

APL2 User's Guide

SC18-7021-23

APL Products and Services

IBM Silicon Valley Laboratory

555 Bailey Avenue

San Jose, California 95141

APL2@vnet.ibm.com

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

2

Copyrights

© Copyright IBM Corporation 1994, 2017 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corporation

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

3

Contents

o Notices

o We Would Like to Hear from You

o About This Book

Part 1: Getting Started

o Overview

o Installing and Customizing APL2

o Installing APL2 on Unix Systems

o Installing APL2 on Windows Systems

o Invoking APL2

o Invoking APL2 on Unix Systems

o Invoking APL2 on Windows Systems

o Migrating from Version 1 to Version 2

Part 2: Using APL2

o General Information

o Workspaces and Libraries

o Using the Session Manager

o The APL2 Session Manager on Unix Systems

o The APL2 Session Manager on Windows

o Editors

o Editing APL Objects

o Editing Text Files

o The APL2 Library Manager

o Using APL2 Across Systems

o Cooperative Processing

o Shared Variable Interpreter Interface

o Transferring Workspaces and Files

Part 3: Application Guide

o Associated Processors

o Processor 10 - Communicating with Rexx

o Processor 11 - External Routines and Namespaces

o Processor 12 - Files as Arrays

o Processor 14 - Calls to Java

o Processor 15 - Access Structured Storage

o Supplied External Routines

o APL2CFG - Configure APL2

o APL2LM - APL2 Library Manager

o APL2PIA - APL2 Programming Interface for APL2

o ATR - Array to Record

o ATS - Array to SCAR

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

4

o BEEP - Sound a Beep

o CHECK_ERROR - Get System Error Text

o CNS - Create Namespace

o COM - Component Object Model Interface

o COMBROWSE - COM Browser

o COPY - Copy Workspace Objects

o CPUCOUNT - Get Number of Processors

o CTK - Character to Kanji

o CTN - Character to Numeric

o CTUTF - Character to UTF

o DATATYPE - Array Data Type

o DISPLAY, DISPLAYC, and DISPLAYG - APL2 Array Structures

o EDITOR_2 - APL2 Editor 2

o EXP - Execute in Previous Namescope

o FDELETE - File Delete

o FILE - File Read or Write

o FILE Namespace

o FSTAT - File Status

o GETENV - Get Environment Variable

o GETLIB - Get Path for Library Number

o GMTSTAMP - Get or Set Timestamp

o GRAPHPAK Namespace

o GUITOOLS Namespace

o GUIVARS Namespace

o Host System Utilities

o IDIOMS and IDIOMSG - APL2 Idiom Library

o KTC - Kanji to Character

o LEXP - Lexical Parse

o LIB - List Library Contents

o LIBS - Get APL2 Library Definitions

o LTM - Tcl List to APL2 Matrix

o MATHFNS Namespace

o MD5 - Encode Data to MD5

o MTL - APL2 Matrix to Tcl List

o OPTION - Query or Set Session Options

o PCOPY - Protected COPY

o PEACHP and PEACHT - Parallel Each Operators

o PFA - Pattern From Array

o PRINTWSG - Print Workspace with GUI interface

o QNS - Query Namescope

o REPLACEX - Replace Strings

o ROUNDC - Commercial Rounding

o RF - RowFind

o RTA - Record to Array

o SCANDIR - List Files in a Directory

o SI - State Indicator

o SIS - State Indicator with Statements

o SIZEOF - Size of Array

o SQL Namespace

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

5

o STA - SCAR to Array

o TCL - Tool Command Language Interface

o TIME - Application Performance Analysis

o UTFTC - UTF to Character

o WSCOMP - Workspace Compare

o ZIP, UNZIP, ZIPWS, and UNZIPWS - Compression Utilities

o Auxiliary Processors

o AP 100 - Host Command Processor

o AP 101 - Alternate Input (Stack) Processor

o AP 119 - Socket Interface Processor

o AP 120 - Session Manager Interface

o AP 124 - Text Display Processor

o AP 127 - DB2 Processor

o AP 144 - X Window Services Processor

o AP 145 - GUI Services Processor

o AP 200 - Calls to APL2

o AP 207 - Universal Graphics Processor

o AP 210 - File Processor

o AP 211 - APL Object Library Processor

o AP 227 - ODBC Processor

o AP 488 - GPIB Support Processor

o Supplied Workspaces

o AIX - AIX Operating System Functions

o AP124 - Text Display Application Aids

o AP144 - X Window Application Aids

o AP488 - GPIB Application Aids

o DDESHARE - High-Level DDE Access

o DEMO124 - Text Display Demonstrations

o DEMO144 - X Window Demonstrations

o DEMO145 - GUI Demonstrations

o DEMO207 - Graphics Demonstrations

o DEMOJAVA - Calls to Java Demonstrations

o DISPLAY - APL2 Array Structures

o EDIT - Compatibility Editors

o EXAMPLES - APL2 Language Examples

o FILE - File I/O Routines

o GRAPHPAK - Graphics Library

o GUITOOLS - Building GUI Applications

o GUIVARS - GUI Application Variables

o IDIOMS - APL2 Idiom Library

o LINUX - Linux Operating System Functions

o MATHFNS - Mathematical Routines

o MIGRATE - APL2 Migration Aids

o NETTOOLS - Writing Network Applications

o PRINT - Unix Printer Interface

o PRINTWS - Workspace Printing Utility

o SOLARIS - Solaris Operating System Functions

o SQL - Structured Query Language Tools

o TCL - Tool Command Language Demonstrations

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

6

o TIME - Application Performance Analysis

o UTILITY - General-Purpose APL2 Tools

o WINDOWS - Windows Operating System Functions

o WSCOMP - Workspace Compare

o APL2 Programming Interface (Calls to APL2)

o Calling APL2 from APL2

o Calling APL2 from C

o Calling APL2 from Java

o Calling APL2 from Visual Basic

Part 4: Advanced Topics

o Writing Your Own External Routines

o Using Prebuilt DLLs (Runtime Libraries)

o Creating SYSTEM Linkage Routines

o Creating FUNCTION Linkage Routines

o Writing Your Own Auxiliary Processors

o The SVP Monitor Facility

o The APL2 Runtime Library

o Using the X Window System Interface

Appendices

o Windows Character Set Support

o Double Byte Character Set Support

o Implementation Limits

o Deviations from APL2 Programming: Language Reference

o Bibliography

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

7

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make

these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is

not intended to state or imply that only IBM's product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe on any of IBM's intellectual property rights may

be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject material in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries, in

writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

8

Programming Interface Information

This user's guide is intended to help programmers write applications in APL2. It documents General-Use

Programming Interface and Associated Guidance Information provided by APL2. General-use programming

interfaces allow the customer to write programs that obtain the services of APL2.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

9

Trademarks

IBM Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

AIX

APL2

CUA

DATABASE 2

DB2

IBM

OS/2

Presentation Manager

System/370

System/390

VisualAge

WebSphere

Other Trademarks

The following terms are trademarks of other companies:

ActiveX Microsoft Corporation

APL+Win APL2000, Inc.

Adobe Adobe Systems, Inc.

Acrobat Adobe Systems, Inc.

InstallShield Acresso Software Inc. and/or InstallShield Co. Inc.

Java Sun Microsystems, Inc.

JavaMail Sun Microsystems, Inc.

Linux Linus Torvalds

Motif The Open Group

MSDN Microsoft Corporation

ooRexx Rexx Language Association

PostScript Adobe Systems, Inc.

Solaris Sun Microsystems, Inc.

Sun Sun Microsystems, Inc.

TrueType Apple Computer, Inc.

Visual Basic Microsoft Corporation

Windows Microsoft Corporation

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

10

We Would Like to Hear from You

APL2 User's Guide

Please let us know how you feel about this online documentation by placing a check mark in one of the columns

following each question below:

To return this form, print it, write your comments, and mail it to:

International Business Machines Corporation

APL Products and Services - PGUA/E1

555 Bailey Avenue

San Jose, California 95141

USA

For postage-paid mailing, please give the form to your IBM representative.

You can also send us your comments by email. To send us this form, copy it to a file, write your comments

using a file editor, and then send it to:

apl2@vnet.ibm.com

Overall, how satisfied are you with the online documentation?

 Very Very
 Satisfied Dissatisfied
 1 2 3 4
 Overall Satisfaction ___ ___ ___ ___

Are you satisfied that the online documentation is:

 Accurate ___ ___ ___ ___
 Complete ___ ___ ___ ___
 Easy to find ___ ___ ___ ___
 Easy to understand ___ ___ ___ ___
 Well organized ___ ___ ___ ___
 Applicable to your tasks ___ ___ ___ ___

Please tell us how we can improve the online documentation:

 __
 __
 __

Thank you! May we contact you to discuss your responses?

 ___Yes ___No
 Name:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

11

 __
 Title:
 __
 Company or Organization:
 __
 Address:
 __
 __
 __
 Phone:
 (___)___
 E-mail:
 __

Please do not use this form to request IBM publications. Please direct any requests for copies of publications, or

for assistance in using your IBM system, to your IBM representative or to the IBM branch office servicing your

locality.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

12

About This Book

This book describes IBM APL2 for use with AIX, Linux, Sun Solaris and Windows.

This User' Guide is intended to help you use APL2. It contains a collection of tables and descriptions giving full

details of installation, operation, supplied workspaces, and external interfaces.

 APL2 Publications

 Conventions Used in This Book

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

13

APL2 Publications

Along with this APL2 User's Guide, the following additional on-line manuals are included with Workstation

APL2:

 APL2 Language Summary

 APL2 Programming: Language Reference

 APL2 Programming: Developing GUI Applications (for Windows only)

 APL2 Programming: Using APL2 with WebSphere

 APL2 Programming: Using SQL

 APL2 GRAPHPAK: User's Guide and Reference

For the titles and order numbers of the complete APL2 library, and for information on other related

publications, see Bibliography.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

14

Conventions Used in This Book

The notations used in this user's guide and their meanings are:

lower

Lowercase italicized words in syntax represent values you must provide.
UPPER

In syntax blocks, uppercase words in an APL character set represent keywords that you must enter

exactly as shown.
[]

Usually, brackets are used to delimit optional portions of syntax; however, where APL2 function editor

commands or fragments of code are shown, brackets are part of the syntax.
[A|B|C]

A list of options separated by | and enclosed in brackets indicates that you can select one of the listed

options. Here, for example, you could specify either A, B, C, or none of the options.
{A|B|C}

Braces enclose a list of options (separated by |), one of which you must select. Here, for example, you

would specify either A, B, or C.
...

An ellipsis indicates that the preceding syntactic item can be repeated.
{}...

An ellipsis following syntax that is enclosed in braces indicates that the enclosed syntactic item can be

repeated.
←→

Used to mean "is equivalent to." It does not denote an APL2 operation.

The following APL2 names are used throughout this user's guide:

Z Result name

F Function name

L Left argument name

R Right argument name

MOP Monadic operator name

DOP Dyadic operator name

LO Left operand name

RO Right operand name

The term workstation refers to all platforms where APL2 is implemented except those based on System/370 and

System/390 architecture.

The term mainframe refers to platforms based on System/370 and System/390 architecture.

Throughout this book, the following abbreviated product names may be used:

Product Name Platform

APL2/370 CMS or TSO

APL2/PC DOS

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

15

Overview

These sections contain an overview of APL2, including:

 Why Should You Learn APL2?

 What is IBM APL2?

 Required Hardware

 Required Software

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

16

Why Should You Learn APL2?

Learning a programming language requires an investment of your most precious resources - time and effort.

Why should you invest your time in APL2 in preference to any of the others? There are programming languages

you can learn faster than APL2. But a tool is worth what you invest in it. Roman numerals were easier to use

than Arabic numerals for most computations of Roman times. They were, however, impossible to extend for use

in more sophisticated mathematics. Arabic numerals are harder to learn but are clearly a superior notation for

mathematics.

On the surface, some other programming languages are easier to learn because APL2 contains so much

advanced function. However, you do not need to learn all of APL2 in order to use it effectively. You can learn a

subset of APL2 first, leaving more advanced function for later.

APL2 is extremely concise. A significant computation can fit in one page of code or even a few lines. One

reason APL2 programs are so compact is that operations are represented by symbols, not English words. This

has the advantage of being international, but may look intimidating. If you have paged through this manual, you

have probably noticed that some of the symbols used come from the Greek alphabet. This leads some to say that

APL2 looks like Greek. Just remember that Greek looks like Greek yet there are children who can read and

write it fluently. It is a question not of difficulty, but of familiarity. Just as you can read the symbols used for

international road signs once you know what they mean, you quickly become comfortable with APL2 symbols

and appreciate the conciseness of the notation. Think of APL2 as the international road signs of programming.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

17

What is IBM APL2?

APL is a general-purpose language that enjoys wide use in such diverse applications as commercial data

processing, system design, mathematical and scientific computation, and the teaching of mathematics and other

subjects. It has proved particularly useful in database applications, where its computational power, user-

friendliness, and communication facilities combine to increase the productivity of both application

programmers and end users.

When implemented as a computing system, the user types statements that specify the work to be done, and the

computer responds by displaying the result of the work at a device such as a video display or a printer. In

addition to work purely at the keyboard and its associated display, entries can also specify the use of printers,

disk files, or other remote devices.

A programming language should be relevant. That is, you should have to write only what is logically necessary

to specify the job you want done. This may seem an obvious point, but many of the earlier programming

languages forced you to be concerned as much with the internal requirements of the machine as with your own

statement of the problem. APL takes care of these internal considerations automatically.

A programming language needs both power and simplicity. By power, we mean the ability to handle large or

complicated tasks. By simplicity, we mean the ability to state what must be done briefly and neatly, in a way

that is easy to read and easy to write. You might think that power and simplicity are competing requirements, so

that if you have one, you cannot have the other, but that is not necessarily so. Simplicity means not that the

computer is limited to doing simple tasks, but that the user has a simple way to write instructions to the

computer. The power of APL as a programming language comes in part from its simplicity.

The letters "APL" originated with the initials of a book written by K. E. Iverson, A Programming Language

(New York: Wiley, 1962). Dr. Iverson first worked on the language at Harvard University, and then continued

its development at IBM with the collaboration of Adin Falkoff and others at the IBM T. J. Watson Research

Center. The term APL now refers to the language that is an outgrowth of that work. APL is the language, and

APL2 is the brand name of IBM's extended version of APL.

This implementation of APL2 has the following features:

 The language processor is highly compatible with the other members of the APL2 family. It uses the

same APL2 Programming: Language Reference. APL2 allows the transporting of workspaces, in

transfer file format, between APL2 platforms. EBCDIC-ASCII translation is performed automatically

where required, and is transparent to the user.

 The session manager is common user access (CUA) conforming and has a similar look and feel to the

session managers of the other products in the APL2 family, with the added benefit of GUI (graphical

user interface) features such as window movement, window resizing, scroll bars, font specification, and

the use of icons. It provides scrolling capability, permanent session logs, stacked input, color control,

function key support, keyboard redefinition, and national language support.

 Many of the auxiliary processors available with the APL2/370 or other workstation products are

provided:

 AP 100 (host system command processor)

 AP 101 (alternative input (stack) processor)

 AP 119 (socket interface processor)

 AP 124 (text display processor)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

18

 AP 127 (SQL relational database processor for DB2)

 AP 207 (universal graphics processor)

 AP 210 (file I/O processor)

 AP 211 (APL2 common object library processor)

 AP 144 (Unix systems), which provides a programmable interface to X Window services.

 AP 145 (Windows), which provides a programmable interface to GUI services.

 AP 227, which allows access to databases and programs which support the ODBC protocol, using the

SQL language.

 Many of the common distributed workspaces and functions that are currently available on the

System/370 or other workstation products.

 National language support. External command and message translation tables are provided that can be

modified to support other countries, or individual user preferences.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

19

Required Hardware

The following hardware is the minimum required for APL2:

 A computer running one of the operating systems listed below.

 At least 25 MB of unused hard disk space.

 At least 12 MB of memory above that required by the operating system.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

20

Required Software

One of the following operating systems is required to run APL2:

 Windows 7, Windows 8 or Windows 10

 AIX 5.0 (or later) with

Motif 1.2 (or later) and

X Window System X11R5 (or later)

 Solaris 7 (or later) with

Motif 1.4 (or later) and

X Window System X11R5 (or later)

 A Linux distribution for PC compatible machines with

glibc 2.3.2 (or later) and

Motif 2.2 (or later) and

X Window System X11R6 (or later)

Some features of APL2 have additional requirements:

 Adobe Acrobat Reader is required to view the on-line manuals

 IBM DATABASE 2 for AP 127

 An ODBC Driver Manager which supports the ODBC 3.0 level of Application Programming Interfaces

for AP 227

 TCP/IP for AP 119 and cross-system shared variables

 IBM Object Rexx or Open Object Rexx for calling Rexx routines with Processor 10

 Tcl and Tk 8.4 or later for the TCL external function

 Java 2 Version 1.4 or later for Processor 14 or to call APL2 from Java.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

21

Installing and Customizing APL2

 Installing APL2 on Unix Systems

 Installing APL2 on Windows Systems

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

22

Installing APL2 on Unix Systems

 Installing APL2

 APL2 Directory Structure

 Displaying APL2 Characters

 APL2 Keyboard Support

 Customizing APL2

Installing APL2

AIX Systems:

APL2 for AIX is distributed on CD or by download as a compatible application program. It can be installed

using the System Management Interface Tool smit, or using the AIX command installp. Installation is

under directory /usr/APL2/.

1. (Download method only) Download the apl2av20.installp file in binary mode to a temporary

directory on your AIX machine.

2. Switch to root authority (su command)

3. (Download method only) Generate the .toc for the directory where the installp image file has been

placed.

inutoc directory_path

4. Run the installation.

Using the smit utility:

Follow the menus for installation and maintenance for your system configuration. For detailed

information on using the smit command, see your AIX documentation.

Using the installp command:

installp -ac -X -d directory_path/apl2av20.installp APL2.obj

5. Exit from root authority

Linux Systems:

APL2 for Linux is distributed on CD or by download in gzip'd tar file format. The default installation is

under directory /usr/APL2/.

1. (Download method only) Download the apl2lv20.tgz and apl2lv20 files in binary mode to a

temporary directory on your Linux machine.

2. Change to the directory where the apl2lv20.tgz and apl2lv20 files reside.

3. (Download method only) Make the apl2lv20 file into an executable file with the command:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

23

chmod 755 apl2lv20

4. Switch to root authority (su command)

5. Run the installation script and follow the prompts:

./apl2lv20

6. Exit from root authority

Downloaded files can be removed after the installation. A copy of the install script is saved into the

APL2/install directory for your future reference.

After the installation is complete, you will need to modify the .bash_profile (or appropriate shell profile)

on all userids that will be running APL2 to add access to the APL2 fonts:

 xset fp+ /usr/APL2/fonts/X11
 xset fp rehash

Solaris Systems:

APL2 for Sun Solaris is distributed on CD or by download in compressed tar file format. The default

installation is under directory /usr/APL2/.

1. (Download method only) Download the apl2sv20.tarz and apl2sv20 files in binary mode to a

temporary directory on your Linux machine.

2. Change to the directory where the apl2sv20.tarz and apl2sv20 files reside.

3. (Download method only) Make the apl2sv20 file into an executable file with the command:

chmod 755 apl2sv20

4. Switch to root authority (su command)

5. Run the installation script and follow the prompts:

./apl2sv20

6. Exit from root authority

Downloaded files can be removed after the installation. A copy of the install script is saved into the

APL2/install directory for your future reference.

The installation process will attempt to install the APL2 fonts into the X Window System so they will be

available automatically. However, the font installation process may fail if the X Window System is not active or

if the font compilation tools are not present on the system.

If the font installation is not successful, you may correct the problem that caused it to fail and re-run the font

installation program (/usr/APL2/bin/InstallFonts), or you may provide access to the fonts manually

by modifying the .profile (or appropriate shell profile) on all userids that will be running APL2 to add

access to the APL2 fonts:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

24

 xset fp+ /usr/APL2/fonts/X11
 xset fp rehash

National Language Selection

When APL2 is started, the apl2 shell script attempts to select from the available national languages for APL2

based on the value of the system environment variable LANG. It contains logic to map some of the common

names for these languages to the names used by APL2 (En_US, En_UK, Fr_FR, Gr_GR, and It_IT).

If LANG is not set, or is not one of the values recognized by the shell script, English will be used for system

messages and the X resource files used will be those that contain mapping for the USA standard keyboard.

Local modification of the apl2 shell script may be necessary if another national language setting is desired for

APL2.

AIX Only: On AIX, location of resource files is based strictly on the value of LANG. The mapping the apl2

shell script does is effective only in selecting message text. If LANG does not match one of the names used for

the directories in /usr/APL2/nls, you will need to create a directory with a name matching LANG. In the

new directory, create links to the files in the directory for the language you wish to use. For example, if LANG is

en_US rather than En_US,

 cd /usr/APL2/nls
 su
 mkdir en_US
 cd en_US
 ln -s /usr/APL2/nls/En_US/ap120 ap120
 ln -s /usr/APL2/nls/En_US/ap124 ap124
 ln -s /usr/APL2/nls/En_US/APL2win APL2win
 ln -s /usr/APL2/nls/En_US/cmd_msg.txt cmd_msg.txt
 exit

APL2 Directory Structure

When the product is installed, subdirectory /APL2/ is created under /usr and is the main APL2 installation

directory. It contains installation control files and a README file that has important information about the

product. All other directories in the table below are created under this main installation directory.

Subdirectory Description

bin Binary executable files

defaults Language-independent files

doc On-line documentation (in Adobe .pdf format)

examples Sample programs categorized by subdirectory

fonts/X11 APL2 fonts for X Window System

fonts/printer APL2 printer fonts

fonts/vector Vector fonts for AP 207

include C Include files for user-written auxiliary processors, external functions and Calls to APL2

lib C libraries for user-written auxiliary processors and Calls to APL2

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

25

Subdirectory Description

lib1 Distributed workspaces)LIB 1

lib2 Distributed workspaces)LIB 2

nls Language-dependent files. There is a subdirectory for each supported locale under this

directory.

Displaying APL2 Characters

Installation of the APL2 character fonts for X Window System takes place during the product installation

described in Installing APL2. If X Window System was active during the installation, the newly-installed APL2

fonts are not available until X Window System rereads the font directories. This is accomplished by restarting

the X server or issuing the command xset fp rehash.

AIX and Sun Solaris Only:

Font installation is an automatic part of the installation process, and if successful, fonts will be available to all

users. However, after APL2 has been installed, it is possible that the fonts may inadvertently be uninstalled

during X Window System-related maintenance. If this should occur, the APL2 fonts can be reinstalled by doing

the following:

1. Log in as root user (login root)

2. Type:

$(APL2)/bin/InstallFonts

where $(APL2) is the APL2 installation directory.

APL Characters on Remote Workstations

APL2 can be run on a local workstation, or accessed remotely by other workstations using a LAN connection.

These remote workstations (X servers) require the installation of the APL2 fonts in order to display APL

characters. To install the fonts on the remote workstation complete the following steps:

1. Enter the command xset q and look in the first directory for the font path to determine which font

format is needed. If the files end in .pcf, then you are running X11R5. If they end in .snf, then you

most likely have X11R4. If the format is not snf or pcf, then you need to build the necessary font

from the bdf files that are in the tar file, pc910bdf.tar.

2. Log in as root.

3. cd to the 1st directory in the font path.

4. If you are running X11R4, copy the *.snf files from the APL2 /fonts/X11. If you are running

X11R5, copy the *.pcf files.

5. mkfontdir

6. xset fp rehash

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

26

These are roman-style fonts conforming to IBM code page 910 (see APL2 Programming: Language Reference).

In most cases they can be used successfully for normal terminal operation as well as for APL2 operation. In

addition, IBM code page 910 supports many of the international characters found in code page 850. These

include characters required for use in France, Germany, Italy, the United Kingdom, and the USA.

APL2 Keyboard Support

This section describes the keyboard support provided for APL2.

 APL2 Keyboard Layouts

 Keyboard Decals

 Keyboards

APL2 Keyboard Layouts

Several standard APL2 keyboard layouts are provided with this product.

You can choose one of these, or design your own. For more information about customizing your keyboard, see

Customizing the Keyboard.

Keyboard Decals

Decals with the APL2 character set for IBM keyboards are included with this product. Additional sets of decals

are available from IBM Publications as APL2 Keyboard Decals, SC33-0604.

Carefully peel each decal away from the backing sheet and place it on the appropriate key. Note that some

decals (those for Alternate-shift characters) go on the fronts of the keys, and that not all the decals are needed

for some keyboards. For a French keyboard layout, which has the numeric keys in the shifted position, you need

to cut the decals for these keys to move the APL2 characters to the lowercase position.

Keyboards

APL keyboards for many machines can be purchased from Unicomp Corporation:

web: www.pckeyboard.com

phone: 1-800-777-4886

Customizing APL2

This section describes how you can customize your APL2 session during installation.

 The apl2 Shell Script

 The apl2.ini Configuration File

 The SVP Parameter File

 The SVP Profile

The apl2 Shell Script

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

27

Upon completion of the installation of APL2, a symbolic link is defined for /usr/bin/apl2, pointing to the

default installation directory for the APL2 executable file apl2. The apl2 shell script is the recommended

way to start the APL2 interpreter (apl2exe). It establishes the default environment variables and opens the

appropriate windows to run the APL2 system.

The apl2 shell script is designed to be flexible enough to support the most common default overrides, through

command line optional parameters, the apl2.ini configuration file, or preassignment of environment

variables (see Invoking APL2 on Unix Systems). For user-level customization, environment variable definitions

are typically placed in $HOME/.profile, or a private apl2.ini file maintained in $HOME. For multiuser,

system-level customization, the apl2 shell script can be tailored to local convention, or a system apl2.ini

can be maintained in /usr/APL2/bin.

The apl2.ini Configuration File

APL2 invocation options, library directory definitions and several Shared Variable Processor settings can be

stored in the apl2.ini configuration file.

To find the apl2.ini file, APL2 will search first in the current working directory (the directory from which

APL2 was invoked) and then in $APL2/bin. The first apl2.ini file that is found in that search order will

be used, and any others will be ignored.

APL2 searches apl2.ini after command line parameters and before environment variables.

The file uses the following syntax:

[Section Name]
keyword=value
keyword=value
...
[Section Name]
keyword=value
keyword=value
...
...

Leading and trailing blanks, and any lines that do not contain a valid section name or keyword definition, are

ignored. Searches for section names and keywords are case-insensitive.

The following section names are supported:

[Invocation Options]

APL2 interpreter invocation options as listed in Invocation Parameters, except for hostwin and

svptrace. On Unix systems, those two options are managed entirely within the shell script and

settings in apl2.ini will be ignored. For example:

[Invocation Options]
WS=50m
P11=/home/myuserid/mynames.nam:/usr/APL2/defaults/aplnm011.nam

[Libraries]

APL2 library definitions, in the format described in Library Specification. For example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

28

[Libraries]
APL01001=/home/myuserid/wss
APL00019=/home/myuserid/AGSS

[Shared Variable Processor]

Shared variable processor settings listed in APL2 Environment Variables. Remove the APL2 prefix

from the environment variable name to form the keyword. For example:

[Shared Variable Processor]
SVPPARMS=/home/myuserid/apl2svp.prm
SMKEY=MYOWNKEY

A sample apl2.ini file is shipped with APL2 in directory /usr/APL2/defaults.

The SVP Parameter File

The APL2 Shared Variable Processor (SVP) uses a parameter file to set some initialization options. The

APL2SVPPARMS environment variable, or the SVPPARMS keyword in the [Shared Variable Processor]

section of apl2.ini, can be used to specify the name of this file. The file name can include path information,

or just the name of the file to search for in the current directory. If the file name is not established using either

of those methods, the default file name apl2svp.prm is searched for in the current directory. However, note

that the apl2 shell script sets the APL2SVPPARMS environment variable, if undefined, to the distributed

system default parameter file.

The file uses the following syntax:

keyword=value [value...]

Blank lines or lines with an asterisk in the first column are ignored. In the case of keywords that accept more

than one value, the values can be separated by a comma or spaces.

The keywords that can be specified are:

PROCS Maximum number of processors that can be signed on at one time.

Default: 100 Minimum: 32

VARS Maximum number of variables that can be shared at one time.

Default: 400 Minimum: 128

MAXSM Maximum amount of memory, in bytes, for all shared variable data.

Default: 16 Megabytes Minimum: 2 Megabytes

MAXSV Maximum amount of memory, in bytes, for a single shared variable.

Default: 12 Megabytes Minimum: 1 Megabytes

NOTRACE List of processor IDs for which events are not to be traced by the SVP monitor facility. An asterisk

may be specified to signify that no processors are to be traced.

Default: 1 101 120

The default file apl2svp.prm is provided as follows:

* Sample svp parms file
*
* Maximum number of processors signed on
PROCS=100

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

29

* Maximum number of variables shared
VARS=400
* Maximum amount of shared memory for all variable data
MAXSM=16000000
* Maximum amount of shared memory for any one shared variable
MAXSV=12000000
* processor numbers to omit from the SVP trace
NOTRACE=1 101 120
*

Although there is no SVP-enforced maximum allowed value for MAXSM, this is limited by the amount of

paging space available on the system. If the SVP parms file is not found, defaults for PROCS, VARS,

MAXSM, and MAXSV are set as noted in the sample file above, and all processors are traced.

The SVP Profile

For information about customizing the SVP profile, see Processor Profile Structure.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

30

Installing APL2 on Windows Systems

 Installing APL2

 Customizing APL2

 APL2 Keyboard Support

Installing APL2

APL2 uses the InstallShield product for installation. Installation is supported from CD-ROM or a Local Area

Network (LAN) server.

This section contains information that you need for:

 Installing APL2 from a CD-ROM

 Installing from a LAN Server

 APL2 Directory Structure

 Installing the APL2 Fonts

 Accessing the Online Documentation

 Establishing the APL2 Environment

Installing APL2 from a CD-ROM

To install APL2 from a CD-ROM:

Insert the CD-ROM into the drive. If the installation program does not start automatically,

1. Click the Start button, point to Settings, and then click Control Panel.

2. Double-click Add/Remove Programs.

3. Click Install.

4. Click Next.

5. The correct installation program is x:\windows\setup.exe, where x represents the letter of the

CD-ROM drive. Click Finish.

Follow the instructions on your screen.

Note: On some versions of Windows, if the installation process is performed from a userid that is a member of

the administrator group, you may be prompted to choose whether the installation will be for the current user or

all users.

Installing from a LAN Server

If you have purchased multiple licenses of APL2, you might want to consider placing the installation files on a

LAN server for easier access. To do this, perform the following steps:

1. Create a directory on the LAN server to store the APL2 installation files.

2. Copy the contents of the CD-ROM Windows installation directory into this directory.

3. Give all licensed users access to the LAN drive you copied the install files to.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

31

After performing these steps, users with access to the LAN drive can access the alias drive\directory and install

APL2 by running the SETUP program.

Your LAN users are now ready to use APL2.

Note: On some versions of Windows, if the installation process is performed from a userid that is a member of

the administrator group, you may be prompted to choose whether the installation will be for the current user or

all users.

APL2 Directory Structure

When the APL2 product is installed, a directory is created as the top level installation directory. The default

directory name is C:\Program Files\ibmapl2w (on 64-bit systems, C:\Program Files

(x86)\ibmapl2w), although this can be changed during installation if desired. It contains the installation

control files and a readme.txt file that has important information about the product. All other directories in

the table below are created as subdirectories of the main installation directory.

Subdirectory Description

bin Binary executable files, dynamic link libraries, and online help

doc Online documentation

fonts APL2 fonts (session manager, AP 124, and AP 207)

include C Include files for user-written auxiliary processors, external functions and Calls to APL2

lib C libraries for user-written auxiliary processors and Calls to APL2

runtime Installation file for the APL2 Runtime Library

samples Sample programs and profiles

wslib1 Distributed workspaces)LIB 1

wslib2 Distributed workspaces)LIB 2

Installing the APL2 Fonts

APL2 includes the following TrueType fonts:

 APL2 Italic (APL2ITAL.TTF)

 APL2 Unicode Italic (APL2UI__.TTF)

 Courier APL2 (COURAPL.TTF)

 Courier APL2 Bold (COURAPLB.TTF)

 Courier APL2 Unicode (COURAU__.TTF)

the following bitmap font:

 APL2 Image (APL2IMAG.FON)

and a variety of vector fonts for use by AP 207.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

32

The APL2 installation program installs the APL2 fonts in the fonts subdirectory of the main APL2

installation directory. All the programs in the APL2 product can find them there.

If the userid performing the APL2 installation is a member of the administrator group, the APL2 installation

program also installs the TrueType and bitmap fonts in the Windows Fonts directory, where non-APL2

programs can find them.

To install the APL2 fonts in the Windows Fonts directory manually, the procedure is as follows:

Windows 7, Windows 10:

1. Click the Start button, select Computer.

2. Navigate to the fonts subdirectory of the main APL2 installation directory.

3. For each font you wish to install, right-click on the file name and select Install from the menu.

Windows 8:

1. Open the File Explorer Windows App.

2. Navigate to the fonts subdirectory of the main APL2 installation directory.

3. For each font you wish to install, right-click on the file name and select Install from the menu.

Accessing the Online Documentation

Online Manuals

When you install APL2, the online manuals are automatically installed in the doc subdirectory of the main

APL2 installation directory. You can access this information from the APL2 Session Manager window, from

the Desktop or from the Adobe Acrobat Reader.

To access the information from the APL2 Session Manager window, click on Help, select Books, and then

select a document from the list.

To access the information from the Desktop, click on Start, select Programs, select IBM APL2, and then

double-click on a document object.

Online Help

The online help for the session manager, editors and SVP Monitor is installed in the bin subdirectory of the

main APL2 installation directory. You can access the online help from the Help menu items in the windows for

these components.

Establishing the APL2 Environment

By default, the APL2 installation program makes the following environment variable modifications:

 Add the following directory to PATH: C:\Program Files\ibmapl2w\bin

 Add the following file to CLASSPATH: C:\Program Files\ibmapl2w\bin\apl2.jar

 Set variable APL00001 to: C:\Program Files\ibmapl2w\wslib1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

33

 Set variable APL00002 to: C:\Program Files\ibmapl2w\wslib2

 Set variable APL01001 to: C:\Program Files\ibmapl2w\bin

 Set variable APLP11 to: C:\Program Files\ibmapl2w\bin\aplnm011.nam

 Set variable APL207FL to: C:\Program Files\ibmapl2w\fonts

(The examples assume the main APL2 installation directory was C:\Program Files\ibmapl2w\)

If you choose not to have the installation program modify your environment variables, you need to configure

your system manually for APL2 to run correctly.

Environment Variables

You must add the APL2 bin directory to the PATH environment variable to be able to invoke APL2 from any

other directory.

You must add the apl2.jar file to the CLASSPATH environment variable for Associated Processor 14, the

APL2-Java interface processor, to work properly.

You can set environment variables in the System notebook of the Control Panel.

Alternatively, you can set environment variables in a batch file and use the batch file to invoke APL2. See

Batch Files for more information.

Workspace Libraries and P11 Names File

APL2 requires the location of public workspace libraries 1 and 2. The APL2 installation program sets the

default locations shown above in the environment variables APL00001 and APL00002. You may also want to

supply the location of personal workspace library 1001 and other libraries. For information about workspace

library locations, see Library Specification.

APL2 also requires the location of the Processor 11 names file. The APL2 installation program sets the default

location shown above in the environment variable APLP11. For information about Processor 11 names file

locations, see the discussion of the -p11 invocation option in Invocation Parameters.

You may supply the locations of workspace libraries and the Processor 11 names file using any or a

combination of the following techniques:

 The Configure APL2 Tool

 The apl2.ini Configuration File

 In environment variables in Batch Files

 In environment variables in the Control Panel

 Invocation option (P11 names file only)

Consult the next section, Customizing APL2, for more information.

Customizing APL2

This section describes how you can customize your APL2 sessions.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

34

 The Configure APL2 Tool

 The apl2.ini Configuration File

 Batch Files

 APL2 and TCP/IP

 The SVP Parameter File

 The SVP Profile

The Configure APL2 Tool

Use the Configure APL2 tool to set default invocation options, define APL2 libraries, add session manager

toolbar buttons, and specify SVP profile file names.

The Configure APL2 tool can run either as a stand-alone program or as an external function. When run as a

stand-alone program, the Configure APL2 tool runs independently of interactive APL2 sessions. When run as

an external function, it runs as part of an interactive APL2 session.

To start the Configure APL2 tool as a stand-alone program, use either of these methods:

 Click on the Configure APL2 icon in the APL2 folder,

 Click on the Configure APL2 button on the Session Manager toolbar,

To start the Configure APL2 tool as an external function, associate and run the APL2CFG external function:

 3 11 ⎕NA 'APL2CFG'
1
 APL2CFG

For information about how to use the Configure APL2 tool, consult its online help.

Note:

The Configure APL2 tool displays the contents of the apl2.ini file. For further information,

consult The apl2.ini Configuration File.

The apl2.ini Configuration File

The apl2.ini configuration file contains invocation options, library directory definitions, user-defined

Session Manager toolbar buttons and several Shared Variable Processor settings.

You can use The Configure APL2 Tool to edit the apl2.ini file.

To find the apl2.ini file, APL2 will search:

1. The directory from which the application loaded, usually \ibmapl2w\bin.

2. The current directory.

3. The system directory.

4. The 16-bit system directory.

5. The Windows directory.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

35

6. The directories that are listed in the PATH environment variable.

7. The current user's Application Data directory.

The first apl2.ini file that is found in that search order will be used, and any others will be ignored.

APL2 searches apl2.ini after command line parameters and before environment variables.

The file uses the following syntax:

[Section Name]
keyword=value
keyword=value
...
[Section Name]
keyword=value
keyword=value
...
...

Leading and trailing blanks, and any lines that do not contain a valid section name or keyword definition, are

ignored. Searches for section names and keywords are case-insensitive.

The following section names are supported:

[Invocation Options]

APL2 interpreter invocation options as listed in Invocation Parameters. For example:

[Invocation Options]
WS=50m
P11=C:\myuser\mynames.nam;C:\Program Files\ibmapl2w\bin\aplnm011.nam

[Libraries]

APL2 library definitions, in the format described in Library Specification. For example:

[Libraries]
APL01001=C:\myuser\wss
APL00019=C:\AGSS

[Shared Variable Processor]

Shared variable processor settings listed in APL2 Environment Variables. Remove the APL2 prefix

from the environment variable name to form the keyword. For example:

[Shared Variable Processor]
SVPPARMS=C:\myuser\apl2svp.prm

[Session Manager]

Definitions for toolbar buttons. To add buttons to the APL2 Session Manager, set the Toolbar

Butttons keyword. The value of that keyword is a list of suffixes for button information sections.

Each suffix is appended to Toolbar button to form a section name. Add the following keywords

within each button section:

Command The name of the file or program for Windows to open or an expression to be executed by

APL when the button is pressed. The maximum length of the command is 32768 characters.

Text The text to appear on the button

Bitmap The picture to appear on the button, a bitmap filename.

APL Whether the command should be opened by Windows or executed by APL. If TRUE, the

expression should be executed by APL. The default value is FALSE.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

36

Notes:

 The APL expression is executed in the context of the interpreter's current operation. If

the interpreter is suspended, the expression is executed in the context of the

suspension. If the interpreter is running, the expression is executed before the next

input request, wait, or line of execution.

 System commands are not supported.

 All output is suppressed.

 If an error is encountered, the error message is reported in the status area.

 If input is requested, a VALUE ERROR is reported.

You must supply a value for the Command keyword. You must also supply at least one of the Text and

Bitmap keywords. The APL keyword is optional. For example:

[Session Manager]
Toolbar buttons=APL2 IE Associate
[Toolbar button APL2]
Command=http://www.ibm.com/software/awdtools/apl
Bitmap=apl2button.bmp
[Toolbar button IE]
Command=iexplore.exe
Text=Internet Explorer
[Toolbar button Associate]
Command=⎕ES(~3 11 ⎕NA 'DISPLAY')/1 5
Text=Setup
APL=TRUE

A sample apl2.ini file is shipped with APL2 in directory \ibmapl2w\samples.

Batch Files

If all your APL2 sessions can share the same settings, you can supply the environment information APL2

requires using the Configure APL2 tool or by setting environment variables in the Control Panel. If, however,

you plan to start multiple APL2 sessions which each require a unique environment, you may want to start APL2

using batch files. A sample batch file, apl2.bat is shipped with APL2 in the \ibmapl2w\samples

directory. You can copy this file to the \ibmapl2w\bin directory, customize it, and create a shortcut to it.

The following shows what the sample file contains, with a description added for each line:

@echo off Suppresses echoing of lines

SET APL00001=..\WSLIB1 Sets up public workspace library 1

SET APL00002=..\WSLIB2 Sets up public workspace library 2

SET APL01001=.\ Sets default private library

SET APL207FL=..\FONTS Sets location of AP 207 vector fonts

SET APLP11=..\BIN\APLNM011.NAM Sets default processor 11 NAMES file

SET

CLASSPATH=%CLASSPATH%;..\bin\apl2.jar
Appends the APL2 Java Archive file to

CLASSPATH

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

37

APL2WIN.EXE %1 %2 %3 %4 %5 %6 %7 %8 Invokes APL2 with any arguments

EXIT Exit this command file

To specify additional invocation options, add them to the line that invokes APL2WIN.EXE. Be sure to retain

the %1 %2 ... at the end of the line to allow any extra parameters to be specified on the command line. See

Invocation Parameters for a complete list of the invocation parameters accepted by APL2.

APL2 and TCP/IP

APL2 uses TCP/IP to provide cooperative processing facilities. The Shared Variable Processor (SVP) contains

references to certain TCP/IP socket calls necessary for this function. The SVP routines are supplied in the form

of a dynamic link library (DLL). Because this DLL has a load-time dependency on TCP/IP, two versions are

shipped with APL2 and installed into the C:\Program Files\ibmapl2w\bin directory. The two

versions are named apl2svpt.dll (TCP/IP enabled) and apl2svpn.dll (TCP/IP disabled).

The APL2 installation program installs the version of the DLL which is TCP/IP enabled (by copying

apl2svpt.dll to apl2svp.dll.) If you do not wish to use cross-system shared variables, you can copy

the TCP/IP disabled version of the DLL:

1. Change to the subdirectory where APL2 dynamic link libraries are located

(by default, C:\Program Files\ibmapl2w\bin.)

2. Issue the following command:

copy apl2svpn.dll apl2svp.dll

This disables APL2's cooperative processing features (see Cooperative Processing).

To change back to the version with TCP/IP support:

 copy apl2svpt.dll apl2svp.dll

The SVP Parameter File

The APL2 Shared Variable Processor (SVP) allows for the optional use of a parameter file to control some SVP

settings. The APL2SVPPARMS environment variable, or the SVPPARMS keyword in the [Shared Variable

Processor] section of apl2.ini, can be used to specify the name of this file. If the file name is not established

using either of those methods, the default file name is apl2svp.prm. This file is searched for in the following

sequence:

1. In the path supplied along with the file name in the environment variable or apl2.ini,

2. In the current directory used by the SVP. This is either the directory from which APL2 was invoked, or

the directory from which the SVP Monitor window or any independent processor was invoked,

whichever was started first.

3. In the list of directories specified in the PATH environment variable.

If the file is not found in any of these locations, SVP initialization proceeds using default values as indicated.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

38

The file uses the following syntax:

keyword=value [value...]

Blank lines or lines with an asterisk in the first column are ignored. In the case of keywords that accept more

than one value, the values can be separated by a comma, by spaces, or by both. If less than the minimum value

is specified, the minimum will be used.

The keywords that can be specified are:

PROCS Maximum number of processors that can be signed on at one time.

Default: 100 Minimum: 32

VARS Maximum number of variables that can be shared at one time.

Default: 400 Minimum: 128

MAXSM Maximum amount of memory, in bytes, for all shared variable data.

Default: 16 Megabytes Minimum : 2 Megabytes

MAXSV Maximum amount of memory, in bytes, for a single shared variable.

Default: 12 Megabytes Minimum: 1 Megabyte

NOTRACE List of processor IDs for which events are not to be traced by the SVP monitor facility. An asterisk

may be specified to signify that no processors are to be traced.

Default: 1 101 120

A sample parameter file apl2svp.prm is provided in \ibmapl2w\samples. To use the sample, copy it to

\ibmapl2w\bin and edit as desired. Its contents as shipped are as follows:

* Sample svp parms file
*
* Maximum number of processors signed on
PROCS=100
* Maximum number of variables shared
VARS=400
* Maximum amount of shared memory for all variable data
MAXSM=16000000
* Maximum amount of shared memory for any one shared variable
MAXSV=12000000
* processor numbers to omit from the SVP trace
NOTRACE=1 101 120
*

Note: Although there is no enforced maximum allowed value for MAXSM or MAXSV, they can be limited by

the size of memory, system limitations on shared memory allocation, or the space available for operating system

swap files.

The SVP Profile

For information about customizing the SVP profile, see Processor Profile Structure.

APL2 Keyboard Support

This section describes the keyboard support provided for APL2.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

39

 The APL2 Keyboard Handler

 APL2 Keyboard Layouts

 Keyboard Decals

 Keyboards

The APL2 Keyboard Handler

The APL2 keyboard handler enables you to type APL characters. It is automatically used by the APL2 session

manager, editors, and auxiliary processors.

The APL2 keyboard handler can also enable you to type APL characters in other applications. To enable APL

input in other applications, either open the APL2 Keyboard Handler icon in the IBM APL2 folder or run the

APL2KEY.EXE program. Then, select an APL font in the application in which you want to type APL

characters.

When the APL2 keyboard handler is started, an icon is added to the taskbar. Press Ctrl+Backspace to turn the

APL2 keyboard on and off. When the icon is bright red, the APL2 keyboard is on. When the icon is dark red,

the APL2 keyboard is off. To adjust the APL2 keyboard handler properties, use the right mouse button to click

the icon and click Properties on the popup menu.

To stop the APL2 keyboard handler, use the right mouse button to click the icon and click Exit on the popup

menu.

Some applications accept either single-byte or Unicode input. When the active window accepts Unicode input, a

blue U appears in the APL taskbar icon. To use Unicode input, select a Unicode font containing APL

characters.

Note: Not all applications accept APL input. For example, Microsoft Word and PowerPoint use a proprietary

mechanism for handling keystrokes, and MS DOS Command Prompt windows use console input buffers. The

APL2 keyboard handler does not work with these programs.

APL2 Keyboard Layouts

Several standard APL2 keyboard layouts are provided with this product. You can choose one of these or design

your own. The keyboard layout can be changed during your APL2 session, and is retained across sessions. The

default layout is dynamically configured based on your current input locale.

To see the key assignments, or to modify them, choose Keyboard Properties from System Options under the

session manager Options menu. The layout displayed by default is your currently selected one, but all others

are available in the Layout name drop-down combo box.

