Server Administration and Installation

Appendix G. Configurable Processes Worksheets

The following worksheets list the CMVC subprocesses. Use these worksheets to
create processes from a combination of CMVC subprocesses. Separate
worksheets are provided for component and release processes. For more
information on configurable processes, refer to Chapter 8, “Configuring
Components and Releases” on page 59.

CMVC Component Subprocesses

Component Processes for _____________

dsrDefect

dsrFeature

verifyDefect

verifyFeature

none

CMVC Release Subprocesses

Release Processes for _____________

track

approval

fix

level

test

none

 Copyright IBM Corp. 1993, 1994 219

220 Server Administration and Installation

Appendix H. User Exit Parameters

The following table shows the parameters passed to each user exit program
defined for a specific CMVC action and ExitID. A description of the parameters
follows the table.

Note: Parameters are not shown for ExitID 3. The parameters for ExitID 3 are the
same as those passed to ExitID 0, with an additional parameter as the last
parameter to indicate the last user ExitID that has been executed
successfully, for example, 0 or 1.

A parameter name followed by not used indicates that CMVC passes an empty
string.

See Chapter 12, “Providing User Exits” for more information on user exits.

Parameters Passed to User Exit Programs
Figure 59 shows the parameters passed to each user exit program defined for a
specific CMVC action and ExitID.

Figure 59 (Part 1 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

Access

AccessCreate 0 CMVC user ID, component name, authority group name, effective CMVC user ID,
real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

AccessDelete 0 CMVC user ID, component name, authority group name, effective CMVC user ID,
real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

AccessRestrict 0 CMVC user ID, component name, authority group name, effective CMVC user ID,
real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Approval

ApprovalAbstain 0 release name, defect or feature number, approver's name, effective CMVC user ID,
real Unix login, verbose flag

1 release name, defect or feature number, approver's name, track type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

 Copyright IBM Corp. 1993, 1994 221

Figure 59 (Part 2 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

ApprovalAccept 0 release name, defect or feature number, approver's name, effective CMVC user ID,
real Unix login, verbose flag

1 release name, defect or feature number, approver's name, track type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

ApprovalAssign 0 release name, defect or feature number, old approver's name, new approver's
name, effective CMVC user ID, real Unix login, verbose flag

1 release name, defect or feature number, old approver's name, new approver's
name, track type, effective CMVC user ID, verbose flag

2 same as ExitID 1

ApprovalCreate 0 release name, defect or feature number, approver's name, effective CMVC user ID,
real Unix login, verbose flag

1 release name, defect or feature number, approver's name, track type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

ApprovalDelete 0 release name, defect or feature number, approver's name, effective CMVC user ID,
real Unix login, verbose flag

1 release name, defect or feature number, approver's name, track type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

ApprovalReject 0 release name, defect or feature number, approver's name, effective CMVC user ID,
real Unix login, verbose flag

1 release name, defect or feature number, approver's name, track type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

Approver

ApproverCreate 0 CMVC user ID, release name, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

ApproverDelete 0 CMVC user ID, release name, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Component

CompCreate 0 component name, parent component, owner, component process, description,
effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

CompDelete 0 component name, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

222 Server Administration and Installation

Figure 59 (Part 3 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

CompLink 0 component name, parent component, effective CMVC user ID, real Unix login,
verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

CompModify 0 component name, new component name, owner, new description, new component
process, effective CMVC user ID, real Unix login, verbose flag

1 component name, new component name, old owner, new owner, old description,
new description, old component process, new component process, date of last
update, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

CompRecreate 0 component name, parent component, effective CMVC user ID, real Unix login,
verbose flag

1 component name, parent component, old dropDate, effective CMVC user ID,
verbose flag

2 same as ExitID 1

CompUnlink 0 component name, parent component, effective CMVC user ID, real Unix login,
verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

CompView 0 component name, display type, effective CMVC user ID, real Unix login, verbose
flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Coreq

CoreqCreate 0 release name, prime track name, second track name, effective CMVC user ID, real
Unix login, verbose flag

1 release name, prime track name, second track name, prime track type, second
track type, effective CMVC user ID, verbose flag

2 same as Exit ID 1

CoreqDelete 0 release name, defect or feature number, effective CMVC user ID, real Unix login,
verbose flag

1 release name, defect or feature number, track type, effective CMVC user ID,
verbose flag

2 same as Exit ID 1

Defect

DefectAccept 0 defect number, original defect number (not used), answerAccept, remarks, effective
CMVC user ID, real Unix login, verbose flag

1 defect number, answerAccept, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

 Appendix H. User Exit Parameters 223

Figure 59 (Part 4 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

DefectAssign 0 defect number, new component name, new owner's name, remarks, effective
CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

DefectCancel 0 defect number, original defect number (not used), answer (not used), remarks,
effective CMVC user ID, real Unix login, verbose flag

1 defect number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

DefectComment 0 defect number, remarks, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

DefectDesign 0 defect number, original defect number (not used), answer (not used), remarks,
effective CMVC user ID, real Unix login, verbose flag

1 defect number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

DefectModify 0 defect number, new defect number, severity, environment name, prefix, reference,
level name, abstract, originator, answer, remarks, release name, configurable field
string, effective CMVC user ID, real Unix login, verbose flag

1 defect number, new defect number, severity, environment name, prefix, reference,
level name, abstract, originator, answer, remarks, release name, configurable field
string, date of last update, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

DefectOpen 0 component name, prefix, severity, reference, environment name, remarks, level
name, abstract, release name, configurable field string, defect number, effective
CMVC user ID, real Unix Login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

DefectReopen 0 defect number, original defect number (not used), answer (not used), remarks,
effective CMVC user ID, real Unix login, verbose flag

1 defect number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

DefectReturn 0 defect number, original defect number, answerReturn, remarks, effective CMVC
user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

DefectReview 0 defect number, original defect number (not used), answer (not used), remarks,
effective CMVC user ID, real Unix login, verbose flag

1 defect number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

224 Server Administration and Installation

Figure 59 (Part 5 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

DefectSize 0 defect number, original defect number (not used), answer (not used), remarks,
effective CMVC user ID, real Unix login, verbose flag

1 defect number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

DefectVerify 0 defect number, original defect number (not used), answer (not used), remarks,
effective CMVC user ID, real Unix login, verbose flag

1 defect number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

DefectView 0 defect number, display type, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Environment

EnvCreate 0 environment name, release name, tester's name, effective CMVC user ID, real Unix
login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

EnvDelete 0 environment name, release name, effective CMVC user ID, real Unix login, verbose
flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

EnvModify 0 environment name, release name, new tester's name, effective CMVC user ID, real
Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Feature

FeatureAccept 0 feature number, original feature number (not used), remarks, effective CMVC user
ID, real Unix login, verbose flag

1 feature number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

FeatureAssign 0 feature number, new component name, new owner's name, remarks, effective
CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

FeatureCancel 0 feature number, original feature number (not used), remarks, effective CMVC user
ID, real Unix login, verbose flag

1 feature number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

FeatureComment 0 feature number, remarks, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

 Appendix H. User Exit Parameters 225

Figure 59 (Part 6 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

FeatureDesign 0 feature number, original feature number (not used), remarks, effective CMVC user
ID, real Unix login, verbose flag

1 feature number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

FeatureModify 0 feature number, new feature number, prefix, reference, abstract, originator, remarks,
configurable field string, effective CMVC user ID, real Unix login, verbose flag

1 feature number, new feature number, prefix, reference, abstract, originator, remarks,
configurable field string, date of last update, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

FeatureOpen 0 component name, prefix, reference, remarks, abstract, configurable field string,
feature number, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

FeatureReopen 0 feature number, original feature number (not used), remarks, effective CMVC user
ID, real Unix login, verbose flag

1 feature number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

FeatureReturn 0 feature number, original feature number, remarks, effective CMVC user ID, real
Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

FeatureReview 0 feature number, original feature number (not used), remarks, effective CMVC user
ID, real Unix login, verbose flag

1 feature number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

FeatureSize 0 feature number, original feature number (not used), remarks, effective CMVC user
ID, real Unix login, verbose flag

1 feature number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

FeatureView 0 feature number, display type, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

FeatureVerify 0 feature number, original feature number (not used), remarks, effective CMVC user
ID, real Unix login, verbose flag

1 feature number, remarks, effective CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

226 Server Administration and Installation

Figure 59 (Part 7 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

File

FileAdd 0 file path name, temp file on server, release name, component name, file type,
remarks, fileMode, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

FileCheckIn 0 file path name, temp file on server, release name, force flag, remarks, common flag,
effective CMVC user ID, real Unix login, verbose flag

1 file path name, temp file on server, release name, file type, component name, force
flag, remarks, common release names, effective CMVC user ID, verbose flag

2 file path name, temp file on server, release name, file type, component name, new
SID, force flag, remarks, common release names, effective CMVC user ID, verbose
flag

FileCheckOut 0 file path name, temp file on server, release name, force flag, effective CMVC user
ID, real Unix login, verbose flag

1 file path name, temp file on server, release name, file type, component name, old
SID, force flag, effective CMVC user ID, verbose flag

2 same as ExitID 1

FileDelete 0 file path name, release name, force flag, common flag, effective CMVC user ID, real
Unix login, verbose flag

1 file path name, release name, force flag, common flag, component name, effective
CMVC user ID, verbose flag

2 same as ExitID 1

FileDestroy 0 file path name, release name, effective CMVC user ID, real Unix login, verbose flag

1 file path name, release name, component name, SID, effective CMVC user ID,
verbose flag

2 same as ExitID 1

FileExtract 0 file path name, temp file on server, release name, nokeys flag, SID, effective CMVC
user ID, real Unix login, verbose flag

1 file path name, temp file on server, release name, nokeys flag, SID, component
name, effective CMVC user ID, verbose flag

2 same as ExitID 1

Note: If the -stdout flag is used for this command, then all messages from the
user exit program will be suppressed.

FileLink 0 file path name, release name, new release name, SID, effective CMVC user ID, real
Unix login, verbose flag

1 file path name, release name, new release name, SID, component name, effective
CMVC user ID, verbose flag

2 same as ExitID 1

FileLock 0 file path name, temp file on server, release name, force flag, effective CMVC user
ID, real Unix login, verbose flag

1 file path name, release name, force flag, file type, component name, SID, effective
CMVC user ID, verbose flag

2 same as ExitID 1

 Appendix H. User Exit Parameters 227

Figure 59 (Part 8 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

FileMigrate 0 file path name, temp file on server, release name, component name, SID, fileMode,
effective CMVC user ID, real Unix login, verbose flag
This action uses the FileAdd action index. If you have a user exit program for
FileAdd , it will apply to FileMigrate as well. You cannot specify a user exit
program for FileMigrate .

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

FileModify 0 file path name, release name, new component name, new fileMode, configurable
field string, effective CMVC user ID, real Unix login, verbose flag

1 file path name, release name, old component name, new component name, old
fileMode, new fileMode, configurable field string, date of last update, effective
CMVC user ID, verbose flag

2 same as ExitID 1 without date of last update

FileRecreate 0 file path name, release name, force flag, common flag, effective CMVC user ID, real
Unix login, verbose flag

1 file path name, release name, force flag, common flag, component name, old
dropDate, effective CMVC user ID, verbose flag

2 same as ExitID 1

FileRename 0 file path name, release name, new file path name, force flag, common flag, effective
CMVC user ID, real Unix login, verbose flag

1 file path name, release name, new file path name, force flag, common flag,
component name, effective CMVC user ID, verbose flag

2 same as ExitID 1

FileUndo 0 file path name, release name, force flag, common flag, effective CMVC user ID, real
Unix login, verbose flag

1 file path name, release name, force flag, common flag, component name, SID,
effective CMVC user ID, verbose flag

2 same as ExitID 1

FileUnlock 0 file path name, release name, effective CMVC user ID, real Unix login, verbose flag

1 file path name, release name, component name, effective CMVC user ID, verbose
flag

2 same as ExitID 1

FileView 0 file path name, release name, display type, effective CMVC user ID, real Unix login,
verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Fix

FixActive 0 defect or feature number, release name, component name, effective CMVC user ID,
real Unix login, verbose flag

1 defect or feature number, release name, component name, type, effective CMVC
user ID, verbose flag

2 same as ExitID 1

228 Server Administration and Installation

Figure 59 (Part 9 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

FixAssign 0 defect or feature number, release name, component name, user ID of the new fix
record owner, effective CMVC user ID, real Unix login, verbose flag

1 defect or feature number, release name, component name, user ID of the new fix
record owner, type, effective CMVC user ID, verbose flag

2 same as ExitID 1

FixComplete 0 defect or feature number, release name, component name, effective CMVC user ID,
real Unix login, verbose flag

1 defect or feature number, release name, component name, type, effective CMVC
user ID, verbose flag

2 same as ExitID 1

FixCreate 0 defect or feature number, release name, component name, user ID of the fix record
owner, effective CMVC user ID, real Unix login, verbose flag