Union keyboard layouts provide standard ASCII characters in the unshifted and Shift keyboard states, and

special APL characters on the Ctrl and Alt shifts. This permits intermixed keying of APL and non-APL

characters.

Traditional APL keyboards include an APL on/off key which switches the keyboard between an APL mode and

an ASCII mode. In APL mode, ASCII characters are available only if they are also used by APL, and they

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

40

appear (by default) on the keys traditionally used by APL keyboards, which are usually different from the

normal key assignments.

APL2 uses Ctrl-Backspace as the APL on/off key. Ctrl-Backspace still switches APL on or off when using a

union keyboard, but that basically indicates only whether all characters, or only the non-APL subset, should be

accepted from the keyboard. European users should note, however, that in all layouts "dead" keys are disabled

when the keyboard is in APL mode.

For reference information on the positions of characters in the APL2 character set, see APL2 Programming:

Language Reference. For full details of keyboard layouts and key assignments, press Help when in the

Keyboard Properties dialog.

Keyboard Decals

Decals with the APL2 character set for IBM keyboards are included with this product. Additional sets of decals

are available from IBM Publications as APL2 Keyboard Decals, SC33-0604.

Carefully peel each decal away from the backing sheet and place it on the appropriate key. Note that some

decals (those for Alternate-shift characters) go on the fronts of the keys, and that not all the decals are needed

for some keyboards. For a French keyboard layout, which has the numeric keys in the shifted position, you need

to cut the decals for these keys to move the APL2 characters to the lowercase position.

Keyboards

APL keyboards for many machines can be purchased from Unicomp Corporation:

web: www.pckeyboard.com

phone: 1-800-777-4886

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

41

Invoking APL2

 Invoking APL2 on Unix Systems

 Invoking APL2 on Windows Systems

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

42

Invoking APL2 on Unix Systems

This material describes the APL2 environment, techniques you can use to create that environment, parameters

you can pass to the APL2 product, and environment variables that affect the way it behaves.

 The APL2 Environment

 Windows Opened by APL2

 Invocation Syntax

 Examples of APL2 Invocation

 Running APL2 in Batch Mode

 Additional Requirements for Remote Access

The APL2 Environment

APL2 is invoked by running a shell script called apl2. The shell script starts a new shell instance, sets certain

environment variables required by APL2, and starts the APL2 interpreter. Environment variables set before

running apl2 remain in effect during the session, unless they are reset by the script. Invocation options can be

set in any of the following ways:

1. Invoke apl2 with command line parameters:

apl2 -ws 50m

2. Store the options in an apl2.ini file:

[Invocation Options]

WS=50M

See The apl2.ini Configuration File for more information.

3. Set an environment variable before invoking apl2:

APLWS=50M

apl2

4. Take the settings for environment variables given by the shell script. For example, the value for the

APLSM variable is on.

5. Accept the APL2 system defaults.

If the option has been set in more than one way, the value set by a command line parameter takes precedence

over a value set in an apl2.ini file or an environment variable, a value set in an apl2.ini file takes

precedence over a value set in an environment variable, and all of these take precedence over a default setting.

Notes:

1. Except when using APL2 in batch mode, you must be in an X Window System environment before

starting APL2.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

43

2. The hostwin and svptrace options and the windows they control are managed by the apl2 shell

script. Values specified for these options in the apl2.ini file will be ignored.

3. The APL2 invocation parameters, the apl2.ini file and environment variables are also available to

any dependent auxiliary processors. Dependent auxiliary processors are auto-started as children of the

APL2 interpreter session when the first share offer is made to the auxiliary processor. Command line

parameters are passed unmodified to the auxiliary processor, with the exception of the -id parameter,

the value of which is adjusted to identify the processor number of the auxiliary processor, followed by

the processor number of the parent interpreter session.

Windows Opened by APL2

When APL2 is started, two windows are typically created, though this can be affected by the way that you start

the product.

1. The APL2 session manager. The session manager is a Motif program that manages the interaction

between the user and the APL2 language interpreter. See Using the Session Manager for details of its

usage.

This window is not created if the default -sm on invocation option is overridden.

2. The interpreter console. The interpreter console window is used to display output from commands

invoked through)HOST or AP 100, and for editing sessions through)EDITOR nnnn. Some

informational and error messages may also be displayed in the console window.

If APL2 is invoked with -sm off, but the input or output have not been redirected, then APL session

input or output also goes through this window.

Ctrl-C can be used from this window to interrupt the interpreter, and closing this window terminates the

APL2 session. However, since signals and session termination are normally controlled from the session

manager window, cleanup may not be complete if this technique is used.

The interpreter window is normally opened as a separate X window, but can be suppressed by using the

-hostwin off invocation option. In this case, output that would go to the interpreter window will go

to the X window from which APL2 was started.

In addition, the SVP Monitor window is opened if the invocation option -svptrace on has been specified.

This window can be used to monitor APL2 shared variable activity.

Additional windows can be opened by applications that are started automatically when APL2 is invoked.

Invocation Syntax

apl2 [optional parameters]

In addition to passing options as parameters to APL2, the apl2.ini file and environment variables may be

used to control the APL2 session. For most session controls, any one of those methods may be used.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

44

 Invocation Parameters

 APL2 Environment Variables

 System Environment Variables

Invocation Parameters

Parameter keywords can be entered in uppercase, lowercase, or mixed case, and must be marked with a leading

hyphen, followed immediately by the keyword.

When placed in the apl2.ini file, the same parameter keyword is used (without the leading hyphen),

followed immediately by = and the parameter value. See The apl2.ini Configuration File for more

information.

Interpreter invocation options can also be set using environment variables. The environment variable names

match the parameter keywords, but with a prefix of APL. For example, APLID is the environment variable

name used for the id parameter. Environment variables must be set before invoking APL2.

Where parameters are specified they override the corresponding apl2.ini entries and environment variables.

apl2.ini entries override their corresponding environment variables, except for hostwin and svptrace.

Those options and the windows they control are managed by the apl2 shell script. Values specified for them in

apl2.ini are ignored.

The following is the list of valid interpreter invocation parameters for APL2 on Unix systems:

-207fl path

Path to the AP 207 vector font files.

If not specified, or if a requested font is not found in the specified path,

/usr/APL2/fonts/vector/ is searched.
-hostwin {on|off|icon}

Controls the visibility of the interpreter console window.

If this option is set to icon, the interpreter's console window will come up iconified.

If it is set to off, a separate console window will not be started. The Xterm window from which APL2

was invoked will serve as the console window.
-id procid [,parentid [,pparentid]]

Sets user ID number, as reported by ⎕AI and used when sharing variables with the session. Can also be

used to specify a parent and grandparent ID for APL sessions that are to be subordinate to others.

If -id is not specified or procid is 0, defaults to the first unused number greater than 1000. If

procid is negative, requests the first unused number greater than or equal to the absolute value of

procid.

The use of IDs of 1000 or less is not advised unless the session is being used as an auxiliary processor.
-input " 'line1' ['line2']...."

Defines initial lines of input to be used when APL2 is invoked.

Each line of input is enclosed in single quotation marks and the group of one or more lines of input is

enclosed in double quotes. All displayable characters can be included within the quoted lines. Use two

single quote marks for each one that is to be treated as part of the input.

Note: If an environment variable is used, the outer set of double quotes is not necessary.
-isol {cs|rr|rs|ur}

Sets the default isolation level for AP 127 and AP 227

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

45

-javaxmx heap_size

Controls the maximum size, in bytes, of the memory heap used by the Java Virtual Machine started by

Associated Processor 14. Append the letter k or K to indicate kilobytes, or m or M to indicate

megabytes. For more information, consult the documentation of your Java implementation's -Xmx

invocation option
-lx {on|off}

Controls execution of latent expression.

If off is specified, execution of the latent expression, ⎕LX, will be suppressed when workspaces are

loaded.
-nlt filename

Specifies which national language file to use for system commands and messages.

The files provided with APL2 are:

Language Filename

US English /usr/APL2/nls/En_US/cmd_msg.txt

UK English /usr/APL2/nls/En_UK/cmd_msg.txt

German /usr/APL2/nls/Gr_GR/cmd_msg.txt

French /usr/APL2/nls/Fr_FR/cmd_msg.txt

Italian /usr/APL2/nls/It_IT/cmd_msg.txt

The APL2 shell script chooses one of these files based on the value of system environment variable

$LANG.

If the specified file is not found, file /usr/APL2/nls/En_US/cmd_msg.txt is used.

If /usr/APL2/nls/En_US/cmd_msg.txt is not found, built-in US English tables are used.
-odbc library

Specifies the name of the shared library containing ODBC routines for AP 227.

If not specified, defaults to libodbc.so.

-p11 filespec

Processor 11 NAMES files. The value can be a single file name, or a series of file names separated by :

(colon) characters. If multiple file names are provided, Processor 11 will search the files in order until a

match is found.

If not specified, defaults to /usr/APL2/defaults/aplnm011.nam.

-prtg file

Name of print shell file required to print the AP 207 screen.

If not specified, defaults to /usr/APL2/bin/graphprt.

-pw printwidth

Specifies the number of characters in each line of interpreter output. This value will be the initial value

of system variable ⎕PW.

If printwidth is not a number between 30 and 254, the default value of 79 will be used.
-quiet {on|off}

Controls suppression of initial output.

If on is specified, interpreter output is suppressed until input is requested.

Input requests satisfied by the APL2 input stack do not reset -quiet on. Data is placed on the APL2

input stack either by the -input parameter or through AP 101.

-rns function[:locator]

Associates a name with and runs the niladic function function in the namespace identified by

locator.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

46

If locator is supplied, the following association will be performed:

 'locator' 11 ⎕NA 'function'

If locator is omitted, the following association will be performed:

 3 11 ⎕NA 'function'

-sm {on|off|piped|number}

Indicates the session manager to be used

on selects the default local session manager.

off indicates no session manager. This setting would be used for line-by-line I/O devices, or

programs which emulate that behavior, such as typing directly into an Xterm Window.

piped is used for batch processing, whether the session is driven by a file or by another process. See

Running APL2 in Batch Mode for more information on batch processing.

number indicates a remote session manager. See Processor Network Identification for information on

how to define the association between number and a remote session manager. See Running a

Remote Session Manager for information on how to set up the remote session manager.

-svptrace {on|off|log}

Enables display or logging of shared variable processor events.

on causes the SVP Monitor window to start and traces to be sent to that window.

off disables tracing.

log directs traces to the file identified by environment variable APL2SVPLOG.

-tcl tcl_library_name

-tk tk_library_name

Set the names of the Tcl and Tk libraries used by the TCL external function and the Tk_Init builtin Tcl

command. For further information, see TCL.
-ws initial[,maximum[,increment]]

Controls workspace size.

Workspace size can be specified as a single value for a static size, or up to three values to request an

expandable workspace. Each of the values provided are of the form:

integer[k|m]

where k and m indicate kilobytes and megabytes, respectively.

If increment, or both maximum and increment, are omitted, they default to initial. The

default for initial is 10M. The minimum value for initial is 32K. Values smaller than 32K will

be rounded up to 32K.

The maximum allowed by APL2 for all three values is 2047M. However, the operating system may

impose additional restrictions on the amount of storage it will allow APL2 to allocate, and sizes greater

than the amount of available memory may cause performance degradation due to paging.

Here are some examples:

-ws 5m

The session is run with a 5 megabyte workspace. WS FULL is reported if this is not enough.
-ws 2m,7m

The session begins with a 2 megabyte workspace. Since the increment defaults to the initial value, this is

expanded to 4 megabytes, 6 megabytes, and finally 7 megabytes as needed to avoid WS FULL.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

47

-ws 500k,1m,100k

The session begins with a 500 kilobyte workspace. This is expanded as needed, 100 kilobytes at a time,

but never exceeding 1 megabyte.

The following additional invocation parameters can be specified for the session manager (these options cannot

be specified in apl2.ini or set in environment variables):

-aplmode {on|off}

Sets the initial keyboard mode to APL (on) or text (off) mode.

-bg color

Sets background color for the menu bar and the status components. Can be any valid color name.
-copyfile filename

Sets the name of the file for session copy. The default file name is apl2Copy.txt.
-copy {on|off}

Sets the initial copy mode
-cr color

Sets the color of the text cursor. Can be any valid color name.
-display name

Sets the DISPLAY environment variable to name. For example:

apl2 -display hostname:0.0

sets the output display device to display monitor 0 attached to the computer hostname.

-fg color

Sets the foreground color of the menu bar and status components. Can be any valid color name.
-fn fontname

Selects the session manager font. Possible choices for fontname are apl6, apl10, apl12, apl14

and apl22. The default is apl14.

-geometry [widthxheight] [{+|-}xoff{+|-}yoff]

Sets the session window size and/or location.

Width and height are specified in character units. The x and y offsets are specified in pixels from the top

left of the display to the top left of the window for positive values, or from the bottom right of the

display to the bottom right of the window for negative values. The associated environment variable is

APLGEOM. The default value is 80x25.
-log filename

Selects the session manager log file.

The default is ./apl2ses.log, which causes it to be stored in the current directory.
-ms color

Changes the color of the mouse pointer.
-prof filename

Sets the XENVIRONMENT variable to this file name. It can contain settings for colors, keyboard

translations, widget labels, and other resources.
-scroll {page|line}

Sets the initial session manager scrolling mode.
-xrm string

Sets additional session manager resources. For more information, see Command Line Parameters.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

48

APL2 Environment Variables

Environment variables can be set prior to invoking APL2 to control certain aspects of the session. Setting an

environment variable differs by shell type. To set an environment variable, enter the following:

 % setenv variable value (C shell)
 $ variable=value; export variable (Bourne or Korn Shell)

Where variable is the name of the environment variable and value is the assigned content. Note that the

variable name must also be exported. Variable names and their values are case sensitive. Any child processes

spawned from the session, such as dependent auxiliary processors, inherit the environment variables set by the

parent.

In addition to the variables listed here, the interpreter invocation parameters can also be specified as

environment variables. The variable names match the parameter keywords, but with a prefix of APL. Where

parameters are specified, they override the corresponding environment variable.

APL2

Name of the directory in which APL2 is installed.

APL2SMKEY

Name of the shared variable key. This value is used to build unique names for the resources used by the

Shared Variable Processor. The default is APL2SVP.

APL2SVPLOG

Name of the Shared Variable Processor trace file. This can be a simple file name or a fully qualified path

and file name. The default is apl2svp.trc.

APL2SVPPARMS

Name of the file that contains the Shared Variable Processor initialization parameters. This can be a

simple file name or a fully qualified path and file name. The default is apl2svp.prm.

APL2SVPPRF

Name of the user's Shared Variable Processor profile. This file contains entries that identify and

authorize remote processors and independent local processors. This can be a simple file name or a fully

qualified path and file name. The default is apl2svp.prf.

APLnnnnn

Where nnnnn is a five-digit number such as 01234. Used to resolve library numbers with the system

commands. A separate environment variable must be defined for each library accessed by number. Each

of them is set to a directory path specification.

For more information, see Library Specification and the LIBS function.

Note:
APL2SMKEY, APL2SVPPARMS and APL2SVPPRF can also be specified in the [Shared Variable Processor]

section of apl2.ini.

APLnnnnn settings can be specified in the [Libraries] section of apl2.ini. See The apl2.ini

Configuration File for more information.

System Environment Variables

The following list describes the operating system environment variables on which APL2 depends.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

49

CLASSPATH

Location of Java class (.class) and archive (.jar) files used by Processor 14 and APL2PI. For more

information, see Installing the APL2-Java Interface Classes.

DISPLAY

Specifies where to display a session in X environment. The format is

host:server_number.screen_number.

HOME

Specifies the full path name of the user's logon directory.

LANG

Specifies the locale name currently in effect.

PATH

Sequence of directories used to search for an executable file or command.

SHELL

Specifies the full path name of the system command interpreter.

TZ

Time zone in effect. Format is sssoffsetddd[offset,start[/time],end[/time], where sss is the standard time

identifier, offset is the offset from GMT, ddd is the daylight savings time name, start is the start day for

daylight savings time, and end is the end day for daylight savings time. For example, PST8PDT is the

setting for California in the USA, using default start and end dates for daylight savings time. See your

operating system documentation or the man pages for function tzset for complete syntax information on

TZ.

XENVIRONMENT

Set to the file name specified with the -prof invocation option. The file is an X Window System resource

file.

Examples of APL2 Invocation

apl2

A common, simple form
apl2 ?

For invocation help
apl2 -ws 4m -input "')LOAD 1 DISPLAY' 'DISPLAY ''HI'''"

Invokes APL2 with a workspace size of 4 megabytes, and loads the public workspace 1 DISPLAY. The

DISPLAY function is then executed with an argument of 'HI'.
apl2 -fn apl22

APL2 is invoked with display font apl22

Running APL2 in Batch Mode

Batch mode enables you to redirect APL2 session input and output. In this mode, input is redirected from text

files containing what would normally be the keyboard input during an interactive session. The resulting output

can then be redirected to another file or process. For example, suppose that the file session.in contains the

following input lines:

2+2
)OFF

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

50

Suppose APL2 is invoked with this as redirected input, and the output is redirected to a file called

session.out, using:

apl2 -sm piped < session.in > session.out

The session.out file then contains the session manager output:

 ...
CLEAR WS
 2+2
4

If the input file ends before an)OFF or)CONTINUE command is encountered in the input file, the session is

terminated with an)OFF command.

Additional Considerations for Remote Access

If the display output from APL2 is to be sent to a remote workstation (X Server), then these steps should be

followed:

1. Make sure the APL2 fonts have been installed on the X Server. See Displaying APL2 Characters for

more information.

2. Execute the xhost command on your local workstation so that the remote server where APL2 is

installed can make X Window System requests to your local workstation:

xhost server_hostname

3. Log in to the remote server from your local workstation and invoke APL2 with the -display

parameter:

apl2 -display local_hostname:0.0

Additional parameters can be included with the previous statement. Refer to Invocation Parameters for

details.

auginsu.htm#insuchar

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

51

Invoking APL2 on Windows Systems

This material describes the APL2 environment created on your desktop, techniques you can use to create that

environment, parameters you can pass to the APL2 product, and environment variables that affect the way it

behaves.

 APL2 on the Desktop

 Windows Opened by APL2

 Invocation Syntax

 Examples of APL2 Invocation

APL2 on the Desktop

An IBM APL2 entry was created in the Programs menu of the Start action item during the installation process.

When you select that entry, it opens the IBM APL2 folder, where you will find documentation and program

icons. APL2 is normally started by opening the APL2win program icon. The shared variable processor will be

started automatically by APL2, or it can be started independently by opening the SVP Monitor program icon.

Invocation parameters for both APL2 and the shared variable processor can be specified in the Properties

notebook for their program icons, if desired.

See Modifying the APL2 Desktop Object for more information on the customizing the desktop objects.

Windows Opened by APL2

When APL2 is started, two windows are typically created, though this can be affected by the way that you start

the product. The windows are included on the Taskbar, and may or may not be displayed on the desktop:

1. The APL2 session manager. The session manager manages the interaction between the user and the

APL2 language interpreter. See Using the Session Manager for details of its usage.

This window is not created if the default -sm on invocation option is overridden.

2. The interpreter console. The interpreter console window is used to display output from commands

invoked through)HOST or AP 100. Some informational and error messages may also be displayed in

the console window.

If APL2 is invoked with -sm off, but the input or output have not been redirected, then APL session

input or output also goes through this window.

The interpreter window is opened as a new command window, unless you have issued the APL2

command directly from an MS/DOS Command Prompt. In that case, the original command window is

used as the console.

Ctrl-Break can be used from this window to interrupt the interpreter, and closing this window terminates

the APL2 session. However, since signals and session termination are normally controlled from the

session manager window, cleanup may not be complete if this technique is used.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

52

The interpreter window can be suppressed by using the -hostwin off invocation option. This option

is useful for hiding the console from end users of an APL2 application, but since it also hides the)HOST

output and messages, it should be used with care.

In addition, the SVP Monitor window is opened automatically if the invocation option -svptrace has been

specified to the interpreter, or is opened explicitly by clicking on the SVP Monitor icon. This window can be

used to monitor APL2 shared variable activity, to obtain information about processors and shared variables,

initiate the programs used for cooperative processing, and to clean up after processors that may not have

terminated normally. On-line help is provided within the window with details of its usage. For more

information, see The SVP Monitor Facility.

Both the interpreter window and the SVP Monitor window are often minimized or hidden in normal usage.

When APL2 is started from the APL2win icon, the interpreter window state is determined by the options

specified in the Properties notebook for that icon. When the SVP monitor is started from the SVP Monitor icon,

its state is determined by the options specified in the Properties notebook for that icon.

Additional windows can be opened by applications that are started automatically when APL2 is invoked.

Invocation Syntax

If APL2 is not started with a program icon, it can be started from an MS/DOS Command Prompt as follows:

 apl2win [optional parameters]

to invoke the APL2 executable module directly, or

 apl2 [optional parameters]

to use the command file APL2.BAT.

In addition to passing options as parameters to APL2, the apl2.ini file and environment variables may be

used to control the APL2 session. For most session controls, any one of those methods may be used.

 Invocation Parameters

 APL2 Environment Variables

 System Environment Variables

Invocation Parameters

Parameter keywords can be entered in uppercase, lowercase, or mixed case, and must be marked with a leading

slash or hyphen, followed immediately by the keyword.

When placed in the apl2.ini file, the same parameter keyword is used (without the leading slash or hyphen),

followed immediately by = and the parameter value. See The apl2.ini Configuration File for more

information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

53

Invocation options can also be set using environment variables. The environment variable names match the

parameter keywords, but with a prefix of APL. For example, APLID is the environment variable name used for

the id parameter. Environment variables must be set before invoking APL2.

Where parameters are specified they override the corresponding apl2.ini entries and environment variables.

apl2.ini entries override their corresponding environment variables.

The following is the list of valid invocation parameters for APL2 on Windows:

-207fl path

Path to the AP 207 vector font files.

If not specified, or if a requested font is not found in the specified path, standard operating system search

order is used.
-hostwin {on|off}

Controls the visibility of the interpreter console window.

If this option is set to off, the interpreter's console window will be hidden.

Note: If the interpreter window is hidden, output from)HOST and any other messages sent to the

console will also be hidden.
-id procid [,parentid [,pparentid]]

Sets user ID number, as reported by ⎕AI and used when sharing variables with the session. Can also be

used to specify a parent and grandparent ID for APL sessions that are to be subordinate to others.

If -id is not specified or procid is 0, defaults to the first unused number greater than 1000. If

procid is negative, requests the first unused number greater than or equal to the absolute value of

procid.

The use of IDs of 1000 or less is not advised unless the session is being used as an auxiliary processor.

Note: On Windows, .BAT file processing removes commas between parameters. If you are using one of

the forms of this parameter which contains commas, and you are passing options via the APL2.BAT file,

surround the parameter value with double quotes to retain the commas. For example:

-id "127,1001"

-input " 'line1' ['line2']...."

Defines initial lines of input to be used when APL2 is invoked.

Each line of input is enclosed in single quotation marks and the group of one or more lines of input is

enclosed in double quotes. All displayable characters can be included within the quoted lines. Use two

single quote marks for each one that is to be treated as part of the input.

Note: If an environment variable is used, the outer set of double quotes is not necessary.
-isol {cs|rr|rs|ur}

Sets the default isolation level for AP 127 and AP 227
-javaxmx heap_size

Controls the maximum size, in bytes, of the memory heap used by the Java Virtual Machine started by

Associated Processor 14. Append the letter k or K to indicate kilobytes, or m or M to indicate

megabytes. For more information, consult the documentation of your Java implementation's -Xmx

invocation option
-lx {on|off}

Controls execution of latent expression

If off is specified, execution of the latent expression, ⎕LX, will be suppressed when workspaces are

loaded.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

54

-nlt filename

Specifies which national language file to use for system commands and messages.

The files provided with APL2 are:

Language Filename

US English En_US.nlt

UK English En_UK.nlt

German Gr_GR.nlt

French Fr_FR.nlt

Italian It_IT.nlt

If the specified file is not found, or no file is specified, file En_US.nlt is used.

If En_US.nlt is not found, built-in US English tables are used.
-odbc library

Specifies the name of the shared library containing ODBC routines for AP 227.

If not specified, defaults to odbc32.dll.
-p11 filespec

Processor 11 NAMES files. The value can be a single file name, or a series of file names separated by ;

(semicolon) characters. If multiple file names are provided, Processor 11 will search the files in order

until a match is found.

If not specified, defaults to aplnm011.nam.
-pw printwidth

Specifies the number of characters in each line of interpreter output. This value will be the initial value

of system variable ⎕PW.

If printwidth is not a number between 30 and 254, the default value of 79 will be used.
-quiet {on|off}

Controls suppression of initial output.

If on is specified, interpreter output is suppressed until input is requested.

Input requests satisfied by the APL2 input stack do not reset -quiet on. Data is placed on the APL2

input stack either by the -input parameter or through AP 101.
-rns function[:locator]

Associates a name with and runs the niladic function function in the namespace identified by

locator.

If locator is supplied, the following association will be performed:

 'locator' 11 ⎕NA 'function'

If locator is omitted, the following association will be performed:

 3 11 ⎕NA 'function'

-run dllname

Runs the workspace packaged into the Windows DLL identified by dllname.
-sm {on|off|piped|number}

Indicates the session manager to be used.

on selects the default local session manager.

off indicates no session manager. This setting would be used for line-by-line I/O devices, or

programs which emulate that behavior, such as typing directly into an MS/DOS Command

Prompt.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

55

piped is used for batch processing, whether the session is driven by a file or by another process. See

Running APL2 in Batch Mode for more information on batch processing.

number indicates a remote session manager. See Processor Network Identification for information on

how to define the association between number and a remote session manager. See Running a

Remote Session Manager for information on how to set up the remote session manager.

-svplisten {on|off}

Enables automatic startup of the SVP port server.
-svptrace {on|off|log|both}

Enables display and/or logging of shared variable processor events. Causes the SVP Monitor window to

start, if not already started.

on causes the traces to be sent to the SVP Monitor window.

off disables tracing.

log directs tracing to the file identified by environment variable APL2SVPLOG.

both sends the trace message to both the window and the file.

-tcl tcl_library_name
-tk tk_library_name

Set the names of the Tcl and Tk libraries used by the TCL external function and the Tk_Init builtin Tcl

command. For further information, see TCL.
-ws initial[,maximum[,increment]]

Controls workspace size.

Workspace size can be specified as a single value for a static size, or up to three values to request an

expandable workspace. Each of the values provided are of the form:

integer[k|m]

where k and m indicate kilobytes and megabytes, respectively.

If increment, or both maximum and increment, are omitted, they default to initial. The

default for initial is 10M. The minimum value for initial is 32K. Values smaller than 32K will

be rounded up to 32K.

The maximum allowed by APL2 for all three values is 2047M. However, the operating system may

impose additional restrictions on the amount of storage it will allow APL2 to allocate, and sizes greater

than the amount of available memory may cause performance degradation due to paging.

Here are some examples:

-ws 5m

The session is run with a 5 megabyte workspace. WS FULL is reported if this is not enough.
-ws 2m,7m

The session begins with a 2 megabyte workspace. Since the increment defaults to the initial value, this is

expanded to 4 megabytes, 6 megabytes, and finally 7 megabytes as needed to avoid WS FULL.
-ws 500k,1m,100k

The session begins with a 500 kilobyte workspace. This is expanded as needed, 100 kilobytes at a time,

but never exceeding 1 megabyte.

Note: On Windows, .BAT file processing removes commas between parameters. If you are using one of

the forms of this parameter which contains commas, and you are passing options via the APL2.BAT file,

surround the parameter value with double quotes to retain the commas. For example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

56

-ws "500k,1m,100k"

APL2 Environment Variables

Environment variables can be set prior to invoking APL2 to control certain aspects of the session. To set an

environment variable, enter the following:

 SET variable=value

Where variable is the name of the environment variable and value is the assigned content. Environment

variables names are always folded to uppercase, but their values are case sensitive. Any auxiliary processors

that are automatically started by the APL2 session inherit the environment variables set by the parent.

SET commands can be issued from the MS/DOS Command Prompt where APL2 will be started. They can also

be added to the APL2.BAT invocation file or in the System notebook in Control Panel. See Specifying

Invocation Parameters for more information.

In addition to the variables listed here, the interpreter invocation parameters can also be specified as

environment variables. The variable names match the parameter keywords, but with a prefix of APL. Where

parameters are specified, they override the corresponding environment variable.

APL2SVPLOG

Name of the Shared Variable Processor trace file. This can be a simple file name or a fully qualified path

and file name. The default is apl2svp.trc.

APL2SVPPARMS

Name of the file that contains the Shared Variable Processor initialization parameters. This can be a

simple file name or a fully qualified path and file name. The default is apl2svp.prm.

APL2SVPPRF

Name of the user's Shared Variable Processor profile. This file contains entries that identify and

authorize remote processors and independent local processors. This can be a simple file name or a fully

qualified path and file name. The default is apl2svp.prf.

APLnnnnn

Where nnnnn is a five-digit number such as 01234. Used to resolve library numbers with the system

commands. A separate environment variable must be defined for each library accessed by number. Each

of them is set to a directory path specification.

For more information, see Library Specification and the LIBS function.

Note:
APL2SVPLOG, APL2SVPPARMS and APL2SVPPRF can also be specified in the [Shared Variable Processor]

section of apl2.ini.

APLnnnnn settings can be specified in the [Libraries] section of apl2.ini. See The apl2.ini

Configuration File for more information.

System Environment Variables

The following list describes the operating system environment variables on which APL2 depends.

CLASSPATH

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

57

Location of Java class (.class) and archive (.jar) files used by Processor 14 and APL2PI. For more

information, see Installing the APL2-Java Interface Classes.

PATH

Sequence of directories used to search for an executable file or command and for non-executable data

files

Notes:

1. Previously, environment variable TZ was used to determine time zone. If set, TZ will still be used.

However, as of Service Level 7 of Workstation APL2 2.0, if TZ is not present, Windows operating

system services will be used to determine time zone. Since the operating system services reflect more

accurately the latest policies on dates for changing to and from daylight savings time, we recommend

that TZ not be set on Windows.

2. Previously, environment variable BOOKSHELF was required to locate the APL2 on-line

documentation. If set, the paths in BOOKSHELF will still be searched. In addition, the APL2

installation directories are always searched.

Examples of APL2 Invocation

The following sections provide examples of how to invoke APL2.

 From the Desktop, Using a Mouse

 From a Command Window

 Driving an APL Application from the Desktop

 Running APL2 in Batch Mode

From the Desktop, Using a Mouse

1. Click on the Start button on the action bar, go to Programs, and select the IBM APL2 entry.

This opens the APL2 folder.

2. Double-click mouse button 1 on the APL2win icon within that folder.

This starts an APL2 session using any previously assigned options. To change those options, single-click

mouse button 2 on the APL2win icon and select Properties.

From a Command Window

1. Switch to the drive and directory that you want to use as the working directory during the APL2 session.

Typically this is the directory where your private workspaces are stored. For example:

[C:\]d:

[D:\]cd wslib

[D:\WSLIB]

2. Set any needed environment variables that are not already set, and are not set automatically by the

command file you are going to use. (You cannot change these after entering APL2.) The following

example defines APL libraries 50 and 1002, pointing library 1002 to the current directory.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

58

[D:\WSLIB]set apl00050=e:\lib50

[D:\WSLIB]set apl01002=.\

[D:\WSLIB]

3. Start the APL2 session, providing any needed options. This example sets a workspace size of 5

megabytes and suppresses automatic execution of ⎕LX expressions in workspaces that are loaded:

[D:\WSLIB]apl2win -ws 5m -lx off

Driving an APL Application from the Desktop

The provider of the application can do the following:

1. Create a program icon. You can copy an existing one or drag the system's program template to another

directory.

2. Fill in the full path and file name of the command file to be run, or if no command file is desired, the

APL2 interpreter executable file, apl2win.exe in the \BIN subdirectory of the directory where the

APL2 product was installed.

3. Select a working directory based on any needs the application may have.

4. Provide optional parameters as needed. For example:

-quiet on -sm off -ws 4m -input "')LOAD ''applic.APL'''"

Note that the complete filename form of the)LOAD command is used in the -input parameter. Using

this form avoids any dependencies on environment variables. Drive and directory information can be

included if the workspace is not stored in the working directory.

Assuming that the workspace contains a latent expression, it begins executing automatically when the user

opens the program object.

Running APL2 in Batch Mode

Batch mode enables you to redirect APL2 session input and output. In this mode, input is redirected from text

files containing what would normally be the keyboard input during an interactive session. The resulting output

can then be redirected to another file or process. For example, suppose that the file session.in contains the

following input lines:

2+2
)OFF

Suppose APL2 is invoked with this as redirected input, and the output is redirected to a file called

session.out, using:

apl2win -sm piped < session.in > session.out

The session.out file then contains the session manager output:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

59

 ...
CLEAR WS
 2+2
4

If the input file ends before an)OFF or)CONTINUE command is encountered in the input file, the session is

terminated with an)OFF command.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

60

Migrating from Version 1 to Version 2

 Features of Version 2

 Migrating Workspaces to Version 2

 Windows Considerations

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

61

Features of Version 2

APL2 Version 2 includes all the features of the APL2 Version 1 systems for AIX, Solaris and Windows. In

addition, it includes a new APL2 system for Linux, and adds the following new features to all the systems:

 Namespaces

This facility allows encapsulation of a saved APL2 workspace into a special format that can be accessed

from the active workspace without bringing the entire namespace into the active workspace, and without

exposing the active workspace to the entire set of names in the namespace.

For more information, see Accessing Namespaces.

 On-line Documentation in PDF format

In APL2 Version 1, on-line documentation was available only on Windows, in an IBM VisualAge

format.

With APL2 Version 2, the following on-line manuals are provided for all the systems in Adobe PDF

format:

 APL2 User's Guide (this manual)

 APL2 Language Summary

 APL2 Programming: Language Reference

 APL2 Programming: Developing GUI Applications (for Windows only)

 APL2 Programming: Using SQL

 APL2 Programming: Using APL2 with WebSphere

 APL2 GRAPHPAK: User's Guide and Reference

The Adobe Acrobat Reader is required to view these manuals.

 The APL2 Runtime Library

APL2 Version 2 includes a special runtime interpreter and a pre-packaged Runtime Library for each of

the operating system platforms.

The Runtime Library is a subset of the full APL2 product that will run applications that obey its

restrictions. It can be re-distributed freely and used to run these applications on machines where a full

APL2 system is not available.

For more information on the APL2 Runtime Library, see The APL2 Runtime Library.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

62

Migrating Workspaces to Version 2

Due to the addition of the namespaces function (described above), the internal format of the saved APL2

workspace has changed in Version 2.

When you)LOAD an APL2 workspace saved under Version 1 into a Version 2 system running on the same

operating system, the workspace will automatically be converted to the new format. If you)SAVE it, it will be

saved in the new format.

Once saved in the new format under Version 2, the workspace can no longer be loaded in a Version 1 APL2

system. If you wish to migrate the workspace back to Version 1, you can do so with the)OUT and)IN

commands. This is the same methodology used to migrate workspaces between different operating systems. See

Workspace Transfer Between APL2 Systems for details.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

63

Windows Considerations

APL2 for Windows Version 1 had a companion product, APL2 Runtime Environment, which consisted of a

Workspace Packager and Runtime Library. The Workspace Packager function PACKAGE encapsulated APL2

workspaces into Windows DLLs. These packaged workspaces could be run on the full APL2 for Windows or

the Runtime Library using the -run invocation option.

In APL2 Version 2, the new namespaces facility and the new APL2 Runtime Library provide similar facilities,

with the additional advantage of namescope isolation. It is expected that new applications will use the new

facilities.

For upward compatibility, however, the PACKAGE external function is being shipped with the APL2 Version 2

system for Windows, and the -run invocation option is still supported by the APL2 Version 2 system for

Windows:

1. You can run package DLLs created by the Workspace Packager under APL2 for Windows Version 1 on

Version 2, with either full APL2 system or the APL2 Runtime Library.

2. You can re-package your workspaces under Version 2 if necessary. You can use the 2 PACKAGE

workspace from your Version 1 system with Version 2, or use the PACKAGE external function directly.

3. Once a workspace has been re-packaged using Version 2, it can no longer be run on the Version 1

systems.

4. All application restrictions noted in the documentation provided with the Workspace Packager still

apply under APL2 Version 2 when using -run.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

64

General Information

 The APL2 Interpreter

 An Example of the Use of APL2

 Characteristics of APL2

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

65

The APL2 Interpreter

The APL2 interpreter takes one APL2 statement at a time, converts it to machine instructions (the computer's

internal language), executes it, and then proceeds to the next line. In contrast to program compilers that convert

an entire program to machine language before executing any statements, APL2 allows you a high degree of

interaction with the computer. If something you enter is invalid, you get quick feedback on the problem before

you go any further. This also yields high productivity gains.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

66

An Example of the Use of APL2

A statement entered at the keyboard can contain numbers or symbols, such as + - × ÷, or names formed from

valid combinations of letters (as described in APL2 Programming: Language Reference). The numbers and

special symbols stand for the primitive objects and functions of APL2 - primitive in the sense that their

meanings are permanently fixed, and therefore understood by the APL2 system without further definition. A

name, however, has no significance until a meaning has been assigned to it.

Names are used for two major categories of objects. Names can be used for collections of data that are

composed of numbers or characters; such a named collection is called a variable. Names can also be used for

programs made up of sequences of APL2 statements; such programs are called defined functions and operators.

Once they have been established, names of variables and defined operations can be used in statements by

themselves or in conjunction with primitive functions and objects.

An Isolated Calculation

If the work to be done can be adequately specified simply by typing a statement made up of numbers and

symbols, names are not required; entering the expression to be evaluated causes the result to be displayed. For

example, suppose you want to compare the rates of return on money at a fixed interest rate but with different

compounding intervals. For 1000 units at 6% compounded annually, quarterly, monthly, or daily for 10 years,

the entry and response for the transaction (assuming a printing precision (⎕PP) equal to 6) looks like this:

 ⎕PP←6
 1000×(1+0.06÷1 4 12 365)*10×1 4 12 365
1790.85 1814.02 1819.4 1822.03

(The largest gain is apparently obtained in going from annual to quarterly compounding; after that the

differences are relatively insignificant.)

This example illustrates several characteristic features of APL2: familiar symbols such as + - × ÷ are used

where possible; symbols are introduced where necessary (as the * for the power function); and a group of

numbers can be worked on together.

Storing Functions and Data

Although many problems can be solved by typing the appropriate numbers and symbols, the greatest benefits of

using APL2 occur when named functions and data are used. Because a single name can refer to a large array of

data, using the name is far simpler than typing all of its numbers. Similarly, a defined function, specified by

entering its name, can be composed of many individual APL2 statements that would be burdensome to type

again and again.

Once a function has been defined, or data collected under a name, it is usually desirable to retain the

significance of the names for some period of time - perhaps for just a few minutes, but more often for much

longer, possibly months or years. For this reason APL2 systems are organized around the idea of a workspace,

which might be thought of as a notebook in which all the data items needed during some piece of work are

recorded together. An APL2 workspace thus contains defined functions, data structures, and a state indicator.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

67

Characteristics of APL2

APL2 Programming: Language Reference describes APL2 in detail, giving the meaning of each symbol and

discussing the various features of APL2. These details should be considered in light of the major characteristics

of APL2, which can be summarized as follows:

 The primitive objects of the language are arrays (lists, tables, lists of tables, and so on). For example, A
+ B is meaningful for any conformable arrays A and B, the size of an array (⍴A) is a primitive function,

and arrays can be indexed by arrays, as in A[3 1 4 2].

 The syntax is simple:

 There are only three statement types: name assignment, branch, or neither).

 There is no function precedence hierarchy.

 Functions have either one, two, or no arguments.

 Primitive functions and defined functions (programs) are treated alike.

 The semantic rules are few:

 The definitions of primitive functions are independent of the representations of data to which

they apply.

 All scalar functions are extended to other arrays in the same way - that is, item by item.

 Primitive functions have no hidden effects (so-called side-effects).

 The sequence control is simple: one statement type embraces all types of branches (conditional,

unconditional, computed, and so on), and the completion of the execution of any function always returns

control to the point of use.

 External communications are established by means of variables, which are shared between an APL2

session and other processors. These processors can be APL or non-APL programs running on the same

system or on another system. Shared variables are treated both syntactically and semantically like other

variables. A subclass of shared variables - system variables - provides convenient communications

between APL2 programs and their environment.

 The usefulness of the primitive functions is vastly expanded by operators, which modify their behavior

in a systematic manner. For example, the primitive operator, reduction (denoted by /) modifies a

function to apply over all elements of a list, as in +/L for summation of the items of L. The remaining

primitive operators are:

 Scan (running totals, running maxima, and so on)

 The axis operator, which, for example, makes it possible to apply reduction and scan over a

specified axis (rows or columns) of a table

 The each operator, which applies a function to each of the elements of its arguments

 The outer product, which produces tables of values as in RATE∘.*YEARS for an interest table

 The inner product, a generalization of matrix product.

 The number of primitive functions and operators is sufficiently small that each is represented by a

single, easily-read and easily-written symbol, yet the set of primitives embraces operations from simple

addition to grading (sorting) and formatting.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

68

Workspaces and Libraries

The common unit of storage in an APL2 system is the workspace. When in use, a workspace is said to be active,

and is in main storage. Part of each workspace is set aside to serve the internal workings of the system; the rest

is used, as required, to store items of information and to hold transient information generated during a

computation.

The names of variables (data items) and defined functions or operators (programs) used in calculations always

refer to objects known by those names in the active workspace; information about the progress of program

execution is maintained in the state indicator of the active workspace, and control information affecting the

form of output is held within the active workspace.

Inactive workspaces are stored in libraries (that are operating system file directories), where they are identified

by arbitrary names. The inactive workspaces are typically stored in WSNAME.apl. When required, copies of

stored workspaces can be made active, or (if they are stored in an appropriate form) selected information can be

copied from them into an active workspace.

Transfer files provide a way to store and transport APL objects outside of workspaces. They are particularly

useful when transferring workspace objects between different APL2 implementations, because all APL2

products can read transfer files created by any other APL2 product. Transfer files are also used as an alternative

to inactive workspaces. Transfer files can have arbitrary names, but the form FILENAME.atf is typically

used.

Workspaces, libraries, and transfer files are managed by system commands, as described in APL2

Programming: Language Reference.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

69

Library Specification

You can use environment variables or an apl2.ini configuration file to define the location of workspaces

and transfer files. The variable names or apl2.ini file keywords have the form APLnnnnn, where nnnnn is

the library number (a positive integer from 1 to 32767, left-padded to 5 digits with zeros). If the same library

number is defined in apl2.ini and by an environment variable, the definition in apl2.ini takes

precedence.

For more information on how to set environment variables or create the apl2.ini file, see the section on

customizing APL2 in the Installing and Customizing APL2 section for your operating system.

Default Libraries

The following defaults for libraries are set by APL2:

Unix Systems:

The apl2 shell script sets:

 APL00001=$APL2/lib1

 APL00002=$APL2/lib2

where $APL2 is the directory into which APL2 was installed.

APL01001 is set to the current working directory by the interpreter.

Windows Systems:

The APL2 installation process defines:

 APL00001=C:\Program Files\IBMAPL2W\wslib1

 APL00002=C:\Program Files\IBMAPL2W\wslib2

 APL01001=C:\Program Files\IBMAPL2W\bin

The directory path may be different if customized during installation.

User-Defined Libraries

Other APLnnnnn definitions can be created to support additional paths containing workspaces. For example,

specifying:

 APL02001=d:\hal\wkspaces
on Windows, or

 APL02001=/u/hal/wkspaces
on Unix systems, causes APL2 to use the specified directory whenever a library number of 2001 is used. Then:

)WSID 2001 PLOT
)SAVE

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

70

Saves the active workspace in file PLOT.apl in that directory.

When system commands are specified with no explicit library number, a default library is determined as

follows:

1. If a library definition APLnnnnn exists, where nnnnn matches the first element of ⎕AI, its value is used

as the workspace directory.

2. Else, if the library definition APL01001 is defined, its value is used.

3. Else, the APL01001 definition is automatically set to point to the current directory, which becomes the

default library.

The LIBS function can be used to query the current library definitions and their associated paths.

Library definitions set in environment variables cannot be changed from within APL2. You must exit APL2,

change the APLnnnnn environment variable, and restart APL2. Library definitions set in apl2.ini can be

changed at any time by editing that file, even while APL2 is running. The changes will be recognized

immediately.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

71

Explicit File Specifications

As an alternative to library definitions, you can also specify a file name enclosed in single quotes in place of the

workspace name and optional library number. For example:

)LOAD 'd:\hal\wkspaces\PLOT.apl'
)IN 'd:\hal\wkspaces\TEST.atf'
or

)LOAD '/u/hal/wkspaces/PLOT.apl'
)IN '/u/hal/wkspaces/TEST.atf'

Notes:

1. If a name enclosed in quotes is specified, it will be passed to the operating system exactly as given. The

file type extension (.apl or .atf) must be included. The operating system may add path information

if not given, according to its conventions.

2. If a name enclosed in quotes is set for the active workspace with)LOAD or)WSID, then a subsequent

)WSID without parameters returns the same name (including the quotes).

3. The maximum length for a name enclosed in quotes is 248 characters (including the quotes).

4. On Unix systems, file names are case sensitive. By default, APL2 uses upper case letters for the

workspace name and lower case letters for the file extension, as shown in these examples.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

72

Using the Session Manager

The APL2 session manager:

 Allows you to carry on an interactive session with an APL2 interpreter. You can enter APL2 expressions

and the results of their evaluation are displayed.

 Maintains a log of your input expressions and the interpreter's results. The log is retained from one APL

session to the next. You can scroll forward and backward in the log, modify old expressions, and type

new expressions.

 Can be used to control a remote APL2 interpreter. Consult Running a Remote Session Manager for

further information.

In addition to the basic facilities described above, the session managers on each APL2 system have additional

capabilities that exploit the windowing capabilities of their system.

 The APL2 Session Manager on Unix Systems

 The APL2 Session Manager on Windows

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

73

The APL2 Session Manager on Unix Systems

On Unix systems, the APL2 session manager is an X Window System-based application, and takes advantage of

the distributed client-server model on which X Windows is based. This design allows the session manager to be

run on a different workstation than the one to which the display is attached and the session manager is displayed

on. In X terminology, the client is the workstation where the session manager is actually running and the server

is the workstation to which the display is attached. In this environment the session manager can be installed on

one workstation and support multiple X-stations and servers via the network. The X Server displaying the APL2

session manager must have the fonts that are included with the APL2 product installed or be able to obtain them

from a font server.

The session manager is an auxiliary processor and is started automatically during APL2 invocation unless the -

sm piped invocation option is specified.

Note: Do not enter the kill -9 <pid> command to end an APL2 session manager session, because

interprocess resources are not released. If it is necessary to exit from the application in this manner, enter the

kill -15 <pid> command.