1 defect or feature number, release name, component name, user ID of the fix record
owner, type, effective CMVC user ID, verbose flag

2 same as ExitID 1

FixDelete 0 defect or feature number, release name, component name, effective CMVC user ID,
real Unix login, verbose flag

1 defect or feature number, release name, component name, type, effective CMVC
user ID, verbose flag

2 same as ExitID 1

Host

HostCreate 0 CMVC user ID, login@host name, effective CMVC user ID, real Unix login, verbose
flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

HostDelete 0 CMVC user ID, login@host name, effective CMVC user ID, real Unix login, verbose
flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Level

LevelAssign 0 level name, release name, new owner, effective CMVC user ID, real Unix login,
verbose flag

1 level name, release name, new owner, level state, level type, effective CMVC user
ID, verbose flag

2 same as ExitID 1

LevelCheck 0 level name, release name, long flag, effective CMVC user ID, real Unix login,
verbose flag

1 level name, release name, long flag, level state, level type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

 Appendix H. User Exit Parameters 229

Figure 59 (Part 10 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

LevelComplete 0 level name, release name, effective CMVC user ID, real Unix login, verbose flag

1 level name, release name, level type, effective CMVC user ID, verbose flag

2 same as ExitID 1

LevelCommit 0 level name, release name, effective CMVC user ID, real Unix login, verbose flag

1 level name, release name, level type, effective CMVC user ID, verbose flag

2 same as Exit ID 1

LevelCreate 0 level name, release name, level type, effective CMVC user ID, real Unix login,
verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

LevelDelete 0 level name, release name, effective CMVC user ID, real Unix login, verbose flag

1 level name, release name, level state, level type, effective CMVC user ID, verbose
flag

2 same as ExitID 1

LevelExtract 0 level name, release name, root, node, nokeys flag, type of level extract, fmask,
dmask, uid, gid, crlf flag (not used), effective CMVC user ID, real Unix login,
verbose flag

1 level name, release name, root, node, nokeys flag, type of level extract, fmask,
dmask, uid, gid, crlf flag (not used), level state, level type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

LevelModify 0 level name, new level name, release name, new level type, effective CMVC user
ID, real Unix login, verbose flag

1 level name, new level name, release name, old type, new type, level state, date of
last update, effective CMVC user ID, verbose flag

2 level name, new level name, release name, old type, new type, level state, effective
CMVC user ID, verbose flag

LevelView 0 level name, release name, display type, effective CMVC user ID, real Unix login,
verbose flag

1 level name, release name, display type, level state, level type, effective CMVC user
ID, verbose flag

2 same as ExitID 1

LevelMember

MemberCreate 0 level name, release name, defect or feature number, effective CMVC user ID, real
Unix login, verbose flag

1 level name, release name, defect or feature number, track state, track type,
effective CMVC user ID, verbose flag

2 same as ExitID 1

MemberDelete 0 level name, release name, defect or feature number, effective CMVC user ID, real
Unix login, verbose flag

1 level name, release name, defect or feature number, track state, track type,
effective CMVC user ID, verbose flag

2 same as ExitID 1

230 Server Administration and Installation

Figure 59 (Part 11 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

Notification

NotifyCreate 0 CMVC user ID, component name, interest group name, effective CMVC user ID,
real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

NotifyDelete 0 CMVC user ID, component name, interest group name, effective CMVC user ID,
real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Release

ReleaseCreate 0 release name, component name, new release process, environment name, tester's
name, approver's name, description, release owner, effective CMVC user ID, real
Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

ReleaseDelete 0 release name, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

ReleaseExtract 0 release name, root, node, nokeys flag, committed flag, date, fmask, dmask, uid, gid,
crlf flag, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

ReleaseLink 0 release name, link to release name, committed flag, date, effective CMVC user ID,
real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

ReleaseModify 0 release name, new release name, component name, description, new release
process, environment name, tester's name, approver's name, user ID of the new
release owner, effective CMVC user ID, real Unix login, verbose flag

1 release name, new release name, old component name, new component name, old
description, new description, old release process, new release process,
environment name, tester's name, approver's name, user ID of the old release
owner, user ID of the new release owner, date of last update, effective CMVC user
ID, verbose flag

2 same as ExitID 0 without real Unix login

ReleaseRecreate 0 release name, environment name, tester's name, approver's name, effective CMVC
user ID, real Unix login, verbose flag

1 release name, last drop date, effective CMVC user ID, verbose flag

2 same as ExitID 1

ReleaseView 0 release name, report type, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

 Appendix H. User Exit Parameters 231

Figure 59 (Part 12 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

Report

Report 0 view name, report criteria, report type, effective CMVC user ID, real Unix login,
verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Size

SizeAccept 0 defect or feature number, component name, release name, size text, effective
CMVC user ID, real Unix login, verbose flag

0 defect or feature number, component name, release name, user ID of the new
sizing record owner, effective CMVC user ID, real Unix login, verbose flag

1 defect or feature number, component name, release name, size text, size type,
effective CMVC user ID, verbose flag

SizeAssign
1 defect or feature number, component name, release name, user ID of the new

sizing record owner, size type, effective CMVC user ID, verbose flag

2 same as ExitID 1

2 same as ExitID 1

SizeCreate 0 defect or feature number, component name, release name, effective CMVC user ID,
real Unix login, verbose flag

1 defect or feature number, component name, release name, size type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

SizeDelete 0 defect or feature number, component name, release name, effective CMVC user ID,
real Unix login, verbose flag

1 defect or feature number, component name, release name, size type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

SizeReject 0 defect or feature number, component name, release name, effective CMVC user ID,
real Unix login, verbose flag

1 defect or feature number, component name, release name, size type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

Test

TestAbstain 0 defect or feature number, user ID of the test record owner, release name,
environment name, effective CMVC user ID, real Unix login, verbose flag

1 defect or feature number, user ID of the test record owner, release name,
environment name, type, effective CMVC user ID, verbose flag

2 same as ExitID1

TestAccept 0 defect or feature number, user ID of the test record owner, release name,
environment name, effective CMVC user ID, real Unix login, verbose flag

1 defect or feature number, user ID of the test record owner, release name,
environment name, type, effective CMVC user ID, verbose flag

2 same as ExitID 1

232 Server Administration and Installation

Figure 59 (Part 13 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

TestAssign 0 defect or feature number, user ID of the old test record owner, user ID of the new
test record owner, release name, environment name, effective CMVC user ID, real
Unix login, verbose flag

1 defect or feature number, user ID of the old test record owner, user ID of the new
test record owner, release name, environment name, track type, effective CMVC
user ID, verbose flag