 APL Characters and Fonts

 National Language Support (NLS)

 Screen Layout

 Customizing with Resources and Options

 Other Invocation Options and Associated X Resources

 Customizing the Keyboard

APL Characters and Fonts

The APL2 language uses a special set of characters. To enable you to type the APL characters, the session

manager redefines each of the alphanumeric keys on your keyboard. Later sections describe how to redefine the

keyboard.

Roman-style fonts are used to display the APL2 character set. The following APL fonts are available with the

APL2 session manager: apl6, apl10, apl12, apl14, and apl22. By default apl14 is selected at

invocation. The font can be changed interactively during the session and the initial font can be specified either

through command line parameters or resource settings.

The following table lists some X Windows software tools.

Note: If you are unable to find these tools on your system look in the directory

<X11*home>/Xamples/clients. These are example programs shipped with X11 and might need to be

compiled.

Name Description

showrgb Displays the names for the colors supported on the X Server.

xset To change or query various characteristics of the current windowing session.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

74

Name Description

In particular, you can change the fontPath resource that affect the following tools listed here since they

work only with fonts that are in the current font path.

To determine your current settings use: xset q

xfd Displays the characters of a specified font.

xlsfonts Lists all of the fonts available on your system.

xfontsel Displays either a list of the fonts on your system or a representative number of characters from a

specified font.

National Language Support (NLS)

The APL2 session manager is enabled to support single-byte character set (SBCS) languages. All messages and

tables are externalized to allow translation. Since the session manager is an X-based product, it uses the X

environment to provide NLS support, and the zero origin ⎕AV values are simply indexes into the font. The

languages currently supported are U.S. and U.K. English, German, French, and Italian.

Screen Layout

The session manager is a window consisting of a menu bar, work area, and message area.

 The menu bar provides various pull-down menus and dialog boxes.

 The work area is for user input and interpreter output.

 The message area is used by the session manager to provide information on the system/keyboard states

and non-interpreter messages.

With each of these components there are associated X Window resources. By assigning values to these

resources, you can customize the look and feel of the session manager.

The Menu Bar

The Menu Bar consists of four items. To select a menu bar item, move the mouse to the item and press the left

mouse button. For each of the menu bar items, an associated pull-down menu appears with more selections. The

items on the pull-down menu can then be selected using either the mouse or the cursor keys and enter key. To

remove the pull-down menu, press the left mouse button when the mouse pointer is outside of the pull-down,

and no action is taken.

Selections that are followed by an "..." or arrow create additional pull-down menus and pop-up dialogs.

Selections that do not have these indicators take immediate action. When a pop-up dialog is presented, it has an

OK and a CANCEL push button. Selecting OK performs the requested action and CANCEL aborts the action.

The following table lists the menu bar X resource names:

Resource Description

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

75

Resource Description

ap120*menubar The Entire Menu Bar

ap120*menubar.button_0 The File Push Button

ap120*menubar.button_1 The Signals Push Button

ap120*menubar.button_2 The Options Push Button

ap120*menubar.button_3 The Help Push Button

File Menu

Resource Description

ap120*file_menu The Entire File Pull-Down

ap120*file_menu.button_0 The Log Push Button

ap120*file_menu.button_1 The Copy Push Button

ap120*file_menu.button_2 The Quit Push Button

Log Menu

Use the Log actions to:

 Load an existing log file replacing the active session log

 Rename the active log file

 Save the active session log to disk

 Clear the active session log

 Change the size of active session log

The default log name is ./apl2ses.log and is stored relative to the directory from which the session

manager is started. The default log size is 24K bytes and the maximum size is 256K bytes.

Resource Description

ap120*log_menu The Entire Log Pull-Down Menu

ap120*log_menu.button_0 The Name ... Push Button

ap120*log_menu.button_1 The Save ... Push Button

ap120*log_menu.button_2 The Load ... Push Button

ap120*log_menu.button_3 The Size ... Push Button

ap120*log_menu.button_4 The Clear ... Push Button

Copy Menu

Use the Copy actions to rename the current copy file and to turn copy on and off. When copy is On, information

displayed in the session manager window is appended to the copy file. The default log name is

./apl2Copy.txt and is stored relative to the directory from which the session manager is started. The

default for Copy is Off.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

76

Resource Description

ap120*copy_menu The Entire Copy Pull-Down

ap120*copy_menu.button_0 The Name ... Push Button

ap120*copy_menu.button_1 The On ToggleButton

ap120*copy_menu.button_2 The Off ToggleButton

Quit Menu

Use the Quit action to close the APL2 session with either a)OFF or)CONTINUE.

Resource Description

ap120*quit_menu The Entire Quit Pull-Down

ap120*quit_menu.button_0 The)OFF Push Button

ap120*quit_menu.button_1 The)CONTINUE Push Button

Signals Menu

This selection is used to send signals to the APL2 interpreter.

Resource Description

ap120*signals_menu The Entire Signals Pull-Down

ap120*signals_menu.button_0 The Suppress Push Button

ap120*signals_menu.button_1 The Attention Push Button

ap120*signals_menu.button_2 The Interrupt Push Button

Suppress

stops all output coming from the interpreter output until the next input prompt. The Pause key also

sends a suppress signal.

Attention

causes the interpreter to halt when it completes executing the current line. The Ctrl-Break key also

sends an attention signal.

Interrupt

causes the interpreter to halt as soon as possible; typically at the end of the current primitive operation.

Options Menu

Use Options to configure the session manager.

Resource Description

ap120*options_menu The Entire Options Pull-Down

ap120*options_menu.button_0 The Scroll ... Push Button

ap120*options_menu.button_1 The Fonts ... Push Button

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

77

Resource Description

ap120*options_menu.button_2 The APL Mode ... Push Button

Scroll

controls whether the session manager scrolls the log as the interpreter produces output or stops after the

page fills and waits for the Enter key to be pressed.

Fonts

allows selection of a new font in the current session manager window.

APL Mode

switches between the APL keyboard and the text keyboard definition.

The Ctrl-Backspace key also turns the APL keyboard on and off.

Resource Description

ap120*scroll_menu The Entire Scroll Pull-Down

ap120*scroll_menu.button_0 The Line ToggleButton

ap120*scroll_menu.button_1 The Page ToggleButton

ap120*font_menu The Entire Fonts Pull-Down

ap120*font_menu.button_0 The apl6 ToggleButton

ap120*font_menu.button_1 The apl10 ToggleButton

ap120*font_menu.button_2 The apl12 ToggleButton

ap120*font_menu.button_3 The apl14 ToggleButton

ap120*font_menu.button_4 The apl22 ToggleButton

ap120*apl_mode_menu Entire APL Mode Pull-Down

ap120*apl_mode_menu.button_0 On ToggleButton

ap120*apl_mode_menu.button_1 Off ToggleButton

Help Menu

The help facility provides help through dialogs and is divided into four general areas. These dialogs can remain

active while using the session manager.

Resource Description

ap120*help_menu The Entire ... Help Pull-Down

ap120*help_menu.button_0 The General ... Push Button

ap120*help_menu.button_1 The Programmer ... Push Button

ap120*help_menu.button_2 The Keys ... Push Button

Status Area

The Status area is on the bottom of the screen and is used for:

 The system status

 Keyboard mode

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

78

 Non-interpreter messages

Resource Description

ap120*status The Entire Status Area

ap120*sys_mode The Running/Input Label

ap120*kbd_mode The [APL]/[Text] Label

ap120*sm_msg The Session Manager Message Area

Main Work Area and Associated Color Resources

The Main work area is for user input, interpreter output, and scrolling of the session log.

Within the Main work area, the cut and paste functions allow you to copy text within a window or from one

window to another.

To mark the text:

1. Position the mouse pointer at the beginning of the text to be selected.

2. Press and hold mouse button 1.

3. Move the mouse pointer to the end of the text to be selected.

4. Lift the mouse button.

To paste a copy of the marked text:

1. Move the cursor to the point where the text is to be inserted.

2. Press mouse button 2.

The following table lists the names of the color resources associated with the interpreter input and output

classes. Other resources exist and are described in Other Invocation Options and Associated X Resources.

Resource Description

ap120*backColor The background color for the work area

ap120*fgDebugOutput

ap120*bgDebugOutput

The foreground and background colors for the Debug Output Class

ap120*fgDelEditOut

ap120*bgDelEditOut

The foreground and background colors for the Del Editor Output Class

ap120*fgDelEditTs

ap120*bgDelEditTs

The foreground and background colors for the Del Editor Function Time Stamp

Output Class

ap120*fgDelPrompt

ap120*bgDelPrompt

The foreground and background colors for the Del Editor Line Input Class

ap120*fgErrorMsg

ap120*bgErrorMsg

The foreground and background colors for the Error Messages

ap120*fgNormalOutput

ap120*bgNormalOutput

The foreground and background colors for the Normal Output Class

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

79

Resource Description

ap120*fgQuadOutput

ap120*bgQuadOutput

The foreground and background colors for the ⎕ Output Class

ap120*fgQuadOutput

ap120*bgQuadOutput

The foreground and background colors for the ⎕ Output Class

ap120*fgQuadPrompt

ap120*bgQuadPrompt

The foreground and background colors for the ⎕ Input Class

ap120*fgQuoteQuadInput

ap120*bgQuoteQuadInput

The foreground and background colors for the ⍞ Input Class

ap120*fgQuoteQuadOutput

ap120*bgQuoteQuadOutput

The foreground and background colors for the ⍞ Output Class

ap120*fgSysCommand

ap120*bgSysCommand

The foreground and background colors for the System Commands Output Class

ap120*fgTraceOutputFns

ap120*bgTraceOutputFns

The foreground and background colors for the Trace Output Class

ap120*fgTraceOutputVal

ap120*bgTraceOutputVal

The foreground and background colors for the Trace Output Class line results

ap120*fgUserInput

ap120*bgUserInput

The foreground and background colors for the user input

ap120*fgLineModified

ap120*bgLineModified

The foreground and background colors for the user modified lines

Note: For a list of the valid color names use the showrgb command.

Customizing with Resources and Options

You can customize an APL2 session manager's look and feel. Using APL2 session manager resources, external

files, and command line parameters, you can specify both system-wide and instance-specific variations for your

session.

The following is the order of precedence for each level of customization within the APL2 session manager or

within any X application:

1. Command line parameters

2. The user's .Xdefaults file found in the user's home directory

3. The system defaults file, ap120, located in the $APL2/nls/<locale> directory

Command line parameters override the customization specified in both the .Xdefaults file and application

default entries. The .Xdefaults entries override any customization specified in the system's application

defaults file.

APL2 session manager itself is constructed in a hierarchical fashion. Within the session manager application,

there are a number of separate components that you can customize.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

80

Syntax

Following is a brief overview for managing X Windows and Motif resources. For in depth information on the

resource manager, refer to the X Windows and Motif publications.

A resource file is a standard ASCII text file that can be created or modified with a standard text editor. Within

the resource file, you specify the resources for one or more widgets within one or more Motif client

(application) programs. In this context, the session manager is the client program, and the components that

make it up (for example, the menu bar) are widgets. The syntax for a resource file is simple, where lines in the

resource file specify a resource name for a widget in a particular client along with a value for the resource. To

do this, you need to know the instance names and instance hierarchy in client program. Every Motif client is

composed of one or more widgets organized in a hierarchical manner. With each widget there is an associated

instance name or class. For example, the File button on the menu bar is a widget that is a child of the menu bar

widget. The instance name for File is button_0 and the instance name for the menu bar is menubar.

The syntax for a resource entry is:

[object{.|*}subobject{.|*}subobject ...]{.|*}attribute:value

where object and subobject can either be the instance name or class.

The object and subobject can be separated either by a period (.) or asterisk (*).. Using a period separator is

referred to as tight binding and requires that you know the exact instance hierarchy in the client's widget

instance tree. Using an asterisk separator is referred to as loose binding and gives you a wildcard capability in

resource specification, and is the form most commonly used.

The last item in the resource specification is the attribute that is the name of the resource for which you are

supplying the value, which is the last item.

For example, to specify a red background for all of the subcomponents of all menu bar and status

subcomponents, enter:

ap120*background: red

To specify that only the background of all components called status are set to red, enter:

ap120*status.background: red

Command Line Parameters

Command line parameters are the final override in determining how resources are set (unless they are

hardcoded in the session manager).

Most of the standard X command line parameters are supported, as well as a number of exclusive command line

parameters that are interpreted only by the APL2 session manager. For example:

To invoke the session manager with a larger font, enter:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

81

apl2 -fn apl22

To set a red background direct output to another display, enter:

apl2 -bg red -display xdisplay:0.0

This command specifies that output is being directed to another X display called xdisplay:0.0.

Note: The remote display can be any workstation or terminal that is running X. However, the fonts included in

the APL2 session manager package must be installed on the remote display or available from a font server.

To invoke an APL2 session manager session with the background for error messages set to blue, you can use

the -xrm command flag:

apl2 -xrm "ap120*sm.bgErrorMsg:blue"

This syntax differs from the standard syntax in that blank characters cannot follow the resource name. (For

example, there are no blanks after bgErrorMsg: in the command shown above).

Customizing with the .Xdefaults File

If you are familiar with X applications, the APL2 session manager uses the standard X resource descriptions.

If you are not familiar with X applications, a brief example is provided of how to use the .Xdefaults file to

modify APL2 session manager defaults.

The .Xdefaults file contains individual preferences for various X Window applications. These preferences

are specified by resources. Each line in the .Xdefaults file sets a specific resource to a specified value.

APL2 session manager resource values may be used in the .Xdefaults file or the system application defaults

file. The following sample .Xdefaults file entries specify:

1. A default session title is APL2 Session Manager.

2. The default background for the basescreen is black.

3. The default foreground color for interpreter error messages is red.

4. The default background color for interpreter error messages is black.

ap120.title: APL2 Session Manager

ap120*sm.backColor: black

ap120*sm.fgErrorMsg: Red

ap120*sm.bgErrorMsg: black

System Defaults

The application defaults for the X resources of the session manager and other X/Motif components can be found

in the file $APL2/nls/<locale>/ap120 where $APL2 refers to the installation directory and <locale>

is the setting of the LANG environment variable.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

82

If you are planning on customizing the session manager, you can copy this file and use it as template.

Other Invocation Options and Associated X Resources

X Window System resources and options can be used along with the following APL2 session manager specific

resources and options. Command line options are prefixed with a dash (-).

Option and

Resource
Default Value(s) Description

-aplmode

aplmode

on Initial APL2 keyboard mapping. Choices are on or off.

-bg

background

X default

background

Background color for menu bar and status components. Can be any valid

color name.

-copy

copy

off Initial Copy mode. Choices are on or off.

-copyfile

copyfile

./apl2Copy.txt Initial Copy file name. Must be a valid file name that is writable.

-display $DISPLAY Sets the DISPLAY environment variable.

-fg

foreground

X default

foreground

Sets the foreground color for the menu bar and status components. Can be

any valid color name.

-fn

aplFontList

apl14 Sets initial session manager work area font. Choices are: apl6 or apl10

or apl12 or apl14 or apl22.

-geometry

geometry

80x25+0+0 Sets the window width, height, xoffset, and yoffset.

-log

logfile

./apl2ses.log Initial log file name. Must be a valid file name that is writable. If it already

exists then it must be a valid format for an APL2 session log.

-cr

cursorColor

white The color of the text cursor. Can be any valid color name.

-ms

mouseColor

white The color of the mouse pointer. Can be any valid color name.

-scroll

scroll

line Specifies scrolling mode. Can either be line or page.

Note: For a list of the valid color names use the showrgb command.

Customizing the Keyboard

This section explains what a translation is and provides several customization examples. It also lists the APL2

session manager functions that can be used in a translation, along with their default key mappings.

You can customize your APL2 session manager keyboard mapping by modifying the .Xdefaults file.

Translation Overview

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

83

A translation is the mapping of an event or sequence of events to one or more actions. The syntax is:

modifier_symbol modifier(s) detail: action

where the modifier_symbol is optional.

The following special symbols can be used to change the interpretation of an event sequence in a translation:

Symbol Description

None No modifiers can be specified.

! Only the modifiers explicitly listed can be specified.

: Apply the Shift modifier to the key event.

~ The modifier following the symbol cannot be specified.

Modifier keys are optional. They allow you to define more complex translations. If no modifier keys are

specified for an event, any modifier key can be pressed along with the event.

If multiple modifiers are specified, they must be separated by at least one space.

Modifier keys are dependent upon the machine hardware and the implementation of X Window System on that

hardware.

The modifiers listed in the following table may be available on various platforms. You can specify the modifier

name or the corresponding abbreviation, if available.

Modifier Abbreviation Description

Ctrl c Control key is pressed

Shift s Shift key is pressed

Lock l Caps Lock is on

Alt a Alt key is pressed

Meta m Meta key is pressed

Mod1 Mod 1 key is pressed

Mod2 Mod 2 key is pressed

Mod3 Mod 3 key is pressed

Mod4 Mod 4 key is pressed

Mod5 Mod 5 key is pressed

Button1, Button2, Button3, Button4, and Button5 can also be used as modifiers in

translations. For example, the translation:

Button1<Key>Escape: enter()

invokes the enter() function when mouse button 1 and the Escape key are pressed simultaneously.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

84

You can use the X Window client program, xmodmap, to determine which modifiers are available on your

system.

An event is primarily used to indicate that a keyboard key was pressed, a mouse button was pressed, or the

mouse was moved. You can specify either the event type or the corresponding abbreviation.

An event must always be enclosed in angle brackets (< and >) in the translation. If multiple events are specified,

they must be separated by commas.

The following list contains some types of events, but you can also use other predefined events for APL2 session

manager translations.

Modifier Abbreviation Description

ButtonPress BtnDown

Btn1Down

Btn2Down

Btn3Down

Any mouse button is pressed

Mouse button 1 is pressed

Mouse button 2 is pressed

Mouse button 3 is pressed

ButtonRelease BtnUp

Btn1Up

Btn2Up

Btn3Up

Any mouse button is released

Mouse button 1 is released

Mouse button 2 is released

Mouse button 3 is released

KeyPress Key

KeyDown

Any key is pressed

Any key is pressed

KeyRelease KeyUp Any key is released

MotionNotify Motion

Btn1Motion

Btn2Motion

Btn3Motion

The pointer is moved while any mouse button is pressed

The pointer is moved while mouse button 1 is pressed

The pointer is moved while mouse button 2 is pressed

The pointer is moved while mouse button 3 is pressed

The detail parameter is optional. It specifies the key or mouse button that must be pressed to invoke the

translation.

For example, to invoke the pageup function only if the F2 key is pressed, you can enter:

<Key>F2: pageup()

where F2 is the detail to the KeyPress event.

The text actually specified as the detail to a key event is known as keysym. All keysyms are defined in the

<X11/keysymdef.h> file. You can review this file to determine the valid keysyms for your operating

system. When specifying a keysym (detail) in a translation, the XK_ prefix is omitted. For example, if an entry

in the <X11/keysymdef.h> file is:

#define XK_Escape 0xFF1B

A sample translation including this detail is:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

85

<Key>Escape: undo()

To determine the keysyms that are bound to your keyboard keys, use the xev program, if it is available on your

machine.

Detail can also be specified for the following mouse events: BtnDown, BtnUp, ButtonPress,

ButtonRelease, Motion, and MotionNotify.

The detail for these events could be one of the following: Button1, Button2, Button3, Button4,

and Button5. For example:

<ButtonPress>Button1: select-start()

where Button1 is the detail.

This translation is equivalent to the following translations:

<BtnDown>Button1: select-start()

<Btn1Down>: select-start()

that demonstrate the use of event abbreviations.

The .motifbind File

Machines running the Motif window manager can use a .motifbind file. This file contains mappings of user

defined keysym names to default X Window System keysym names that are found in the

<X11/keysymdef.h> file.

When the X Window System and the Motif window manager are started on a machine that has a .motifbind

file defined, the keysym names in the .motifbind file override their respective default X Window System

keysym names for the entire X Window session.

The APL2 session manager program uses the default X Window System keysym names for all of its default

translations. If any of these keysym names are remapped in a .motifbind file, then the default APL2 session

manager translations that use them become undefined. You must create a new APL2 session manager

translation in your .Xdefaults file using the remapped keysym name.

For example, if you are running the Motif window manager and the following entries appear in your

.motifbind file:

osfInsert : <Key>Insert

osfDelete : <Key>Delete

then the default APL2 session manager translations:

<Key>Insert: insert()

<Key>Delete: delete()

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

86

become undefined. To redefine the APL2 session manager insert() and delete() functions to the same keys, you

should add the following translations to your .Xdefaults file:

<Key>osfInsert: insert()

<Key>osfDelete: delete()

For more information about the .Xdefaults file, see Customizing with the .Xdefaults File.

An action is basically a function that is defined to the application that can be used in translations. APL2 session

manager actions (functions) are listed in the section below. They include mouse functions, window functions,

and APL2 session manager functions.

Action parameters are separated from the corresponding event sequences by a colon.

If multiple actions are specified, they must be separated by at least one space or multiple spaces.

When specifying an action in a translation, parenthesis must follow the function name. For example:

<Key>F2: undo()

where undo() is the action specified.

Some APL2 session manager actions accept arguments. For more information, see Translation Examples.

Translation Examples

1. To specify a simple translation where:

 The pageup function is invoked when any key is pressed.

 Any modifier key may be pressed at the same time.

<Key>: pageup()

2. To add more detail to the simple translation where:

 The pageup function is invoked when the Escape key is pressed.

 Any modifier key can be pressed in conjunction with the Escape key.

<Key>Escape: pageup()

3. To add modifiers where:

 The pageup function is invoked when the Shift modifier and the Escape keys are pressed

simultaneously.

 Any other modifier key can be pressed in conjunction with the Shift and Escape keys.

Shift<Key>Escape: pageup()

4. To add special modifier symbols where:

 The undo function is invoked when the F2 key is pressed without any modifiers.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

87

None<Key>F2: undo()

 The undo function is invoked only when the Ctrl modifier and the F2 keys are pressed

simultaneously.

 No other modifiers except the Ctrl modifier can be pressed.

!Ctrl<Key>F2: undo()

 The pagedown function is invoked when the F2 and the Shift keys are pressed.

 Any modifier key except Ctrl can also be pressed.

~Ctrl Shift<Key>F2: pagedown()

5. To specify multiple actions where:

 Simultaneously pressing the Ctrl and the a key invokes the string function.

 The string)LIB 1 is sent to the interpreter and the enter function is invoked.

Ctrl<Key>a: string(")LIB 1") enter()

6. To specify multiple events where pressing the F2 key twice in succession without any other events

occurring in between invokes the attention function.

 In this example, if the F2 KeyPress event is defined to an action, that action is invoked on the

first F2 KeyPress event. The attention function is invoked when the F2 key is pressed a second

time.

<Key>F2,<Key>F2: attention()

Default Keyboard Mapping

The session manager supports the following types of keyboard input:

Action Keys

Default Key Function Name Description

Enter or Return enter() Sends any modified lines to the interpreter

Ctrl-Backspace aplonoff() Switches APL keyboard support on and off

Pause suppress() Suppresses interpreter output

Insert insert() Toggle insert mode

Ctrl-Pause attention() Sends an Attention signal

Ctrl-Up Arrow retrieve-back() Move backward through prior inputs

Ctrl-Down Arrow retrieve-forward() Move forward through prior inputs

Cursor Movement

Default Key Function Name Description

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

88

Default Key Function Name Description

Ctrl-Enter start-next-line() Moves the cursor to the beginning of the next line

Alt-Enter end-prior-line() Moves the cursor to the end of the prior line

Left Arrow left() Move the cursor left.

Right Arrow right() Move the cursor right.

Down Arrow down() Move the cursor down one row

Up Arrow up() Move the cursor up one row

Tab tab() Move the cursor right one tab column

Shift-Tab backtab() Move the cursor left one tab column

Home home() Move the cursor to the beginning the line

End end() Move the cursor to the end of the line

Ctrl-Home begin-log() Move the cursor to the beginning of the log

Ctrl-End end-log() Move the cursor to the end of the log

Alt-Home upper-left() Move the cursor to the upper left corner of the screen

Alt-End lower-right() Move the cursor to the lower right corner of the screen

Alt-Left Arrow scr-left1() Scrolls the log left one column

Alt-Right Arrow scr-right1() Scrolls the log right one column

Alt-Up Arrow scr-up1() Scrolls the log up one line

Alt-Down Arrow scr-down1() Scrolls the log down one line

Page Up page-up() Scrolls the log up one page

Page Down page-down() Scrolls the log down one page

Ctrl-Page Up page-left() Scrolls the log left one page

Ctrl-Page Down page-right() Scrolls the log right one page

Ctrl-Left Arrow, backward-word() Move the cursor left one word

Ctrl-Right Arrow forward-word() Move the cursor right one word

Text Modification

Default Key Function Name Description

Esc undo() Selects a line for input or undo changes to the line

Backspace backspace() Move the cursor left one character and erase the character

Delete delete() Deletes the current character

Ctrl-Delete erase2eol() Erase to the end of the line

Default Function Keys

Default Key Function Name Description

F7 page-up() Scrolls the log up one page

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

89

Default Key Function Name Description

F8 page-down() Scrolls the log down one page

F9 current2top() Move current (cursor) line to top of session log window

F12 <none> Execute touched lines starting at the top of a new page

Shift-F8 <none> Start another APL2 session running in parallel

Shift-F9 <none> Prompt for an AIX command to execute with standard output to session log

Ctrl-F1 <none> Prompt for an APL2 variable name; display its structure graphically

Ctrl-F2 <none> Search for an idiomatic APL2 programming solution

Ctrl-F3 <none> Cancel all Stop controls in the active workspace

Ctrl-F4 <none> Cancel all Trace controls in the active workspace

Ctrl-F5 <none> Set a Stop control on the first line of every function or operator

Ctrl-F6 <none> Set Trace on first noncomment line of unlocked functions or operators

Ctrl-F7 <none> Set Stop controls on every line of every function or operator

Ctrl-F8 <none> Set Trace controls on all non-comment lines of functions or operators

Ctrl-F9 <none> →⎕LC

Ctrl-F10 <none> Print functions and variables from the active workspace

Ctrl-F11 <none> Prompt for a string; search all FNS and OPS; report all occurrences

Ctrl-F12 <none> Prompt for and edit a function, operator, or variable using EDITOR_2

Note: All of the functions that do not have an associated function name are defined by an entry in the ap120

file found in the directory: $APL2/nls/<locale>

Mouse Actions

Default Key Function Name Description

Btn1Motion select-adjust() Adjust the current text selection.

Btn1Up select-end() End a text selection.

Btn1Down select-start() Start a text selection.

Btn2Down insert-selection() Insert the currently selected text at the cursor position

APL2 Session Manager Box Character Functions

Default Key Description

Ctrl-Keypad 1 lower-left-box-corner()

Ctrl-Keypad 2 bottom-box-tee()

Ctrl-Keypad 3 lower-right-box-corner()

Ctrl-Keypad 4 left-box-tee()

Ctrl-Keypad 5 box-cross()

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

90

Default Key Description

Ctrl-Keypad 6 right-box-tee()

Ctrl-Keypad 7 upper-left-box-corner()

Ctrl-Keypad 8 top-box-tee()

Ctrl-Keypad 9 upper-right-box-corner()

Ctrl-Keypad 0 vertical-box-bar()

Ctrl-Keypad . horizontal-box-bar()

Other Session Manager Functions

Function Name Description

hex() This function translates hexadecimal to binary. For example, hex(414243) sends ABC to

the session manager.

modlock() This function can be used to create additional keyboard states that are locked. This is

similar to Caps Lock in that no key must be held down to maintain the locked state.

Modlock does this by toggling on or off the Modn modifier bit, where n is the argument

passed to modlock. For example, pressing Ctrl-backspace sends a call to modlock(3),

which enables the APL2 keyboard. After this call, all translation lookups are done with

the Mod3 modifier bit on. Calling modlock(3) again disables the APL2 keyboard.

For example, APL2 session manager's default translation table can contain a statement

similar to the one below:

Mod3 Shift<Key>8: not-equal()

This specifies that the Shift-8 key should produce the APL2 not-equal character when the

APL2 keyboard (Mod3) is active.

noop() This indicates that no action is performed. It can be used to change (unmap) the default

mapping of a key.

To unmap the Escape key from the Clear function so that no action is taken when the

Escape key is pressed, add the following line to your .Xdefaults file:

<Key>Escape: noop()

string() This function passes the character string as if it were entered using the keyboard.

To map the F2 key to the string)OFF followed by the Enter key, put the following line in

the translation specification of your .Xdefaults file as follows:

<Key>F2: string(")OFF") enter()

stringa() This function is similar to the string function, but it also accepts ASCII values above 128

(most of the special APL characters have ASCII values greater than 128).

To map the F2 key to the string →⎕LC followed by the Enter key, either put the following

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

91

Function Name Description

line in the translation specification of your .Xdefaults file, as follows:

<Key>F2: stringa("→⎕LC") enter()

APL2 Session Manager APL2 Character Functions

To turn APL2 characters on for your APL2 session manager session, either select the APL2 button from the

Options entry on the APL2 session manager menu bar or press the Ctrl-Backspace key (the default

mapping for the APL2 session manager aplonoff() function).

To determine if there are any different translations for your operating system, browse the apl2 resource file.

Note that the APL2 character translations contain the Mod3 modifier. For example, the default translation:

Mod3 Shift<Key>g: del() generates the del symbol when the APL2 session manager session is toggled

to APL2 mode and the Shift and g keys are pressed simultaneously.

The next table lists all of the APL2 session manager APL2 character functions and their mappings on an IBM

RISC System/6000 101-key enhanced keyboard. This table does not list the APL2 symbols themselves. For a

Union keyboard, there are additional definitions for the APL characters in $APL2/nls/<locale>/apl.

The Union keyboard translations are in effect when the session manager is in text mode.

Function Name Default Key

alpha() Shift-A

circle-slope() Alt-6

circle-stile() Alt-5

del() Shift-G

del-tilde() Alt-2

delta-stile() Alt-4

dieresis() Shift-1

divide() Shift-=

down-carat() Shift-9

down-shoe() Shift-V

down-tack() Shift-B

epsilon() Shift-E

equal-underbar() \

iota() Shift-I

jot() Shift-J

left-bracket() ;

left-tack() <none>

not-equal() Shift-8

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

92

Function Name Default Key

not-less() Shift-6

overbar() Shift-2

quad() Shift-L

quad-jot() Shift-`

quad-slope() Alt-`

rho() Shift-R

right-bracket() '

right-tack() <none>

slope() Shift-/

squad()]

tilde() Shift-T

up-arrow() Shift-Y

up-carat-tilde() Alt-0

up-shoe-jot() Alt-,

up-tack() Shift-N

circle-bar() Alt-7

circle-star() Alt-8

circle() Shift-0

del-stile() Alt-3

delta() Shift-H

diamond() `

dieresis-dot() Alt-\

down-arrow() Shift-U

down-carat-tilde() Alt-9

down-stile() Shift-D

down-tack-jot() Alt-;

epsilon-underbar() Shift-\e

i-beam() Alt-1

iota-underbar() Shift-]

left-arrow() [

left-shoe() Shift-Z

minus() Shift--

not-greater() Shift-4

omega() Shift-W

plus() -

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

93

Function Name Default Key

quad-divide() Alt-=

quad-quote() Alt-[

quote-dot() Alt--

right-arrow() Shift-[

right-shoe() Shift-X

slash-bar() Alt-/

slope-bar() Alt-.

stile() Shift-M

times() =

up-carat() Shift-0

up-shoe() Shift-C

up-stile() Shift-S

up-tack-jot() Alt-'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

94

The APL2 Session Manager on Windows

On Windows, the session manager provides facilities that let you:

 Open, rename, save, and change the size of the log

 Print all or portions of the log

 Cut, copy, and paste text between the clipboard and the log

 Search and optionally replace text in the log

 Select from a list of workspace objects and open edit windows

 Signal the interpreter to suppress output or halt

 Turn the APL keyboard on and off

 Select, create, and modify keyboard layouts

 Select different name, size, and style fonts

 Change the colors of different types of interpreter output

 Set function key definitions

 Control whether interpreter output is displayed immediately

 Control whether stacked input lines are displayed

 Select from a list of edit windows that have been opened

All of these facilities are accessible from the Session Manager's menubar.

The session manager also includes a built-in editor that can be used to edit variables, functions, and operators.

You can double-click on an object name in the log or use the Open Object window to select an object for

editing. See The Object Editor for more information on the object editor.

The session manager includes extensive online help. To display contextual help on any menu item or window,

press F1. You can also use the choices on the Help menu to display the online help.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

95

Editing APL Objects

APL2 provides several different facilities for editing APL objects.

The editing facilities include:

 The Object Editor which is built into the session manager on Windows.

 The Dialog Editor which is also built into the session manager on Windows.

 The Line Editor which is part of the interpreter.

 Using System Editors which are outside of APL2

 The EDIT Workspace which provides compatibility editors written in APL.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

96

The Object Editor

Note: The Object Editor is not available on Unix systems.

Objects in the active workspace can be opened for editing from the session manager.

Session manager and editor windows all include the Edit menu choice Open Object. Use Open Object to

display a list of the objects in the active workspace. Use the Type of Object buttons to list either the variables,

functions, or operators in the workspace. Type or select an object name and press OK to open the object. If the

object does not exist, the object is opened with the selected name class.

To open an object directly from a session manager or editor window, double click on the object's name.

The following objects can be edited:

 Functions

 Operators

 Character matrixes

 Vectors of character vectors

 Character vectors containing carriage return-linefeed delimited records

 Numeric matrixes

 Matrixes of character vectors

The following objects cannot be edited:

 Locked functions and operators

 External functions

 System variables and functions

When an object is opened, the session manager opens a window for editing the object. Editor windows can be

left open while you continue to interact with the interpreter. Objects can be opened while the interpreter is

running.

Session manager and editor windows all include the Windows menu choice APL2 Window List. Use APL2

Window List to display a list of the editor windows opened from the session manager. The list also includes the

session manager window. Double click on a window name to switch to the window.

Editor windows have the following restrictions:

 If an object is open and you attempt to open the object again, another editor window is not opened. The

editor window displaying the object is given focus.

 If an object is open, changes made to the object by the Line Editor, a system editor, or by execution of

an APL expression are not displayed in the editor window. To display the changes made to the object,

use the Refresh selection on the Object menu.

The object editor provides extensive online help. To display contextual help on any menu item or window, press

F1. You can also use the choices on the Help menu to display the online help.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

97

The Dialog Editor

Note: The Dialog Editor is not available on Unix systems.

You can use the Dialog Editor to create and modify dialog windows and also the controls and text within dialog

windows. As you create the dialog window and its controls you see them on the screen as the user sees them

when your program is run. You can place each dialog window and its controls where you want them on the

screen. You can assign event handlers so your APL2 program will get control when events occur.

To enter the Dialog Editor, use the Open Object option in the Edit menu of the session manager. Select editing

of a variable, and check the Dialog Template option. You can also enter the Dialog Editor by double-clicking

on the name of an existing dialog template in the session log.

For more information on using the Dialog Editor, consult APL2 Programming: Developing GUI Applications

and the Dialog Editor's online help.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

98

The Line Editor

The Line Editor, also known as Editor 1, can be used to edit functions and operators.

To use the Line Editor to edit an object, first select the Line Editor for use as APL's editor, and then use ∇

followed by an object name or header. For example:

)EDITOR 1
 ∇name

Note: Unicode characters that are not in ⎕AV are displayed as Omega characters. If a line containing such

characters is changed, the Omega characters are used and the Unicode characters are lost.

For further information about the Line Editor consult APL2 Programming: Language Reference.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

99

System Editors

Editor programs outside of APL2 can be used to edit functions, operators, and character matrixes.

To use a system editor to edit an object, first select the editor for use as APL's editor, and then use ∇ followed

by an object name. For example:

)EDITOR vi
 ∇name

When setting the editor, you may use a complete path if needed:

)EDITOR /usr/bin/e3

If any name in the path you specify has an imbedded blank, you can preserve the blank by surrounding the

entire editor name in quotes:

)EDITOR 'C:\Program Files\Accessories\Wordpad.exe'

If the editor you select supports Unicode, you can tell APL2 to use Unicode data representation by specifying

the -u option:

)EDITOR notepad -u

When the editor is invoked via ∇, the interpreter writes a copy of the object's definition to a temporary file, and

then invokes the editor program with that file's name as its argument. On exit from the editor, the new definition

is fixed in the workspace.

If there is an error in the temporary file which prevents the definition from being fixed in the workspace, a

DEFN ERROR will be reported. In order to leave the editor, you must either correct the error, erase the

temporary file, or change the file to consist of a single empty line. In that case, the old definition of the object

will be preserved.

If the editor is a window program, it will start a separate window for the editing session. If it is not, the edit

session will be opened in the APL2 interpreter's console window. Since that window is normally minimized,

you may need to restore it to see the edit session.

Notes:

 In order to see APL characters when using a system editor, the editor must support the selection of an

APL font for use during the edit session.

 In order to type APL characters when using a system editor, the editor must contain appropriate

keyboard support.

On Windows, the Apledit program, which is provided with APL2, has the needed keyboard support and

can be used with this facility. See The File Editor for more information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

100

On Windows, the APL2 keyboard handler program provides support for the APL keyboard in many

non-APL programs. See The APL2 Keyboard Handler for more information.

On AIX, the X resource file for the interpreter console window contains key mappings which can be

used with editors like vi.

 Unless the -u option has been specified, Unicode characters in function and operator definitions that are

not in ⎕AV are converted to Omega characters as the temporary file is written. If the editor saves the file,

the Omega characters are used in the new definition and the Unicode characters are lost. Variables

containing Unicode characters outside of ⎕AV can only be edited if the -u option is in effect.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

101

The EDIT Workspace

The EDITOR_2 function emulates the APL2 mainframe version's full-screen)EDITOR 2. It can be used to

edit functions, operators and character matrixes.

The EDIT function is another alternative editor that can be used to edit functions and operators.

Note: EDITOR_2 does not support characters that are not in ⎕AV.

For further information, see The EDIT Workspace.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

102

Editing Text Files

In order to see APL characters when using any editor, the editor must support the selection of an APL font for

use during the edit session.

In order to type APL characters when using an editor, the editor must contain appropriate keyboard support.

On Windows, the Apledit program, described in The File Editor, has the needed keyboard support built in.

On Windows, the APL2 keyboard handler program provides support for the APL keyboard in many non-APL

programs. See The APL2 Keyboard Handler for more information.

On AIX, the X resource file for the interpreter console window contains key mappings which can be used with

editors like vi.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

103

The File Editor

The Apledit program can be used to edit text files containing APL characters.

To invoke Apledit to edit a file, enter:

 apledit filename
from an operating system prompt, or from APL2:

)HOST apledit filename

The maximum record length supported by Apledit is 128000.

Apledit provides extensive online help. To display contextual help on any menu item or window, press F1. You

can also use the choices on the Help menu to display the online help.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

104

The APL2 Library Manager

Note: The Library Manager is not available on Unix systems.

The APL2 Library Manager allows you to browse and compare APL2 saved workspaces, transfer files, and

namespaces. The APL2 Library Manager can run either as a stand-alone program or as an external function.

When run as a stand-alone program, the library manager runs independently of interactive APL2 sessions.

When run as an external function, the library manager runs as part of an interactive APL2 session and can be

used to browse the active workspace.

To start the APL2 Library Manager as a stand-alone program, use any of these methods:

 Click on the APL2 Library Manager icon in the APL2 folder,

 Click on the APL2 Library Manager button on the Session Manager toolbar,

 Run the apl2lm.exe program in the ibmapl2w\bin folder.

 Open an APL2 Saved Workspace, Transfer File, or Namespace with the Library Manager.

To start the APL2 Library Manager as an external function, associate and run the APL2LM external function:

 3 11 ⎕NA 'APL2LM'
1
 APL2LM

The APL2LM external function initially shows the contents of the active workspace.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

105

The APL2 Library Manager Environment

The APL2 Library Manager uses the Calls to APL2 facility to start runtime APL2 interpreter sessions in the

background. The stand-alone program starts one session to run the library manager itself, and both the stand-

alone program and the external function start a session for each file that is opened. The environment for these

sessions can be affected by using APL2 invocation options:

Workspace Size

By default, the stand-alone program uses a -ws value of "10m,100m,50m" and the external function

takes the workspace size from the APL2 session that invoked it. Pass the -ws parameter directly to the

stand-alone program or to the APL2 session that will invoke the external function to set the workspace

size for the background sessions.

Other Invocation Parameters

All other APL2 invocation parameters passed to the stand-alone program or the APL2 session invoking

the external function will be passed on to the background sessions started by the APL2 library manager.

Parameters not applicable to the APL2 runtime environment will be ignored.

For more information about APL2 invocation options, consult Invocation Parameters.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

106

Effects of External Names

The APL2 Library Manager examines saved workspaces, transfer files, and namespaces by copying their

contents into hidden interpreters and querying attributes of the files' objects using APL primitives and system

functions such as ⍴ and ⎕AT. As a result of these queries, resolution of objects which are defined as external

associations may occur. This can cause side effects such as accessing additional APL2 namespaces, opening

operating system files, or startup of external environments like Java. If external references cannot be resolved,

information may be missing or only partially displayed in the APL2 Library Manager's object lists.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

107

Your APL2 Libraries

When you start the APL2 Library Manager program, it creates a folder named My APL2 Libraries in the My

Documents folder. It creates shortcuts in My APL2 Libraries for the currently defined APL2 library

directories. Use these shortcuts in the Open dialog to quickly locate your workspaces, transfer files, and

namespaces. For information on defining APL2 libraries, see Library Specification.

You can configure Windows so that the APL2 Library Manager is used to open saved workspaces, transfer

files, and namespaces. Use the File Associations option to perform this configuration.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

108

Cooperative Processing

APL2 sessions can communicate either with each other or with other non-APL programs across a Transmission

Control Protocol/Internet Protocol (TCP/IP) network.

There are three major facilities within APL2's support for cooperative processing:

1. Cross-System Shared Variables

This facility allows a user to share variables with other processors on a TCP/IP network using normal

APL2 shared variable techniques. It provides APL2's most convenient program-to-program cross

network communication path.

 Processor Network Identification

 Processor Profile Structure

 Using the Port Server

 Sending a Share Offer

 Receiving a Share Offer

 Processor Profile Syntax

 Processor Profile Examples

 Running a Remote Session Manager

2. Shared Variable Interpreter Interface

This interface provides a set of protocols whereby an APL2 interpreter can be controlled through a

shared variable. It provides a way for a program to control a remote session.

3. TCP/IP Auxiliary Processor (AP 119)

This processor allows users and applications to make direct requests to TCP/IP. It provides APL2's most

flexible program-to-program cross network communication path. The interface can also be used for

communication between APL2 and non-APL programs across a network.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

109

Processor Network Identification

An APL2 session consists of a collection of processors. From the point of view of an APL2 program, each

processor is identified by a single non-negative integer. The APL2 user is identified with a processor number

greater than 1000. Other processors in the session are called auxiliary processors (APs) and are normally

identified with a processor number less than 1000.

A single integer is not enough to address processors in multiple sessions and processors in sessions on a

network. A processor profile is a file that provides a cross reference between the single processor number used

by APL2 programs and a processor network identification.

A sample processor profile is shipped with the APL2 product.

On Unix systems, the sample is located in:

 /usr/APL2/examples/svp/apl2svp.prf
On Windows systems, the sample is located in:

 C:\Program Files\IBMAPL2W\samples\apl2svp.prf
Note: The directory path may be different on your system if customized during APL2 installation.

To create your own processor profile, copy the sample to your working directory and edit as desired. At

execution time, the location of the processor profile can be specified by adding a definition for keyword

SVPPRF in the [Shared Variable Processor] section of the apl2.ini file, or by setting environment variable

APL2SVPPRF before starting APL2. If a location for the file is not specified, file apl2svp.prf in the

current working directory is used.

The profile is used for both outgoing offers from a processor and for incoming offers from other processors. It is

read for each applicable offer and can be dynamically modified.

Every processor on the network has a unique name consisting of the following parts:

 IP_address user_id processor_number[,parent[,grandparent]]

For example:

 123.45.6.78 BROWN 1002
 123.45.6.78 BROWN 127,1001

A processor named with only an address, user ID, and processor number is called an independent processor. In

the first example above, 1002 is an independent processor. Normally, the APL2 interpreter runs as an

independent processor.

A processor with a parent (or any ancestor) is called a dependent processor. A dependent processor is notified

when its immediate ancestor signs off. In the second example above, 127 depends on 1001 and 1001 is

independent. Normally, the APL2 interpreter runs as an independent processor with its auxiliary processors

dependent on it. This scheme allows processor 127 to be informed (and normally to terminate itself) when the

APL2 session ends.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

110

A third level of dependency is defined if a processor is started with a grandparent processor number. This

scheme allows APL applications to serve as dependent auxiliary processors, since they in turn need to use other

dependent auxiliary processors. Longer sequences of ancestors would be meaningful but are not supported.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

111

Processor Profile Structure

Each line in the processor profile can contain one or more tags and its associated data. Tags can be written in

uppercase, lowercase, or mixed case. Any line starting with the character "*" is ignored.

Each processor entry must begin with either a :svopid. tag or a :procauth. tag and continues to the next

occurrence of one of these tags or to the end of the profile. A processor entry beginning with a :svopid. tag

is known as an identification or ID entry. Here is an example of an ID entry that defines 33586 as a remote user

signed on as ID 1002 under BROWN at 123.45.6.78.

* user BROWN at 123.45.6.78
:svopid.33586
 :address.123.45.6.78
 :userid.BROWN
 :processor.1002

A processor entry beginning with a :procauth. tag is known as an authorization entry. Here is an example

of an entry that authorizes the remote processor identified by an svopid of 33586 to share with a local processor

100, which is a dependent of processor 1001:

* AP100 authorization
:procauth.100,1001
 :rsvopid.33586

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

112

Using the Port Server

The APL2 port server is a program that manages TCP/IP interactions for cross-system sharing. The port server

must be active for most scenarios of cross-system sharing to be possible.

Unix Systems: The APL2 port server can be started from an Xterm command window and run in the

background as follows:

 /usr/APL2/bin/apl2psrv &
Note: The directory path may be different on your system if customized during APL2 installation.

Only one port server program should be active on each workstation.

Windows: The APL2 port server can be started in any of the following ways:

 Specifying the -svplisten on parameter when invoking APL2 or any other independent processor.

 Adding the keyword definition SVPLISTEN=on to the [Invocation Options] section of the apl2.ini

file.

 Setting the environment variable APLSVPLISTEN to on before invoking APL2.

 Specifying the -listen on parameter when starting the SVP monitor facility.

 Selecting Cross System->Start from the Actions menu of the SVP Monitor window. (For more

information about the SVP Monitor window, see The SVP Monitor Facility.)

Note: No matter how the port server is started, TCP/IP must have been started before starting the SVP.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

113

Sending a Share Offer

When a shared variable offer is extended, and the processor number from the left of ⎕SVO is greater than 1000,

it is matched against the data in :svopid. tags in the processor profile. If a match is found, the offer is

extended to the processor described by the tag's :processor., :address. and :userid. values.

If no match is found, the offer is extended to an independent processor identified by the given processor

number, within the same SVP domain as the offerer (same IP address and user ID).

If the processor number is less than 1001, the offer is assumed to be to a processor dependent on the offerer.

The parent is taken to be the offerer's processor number and the grandparent is taken to be the offerer's parent, if

any. If this processor is not running, an attempt is made to start the processor. For example, if you are processor

1001 and issue the following share:

 127 ⎕SVO 'VAR'

the offer is made to a processor 127 that is dependent on 1001. If processor 127 is not signed on, an executable

named ap127 is searched for and started automatically, if found. Therefore an APL2 session can communicate

with its dependent auxiliary processors without using the processor profile; dependent auxiliary processors are

started automatically as needed. Independent auxiliary processors must be identified by processor numbers

above 1000.

Note: Values already contained in the variable being offered are not sent to the remote partner. Only values

specified after the share is completely coupled are transmitted.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

114

Receiving a Share Offer

When receiving an offer to share, the processor profile serves to identify the remote processor and to authorize

the share. First, the processor identification of the processor originating the share is matched against the

:address., :userid., and :processor. tags of each ID entry in the processor profile. "Wildcard"

support is provided as discussed in Using Asterisks in Processor Profile Entries.

If a matching entry is found, the svopid of this entry must be identified in the :rsvopid. tag of an

authorization entry for the local processor with whom the caller is trying to share. If this is true, the share is

allowed to proceed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

115

Processor Profile Syntax

Each line in the processor profile can contain one or more tags and its associated data. Tags can be written in

uppercase, lowercase, or mixed case. Any line starting with the character "*" is ignored.

 Identification Entries

 Authorization Entries

Identification Entries

Each processor ID entry must begin with a :svopid. tag and continues to the next occurrence of a

:svopid. or :procauth. tag or to the end of the profile.

:svopid.id

This tag identifies the beginning of an entry and is required. It specifies the number to be used in the left

argument of ⎕SVO when sharing with the processor described by this entry. For incoming offers its value is

returned by ⎕SVQ. It must be a positive number.

id can be coded as "0" in which case the entry identifies any remote processor. An unique id will be assigned to

the processor when it signs on.

:processor.id[,id[,id]]

This tag gives one, two, or three processor numbers separated by commas and is required. These numbers

represent the actual procid, parent and grandparent of the share partner.

Because offers to processors with procids less than 1000 are considered to be offers to dependent processors, a

profile ID entry is required to share with a processor running independently on the same machine and user ID.

In this case, the svopid used must be greater than 1000.

id can be coded as "*" in which case the entry identifies any remote processor with the corresponding
:svopid.

:address.addr

This tag gives the domain name or IP address of the partners machine. A domain name is a character string

identifier as defined by the TCP/IP Domain Name System (DNS). For example: stl.ibm.com or STLAPL.

An IP address is written in "dotted decimal" notation consisting of four decimal numbers between 0 and 255

separated by periods. For example: 12.34.56.111.

addr can be coded as "*" in which case the entry identifies processors from any address with the corresponding
:svopid.

If :address. is omitted, the machine address of the local machine is used.

:userid.userid

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

116

This tag gives the character identification of the user ID of the partner.

The userid value is case sensitive.

Userid values longer than 8 characters will be tolerated by APL2, but only the first 8 characters will be used for

APL2 cross-system communication. Userid values with imbedded blanks will also be tolerated by APL2, but

only the characters preceding the first blank will be used for APL2 cross-system communication.

userid can be coded as "*" in which case the entry identifies processors from any user ID with the

corresponding :svopid.

:userid. can be omitted if :address. is also omitted or specifies the local machine. In that case, the

currently active userid of the local machine is used.

:crypt.routine,library

This tag allows the specification of a user exit to be called for encryption and decryption of shared variable data

sent across the network.

library is the DLL containing the encryption routine.

routine is the routine name within the DLL. It must be compiled with 32-bit System linkage, and must use the

following prototype:

 long _System cryptrtn(long encdecflag,
 char * data,
 long datalen,
 char * buffer,
 long * bufflenp);

A sample encryption routine is shipped with APL2. The sample contains complete documentation on the

parameters and expected results of encryption routines.

Here is an example of a processor entry that defines ⎕SVO argument 33586 as a remote user with encryption

enabled.

* user BROWN at STLAPL
:svopid.33586
 :address.STLAPL
 :userid.BROWN
 :processor.1002
 :crypt.cryptrtn,svpexit

Authorization Entries

Each processor authorization entry must begin with a :procauth. tag and continues to the next occurrence of

a :procauth. or :svopid. tag, or to the end of the profile.

:procauth.id[,id[,id]]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

117

This tag identifies the procid, parent and pparent that is authorized to receive shares and is required.

id can be coded as "*" in which case the entry serves to authorize all local processors.

:rsvopid.id[,id[,...]]

This tag lists the svopid numbers that identify remote processors that are authorized to share with the processor

named in the corresponding :procauth. tag. Multiple numbers can be listed separated by commas.

id can be coded as "*" in which case the entry authorizes any remote processor to share with the corresponding
:procauth.

Here is an example of an entry that authorizes the processor identified by :svopid.33586 to share with a

local processor 100 dependent on processor 1001:

* AP100 authorization
:procauth.100,1001
 :rsvopid.33586

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

118

Processor Profile Examples

The technical reference material you need to share variables between processors running on different machines

was presented in Processor Network Identification and Processor Profile Structure. This section provides

examples of how to code processor profile entries for some typical application needs.

For the purposes of these examples, assume that there are three users running interpreters on three different

machines. Each interpreter process is identified with a unique IP address, user ID, and processor number. The

processor numbers correspond to ↑⎕AI as reported by the interpreters themselves.

For clarity, these sample interpreters are referred to as Users 1, 2, and 3. You need the following information:

User Address User ID Processor Number

1 9.10.11.123 BARB 1001

2 9.10.11.222 jsmith 32739

3 123.45.6.77 djones 6666

 User to User Shared Variables

 User to Auxiliary Processor Shared Variables

 Using Asterisks in Processor Profile Entries

User to User Shared Variables

Assume that User 1 wants to share variables with User 2. The information needed is as follows:

First, in order to offer to share a variable with another processor, you need to identify that processor with some

number. A processor profile entry is then used to associate that number with the user's network information.

Assume that User 1 wants to refer to User 2 with the number 7777. The following entry is required in User 1's

profile:

 :svopid.7777
 :address.9.10.11.222
 :userid.jsmith
 :processor.32739

This entry allows User 1 to extend an offer to User 2.

Next, User 1 needs to authorize User 2 to share variables. User 2 is already identified as 7777 with the

:svopid. tag, and it is known that User 1 is running as processor 1001, so the following entry can be used:

 :procauth.1001
 :rsvopid.7777

This authorizes remote processor 7777 to share variables with local processor 1001.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

119

Remember that there are always two sides to every share. User 2 also needs a number to use to refer to User 1.

Assume that User 2 wants to use the number 3456. The following entry is required in User 2's profile:

 :svopid.3456
 :address.9.10.11.123
 :userid.BARB
 :processor.1001

User 2 also needs to authorize User 1:

 :procauth.32739
 :rsvopid.3456

Note that the :rsvopid. values correspond to the :svopid. values shown above, and the :procauth.

values correspond to the processor numbers of the interpreters as reported by ↑⎕AI.

If Users 1 and 3 also wanted to share variables, they would have to code identification and authorization entries

just as Users 1 and 2 did. However, when coding the authorization entry, User 1 can take either of two

approaches. First, User 1 could simply add another authorization entry. Assume User 3 has been identified as

processor 8888:

 :procauth.1001
 :rsvopid.8888

You can have as many authorization entries in your processor profile as you want, but there is another way. The

:rsvopid. tag can provide a list of processors. So, User 1 could add User 3's number to the existing entry

like this:

 :procauth.1001
 :rsvopid.7777,8888

This entry authorizes the remote users associated with the numbers 7777 and 8888 to share variables with User

1's 1001 processor.

User 1 could authorize more users by adding more entries or by just adding numbers to the :rsvopid. tag.

User to Auxiliary Processor Shared Variables

For another example, assume that User 1 wants to share a variable with AP 127, which is running under

interpreter processor 6666 on User 3's machine. This might be useful if User 3's machine contained a database

that User 1 needed access to.

User 1 needs to add another identification entry to associate a number with the remote processor 127. Assume

that User 1 wants to use the number 9127 to refer to the remote processor. The entry is as follows:

 :svopid.9127
 :address.123.45.6.77
 :userid.djones
 :processor.127,6666

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

120

Notice the :processor. tag now lists two processor numbers. This indicates that AP 127 is a dependent of

processor 6666.

User 1 also needs to authorize shares with the remote processor 127 so the authorization entry becomes:

 :procauth.1001
 :rsvopid.7777,8888,9127

If Users 1 and 3 are set up for user to user sharing, User 3 already has identification entry for User 1. However,

AP 127 is a new processor on User 3's machine, and is sharing variables, so another authorization entry needs to

be added for User 3. Assuming User 3 has identified User 1 as 2229:

 :procauth.127,6666
 :rsvopid.2229

Like the :processor. tag shown above, the :procauth. tag in this authorization entry lists two numbers.

In this case, however, it does not refer to two separate processors. Only a single processor (in this case 127,

dependent of 6666) can be listed in a :procauth. tag. The exception to this rule is the use of an asterisk as

mentioned in Using Asterisks in Processor Profile Entries.

Using Asterisks in Processor Profile Entries

The examples shown demonstrate how to identify specific remote processors and authorize them to establish

shares with specific local processors. Sometimes however, it is not possible to identify all the potential share

partners. Similarly, sometimes you want to give one or more share partners access to all your processors.

Asterisks are used as wildcards in processor profile entries to provide general identification and authorization

Suppose that User 1 is writing a server; there is no way to know who the server's potential clients might be. It is

not possible to code separate identification entries for each client. In this case, User 1 can code this

identification entry:

 :svopid.0
 :address.*
 :userid.*
 :processor.*

In effect, this entry identifies any remote processor as number 0. This number is used for a special reason. A

remote processor is always known to the APL2 session by the number used in the :svopid. tag. When the

number 0 is seen by the APL2 shared variable processor, a new unique number is automatically assigned.

You have now handled the problem of identifying unknown processors, and can now deal with authorization.

An asterisk can also be used in the :rsvopid. tag like this:

 :procauth.1001
 :rsvopid.*

This authorizes shares from any processor.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

121

Finally, assume that User 1 not only wanted to authorize remote users to share with processor 1001, but with

any processor. The following entry can be used:

 :procauth.*
 :rsvopid.*

This entry authorizes all remote processors, indicated by the asterisk in the :rsvopid. tag, to establish shares

with any processor on the machine, indicated by the asterisk in the :procauth. tag.

Notes:

1. When coding entries with wildcards it is important to remember that APL2 will stop scanning the

processor profile as soon as it finds an entry that matches what it is looking for. If you have multiple

entries in your file, it is a good idea to put the entries with wildcards at the end, so that if a more specific

entry without wildcards is also a match, it will be used in preference to the one with the wildcards.

2. If an entry is coded with wildcards it cannot be used to initiate an outgoing offer, as it does not contain

enough information to identify the share partner. Wildcard entries should only be used by servers who

will not initiate offers, but rather only match offers sent to them.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

122

Running a Remote Session Manager

The session manager is usually started automatically when the APL2 interpreter is invoked. In this case, the

session manager and the interpreter run on the same machine.

The session manager can also be used to control a remote interpreter. In this way, an interactive session can be

conducted with an interpreter on another machine across the room or around the world.

The session manager is implemented as auxiliary processor 120. Rather than providing applications with the

ability to execute session manager commands, AP 120 processes requests that conform to the shared variable

interpreter interface. The session manager shares a variable with the interpreter through which the session is

conducted. On Windows, the session manager's Object Editor windows also share variables with the interpreter.

When attempting to use the session manager to control a remote session, the session manager should be

manually started and run independently rather than automatically and dependently by an interpreter. The name

of the program to run is ap120.exe on Windows, and ap120 on Unix systems. The processor number that

the session manager should use to sign on to the SVP should be passed as an argument. For example:

 ap120 -id 1120

The session manager waits for any interpreter to offer it a variable. On Windows, a message window will

appear indicating that the session manager is waiting. A cancel button is provided in this window.

In order to establish a shared variable connection with a remote interpreter, processor identification, and

authorization entries are required for both the interpreter and the session manager. These entries are placed in

the SVP profile file. For more information, see Processor Network Identification.

Note:

1. Before shares can be established, the SVP port server must be running. See Using the Port Server for

details.

2. Since the session manager does not initiate an offer, the order in which the processes in this scenario are

started is important. If the SVP on the machine where the session manager will run is not yet active

when the offer from the remote interpreter comes in, that offer will be lost. The safest procedure to

follow is to start the session manager process (and its port server) before starting the interpreter process.

 Workstation Interpreters

 APL2/370 Interpreters

Workstation Interpreters

When communicating with a remote workstation interpreter, the session manager actually shares a variable with

processor 1, which runs under the interpreter. The session manager's processor profile entries might look like

this:

 :svopid.7001
 :address.234.45.65.78
 :userid.JOHNDOE

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

123

 :processor.1,1001
 :procauth.1120
 :rsvopid.7001

For more information about processor profile entries, see Processor Profile Structure.

These entries would allow the session manager, running as processor 1120, to share variables with processor 1

running under interpreter 1001 on John Doe's machine. The session manager displays 7001 in the title bar when

it receives an offer from the processor identified by the :svopid.7001 tag.

The remote workstation interpreter's processor profile entries would look like this:

 :svopid.9120
 :address.146.75.44.12
 :userid.JaneSmith
 :processor.1120
 :procauth.1,1001
 :rsvopid.9120

These entries allow the processor 1 running under the interpreter 1001 to share variables with the session

manager, running as processor 1120, on Jane Smith's machine.

To invoke a workstation interpreter and have it be controlled by a remote session manager, use the -sm

invocation option to specify the processor identification number of the session manager that the interpreter

should extend an offer to. For example:

 apl2 -sm 9120
on Unix systems, and

 apl2win -sm 9120
on Windows systems.

Before shares can be established, the SVP port server must be running. See Using the Port Server for details.

APL2/370 Interpreters

When communicating with an APL2/370 interpreter, the session manager shares a variable directly with the

interpreter. The APL2/370 products do not include an auxiliary processor 1. The session manager's processor

profile entries might look like this:

 :svopid.7001
 :address.234.45.65.78
 :userid.JohnDoe
 :processor.1001
 :procauth.1120
 :rsvopid.7001

These entries allow the session manager, running as processor 1120, to share a variable with interpreter 1001

running on John Doe's user ID. The session manager displays 7001 in the title bar when it receives an offer

from the processor identified by the :svopid.7001 tag.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

124

The APL2/370 interpreter's processor profile entries would look like this:

 :svopid.9120
 :address.146.75.44.12
 :userid.JaneSmith
 :processor.1120
 :procauth.1001
 :rsvopid.9120

These entries allow interpreter 1001 to share a variable with the session manager, running as processor 1120, on

Jane Smith's machine.

To invoke an APL2/370 interpreter and have it be controlled by a remote session manager, use the sm

invocation option to specify the processor identification number of the session manager that the interpreter

should extend an offer to. For example:

 apl2 apnames(ap2x119(listen(0))) sm(9120)

Notes:

1. The Windows session manager's Open Object and Edit facilities are not supported when controlling an

APL2/370 interpreter.

2. APL2/370 does not use as many different codes as the workstation interpreters to distinguish different

types of output. Several types of output mentioned in the session manager's Colors window are

identified differently by APL2/370.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

125

Shared Variable Interpreter Interface

APL2's Shared Variable Interpreter Interface enables the interpreter to be controlled through a shared variable

rather than through a terminal or file input. The normal session input and output are replaced with a single

shared variable through which communication occurs. This shared variable, and hence the interpreter, can then

be managed by a user or program from another APL2 session. This creates a number of interesting possibilities:

Automated testing

A test control application can be built in APL that drives another application being tested. The control

application can provide any desired input (even things like attention signals), and receives all output that

would normally be sent to the application user. Unlike test drivers running within the same session, it

has no difficulty recovering from application errors, or even system errors!

Remote control

Since shared variables can be used to communicate between systems, It is possible for a user on one

system to control an APL2 session running on a different system, even a different type of system.

Facilities built into the APL2 session manager (see Running a Remote Session Manager) make it look to

the user as if the remote session is actually running on his or her local system.

Asynchronous processing

An APL application can be designed to exploit multitasking by driving one or more subordinate

sessions, each of which is given part of the work to be done. The master session can pass data back and

forth, or synchronize the execution as needed, using either the interpreter interface variable or other

variables shared with the application.

Distributed computation

This is really just a generalization of the asynchronous processing discussed above. Subordinate sessions

can be started on any system in a network, thus utilizing available processing cycles wherever they may

exist. The master session can hand off pieces of the work to the subordinate sessions, perhaps giving any

part of the work to any processor as soon as it becomes available.

 General Concepts

 Shared Variable Protocols

 Interpreter Input Data

 Interpreter Output Data

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

126

General Concepts

The shared variable interpreter interface is activated on a workstation APL2 system by starting an APL2 session

with the -sm nnnn option. On a mainframe system the session is started specifying SMAPL(nnnn). The

interpreter uses the numeric nnnn value as a processor ID with which it should share a variable called APL2.

This variable is then used for all input and output to the interpreter. The variable is shared within the interpreter

and is not available to, nor will it conflict with, variables or other names used by the application.

Once an interpreter is running using the shared variable interface, it operates normally except that its input and

output is through the shared variable. It is the responsibility of the interpreter's shared variable partner to

manage the variable.

The partner can pass character data as input to the session, just as if the data were being typed at a keyboard. It

gets character data back, much like what would be displayed in a session manager window as session output.

(There is some additional information provided with the data. See Interpreter Output Data.) The partner can also

pass a number of special signals to the interpreter, and is given some additional information about system

variables and data stacked using AP 101.

The interpreter executes any expressions or commands sent to it and sends back any messages and arrays

generated through the shared variable. When the expression or command has completed, the interpreter sends a

control code indicating it is ready to receive input. The interpreter waits and/or processes requests until

instructed to shutdown either by a shutdown control signal or an)OFF or)CONTINUE command.

To be able to use this interface, you must have an appropriate entry in your SVP profile (see Processor Profile

Syntax). The following is an example of an entry which would allow the interface to be used between two

APL2 sessions, where the shared variable interpreter session was started with id 2222:

:svopid.2222001 :processor.1,2222

(The svopid value can be anything you wish to use. It is the number to be specified by the controlling session

when sharing variable APL2 with the controlled interpreter.)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

127

Shared Variable Protocols

 Only one variable can be shared with each APL2 session.

 The variable name is always APL2.

 The interpreter will offer or match the variable only if it was started with the appropriate -sm or SMAPL

option.

 The variable can only be shared with the partner specified in the invocation option.

 If offered first by the partner, initial values are ignored by the interpreter.

 Input to the interpreter must be simple character vectors or integer vectors.

 Output from the interpreter is 3-element nested arrays:

1. scalar integer return code

2. 2-element integer type code

3. data, of variable shape, rank, or depth

 If the interpreter's partner retracts the shared variable before the interpreter retracts it, the interpreter will

not shut down; the interpreter will simply continue to execute the expression it is processing or wait for

the next input.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

128

Interpreter Input Data

Two types of data can be sent to the shared variable interpreter:

 Character vectors are sent to represent session input to the interpreter, in response to a ⎕ or ⍞ request in

an APL statement, or in response to an immediate execution or editor 1 prompt from the interpreter

itself. Character vectors should only be sent when the interpreter has indicated it is ready for input.

Character vectors sent at any other times are likely to be ignored, or may result in a shared variable

interlock.

 Simple integer vectors may be sent as control signals. They include execution control signals which may

be sent at any time, and output control signals which may only be sent when input has been requested.

The following control signal codes are defined:

 Execution Control Signal Codes

0 0 No operation (see note 1)

0 1 Attention

0 2 Interrupt

0 3 Suppress output

0 4 Shutdown

 Output Control Signal Codes

1 0 Set output to array mode (see note 2)

1 1 Set output to line mode

1 2 n Set output to multi-line mode (see note 3)

Notes:

1. It is possible for the interpreter's partner to not be able to reference the shared variable (a WS FULL may

occur during the reference.) In these cases, the partner should specify a no operation control signal. This

will free the interlock condition and allow the interpreter to again reference and specify the variable.

2. Array mode output is unformatted, i.e. an arbitrary APL array produced as the result of an APL

statement.

Only the APL2/370 interpreter currently supports this mode; interpreters for the other systems ignore the

(1 0) request.

3. Multi-line mode output is formatted as a vector of character vectors, with the number of lines limited to

the third value given (shown here as n). This can provide significant performance improvements over

single line output. Only output of a single type (see the second item of Output Data) is grouped together

in one array.

The APL2/370 interpreter does not currently support this mode; it ignores the (1 2 n) request.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

129

Interpreter Output Data

The shared variable interpreter sends messages and arrays in 3-item arrays:

1. An integer scalar return code. If the return code is not negative, then it and the rest of the array is

defined as ⎕EC output. If the return code is negative, then it indicates whether the rest of the array

provides message, system variable, stacked input, or array output data.

2. A 2 element integer vector, which is either (0 0), or provides additional information about the type of

output. When non-zero, the first element of this item indicates what type of output or input prompt is

involved. The second element indicates whether the output is complete. If the second element is 1, then

more information will be sent at a later time. 1 is used for ⍞ output from an APL statement, and also for

input requests when prompt data is provided.

3. Output data, if any. Its format and content depends on the first two items.

Here are the types of output that may appear. In the following definitions, i may be 1 indicating the output is

incomplete, or 0 indicating it is complete.

1 (0 0) array Normal output. array is either a character vector, a

vector of character vectors, or an arbitrary array,

depending on the output mode in effect. See Signal

Codes under Input Data.

0 ⎕ET ⎕EM An error was raised during execution.

Note: Only APL2/370 systems currently return this

form. On other systems, errors result in several lines

of class 8 (error message) output.

¯1 (0 i) 'text' System message.

Note: Only APL2/370 systems currently return this

form.

¯1 (1 1) ' ' APL (immediate execution) prompt. The interpreter

is ready for normal input. The data is the normal six

blank prompt. The "incomplete" flag is set because

the prompt is not a full output line.

¯1 (2 1) ' ' Quad prompt. The interpreter is ready for ⎕ input.

The data is the normal six blank prompt. The

interpreter does not provide the ⎕:

¯1 (3 1) '[n] ' Function definition prompt. The interpreter is ready

for function definition input. The line number

prompt does not have to be echoed in the value

returned.

A quick way to copy small functions from the

controlling session to the controlled session is to use

a statement like this:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

130

APL2←'2 ⎕TF ',2 ⎕TF 'function'

¯1 (4 i) '[n] data' Function line display.

¯1 (5 i) ' ∇ date time' Function time stamp.

¯1 (7 i) 'name[n] ' Function name line number (stop or trace).

¯1 (8 i) 'text' Error message.

¯1 (9 i) 'text' System command message.

¯1 (10 i) 'data' Traced result.

¯1 (11 i) 'data' Quad output.

¯1 (12 i) 'data' Quad-Prime output.

¯1 (13 i) 'data' Debug output.

¯1 (14 i) 'data' Quad-Prime prompt. The interpreter is ready for ⍞

input. The data may be empty or include ⍞ output.

Note: The class 12 or 14 prompt data should

normally be returned along with the response. The

system assumes that the response overlays data from

the beginning of the line.

¯2 (0 0) (⎕PW ⎕PP PBS ⎕PR ⎕FC) System Variable Values. This value is sent

whenever one or more of the system variables

important to a session are changed. The value is sent

just before an output is sent. The third item contains

the values of the listed items that currently exist in

the shared variable interpreter. They can be used to

modify the local value so that displays and prompts

appear correctly.

PBS represents the current setting of the APL2/370

)PBS command, and is either 0 (for PBS OFF) or

1. Interpreters other than APL2/370 always provide

0 for this item.

¯3 (0 0) 'line' Stacked Input. This value is sent whenever the

interpreter requests input and the AP 101 stack is

not empty. line is the first character vector in the

stack. It has been removed from the stack, but not

given to the interpreter. It should (normally) be

returned on the following input request.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

131

Transferring Workspaces and Files

Workspaces are easily transferred between APL2 systems. Transfer file formats have been defined to permit

exchange of workspace objects among all IBM APL2 implementations. Additional tools are provided for

migration of the older VS APL format to APL2.

Files created by the APL2 file processors, AP 210 and AP 211, can also be transferred across systems, or

accessed on shared media.

 Workspace Transfer Between APL2 Systems

 Migration of TryAPL2 Workspaces

 Migration of VS APL Workspaces

 AP 210 Files

 AP 211 Files

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

132

Workspace Transfer Between APL2 Systems

In general, APL2 workspaces must be sent to other APL2 systems as transfer form files. On workstation

platforms, these files have an extension of .atf. On mainframe platforms, these files have an extension or

filetype of apltf. Note that on some workstations the names of transfer files and workspaces and their

extensions are case sensitive.

The APL2 commands used to create and read transfer form files are)OUT,)IN, and)PIN. To transfer a

workspace, start APL2 on the system where the workspace resides, and issue the following commands:

)LOAD wsid
)SIC (or)RESET)
)OUT filename

A transfer file is created by the)OUT command.

Once the transfer file is created, it then must be moved to the target APL2 system. The techniques for physically

moving files from one system to another can vary depending on the types of systems and what connections exist

between them.

 One key issue is that the mainframe systems use an EBCDIC character encoding, while the workstation

systems use an ASCII encoding. Both ASCII and EBCDIC transfer file formats are defined, and all IBM

APL2 systems accept both formats. No data conversion should be attempted within the file itself when

transferring it from one system to another. The receiving APL2 system performs any necessary

conversion. If the transfer is done electronically through a network connection, the programs controlling

that transfer must be told that this is a "binary" rather than "character" file. (The exact terminology used

may vary depending on the system and network control programs being used.)

 Some systems use "record-oriented" files while others use stream files. If stream files are being

transferred to a system that expects record-oriented files, an arbitrary record length may be used, but the

existing record separators ("LF" or "CR/LF") must be retained. Conversely, separators should not be

inserted when record-oriented files are being transferred to a system that expects stream files. Again, the

receiving APL2 system adjusts to these differences.

 Within these constraints, standard data transmission commands appropriate to the system such as "ftp

put", "SEND", "SENDFILE", or "TRANSMIT" can be used for network transmission, with

corresponding commands such as "ftp get" or "RECEIVE" as appropriate to the receiving system.

 Because the receiving APL2 system performs all necessary conversions, it is also possible to use shared

DASD, remote file systems, removable media, or other such facilities to transport the data.

When the file has been transferred to the target system, it can then be read into APL2 and saved as a workspace:

)CLEAR
)IN filename
)SAVE wsid

When transferring a workspace from a mainframe system to a workstation system, there is a possibility that

there may be APL names in the workspace containing underscored alphabetic characters. These characters are

not supported on the workstation platforms, and will cause errors on)IN. The ATFUSTOLC function

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

133

(described in The MIGRATE Workspace) can be used to remove the underscored characters before the)IN

process.

Note: Although it may be possible to run the older APL2/PC for DOS on the same system where you have

installed this new version of APL2, the workspace formats used by the two programs are different. Workspaces

must be migrated between the two systems using .atf files as described above.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

134

Migration of TryAPL2 Workspaces

Workspaces saved under TryAPL2 can be read by all the workstation APL2 systems. The function TRYLOAD in

the FILE workspace can be used to read these files.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

135

Migration of VS APL Workspaces

VS APL workspaces can be migrated to the workstation platforms using the VSCOPY function from the

MIGRATE workspace.

The saved VS APL workspaces should have a clear state indicator. This can be ensured before you)SAVE the

workspace by using the)SI command to check the state indicator, and entering → one time for each * in the

display from)SI.

Download each saved workspace in binary form to a file. The VSCOPY function assumes that the file extension

used for downloaded VS APL workspaces is .VWS (renamed from .VSAPLWS on VS APL). Then, run the

VSCOPY function against each workspace:

)CLEAR
)COPY 2 MIGRATE VSCOPY
 VSCOPY 'filename'
)ERASE VSCOPY
)SAVE wsid

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

136

AP 210 Files

Files created by AP 210 are portable between all workstation APL2 systems. Files should be transmitted in

binary mode.

In addition, files created by AP 210 on APL2/PC can be read by the workstation APL2 systems. Writing back to

these files is allowed, but is not recommended for code A files. The format used for code A files is different

from APL2/PC, and objects take a different amount of storage. File corruption is likely. In order to create a

writable file, each object in the APL2/PC file should be read and rewritten to a new file.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

137

AP 211 Files

Files created by AP 211 are portable between APL2 systems running on CMS, TSO, and workstations. The files

must be transferred in binary mode. The receiving APL2 system performs all necessary conversions of data.

Files to be uploaded to the mainframe must be uploaded as fixed format files, with a record length equal to the

AP 211 blocksize for the file. The blocksize can be obtained by issuing an AP 211 USE command against the

file.

In addition, files created by AP 211 on APL2/PC can be read by the workstation APL2 systems. Writing back to

these files is not allowed. The function REBUILD211 in the FILE workspace can be used to permanently

convert the APL2/PC file to the new format if desired.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

138

Associated Processors

Names are used in APL expressions to identify variables, defined functions and operators, and constants (such

as labels). When APL encounters names during the execution of expressions, it passes control to the appropriate

routines in the interpreter for evaluation.

Through the use of ⎕NA, and by associating a name with a specific processor, an APL application program can

cause that name to be processed by routines in the specified associated processor instead of the APL interpreter.

Associated processors provide an alternate mechanism for handling the evaluation of APL names.

The following sections discuss external names and associated processors in general:

 Applications of External Names

 Managing External Names from APL

 Environmental Considerations

The following associated processors are provided with the APL2 system:

 Processor 10 provides facilities through with programs written in Rexx may be created, manipulated,

and executed. It also provides several routines for easy access to operating system files.

 Processor 11 provides facilities through which compiled programs written in languages other than APL

can be called. The processor provides services so that you can specify how to map APL data to and from

the data structures that can be required by these programs.

Processor 11 also provides facilities that allow access to APL objects in namespaces. Because each

namespace has its own namescope, an application placed in a namespace can avoid name conflicts with

other applications.

 Processor 12 provides facilities through which APL data files and operating system text files can be

accessed using normal APL2 syntax. The processor makes the file appear to exist as an object in the

workspace although it may actually be larger than the available workspace size.

 Processor 14 provides facilities through which Java programs and variables may be accessed.

 Processor 15 provides facilities for accessing structured storage.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

139

Applications of External Names

A name associated with a processor is called an external name.

External names have a variety of uses in building production applications. By giving you additional options in

the ways in which you process information from APL, external names help improve productivity. Some of the

reasons you might use external names are:

 Reuse of Existing Programs

A principal objective of Processor 11 is to permit you to reuse many existing programs without any need

to modify them. Processor 11 provides mechanisms by which you describe where the programs exist and

what data structures they require in arguments. Once the information has been provided, you can then

use external names to access these programs from your workspace just as if they were APL functions.

 Synchronous Access to System Information

Sometimes an application needs easy access to information about the host system or from another

application subsystem. Since host information can vary widely between platforms, it is impractical for

APL to provide it directly. You can use external names, however, to temporarily "escape" APL, access

the information, and bring back the results to the workspace for use by the application.

 Improve Performance

It is common for an application to have a uniquely tailored data structure or algorithm that is used

widely by the application's own functions. This application-specific feature often assumes a

fundamental, what APL might term "primitive", nature and frequently becomes the bottleneck that limits

either the capacity or performance of the application. External objects can be used to overcome such

problems by permitting you to enclose the definition in compiled code. Because external objects are

syntactically equivalent to the APL object from which they were derived, you need only replace the

APL definition in the workspace with the external name association; much like copying an object. The

remainder of the application is unmodified.

 Maintain Shared Code

Shared code is important to installations because only a single copy need exist in the system, no matter

how many users are accessing it. This can significantly reduce input/output and real storage

requirements.

Sometimes an application is built on gate functions that control access to critical resources like files.

These functions mask the application from the internal structure, location, or other attributes of the

resource so that these may be changed in a transparent matter. If a gate function is modified, it must be

updated in all the saved workspaces where it exists. This can be a burden in practice. However, since

only the information that characterizes the association is known about an external function in a saved

workspace, an external function can be replaced and be available to all subsequently activated

application workspaces.

 Avoid Name Conflicts

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

140

Users who attempt to combine APL applications or parts of applications together often encounter

situations where the same name exists in more than one of the applications. Since names in the active

workspace must be unique, the applications must be modified to have unique names if they are to be

combined in a single workspace. Namespaces, supported through processor 11, provide an alternative

solution to this problem since each namespace contains its own namescope. Names need only be unique

to the namespace in which they reside.

 Increase Effective Workspace Size

Processor 11 permits the use of large applications, and Processor 12 permits the use of large files, as if

they resided within your own workspace. In fact, the storage requirements within the workspace may be

a small fraction of the size of the file or application.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

141

Managing External Names from APL

The system function ⎕NA is used to associate a name with a processor or to query the association of an existing

name. A formal and detailed description of ⎕NA is included in APL2 Programming: Language Reference.

 Creating and Destroying an Association

 Invoking an External Name

 Querying an Associated Name

 Avoiding Name Conflicts

Creating and Destroying an Association

Briefly, ⎕NA in its dyadic form is used to associate a name with a processor. The right argument lists the name

or names to be associated with the processor and then activated. The left argument of ⎕NA identifies the

processor and provides information that is passed to the processor when the name is activated. For example:

 0 11 ⎕NA 'BEEP'
 1

causes the name BEEP to be associated with Processor 11. The result, 1, indicates that the name has been

accepted by Processor 11 and the association is active; a result of 0 would indicate the processor was unable to

activate the association due to an error, or perhaps due to a lack of resources.

When a name is successfully associated with a processor and activated, the processor specifies the name class

and valence (1 ⎕AT) for the name. The association, name class, and valence remain in effect until the object is

deleted from the workspace. The association, name class and valence remain in effect even after using the

commands)SAVE,)LOAD, or)COPY. The information necessary to produce an association is produced by 2
⎕TF and)OUT for use by 2 ⎕TF or)IN.

A name may be disassociated from a processor by deleting it from the workspace with ⎕EX,)ERASE, or by

completing execution of a function that localized the name. A name is also disassociated when)IN or)COPY

replaces an associated object with another object of the same name.

When a name is disassociated from a processor, or when the active workspace is replaced with)CLEAR,

)LOAD,)OFF or)CONTINUE, the processor is contacted to allow it to free resources associated with that

name. At this point the name is said to be inactive, even though it still may be associated with the processor in a

workspace that was previously saved. If the workspace is subsequently reloaded, the processor will be contacted

to reactivate the name when the name is first encountered in the execution of an APL expression or in the right

argument of dyadic ⎕NA. If the processor is unable to reactivate a name encountered during the execution of an

APL expression, a VALENCE ERROR or VALUE ERROR will be generated.

Invoking an External Name

When a name that has been associated with a processor is encountered during execution of an APL expression,

control is passed, along with any arguments associated with the operation, to the processor. The processor then

manages the execution of the requested routine and returns results or an error condition to APL. For example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

142

 3 11 ⎕NA 'MEAN' ⍝ AN AVERAGE FUNCTION
 1
 MEAN 1 2 3 4
 2.5
 ⎕←RESULT←2+MEAN 1 2 3 4
 4.5
 MEAN 'ABCD'
 DOMAIN ERROR
 MEAN 'ABCD'
 ^

Names defined and associated with processors through the use of dyadic ⎕NA appear and act like any other

names in the APL workspace. They are reported by)NMS,)FNS,)VARS,)OPS, and ⎕NL, and they may be

used in APL expressions. They are saved as part of a saved workspace and retain their name class and

association when subsequently loaded or copied. When such a name is erased or otherwise deleted (as the result

of localization,)COPY,)ERASE, etc.), it is no longer associated with any processor. Since the name is then

undefined, it is available to be defined as an APL function, operator or variable, or associated with another

processor.

Querying an Associated Name

Checking the Association Information

Monadic ⎕NA is used to query the name class and associated processor for one or a list of names. For example:

 3 11 ⎕NA 'GEORGE'
 1
 ⎕NA 'GEORGE'
 3 11

The following expression lists all names that are associated with processors other than APL:

 (0≠,0 1↓⎕NA ⎕NL 1 2 3)⌿⎕NL 1 2 3
 GEORGE
 MEAN

Checking for Active Associations

Dyadic ⎕NA can be used to query a previously associated name to find out if it is currently active. A result of 1

indicates the association is active, while a result of 0 indicates that it is inactive. An inactive association is most

likely to result after loading a saved workspace. Usually, the processor can no longer find the file or program

requested by the association. An attempt to use a function whose association is currently inactive results in

VALENCE ERROR. For example:

 ⎕NA¨'GEORGE' 'SALLY'
 3 11 3 11
 (⊂3 11) ⎕NA¨'GEORGE' 'SALLY'
 1 0
 SALLY 'GO ROUND THE ROSES'
 VALENCE ERROR
 SALLY 'GO ROUND THE ROSES'
 ^

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

143

Objects in the APL workspace that are not associated with an external processor are associated with the APL

interpreter, which can also be thought of as a processor. Monadic ⎕NA returns a 0 for the processor number of

such names to indicate that they are handled by the APL interpreter. For example:

 VAR←1 2 3
 ⎕FX 'Z←FN A' 'Z←1÷A'
 FN
 ⎕NA 2 3⍴'VARFN '
 2 0
 3 0

Specifying processor 0 in dyadic ⎕NA, while valid, has no effect for an undefined name:

 2 0 ⎕NA 'MARY'
 0
 ⎕NA 'MARY'
 0 0
 ⎕NC 'MARY'
 0

Avoiding Name Conflicts

A second, or surrogate, name may be used with the name of any object in monadic or dyadic ⎕NA:

 3 11 ⎕NA 'NANCY LIL'
 1

In such cases, the first name, NANCY, is used to refer to the function in APL expressions in the workspace. The

second or surrogate name, on the other hand, is used to identify the object, LIL, to the processor. Surrogate

names are particularly useful when a processor requires a specific name that would cause a name conflict with

other names in the application.

Use of a wrong or conflicting surrogate name in dyadic ⎕NA causes ⎕NA to return a 0 result. The ⎕TF function

can be used to determine the correct surrogate name:

 3 11 ⎕NA 'NANCY MCGILL'
 0
 2 ⎕TF 'NANCY'
 3 11 ⎕NA 'NANCY LIL'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

144

Environmental Considerations

Associated processors and any programs they may call execute as direct extensions of the APL language. The

programs themselves are presumed to be well-behaved production programs. As such, they are expected to

preserve the APL execution environment and not compromise the integrity of the APL workspace. If an

application requires isolation from the APL environment rather than the synchronous behavior of external

names, you should consider a solution based on auxiliary processors as described in Auxiliary Processors and

Writing Your Own Auxiliary Processors.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

145

Processor 10 - Communicating with Rexx

Processor 10 provides:

 Use of Rexx functions as APL functions

 Creation of Rexx routines from APL arrays

 Access to operating system files

Processor 10 is designed to be used with the Object Rexx language, originally developed by IBM and now

managed by the Rexx Language Association. Either IBM Object Rexx or the 32-bit version of Open Object Rexx

(also known as ooRexx) must be installed to access Rexx using Processor 10. Open Object Rexx is available at

http://www.oorexx.org.

The operating system file utilities provided with the workstation version of Processor 10 do not actually require

Rexx services. They may be used even where Rexx is not available.

This chapter provides a very brief introduction to Rexx, and some examples of using the Rexx language, but

does not attempt to provide a tutorial on Rexx. Detailed information on Rexx can be found in the manuals

supplied with the Rexx products.

Note: The mainframe version of Processor 10 also supports access to variables and constants in the Rexx

variable pool. The workstation version of Processor 10 does not support access to the variable pool.

Using Rexx Functions as APL Functions

The Rexx language provides functions and variables, objects that are familiar to users of APL. Rexx functions

are similar to APL monadic functions and Rexx variables are like APL character vectors. Rexx communicates

exclusively with character strings so that not only Rexx variables, but also the arguments and results of Rexx

functions, are characters.

To use a Rexx function from APL, you must first establish an association using dyadic ⎕NA (See Associating

Names with Processor 10). The function thus established is monadic, and its argument is either a character

vector or vector of character vectors (See Constructing the Rexx Arguments). The function may be built-in to

Rexx, part of a Rexx function package, or a Rexx program in a file. The result of invoking a Rexx function

successfully is always a character vector. If Rexx detects an error while interpreting the function, the result is a

numeric scalar giving the Rexx return code (See Handling Results and Errors).

As an example, consider the use of the Rexx built-in functions DELWORD, WORDPOS and WORDS that

operate on blank-delimited substrings of vectors, called words.

DELWORD(string,offset,length)

deletes length words from string beginning at offset

WORDPOS(target,string)

returns the offset in string of target

WORDS(string)

returns the number or words in string

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

146

The following example illustrates the basic technique for building APL applications that use Rexx functions.

Although the example limits itself to built-in Rexx functions, you may also access Rexx external programs. By

writing your own functions in Rexx, you can enhance the power of APL with the string handling and system

access of Rexx.

 ⍝ Start off simply
 3 10 ⎕NA 'DELWORD'
1
 DELWORD 'NOW IS THE TIME' '2' '2'
NOW TIME
 DELWORD 'NOW IS THE TIME' '3'
NOW IS
 DELWORD 'NOW IS THE TIME' '5'
NOW IS THE TIME
 DELWORD 'NOW IS THE TIME'
¯40
 ⍝ DELWORD requires two arguments
 ⍝ Now for a more perennial example
 (⊂3 10) ⎕NA¨'WORDPOS' 'WORDS'
1 1
 HERBS←'PARSLEY, SAGE, ROSEMARY AND THYME'
 SUBHERBS←'SAGE, ROSEMARY'
 WORDPOS SUBHERBS HERBS
2
 WORDS SUBHERBS
2
 ⍝ Note that the result is character
 2=WORDS SUBHERBS
0
 2=⍎WORDS SUBHERBS
1
 ⍝ Note that character result can be useful
 DELWORD HERBS (WORDPOS SUBHERBS HERBS) (WORDS SUBHERBS)
PARSLEY, AND THYME
 ⍝ Combine APL and Rexx
 ∇Z←PHRASE REMOVE_FROM STRING;POSITION
[1] Z←STRING ⍝ Assume not found
[2] →('0'=POSITION←WORDPOS PHRASE STRING)/0 ⍝ Done if not found
[3] Z←DELWORD STRING(POSITION)(WORDS PHRASE) ⍝ Delete PHRASE
[4] ∇
 SUBHERBS REMOVE_FROM HERBS
PARSLEY, AND THYME

Associating Names with Processor 10

Before you can invoke a Rexx function, you must first use dyadic ⎕NA to associate the name of the function

with Processor 10. Processor 10 nearly always accepts a name association from ⎕NA provided that there is

virtual storage available to build any required internal control blocks. Since there is no way for Processor 10 to

validate the existence of any Rexx function, it assumes that you know what you're doing and returns a 1 to

show that the association is active. For example:

 3 10 ⎕NA 'SUB substr'
1
associates name SUB with the Rexx built-in function substr, and

 3 10 ⎕NA '∆FV'
1
associates name ∆FV with the Processor 10 built-in routine of the same name.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

147

Because APL names cannot contain the characters #.$@!&? , in order to access Rexx functions whose names

contain those characters, you must use a surrogate name. For example:

 3 10 ⎕NA 'FRED fred.rex'
1
associates APL name FRED with the Rexx program in file fred.rex.

External names persist in the workspace. Once you have associated a name with a Rexx function, you can

continue to use the function (as long as the Rexx interpreter can find it) just as if it were a defined function in

your workspace.

When the function is invoked, Processor 10 calls Rexx to execute it. If the function is built-in to Rexx, Rexx

executes it directly. Otherwise Rexx searches for an external Rexx function of that name.

Constructing the Rexx Arguments

The argument to a Rexx function contains from 1 to 20 items. Each item may be either:

 A string - that is, a character vector or scalar, or

 Omitted - indicated by either (⍳0) - an empty numeric vector, or (0⍴⊂'') - an empty enclosed

character vector. The vector is enclosed because empty character vectors are valid Rexx strings.

For example, the function TIME has no required arguments and could be invoked in a Rexx program as

TIME(). To invoke it from Processor 10, you must provide an argument that contains one omitted string. An

omitted string is not the same as an empty one.

 3 10 ⎕NA 'TIME'
1
 TIME ⍳0
16:06:58
 TIME ''
¯40

The argument is always a character vector in form, even though the intent of the argument may be numeric. For

example, the Rexx function SUBWORD expects at least two strings: a list of words, and the index of the first

word to be returned.

 3 10 ⎕NA 'SUBWORD'
1
 X←2
 SUBWORD 'Now is the time' X
DOMAIN ERROR
 SUBWORD 'Now is the time' X
 ^
 SUBWORD 'Now is the time' (⍕X)
is the time

All of the items of the argument to a function must be character vectors or scalars.

 SUBWORD 'Now is the time' (1 2⍴' 2')
RANK ERROR
 SUBWORD 'Now is the time'(1 2⍴' 2')

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

148

 ^

If you attempt to invoke a Rexx function with an argument consisting of more than 20 strings, Processor 10

signals an APL error.

 SUBWORD 21⍴⊂'FRED'
LENGTH ERROR
 SUBWORD 21⍴⊂'FRED'
 ^

If you provide either too few or too many strings for a specified function, Rexx generates error 40, which is

returned to APL as a numeric return code.

 SUBWORD 1⍴⊂'FRED'
¯40

This can sometimes happen inadvertently if you forget that when simple scalars are juxtaposed, you get a

simple vector, not a nested vector.

 3 10 ⎕NA 'DELWORD'
1
 DELWORD 'A B' '2'
A
 DELWORD 'A ' '2'
A
 DELWORD 'A' '2'
¯40
 'A' '2'
A2
 ⍝ Use of 'ravel each' will overcome this
 DELWORD ,¨'A' '2'
A

Handling Results and Errors

The result of a successful Rexx function is always a character vector. If the result is needed in a numeric

context, you can use one of the APL execute functions (⍎, ⎕EA or ⎕EC) or the CTN external function to convert

from character to numeric format.

Some Rexx functions might return a character vector that is really several strings joined by a separator

character; the newline character (x'0a'), for example. You can use the partition function (⊂) to convert such a

partitioned string into an APL vector of vectors.

Other Rexx functions are capable of returning a vector that might represent a structure of data containing both

numbers and characters. You can often use the RTA external function to remap such data into an APL2 general

array.

There are two classes of errors that can occur using Processor 10: either an APL error in the workspace, or some

kind of Rexx error outside of APL.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

149

The first situation usually is caused by an attempt to invoke the function with something other than a character

vector. The error may be reported as DOMAIN ERROR, RANK ERROR or LENGTH ERROR (See Constructing

the Rexx Arguments).