2 same as ExitID 1

TestReject 0 defect or feature number, user ID of the test record owner, release name,
environment name, effective CMVC user ID, real Unix login, verbose flag

1 defect or feature number, user ID of the test record owner, release name,
environment name, type, effective CMVC user ID, verbose flag

2 same as ExitID 1

Track

TrackAssign 0 release name, defect or feature number, user ID of the new track owner, effective
CMVC user ID, real Unix login, verbose flag

1 release name, defect or feature number, user ID of the new track owner, track type,
effective CMVC user ID, verbose flag

2 same as ExitID 1

TrackCancel 0 release name, defect or feature number, effective CMVC user ID, real Unix login,
verbose flag

1 release name, defect or feature number, track type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

TrackCheck 0 release name, defect or feature number, level, effective CMVC user ID, real Unix
login, verbose flag

1 release name, defect or feature number, level name, track type, effective CMVC
user ID, verbose flag

2 same as ExitID 1

TrackComplete 0 release name, defect or feature number, effective CMVC user ID, real Unix login,
verbose flag

1 release name, defect or feature number, track type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

TrackCommit 0 release name, defect or feature number, effective CMVC user ID, real Unix login,
verbose flag

1 release name, defect or feature number, track type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

TrackCreate 0 release name, defect or feature number, target user ID of the track owner, effective
CMVC user ID, real Unix login, verbose flag

1 release name, defect or feature number, target user ID of the track owner, track
type, effective CMVC user ID, verbose flag

2 same as ExitID 1

 Appendix H. User Exit Parameters 233

Figure 59 (Part 14 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

TrackFix 0 release name, defect or feature number, effective CMVC user ID, real Unix login,
verbose flag

1 release name, defect or feature number, track type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

TrackIntegrate 0 release name, defect or feature number, effective CMVC user ID, real Unix login,
verbose flag

1 release name, defect or feature number, track type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

TrackModify 0 release name, defect or feature number, new target, effective CMVC user ID, real
Unix login, verbose flag

1 release name, defect or feature number, old target, new target, track type, effective
CMVC user ID, verbose flag

2 release name, defect or feature number, new target, track type, effective CMVC
user ID, verbose flag

TrackTest 0 release name, defect or feature number, effective CMVC user ID, real Unix login,
verbose flag

1 release name, defect or feature number, track type, effective CMVC user ID,
verbose flag

2 same as ExitID 1

TrackView 0 release name, defect or feature number, long flag, effective CMVC user ID, real
Unix login, verbose flag

1 release name, defect or feature number, long flag, track type, effective CMVC user
ID, verbose flag

2 same as ExitID 1

User

UserCreate 0 login, user's full name, area, sendmail address, superuser privilege flag,
configurable field string, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

UserDelete 0 login, effective CMVC user ID, real Unix login, verbose flag

1 login, user's full name, effective CMVC user ID, verbose flag

2 same as ExitID 1

UserModify 0 login, new login, new user's full name, new area, new user's sendmail address, new
superuser privilege flag, configurable field string, effective CMVC user ID, real Unix
login, verbose flag

1 login, new login, old user's full name, new user's full name, old area, new area, old
sendmail address, new sendmail address, old superuser privilege flag, new
superuser privilege flag, configurable field string, date of last update, effective
CMVC user ID, verbose flag

2 same as ExitID 0 without real Unix login

234 Server Administration and Installation

Figure 59 (Part 15 of 15). The CMVC Action, Exit ID and Parameters That Are Passed to User Exit Programs

CMVC Action ExitID Parameters Passed to the User Exit Program

UserRecreate 0 login, effective CMVC user ID, real Unix login, verbose flag

1 login, user's full name, old dropDate, effective CMVC user ID, verbose flag

2 same as ExitID 1

UserView 0 login, display type, effective CMVC user ID, real Unix login, verbose flag

1 same as ExitID 0 without real Unix login

2 same as ExitID 0 without real Unix login

Verify

VerifyAbstain 0 defect or feature number, user ID of the verification record owner, effective CMVC
user ID, real Unix login, verbose flag

1 defect or feature number, user ID of the verification record owner, type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

VerifyAccept 0 defect or feature number, user ID of the verification record owner, effective CMVC
user ID, real Unix login, verbose flag

1 defect or feature number, user ID of the verification record owner, type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

VerifyAssign 0 defect or feature number, user ID of the old verification record owner, user ID of the
new verification record owner, effective CMVC user ID, real Unix login, verbose flag

1 defect or feature number, user ID of the old verification record owner, user ID of the
new verification record owner, type, effective CMVC user ID, verbose flag

2 same as ExitID 1

VerifyReject 0 defect or feature number, user ID of the verification record owner, effective CMVC
user ID, real Unix login, verbose flag

1 defect or feature number, user ID of the verification record owner, type, effective
CMVC user ID, verbose flag

2 same as ExitID 1

User Exit Parameter Definitions
The following list provides definitions for most of the parameters passed to user exit
programs. Parameters are listed in alphabetical order. Parameter names are in
lower case, except where they are the name of a field in a CMVC database table.
For more information on these and other parameters, see the IBM CMVC
Commands Reference.

abstract Defect or feature abstract.

answerAccept Accept answer type.

answerReturn Return answer type.

approver's name Approver's CMVC user ID.

area User's work area or department.

 Appendix H. User Exit Parameters 235

committed flag This flag is used for ReleaseExtract and ReleaseLink
actions to specify whether the user wants the last
committed (as opposed to the current) versions of files
in the release. 0 is off, 1 means to use the last
committed version.

common flag Indicates whether the file is common with other
releases or not. 0 is no and 1 is yes.

common release names For a common file, this parameter specifies the other
releases the file is common with (on the FileCheckIn
action). Release names are separated by blanks.

configurable field string This has the format:

attribute name content

attribute name content

...

 null string

For ExitID 0, the attribute name may appear in
abbreviated form, as it is not processed by the CMVC
server software.

crlf flag Reserved for future use.

defectDSR flag Indicates whether the defect Design/Size/Review
subprocess is on or off for a component. A value of
yes is on and a value of no is off.

defectVerify flag Indicates whether the defect verification subprocess is
on or off for a component. A value of yes is on and a
value of no is off.

description Description of component or release.

display type This is used on all View actions. The type of view
format requested, where:

0 stanza
1 raw
2 table
3 long
4 process

dmask Specifies the read, write, and execute directory
permissions for the extracted files in octal notation.

effective CMVC user ID The effective CMVC user ID is the CMVC user ID
which initiated the transaction.

featureDSR flag Indicates whether the feature Design/Size/Review
subprocess is on or off for a component. A value of
yes is on and a value of no is off.

featureVerify flag Indicates whether the feature verification subprocess is
on or off for a component. A value of yes is on and a
value of no is off.

236 Server Administration and Installation

fileMode This specifies the read, write, and execute permissions
of the file. This parameter is defined numerically, in
octal notation. The fileMode code is constructed by
combing the logical OR of the following values:

4000 setuid
2000 setgid
0400 Permits read by owner
0200 Permits write by owner
0100 Permits execute or search by owner
0040 Permits read by group
0020 Permits write by group
0010 Permits execute or search by group
0004 Permits read by all others
0002 Permits write by all others
0001 Permits execute or search by all others

For example, ð755 would permit read, write and execute
for the owner and read and execute for all others.

file type File type for the FileAdd action will be 0 if binary is not
specified during the file creation or 1 if binary is
specified during the file creation.

File type for the other File actions will be text for text
files, binary for binary files, and long for files with a
record length greater than 510 characters.

fmask Specifies the read, write, and execute file permissions
for the extracted files in octal notation. See the IBM
CMVC Commands Reference for details.

force flag Indicates whether the force option was chosen on File
actions (0 indicates no and 1 indicates yes). The force
option is used to force a break between common files
when using FileLock, FileCheckOut, FileCheckIn,
FileDelete, FileRecreate, FileRename and FileUndo
actions.

gid Specifies ownership of extracted files by identifying the
internal number that uniquely identifies the group to the
system. See the IBM CMVC Commands Reference for
details.

level state Values can be working, integrate, commit or complete.

level type Specified by the user when a level is created, for
example, development, production or prototype.

long flag Indicates whether the long flag is specified or not
specified. 0 is not specified and 1 is specified. The
-long flag is available on some of the View actions and
is used to display more detailed information of the
object being viewed. The -long flag on the LevelCheck
action will display details about prerequisites and
corequisites.

node Specifies a remote host on which to place the extracted
file tree.

 Appendix H. User Exit Parameters 237

nokeys flag For extract actions, indicates whether you want to
substitute assigned values in place of keywords
imbedded in the extracted files. 0 means not to
substitute assigned values, 1 means to substitute
assigned values.

originator The CMVC user ID of the user who opens the defect or
feature.

prefix Defect or feature prefix.

prime track name Prime corequisite track name.

prime track type Prime corequisite track type (defect or feature).

real Unix login The user's Unix login on the client workstation.

reference Defect or feature reference.

remarks For Defect or Feature actions, this will be defect
remarks or feature remarks. For File actions, this will
be file remarks added when a new version is created.

report criteria The criteria entered as the -where clause for the
Report action.

report type The type of report format requested, where:

0 stanza
1 raw
2 table
3 long
4 process

User exit messages are not displayed if the -raw format
is selected.

root This is the specified directory on the designated host
where the extracted file tree is to be placed.

second track name Second corequisite track name.

second track type Second corequisite track type (defect or feature).

severity Defect severity level.

SID File version number.

superuser privilege flag A value of yes is on and a value of no is off.

temp file on server For some File commands, the contents of the file on
the client are copied to a temporary file on the server.
This parameter is the file name for the temporary file on
the server.

track state The value can be approve, fix, integrate, commit, test or
complete.

track type The value can be defect or feature.

type of level extract Indicates whether this is a full or delta Level -extract .
0 is delta, 1 is full.

uid Specifies ownership of extracted files by identifying the
internal number that uniquely identifies the user to the
system.

238 Server Administration and Installation

verbose flag Specifies that you want to see a confirmation message
after you issue this command. 0 is off, 1 is on. The
user exit program can use this flag to include
confirmation or status messages only when the verbose
flag is on.

view name The name of the View (for example, FileView) which is
being reported on.

 Appendix H. User Exit Parameters 239

240 Server Administration and Installation

 Glossary

This glossary contains definitions of data processing
terms that might be unfamiliar to you. It includes terms
and definitions from the IBM Dictionary of Computing,
New York: McGraw-Hill, 1994.

A
access list . A set of objects that controls access to
development data. Each object consists of a
component, a user, and the authority that the user is
granted or is restricted from in that component. See
also authority, granted authority, and restricted
authority.

action . A task performed by the CMVC server and
requested by a CMVC client. A CMVC action is the
same as issuing one CMVC command.

approver . A user who has the authority to accept,
reject, or abstain changes within a specific release.

approver list . A list of user IDs attached to a release,
representing the users who must review file changes
that are required to resolve a defect or implement a
feature in that release.

attribute . Information contained in a field that is
accessible to the user. CMVC enables family
administrators to customize defect, feature, user, and
file tables by adding new attributes.

authority . The right to access development objects
and perform CMVC commands. See also access list,
base authority, explicit authority, granted authority,
implicit authority, restricted authority, and superuser
privilege.

B
base authority . The set of actions granted to a user
when a user ID is created within a CMVC family. See
also authority. Contrast with implicit authority and
explicit authority.

Broadcast Message Server (BMS) . A facility that
coordinates the SDE WorkBench/6000 or HP SoftBench
tools. Messages from tools are sent to the Broadcast
Message Server, which routes the messages to other
tools.

C
change control . The process of limiting and auditing
changes to files through the mechanism of checking
files in and out of a central, controlled, storage location.
Change control for individual releases can be integrated
with problem tracking by specifying a process for the
release that includes the tracking subprocess.

check in . The return of a CMVC file to version control.

check out . The retrieval of a revision of a CMVC file
from version control.

child component . Any component in a CMVC family,
except the root component, that is created in reference
to an existing component. The existing component is
the parent component, and the new component is the
child component. A parent component can have more
than one child component, and a child component can
have more than one parent component. See also
component and parent component.

client . A functional unit that receives shared services
from a server. Contrast with server.

CMVC client . A workstation that connects to the
CMVC server by a TCP/IP connection and that is
running the CMVC client software.

CMVC file . A file that is stored by the CMVC server
and retrieved by a path name and release. See also
file, common file, and shared file.

CMVC server . A workstation running the CMVC server
software.

command . A request to perform an operation or run a
program from the command line interface. In CMVC, a
command consists of the command name, one action
flag, and zero or more attribute flags.

common file . A file that is shared by two or more
releases, and the same version of the file is the current
version for those releases. See also shared file.

component . A CMVC object that organizes project
data into structured groups, and controls configuration
management properties. Component owners can
control access to development data and configure
notification about CMVC actions. Components exist in
a parent-child hierarchy, with descendent components
inheriting access and notification information from
ancestor components. See also access list and
notification list.