Rexx errors are typically some sort of syntax error in the Rexx program, or a problem in locating and calling the

program. These are always returned as a numeric scalar result, so if you check for such a result you can always

positively determine if an error occurred.

In addition to the numeric result, Rexx messages indicating more about the error will often be produced in the

APL2 interpreter's window. The interpreter window is minimized in normal operation. If you have received a

Rexx error and you wish to check for Rexx messages, you will need to find the interpreter window in the

operating system task bar or task list and restore it to view them.

Creating Rexx Routines from APL Arrays

APL arrays can be executed as Rexx programs using the Processor 10 built-in function ∆EXEC.

Before using ∆EXEC, dyadic ⎕NA must first be used to associate its name with Processor 10:

 3 10 ⎕NA '∆EXEC'

See Associating Names with Processor 10 for more details.

r←array ∆EXEC arguments

Executes the Rexx program contained in array with the items of arguments as the argument strings.

array is a character vector, matrix or vector of vectors containing the Rexx program.

arguments is a vector of 1 to 20 character vectors that are the strings to be passed to the Rexx program as

arguments. (See Constructing the Rexx Arguments)

The right argument of ∆EXEC does not include the "name" of the program. In effect, the temporary program

contained in the left argument array is invoked in the same way as described in Using Rexx Functions as APL

Functions.

The following example demonstrates the use of ∆EXEC:

 ⍝ NORMALTIME is a character matrix
 NORMALTIME
Parse arg year month day rest
if length(month) = '1' then month = '0'month
if length(day) = '1' then day = '0'day
return DATE('N',year||month||day,'S')
 3 10 ⎕NA '∆EXEC'
1
 NORMALTIME ∆EXEC ⍕⎕TS
9 Feb 1999

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

150

Accessing Operating System Files

Three built-in file utilities are provided with Processor 10. ∆F returns information about files. ∆FV and ∆FM

read and write text files as APL character arrays.

Before using the file utilities, dyadic ⎕NA must first be used to associate the name of the function with

Processor 10. For example:

 3 10 ⎕NA '∆FV'

See Associating Names with Processor 10 for more details.

∆FV and ∆FM are equivalent in function to the APL functions of the same name in public workspace FILE,

except that:

1. The APL functions are available on all the APL2 workstation systems and on the DOS APL2/PC

system. They are not available on the APL2 mainframe systems.

The Processor 10 functions are available on the APL2 mainframe systems and workstation systems.

They are not available on the DOS APL2/PC system.

2. The Processor 10 functions are generally faster than the APL functions.

3. The Processor 10 functions are less likely to generate WS FULL than the APL functions.

The ∆F Function

fileinfo←∆F filespec

returns information about a file.

filespec is a character vector containing the file name. The name may include path information. If path is

not included, the file will be located using standard operating system search order.

fileinfo is a nine-element nested array:

fileinfo[1] The full file name, including path

fileinfo[2] File attributes (read, write, execute)

fileinfo[3] Length of longest record

fileinfo[4] Number of records

fileinfo[5] Total file size (bytes)

fileinfo[6] Time of last modification

fileinfo[7] Drive number

fileinfo[8] '?' (unused)

fileinfo[9] '?' (unused)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

151

If the operation is unsuccessful, fileinfo contains the return code from the operating system file routine.

The CHECK_ERROR function can be used to obtain more information.

The ∆FV Function

r←∆FV filespec

Reads a file into an APL vector of character vectors. Trailing blanks are removed from the end of each record.

The file's line delimiters are removed. Delimiters of CR/LF or simple LF are handled.

If the operation is successful, r contains the APL array. If it is unsuccessful, r contains the return code from the

operating system file routine.

r←array ∆FV filespec

Writes an APL array to a file with variable-length records. array may be either a character matrix or a vector

of character vectors. Each row of the matrix or character vector is written as a file record. Trailing blanks are

removed from the end of each record. Line delimiters are added to the end of each record.

If array is empty, the file is erased.

r contains the return code from the operating system file routine. 0 indicates success.

The ∆FM Function

r←∆FM filespec

Reads a file into an APL character matrix. Each row of the matrix is padded with blanks to the length of the

longest record in the file. The file's line delimiters are removed. Delimiters of CR/LF or simple LF are handled.

If the operation is successful, r contains the APL array. If it is unsuccessful, r contains the return code from the

operating system file routine.

r← array ∆FM filespec

Writes an APL array to a file with fixed-length records. array may be either a character matrix or a vector of

character vectors. Each row of the matrix or character vector is written as a file record. Trailing blanks are not

removed. For vectors of character vectors, each record is padded with blanks to the length of the longest vector.

Line delimiters are added to the end of each record.

If array is empty, the file is erased.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

152

r contains the return code from the operating system file routine. 0 indicates success.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

153

Processor 11 - External Routines and Namespaces

Processor 11 provides facilities that allow access to objects outside the active workspace. These objects can be

routines written in languages other than APL2, or APL2 objects in namespaces.

APL2 and processor 11 manage the necessary housekeeping, and argument and result conversion, based upon

descriptive information provided for each routine by the user.

 Accessing Non-APL Routines

 Accessing Namespaces

 Name Association Left Argument Syntax

 NAMES Files and Routine Descriptors

 Routine Descriptor Tags

 Array Patterns

See Managing External Names from APL for more information on the characteristics of external names in

general.

Accessing Non-APL Routines

Processor 11 manages the interface between the APL2 active workspace and non-APL routines outside the

workspace. Processor 11 has the responsibility to load the non-APL routine, translate arguments from the APL2

workspace to a form the non-APL routine can work with, call the non-APL routine, and translate the routine's

results to a form the APL2 interpreter can work with.

Conceptually, non-APL routines are merely called by processor 11. Once access to a routine is established

through processor 11, the routine is treated like a locked APL function. Every time the user executes an

expression that mentions the non-APL program, processor 11 is called by the APL2 interpreter and it in turn

calls the routine. Processor 11 requires several types of information to perform this task.

Processor 11 needs to know about the arguments and results for each routine it calls. Since processor 11

translates arguments from APL2 workspace format to the non-APL routine's format, it needs to know what

format the routine is expecting. Likewise, when the routine returns results, processor 11 needs to understand

their format to be able to translate them to a workspace format.

Before processor 11 can call a routine, it must locate the routine. Routines reside in DLLs (Windows) or

executable modules (Unix systems). Processor 11 must know the name of the routine, and the name of the DLL

or module it resides in.

All of this information provided to Processor 11 in a routine descriptor. The routine descriptor can be passed to

processor 11 directly in the left argument of ⎕NA, or stored in an external NAMES file (see NAMES Files and

Routine Descriptors).

Accessing Namespaces

Facilities are provided with APL2 that allow a saved workspace to be encapsulated and converted to a

namespace file. Such namespace files can be subsequently accessed through Processor 11. Access to the APL

objects (arrays, functions and operators) in a namespace is provided through the use of ⎕NA.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

154

To convert a saved workspace to a namespace, the saved workspace must be processed by the external routine

CNS.

Information used to locate the objects in the namespace that are to be accessed from the active workspace or

from other namespaces may be described in a NAMES file available to Processor 11, or provided in the left

argument of dyadic ⎕NA (see NAMES Files and Routine Descriptors).

Once external objects are declared through the use of dyadic ⎕NA, they can be treated as normal arrays,

functions or operators in the user's workspace.

The following example illustrates this process:

1. The user develops an APL application and saves it in his private library as workspace REPORT with the

command:

)SAVE REPORT

Assume that the workspace contains two functions, SETUP and RUN, that are designed to be called

directly, and a number of subsidiary functions, operators and arrays that are used by the SETUP and

RUN functions.

For purposes of illustration, assume the following definitions for SETUP and RUN:

 ∇Z←SETUP A
[1] INITIALIZE A ⍝ CALL INITIALIZATION FUNCTION
[2] Z←'SETUP COMPLETE'
[3] ∇
 ∇Z←RUN A
[1] PROCESS A ⍝ CALL PROCESS FUNCTION
[2] Z←'RUN COMPLETE'
[3] ∇

2. The saved workspace is converted to a namespace using the external routine CNS that is provided with

APL2:

 3 11 ⎕NA 'CNS'
1
 'SETUP' 'RUN' CNS 'REPORT'
REPORT.ans

The right argument to CNS is the name of the workspace to be converted. The optional left argument is a

list of names to be made available for access. Because a name list was provided as the left argument to

CNS in this example, external access to the namespace will be restricted to the names SETUP and RUN

only.

CNS returns as its result the name of the file it has created.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

155

3. The SETUP and RUN functions may then be accessed as normal APL functions through the use of ⎕NA:

 'REPORT' 11 ⎕NA 'SETUP'
1
 SETUP 'INITIAL TEST'
SETUP COMPLETE
 'REPORT' 11 ⎕NA 'RUN'
1
 RUN 'INITIAL TEST'
RUN COMPLETE

Characteristics of Namespaces

Namescopes

Each namespace contains its own namescope. That is to say, it contains a set of APL arrays, functions and

operators that are known within that namespace. The functions and operators in a namespace can call other

functions and operators or access arrays within the same namescope.

While executing APL expressions, functions or operators, one namescope is active and is used in locating the

definitions or values for APL names. In a)CLEAR workspace or a)LOADed workspace without suspended

functions or operators, the primary namescope (that of the active workspace, rather than any namespace) is

activated. In that state, references to local and global names are resolved in the primary namescope.

Namescope Switching

You can declare a name to be in a namespace, and thus in another namescope, with ⎕NA. When a name declared

with ⎕NA is encountered during the execution of an APL expression, the system switches to the namescope in

which the name's definition exists so that its value or definition and names (local or global) that it references are

taken from the corresponding namescope. This change of namescope is said to be an explicit change, because

the name was explicitly declared to be in another namescope through the use of ⎕NA.

The system remains in the alternate namescope until the function or operator completes or until it causes

another namescope switch. While executing in its namescope, local and global names referenced by the

function or operator are resolved from the same namescope. If the function or operator suspends during its

execution, the user is left in that namescope and commands such as)FNS,)VARS, etc. report names in that

namescope. The user can return to the primary namescope by abandoning execution with the command

)RESET.

Operators in Namespaces

An implicit change of namescopes occurs when an operand to an external operator is referenced. For example,

if an external operator MOP is declared through the use of ⎕NA, and then called with a defined function operand,

FN, when and if the operator references its operand, an implicit switch of namescopes occurs. This change

occurs to allow the function FN to operate correctly and refer to names in the namescope in which it is defined.

For example, the following defined operator in a namespace returns the canonical representation of FUNCTION

from the caller's namescope.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

156

 ⍝ In the called namescope
 ∇RESULT←(FN MOP) ARGUMENT
[1] RESULT←FN ARGUMENT
[2] ∇
 ⍝ In the calling namescope
 4 11 ⎕NA 'MOP'
1
 ⎕CR OPERATOR 'FUNCTION'

Querying the Namescope

The external routine QNS, provided with APL2, can be used to query the current namescope. It returns the left

argument to ⎕NA of the function or operator used to enter the current namescope. For the primary namescope

(the user's active workspace), it returns '' 11.

Accessing the Caller's Namescope

Certain applications, when implemented as namespaces, need to reach back into the namescope from which

they were entered to retrieve or set values, or to execute expressions, system functions, defined functions, or

defined operators. An application in a namespace, for example, might wish to obtain the value for ⎕IO from the

caller's namescope, or might wish to use ⎕CR to obtain the canonical representation of a function in the caller's

namescope. Such a "reach back" facility can be implemented in several ways:

1. Reaching back to the primary namescope (active workspace) is accomplished with a special form of

⎕NA:

 '' 11 ⎕NA 'object'
1

This form is valid only when issued from a namespace, and always accesses the primary namescope,

regardless of how many namescopes are available.

2. Reaching back to the previous namescope (your caller's namescope) can be done by using the external

routine EXP, supplied with the APL2 system. For example:

 3 11 ⎕NA 'EXP'
1
 ⍝ Reference caller's ⎕IO
 EXP ⊂'⎕IO'
0

EXP causes an implicit switch to the namescope that caused explicit entry into the current namescope. If

the current namescope was entered implicitly (as a result of executing the operand to an external

operator, or as the result of another call to EXP), this namescope switch accesses the namescope that last

issued an explicit call to the current namescope.

3. Reaching back to a specific target namescope when there is more than one alternate namescope

available can be accomplished by designing the application namescope to be entered through a defined

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

157

function or operator with an argument that identifies the target namescope. That argument can

subsequently be used with ⎕NA to access names in the target namescope. For example, before calling the

namespace, the caller could issue:

 3 11 ⎕NA 'QNS'
1
 CURRENT←QNS 0

to determine the left argument for ⎕NA that allows re-entry to the current namescope. Then that value

can be passed to the namespace application (and in turn passed by it to other namespaces):

 'NSAPPL' 11 ⎕NA 'FUNCTION'
1
 FUNCTION CURRENT

The namespace application can then use the value passed to it as a left argument to ⎕NA:

 ∇Z←FUNCTION TARGET;OBJLIST
[1] TARGET ⎕NA 'NL ⎕NL'
[2] OBJLIST←NL 2 3 4
[3] ∇

System Variables in Namespaces

Each namespace contains its own copy of the system variables, except for ⎕NLT, ⎕PW and ⎕TZ, which are

session variables and have only a single value in the user's session. System variables such as ⎕IO, ⎕PP, ⎕RL,

etc. can have different values in a namespace than they have in the user's active workspace.

Storage Consumption

Objects in the namespace do not consume permanent space in the user's workspace unless their definitions are

modified during execution in the namespace's namescope. If an object is so modified or if new objects are

dynamically created in the namespace's namescope, those new definitions consume space in the user's

workspace.

In addition, on the first ⎕NA to a namespace, a copy of the name table in the namespace is made in the active

workspace. Any changes to objects in the namespace are recorded in this copy of the name table and such

changes are local to the user who issued the ⎕NA.

Effect of)SAVE and)LOAD

Once a name has been declared, through the use of ⎕NA, to be in a namespace, that name remains associated

with the namespace until it is explicitly deleted (with)ERASE, ⎕EX, etc.). The association is retained in the

workspace where the ⎕NA was issued even after that workspace is saved with)SAVE. The information required

to form an association is also produced by)OUT for use by)IN.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

158

Objects that have been modified or created during execution in the namespace's namescope are saved along

with the user's workspace when a)SAVE command is issued, along with sufficient information to re-access

names referenced by the namespace. The namespace itself is not saved.

If a saved workspace that contains names associated with one or more namespaces is loaded, the namespaces

are not accessed until the associated names are first encountered during the execution of APL expressions, or

until they are specifically reactivated through the use of ⎕NA. If the namespaces are no longer available when

the re-association occurs, attempts to access the objects fail.

If, after a)LOAD command, it is found that the namespace has been modified (that is, recreated from the saved

workspace) since its last use, a warning message is produced and the user is given access to objects in the new

namespace. Data or objects in the namespace that were created or modified through previous use of the

namespace, and saved when the user's workspace was saved, are lost.

Portability of Namespace Applications

In general, APL2 code that uses namespaces is quite compatible across the systems which support them.

However, there are some differences. In order to write applications which can be run on multiple systems the

programmer must take these differences into consideration.

1. The process of creating a namespace is different on different systems. On mainframes, external function

PACKAGE is used to create the namespace file, and additional steps may be required to create an

operating system load module from that file. On workstations, external function CNS is used to create

the namespace file, and no additional steps are required.

2. The namespace file itself is not portable across platforms. Namespaces are built from saved workspaces,

and like saved workspaces, they are specific to the type of hardware on which they were generated.

3. On each system, association to objects in the namespace is supported by several different forms of the

left argument to ⎕NA. Not all of these forms are supported on all systems. This difference can be

handled by placing the object descriptor in an external names file appropriate to the system. and using

the common association syntax:

 0 11 ⎕NA 'OBJECT'

See NAMES Files and Routine Descriptors for more information on using a names file.

4. On mainframe systems, after a namespace object has been associated, changes to the valence or name

class of the object are not tolerated. If such changes are made, VALENCE ERROR or SYNTAX

ERROR will result when using the object. On workstation systems, changes to the valence or name class

are handled in the same way as other changes to the object definition. The modified object is stored in

the user's workspace and the name table for the namespace points to the modified version, which can be

used normally. Applications written to run on both mainframe and workstation systems should not make

changes to the valence or name class of associated objects.

Name Association Left Argument Syntax

The APL2 system function ⎕NA is used to establish an association between a workspace name and an external

object that processor 11 manages. The syntax of the ⎕NA expression for processor 11 can take six forms.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

159

1. The first form causes processor 11 to look for the routine descriptor in an external NAMES file located

by the value of the p11 session option. The session option can be specified as APL2 invocation

parameter -p11, as a P11 keyword entry in the [Invocation Options] section of the apl2.ini file, or

as environment variable APLP11.

class 11 ⎕NA 'object'

class indicates the expected name class of object (1, 2, 3 or 4, as defined for the system function

⎕NC, or 0 to mean any class is accepted.) If class is non-zero, it is compared against the actual name

class of the object. If they do not match, the association fails.

Note: Name classes 1, 2 and 4 are supported only for namespaces.

The search for object progresses as follows:

1. Processor 11 looks for the value of session option p11.

The value can contain a single file name or a series of file names separated by the path delimiter

character (on Windows, the semicolon; on Unix systems, the colon). The file names can be fully

qualified. The files are processed in order until a match is found.

If a value was not specified, the system proceeds using the simple name aplnm011.nam on

Windows; the name /usr/APL2/defaults/aplnm011.nam on Unix systems.

2. Processor 11 attempts to open the specified file using standard operating system facilities. If the

file is not found, the search proceeds to the next file in the list. If there are no more files to be

searched, the association fails.

3. Processor 11 searches the NAMES file for an entry for object. If an entry is not found, the

search proceeds to the next file in the list. If there are no more files to be searched, the

association fails.

2. The second ⎕NA form causes processor 11 to use an environment variable other than APLP11 to locate

the NAMES file.

'(envvar)' 11 ⎕NA 'object'

The search follows the same progression, using the environment variable envvar rather than APLP11.

3. The third ⎕NA form supplies processor 11 with the file name of the NAMES file or files directly.

'<filenames>' 11 ⎕NA 'object'

The search, using filenames, follows the same progression, bypassing the use of an environment

variable.

4. The fourth ⎕NA form supplies processor 11 with the routine descriptor directly.

'routine_descriptor' 11 ⎕NA 'object'

The first character of the routine descriptor must be a colon (:). Routine descriptors are discussed in

NAMES Files and Routine Descriptors.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

160

5. The fifth form is valid only for namespaces. The filename of the namespace file (created by the CNS

external routine) is provided directly.

'namespace' 11 ⎕NA 'object'

A path and the file extension may be provided if desired. If not provided, the current working directory

and the extension .ans will be used.

6. The sixth form is valid only from within a namespace.

'' 11 ⎕NA 'object'

This syntax specifies that the object is to be located in the user's active workspace and not in a

namespace. Attempts to issue this form from the active workspace fail and return 0.

NAMES Files and Routine Descriptors

This section discusses the format and contents of the NAMES file and the routine descriptor.

NAMES files are text files that contain comment records (an * in column 1), case-insensitive keywords that

start with a ":" and end with "." (known as tags), and descriptive information (anything following the tag, up

to the next tag or end of record, except for trailing blanks). The syntax of each noncomment record is:

 :keyword.Descriptive text.

More than one keyword/text pair can be on each non-comment line.

The description of each routine is located by a :nick. tag with the descriptive information being the name by

which processor 11 knows it, and ends at the next :nick. tag or the end of the file.

If the routine descriptor is to be passed in the left argument of ⎕NA rather than through a names file, the

:nick. tag is not used. Rather, the set of descriptor tags that would follow the :nick. entry for the routine

are passed. The first character of the routine descriptor character vector must be a colon (:).

The descriptive text for each tag can contain colons and periods provided that they cannot be interpreted as tags.

It is not valid to use any sequence consisting of a colon, a letter, optionally one or more additional letters or

numbers, and finally a period.

The maximum record length allowed in a NAMES file is 254 characters. In some cases, however, text of more

than 254 characters in length may be required for a tag. To accommodate this requirement, the text can be

written in successive records in a NAMES file, each of which is prefixed with an appropriate tag. (Use

preceding blanks in additional descriptive text if blanks are required between phrases.) For example:

 :rarg.(G0 1 3) (1 E8 *)
 :rarg. (I4 2 * 10)
 :rarg. (I4 2 10 *)

The limit on the total length for all the descriptive text associated with a tag is 4095 characters.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

161

Routine Descriptor Tags

The following tags are supported for both non-APL routines and namespaces:

 :nick.

 :desc.

 :link.

 :lib.

 :path.

 :macro.

The following additional tags are supported for non-APL routines:

 :proc.

 :valence.

 :rarg.

 :rslt.

:nick.name

Specifies the name that will be used by APL2 for the routine.

This tag is used in a NAMES file to associate the routine description following the tag with the specified name.

The same name must be used as the right argument of the name association.

If the routine descriptor is passed as part of the left argument of ⎕NA , this tag is not used. In that case, the

routine name is implied from the right argument.

:desc.description

(Optional) Allows inclusion of descriptive text in a routine descriptor.

Comments can also be included in the NAMES file by placing an asterisk in column 1 of comment records.

:link.type

Specifies the type of program linkage to be used when calling the routine. type can have one of the following

three values:

APL indicates an APL namespace. If no :link. tag is provided, this is the default.

SYSTEM is the default linkage supported by most languages, also known as _System or __stdcall on

Windows, or CDECL on Unix systems. Arguments are converted by Processor 11 from internal

APL format to the format expected by this type of routine. The result, if any, is converted back to

internal APL format by Processor 11.

See Using Prebuilt DLLs for more information on using :link.SYSTEM linkage to call existing

routines on Windows. See Creating SYSTEM Linkage Routines for more information on writing

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

162

new routines with :link.SYSTEM linkage.

Notes:

:link.SYSTEM does not support dyadic functions.

:link.SYSTEM supports up to 64 parameters.

FUNCTION describes the linkage used for routines written expressly to be called by APL2. APL objects are

passed directly to the routine as arguments and the routine must build an APL object to return as

the result.

See Creating FUNCTION Linkage Routines for more information on writing routines with

:link.FUNCTION linkage.

:lib.file

Names the file that contains the namespace or non-APL routine. The name can be fully qualified.

For non-APL routines on Windows, it must be a DLL.

:path.fullpath

:path.(envvar)

Path used to locate the file specified in the :lib. tag.

If the path is enclosed in parentheses, it is evaluated as the name of an environment variable that gives a path to

locate the file.

If a :path. tag is not specified, normal operating system search order is used.

:macro.name definition

Allows definition of shorthand notations for frequently used expressions.

:macro. is valid only in NAMES files. Macros must be defined before the first :nick. tag, and are invoked

by $(name).

Once a macro name is defined, all the subsequent instances of $(name) in the same file are replaced with the

definition portion of the line. For example, a macro defined as:

 :macro.CHARP (G4 0) (S1 1 *)

Can be used later on as:

 :rslt.$(CHARP)

which is interpreted as

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

163

 :rslt.(G4 0) (S1 1 *)

The :macro. facility allows 20 levels of nested macros. Any tags appearing in the definition are treated as

normal text. Leading and trailing spaces are ignored.

:proc.entrypoint

The entry point name in the executable file specified by the :lib. tag.

The entry point name is case sensitive.

If not specified, defaults to the name used in the right argument of the name association.

Note: This tag is valid for non-APL routines only. If specified for a routine in an APL namespace, it is ignored.

:valence.er fv ov

Specifies the valence attributes of the routine.

er specifies whether the routine produces an explicit result. If er is 0, the routine does not produce an

explicit result. If er is 1, the routine may produce an explicit result.

fv specifies whether the routine is niladic or monadic. If fv is 0, the routine is niladic. If fv is 1, the routine is

monadic. If fv is 2, the routine is dyadic.

Note: Dyadic functions are only supported for routines with :link.FUNCTION.

ov must be 0.

If not specified, the valence attributes default to 1 1 0.

Note: This tag is valid for non-APL routines only. If specified for a routine in an APL namespace, it is ignored.

:rarg.pattern

Specifies a pattern for the right argument of the external routine with linkage type :link.SYSTEM. See Array

Patterns for details on patterns.

Note: This tag is valid for non-APL routines with system linkage only. If specified for an APL namespace or

function linkage routine, it is ignored.

:rslt.pattern

Specifies a pattern for the result of the external routine with linkage type :link.SYSTEM. See Result Patterns

for details.

Notes:

1. > and * cannot be used in :rslt. patterns.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

164

2. This tag is valid for non-APL routines with system linkage only. If specified for an APL namespace or

function linkage routine, it is ignored.

Array Patterns

The :rarg. and :rslt. tags are used to specify the expected arguments and result for an external routine

with linkage type :link.SYSTEM.

When an external name is encountered during the execution of an APL expression, APL compares the actual

arguments against the patterns provided in the routine's description. If possible, APL converts the actual

arguments to match the patterns so the external routine receives its argument data in an expected and

predictable form. If it is not possible to accomplish the conversion, or if an inconsistency is found between the

actual arguments and the patterns, APL issues an appropriate error message.

When the external routine completes, if the :rslt. tag has been used, APL uses the pattern specified in the

:rslt. tag to convert the data returned by the routine to an APL2 array.

An array pattern is a keyword value or character vector that describes the structure and type of an array. In

addition to using array patterns to describe routine arguments and results, array patterns are used with several

external routines supplied with APL2. Array patterns are given as the left argument of the external routines RTA

and ATR, and are produced by the external routine PFA. The external routine SIZEOF can be used to determine

the number of bytes described by a pattern. Array patterns are also used in Associated Processor 15

associations.

 Array Item Patterns

 Nested or Mixed Arrays

 Array Patterns for Non-APL Programs

 Array Patterns for ATR, PFA, RTA, SIZEOF, and Associated Processor 15

Array Item Patterns

The general form of an array item within an array pattern is as follows:

([count][>]type rank[shape])

Where:

(An optional indicator for readability. Inclusion or omission has no effect on processing. A left

parenthesis can be used only at the beginning of an item pattern, and cannot be followed by a blank.

count An optional integer or *, indicating the number of items in the array. This field can be omitted if the

number of items is fully specified by the shape below. It can be coded as * if the number of items is

fully specified by the shape, or if a variable number of items is permitted.

> An optional update indicator of an argument that is set by the function. Such an argument is passed by

name, as seen by the caller. The data provided by the calling program must be a character vector

containing the name of an APL array. The content of that array is passed to the called program, and any

updates to its argument are returned in that variable.

Note: The "result indicator" (<) defined for APL2/TSO and APL2/CMS is not implemented on any

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

165

other platforms.

type A required data representation indicator. The following codes are supported:

Type Description Storage per item
B1 Boolean 1 bit
B8 Integer byte (unsigned) 1 byte
B16 Unsigned short integer 2 bytes
B32 Unsigned long integer 4 bytes
I2 Short integer (signed) 2 bytes
I4 Long integer (signed) 4 bytes
E4 Real single precision 4 bytes
E8 Real double precision 8 bytes
J8 Complex single precision 8 bytes
J16 Complex double precision 16 bytes
S1 Null terminated char string 1 byte, + 1 for string
S2 Null terminated char string 2 bytes, + 2 for string
C1 Character 1 byte
C2 Extended character 2 bytes
C4 Extended character 4 bytes
X0 Skipped data 1 byte
G0 General object none (inline structure)
G4 General object 4 byte pointer

rank A required integer showing the number of dimensions.

shape A set of integers, one per dimension (empty if rank is zero). If varying shapes are accepted, one or

more items of the shape can be specified as * in the :rarg. tag.

) A readability indicator that can be provided at the end of an item pattern. Inclusion or omission has no

effect on processing. If used, it must immediately follow the rank and shape information without

intervening blanks.

The elements of the pattern must be separated from one another by one or more blanks or parentheses.

Array Item Pattern Examples

Array Array Pattern

'ABC' (3 C1 1 3) or C1 1 3

2 3 4 (3 I4 1 3) or I4 1 3

Nested or Mixed Arrays

The pattern for a nested or mixed array is a recursive structure in which the first subpattern has the type G0 or

G4 (general object). Each subpattern can be surrounded by parentheses to make it easier to read. Parentheses do

not indicate nesting; nesting can only be designated by using a G0 or G4 type. Each subpattern can be either an

array item pattern or a group of items as defined here.

The following are examples of arrays with nested or mixed array patterns:

Array Array Pattern

'ABCD',2 3 4 (7 G0 1 7)(C1 0)(C1 0)(C1 0)(C1 0)(I4 0)(I4 0)(I4 0) or
G0 1 7 C1 0 C1 0 C1 0 C1 0 I4 0 I4 0 I4 0

'ABCD' (2 3 4) (2 G0 1 2)(4 C1 1 4)(3 I4 1 3) or
G0 1 2 C1 1 4 I4 1 3

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

166

As is shown in the examples above, a general object implies a recursive pattern where the first item is of type

G0 (or G4). The count field in that item determines the number of additional array patterns that must follow.

Note: The functions ATR, RTA, and SIZEOF do not permit all the forms of array patterns. See Array Patterns

for ATR, PFA, RTA, SIZEOF, and Associated Processor 15 for restrictions that apply.

Array Patterns for Non-APL Programs

Array patterns are most frequently used to define the interface to a program written in some language other than

APL. These patterns are provided at the time of the name association, as discussed in Name Association Left

Argument Syntax.

Processor 11 uses argument patterns for two purposes:

 Conformability checks on a routine's argument

 For routines with linkage :link.SYSTEM, to determine how to pass the argument to the external

routine. The rest of the discussion of patterns in this chapter is directed at that type of routine.

It is useful to start by thinking of how arguments are passed to the external routine and to work backward from

there to argument patterns and finally to the APL data structure needed to satisfy the patterns.

Consider first a routine that accepts a 4-byte integer and a 4-byte floating point number as arguments. To write

the pattern for this, begin by saying that there are two arguments, and then list them:

 :rarg. (2 G0 ...) (1 I4 ...) (1 E4 ...)

Focus on the type descriptors (G0, I4, and E4) and the number to their left, which is the number of items being

described. The numbers to the right of the type descriptor deal with the data as viewed by APL.

Now consider what happens if the second parameter is an array of floating point numbers. Some languages

make it possible to pass such an array directly, but more typically it is passed as a pointer to the array. Here is

the pattern for a parameter list containing the integer as before, but also including a pointer to an array of 6

floating point numbers:

 :rarg.(2 G0 ...) (1 I4 ...) (1 G4 ...) (6 E4 ...)

The first pattern descriptor still says there are two parameters, but the second parameter is now a G descriptor.

Every G descriptor is followed by, and includes, as many subdescriptors as the number of items it defines.

Some languages treat "string" as a special data type, but both APL and C treat it essentially as an array of

characters. Like other arrays it is most commonly pointed to rather than passed directly. In this example, a

character string and a floating point array are passed:

 :rarg.(2 G0 ...) (1 G4 ...) (20 S1 ...) (1 G4 ...) (6 E4 ...)

Because the S1 is subordinate to the first G4, the two of them together count for only one of the two items

defined by the initial G0.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

167

An argument being passed can also be a structure. Such structures are typically pointed to rather than being

passed directly. A G0 is used to define the structure, but a G4 is also used (as above) to specify the pointer to it.

Consider a program that expects a single argument, which is a pointer to a structure containing an integer and an

8-character name:

 :rarg.(1 G0 ...) (1 G4 ...) (2 G0 ...) (1 I4 ...) (8 C1 ...)

You cannot replace the (1 G4) followed by the (2 G0) with a single (2 G4). (2 G4) implies two

pointers, rather than a single pointer to two items.

Structures can contain pointers to other structures, which are represented by G4 entries within the structure

definition, or they can contain other structures imbedded within them. In the next example, the 8-character

name has been replaced by a date composed of day (within the month), a 3-character abbreviated month name,

and a year. The day and year are both expressed as 2-byte integers. Assume that the program is expecting the

year to start on an even-byte boundary, so there is an unused byte in front of it:

 :rarg.1 G0... 1 G4... 2 G0... 1 I4... 3 G0... 1 I2... 3 C1... 1 X0... 1 I2...

These examples can help you generate patterns for any interface definition you might encounter; except for all

those unexplained periods.

The first number after the type descriptor is always the rank as seen by the APL program, and is normally set to

whatever is most natural for the APL programmer. For data entries (all except G0 or G4) this is completely

determined by the nature of the data.

For G0 entries, this is always a vector (rank 1), except that when a single parameter is being passed the first G0

is often more conveniently defined as a scalar (rank 0). G4 entries usually represent a single pointer, and can

best be represented as scalars. The exception is an array of pointers, which is of whatever rank is most

appropriate to the data (usually rank 1).

Given the rank and the total number of items, you can deduce the shape information. Revisiting the examples

above, all multi-item pattern descriptors are most naturally represented as vectors except for the 6-item floating

point array, which could be a matrix. It is assumed to be a 2 by 3 matrix below. The first example becomes:

 :rarg. (G0 1 2) (I4 0) (E4 0)

The numbers used earlier to the left of the type descriptor are optional, because they can be computed from the

information on the right, so they have been omitted here for brevity. Viewed from the APL standpoint this is a

2-item vector, each item being a number. APL programs make no distinction between integers and floating

point numbers, so this is a simple numeric vector (depth 1).

The second example (viewed beginning with the G0) is also a 2-item vector, but this time the second item is an

array. Here is what the completed pattern looks like along with sample data for the call:

 :rarg.(G0 1 2) (I4 0) (G4 0) (E4 2 2 3)
 75 (⊂2 3⍴1.2 2.3 3.4 4.3 3.2 2.1)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

168

Note: The array needs to be enclosed because the (G4 0) tells APL to expect a scalar.

The third example is very similar. Note in the sample data below that only 11 characters are passed even though

the field was defined as 20 bytes long. This is permitted for null-terminated strings.

Note: There must be room at the end of the data for the null terminator. So at most 19 characters can be passed

in this 20-byte string.

For null-delimited strings that are not updated by the non-APL program, there is no need to set a specific size

ahead of time. Such strings are often defined with a length of *.

 :rarg.(G0 1 2) (G4 0) (S1 1 20) (G4 0) (E4 2 2 3)
 func (⊂'Hello there')(⊂2 3⍴1.2 2.3 3.4 4.3 3.2 2.1)

The (G4 0) implies not only a pointer as seen by the non-APL program, but also a level of nesting as seen

from APL. But rules in this area can be a bit slippery, as the next example shows. Two changes have been

introduced: a structure and a single parameter. Assume for the moment that the initial G0 specifies a 1-item

vector:

 :rarg.(G0 1 1) (G4 0) (G0 1 2) (I4 0) (C1 1 8)

You might want to say that the following is valid data:

 13 'Thomas '

But this is a two-item array, and the pattern calls for a single item. Data such as that is appropriate for a routine

that expected two arguments rather than one, so the data needs to be enclosed. That yields to a scalar value, and

the pattern calls for a 1-item vector. Thus, given the pattern as assumed, correct data is:

 ,⊂⊂13 'Thomas '

Now the reason for the earlier comment about a scalar G0 becomes clear. A simpler form of the interface is:

 :rarg.(G0 0) (G4 0) (G0 1 2) (I4 0) (C1 1 8)
 ⊂⊂13 'Thomas '

It is typical of single-parameter interfaces that the APL program needs to explicitly enclose the data.

A simple case requiring an explicit enclose is that of a routine that accepts a pointer to a character string as its

only parameter:

 :rarg.(G0 0) (G4 0) (S1 1 *)
 ⊂⊂'string'

Although the first enclose of the character string seems reasonable, because it implies "pointer to," the second

enclose seems a bit unnatural, and is due to the strict conformance to the rule used so far in the examples: The

argument descriptor is started with a G0 tag that identifies the number of parameters.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

169

In the case of single-parameter arguments, it is often desirable to completely elide the (G0 0) descriptor from

the :rarg. tag:

 :rarg.(G4 0) (S1 1 *)
 ⊂'string'

This simplification is most commonly seen in the case of a single parameter that is a simple number. For

example:

 :rarg.(G0 0) (I4 0)

Is simplified to:

 :rarg.I4 0

Updated Arguments

Routines in some compiled languages typically do not distinguish between input arguments and results. They

are passed a list of pointers to the values that may represent input arguments, values to be updated, or

preallocated space for results. APL functions, on the other hand, take arguments that are never updated and

produce explicit results that were not previously passed as arguments to the function. For example:

 ∇RESULT←COMPUTE ARG
[1] RESULT←2×ARG
[2] ∇
 COMPUTE 10
20

APL requires that functions that update argument data in place be called with the names of the arguments rather

than their values. For example:

 ∇UPDATE ARG
[1] ⍎ARG,'←2×',ARG
[2] ∇
 NUMBER←10
 UPDATE 'NUMBER'
 NUMBER
20

Both approaches are supported by processor 11. Argument items that are to be updated in place are indicated

with the symbol > preceding the representation type in the argument pattern. For example, a non-APL routine

that expects two integer vectors as arguments, the second of which is to be updated in place, would be

described:

 :rarg.(G4 1 2) (I4 1 3) (>I4 1 3)

As with APL functions, such routines must be called with the names of the arguments to be updated rather than

their values:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

170

 RESULT←3⍴0
 COMPUTE (1 2 3) 'RESULT'

APL checks to ensure that arguments updated with the > symbol are names and not values. If names are not

found when the function call occurs, an error results. Items that are to be updated must always be passed using a

pointer, so there must always be a G4 level ahead of any descriptor that contains a >.

If an external routine misbehaves, for example by writing beyond the end of an argument that is able to be

updated, workspace damage and possibly SYSTEM ERROR may occur. It is essential that valid argument

patterns be constructed before calling an external routine.

Result Patterns

The :rslt. tag can be specified on routines with an explicit result to describe the form of the supplied result.

If supplied, :rslt. must be specified with a pattern. The pattern takes the same form as argument patterns

described above, with the following exceptions:

1. * cannot be used in the pattern.

2. The > optional update indicator cannot be used in the pattern.

If the routine produces an explicit result and a :rslt. tag is supplied, the pattern is used to format the

routine's result. If a :rslt. tag is not supplied, the right argument is returned. The indirect values in the

argument might have been updated.

If the routine does not produce an explicit result, the :rslt. tag is ignored.

Explicit Results

The first value of the :valence. tag is used to specify whether the routine returns an explicit result. This

value is used to specify what 1 ⎕AT should return when it is used to query the valence of the routine.

If the :valence. tag specifies that the routine returns an explicit result and no :rslt. tag is supplied, then

the right argument is returned as the result. The routine may have updated the argument.

If the :valence. tag specifies that the routine does not return an explicit result, then the :rslt. tag is

ignored.

Function Valence

Function valence is controlled by the second value coded in the :valence. tag.

Niladic functions do not accept arguments. If a :rarg. tag is supplied for a niladic routine, it is ignored.

Monadic functions with linkage :link.SYSTEM require a :rarg. tag.

Functions with linkage :link.FUNCTION cannot have a :rarg. tag.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

171

Array Patterns for ATR, PFA, RTA, SIZEOF, and Associated Processor 15

External routines ATR and RTA accept array patterns as arguments, and external routine PFA returns an array

pattern as its result. The external routine SIZEOF calculates the amount of storage described by a pattern.

Associated Processor 15 uses patterns to determine how to convert data between bytes in storage and arrays in

the APL2 workspace.

The following restrictions apply to patterns used as arguments to these routines:

1. A G0 descriptor can be used as needed, but the G4 descriptor is not supported.

2. The > optional update indicator is not permitted.

3. A single * can appear in either the count or shape field if its value can be computed from the other

field. (count is the product of values in shape.)

Patterns returned by PFA also meet these restrictions, and always have count and shape fully specified.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

172

Processor 12 - Files as Arrays

Processor 12 provides access to files by maintaining an image of the file as an array that appears to reside in the

active workspace. This is analogous to the behavior of Processor 11 for functions. That processor can create an

image of a program (residing in a DLL) as a function that appears to reside in the active workspace. Neither the

program (for Processor 11) nor the file (for Processor 12) is actually within the workspace. This has the

following implications for Processor 12 files:

 Very large files can be accessed, files that can be many times larger than the active workspace. And yet

the access can be done using normal APL constructs such as (to show only a few examples):

Compression bool/file

Each process¨file

Selective assignment (recno⊃file)←value

Catenation file←file,⊂record

 Associations can be retained across)SAVE and)LOAD, but the data is preserved in the file, and may be

updated by other programs between uses.

It should also be noted that files, even files newly created by Processor 12, have an existence

independent of the workspace. Assigning a value to a Processor 12 variable causes (at least

conceptually) an immediate and permanent change to the file. This is not affected by later expunging the

variable, and is independent of whether the workspace containing it is later saved.

Processor 12 uses the 'A' and 'D' file formats of the file auxiliary processor, AP 210. Files written by processor

12 can be read by AP 210, and vice versa. However, Processor 12 variables are quite different from variables

shared with AP 210.

 Processor 12 variables contain only the data, and (at least conceptually) all of the data at once. Shared

variables contain both data and control information, and only relatively small pieces of the file data at a

time.

 Processor 12 variables are really a path between the workspace and the actual file. Shared variables are a

path between two programs, one of which in turn is capable of accessing files.

 Processor 12 associations can be retained across)SAVE and)LOAD. Shared variable associations must

be reestablished explicitly.

The next sections discuss the following Processor 12 topics:

 Name Association Syntax for Processor 12

 Supported Primitive Operations

 APL Files as External Variables

 Text Files as External Variables

 Format Descriptors for External Variables

 Processor 12 Errors

 Portability of Processor 12 Applications

Name Association Syntax for Processor 12

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

173

The general syntax for name association through Processor 12 is:

('type' 'locator' 'format') 12 ⎕NA 'name'

name A name to be used within the APL workspace to refer to the file. The particular name used has no

significance to Processor 12, and bears no required relationship to the name of the file with which it

is associated. Surrogate names are permitted, but have no functional significance.

type A vector of two or more characters, the first specifying what class of file support is desired, and the

others indicating how the file is to be accessed.

The classes supported are:

'A'
APL files. Arbitrary APL arrays are stored in the file in APL2 CDR format. This is

equivalent to an AP 210 code 'A' file.
'F'

Text files. Character arrays are stored in the file in ASCII form. This is equivalent to an AP

210 code 'D' file.

The types of access are:

'W'
The file may be read and/or written. Exclusive control of the file is to be gotten and held for

as long as the association is active. If write access cannot be obtained, the ⎕NA returns 0.
'C'

The file is to be created and then written. If both C and W are specified, the file is created if it

does not exist, or opened if it does exist. If either C or W are specified alone, then the file

must exist (W) or not exist (C) before the operation.
'R'

The file can be read, but not written. Any attempt to modify the associated variable causes an

interruption of the responsible APL statement. The ⎕ET error code is 2 4 (SYNTAX
ERROR, Invalid operation in context.) If R is specified together with C or W, it

is accepted but ignored.
'D'

The file is to be deleted on completion of processing. The deletion occurs when the file

connection is erased, whether by ⎕EX, exit from a function where it is localized,)ERASE,

)COPY,)CLEAR,)LOAD,)OFF or)CONTINUE. D must be used together with one or more

of the other access codes. It cannot be specified alone.

Notes:

1. The above access codes may be given in any order, and may be separated by blanks as

desired.

2. The mainframe syntax for Processor 12 allows an additional parenthesized expression after

the C code, to specify the record length and file size limit for the file. This expression will be

tolerated, but ignored, by the workstation version of Processor 12.

Examples of type items:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

174

'FW'
Gain read/write access to an existing text file.

'ACW'
Create an APL file, or gain read/write access to it if it already exists.

'FRD'
Read a text file and then delete it.

'A C'
Create an APL file, rejecting the association if it already exists.

'FCDRW'
Create a text file, or accept an existing one. Allow read/write access, and delete it when the

connection is erased.

locator A character vector indicating where the file is located. A complete path may be specified. If a

complete path is not specified, the path of the current working directory is used.

format A character vector that defines the format in which the data is to be viewed by the application. The

vector must be empty if the file class is A. See Format Descriptors for External Variables for details.

The explicit result of ⎕NA is 1 if the association was successful, or 0 if it failed. When 0 is returned,

explanatory messages are usually displayed in the APL2 interpreter window.

Supported Primitive Operations

The following primitive operations are defined for external variables supported by Processor 12:

Each function¨file
var function¨file
file function¨var
file1 function¨file2

Outer Product var∘.function file
file∘.function var
file1∘.function file2

Pick i⊃file

Indexing file[i]
i⌷file

Indexed Assignment file[i]←⊂array

Selective Assignment (i⊃file)←array
(↑i↓file)←⊂array
etc.

Catenate file←file,⊂array

Shape ⍴file

Compress/Replicate i/file

First ↑file

Take i↑file

Drop i↓file

Notes:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

175

1. Operations other than those defined here either attempt to bring the entire file into the workspace or give

DOMAIN ERROR.

2. The functions referred to in Each and Outer Product can be arbitrary primitive, defined, or derived

functions. Since they are invoked repeatedly with one item of the array at a time, there is no immediate

requirement that the entire array truly reside in the workspace. But if the invoked function produces a

result, the full accumulated result returned by the derived function is a normal variable stored in the

workspace.

3. In some circumstances, Compress, Replicate, Expand, First, Take and Drop can return prototype or fill

elements. If the file is not empty, the prototype is created using the attributes of the first item in the file.

If the file is empty, the prototype will be a character object whose dimensions are based on the format

descriptor from the name association. If the length attribute in that descriptor was given as *, or the

format descriptor was null, the length of the prototype object will be zero.

APL Files as External Variables

APL files are always viewed by the APL application as a vector of arbitrary arrays, with each item of the vector

representing one object in the file. Each item may be of any type, depth and shape.

The name association syntax for APL files is:

('A { C[(len size)] | R | W | D }...' 'filename' '') 12 ⎕NA 'name'

where { | | }... and [] indicate choices, repetition, and options, but these symbols are not coded in

the argument.

The last sub-item of the first item in the left argument must be empty for APL files. In general this is the format

descriptor, but an APL file is always self-describing.

Notes:

1. The optional parenthesized expression after C is not used by the workstation version of Processor 12. It

is tolerated for compatibility with the mainframe version of Processor 12.

2. The mainframe version of Processor 12 allows library numbers to be included with the filename

parameter. The workstation version of Processor 12 does not support library numbers.

Examples:

 ('ACWD' 'C:\TEMPFILE.P12' '') 12 ⎕NA 'TEMP'
 1
 ('AR' 'APLFILE' '') 12 ⎕NA 'VAR'
 1

Text Files as External Variables

Text files are viewed by the APL application as a vector of arrays in which the subarrays are always character

vectors or character matrices. Each character vector, or each row of a character matrix, represents one record in

the file.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

176

The name association syntax for text files is:

('F { C[(len size)] | R | W | D }...' 'filename' { 'format' | ''} 12 ⎕NA
'name'

where { | | }... and [] indicate choices, repetition, and options, but these symbols are not coded in

the argument.