 Copyright IBM Corp. 1993, 1994 241

configuration management . The process of
identifying, managing, and controlling software modules
as they change over time.

current working directory . (1) The directory that is
the starting point for relative path names. (2) The
directory in which you are working.

D
daemon . A program that runs unattended to perform a
standard service. Some daemons are triggered
automatically to perform their task; others operate
periodically.

daemon process . A process begun by the root user
or by the root shell that can be stopped only by the root
user. Daemon processes generally provide services
that must be available at all times, such as sending
data to a printer.

database . A organized collection of data that can be
accessed and operated upon by a data processing
system for a specific purpose.

default . A value that is used when an alternative is not
specified by the user.

defect . A CMVC object used to formally report a
problem. The user who opens a defect is the defect
originator.

E
end user . See user.

environment . A user-defined testing domain for a
particular release. Also used as a defect field, in which
case, it is the environment where the problem occurred.

environment list . A CMVC object used to specify
environments in which a release should be tested. A
list of environment-user ID pairs attached to a release,
representing the user responsible for testing each
environment. Only one tester can be identified for an
environment.

explicit authority . The ability to perform an action
against a CMVC object because you have been granted
the authority to perform that action. Contrast with
implicit authority and base authority.

F
family . A logical organization of related development
data. A single CMVC server can support multiple
families. The data in one family cannot be accessed
from another family.

family administrator . A user who is responsible for all
nonsystem-related tasks for one or more CMVC
families, such as planning, configuring, and maintaining
the CMVC environment and managing user access to
those families.

feature . A CMVC object used to formally request and
record information about a functional addition or
enhancement. The user who opens a feature is the
feature originator.

file . A collection of data that is stored by the CMVC
server and retrieved by a path name. Any text or binary
file used in a development project can be created as a
CMVC file. Examples include source code, executable
programs, documentation, and test cases. See
common file and shared file.

fix record . A status record that is associated with a
track and that is used to monitor the phases of change
within each component that is affected by a defect or
feature for a specific release.

G
graphical user interface (GUI) . The OSF/Motif-based
CMVC graphical user interface program.

H
host . A host node, host computer, or host system.

host list . A list associated with each CMVC user ID
that indicates the client hosts that can access the
CMVC server and act on behalf of the CMVC user.
The CMVC server uses the list to authenticate the
identity of a CMVC client when the CMVC server
receives a CMVC command. Each entry consists of a
login, a CMVC user ID, and a host name.

host name . The identifier associated with the host
computer.

I
implicit authority . The ability to perform an action on
a CMVC object without being granted explicit authority.
This authority is implicitly granted through inheritance or
object ownership. Contrast with base authority and
explicit authority.

242 Server Administration and Installation

import . Bring selected items to a field in a dialog box
from a matching main CMVC GUI window.

inheritance . The passing of configuration
management properties from parent to child component.
The configuration management properties that are
inherited are access and notification. Inheritance within
each CMVC family or component hierarchy is
cumulative.

interest group . The list of actions that trigger
notification to the user IDs associated with those actions
listed in the notification list.

L
level . A collection of tracks that represent a set of
changed files within a release. Levels are only
associated with releases whose processes include the
track and level subprocesses.

level member . A track that is added to a level.

lock . An action that prevents editing access to a file
stored in the CMVC development environment so that
only one user can change a file at a time.

login . User identifier.

M
megabyte . 1 048 576 bytes.

N
NetLS . Network License System.

Network File System (NFS) . A program that enables
you to share files with other computers in one or more
networks over a variety of machine types and operating
systems.

Network License System (NetLS) . A program that
controls the number of users who can simultaneously
access CMVC.

notification list . A CMVC object allowing component
owners to configure notification. A list of user
ID-interest group pairs attached to a component,
designating users and the corresponding notification
interest they are being granted for all objects managed
by this component or any of its descendants.

O
originator . The user who opens a defect or feature
and is responsible for verifying the outcome of the
defect or feature on a verification record. This
responsibility can be reassigned.

owner . The user who is responsible for a CMVC
object within a CMVC family, either because the user
created the object or was assigned ownership of the
object.

P
parent component . All components in each CMVC
family, except the root component, are created in
reference to an existing component. The existing
component is the parent component. See also child
component and component.

path name . The name of the file under CMVC control.
A path name can be a set of directory names and a
base name or just a base name. It must be unique
within the release that groups the files.

problem tracking . The process of tracking all reported
defects through to resolution and all proposed features
through to implementation.

process . A combination of CMVC subprocesses,
configured by the family administrator, that controls the
general movement of CMVC objects (defects, features,
tracks, and levels) from state to state within a
component or release. See also subprocess and state.

Q
query . A structured request for information from a
database, for example, a search for all defects that are
in the open state. See also default query and search.

R
release . A CMVC object defined by a user that groups
all the files that must be built, tested, and distributed as
a single entity.

restricted authority . The restriction of a user's ability
to perform certain actions at a specific component.
Authority can be restricted by the superuser, the
component owner, or a user with AccessRestrict
authority. See also authority.

root component . The initial component that is created
when a CMVC family is configured. All components in
a CMVC family are descendants of the root component.
Only the root component has no parent component.

 Glossary 243

See also component, child component, and parent
component.

S
search . To scan one or more data elements of a set in
a database to find elements that have certain
properties.

server . A workstation that performs a service for
another workstation.

shared file . A file that is shared between two or more
releases. See also common file.

shell script . A series of commands combined in a file
that carry out a function when the file is run.

sizing record . A status record created for each
component-release pair affected by a proposed defect
or feature. The sizing record owner must indicate
whether the defect or feature affects the specified
component-release pair and the approximate amount of
work needed to resolve the defect or implement the
feature within the specified component-release pair.

SMIT. System Management Interface Tool.

state . Tracks, levels, features, and defects move
through various states during their life cycles. The state
of an object determines the actions that can be
performed on it. See also process and subprocess.

subprocess . CMVC subprocesses govern the state
changes for CMVC objects. The design, size, review
(DSR) and verify subprocesses are configured for
component processes. The track, approve, fix, level,
and test subprocesses are configured for release
processes. See also process and state.

superuser privilege . This privilege allows a user to
perform any action available in the CMVC family. Note:
Superuser privilege is internal to CMVC and not related
to operating system superuser authority.

system administrator . A user who is responsible for
all system-related tasks involving the CMVC server,
such as installing, maintaining, and backing up the
CMVC server and the relational database it uses.

System Management Interface Tool (SMIT) . An AIX
tool used to perform system administration tasks, such
as installing software or creating logins for new users.