If the last sub-item of the first item in the left argument is empty, the default view for text files is used. This

view is a vector of character vectors with one variable-length file record in each item.

Alternate views of the file are also possible, by specifying a non-null format descriptor. See Format Descriptors

for External Variables for a discussion of this topic.

Notes:

1. The optional parenthesized expression after C is not used by the workstation version of Processor 12. It

is tolerated for compatibility with the mainframe version of Processor 12.

2. PC compatible systems (such as Windows) generally use the two-character record delimiter CR/LF for

text files, while Unix systems (such as AIX and Solaris) use the one-character record delimiter LF.

Processor 12 will handle files with either type of record delimiter when reading. When writing,

Processor 12 uses the convention of the system on which it is currently running. If Processor 12 is

running on one type of system, but the file follows the opposite convention (it is remotely mounted, or

has been transferred between systems in binary mode), it is possible to end up with a file in which some

records have CR/LF and others have LF. Processor 12 can process files with mixed records, but other

programs may or may not be able to process them correctly.

Examples:

 ('FCW' 'TEXTFILE.P12' 'G0 1 * C1 1 *') 12 ⎕NA 'TEXT'
 1
 ('FR' 'C:\CONFIG.SYS' '') 12 ⎕NA 'CONFIG'
 1

Format Descriptors for External Variables

The syntax of the format descriptor for an external variable is similar to that used by Processor 11. Its focus

here is on the view of the data as seen by the application, rather than the format of the data as it exists

externally.

The fields of a format descriptor must be separated by blanks except where parentheses are used. A separator is

required only when one field ends with a numeric digit and the next one begins with a numeric digit.

Parentheses may be used as separators wherever desired. Blanks may also be used as leading and trailing

characters or adjacent to parentheses, and multiple blanks may be used wherever one is allowed.

The supported descriptors are:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

177

Vector of Character Vectors

'G0 1 * C1 1 length'

length The length of each item in the array. This is typically defaulted to the length of each record by

specifying *.

If specified as *, the length of each array item matches the actual length of the corresponding

record. End-of-line delimiters are assumed to exist in the file to indicate where the records end. The

delimiters will be removed from the data by Processor 12 when reading, and will be added

automatically when writing to the file. Trailing blanks are not deleted when writing data to the file.

When replacing records, the new record need not match the length of the old record.

Note: The mainframe version of Processor 12 does not allow for replacement of text records unless

the lengths match exactly.

If specified as a number, the file will be viewed as having fixed-length records of the length given.

Line delimiters will not be used to determine record length, and will not be removed or added by

Processor 12. When adding or replacing records, the data given must match the record length

exactly.

Vector of Character Matrices

'G0 1 * C1 2 pack length'

pack The number of records to include in each matrix of the array. The larger this number is, the more

efficiently APL can process the records in the file, but larger numbers also require more workspace

storage. The value must be provided explicitly.

This value is used for the first dimension of each matrix within the array, except the last item,

which may contain a short matrix. Note that applications are not permitted to change the number of

rows in any matrix, except that they can increase the rows in the last matrix up to pack. Indeed,

the application is not permitted to add a new item to the array unless the current last item has the

full number of rows.

length The number of columns in the matrix. This is typically defaulted to the length of each record by

specifying *.

If specified as *, the width of each matrix is the width of the longest record in that set. Shorter

records in the set are padded with blanks to the length of the longest. End-of-line delimiters are

assumed to exist in the file to indicate where the records end. The delimiters will be removed from

the data by Processor 12 when reading, and will be added automatically when writing to the file.

Trailing blanks are deleted from each row of the matrix before writing it to the file as a record.

When replacing records, the new record need not match the length of the old record.

Note: The mainframe version of Processor 12 does not allow for replacement of text records unless

the lengths match exactly. For this form of the descriptor, however, it will strip trailing blanks from

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

178

individual rows of the matrix as necessary to make them the correct length for the file.

If specified as a number, the file will be viewed as having fixed-length records of the length given.

Line delimiters will not be used to determine record length, and will not be removed or added by

Processor 12. When adding or replacing items, the width of the data must match the record length

exactly.

Simple Data Vectors

'C1 1 *'
'C2 1 *'
'C4 1 *'
'I4 1 *'
'E8 1 *'
'J16 1 *'

These views of the file are as vectors of simple data elements. The file is treated as a binary data stream. It is

divided into individual elements and interpreted based on the element length and type specified in the pattern:

Pattern Data Interpretation Bytes per item

C1 Character 1

C2 Unicode Character 2

C4 Unicode Character 4

I4 Integer 4

E8 Floating Point 8

J16 Complex 16

Control characters, including line delimiters, are not handled in any special way. They are considered part of the

binary data stream.

Note: The mainframe version of Processor 12 does not allow these formats.

Processor 12 Errors

Processor 12 uses the following rules for handling errors:

 If ⎕NA cannot be completed successfully its explicit result is 0. A secondary error message may be

displayed in the interpreter window to explain the failure, but no error is signaled.

 If a problem occurs while referencing or setting an associated variable, a ⎕ET error is signaled. This is

treated as any other error that occurs while processing an APL statement. The specific errors that may be

signaled are listed below. In addition, for some types of errors (typically, errors accessing the file) a

secondary error message may be displayed in the interpreter window.

 On some operating systems, file updates may be performed to a temporary cache area, and errors in this

process may not be known for some time after the variable assignment that caused the records to be

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

179

written. These may include things like out-of-space conditions as well as other I/O errors on the disk

media. If detected during a subsequent access, errors of this sort are normally signaled as follows:

⎕ET=1 5 (SYSTEM LIMIT, Interface unavailable)

Note: If a Processor 12 variable is passed as an argument to a function, it is not actually referenced until

used by that function. Thus, the above error may be signaled on some line of the function that looks at

its argument.

 In some cases errors may not be detected until the association is deactivated. Processor 12 closes the file

at this time, and any pending writes will take place. Secondary messages will be displayed in the

interpreter window for any file I/O errors that occur.

The following errors may be signaled by Processor 12:

1 3 WS FULL
Required portion of the array does not fit in the workspace.

1 5 SYSTEM LIMIT, Interface unavailable
File I/O error or file in use

1 7 SYSTEM LIMIT, Interface capacity
Insufficient storage for working areas

1 9 SYSTEM LIMIT, Array size
The catenation of an additional data element would either cause the array to exceed the maximum

number of elements allowed in an APL2 array, or cause the file to exceed the maximum size allowed

for the file system in use.

1 12 SYSTEM LIMIT, Interface representation
Class A has been selected, but the file does not contain valid APL objects.

2 4 SYNTAX ERROR, Invalid operation in context
Attempt has been made to modify a variable associated with a read-only file, or a selective

specification operation was used that is not supported for external variables.

5 5 INDEX ERROR
An item has been referenced that is beyond the end of the file.

The following errors are reported only for text files:

5 2 RANK ERROR
An item assigned to the variable is of the wrong rank.

5 3 LENGTH ERROR
A new item is added to the variable when the last matrix is not full, or an item assigned to the variable

is longer than permitted by the format descriptor.

5 3 DOMAIN ERROR
An item assigned to the variable does not contain character data, or contains extended characters, or is

itself a nested array.

Portability of Processor 12 Applications

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

180

In general, Processor 12 is quite compatible across the APL2 systems which support it. However, there are

some differences. In order to write applications which can be run on multiple systems the programmer must

take these differences into consideration.

1. The C access code in the mainframe version of Processor 12 allows for record length and file size limits

to be specified, and in some cases requires them. The workstation Processor 12 does not use these

parameters. It does tolerate them if present, however, so a common expression can be used on all

systems.

2. File name specifications are generally not compatible across operating systems. In a multiple-system

application, the file name specification will probably need to be in a system-dependent expression or

variable.

3. The mainframe Processor 12 supports library numbers for APL files. The workstation Processor 12 does

not.

4. The APL file format is not the same on mainframe and workstation systems. On the mainframe, AP 121

files are used. On the workstation, AP 210 files are used. Thus, while the syntax to access the APL files

is the same, the files themselves cannot be directly transferred between mainframe and workstation

systems. Transfer files (.atf) and AP 211 files are two possible vehicles for sending APL data between

mainframe and workstation systems.

5. The workstation Processor 12 allows replacement of text records with records of different sizes than

those they replace. The mainframe Processor 12 does not.

6. The workstation Processor 12 allows text records of length 0. The mainframe Processor 12 does not.

7. The simple data vector views for type F files are not supported on the mainframe.

8. The mainframe Processor 12 supports the following expression to replace all the items in a file:

(((⍴FILE)⍴1)/FILE)←DATA

The workstation Processor 12 supports these additional expressions to accomplish the same task:

((⍴FILE)↑FILE)←DATA
(0↓FILE)←DATA
FILE[]←DATA

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

181

Processor 14 - Calls to Java

Processor 14 provides access to Java. Using Processor 14, APL2 programs can:

 Reference and specify static fields

 Call static methods

 Instantiate Java objects

 Reference and specify instance fields

 Call instance methods

Java methods called through Processor 14 can also call back to APL2.

Processor 14 uses the APL2-Java interface. This interface requires Java 2 Version 1.4 or later. Consult

Installing Java and Installing the APL2-Java Interface Classes for detailed information about Java requirements

and installation of the APL2-Java interface.

Java Language Overview

The section provides a very brief overview of the Java programming language. If you already know Java, you

may want to skip this section.

Java programs are composed of Java classes. Each class performs a service such as file IO, database access, or

user interface services. Some classes are built-in to Java; some are built by application developers.

A Java class is similar to an APL workspace. Like a workspace, a class resides in a single file, can contain

variables and functions, and can have both global and local variables. In addition, functions can also be local or

global.

Java uses different terms than APL for some programming concepts. In Java,

 Public means global

 Private means local

 Field means variable

 Method means function

 Member means either a field or a method.

Here is a sample Java class:

public class Sample
{
 public static int StaticField = 0 ;
 public static int StaticMethod(int Argument) {
 return Argument + StaticField ;
 }
 public int InstanceField ;
 public Sample(int InitialValue) {
 this.InstanceField = InitialValue ;
 return ;
 }
 public int InstanceMethod(int Argument) {
 return Argument + this.InstanceField ;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

182

 }
}

The first line of the class definition supplies the name of the class, in this case Sample. Everything within the

curly braces constitutes the class's definition.

The keyword public indicates that a field or method is accessible from outside the class.

The first two members are declared static. This means that they exist as soon as the class is loaded and can

always be used. They correspond to global variables and functions in an APL workspace.

The next member, InstanceField, is not declared static; this means that it is an "instance" member and can only

be used in the context of an instance of the class.

The fourth item is a special type of method called a constructor. Constructors are easily identified; they always

have the same name as the class. When a constructor is called, an instance of the class, also called an object, is

created. Even though the method is defined without the static keyword, because it is a constructor, it is

accessible from outside the context of any instance.

Once you have an instance of the class, you can use the instance to access instance fields and methods. Within

the context of a constructor or instance method, the word this refers to the instance.

To illustrate, here is some Java code that uses the Sample class:

//* Set the static field
Sample.StaticField = 24 ;
//* Use the static method
int Added = Sample.StaticMethod(47) ;
//* Create an instance of the Sample class, a Sample object
Sample Object = new Sample(999) ;
//* Call the instance method
int Sum = Object.InstanceMethod(456) ;

Notice for static members, you use the name of the class followed by a period and the member name. For

instance members, you use the name of a field containing a reference to the instance followed by a period and

the member name.

For further information about Java, consult the Sun Microsystems Java web site, http://java.sun.com. New users

may find The Java Tutorial, http://java.sun.com/docs/books/tutorial particularly helpful.

Name Association Syntax for Processor 14

The general syntax for name association through Processor 14 is:

(class 'signature') 14 ⎕NA 'surrogate member'

class A class identifier. If a static member is to be associated, then class is a character vector

containing the name of the class. If an instance member is to be associated, then class is an

instance integer returned by a constructor.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

183

signature A character vector description of the member. If the member is a field, then the signature is a

description of the field's datatype. If the member is a method, then the signature is a description

of the method's arguments and result. The signature is coded using the standard Java internal

type signature syntax. For more information, see Java Signatures.

member The name of the Java method or field. The name must match the member name exactly. If the

member name is not a valid APL2 name, then a surrogate must be used.

surrogate A name to be used within the APL workspace to refer to the member. The particular name used

has no significance to Processor 14, and bears no required relationship to the name of the

member with which it is associated.

In addition to providing access to Java fields and methods, Processor 14 includes several built-in functions.

They can be accessed like this:

3 14 ⎕NA 'DeleteLocalRef'
3 14 ⎕NA 'GetApl2interp'

Further information about these functions can be found in Managing Java Objects and Calling Back to APL2

from Java.

The explicit result of ⎕NA is 1 if the association was successful, or 0 if it failed. When 0 is returned,

explanatory messages are usually displayed in the APL2 interpreter window.

Java Signatures

Java signatures are character vectors that describe the datatype of a field or the datatypes of a method's

arguments and result. The signature of a field is a single datatype. The signature of a method is a list of one or

more datatypes enclosed in parentheses followed by a datatype for the result.

Java uses the following characters to describe native data types:

Code Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

184

V void

A left square bracket indicates an array. For example '[I' indicates an array of integers.

A class name is indicated by preceding the name with an L and following it with a semi-colon. For example,

this is the signature for the Java String class: 'Ljava.lang.String;'.

Signature Examples:

An integer field 'I'

A String field 'Ljava/lang/String;'

A method that takes 2 integer arguments and returns a double '(II)D'

A method that takes a String argument and returns an integer array '(Ljava/lang/String;)[I'

The Java SDK tool javap can be used to extract the signatures of Java class fields and methods. For example,

 javap -s com.ibm.apl2.Apl2interp

Supported Primitive Operations for Fields

Processor 14 provides access to fields by maintaining an image of the field as an array that appears to reside in

the active workspace. This is analogous to the behavior of Processor 12 for files. That processor can create an

image of a file that appears to reside in the active workspace. Neither the file (for Processor 12) nor the field

(for Processor 14) is actually within the workspace. This has the following implications for Processor 14 fields:

Very large fields can be accessed, fields that can be many times larger than the active workspace. And yet the

access can be done using normal APL constructs such as (to show only a few examples):

Compression bool/field

Each process¨field

Pick i⊃field

Selective assignment (i⊃field)←value

It should also be noted that fields have an existence independent of the workspace. Assigning a value to a

Processor 14 variable causes an immediate and permanent change to the field. This is not affected by later

expunging the variable.

The following primitive operations are defined for fields associated by Processor 14:

Each function¨field
var function¨field
field function¨var

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

185

field1 function¨field2

Outer Product var∘.function field
field∘.function var
field1∘.function field2

Pick i⊃field

Indexing field[i]
i⌷field

Assignment field←array

Indexed Assignment field[i]←⊂array

Selective Assignment (i⊃field)←array
(↑i↓field)←⊂array
etc.

Shape ⍴field

Compress/Replicate i/field

First ↑field

Take i↑field

Drop i↓field

Notes:

1. Operations other than those defined here either attempt to bring the entire field into the workspace or

give DOMAIN ERROR.

2. The functions referred to in Each and Outer Product can be arbitrary primitive, defined, or derived

functions. Since they are invoked repeatedly with one item of the array at a time, there is no immediate

requirement that the entire array truly reside in the workspace. But if the invoked function produces a

result, the full accumulated result returned by the derived function is a normal variable stored in the

workspace.

3. In some circumstances, Compress, Replicate, Expand, First, Take and Drop can return prototype or fill

elements. If the field is not empty, the prototype is created using the attributes of the first item in the

field. If the field is empty, the prototype is created using the field's signature.

Creating Java Objects

To create a Java object, first associate a name with a constructor method. Constructors are always named

<init>. Surrogates must always be used when associating names with constructors because <init> is not a

valid APL2 workspace object name.

Call the constructor method to instantiate an object. Although constructors are always declared to return void,

when called by APL2, a constructor returns an integer. The integer can be used to associate names with instance

members.

Sample Associations

The simplest way to learn about associating names with Java members is to look at some examples.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

186

Here is another sample Java class:

 //* Declare a class named Sample
 public class Sample {
 //* Declare a static field
 //* Static fields exist as long as the class is loaded
 static int IncrementAmount = 1 ;
 //* Declare a static method
 //* Static method can be used as long as the class is loaded
 static int Increment(int Value) {
 return Value + IncrementAmount ;
 }
 //* Declare a field which exists for each instance
 int Value ;
 //* Declare a constructor which is used to create, or instantiate, an object
 static Sample(int Initial) {
 this.Value = Initial ;
 return ;
 }
 //* Declare a method
 static boolean IsEqual(int NewValue) {
 return Value == NewValue ;
 }
 }
The following session log demonstrates associating names with members in the sample class.

 ⍝ Associate a name with the static field
 ('Sample' 'I') 14 ⎕NA 'IncrementAmount'
1
 ⍝ Set the static field
 IncrementAmount←5
 ⍝ Associate a name with the static method
 ('Sample' '(I)I') 14 ⎕NA 'Increment'
1
 ⍝ Call the static method
 Increment 34
39
 ⍝ Associate a name with the constructor
 ('Sample' '(I)V') 14 ⎕NA 'CONSTRUCT <init>'
1
 ⍝ Call the constructor
 Instance←CONSTRUCT 34
1
 ⍝ Associate a name with the instance field
 (Instance 'I') 14 ⎕NA 'Value'
1
 ⍝ Set the instance field
 Value←123
 ⍝ Associate a name with the instance method
 (Instance '(I)Z') 14 ⎕NA 'IsEqual'
1
 ⍝ Call the instance method
 IsEqual 45
0

Managing Java Objects

Objects instantiated from APL2 are not subject to Java garbage collection until they are deleted. Processor 14

includes a built-in function named DeleteLocalRef that is used to delete objects created through Processor

14 so their resources can be freed by the Java garbage collector. The following sample illustrates how to

associate a name with the DeleteLocalRef function and delete an instance.

 ⍝ Associate a name with the Processor 14 DeleteLocalRef built-in function

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

187

 3 14 ⎕NA 'DeleteLocalRef'
1
 ⍝ Delete the instance
 DeleteLocalRef Instance
Once an instance has been deleted, Java can free the object's resources.

Note:

Not only constructor methods return objects. Many other methods return objects that consume resources and

should eventually be deleted using the DeleteLocalRef function. For example, the

java/util/Hashtable class includes a method named get that returns a java/lang/Object object.

Proper use of the get method and the DeleteLocalRef function is demonstrated by the DEMO_HASH

function in the DEMOJAVA workspace.

Managing Associations with Instance Methods and Fields

Names associated with instance methods and fields cannot be used after)LOAD and)COPY commands. This is

because these names are associated with objects which no longer exist after the workplace is replaced.

Java class constructors return integers that are pointers to the internal representation of the constructed objects.

These integers are used in associations with instance members. However, once the objects are deleted, the

integers are no longer valid pointers and the associations cannot be reactivated. Attempts to use names

associated with members of deleted instances return VALENCE ERROR.

Names associated with instance methods and fields should always be localized so they are not inadvertently

saved in the workspace. In addition, the Processor 14 built-in DeleteLocalRef function should always be

used to delete objects when they are no longer needed. This will free the resources used by the objects and

ensure that associations can no longer be made with the objects' instance members.

Calling Back to APL2 from Java

Java methods called through Processor 14 can call back to APL2.

APL2 includes a Java class named Apl2interp. The Apl2interp class is used to manage and use APL2

interpreters from Java. Detailed information about using the Apl2interp class is available in Calling APL2 from

Java.

The Processor 14 function GetApl2interp is used to retrieve the Apl2interp object owned by the APL2

interpreter. This object can be passed to a Java method. The method can then use the Apl2interp object to call

back to APL2.

Here is a sample that demonstrates retrieving the Apl2interp object and passing it to a Java method:

 ⍝ Associate a name with the Processor 14 GetApl2interp built-in function
 3 14 ⎕NA 'GetApl2interp'
1
 ⍝ Associate a name with a Java method
 ('Class' '(Lcom/ibm/apl2/Apl2interp;)V') 14 ⎕NA 'Method'
1
 ⍝ Call the method and pass the Apl2interp object as a parameter
 Method GetApl2interp

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

188

Here is a sample method that uses an Apl2interp parameter:

public void Method(Apl2interp Apl2) {
 //* Create a workspace object from a Java integer array
 Apl2object Vector1 = new Apl2object(Apl2,new int[] {1,2,3,4,5,6});
 Apl2object Vector2 = new Apl2object(Apl2,new int[] {7,8,9,10,11,12});
 //* Call the function; it returns another workspace object
 Apl2object Result = Apl2.Execute(Vector1,"+",Vector2);
 //* Query the result's type and rank
 int Type = Result.type();
 int Rank = Result.rank();
 //* Free the workspace objects
 Vector1.Free();
 Vector2.Free();
 Result.Free();
 return;
}

Handling Errors and Interrupts

If a Java method encounters an error and throws an exception, Processor 14 displays the exception description

in the interpreter window, signals a ⎕ET error, and then clears the exception. The Apl2exception class can be

used to throw an error with a specific event type.

Java methods called through Processor 14 are not automatically interrupted if the APL2 user signals an attention

or interrupt. Long running methods can use the Apl2interp class's IsInterruptPending method to determine if an

interrupt is pending. For example,

 int i;
 for(i=0;i<10000;i++)
 {
 if(Apl2interp.Apl2.IsInterruptPending())
 throw new Apl2exception(Apl2exception.TYPE_RESOURCE,
 Apl2exception.CODE_RESOURCE_INTERRUPT,
 "Interrupt Pending") ;
 }
The IsInterruptPending method is only useful for detecting interrupts during methods called through Processor

14. Slave interpreters, as described in Calling APL2 from Java do not support attentions and interrupts.

Handling Signals

When Java is first accessed from APL2, Processor 14 normally starts a Java virtual machine (JVM). Processor

14 uses the invocation option -Xrs to reduce the JVM's use of signals. When this option is in effect, the JVM

handles asynchronous signals (SIGBREAK, SIGINT, SIGTERM, SIGHUP, and SIGQUIT) only when it is in

direct control. When APL2 is in control these signals are handled by the signal handlers established by APL2.

However, if APL2 itself has been called by Java, Processor 14 uses the JVM already running, and Java's signal

handlers will take precedence for those signals.

Java's signal handlers for synchronous signals, such as SIGSEGV, always take precedence over APL2's.

DEMOJAVA Workspace

The DEMOJAVA workspace contains functions that demonstrate how to call Java from APL2.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

189

Processor 15 - Access Structured Storage

Processor 15 provides access to storage outside the APL2 workspace using variable names in the workspace.

The APL2 data structures used by Processor 15 to format the storage can be based on a user-provided pattern, or

implied from the structure of the data assigned to the variable.

Processor 15 variables that are associated with patterns are strongly typed. Processor 15 enforces the pattern

established at name association whenever the variable is assigned. If the data assigned to the variable does not

match the pattern, an error is signaled at assignment time.

Processor 15 can provide an advantage to APL2 programmers who need to more closely control the structure of

their data. For example,

 Many non-APL routines in compiled libraries (DLLs on Windows) use C-style structures for arguments

and results. Because these structures can be quite complex, building the appropriate APL2 array to

match the structure's pattern can be prone to error. By using Processor 15, the data can be validated as

correct when assigned rather than by Processor 11 when the routine is called.

In addition, if the same structure is to be used in multiple routine calls, it can be more efficient to build it

once and reuse it.

 Some APL2 applications also require data that conforms to specific structures and types. Specification

of data with incorrect structure or type can lead to application errors at execution time, when it may be

more difficult to identify the source of the error. Processor 15 variables can be used to force validation

of the data at assignment.

 In addition to routines, some compiled libraries export variables. You can use Processor 15 to access

these variables.

Processor 15 also provides the capability to establish debugging monitors on its variables.

The next sections discuss the following Processor 15 topics:

 Name Association Syntax for Processor 15

 Syntax Examples

 Supported Primitive Operations for Structured Storage

 Usage Guidelines

 Accessing Variable Addresses

 Monitoring Variable Changes

 Calling External Functions with Structured Storage

 Using Structured Storage to Access Exported Variables

 Using Structured Storage to Validate APL2 Data

Name Association Syntax for Processor 15

('pattern' [address | 'library']) 15 ⎕NA 'name'

pattern

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

190

A pattern describing how the storage should be processed.

Use an array pattern to enable type checking during specifications. The patterns for Processor 15 are a

restricted version of those defined for Processor 11 names files in Array Patterns. In general, patterns

which describe variable-length data are not allowed. Array Patterns for ATR, PFA, RTA, SIZEOF, and

Associated Processor 15 describes the restrictions in more detail.

Use an empty pattern, '', to disable type checking.

address
The numeric address of previously allocated storage. If address is zero or if both address and

library are omitted, Processor 15 will allocate the required storage, and it will be retained until the

variable is expunged.

address is not supported if pattern is empty,

library
The name of a compiled library in which to find an exported variable.

library is not supported if pattern is empty,

The following rules are used to locate the library:

Unix Systems

If library contains a slash character, library is used directly, and no directories are searched.

Otherwise, the LIBPATH or LD_LIBRARY_PATH environment variables can be used to specify a list

of directories which are searched for the library.

Windows

If no file name extension is specified, the default library extension .dll is appended. However, the file

name string can include a period to indicate that the module name has no extension. When no path is

specified, Processor 15 searches for loaded libraries whose base name matches the base name of the

library to be loaded. If the name matches, the load succeeds. Otherwise, Processor 15 searches for the

file in the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. The system directory. Use the GetSystemDirectory function to get the path of this directory.

4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is

searched.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

6. The directories that are listed in the PATH environment

name
A name to be used within the APL workspace to refer to the storage.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

191

If library is supplied, the name of an exported variable from the library. The name must match the

exported variable exactly. If the exported variable name is not a valid APL2 name, then a surrogate must

be used.

Processor 15 maintains attributes for each external variable. They can be accessed like this:

(attribute 'name') 15 ⎕NA 'attrvar'

name

Is the name of an external variable previously associated with Processor 15.

attribute

Is either 'ADDRESS' or 'MONITOR'.

Further information about these attributes can be found in Accessing Variable Addresses and

Monitoring Variable Changes.

attrvar

Is a name to be used within the APL workspace to refer to the attribute.

The explicit result of ⎕NA is 1 if the association was successful, or 0 if it failed. When 0 is returned,

explanatory messages are usually displayed in the APL2 interpreter window.

Syntax Examples

A vector of 10 single byte characters in Processor 15-allocated storage:

 'C1 1 10' 15 ⎕NA 'VAR'
1
 VAR←'Abcdefghij'

A vector of 10 million characters at a pre-allocated address:

 ('C1 1 10000000' Address) 15 ⎕NA 'VAR'
1
 (10↑VAR)←'AbcdeFghij'

A null terminated vector of up to 9 two byte characters in Processor 15-allocated storage:

 'S2 1 10' 15 ⎕NA 'VAR'
1
 VAR←'Abc'

A 4 byte integer and a vector of 10 single byte characters:

 Pattern←'(G0 1 2)(I4 0)(C1 1 10)'
 Pattern 15 ⎕NA 'VAR'
1
 VAR←45 'AbcdeFghij'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

192

A 4 byte integer and two vectors of 10 single byte characters at an address:

 Pattern←'(G0 1 3)(I4 0)(C1 1 10)(C1 1 10)'
 (Pattern Address) 15 ⎕NA 'VAR'
1
 VAR←45 'AbcdeFghij' '1234567890'

Supported Primitive Operations for Structured Storage

The following primitive operations are defined for variables associated with Processor 15:

Each function¨p15var
var function¨p15var
p15var function¨var
p15var1 function¨p15var2

Outer Product var∘.function p15var
p15var∘.function var
p15var1∘.function p15var2

Pick i⊃p15var

Indexing p15var[i]
i⌷p15var

Assignment p15var←array

Indexed Assignment p15var[i]←⊂array

Selective Assignment (i⊃p15var)←array
(↑i↓p15var)←⊂array
etc.

Shape ⍴p15var

Compress/Replicate i/p15var

First ↑p15var

Take i↑p15var

Drop i↓p15var

Notes:

1. Operations other than those defined here either attempt to bring the entire array into the workspace or

give DOMAIN ERROR.

2. The functions referred to in Each and Outer Product can be arbitrary primitive, defined, or derived

functions. Since they are invoked repeatedly with one item of the array at a time, there is no immediate

requirement that the entire array truly reside in the workspace. But if the invoked function produces a

result, the full accumulated result returned by the derived function is a normal variable stored in the

workspace.

3. In some circumstances, Compress, Replicate, Expand, First, Take and Drop can return prototype or fill

elements. The prototype is created using the attributes of the first item in the array.

Usage Guidelines

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

193

 Using Processor 15 to perform structure and type validation imposes a performance penalty. You may

want to use it during development and test, but remove it before putting your application into

production.

 By definition, Processor 15 can access storage that is larger than the workspace. For simple arrays with

types corresponding exactly to the APL2 internal datatypes (C1, C4, I4, E8 and J16) this definition

holds true. For nested arrays and arrays using types requiring data conversion, the pattern validation and

conversion processes will cause temporary copies to be made in the workspace, and WS FULL can

result if there is insufficient space for the copies.

 Data in storage has an existence independent of the workspace. Assigning a value to a Processor 15

variable causes an immediate and permanent change to the storage. If the storage is pre-allocated, this is

not affected by later expunging the variable.

 When a name is successfully associated with Processor 15, the association, name class, and valence

remain in effect until the object is deleted from the workspace. They remain in effect even after using

the commands)SAVE,)OUT,)LOAD,)COPY, or)IN. However, if the name association included an

address, the address may no longer be valid. It is good practice to expunge names associated with

addresses before saving the workspace or transfer file.

Accessing Variable Addresses

Use the ADDRESS attribute to retrieve the address of the storage associated with a variable.

When a name associated with an external variable's address attribute is referenced, the address of the storage

associated with the external variable is returned. The address can then be passed as an argument when calling

external routines.

This example demonstrates retrieving the address of an automatically allocated 4 byte integer:

 ⍝ Associate a variable named VAR
 'I4 0' 15 ⎕NA 'VAR'
1
 ⍝ Associate a name with VAR's address attribute
 ('ADDRESS' 'VAR') 15 ⎕NA 'ADDR'
1
 ⍝ Retrieve the address of the storage associated with VAR
 ADDR
4076800
Notes:

 Names associated with variables' address attributes are read-only.

 If the variable was associated with an empty pattern, the value of the address attribute changes each time

the variable is assigned.

Monitoring Variable Changes

Use the MONITOR attribute to reference and specify a variable's monitor expression. When the variable's value

is changed, the monitor expression is executed. The result is displayed in the session log.

Notes:

 Only one name may be associated with each variable's monitor expression.

 Each monitor expression may contain up to 8190 characters.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

194

 A variable's monitor expression is executed after the variable's value has been changed.

 If an error occurs during execution of a monitor expression, the error is signaled at the point of the

assignment.

 A variable's monitor expression may not change the variable's value.

This example demonstrates using the DISPLAY function in a monitor expression.

 ⍝ Associate a variable named VAR
 '' 15 ⎕NA 'VAR'
1
 ⍝ Associate a name with VAR's monitor expression
 ('MONITOR' 'VAR') 15 ⎕NA 'MON'
1
 ⍝ Associate DISPLAY
 3 11 ⎕NA 'DISPLAY'
1
 ⍝ Set VAR's monitor expression
 MON←'DISPLAY VAR'
 ⍝ Change VAR
 VAR←2 4 7
┌→────┐
│2 4 7│
└~────┘
 ⍝ Change VAR again
 VAR←3 4⍴⍳12
┌→─────────┐
↓1 2 3 4│
│5 6 7 8│
│9 10 11 12│
└~─────────┘
 ⍝ Turn off monitoring
 MON←''
 A←67
 A
67

Calling External Functions with Structured Storage

The following example demonstrates using a Processor 15 C-style structure with an external function that

updates a parameter structure:

 ⍝ Define pattern for SYSTEM_INFO structure:
 WORD←'(I2 0)'
 LPVOID←DWORD_PTR←DWORD←'(I4 0)'
 PATTERN←'(G0 1 11)'
 PATTERN←PATTERN,WORD ⍝ wProcessorArchitecture;
 PATTERN←PATTERN,WORD ⍝ wReserved;
 PATTERN←PATTERN,DWORD ⍝ dwPageSize;
 PATTERN←PATTERN,LPVOID ⍝ lpMinimumApplicationAddress;
 PATTERN←PATTERN,LPVOID ⍝ lpMaximumApplicationAddress;
 PATTERN←PATTERN,DWORD_PTR ⍝ dwActiveProcessorMask;
 PATTERN←PATTERN,DWORD ⍝ dwNumberOfProcessors;
 PATTERN←PATTERN,DWORD ⍝ dwProcessorType;
 PATTERN←PATTERN,DWORD ⍝ dwAllocationGranularity;
 PATTERN←PATTERN,WORD ⍝ wProcessorLevel;
 PATTERN←PATTERN,WORD ⍝ wProcessorRevision;
 ⍝ Associate a name using the pattern
 PATTERN 15 ⎕NA 'SYSINFO'
1
 ⍝ Associate another name with the variable's address attribute
 ('ADDRESS' 'SYSINFO') 15 ⎕NA 'ADDR'
1
 ⍝ Initialize the structure
 SYSINFO←11⍴0

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

195

 ⍝ Associate a name with the Windows GetSystemInfo routine
 ⍝ Notice that the argument pattern is a 4 byte integer; this is for the structure
address.
 ⍝ Although the function will update the structure, the pattern does not include >.
 ':link.SYSTEM :lib.kernel32 :proc.GetSystemInfo :valence.0 1 0 :rarg.I4 0' 11 ⎕NA
'GetSystemInfo'
1
 ⍝ Call the routine with the address of the SYSINFO structure
 GetSystemInfo ADDR
 ⍝ Reference the structure
 SYSINFO
0 0 4096 65536 2147418111 3 2 586 65536 15 1034

Using Structured Storage to Access Exported Variables

On Windows, APL2 includes a library named aplwin.dll that exports a 4 byte Boolean variable named

DisplayLogo that controls whether the session manager displays the product information dialog during

invocation. The following example demonstrates how to access this variable:

 ⍝ Associate name
 ('I4 0' 'aplwin') 15 ⎕NA 'DisplayLogo'
1
 ⍝ Reference value
 DisplayLogo
0

Using Structured Storage to Validate APL2 Data

Suppose your application has a global array with this structure:

 A←4.5 'Abcde' (3 4 5 6)
Also suppose that somewhere in your application you have code to access the array's last element, like this:
 3 4⊃A
6
Further suppose that somewhere in your program you made a mistake and typed this:
 A←4.5 'Abcde' (3 4 5)
Run the program. At the place where it accesses the array's last element, APL2 will signal an Index Error.
 3 4⊃A
INDEX ERROR
 3 4⊃A
 ^ ^
Now, imagine trying to find the cause of the error. You know that the contents of the array are invalid, but how

did they get that way? The incorrect assignment could be anywhere. How would you find it?

But, suppose you used structured storage and did this at the beginning of the program:

 '(3 G0 1 3)(1 E8 0)(5 C1 1 5)(4 I4 1 4)' 15 ⎕NA 'A'
1
Now, the incorrect assignment will cause an error:
 A←4.5 'Abcde' (3 4 5)
Expecting pattern:
(3 G0 1 3)
 (1 E8 0)
 (5 C1 1 5)
 (4 I4 1 4)
Current data pattern is:
(3 G0 1 3)(1 E8 0)(5 C1 1 5)(3 I4 1 3)
LENGTH ERROR
 A←4.5 'Abcde'(3 4 5)
 ^^

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

196

Since Processor 15 signals the error at the time of the incorrect assignment, you don't need to work to locate the

mistake. You can just fix it and resume working.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

197

Supplied External Routines

The following table lists the external routines supplied with APL2 that are accessed using Processor 11 and

depend on the default names file, aplnm011.nam. For example:

 3 11 ⎕NA 'FILE'
1
 A←FILE 'data.bin'

In addition to the routines listed in the table,

 Three file utility routines are provided as built-in functions of Processor 10.

See Accessing Operating System Files for more information on these routines.

 External namespaces are provided as alternatives for several of the supplied workspaces:

FILE Namespace

GRAPHPAK Namespace

GUITOOLS Namespace (Windows only)

GUIVARS Namespace (Windows only)

MATHFNS Namespace

SQL Namespace

APL2PIA APL2 Programming Interface for APL2

ATR Array to Record

ATS Array to SCAR

BEEP Sound a beep

CHECK_ERROR Get System Error Text

CNS Create Namespace

COPY Copy Workspace Objects

CPUCOUNT Get Number of Processors

CTN Character to Numeric

CTUTF Character to UTF

DATATYPE Array Data Type

DIR Get directory listing

DISPLAY APL2 Array Structures

DISPLAYC APL2 Array Structures

DISPLAYG APL2 Array Structures

EDITOR_2 APL2 Editor 2

ERASE Remove a file

EXP Execute in Previous Namescope

FDELETE File Delete

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

198

FILE File Read or Write

FSTAT File Status

GETENV Get Environment Variable

GETLIB Get Path for Library Number

GMTSTAMP Get or Set Timestamp

HOST Issue host system commands

IDIOMS APL2 Idiom Library

LEXP Lexical Parse

LIB List Library Contents

LIBS Get APL2 Library Definitions

LTM Tcl List to APL2 Matrix

MD5 Encode Data to MD5

MKDIR Create new directory

MTL APL2 Matrix to Tcl List

OPTION Query or Set Session Options

PCOPY Protected COPY

PEACHP Parallel Each using processors

PEACHT Parallel Each using threads

PFA Pattern from Array

PIPE Redirect system command

QNS Query Namescope

RENAME Rename system file

REPLACEX Replace Strings

RF RowFind

RMDIR Remove directory

ROUNDC Commercial Rounding

RTA Record to Array

SCANDIR List Files in a Directory

SI State Indicator

SIS State Indicator with Statements

SIZEOF Size of Array

STA SCAR to Array

TCL Tool Command Language Interface

TIME Application Performance Analysis

UNZIP Object decompression

UNZIPWS Workspace decompression

UTFTC UTF to Character

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

199

WSCOMP Workspace compare

ZIP Object compression

ZIPWS Workspace compression

The following additional routines are supplied on Windows systems only:

APL2CFG Configure APL2

APL2LM APL2 Library Manager

COM Component Object Model Interface

COMBROWSE COM Browser

CTK Character to Kanji

IDIOMSG APL2 Idiom Library with Graphical User Interface

KTC Kanji to Character

PRINTWSG Print Workspace with GUI interface

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

200

APL2CFG - Configure APL2

APL2CFG

This function opens a properties window that shows the contents of the apl2.ini file.

Note: This function is available only on Windows systems.

Use APL2CFG to add, change, and delete the following settings:

 Default values for invocation options

 APL library definitions

 Session manager tool bar buttons

 SVP profile file names

For further information about using APL2CFG consult the online help.

For detailed information about the apl2.ini file, consult The apl2.ini Configuration File.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

201

APL2LM - APL2 Library Manager

APL2LM

This function allows you to browse and compare the active workspace with saved workspaces and transfer files.

When APL2LM is started, it displays the current contents of the active workspace; APL2LM does not display

changes made to the active workspace with the object editor.

The APL2 Library Manager provides extensive online help. To display contextual help on any window, press

F1. You can also use the choices on the Help menu to display the online help.

For more information, consult the online help or The APL2 Library Manager.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

202

APL2PIA - APL2 Programming Interface for APL2

[result ←] [control] APL2PIA command [parameter ...]

This function allows you to start and stop an APL2 interpreter session, manage APL2 objects within that

session, and execute APL2 expressions and functions in that session.

For detailed syntax and usage information on this interface, see Calling APL2 from APL2.

control
A Boolean indicator of what the function's behavior should be for error conditions.

If omitted or 0, errors will be reported as regular APL2 errors and execution will be suspended on error.

If 1, errors will be reported as part of the result.
command

A character vector containing one of the following commands:

'START' Start an APL2 session

'STOP' Stop an APL2 session

'PUT' Create an object

'GET' Reference an object

'FREE' Expunge an object

'EXECUTE' Execute expression or function

'EXTOKEN' Execute using array tokens

parameter
Additional parameters as defined for the specified command:

'START' sessionid ← 'START' [options]

'STOP' 'STOP' sessionid

'PUT' arrayid ← 'PUT' sessionid array

'GET' array ← 'GET' sessionid arrayid

'FREE' 'FREE' sessionid arrayid

'EXECUTE'
array ← 'EXECUTE' sessionid [array] {function |
expression} [array]

'EXTOKEN'
arrayid ← 'EXTOKEN' sessionid [arrayid] {functionid |
expressionid} [arrayid]

result
If control is omitted or 0, a result as defined for the specified command.

If control is 1, three-element nested array:

[1] APL2 error codes as defined for ⎕ET.

[2] Boolean indicator of whether a result was created.

[3] If the first element is 0 0 and the second element is 1, the result from the command.

If the first element is not 0 0 and the second element is 1, a character matrix containing the error

message and execution stack at the time of the error.

Otherwise, a null character vector.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

203

ATR - Array to Record

record ← [pattern] ATR array

This function converts an APL array into a character vector containing structured data, based on a pattern that

describes the desired format. It can be used to map APL arrays into records or structures expected by other

languages, or expected by services called through AP 145.

array
An APL2 array whose structure and data types should be compatible with the pattern. The internal APL

storage form need not match the pattern exactly, so long as it is possible to convert it to the pattern

format using APL system tolerance.
pattern

A character vector containing a formalized description of the fields within the record. Array patterns are

defined in Array Patterns. The pattern may not contain a * unless it can be resolved to an integer based

on other information in the item description. The pattern may not contain the > mark.

If pattern is omitted, APL2 Common Data Representation (CDR) format is used to create the result.

record
A character vector produced by converting the data in the array according to the pattern. DOMAIN
ERROR is signaled if an impossible conversion is implied by the pattern. Incompatible data structures

result in LENGTH ERROR or RANK ERROR.

Note: External function RTA is the inverse of ATR.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

204

ATS - Array to SCAR

data ← ['A'|'B'] ATS array

This function converts an APL2 array into a SCAR object.

array
Any arbitrary APL2 array.

'A'
Indicates that the SCAR object should be encoded into a printable ASCII representation.

'B'
Indicates that the object should returned in its binary form.

If no left argument is supplied, binary form is used.
data

A character vector containing the SCAR object.

The SCAR ("Self-Contained Array") format is a data interchange format defined by Insight Systems, Inc. to

allow non-like APL systems to exchange data directly without the overhead of the numeric-to-character

conversions required by transfer form. For more information on the SCAR format, visit

http://www.insight.dk/scardesign.

Once created, the character vector containing the SCAR object can be sent across a TCP/IP network, written to

a file, or stored in a database. It can be received and processed by APL2 or another APL system which supports

the SCAR format.

In APL2, the ATS and STA external functions are used to create and interpret SCAR objects.

In Dyalog APL/W, the SQAApl2Scar and SQLScar2Apl external functions are used to create and interpret

SCAR objects. These functions use file CNDYA30.DLL which is part of SQAPL. The DLL is loaded and

initialized by function SQAInit in workspace SQAPL.DWS.

In APL+Win, APL functions TOSCAR and FMSCAR in workspace SCAR are used to create and interpret SCAR

objects.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

205

BEEP - Sound a Beep

rc ← BEEP frequency duration

This function sounds a beep.

frequency
Cycles per second, in the range from 37 to 32767.

Not all operating systems support a user-specified frequency. If not supported, this parameter will be

ignored.
duration

The length of the sound in milliseconds.

Not all operating systems support a user-specified duration. If not supported, this parameter will be

ignored.
rc

0 if successful, or the system return code.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

206

CHECK_ERROR - Get System Error Text

msg←CHECK_ERROR errno

This function converts the system error number specified by the right argument to a text error message.

errno
A numeric system error code. The error number can be a number returned by an operating system

command, or a return code from an APL2 external function or auxiliary processor that is not defined for

that function or processor (for example, non-zero return codes from the FILE, ∆F, ∆FM and ∆FV

external functions, or positive return codes from AP 210).
msg

The message text associated with the specified error number. The C subroutine strerror is used to

obtain the error message text.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

207

CNS - Create Namespace

result ← [namelist] CNS wsname [outdir]

This function creates a namespace from a saved workspace.

wsname
A character vector containing the name of the saved workspace to be converted.

The workspace name may be preceded by a library number. Explicit file specification of workspace

names (with complete path, enclosed in quotes) is also supported. For example:

CNS 'MYAPPL'

CNS '2 GRAPHPAK'

CNS '''D:\WSDIR\MYAPPL.APL'''

outdir
The directory path into which the namespace file should be written. If not specified, the current working

directory will be used. For example:

CNS '2 GRAPHPAK' 'D:\WSDIR'

namelist
A list of names of APL objects in the resulting namespace that will be accessible by using ⎕NA. If a

name list is not specified, all APL objects in the resulting namespace are accessible. namelist can be

a simple character scalar or vector representing one name, or a matrix or vector of vectors representing a

list of names. All names in the list must be valid APL2 names. For example:

('PLOT' 'OPENGP' 'CLOSEGP') CNS '2 GRAPHPAK'

result
The name of the file (including path) that contains the resulting namespace.

Note: Workspaces to be converted to namespaces must have been saved using APL2 Version 2.0 or later.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

208

COM - Component Object Model Interface

[result ←] [control] COM 'COMMAND' [arguments]

The COM external function provides access to Microsoft Component Object Model (COM) objects. The COM

function supports several commands:

QUERY Query information about COM classes and objects

CREATE Create instances of COM classes

CONNECT Connect to running COM programs

METHOD Invoke COM object methods

PROPERTY Specify and reference COM object properties

HANDLERS Specify and reference COM object event handlers

WAIT Wait for COM events

RELEASE Release references to COM objects

CONFIG Set configuration options

This section includes the following topics:

 COM Overview

 COM Error Handling

 Querying COM Classes and Objects

 Creating COM Objects

 Connecting to Running COM Objects

 Referencing and Specifying COM Properties

 Invoking COM Methods

 Period Delimited Member Names

 Indexed Properties

 Positional, Named, and Omitted Method Arguments

 Output Arguments

 By Reference Arguments

 Calling the Evaluate method

 Enumerations

 Managing COM Objects

 Handling COM Events

 Configuring the COM Interface

 Data Conversion Between COM and APL2

 COM Microsoft Agent Example

 COM Excel Example

 COM Internet Explorer Example

 COM Word Example

 COM Office Visual Basic Example

Note:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

209

The COM function is only available on Windows.

COM Overview

The Microsoft Component Object Model (COM) is a system for creating software components that can interact.

COM is the foundation technology for Microsoft's OLE (compound documents), ActiveX (Internet-enabled

components), and others.

Many applications, such as Microsoft's Office suite of products and elements of Windows, are distributed as

COM components. Through the COM external function, these applications can be used from APL2.

COM is an object-oriented system. This means that COM components are distributed as classes and operate as

objects. An application, such as APL2, creates an instance of a COM class to create a COM object. Once an

object is created, the application can use methods and properties within the object. When the application has

finished using the object, it releases the object to free its resources.

This document describes how to access COM components from APL2. It does not attempt to describe the

capabilities of any individual components. To learn how to use an individual component, consult the

component's documentation. Information about many of Microsoft's components such as Excel can be found at

the Microsoft Developers Network (MSDN), http://msdn.microsoft.com.

COM Error Handling

By default, if the COM function encounters an error calling a Component Object Model service, it signals a

SYSTEM LIMIT and sets the first row of ⎕EM to the service's error message. Use the COM function's left

argument to control the COM function's error handling. An omitted or 0 left argument produces the default

behavior. A left argument of 1 causes the COM function to always return a three element result:

[1] - ⎕ET

[2] - Error message

[3] - The result, or '' if none

More information may be printed to standard error in the interpreter's console window.

Example:

 (ET EM RESULT)←1 COM 'CREATE' 'Excel.Application'
Note:

Unless otherwise stated, the examples in this documentation use the default error handling.

Querying COM Classes and Objects

The QUERY command supports several types of requests:

CLASSES Query list of classes installed on the local machine

MEMBERS Query list of members available in an object

EVENTS Query list of events supported by an object

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

210

ENUMERATIONS Query list of enumerations available in an object

CONSTANTS Query list of constants and their values in an enumeration

Note:

Object information may not be available for all classes.

CLASSES←COM 'QUERY' 'CLASSES'

The CLASSES request returns the list of classes installed on the local machine. The result is a seven column

matrix:

[;1] - Version independent program identifiers.

[;2] - Version dependent program identifiers.

[;3] - User-type names

[;4] - Globally unique class identifiers (CLSID)

[;5] - Booleans indicating classes that are programmable through the IDispatch interface

[;6] - Booleans indicating classes are ActiveX controls

[;7] - Booleans indicating classes that are insertable in container applications

You can use either type of program identifier or the CLSID in the CREATE and CONNECT commands.

Note:

The 'QUERY' 'CLASSES' request returns all the classes that are listed in the Windows

registry and have program identifiers. However, not all COM classes can be used from APL2;

only programmable classes can be used from APL2. In addition, the installation programs for

COM classes do not always update the registry to indicate whether the classes are

programmable. To determine whether a class is actually programmable, use the CREATE

command which will fail if the class is not programmable.

The following query requests can be used to query information about objects returned by the CREATE and

CONNECT commands and by object methods.

MEMBERS←COM 'QUERY' 'MEMBERS' OBJECT

The MEMBERS request returns the list of methods and properties supported by the object. The result is a five

column matrix containing information about the members:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

211

[;1] - Member name

[;2] - Member type METHOD, PROPERTY, or PROPERTY() for indexed properties

[;3] - Prototype For more information, see Prototypes.

[;4] - Description A text description of the member (may be null)

[;5] - Help file name The name of the member's help file (may be null)

EVENTS←COM 'QUERY' 'EVENTS' OBJECT

The EVENTS request returns the list of events supported by the object. The result is a five column matrix

containing information about the events:

[;1] - Event name

[;2] - Event type METHOD, PROPERTY, or PROPERTY(). Usually METHOD.

[;3] - Prototype For more information, see Prototypes.

[;4] - Description A text description of the event (may be null)

[;5] - Help file name The name of the event's help file (may be null)

ENUMS←COM 'QUERY' 'ENUMERATIONS' OBJECT

The ENUMERATIONS request returns a list of the object's enumeration names. The result is a vector of

character vectors. For more information, see Enumerations.

CONSTANTS←COM 'QUERY' 'CONSTANTS' OBJECT 'enumeration name'

The CONSTANTS request returns the list of constants in an enumeration. The result is a two column matrix:

[;1] - Constant name

[;2] - Constant value

Prototypes

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

212

The 'QUERY' 'MEMBERS' and 'QUERY' 'EVENTS' commands return prototypes which describe the

types and names of a member's and event's arguments and results. Prototypes use the following syntax:

TYPE MemberName(ARGUMENTS)

Where: ARGUMENTS is a comma delimited list of arguments of the form:

TYPE ArgumentName[options]

Where options is a comma-delimited list of any of the following words:

in The argument is used for input to the member

out The argument is used for output of the member

lcid The argument is the locale identifier of the application

retval The argument is the return value of the member

defaultvalue The argument has a default value

optional The argument is optional

TYPE can be any of the following words:

BOOL 2 byte integer

BSTR Pointer to Unicode string

CY Currency amount

DATE Date

DISPATCH Pointer to IDispatch interface

ERROR Error code

HRESULT API result code

I1 1 byte signed integer

I2 2 byte signed integer

I4 4 byte signed integer

I8 8 byte signed integer

INT 4 byte signed integer

LPSTR Pointer to Unicode string

LPWSTR Pointer to Unicode string

R4 4 byte floating point value

R8 8 byte floating point value

UI1 1 byte unsigned integer

UI2 2 byte unsigned integer

UI4 4 byte unsigned integer

UI8 8 byte unsigned integer

UINT 4 byte unsigned integer

UNKNOWN Pointer to IUnknown interface

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

213

VARIANT Variant

VOID C-style void

Unrecognized While generating the prototype, a type was encountered that is defined by the Component

Object Model but is unrecognized by the COM external function

Any other type name is a user-defined type.

Any type can have an asterisk suffix indicating the value is the address of a value of the indicated type.

Any type can be surrounded by SAFEARRAY() indicating the value is a COM Safe Array containing elements of

the indicated type.

Any type can be suffixed by brackets, such as [lb...ub] indicating the value is a C-style array of elements of

the indicated type. The array's lower and upper bounds are indicated by the values (lb) and (ub).

Creating COM Objects

Use the CREATE command to create a COM object:

⍝ Create an object
OBJECT←COM 'CREATE' 'Identifier'

Identifier is a character vector containing a program or class identifier.

The CREATE command creates an instance of the specified class and returns an integer handle that can be used

to query the object's members and enumerations, specify and reference the object's properties, invoke the

object's methods, query the object's events, specify the object's event handlers, and wait for events.

Example:

 EXCEL←COM 'CREATE' 'Excel.Application'

Note:

The handle returned by the CREATE command is a pointer to the object's IDispatch interface. If you have

obtained an object's IDispatch interface by another means, you may use it as if it were obtained using the

CREATE command.

Connecting to Running COM Objects

Use the CONNECT command to connect to COM object classes that are already running.

⍝ Connect to a running object
OBJECT←COM 'CONNECT' 'Identifier'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

214

Identifier is a character vector containing a program or class identifier.

The CONNECT command connects to an object that has registered itself and is in the system's running objects

table. The command returns an integer handle that can be used like handles returned by the CREATE command

to query the object's members and enumerations, specify and reference the object's properties, invoke the

object's methods, query the object's events, specify the object's event handlers, and wait for events.

If the object is not running, the COM function will fail. It is good practice to specify the function should return

errors so the application can detect this condition.

Example:

 (ET EM EXCEL)←1 COM 'CONNECT' 'Excel.Application'

Referencing and Specifying COM Properties

Use the PROPERTY command to reference and specify COM object properties:

⍝ Reference a property
RESULT←COM 'PROPERTY' OBJECT 'PropertyName' [indices]

⍝ Specify a property
COM 'PROPERTY' OBJECT 'PropertyName' [indices] newvalue

PropertyName is a character vector containing the case-sensitive name of the property to be specified or

referenced.

If newvalue is not supplied, the property's value is referenced and returned as COM's explicit result.

If newvalue is supplied, the property's value is specified. No result is returned.

Example:

 ⍝ Reference Excel's Visible property
 COM 'PROPERTY' EXCEL 'Visible'
0
 ⍝ Set Excel's Visible property
 COM 'PROPERTY' EXCEL 'Visible' 1

Note:

Some properties are read-only and cannot be specified.

See Period Delimited Member Names for information about using multiple property names in PropertyName.

See Indexed Properties for information about the use of indices.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

215

Invoking COM Methods

Use the METHOD command to invoke COM object methods:

⍝ Invoke a method
RESULT←COM 'METHOD' OBJECT 'MethodName' [indices] [args]

MethodName is a character vector containing the case-sensitive name of the method to be invoked.

args is an optional variable length list of arguments for the method.

COM returns the method's result or '' if none.

Example:

 Name←COM 'METHOD' EXCEL 'InputBox' 'Enter your name' 'APL2 Sample'

See Period Delimited Member Names for information about using multiple property names in MethodName.

See Indexed Properties for information about the use of indices.

See Positional, Named, and Omitted Method Arguments for information about naming and omitting arguments.

Period Delimited Member Names

Periods can be used to delimit multiple member names. For example:

 DATA←COM 'PROPERTY' EXCEL 'ActiveSheet.UsedRange.Value'

In the example, COM retrieves the ActiveSheet property of the Excel object to retrieve a subobject. COM then

retrieves the UsedRange property of the subobject to get another subobject. COM finally references the Value

property of the last subobject. This corresponds to the following sequence of separate commands:

 SUB1←COM 'PROPERTY' EXCEL 'ActiveSheet'
 SUB2←COM 'PROPERTY' SUB1 'UsedRange'
 COM 'RELEASE' SUB1
 DATA←COM 'PROPERTY' SUB2 'Value'
 COM 'RELEASE' SUB2

Any number of period delimited member names can be used before the final method or property name.

Indexed Properties

Some COM objects support properties that can only be accessed using one or more indices. These properties

typically contain an array of values; the indices select which values should be returned or set when the property

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

216

is referenced or specified. For example, Excel spreadhseets support several indexed properties which are used to

access specific cells or ranges of cells in the spreadsheets.

Member names can include paired parentheses to indicate that a property is an indexed property. For example:

 COM 'PROPERTY' EXCEL 'Cells.Item().Value' (1 3)
David
 COM 'PROPERTY' EXCEL 'Range().Value' (⊂'A1:B2')
13 12
16 15

For each pair of parentheses indicating an indexed property, an array of indices must be supplied. To illustrate,

the following example uses the indices 1 3 for PropA and (⊂'A1:B2') for PropB.

 COM 'PROPERTY' OBJECT 'PropA().PropB().Value' (1 3) (⊂'A1:B2')
13 12
16 15

Notice the use of enclose (⊂) to ensure that the character vector is passed as a single index rather than a list of

scalar indices.

Note:

The paired parentheses syntax can also be used to call methods in period delimited member names. For

example, the following expressions show using a Word Styles object's Item method with a constant as an

argument.

 WORD←COM 'CREATE' 'Word.Application'
 DOCUMENT←COM 'METHOD' WORD 'Documents.Open' 'c:\sample.doc'
 ⍝ The WdBuildinStyle enumerator's wdStyleNormal constant is ¯1
 COM 'PROPERTY' DOCUMENT 'Styles.Item().Font.Name' ¯1
Times New Roman

Positional, Named, and Omitted Method Arguments

The default use of the METHOD command requires positional arguments; each of the method's arguments must

be listed in the order specified in the method's prototype. However, it is sometimes inconvenient, or even

incorrect, to supply all the arguments in methods' prototypes. Use brackets, [], after the method name and

name-value pairs to name individual arguments:

 COM 'METHOD' OBJECT 'Method[]' ('ArgNameA' ValueA) ('ArgNameB' ValueB)
If the method named is followed by [], subsequent data must be a vector of 2 element nested arrays. The first

element of each array is an argument name; the second element is the argument's value.

For example, consider the Add method that is supported by Excel WorkSheets objects:

DISPATCH Add(VARIANT Before[in, optional],VARIANT After[in, optional],
 VARIANT Count[in, optional],VARIANT Type[in, optional])
To add a sheet after a particular sheet, you must supply the After argument, but omit the Before argument. The

following expressions demonstrate how to use a named argument to add a new sheet after an existing sheet:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

217

 SHEET2←COM 'PROPERTY' EXCEL 'Worksheets.Item()' 2
 AFTER←COM 'METHOD' EXCEL 'Worksheets.Add[]' ('After' SHEET2)
It is also possible to use both positional and named arguments. Empty argument names indicate the argument is

positional. For example, the following expression adds 3 sheets before an existing sheet:

 BEFORE←COM 'METHOD' EXCEL 'Worksheets.Add[]' ('Before' SHEET2) ('Count' 3)

Because the Before argument is the first argument in the method's prototype, it can be passed positionally by

passing a null vector as the name:

 BEFORE←COM 'METHOD' EXCEL 'Worksheets.Add[]' ('' SHEET2) ('Count' 3)

Notes:

All positional arguments must be provided before any named arguments.

All positional arguments must be provided in the order specified by the method's prototype.

Named arguments can be provided in any order.

Output Arguments

Some methods support arguments that produce output; the methods update arguments with new values. These

arguments are identified in the members' prototypes by the out option. To retrieve the value of updated

arguments, use the METHOD command's positional or named argument syntax:

 (Result Arg1 ValueA)←COM 'METHOD' OBJECT 'Method[]' ('=' Arg1) ('=NameA' ValueA)

For positional arguments, use '=' rather than ''. For named arguments, use = before the argument names.

The first element of the COM function result is the method's result. Subsequent elements are updated argument

values.

By Reference Arguments

Some methods require that arguments are passed by reference rather than by value. This means that the address

of the argument must be passed rather than the argument itself. These arguments are identified in the members'

prototypes by an asterisk. To cause the COM external function to pass an argument by reference, use the

METHOD command's positional or named argument syntax:

 (Result Arg1 ValueA)←COM 'METHOD' OBJECT 'Method[]' ('*' Arg1) ('*NameA' ValueA)

For positional arguments, use '*' rather than ''. For named arguments, use * before the argument names. To

pass output arguments by reference, prefix the argument name with both * and = in any order.

Calling the Evaluate Method

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

218

Some objects support an Evaluate method. For example, Excel supports an Evaluate method that converts a

name to an object or a value.

The documentation for many objects uses a Visual Basic notation containing brackets for calling the Evaluate

method. In Visual Basic, using square brackets (for example, "[A1:C5]") is identical to calling the Evaluate

method with a string argument.

To make it easier to use this documentation to write APL2 applications, the COM external function supports a

similar notation using brackets for calling Evaluate.

To use the bracket notation in APL2, replace the member name with the method's argument surrounded by

square brackets.

For example, the following expressions call the Evaluate method using the normal syntax:

 WORKBOOK←COM 'METHOD' EXCEL 'Workbooks.Open' 'd:\test.xls'
 WORKSHEET←COM 'PROPERTY' WORKBOOK 'WORKSHEETS()' (⊂'SHEET1')
 CELL←COM 'METHOD' WORKSHEET 'Evaluate' 'A1'
 COM 'PROPERTY' CELL 'Font.Bold' 1
The following single expression performs the same operation:

 COM 'PROPERTY' WORKBOOK 'WORKSHEETS().[A1].Font.Bold' (⊂'SHEET1') 1

The advantage of using square brackets is that the code is shorter. The advantage of using the Evaluate method

explicitly is that the argument is a character vector, so you can either construct the character vector in your code

or use a variable.

Enumerations

Some COM objects include lists of predefined constants. Each list is called an enumeration. Each enumeration

contains a list of named constant values.

Enumeration constants are typically used as indices for indexed properties. For example, Excel has an indexed

property named International. The elements of the XlApplicationInternational enumeration are used as indices

with the International indexed property. One of the XlApplicationInternational enumeration's constants is

named xlGeneralFormatName and has the value 26. The following log demonstrates using these names and

values:

 ⍝ Create an instance of Excel
 EXCEL←COM 'CREATE' 'Excel.Application'
 ⍝ Query the enumerations supported by the Excel object
 ENUMS←COM 'QUERY' 'ENUMERATIONS' EXCEL
 ⍝ Check the name of Excel's second enumeration
 2⊃ENUMS
XlApplicationInternational
 ⍝ Query the constants in the enumeration
 CONS←COM 'QUERY' 'CONSTANTS' EXCEL (2⊃ENUMS)
 ⍝ Check the name and value of the 20th element in the enumeration
 CONS[20;]
 xlGeneralFormatName 26
 ⍝ Use the constant with the International indexed property
 COM 'PROPERTY' EXCEL 'International()' 26
General
 ⍝ Release Excel

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

219

 COM 'RELEASE' EXCEL

Managing COM Objects

Use the RELEASE command to release a COM object:

⍝ Release an object
COM 'RELEASE' OBJECT

COM objects are not automatically released when the COM external function is expunged. In fact, some COM

objects such as Excel may continue running even after APL2 is shut down if you do not first close and release

them appropriately. Use the RELEASE command to release objects after your application no longer needs them.

Note:

Not only the CREATE command returns objects. COM properties and methods can return objects that should be

released after use. For example, the Open method in the following command returns a Workbook object that

should be released after the file is closed.

Example:

 WORKBOOK←COM 'METHOD' EXCEL 'Workbooks.Open' 'd:\test.xls'
 COM 'RELEASE' WORKBOOK
 COM 'RELEASE' EXCEL

Handling COM Events

Some COM objects signal events to notify applications that something has happened. For example, a

spreadsheet may signal an event when the focus has moved to a new cell.

Use the 'HANDLERS' command to indicate that your application should be notified when objects signal

events.

⍝ Set the event handlers for an object
COM 'HANDLERS' OBJECT HANDLERS

⍝ Query an object's event handlers
HANDLERS←COM 'HANDLERS' OBJECT

The handlers array is a two column matrix:

[;1] - Character vector - Event names as returned by the 'QUERY' 'EVENTS' command

[;2] - Arbitrary array - Event handler returned when the event is signaled

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

220

Event handlers are arbitrary arrays. The structure of your application dictates what type of array you will use.

For example, you might use character vectors as event handlers and execute them when they are signaled. Or,

you might choose to use labels and branch to them when the events are signaled.

You do not need to specify event handlers for all an object's events. Events for which no handler is specified are

ignored.

Assign a zero element handler array to remove all event handlers.

When an event is signaled, if an event handler has been specified for it, the COM function queues the events

until the application waits for them.

Use the 'WAIT' command to retrieve queued events or wait for new events.

⍝ Wait for events
EVENTS←COM 'WAIT' TIMEOUT

The TIMEOUT argument is the number of seconds to wait for an event. WAIT returns '' if no event has

occurred in the specified number of seconds. If an event has occurred, WAIT returns a 6 or 7 element vector that

describes the event:

[1] Scalar integer - Handle of object that signaled the event

[2] Character vector - Event name

[3] Arbitrary array - Event handler associated with the event using the 'HANDLERS' command.

[4] Two integers - Position of the mouse pointer at the time the event occurred

[5] Scalar integer - Time the event occurred (in milliseconds since system start)

[6] 2 column array - Named parameters. Columns are:

[;1] Character vector - Parameter name

[;2] Array - Parameter value

[7] Vector of arrays - Positional arguments not supplied as named arguments

Notes:

 The object handle returned for each event must be released.

 Scalar parameters that are IDispatch or IUnknown interface pointers must be released.

 Parameters that contain arrays of IDispatch or IUnknown interface pointers are invalid and cannot be

used or released.

 All event handlers must be removed by assigning a zero element handler array to completely release an

object.

The following log demonstrates using COM events:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

221

 ⍝ Start Excel
 EXCEL←COM 'CREATE' 'Excel.Application'
 ⍝ Add a workbook
 WORKBOOK←COM 'METHOD' EXCEL 'Workbooks.Add'
 ⍝ Notice the Excel and workbook handles may later be returned in events
 EXCEL WORKBOOK
1443852 1450804
 ⍝ Query Excel's events
 EVENTS←COM 'QUERY' 'EVENTS' EXCEL
 ⍝ The seventeenth event is a close event
 ⊃EVENTS[17;]
WorkbookBeforeClose
METHOD
VOID WorkbookBeforeClose(Workbook* Wb[in], BOOL* Cancel[in])
C:\Program Files\Microsoft Office\Office10\VBAXL10.CHM
 ⍝ Set a handler for the close event
 COM 'HANDLERS' EXCEL (1 2⍴'WorkbookBeforeClose' 'ARRAY')
 ⍝ Make Excel visible
 COM 'PROPERTY' EXCEL 'Visible' 1
 ⍝ Wait for an event
 RESULT←COM 'WAIT' ¯1
 DISPLAY RESULT
┌→───┐
│ ┌→──────────────────┐ ┌→────┐ ┌→──────┐ ┌→─────────────────┐ │
│ 1449532 │WorkbookBeforeClose│ │ARRAY│ │1356 29│ 146087322 ↓ ┌→─┐ │ │
│ └───────────────────┘ └─────┘ └~──────┘ │ │Wb│ 1454132 │ │
│ │ └──┘ │ │
│ │ ┌→─────┐ │ │
│ │ │Cancel│ 0 │ │
│ │ └──────┘ │ │
│ └∊─────────────────┘ │
└∊───┘
 ⍝ Parse the event result
 (OBJECT EVENT HANDLER CURSORPOS TIME NAMED)←6↑RESULT
 POSITIONAL←6↓RESULT
 ⍝ Release the handles returned in the event
 COM 'RELEASE' OBJECT
 COM 'RELEASE' NAMED[1;2]
 ⍝ Indicate COM should stop queuing events
 COM 'HANDLERS' EXCEL ''
 ⍝ Make Excel invisible
 COM 'PROPERTY' EXCEL 'Visible' 1
 ⍝ Prevent Excel from prompting when the file is closed
 COM 'PROPERTY' EXCEL 'DisplayAlerts' 0
 ⍝ Invoke a method to close the file
 COM 'METHOD' WORKBOOK 'Close'
¯1
 ⍝ Release the workbook and Excel
 COM 'RELEASE' WORKBOOK
 COM 'RELEASE' EXCEL

Configuring the COM Interface

COM objects can support multiple national languages and use the application's current locale to determine how

to interpret member names and arguments.

Use the CONFIG command to set the current locale used by the COM external function:

⍝ Retrieve the current locale information
(prim sub sort)←COM 'CONFIG' 'LOCALE'

⍝ Set the locale information

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

222

COM 'CONFIG' 'LOCALE' prim sub sort

Where prim, sub, and sort are scalar integers. prim is a primary language identifier, sub is a sublanguage

identifier, and sort is a sort identifier. Valid values for these identifiers can be found at the Microsoft

Developers Network, http://msdn.microsoft.com.

The COM function initializes the current locale with the user's default locale which corresponds to a setting of 0
1 0.

Notes:

If you intend to provide your application to users who may have their systems configured to use different

locales than your development systems, during application initialization you should configure the COM function

to use your development systems' locale to ensure your application will run on your users' machines.

COM objects that do not support multiple national languages may ignore the locale setting.

Use of different languages requires that both the operating system's and the COM object's support for those

languages be installed.

Data Conversion Between COM and APL2

COM components and APL2 use different internal data types. When moving data between the environments,

the COM external function performs automatic data conversion.

Some COM objects support user-defined data types much like C structures. The COM external function does not

support user-defined data types.

The COM external function uses the Visual Basic to APL2 interface to perform data conversion. See Data

Conversion Between Visual Basic and APL2 for further information.

COM Microsoft Agent Example

The following function demonstrates using COM to control Microsoft Agent:

∇DEMO_MERLIN;AGENT;COM;CURSORPOS;EM;ET;EVENT;HANDLER;MERLIN;NAMED;OBJECT;POSITIONAL;RC;REQ
UEST;RESULT;TIME
[1] ⍝
[2] ⍝ Use the Microsoft Agent Control's Merlin character to demonstrate using COM events.
[3] ⍝
[4]
[5] ⍝ Associate the COM function
[6] ⎕ES(1≠3 11 ⎕NA 'COM')/'COM unavailable'
[7]
[8] ⍝ Create a Microsoft Agent control
[9] AGENT←(⎕IO+2)⊃1 COM 'CREATE' 'Agent.Control'
[10]
[11] ⍝ Tell the agent to connect
[12] COM 'PROPERTY' AGENT 'Connected' 1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

223

[13]
[14] ⍝ Load the merlin character
[15] REQUEST←COM 'METHOD' AGENT 'Characters.Load' 'Merlin' 'Merlin.acs'
[16] COM 'RELEASE' REQUEST
[17]
[18] ⍝ Tell the agent to use merlin
[19] MERLIN←COM 'METHOD' AGENT 'Characters.Character' 'Merlin'
[20]
[21] ⍝ Move the character
[22] ⍝ Note: Character methods return Request objects which must be release
[23] REQUEST←COM 'METHOD' MERLIN 'MoveTo' 100 200
[24] COM 'RELEASE' REQUEST
[25]
[26] ⍝ Show the character
[27] REQUEST←COM 'METHOD' MERLIN 'Show'
[28] COM 'RELEASE' REQUEST
[29]
[30] ⍝ Tell the character to speak
[31] REQUEST←COM 'METHOD' MERLIN 'Speak' 'Hello from the APL Products and Services group
at IBM.'
[32] COM 'RELEASE' REQUEST
[33]
[34] ⍝ Set an event handler for the agent's Click event
[35] ⍝ Note: Use a label as the event handler so we can simply branch to it
[36] ⍝ when the event is signaled.
[37] COM 'HANDLERS' AGENT(1 2⍴'Click' CLICK)
[38]
[39] LOOP: ⍝ Wait for events
[40] (ET EM RC)←1 COM 'WAIT' ¯1
[41] →(~ET≡0 0)/ERROR
[42] →(RC≡'')/LOOP
[43] (OBJECT EVENT HANDLER CURSORPOS TIME NAMED)←6↑RC
[44] POSITIONAL←6↓RC
[45] ⍝ Release the object returned with the event
[46] COM 'RELEASE' OBJECT
[47] →HANDLER
[48]
[49] CLICK:
[50]
[51] ERROR:
[52] ⍝ Hide the character
[53] REQUEST←COM 'METHOD' MERLIN 'Hide'
[54] COM 'RELEASE' REQUEST
[55]
[56] ⍝ Release merlin
[57] COM 'RELEASE' MERLIN
[58]
[59] ⍝ Unload merlin
[60] 0 0⍴COM 'METHOD' AGENT 'Characters.Unload' 'Merlin'
[61]
[62] ⍝ Reset the handlers to release internal references to the agent
[63] COM 'HANDLERS' AGENT ''
[64]
[65] ⍝ Release the agent
[66] COM 'RELEASE' AGENT
[67] ∇

COM Excel Example

The following log demonstrates using COM to control Microsoft Excel:

 3 11 ⎕NA 'COM'
1
 ⍝ Create an instance of Excel
 EXCEL←COM 'CREATE' 'Excel.Application'
 ⍝ Invoke a method to open a file

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

224

 WORKBOOK←COM 'METHOD' EXCEL 'Workbooks.Open' 'c:\sample.xls'
 ⍝ Specify a property to make the Excel window visible
 COM 'PROPERTY' EXCEL 'Visible' 1
 ⍝ Reference a property to get the contents of the spreadsheet
 DATA←COM 'PROPERTY' EXCEL 'ActiveSheet.UsedRange.Value'
 DATA
 David 12 13
 14 15 16
 ⍝ Specify a property to set the value of the spreadsheet cells
 DATA←⌽DATA
 COM 'PROPERTY' EXCEL 'ActiveSheet.UsedRange.Value' DATA
 ⍝ Reference an indexed property to get the value of a single cell
 COM 'PROPERTY' EXCEL 'Cells.Item().Value' (1 3)
David
 ⍝ Reference another indexed property to get a range of cells
 COM 'PROPERTY' EXCEL 'Range().Value' (⊂'A1:B2')
13 12
16 15
 ⍝ Reference a specific range of cells
 DATA←COM 'PROPERTY' EXCEL 'Cells().Resize().Value' (2 3) (4 5)
 DATA
772490 231068 555695 549374 314042
371448 913758 527378 630692 33735
 13214 81415 327089 380452 241366
719720 326696 772742 465291 129836
 ⍝ Specify a range of cells
 DATA←4 5⍴⍳20
 COM 'PROPERTY' EXCEL 'Cells().Resize().Value' (2 3) (4 5) DATA
 ⍝ Set a property to make Excel terminate when we release it
 COM 'PROPERTY' EXCEL 'Visible' 0
 ⍝ Prevent Excel from prompting when the file is closed
 COM 'PROPERTY' EXCEL 'DisplayAlerts' 0
 ⍝ Invoke a method to close the file
 COM 'METHOD' WORKBOOK 'Close'
¯1
 ⍝ Release the objects we acquired
 COM 'RELEASE' WORKBOOK
 COM 'RELEASE' EXCEL

COM Internet Explorer Example

The following function demonstrates using COM to control Microsoft Internet Explorer:

 ∇DEMO_IE;COM;CURSORPOS;EM;ET;EVENT;HANDLER;IEXPLORER;NAMED;OBJECT;POSITIONAL;RC;TIME
[1] ⍝
[2] ⍝ Demonstrate using COM to control Internet Explorer
[3] ⍝
[4] ⎕ES(~3 11 ⎕NA 'COM')/5 1
[5]
[6] ⍝ Create an instance of Internet Explorer
[7] IEXPLORER←COM 'CREATE' 'InternetExplorer.Application'
[8]
[9] ⍝ Tell the explorer to display a web site
[10] 0 0⍴COM 'METHOD' IEXPLORER 'Navigate2' 'http://www.ibm.com'
[11]
[12] ⍝ Set the size and position of the explorer window
[13] COM 'PROPERTY' IEXPLORER 'Height' 800
[14] COM 'PROPERTY' IEXPLORER 'Width' 800
[15] COM 'PROPERTY' IEXPLORER 'Top' 50
[16] COM 'PROPERTY' IEXPLORER 'Left' 50
[17]
[18] ⍝ Set an event handler
[19] ⍝ Note: Use a label as the event handler so we can simply branch to it
[20] ⍝ when the event is signaled.
[21] COM 'HANDLERS' IEXPLORER(1 2⍴('OnQuit' ONQUIT))
[22]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

225

[23] ⍝ Show the explorer
[24] COM 'PROPERTY' IEXPLORER 'Visible' 1
[25]
[26] LOOP: ⍝ Wait for events
[27] ⎕←(ET EM RC)←1 COM 'WAIT' ¯1
[28] →(~ET≡0 0)/ERROR
[29] →(RC≡'')/LOOP
[30] (OBJECT EVENT HANDLER CURSORPOS TIME NAMED)←6↑RC
[31] POSITIONAL←6↓RC
[32] ⍝ Release the object returned with the event
[33] COM 'RELEASE' OBJECT
[34] →HANDLER
[35]
[36] ONQUIT:
[37] ERROR:
[38] COM 'RELEASE' IEXPLORER
[38] COM 'RELEASE' IEXPLORER
[39] ∇

COM Word Example

The following log demonstrates using COM to control Microsoft Word:

 3 11 ⎕NA 'COM'
1
 ⍝ Start Microsoft Word
 WORD←COM 'CREATE' 'Word.Application'
 ⍝ Open a document
 DOCUMENT←COM 'METHOD' WORD 'Documents.Open' 'c:\sample.doc'
 ⍝ Get the builtin style constants
 CONS←COM 'QUERY' 'CONSTANTS' WORD 'WdBuiltinStyle'
 ⍝ Get the value of the constant for level 1 heading style
 INDEX←CONS[CONS[;1]⍳⊂'wdStyleHeading1';2]
 ⍝ Get the font used for level 1 headings
 COM 'PROPERTY' DOCUMENT 'Styles.Item().Font.Name' INDEX
Verdana
 ⍝ Set the font used for level 1 headings
 COM 'PROPERTY' DOCUMENT 'Styles.Item().Font.Name' INDEX 'Arial'
 ⍝ Save the changes
 COM 'METHOD' DOCUMENT 'Save'
 ⍝ Close the file
 COM 'METHOD' DOCUMENT 'Close'
 ⍝ Release the file
 COM 'RELEASE' DOCUMENT
 ⍝ Close Word
 COM 'METHOD' WORD 'Quit'
 ⍝ Release Word
 COM 'RELEASE' WORD

COM Office Visual Basic Example

The following function demonstrates using Visual Basic code in a Microsoft Office program.

∇DEMO_VB_CODE;CODEMODULE;COM;COMPONENT;COUNT;COUNTOFLINES;EM;ET;EXCEL;INDEX;LINES;NAME;TYP
E;VBCOMPONENTS;VB_CODE;WORKBOOK;vbext_ct_ClassModule;vbext_ct_StdModule
[1] ⍝
[2] ⍝ Demonstrate how to work with Visual Basic code in a Microsoft Office program.
[3] ⍝
[4] ⍝ Note:
[5] ⍝
[6] ⍝ Microsoft provides little documentation about this topic.
[7] ⍝ However, good documentation from third parties is available on the web.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

226

[8] ⍝ For more information, search the internet for VBPROJECT.
[9] ⍝
[10]
[11] ⎕ES(~3 11 ⎕NA 'COM')/1 5
[12]
[13] ⍝ Start Excel and add an empty workbook
[14] EXCEL←COM 'CREATE' 'Excel.Application'
[15] WORKBOOK←COM 'METHOD' EXCEL 'Workbooks.Add'
[16]
[17] ⍝
[18] ⍝ By default, Microsoft Office programs do not allow applications to access
[19] ⍝ Visual Basic macro source code. If access is not authorized, the following
[20] ⍝ property reference will fail.
[21] ⍝
[22] ⍝ To authorize access, start Excel, or the desired Office program,
[23] ⍝ pull down the Tools menu, select Macro, and then select Security....
[24] ⍝ In the Security dialog, select the Trusted Sources tab and check
[25] ⍝ Trust access to Visual Basic Project. Then press Ok and close
[26] ⍝ the program.
[27] ⍝
[28] ⍝ Get the handle of Excel's VBComponents object
[29] (ET EM VBCOMPONENTS)←1 COM 'PROPERTY' WORKBOOK 'VBProject.VBComponents'
[30] →(~ET≡0 0)/CLEANUP
[31]
[32] ⍝ Display the possible component types
[33] 'Component types:'
[34] COM 'QUERY' 'CONSTANTS' VBCOMPONENTS 'vbext_ComponentType'
[35]
[36] ⍝ Define component type constants.
[37] vbext_ct_StdModule←1
[38] vbext_ct_ClassModule←2
[39]
[40] ⍝⍝⍝
[41] ⍝
[42] ⍝ The following code demonstrates how to add some Visual Basic code to the project
[43] ⍝
[44]
[45] ⍝ Add a standard module component
[46] COMPONENT←COM 'METHOD' VBCOMPONENTS 'Add' vbext_ct_StdModule
[47]
[48] ⍝ Name it
[49] COM 'PROPERTY' COMPONENT 'Name' 'MyComponent'
[50]
[51] ⍝ Get the component's CodeModule object
[52] CODEMODULE←COM 'PROPERTY' COMPONENT 'CodeModule'
[53]
[54] ⍝ Insert Visual Basic source code as a CarriageReturn-LineFeed delimited character
vector
[55] VB_CODE←'Sub MyMacro(Text)' 'ActiveCell.FormulaR1C1 = Text' 'End Sub'
[56] 0 0⍴COM 'METHOD' CODEMODULE 'InsertLines' 2(∊VB_CODE,¨⊂1↓⎕TC)
[57]
[58] ⍝ Release the codemodule and component
[59] COM 'RELEASE' CODEMODULE
[60] COM 'RELEASE' COMPONENT
[61]
[62] ⍝⍝⍝
[63] ⍝
[64] ⍝ The following code demonstrates how to retrieve the Visual Basic code in a project
[65] ⍝
[66]
[67] ⍝ Retrieve the number of components
[68] COUNT←COM 'PROPERTY' VBCOMPONENTS 'COUNT'
[69]
[70] ⍝ Loop through the components
[71] INDEX←1
[72] LOOP:→(INDEX>COUNT)/DONE
[73]
[74] ⍝ Get component number Index
[75] COMPONENT←COM 'PROPERTY' VBCOMPONENTS 'Item()' INDEX
[76]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

227

[77] ⍝ Get the component's name and type
[78] NAME←COM 'PROPERTY' COMPONENT 'Name'
[79] TYPE←COM 'PROPERTY' COMPONENT 'Type'
[80]
[81] 'Component Index: ',(⍕INDEX),' Type: ',(⍕TYPE),' Name: ',⍕NAME
[82]
[83] →(~TYPE∊vbext_ct_ClassModule vbext_ct_StdModule)/DOES_NOT_CONTAIN_CODE
[84]
[85] ⍝ Get the component's CodeModule object
[86] CODEMODULE←COM 'PROPERTY' COMPONENT 'CodeModule'
[87]
[88] ⍝ Get the number of lines in the codemodule
[89] COUNTOFLINES←COM 'PROPERTY' CODEMODULE 'CountOfLines'
[90]
[91] ⍝ Get the source code
[92] LINES←COM 'PROPERTY' CODEMODULE 'Lines()'(1 COUNTOFLINES)
[93]
[94] 'Count of lines: ',⍕COUNTOFLINES
[95] 'Lines:'
[96] LINES
[97]
[98] ⍝ Release the code module
[99] COM 'RELEASE' CODEMODULE
[100]
[101] DOES_NOT_CONTAIN_CODE:
[102] ⍝ Release the component
[103] COM 'RELEASE' COMPONENT
[104]
[105] →LOOP INDEX←INDEX+1
[106]
[107] DONE:
[108] ⍝ Release the components collection
[109] COM 'RELEASE' VBCOMPONENTS
[110]
[111]
⍝⍝⍝
[112] ⍝
[113] ⍝ The following line of code demonstrates how to run the macro we inserted
[114] ⍝
[115] 0 0⍴COM 'METHOD' EXCEL 'Run' 'MyMacro' 'My Text'
[116]
[117] CLEANUP:
[118]
[119] ⍝ Make sure Excel does not prompt the user for confirmation
[120] COM 'PROPERTY' EXCEL 'DisplayAlerts' 0
[121]
[122] ⍝ Close and release the workbook
[123] 0 0⍴COM 'METHOD' WORKBOOK 'Close'
[124] COM 'RELEASE' WORKBOOK
[125]
[126] ⍝ Close and release Excel
[127] 0 0⍴COM 'METHOD' EXCEL 'Quit'
[128] COM 'RELEASE' EXCEL
[129]
[130] ⍝ If an authorization error occurred, signal the user
[131] ⎕ES EM
[132] ∇

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

228

COMBROWSE - COM Browser

[owner] COMBROWSE {class | object | class object}

The COMBROWSE external function is an interactive tool for browsing the members, enumerations, and events

supported by Component Object Model classes and objects.

owner
Integer scalar - Handle of COMBROWSE window's owner

class
Character vector - COM class such as 'Word.Application'. If object is not supplied, an instance of the

class is created.
object

Integer scalar - Handle of COM object returned by either the COM external function or the GUITOOLS

function CALLCOM.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

229

COPY - Copy Workspace Objects

result ← COPY specification

This function is a program interface to the APL2 system command)COPY.

specification
A character vector containing the specification of the workspace to copy from and optional list of

objects to copy. The syntax is the same as for)COPY:

[library] wsname [object ...] or
'[path]filename' [object ...]

result
A seven item array:

[1] Return Code

0 - Success.

1 - Success, but some objects were not copied. See items 4 through 7 for object lists.

2 - Error. See item 2 for reason code.

[2] Reason Code

0 - Success

1 - Incorrect command

2 - Improper library reference

3 - Workspace not found

4 - Workspace locked

5 - Library unavailable

6 - Library I/O error

7 - System limit

8 - Workspace invalid

[3] Workspace timestamp, if Return Code is 0 or 1

[4] List of objects not found, if object names were specified.

[5] Not used. (Null)

[6] Not used. (Null)

[7] List of objects not copied due to insufficient workspace size.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

230

CPUCOUNT - Get Number of Processors

count ← CPUCOUNT

This function returns the number of CPU processors in the machine. This value can be used to determine

whether PEACHP or PEACHT may provide a performance benefit.

count
A scalar integer containing the number of CPU processors in the machine.

Note:

CPUCOUNT returns the number of processors in the system as reported by the operating system.

Even if CPUCOUNT returns a value greater than 1, PEACHP and PEACHT may not provide

improved performance. For example, the CPU processor may support hyperthreading but the

operating system may not exploit running tasks asynchronously.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

231

CTK - Character to Kanji

data ← [codepage] CTK characters

This function converts APL2 characters to the Multibyte (Shift-JIS) format.

Note: This function is available only on Windows systems.

characters
An APL2 character vector. There may be characters present in the vector from outside of ⎕AV

codepage
The codepage to use for the conversion. If not given, the active codepage on the running machine is

used.
data

A character vector containing data in the Shift-JIS format.

For more information on using extended characters in APL2, see Double-Byte Character Set Support.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

232

CTN - Character to Numeric

numbers ← CTN characters

This function converts a character vector or matrix to a numeric vector or matrix.

characters
A character vector or matrix that contains the formatted representation of one or more numbers. Only

numeric formats considered valid by the C strtod subroutine are accepted, except that the APL high

minus character will be accepted and replaced with the regular minus character before calling strtod.

[+|-|¯] [digits] [.] digits [e|E [+|-|¯] digits]

If a matrix is passed, each row of the matrix must produce the same number of elements in its result.

LENGTH ERROR will be produced if the matrix does not conform.

numbers

A numeric vector or matrix that is formed by processing characters with the strtod routine. A

null vector is returned if the argument contained any invalid numeric representations.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

233

CTUTF - Character to UTF

result ← [bits] CTUTF data

Encodes APL2 character data into UTF-7 and UTF-8 formatted data.

UTF-7 and UTF-8 are Universal Character Set Transformation Formats. They are used for transmitting Unicode

data across networks which represent character data as bytes and use either 7 or 8 bits in each byte. UTF-7 and

UTF-8 are described by the Unicode standard and in the Internet Request for Comments (RFC) 2152 and 2279.

bits
The number of bits of significant data within individual encoded bytes. If bits is 7, result contains

UTF-7 data. If bits is 8, result contains UTF-8 data. If bits is omitted, result contains UTF-8

data.
data

A character vector of any length containing the data to be encoded. CTUTF will automatically convert

the data to Unicode if necessary before encoding into the transformation format.
result

A character vector containing the encoded data.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

234

DATATYPE - Array Data Type

code ← DATATYPE array

This function returns a numeric data type code for an APL2 array.

array
Any APL2 data object.

code
One of the following numeric codes:

2 Extended Character

1 Byte Character

0 Nonhomogeneous or Nested

¯1 Boolean

¯2 Integer

¯3 Floating Point

¯4 Complex

¯5 Arithmetic Progression Vector

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

235

DISPLAY, DISPLAYC and DISPLAYG - APL2 Array Structures

The DISPLAY, DISPLAYC, and DISPLAYG functions are useful in showing the structure of nested and mixed

arrays. The external function versions are equivalent to the APL functions found in the DISPLAY workspace.

Z←DISPLAY X
Z←DISPLAYC X
Z←DISPLAYG X

Z is a character matrix representing the array X.

DISPLAY and DISPLAYG use box characters. DISPLAYG is identical to DISPLAY and is included for

compatibility with the DISPLAYG function distributed with APL2 on mainframe systems. DISPLAYC uses

characters that display on all implementations. This is functionally equivalent to the DISPLAY function in the

APL2 mainframe system.

The following characters are used to convey shape information:

→ or ↓ Indicates a dimension of at least one.

⊖ or ⌽ Indicates an axis of length zero. If an array is empty, its prototype is displayed.

(None of the above) Indicates no dimension (a rank 0 array).

The following characters are used to convey type information:

~ Indicates numeric.

+ Indicates mixed.

∊ Indicates nested.

_ Indicates a scalar character that is at the same depth as non-scalar arrays.

(None of the above) Indicates a character array that is not a simple scalar.

To use each of the DISPLAY functions:

 (⊂3 11)⎕NA¨'DISPLAY' 'DISPLAYC' 'DISPLAYG'
1 1 1
 (DISPLAY ⍳5) (DISPLAYC ⍳5) (DISPLAYG ⍳5)
 ┌→────────┐ .→--------. ┌→────────┐
 │1 2 3 4 5│ │1 2 3 4 5│ │1 2 3 4 5│
 └~────────┘ '~--------' └~────────┘
 X←⊂⍳5
 (DISPLAY X) (DISPLAYC X) (DISPLAYG X)
 ┌─────────────┐ .-------------. ┌─────────────┐
 │ ┌→────────┐ │ │ .→--------. │ │ ┌→────────┐ │
 │ │1 2 3 4 5│ │ │ │1 2 3 4 5│ │ │ │1 2 3 4 5│ │
 │ └~────────┘ │ │ '~--------' │ │ └~────────┘ │
 └∊────────────┘ '∊------------' └∊────────────┘
 X←(⊂⊂⍳4)(2 2⍴'ABCD')(2 2⍴'42' 'IS' 'THE' 'ANSWER')
 DISPLAY X
 ┌→──┐

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

236

 │ ┌───────────────┐ ┌→─┐ ┌→───────────────┐ │
 │ │ ┌───────────┐ │ ↓AB│ ↓ ┌→─┐ ┌→─┐ │ │
 │ │ │ ┌→──────┐ │ │ │CD│ │ │42│ │IS│ │ │
 │ │ │ │1 2 3 4│ │ │ └──┘ │ └──┘ └──┘ │ │
 │ │ │ └~──────┘ │ │ │ ┌→──┐ ┌→─────┐ │ │
 │ │ └∊──────────┘ │ │ │THE│ │ANSWER│ │ │
 │ └∊──────────────┘ │ └───┘ └──────┘ │ │
 │ └∊───────────────┘ │
 └∊──┘
 ⍴X
 3
 ⍴¨X
 2 2 2 2
 DISPLAY ⍴¨X
 ┌→────────────────┐
 │ ┌⊖┐ ┌→──┐ ┌→──┐ │
 │ │0│ │2 2│ │2 2│ │
 │ └~┘ └~──┘ └~──┘ │
 └∊────────────────┘
 DISPLAYC X
 .→--.
 │ .---------------. .→-. .→---------------. │
 │ │ .-----------. │ ↓AB│ ↓ .→-. .→-. │ │
 │ │ │ .→------. │ │ │CD│ │ │42│ │IS│ │ │
 │ │ │ │1 2 3 4│ │ │ '--' │ '--' '--' │ │
 │ │ │ '~------' │ │ │ .→--. .→-----. │ │
 │ │ '∊----------' │ │ │THE│ │ANSWER│ │ │
 │ '∊--------------' │ '---' '------' │ │
 │ '∊---------------' │
 '∊--'
 ⍴X
 3
 ⍴¨X
 2 2 2 2
 DISPLAYC ⍴¨X
 .→----------------.
 │ .⊖. .→--. .→--. │
 │ │0│ │2 2│ │2 2│ │
 │ '~' '~--' '~--' │
 '∊----------------'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

237

EDITOR_2 - APL2 Editor 2

EDITOR_2 name

EDITOR_2 is functionally equivalent to Editor 2 (available through)EDITOR 2) on APL2 mainframe

systems. Editor 2 is fully described in APL2 Programming: Language Reference.

To use this function, access it using ⎕NA and then invoke it with a right argument of the name of the object to

be edited:

 3 11 ⎕NA 'EDITOR_2'
 EDITOR_2 'object_name'

This is equivalent to entering the mainframe APL2 commands:

)EDITOR 2
 ∇object_name

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

238

EXP - Execute in Previous Namescope

This routine is designed to be used in namespaces. It provides access to names in the namescope of the function

or operator that caused entry into the current namescope.