T
TCP/IP. A set of communications protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

tester . A user responsible for testing the resolution of
a defect or the implementation of a feature for a specific
level of a release and recording the results on a test
record.

test record . A status record used to record the
outcome of an environment test performed for a
resolved defect or an implemented feature in a specific
level of a release.

tool . An SDE WorkBench/6000 or HP SoftBench
application.

track . A CMVC object created to monitor the progress
of changes made to files within a release to resolve a
specific defect or to implement a specific feature.

track subprocess . An attribute of a CMVC release
process that specifies that the change control process
for that release will be integrated with the problem
tracking process.

Transmission Control Protocol/Internet Protocol .
See TCP/IP.

U
user . A person with an active CMVC user ID and
access to one or more CMVC families.

user exit . A user exit allows CMVC to call a
user-defined program during the processing of CMVC
transactions. User exits provide a means by which
users can specify additional actions that should be
performed before completing or proceeding with a
CMVC action.

user ID . The identifier assigned by the system
administrator to each CMVC user.

V
verification record . A status record that the originator
of a defect or a feature must mark before the defect or
feature can move to the closed state. Originators use
verification records to verify the resolution or
implementation of the defect or feature they opened.

version control . The storage of multiple versions of a
single file along with information about each version.

244 Server Administration and Installation

view . An alternative and temporary representation of
data from one or more tables.

 Glossary 245

246 Server Administration and Installation

 Index

A
access control 67
access list 67, 73
actions

grouping 68, 74
in user exit programs 88
restricting access to 67

Activity Monitor 105
administration

family 2
system 2

administrator
family 2
system 2

age shell script 103
aging defects/features 103
AIX operating system

Base Application Development Toolkit 121
Base Operating System 8, 14

answer codes 78
approver list 65
archiving

level 144
limitations 146
prerequisites 144, 145
release 145

audit log
format 116
managing 101, 115

authority
base 67
controlling 67
explicit 67
groups

creating 68
worksheet 209

implicit 67
restricted 67
table 70

authority.ld
copying 34, 190
editing 69
migration from CMVC V1R1 190

authority.log 43, 44, 70
automatic notification 73, 102

B
backup

database 137, 141
file system 137, 141

backup copy 13, 185
bad.authority 43, 70
bad.cfgcomproc 43, 65
bad.cfgrelproc 43, 65
bad.config 43
bad.interest 43, 76
base authority 67
Broadcast Message Server (BMS) xii

C
cfgcomproc.ld

copying 34
editing 63, 192
migration from CMVC V1R1 190

cfgcomproc.log 43, 44, 65
cfgrelproc.ld

copying 34
editing 63, 192
migration from CMVC V1R1 190

cfgrelproc.log 43, 44, 65
change control 61
chauth 70, 192
chcfg 84
chcomproc 64, 192
check in 27
check out 27
chfield 51, 190
chintr 75, 192
chrelproc 64, 192
client

description 1
installation 15

client-server model 1
CLIENT_HOSTNAME 35
CLIENT_LOGIN 35
CMVC

access 125
Activity Monitor 105
backup recommendations 137
files 123
recovery 140
roles 2
system 1
tasks 2
user interfaces 2

CMVC client 1
CMVC daemons

maintenance mode 96
starting 95
stopping 98

 Copyright IBM Corp. 1993, 1994 247

CMVC families
archiving and restoring 141
planning 31
sample sizes 31

CMVC server
backup 137
configuration 32
installation 13
migration from ORACLE6 to ORACLE7 195
migration to CMVC Version 2.3 179
packaging 13
requirements 7
tuning 105

CMVC_BINARY_THRESHOLD 39
CMVC_HOME 35
CMVC_SUPERUSER 35
CMVC_VCBIN 35
CMVC_VCLOGIN 35
CMVC_VCTYPE 35, 172
cmvcarchive 147
cmvcd daemon

Process ID 106, 116
running in maintenance mode 96
starting 95
stopping 98

cmvclog.cleanu shell script 115
cmvcrestore 149
command 23
command line 2
common file 124, 130
component

planning 59, 123
processes 60
root 64

config.ld
copying 34
editing 83

config.log 43, 44
configurable fields

creating 51
defaults 48
Defect table 50
Feature table 49
properties 47, 51
reports 55
updating 54

configurable processes
component 60
conditions 65
procedure 63
release 61

configuration database table 77
conversion utilities 180
converting from earlier versions 180
creating index 192

cron daemon 115
crontab 116
current directory 132
current working directory 28, 131

D
daemons

cmvcd 95
cron 103, 115
glbd 20, 98
llbd 20, 98
netlsd 19, 20, 98
notifyd 97
nrglbd 20
sendmail 97, 101
syslog 112, 151

database
backup 138
synchronization 23, 138

DB2_DBPATH 36
DB2_HOME 36
DB2_PASS 36
DB2/6000

backup 139
DB2INSTANCE 36
dbConvert.v1r1m1 utility 181
dbConvert.v2r1 shell script 185
defect

aging 103
description 60
symptoms 78

directory
current 132
current working 28, 131

DSQUERY 38

E
end user 3
environment list 66
environment variable

CLIENT_HOSTNAME 35
CLIENT_LOGIN 35
CMVC_BINARY_THRESHOLD 39
CMVC_HOME 35
CMVC_SUPERUSER 35
CMVC_VCBIN 35
CMVC_VCLOGIN 35
CMVC_VCTYPE 35, 172
DB2_DBPATH 36
DB2_HOME 36
DB2_PASS 36
DB2INSTANCE 36
DSQUERY 38
INFORMIX_DBSP 39, 183

248 Server Administration and Installation

environment variable (continued)
INFORMIXDIR 37
ORACLE_DBA 36
ORACLE_HOME 36
ORACLE_NDXSP 39, 183
ORACLE_PASS 36
ORACLE_SID 36
ORACLE_TBLSP 39, 183
PATH 35, 87
SYBASE 37
SYBASE_DBDEV 40, 183
SYBASE_LOGDEV 40, 183
SYBASE_PASS 37
SYBASE_SA_PASS 37

error messages
in audit log 116
list 151

errors 112
etc/hosts 33
etc/services 33
explicit

authority 67
notification 73

F
family

account 33
configuration 31
planning 31, 59

family administrator 2
feature

aging 103
description 60

file
binary 24
check in 27
check out 27
common 124, 130
naming 110
obsolete 124
owner 124
shared 130
version labels 24
versioning 23

G
graphical user interface (GUI) xii, 2

UNIX platforms xii

H
hardware requirements 7
highlighting style xii

history of CMVC 179
home directory 33
host 107
host list 145
HP-UX operating system 10

I
implicit authority 67
indexes

converting from earlier versions 180
INFORMIX

backup 139
INFORMIX-SQL 8, 10

INFORMIX_DBSP 39, 183
INFORMIXDIR 37
inheritance 123
installation

client 15
server

CD-ROM 16
tape 15

integrated development environment xii
interest groups

configuring 74
grouping actions 74
notification 73
worksheet 215

interest table 75
interest.ld

copying 34, 190
editing 75
migration from CMVC V1R1 190

interest.log 43, 44, 76
interface

command line 2
graphical user 2

Internet Protocol (IP) 8
INTERSOLV PVCS Version Manager

See PVCS

L
level

archiving 144
committed 111
map file 112
maps 111
member 144

leveltype 78
lock 109
login 34

 Index 249

M
mail

addressing 102
queue-processing 102
recommendations 101
returned 102

maintenance
files 124
ongoing 101

maps directory 111
migrating

tasks 184
migration

pre-migration tasks 181
utilities 180

migration from CMVC V1R1
updating processes 66

mkdb 34
mkfamily 41
monitor 105

N
Network File System (NFS) 8, 14
Network License System (NetLS)

daemons 19
installation from CD-ROM 17, 18
installation from tape 15, 16
obtaining the password 7
packaging 13
password 20

NFS
See Network File System (NFS)

notification
automatic 73, 102
daemon 97
explicit 73
list 73

notifyd daemon
starting 97
stopping 98

O
ongoing maintenance 101
ORACLE

backup 139
SQL*Loader 43
SQL*Plus 8
Transaction Processing Options (TPO) 8, 9, 11

ORACLE_DBA 36
ORACLE_HOME 36
ORACLE_NDXSP 39, 183
ORACLE_PASS 36

ORACLE_SID 36
ORACLE_TBLSP 183
ORACLE_TBSLSP 39
originator 102
owner 60, 67

P
paging 104
PATH 35, 87
path name 90, 129
phases 78
planning 60
pre-migration tasks 181
prefixes 78
priority 78
problem tracking 78
process

component 60
release 61
root 64
track 61

process ID 98, 107
profile 34, 139
publications

Network License System (NetLS) 19
related xii

PVCS
commands 24
compression 27
configuration parameters 27
journal 28
keywords 27
license administration database 25
master configuration file 25
registering users 25
semaphores 27
translate 28
vconfig 25
Version Manager

as version control system 8
installation 24
resetting 24

working directory 28

Q
query 109

R
recovery

database 140
file system 140

relational database
backup 137

250 Server Administration and Installation

relational database (continued)
DB2/6000 8
IBM Database 2 AIX/6000 8
INFORMIX 8, 9, 11
migration from CMVC V1R1 183
ORACLE 8
SYBASE 8

release
archiving 145
planning 59, 123
processes 61

requirements
hardware 7
software 7

resetAge shell script 104
restoring

limitations 146
prerequisites 146

restricted authority 67
rmdb 46
rmfamily 45
root component 64

S
SCCS

as version control system 8
commands 24
delta versions 121
File Import

advantages 122
choosing files 124
disadvantages 122
requirements 125
stages 133

File Migrate
advantages 121
disadvantages 122
requirements 125
stages 125

file.import 134
file.migrate 131
Fileimport 133, 134
Filemap 126, 133
Filemigrate 130
files

bringing under CMVC control 121
owners 123, 124

header flags 123
identifiers 121, 127
keywords 123
map file 128
xecit 131, 132

search 47
sendmail 97, 101

server
See CMVC server

severity 78
shared file 130
shared memory 109
sizing record 145
SMIT

See System Management Interface Tool (SMIT)
software requirements 7
Solaris operating system 11
Source Code Control System

See SCCS
SQL*Loader 43
SQL*Plus 8, 9, 10, 11
state xii
subprocess 60
subscribers 73
SunOS operating system 9
superuser privilege 68
SYBASE (environment variable) 37
SYBASE SQL 8
SYBASE_DBDEV 40, 183
SYBASE_LOGDEV 40, 183
SYBASE_PASS 37
SYBASE_SA_PASS 37
synchronization

correcting with resetAge 103
database and vc tree 138

syslog 113
syslogd 112
system administrator 2
System Management Interface Tool (SMIT) 17

T
tables

converting from earlier versions 180
track 61
track subprocess

fix state 125
monitoring file changes 61

Transaction Processing Options (TPO) 8
Transmission Control Protocol (TCP) 8

U
user 2
user exit

guidelines 88
parameters 221

V
vc tree 110
vcPath 110

 Index 251

version control
configuration 23
pathfinder tool 110

versions of CMVC 179
view 43
views

converting from earlier versions 180

252 Server Administration and Installation

Please Tell Us What You Think!

IBM Configuration Management Version Control
Server Administration and Installation
Version 2 Release 3

Publication No. SC09-1631-02

We hope you found this book useful and informative. If you like what we've done, please let
us know; if not, please tell us why. We'll use your comments to make the book better.

Please use one of the methods listed below to send your comments to IBM. Whichever
method you choose, make sure you send your name, address, and telephone number to
receive a reply.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate, without obligation.

� To send comments by mail or fax, use the form titled “What Do You Think?” on the
following page.

If you're mailing from a country other than the United States, you can give the form to
the local IBM branch office or IBM representative for postage-paid handling.

To fax the form, use this number: (919) 469-7718.

� To send comments electronically, use one of the following network IDs:

IBM Mail Exchange USIB5DNQ at IBMMAIL
Internet KFRYE@CARVM3.VNET.IBM.COM

Thank you! Your comments help us make the information more useful for you.

What Do You Think?

IBM Configuration Management Version Control
Server Administration and Installation
Version 2 Release 3

Publication No. SC09-1631-02

We're in business to satisfy you. If we're succeeding, please tell us; if not, let us know how we can do
better.

Overall, how satisfied are you with this book?

Very
Satisfied Satisfied

Neither
Satisfied

nor
Dissatisfied Dissatisfied

Very
Dissatisfied No Opinion

Overall satisfaction

How satisfied are you that the information in this book is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your
tasks

Please tell us how we can improve this book:

May we contact you to discuss your responses? Ø Yes Ø No ô

 Fax

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

What Do You Think?
SC09-1631-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department T45
PO Box 60000
Cary, NC 27512-9968

Fold and Tape Please do not staple Fold and Tape

SC09-1631-02

IBM

Program Number: 5622-063
 5765-202
 5765-207
 5765-397

Printed in U.S.A.

SCð9-1631-ð2