Notes:

1. If the EXP routine is run in a namescope where there is no previous namescope (for instance, in your

active workspace rather than in a namespace), it operates in the current workspace.

2. Processing a function or operator declared with ⎕NA causes an explicit change to the namescope of the

function or operator. Processing the EXP function or an operand to an external operator causes an

implicit namescope switch. If the EXP function is run in a namescope that was entered implicitly, the

namescope switches to the one that originally caused explicit entry into the current namescope.

Functions processed under control of EXP operate in the same manner as those processed under control of ⎕EC,

and exhibit the following behavior:

 Requests for quad input are handled the same as quad input under ⎕EC.

 Errors generated during processing do not cause suspension of the function being processed and are

reported against EXP.

 Stop control vectors (S∆) are ignored.

 An attention signal does not cause suspension; an interrupt signal causes the EXP function to be

interrupted.

 Branch escape (→) causes the EXP function to run, but its callers are not abandoned.

EXP can perform four different actions, depending on how the right argument is constructed:

result ← EXP ⊂expr

Processes an APL expression in the previous namescope.

expr
A character scalar or vector containing an expression to be processed in the previous namescope. If a

vector, it must be enclosed (with ⊂) to create a single item.

If the expression is nothing more than the name of a variable or niladic function in the previous

namescope, then you are referencing the named item.
result

The result of processing expr.

Example:

 ⍝ Get value of ⎕IO from previous namescope
 PREV_IO←EXP ⊂'⎕IO'
 ⍝ (0 1) or (1 2) depending on ⎕IO in previous namescope
 IOTA2←EXP ⊂'⍳2'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

239

result ← EXP fn_name value

Processes a monadic function in the previous namescope using an argument from the current namescope.

fn_name
A character scalar or vector containing the name of a monadic function in the previous namescope. The

function can be a defined function or a system function.
value

The right argument (from the current namescope) to be supplied to the monadic function.
result

The result of executing the named monadic function in the previous namescope.

Example:

 ⍝ Create function NEWFN in previous namescope
 Z←EXP '⎕FX' ('R←NEWFN RA' 'R←RA')

result ← EXP lvalue fn_name rvalue

Processes a dyadic function in the previous namescope using arguments from the current namescope.

fn_name
A character scalar or vector containing the name of a dyadic function in the previous namescope. The

function can be a defined function or a system function.
lvalue

The left argument (from the current namescope) to be supplied to the dyadic function.
rvalue

The right argument (from the current namescope) to be supplied to the dyadic function.
result

The result of executing the named dyadic function in the previous namescope.

result ← EXP vname '←' value

Assigns a value from the current namescope to a variable in the previous namescope.

vname
A character scalar or vector that contains the name of the variable in the previous namescope.

value
The value from the current namescope that is to be assigned to vname.

result
The same as value.

Example:

 ⍝ Restore ⎕IO in previous namescope
 T←EXP '⎕IO' '←' PREV_IO

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

240

FDELETE - File Delete

rc ← FDELETE filespec

This function deletes a system file.

On Windows, the deleted file will be sent to the Recycle Bin (subject to the Recycle Bin's properties).

filespec
A character vector that identifies a file. It may be a simple file name, or may include a path

specification.

On Windows, filespec may contain Unicode characters.

rc

Return code. On Windows, the code is from the SHFileOperation routine. On Unix systems, it is

the errno value from the call to the unlink routine.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

241

FILE - File Read or Write

rdata ← FILE filespec

rc ← wdata FILE filespec

This function reads or writes a system file in binary mode. The monadic form reads a file, while the dyadic form

writes it. FILE is a stream read/write function. It is not record-oriented, and it does not perform data conversion.

filespec
A character vector that identifies a file. It may be a simple file name, or may include a path

specification.

On Windows filespec may contain Unicode characters.

rdata
The contents of the file as a simple character vector. Any line or record separators are retained as they

existed in the file.

Any error conditions encountered while reading a file are reported by returning a numeric result in place

of the data.

wdata
The data to be written to the file.

If wdata is a simple character object, it is raveled and written to the file exactly as given. If the file

already exists, the old contents are replaced by the new data. If the character object is null, a 0-length

file will be written.

If wdata is a non-character null, the file will be erased.

rc
The return code from writing a file; normally zero. Nonzero return codes are system dependent. The

CHECK_ERROR function can be used to obtain more information.

Hint: You can use the APL membership (∊) and partition (⊂) functions to parse an ASCII text file into a vector

of vectors.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

242

FILE Namespace

The FILE namespace consists of several groups of cover functions that use the file auxiliary processors AP 210

and AP 211.

The namespace objects, shipped in file FILE.ans, are equivalent to the objects found in the FILE workspace.

See FILE Workspace for a list of the objects provided and the syntax for their usage.

Because of the large number of objects in the FILE namespace and name conflicts between its objects and other

supplied external routines, nicknames for these external objects are not provided in the APL2 default names file

(aplnm011.nam). Instead, associations to the objects can be made using the namespace file name in the left

argument of ⎕NA:

 'FILE' 11 ⎕NA 'REBUILD211'
1
 'FILE' 11 ⎕NA ⊃'WOPEN' 'READ' 'WRITE' 'CLOSE'
1 1 1 1

Surrogate names may be used to avoid name conflicts with objects already in your workspace:

 'FILE' 11 ⎕NA ⊃'X_OPEN WOPEN' 'X_READ READ' 'X_WRITE WRITE' 'X_CLOSE CLOSE'
1 1 1 1
 X_OPEN 'MYFILE'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

243

FSTAT - File Status

fileinfo ← FSTAT filespec

This function returns information about a system file. The information is taken from the structure returned by

the C routine stat.

filespec
A character vector that identifies a file. It may be a simple file name, or may include a path

specification.

On Windows filespec may contain Unicode characters.

fileinfo
An eleven-element nested array:

fileinfo[1] Device ID of files's directory entry

fileinfo[2] File serial number (Unix)

fileinfo[3] File mode information. The information is returned as a 16-element Boolean

array. Each element of the array corresponds to a file attribute. An element

value of 1 indicates the attribute exists. The following table shows the

correspondence between the array elements and file attributes:

mode[1] Regular file

mode[2] Directory

mode[3] Character device

mode[4] Fifo (Unix)

mode[5] User ID set on execution (Unix)

mode[6] Group ID set on execution (Unix)

mode[7] Unused

mode[8] Read permission

mode[9] Write permission

mode[10] Execute permission

mode[11] Read permission - group (Unix)

mode[12] Write permission - group (Unix)

mode[13] Execute permission - group (Unix)

mode[14] Read permission - other (Unix)

mode[15] Write permission - other (Unix)

mode[16] Execute permission - other (Unix)

fileinfo[4] Number of links (always 1 on Windows)

fileinfo[5] User ID (Unix)

fileinfo[6] Group ID (Unix)

fileinfo[7] Device ID of file (always the same as fileinfo[1] on Windows)

fileinfo[8] Size of file in bytes

fileinfo[9] Time of last access (in ⎕TS format)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

244

fileinfo[10] Time of last modification (in ⎕TS format)

fileinfo[11] Time of file creation (in ⎕TS format)

If the operation is unsuccessful, fileinfo contains the errno code from the stat routine.

The following constants can be used with the BITWISE operator to examine the file mode bits:

 S_IFDIR←16384 ⍝ Directory
 S_IFCHR←8192 ⍝ Character device
 S_IFREG←32768 ⍝ Regular file
 S_IREAD←256 ⍝ Read permission
 S_IWRITE←128 ⍝ Write permission
 S_IEXEC←64 ⍝ Execute/search permission

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

245

GETENV - Get Environment Variable

vector ← GETENV env_variable

This function returns the value of an environment variable as a character vector.

env_variable
An enclosed character vector that identifies the environment variable. Depending on the platform,

environment variable names can be case sensitive. For maximum application portability, use the exact

case for the name of the environment variable.
vector

An enclosed character vector that represents the value of the environment variable. If the environment

variable is not set, then vector is ⊂⍳0.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

246

GETLIB - Get Path for Library Number

path ← GETLIB number

Returns the directory path associated with an APL2 library number.

number
A whole number between 1 and 32767.

path
A character vector containing the directory path associated with the library number. If the given library

number is not defined, path is a null character vector.

Libraries can be defined in the apl2.ini file or by environment variable. See Library Specification for more

information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

247

GMTSTAMP - Get or Set Timestamp

result ← [newts] GMTSTAMP name

The monadic form of this function gets an object's timestamp. The dyadic form allows you to set the timestamp

of a defined function or operator.

This function operates in GMT (Greenwich Mean Time). Input timestamps are assumed to be in GMT and are

stored as given. Result timestamps are reported in GMT. Depending on the value of ⎕TZ, the output from the

monadic form of GMTSTAMP and the output from 2 ⎕AT for the same object may be different.

Attempts to set the timestamp of a variable, locked function or external function will result in DOMAIN
ERROR.

name
Character vector function or operator name.

newts
Numeric vector in ⎕TS format, to be used to set a new timestamp for the named object.

result
Numeric vector in ⎕TS format, the current timestamp for the named object.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

248

GRAPHPAK Namespace

GRAPHPAK is a powerful general-purpose graphical library that uses the AP 207 Universal Graphics auxiliary

processor to display results.

The namespace objects, shipped in namespace GRAPHPAK.ans, are equivalent to the objects found in the

GRAPHPAK workspace. See GRAPHPAK Workspace for an overview of the workspace and notes on

workstation usage. For a full description of GRAPHPAK, refer to APL2 GRAPHPAK: User's Guide and

Reference.

Because of the large number of objects in the GRAPHPAK namespace and name conflicts between its objects

and other supplied external routines, nicknames for these external objects are not provided in the APL2 default

names file (aplnm011.nam). Instead, associations to the objects can be made using the namespace file name

in the left argument of ⎕NA:

 'GRAPHPAK' 11 ⎕NA 'DEMO'
1
 'GRAPHPAK' 11 ⎕NA ⊃'CHART' 'ERASE' 'bw'
1 1 1

Surrogate names may be used to avoid name conflicts with objects already in your workspace:

 'GRAPHPAK' 11 ⎕NA ⊃'G_CHART CHART' 'G_ERASE ERASE' 'G_bw bw'
1 1 1
 G_bw←.5
 'F' G_CHART 1 2 3
 G_ERASE

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

249

GUITOOLS Namespace

Note: This namespace is only provided on Windows.

The GUITOOLS namespace contains tools for building GUI applications. For information about building GUI

applications, consult APL2 Programming: Developing GUI Applications.

The objects shipped in the GUITOOLS namespace are identical to the objects of the same name found in the

GUITOOLS workspace. However, unlike the GUITOOLS workspace, the GUITOOLS namespace does not

support execution of event handlers. Therefore, the following objects are not available in the namespace

 CHECK_EVENTS

 DEFAULTPROC

 EXECUTEDLG

 EXECUTEDLGX

Applications that use the GUITOOLS namespace must use the WAIT_EVENT function to wait for events.

When a variable shared with AP 145 is retracted, the AP destroys all windows and releases all other resources

acquired using the shared variable. Applications that use the GUITOOLS workspace often localize the SV145

shared variable to cause AP 145 to release resources when the application terminates. This technique does not

work with the GUITOOLS namespace because the shared variable is in the namespace and cannot be localized.

To force the GUITOOLS namespace's shared variable to be retracted, use the following GUITOOLS functions

to explicitly share and retract the shared variable:

 GUISHARE

 GUIRETRACT

Alternatively, expunge all associations with the GUITOOLS namespace during application termination.

Localize the associated names to cause them to be automatically expunged.

Because of the large number of objects in the GUITOOLS namespace, nicknames for these external objects are

not provided in the APL2 default names file (aplnm011.nam). Instead, associations to the objects can be

made using the namespace file name in the left argument of ⎕NA:

 'GUITOOLS' 11 ⎕NA ⊃'FILEDLG' 'GUIRETRACT'
1 1
 FILEDLG 1 1 ''
C:\Program Files\ibmapl2w\readme.txt
 GUIRETRACT

Surrogate names may be used:

 'GUITOOLS' 11 ⎕NA 'SETPROP SET_PROPERTY'
1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

250

GUIVARS Namespace

Note: This namespace is only provided on Windows.

The GUIVARS namespace contains variables that define a set of common constants used in GUI programs. For

information about building GUI applications and the constants supplied in GUIVARS, consult APL2

Programming: Developing GUI Applications.

The objects shipped in the GUIVARS namespace are identical to the objects found in the GUIVARS

workspace.

Because of the large number of objects in the GUIVARS namespace, nicknames for these external objects are

not provided in the APL2 default names file (aplnm011.nam). Instead, associations to the objects can be

made using the namespace file name in the left argument of ⎕NA:

 'GUIVARS' 11 ⎕NA 'HWND_DESKTOP'
1
 'GUIVARS' 11 ⎕NA ⊃'VK_F3' 'AF_CHAR' 'AF_VIRTUALKEY'
1 1 1

Surrogate names may be used:

 'GUIVARS' 11 ⎕NA 'OKCANCEL MBID_OKCANCEL'
1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

251

Host System Utilities

The host system utilities are functions for performing operating system dependent tasks.

The external function versions are equivalent to the APL functions found in the host workspaces (AIX, LINUX,

SOLARIS and WINDOWS). By using the external functions, you can create applications which are common

across the Workstation APL2 platforms. The links to the external functions will be resolved at runtime to use

the correct versions for the operating system in use. For example:

 3 11 ⎕NA 'ERASE'
1
 ERASE 'temp.fil'
0

Except where noted, these are monadic functions. All functions return either 0 or data if successful. They return

a numeric error code if an error occurs.

Z←DIR path

Returns a directory list. This is equivalent to the dir command on Windows, and the ls command on Unix

systems. The right argument, path, is the path leading to the directory whose contents are to be displayed.

Z←ERASE filename

Erases a file. This is equivalent to the delete command on Windows, and the rm command on Unix systems.

filename is the name of the file to be erased, and can include a path definition.

Z←HOST cmd

Issues command cmd to the host operating system through AP 100. When HOST '' is executed (cmd is null),

it returns the name of the currently running operating system.

Z←MKDIR path

Creates a new subdirectory.

Z←cmd PIPE data

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

252

Provides a means to pipe APL2 data to an operating system command and returns any output generated by the

command.

The right argument, data, must be either a simple character vector, a character matrix, or a vector of character

vectors specifying the input to be passed to the command as stdin (standard input). If this is an empty vector, no

input is passed to the command. The left argument, cmd, must be a simple character vector specifying the

command to be executed. The result is a vector of vectors containing the output stdout (standard output)

generated by executing the command. Some examples of the use of the PIPE function:

To get names of APL workspaces and transfer files, sorting by date:

 ⊃'dir /b/od *.atf *.apl' PIPE ''

To run batch scripts through the interpreter:

 JOB1←')LOAD 1 DISPLAY' 'DISPLAY ''APL2'' 123'
 JOB2←')LOAD 2 WINDOWS' '∇PIPE[⎕]∇'
 OUTPUT←(⊂'apl2 -sm piped -quiet on')PIPE¨JOB1 JOB2

Z←RENAME oldnew
Z←old RENAME new

Renames a file. When called monadically, the right argument, oldnew, has the form 'oldname newname'

where oldname is the name of the file to be renamed (and may include a path definition), and newname is the

new name by which the file is to be known. RENAME can also be used dyadically, with the old name as the left

argument and the new name as the right argument.

Z←RMDIR path

Removes the subdirectory pointed to by path.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

253

IDIOMS and IDIOMSG - APL2 Idiom Library

APL2 is a very powerful and concise language. Although experienced APL2 programmers can produce working

solutions to complex problems in a very short time, learning the APL2 language can take years. The novice is

usually entranced with the power of APL2, but may have a hard time thinking in vector notation. APL2

algorithms are not always obvious!

In order to speed up the learning process of APL2, IDIOMS was developed. With over 600 distinct APL2

phrases, sorted into 24 general categories, IDIOMS represents a fairly complete list of solutions to common

application problems and lets you take advantage of algorithms that many others have developed.

list ← IDIOMS

IDIOMS provides a text-based interface to the APL2 Idiom Library. IDIOMS is available on all platforms. For

further information about using IDIOMS consult the online help or the IDIOMS workspace.

IDIOMSG

IDIOMSG provides a graphical user interface to the library. IDIOMSG is only available on Windows. For

further information about using IDIOMSG consult the online help.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

254

KTC - Kanji to Character

characters ← [codepage] KTC data

This function converts from the Multibyte (Shift-JIS) format to APL2 characters.

Note: This function is available only on Windows systems.

data
A character vector containing data in the Shift-JIS format.

codepage
The codepage to use for the conversion. If not given, the active codepage on the running machine is

used.
characters

An APL2 character vector. There may be characters present in the vector from outside of ⎕AV

For more information on using extended characters in APL2, see Double-Byte Character Set Support.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

255

LEXP - Lexical Parse

integers ← LEXP statement

LEXP analyzes a character vector using APL2's syntax rules.

statement
A character vector containing an APL2 statement.

integers
An integer vector with the same length as statement. The integers increase wherever the

corresponding character in statement begins a new token. Zeros are returned for syntactically

insignificant blanks.

LEXP can be used in combination with partition to separate a character vector into words. For example:

 STATEMENT←'ABC ∘.× ⍳ 34.56+⍴45 56 ⍝ HELLO'
 INTEGERS←LEXP STATEMENT
 INTEGERS
1 1 1 0 2 3 4 0 5 0 6 6 6 6 6 7 8 9 9 0 10 10 0 0 0 0 11 11 11 11 11 11 11
 DISPLAY INTEGERS⊂STATEMENT
┌→──┐
│ ┌→──┐ ┌→┐ ┌→┐ ┌→┐ ┌→┐ ┌→────┐ ┌→┐ ┌→┐ ┌→─┐ ┌→─┐ ┌→──────┐ │
│ │ABC│ │∘│ │.│ │×│ │⍳│ │34.56│ │+│ │⍴│ │45│ │56│ │⍝ HELLO│ │
│ └───┘ └─┘ └─┘ └─┘ └─┘ └─────┘ └─┘ └─┘ └──┘ └──┘ └───────┘ │
└∊──┘

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

256

LIB - List Library Contents

result ← LIB specification

This function is a program interface to the APL2 system command)LIB.

specification
A character vector containing the specification of the library to list and optional filters for the list. The

syntax is the same as for)LIB:
[libno | 'path'] [initial | [first]-[last] ...] [.atf | .apl]

initial indicates that only files whose names begin with the specified characters will be returned.

[first]-[last] indicates that files whose names are in the specified range will be returned. If

first or last is omitted the range is from the beginning or to the end, respectively.

.atf or .apl indicates that only files with the specified extension will be returned. If neither is

specified, the default is to return both .atf and .apl when a library number has been used, or to

return all files if a path specification has been given.

Any number of filename filters may be specified. Only one extension filter may be specified.

result
A three item array:

[1] Return Code

0 - Success. See item 3 for library list.

2 - Error. See item 2 for reason code.

[2] Reason Code

0 - Success

1 - Incorrect command

2 - Improper library reference

3 - Workspace not found

4 - Workspace locked

5 - Library unavailable

6 - Library I/O error

7 - System limit

8 - Workspace invalid

[3] Character matrix containing the list of files meeting the specifications.

Examples:

 LIB '' ⍝ .apl and .atf in the default library
 LIB '.atf' ⍝ .atf in the default library
 LIB '1' ⍝ .apl and .atf in library 1
 LIB '1 M' ⍝ .apl and .atf beginning with letter M in library 1
 LIB '1 M-S' ⍝ .apl and .atf from M to S in library 1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

257

 LIB '1 M- .apl' ⍝ .apl from M to z in library 1
 LIB '1 -M' ⍝ .apl and .atf from A to M in library 1
 LIB '''C:\MYWS''' ⍝ All files in C:\MYWS
 LIB '''C:\MYWS'' M-S .apl' ⍝ .apl from M to S in C:\MYWS

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

258

LIBS - Get APL2 Library Definitions

liblist ← LIBS

Returns the list of active library definitions.

liblist
A character matrix giving the definition of each valid library number for this APL2 session. If no

libraries are defined, path contains a null character matrix.

Libraries can be defined in the apl2.ini file or by environment variable. See Library Specification for more

information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

259

LTM - Tcl List to APL2 Matrix

matrix ← LTM list

Converts a Tcl list to an APL2 matrix

list
A nested vector containing data retrieved from a Tcl array using the TCL external function.

matrix
The APL2 matrix represented by the Tcl array.

The Tcl Tktable package provides support for displaying data in tabular form. Tktable uses Tcl array variables

to represent tabular data. The LTM function can be used to convert this type of data to an APL2 matrix.

For example:

 LIST←1 TCL⊂'array' 'get' 'mat'
 DISPLAY LIST
┌→──┐
│ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ │
│ │0,0│ 1 │0,1│ 2 │0,2│ 3 │1,0│ 4 │1,1│ 5 │1,2│ 6 │
│ └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ │
└∊──┘
 MATRIX←LTM LIST
 DISPLAY MATRIX
┌→────┐
↓1 2 3│
│4 5 6│
└~────┘
Element names which are not of the form Row,Column are discarded. Missing elements are replaced with null

vectors.

The DEMO_TABLE function in the TCL workspace demonstrates using LTM.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

260

MATHFNS Namespace

The MATHFNS namespace contains functions that perform specialized mathematical operations.

The namespace objects, shipped in namespace MATHFNS.ans, are equivalent to the objects found in the

MATHFNS workspace. See MATHFNS Workspace for a list of the objects provided and the syntax for their

usage.

Nicknames for these external objects are not provided in the APL2 default names file (aplnm011.nam).

Instead, associations to the objects can be made using the namespace file name in the left argument of ⎕NA:

 'MATHFNS' 11 ⎕NA 'EIGEN'
1
 'MATHFNS' 11 ⎕NA ⊃'POLYZ' 'FFT' 'IFFT'
1 1 1

Surrogate names may be used to avoid name conflicts with objects already in your workspace:

 'MATHFNS' 11 ⎕NA ⊃'M_POLYZ POLYZ' 'M_FFT FFT' 'M_IFFT IFFT'
1 1 1
 M_POLYZ ¯2 1
0.5

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

261

MD5 - Encode Data to MD5

result ← MD5 data

Encodes data into a fixed-length ASCII character vector using the RSA Data Security, Inc. MD5 Message-

Digest Algorithm.

data
A character vector of any length containing the data to be encoded. Typically, the data is ASCII

characters.
result

A 32-element character vector. The argument data is encoded into 16 bytes according to the MD5

algorithm and is returned as the 32-byte ASCII hexadecimal representation of those 16 bytes.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

262

MTL - APL2 Matrix to Tcl List

list ← MTL matrix

Converts an APL2 matrix to a Tcl list.

matrix
An APL2 matrix.

list
A nested vector which can be assigned to a Tcl array using the TCL external function.

The Tcl Tktable package provides support for displaying data in tabular form. Tktable uses Tcl array variables

to represent tabular data. The MTL function can be used to convert an APL2 matrix to the required Tcl format.

For example:

 LIST←MTL (2 3⍴⍳6)
 DISPLAY LIST
┌→──┐
│ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ │
│ │0,0│ 1 │0,1│ 2 │0,2│ 3 │1,0│ 4 │1,1│ 5 │1,2│ 6 │
│ └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ │
└∊──┘
 TCL⊂'array' 'set' 'mat' LIST

The DEMO_TABLE function in the TCL workspace demonstrates using MTL.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

263

OPTION - Query or Set Session Options

result ← [value] OPTION key

You can use this function monadically to query the current state of certain processing options, or dyadically to

change those options.

key
Character vector containing the name of an APL2 invocation or session option. It can be in any case, and

have leading and/or trailing blanks, but must not be abbreviated. A null character vector in key requests

all the command line parameters passed to the APL2 session.
value

Character vector containing a value to be assigned to the option. It can be in any case, and have leading

and/or trailing blanks, but must not be abbreviated.
result

If key is non-null, character vector containing the value of the option. In the dyadic form, the value

returned is the one in effect before the value argument was applied. If key is null, a vector of

character vectors containing the items passed in the command line that invoked APL2.

The following keys and values are supported for the dyadic form of OPTION:

Key Values Function

LX OFF

ON
Equivalent to -lx invocation option.

Suppresses or restores execution of the latent expression on)LOAD.

QUIET OFF

ON
Equivalent to -quiet invocation option.

Restores or suppresses session output.

CHECKTRACE OFF

SERVICE

STMT

EXEC

SYNT

FREE

NS

Equivalent to)CHECK TRACE system command.

Controls tracing of internal interpreter events.

CHECKWS OFF

ON

ALL

NOW

SLOP

Equivalent to)CHECK WS system command.

Controls internal validation of the workspace.

For the monadic form of the function, the key passed can be null, one of the keys from the above table, or any

APL2 invocation option or environment variable, with the leading dash, slash or APL removed. For example:

 OPTION 'QUIET' ⍝ Get current setting of output suppression
OFF
 OPTION 'WS' ⍝ Get value of ws option

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

264

50m
 OPTION 'SM' ⍝ Get value of sm option
 OPTION 'P11' ⍝ Get value of p11 option
C:\Program Files\IBMAPL2\bin\APLNM011.NAM
 OPTION '' ⍝ Get the APL2 command line parameters
 apl2win -ws 20m -quiet on
 ⍴¨OPTION ''
 7 3 3 6 2

If the option was not specified as a parameter when APL2 was invoked, there is no entry for the option in the

apl2.ini file, and the environment variable has no value, a null character vector is returned. If the option was

specified in more than one way, invocation parameters take precedence, followed by apl2.ini file entries

and then environment variables.

For a complete list of options supported by APL2, see Invoking APL2.

Notes:

1. Allowing programs to set and reset QUIET gives applications significantly more control over what

information is displayed on the screen. As in the past, an implicit QUIET OFF action occurs any time a

screen input request is issued.

2. The CHECKTRACE and CHECKWS settings are cumulative. Each dyadic call to OPTION adds the

specified trace or validation. The result is a list of all active settings. OFF removes all settings.

3. Use of the CHECKTRACE and CHECKWS options can create large amounts of output and

significantly degrade performance. These are best used under the direction of your IBM support

personnel.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

265

PCOPY - Protected COPY

result ← PCOPY specification

This function is a program interface to the APL2 system command)PCOPY. Objects are not copied if their

names conflict with objects already in the workspace.

specification
A character vector containing the specification of the workspace to copy from and optional list of

objects to copy. The syntax is the same as for)PCOPY:

[library] wsname [object ...] or
'[path]filename' [object ...]

result
A seven item array:

[1] Return Code

0 - Success.

1 - Success, but some objects were not copied. See items 4 through 7 for object lists.

2 - Error. See item 2 for reason code.

[2] Reason Code

0 - Success

1 - Incorrect command

2 - Improper library reference

3 - Workspace not found

4 - Workspace locked

5 - Library unavailable

6 - Library I/O error

7 - System limit

8 - Workspace invalid

[3] Workspace timestamp, if Return Code is 0 or 1

[4] List of objects not found, if object names were specified.

[5] List of objects not copied due to name conflicts.

[6] Not used. (Null)

[7] List of objects not copied due to insufficient workspace size.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

266

PEACHP and PEACHT - Parallel Each Operators

result ← [larg] (function PEACHP (options [processors])) rarg
result ← [larg] (function PEACHT options) rarg

The PEACHP and PEACHT operators have an effect similar to the ¨ primitive operator. They apply a function to

individual argument elements. However, PEACHP and PEACHT process the arguments' elements in separate

asynchronous threads. On machines with multiple CPU processors, PEACHP and PEACHT can provide

significant performance improvements.

PEACHP and PEACHT automatically start asynchronous APL2 interpreters for processing the arguments'

elements. The definition of function is copied into the APL2 interpreter sessions. The function is then

applied to each of the arguments' elements.

PEACHP uses one or more instances of auxiliary processor 200 to start the asynchronous APL2 interpreters.

The interpreters run in threads in the auxiliary processors' processes. PEACHT starts the asynchronous APL2

interpreters in separate threads in the calling interpreter's process. The usage and performance effects of the two

operators are similar, except that:

 PEACHP supports distributing work to other machines; PEACHT does not.

To distribute work to other machines, use the processors operand element.

 PEACHT supports sharing of resources in the calling interpreter's process; PEACHP does not.

To share resources, pass the handles and addresses of the resources in the function's arguments.

larg
rarg

Left and right arguments similar to arguments for the ¨ primitive operator.

Like the ¨ primitive operator, if larg is supplied, PEACHP and PEACHT applies the function between

corresponding pairs of elements of larg and rarg. If larg is omitted, PEACHP and PEACHT applies

the function to each element of rarg.

Unlike the ¨ primitive operator, larg and rarg must not be empty.

PEACHP supports simple homogeneous arguments; PEACHT does not. For PEACHT, each argument

must be nonhomogeneous or have depth greater than one, unless it has exactly one element.

function

Character vector containing the name of the function to apply.

options

Vector of character vectors containing invocation options for the asynchronous interpreters. Code '' to

use the default APL2 invocation options. See Invoking APL2 for information about default values.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

267

processors

Integer vector containing processor identification numbers. Each number must identify a processor

running an instance of auxiliary processor 200. PEACHP shares one variable (i.e. starts one APL2

interpreter) with each processor number. To run multiple APL2 interpreters on one processor, specify its

number multiple times.

To use processors on other machines, define processor identification numbers in the APL2 SVP

processor profile file. See Cooperative Processing for information about processor profiles.

If function identifies an external function, the processors identified by processors must also have

access to the external function.

If processors is omitted, PEACHP uses the local instance of AP 200 and shares one variable for each

CPU processor on the machine.

Usage Guidelines

 PEACHP and PEACHT provide the greatest performance improvement for algorithms that are very

computation intensive. When using PEACHP and PEACHT, the arguments' elements must be copied

from the caller's workspace to the asynchronous interpreters' workspaces. Depending on the size of the

arguments and the type of computation being done in the function, this extra step may take more time

than is saved by using multiple threads.

 Unless processors is supplied, PEACHP and PEACHT use one thread per CPU processor. If the

machine has only one processor, PEACHP and PEACHT use only one thread and will not provide any

better performance than the ¨ primitive operator, To determine whether the machine has more than one

processor, use the CPUCOUNT external function.

 Use PEACHP and PEACHT for algorithms that can be performed without access to objects in the caller's

workspace. Because each arguments' elements are processed in separate APL2 interpreters, access to the

caller's workspace is not available to the applied function.

 PEACHP passes arguments and results to the asynchronous interpreters through shared memory. If not

enough shared memory is available, PEACHP will issue a SYSTEM LIMIT with ⎕ET set to 1 7,

interface capacity. See The SVP Parameter File for information about how to increase the amount of

shared memory.

Example

The following example compares using the ¨ primitive operator and PEACHP to call the FFT function from the

MATHFNS namespace to calculate Fast Fourier Transforms.

 ⍝ Determine whether the machine has more than one processor
 3 11 ⎕NA 'CPUCOUNT'
1
 CPUCOUNT
2
 DATA←⊂[2]?20 65536⍴1000
 START←⎕AI
 'MATHFNS' 11 ⎕NA 'FFT'
1
 ⍴FFT¨DATA
20
 ⎕AI-START
0 6209 6443 218

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

268

 START←⎕AI
 4 11 ⎕NA 'PEACHP'
1
 ⍴('FFT' PEACHP '')DATA
20
 ⎕AI-START
0 47 3541 203
The second and third elements of ⎕AI are the compute and connect times. Notice that by simply changing the

code to use PEACHP rather than the ¨ primitive operator, the connect time was reduced by 45 percent. The

compute time was also reduced to nearly zero, but this is only because CPU time used by the asynchronous

interpreters is not accumulated in the calling interpreter's account information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

269

PFA - Pattern From Array

pattern ← PFA array

This function creates an array pattern from an array.

array
Any APL array.

pattern
A character vector containing a formalized description of the array. Array patterns are defined in Array

Patterns. The patterns produced by PFA always contain the optional parentheses and the count field.

They never contain the > or < markers or an *.

PFA may be used as a tutorial on how to write patterns. Because the types selected in the pattern reflect the

internal storage mechanism in use at the moment, the same array may give different patterns at different times

or on different platforms.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

270

PRINTWSG - Print Workspace with GUI Interface

PRINTWSG

This function prompts for printing options and prints the current workspace.

To use PRINTWSG,

)LOAD your-workspace
 3 11 ⎕NA 'PRINTWSG'
 PRINTWSG

Note: This function is available only on Windows systems.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

271

QNS - Query Namescope

result ← QNS 0

This function queries the current namescope.

result
The left argument to ⎕NA for the function or operator that caused entry into the current namescope.

If the QNS is processed in the user's active workspace, it returns '' 11.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

272

REPLACEX - Replace Strings

output ← (old new [old new] ...) REPLACEX input

This function is a high-performance routine to replace instances of a string or strings in a character vector.

The left argument is a vector of character vectors. The items in the left arguments are processed in pairs, in

order from left to right.

input
A character vector.

old
A character vector containing a string to be replaced wherever it is found in input.

new
A character vector to be used to replace all instances of old in input. If new is null, all instances of

old will be removed from input.
output

The character vector resulting from the specified replacements.

Examples:

 3 11 ⎕NA 'REPLACEX'
1
 ('DOG' 'CAT') REPLACEX 'DOGS ARE GREAT PETS. DOGS PROVIDE FUN AND COMPANIONSHIP.'
CATS ARE GREAT PETS. CATS PROVIDE FUN AND COMPANIONSHIP.
 ('ABC' '' 'A' 'AN ' 'GE' 'G E') REPLACEX 'AABCINTABCERESTINGEVABCENABCT'
AN INTERESTING EVENT

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

273

ROUNDC - Commercial Rounding

rounded ← [power] ROUNDC numeric

Implicit argument: ⎕CT

ROUNDC is a high-performance routine for rounding numbers to the nearest power of ten. If a number is exactly

midway between two multiples of the power of ten, it is rounded away from zero. ROUNDC is useful in

commercial applications.

The right argument is any array containing only real numbers.

The left argument is a scalar integer that specifies the power of ten to which the numbers should be rounded.

The default is zero. If power is positive, it indicates how many digits to the left of the decimal point are

insignificant. If power is negative, it indicates how many digits to the right of the decimal point are significant.

ROUNDC is pervasive.

Examples:

 3 11 ⎕NA 'ROUNDC'
1
 3 ROUNDC ¯45678 ¯12345 12345 45678
¯46000 ¯12000 12000 46000
 ¯2 ROUNDC ¯1.235 ¯1.2349 1.2349 1.235
¯1.24 ¯1.23 1.23 1.24

Definition:

The ROUNDC external function implements the following definition:

 ∇
[0] RESULT←POWER ROUNDC VALUE;MULTIPLIER;SIGN
[1] MULTIPLIER←10*-POWER
[2] SIGN←×VALUE
[3] RESULT←SIGN×(⌊0.5+MULTIPLIER×SIGN×VALUE)÷MULTIPLIER
 ∇

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

274

RF - RowFind

indices ← matrix1 RF matrix2

This function returns the index of the first row in matrix1 of each row of matrix2. The function is

equivalent to the expression:

 indices ← (⊂[1+⎕IO]matrix1)⍳⊂[1+⎕IO]matrix2

The arguments must be rank 2 character, integer or nested arrays that have the same number of columns. Both

arguments must be the same type. If the arguments are nested, their depth must be 2 or less, and all of their

subitems must be character or integer arrays.

This function may provide a performance improvement over the APL2 expression for some types of data.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

275

RTA - Record to Array

array ← [pattern] RTA record

This function converts a character vector containing structured data into an APL array, based on a pattern that

describes the format of the data. It can be used to map records or structures produced by other languages, or

expected by services called through AP 145, into APL arrays of any required depth.

record
A character vector containing data that was stored by some other program, in its original format. No

check is made for incorrect lengths. The result is unpredictable if the record is shorter than the structure

described in the pattern.
pattern

A character vector containing a formalized description of the fields within the record. Array patterns are

defined in Array Patterns. The pattern may not contain an asterisk (*) unless it can be resolved to an

integer based on other information in the item description. The pattern may not contain the > mark.

If pattern is omitted, the right argument is treated as an APL2 Common Data Representation (CDR)

object. The CDR formats of both mainframe and workstation APL2 systems are handled.

array
An APL2 array whose format is determined by the pattern, and whose content is taken from the record.

Note: External function ATR is the inverse of RTA.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

276

SCANDIR - List Files in a Directory

result ← SCANDIR pathspec

This function returns the list of files in the specified directory. In contrast to DIR,

1. SCANDIR does not use the DOS or Unix shells to execute a DIR or ls command, so it avoids any

character translations performed by those shells.

2. Filters may not be specified to subset the list of files. The complete list of files found in the directory is

always returned, including any subdirectories.

pathspec
A character vector containing the path to search. If a null or all-blank vector is specified, the current path

will be searched.
result

A character matrix containing the list of files found in the specified directory.

Example:

 3 11 ⎕NA 'SCANDIR'
1
 SCANDIR 'C:\MYDIR'
.
..
letter.txt
picture.jpg
program.exe

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

277

SI - State Indicator

result ← SI number

This function is a program interface to the APL2 system command)SI.

The state indicator is a list of

 The calling sequence of defined functions and defined operators (and their pertinent line numbers).

 Asterisk(s) for all immediate execution expressions that did not complete, either because of error in the

expression or because the function invoked by the expression is pendent or suspended.

SI returns each line in the state indicator.

number
An integer indicating the maximum number of levels of the state indicator to be returned. To return all

levels of the state indicator, specify a null vector (⍳0 or '').
result

A character matrix containing the state indicator levels requested.

Example:

 3 11 ⎕NA 'SI'
1
 SI ''
GN[1]
FN[2]
*
*
 SI 2
GN[1]
FN[2]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

278

SIS - State Indicator with Statements

result ← SIS number

This function is a program interface to the APL2 system command)SIS.

The state indicator is a list of

 The calling sequence of defined functions and defined operators (and their pertinent line numbers).

 Asterisk(s) for all immediate execution expressions that did not complete, either because of error in the

expression or because the function invoked by the expression is pendent or suspended.

SIS returns each line in the state indicator and the statement that was being executed at the time the line was

added to the state indicator. Carets shown on the line below the statement indicate how much of the statement

had been executed.

number
An integer indicating the maximum number of levels of the state indicator to be returned. To return all

levels of the state indicator, specify a null vector (⍳0 or '').
result

A character matrix containing the state indicator levels requested.

Example:

 3 11 ⎕NA 'SIS'
1
 SIS ''
GN[1] Z←3÷0
 ^ ^
FN[2] Z←2×GN
 ^
* FN
 ^
* 3⍳
 ^^

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

279

SIZEOF - Size of Array

size ← SIZEOF pattern

This function calculates the amount of storage described by a pattern. It can be used to determine how large an

array to supply to a routine which will update a parameter.

pattern
A character vector containing a formalized description of the fields within an array. Array patterns are

defined in Array Patterns. The pattern may not contain an asterisk (*) unless it can be resolved to an

integer based on other information in the item description. The pattern may not contain the > mark.
size

The number of bytes required to hold an array described by the pattern.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

280

SQL Namespace

The SQL namespace enables you to execute SQL statements and retrieve information from databases using AP

127 (the DB2 processor) or AP 227 (the ODBC processor).

The namespace objects, shipped in file SQL.ans, are equivalent to the objects found in the SQL workspace.

See SQL Workspace for an overview of the workspace. For complete information about the SQL workspace,

AP 127 and AP 227, see APL2 Programming: Using Structured Query Language

Because of the large number of objects in the SQL namespace and name conflicts between its objects and other

supplied external routines, nicknames for these external objects are not provided in the APL2 default names file

(aplnm011.nam). Instead, associations to the objects can be made using the namespace file name in the left

argument of ⎕NA:

 'SQL' 11 ⎕NA 'QUERY'
1
 'SQL' 11 ⎕NA ⊃'SQL_AP' 'CONNECT' 'SQL'
1 1 1

Surrogate names may be used to avoid name conflicts with objects already in your workspace:

 'SQL' 11 ⎕NA ⊃'Q_SQL_AP SQL_AP' 'Q_CONNECT CONNECT' 'Q_SQL SQL'
1 1 1
 Q_SQL_AP←227
 Q_CONNECT 'DSN=APL2TEST'
0 0 0 0 0 SQL02011 APL2TEST MYUSERID

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

281

STA - SCAR to Array

array ← [translate] STA data

This function converts a SCAR object into an APL2 array.

data
A character vector containing a SCAR object.

translate
A 256-element numeric vector containing the Unicode values to use for translation of single-byte

character data in the SCAR object.

STA contains built-in translation tables for the character sets of APL2, Dyalog APL/W, APL+Win and

SHARP APL. A translate table should only be provided if it is necessary to override the built-in

translation.

array
An APL2 array built from the SCAR object. If the SCAR contains data in representations not supported

by APL2 (for example, 64-bit integers or enclosed scalars) data conversion will take place, and precision

or structure may be lost.

The SCAR ("Self-Contained Array") format is a data interchange format defined by Insight Systems, Inc. to

allow non-like APL systems to exchange data directly without the overhead of the numeric-to-character

conversions required by transfer form. For more information on the SCAR format, visit

http://www.insight.dk/scardesign.

The character vector containing the SCAR object can be received from a TCP/IP network, read from a file, or

retrieved from a database. It can be sent by APL2 or another APL system which supports the SCAR format.

In APL2, ATS and STA external functions are used to create and interpret SCAR objects.

In Dyalog APL/W, the SQAApl2Scar and SQLScar2Apl external functions are used to create and interpret

SCAR objects. These functions use file CNDYA30.DLL which is part of SQAPL. The DLL is loaded and

initialized by function SQAInit in workspace SQAPL.DWS.

In APL+Win, APL functions TOSCAR and FMSCAR in workspace SCAR are used to create and interpret SCAR

objects.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

282

TCL - Tool Command Language Interface

[control] TCL cmd_array

Executes one or more Tool Command Language (Tcl) commands.

Tcl is a popular scripting language that is available for many operating systems. Tcl provides a wide variety of

routines including tools for string parsing and file IO. There are also numerous extensions available including

packages for building graphical user interfaces (GUI), database access, object-oriented programming, and

network access.

Like APL2, Tcl is an interpreted language. A separate Tcl interpreter is started for each unique name associated

with the TCL external function. Calls to a name are passed to its Tcl interpreter. The interpreter is deleted when

the association is expunged.

cmd_array
Contains one or more Tcl commands. The array can be:

 A character vector containing one or more commands. For example:

TCL 'set a 12'
TCL 'set a 12;set b 34'

 A vector of character vectors each containing one or more commands. For example:

TCL 'set a 12' 'set b 34;set c 56'

The TCL external function catenates a linefeed character to each vector, enlists the array, and

passes it to the Tcl interpreter for evaluation.

 A vector of arrays where each array is either a character vector, or a vector of Tcl command

tokens. For example:

TCL ⊂ 'set' 'a' 12
TCL ('set' 'a' 12) ('set 'b' (34 56 78)) 'set c 587'

The TCL external function passes each element of the vector of arrays to the Tcl interpreter for

evaluation one at a time. If an element is a vector of tokens, the tokens are converted to Tcl

objects, catenated into a list, and the list is evaluated. Any rank 0 or 1 array can be used as a

command token except that complex numbers are not supported.

control
Controls the kind of result returned by TCL.

Every Tcl command produces a return code and some data. If a command array contains more than one

command, the return code and the result of the last command in the array are returned. If the last return

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

283

code is non-zero, the data is an error message. The control argument controls whether this return

code and data are returned to APL2. control can be any of these values:

0 Neither the return code nor data are returned to APL2. If the Tcl interpreter returns a non-zero return

code, the data is written to the APL2 interpreter's window and a SYSTEM LIMIT is signaled. This is

the default behavior.

1 If the return code is zero, the data is converted to an APL2 array and returned. Otherwise, the data is

written to the APL2 interpreter's window and a SYSTEM LIMIT is signaled.

2 The data is converted to an APL2 array and the return code and data are returned to APL2 as a two

element array. The first element is the return code and the second element is the data. Tcl defines the

following return codes:

0 - Success, the data is the command result

1 - Error, the data is an error message

2 - The return command was encountered. The data is null.

3 - The break command was encountered. The data is null.

4 - The continue command was encountered. The data is null.

Applications can define other return codes.

TCL automatically converts scalar and vector results to APL2 arrays. TCL can convert Tcl Boolean,

Integer, Double, String, Unicode, and List values to APL2 arrays. Other results are returned in a

Unicode character vector representation.

The Tcl Environment

After starting a Tcl interpreter, the TCL external function creates several Tcl variables in the interpreter's global

namespace:

argc

The number of arguments entered on the command line when APL2 was invoked.

argv

A list of the arguments entered on the command line when APL2 was invoked.

env

An array of environment variable values. The name of the environment variable is the array index, eg.

env(PATH), and the array element contains the environment variable value.

The TCL external function also defines several Tcl commands in the global namespace:

apleval

The apleval command calls the APL2 interpreter to evaluate the arguments. apleval takes 1, 2, or 3

arguments:

1 argument An expression to be executed

2 arguments The name of a monadic function and a right argument.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

284

3 arguments A left argument, the name of a dyadic function, and a right argument.

If the evaluation produces a result, the Tcl return code will be set to TCL_OK and the APL2 result will

be converted to a Tcl object and returned as the result of apleval. If the evaluation does not return a

result, the Tcl return will be set to TCL_OK and apleval will return a null character string result. If an

error is encountered during evaluation of the arguments, the Tcl return code will be set to TCL_ERROR

and the result will be a message describing the APL2 error.

For example:

 ⍝ Define an addition function
 ∇RESULT←LA PLUS RA
[1] RESULT←LA + RA∇
 ⍝ Adding two numbers works.
 ⍝ (The Tcl command expr converts the characters 3 and 5 to numbers.)
 DISPLAY 2 TCL 'apleval [expr 3] PLUS [expr 5]'
┌→──┐
│0 8│
└~──┘
 ⍝ But without expr, character vectors are passed to APL2.
 DISPLAY 2 TCL 'apleval 3 PLUS 5'
┌→─────────────────┐
│ ┌→───────────┐ │
│ 1 │DOMAIN ERROR│ │
│ └────────────┘ │
└∊─────────────────┘

In the above examples, 2 was passed as the left argument of TCL. This caused TCL to return to APL2

both the Tcl return code and the command result. If 0 or 1 had been passed in the last statement, TCL

would have signaled an error and written the DOMAIN ERROR to the interpreter window.

Note that automatic type conversion within Tcl may cause unexpected results. For example:

 ⍝ Display a null numeric vector
 DISPLAY ⍳0
┌⊖┐
│0│
└~┘
 ⍝ Assign the null numeric vector to a Tcl variable
 TCL⊂'set' 'a' (⍳0)
 ⍝ Display the Tcl variable.
 ⍝ Tcl converts all zero length lists to character.
 DISPLAY 1 TCL 'set $a'
┌⊖┐
│ │
└─┘

exit

TCL replaces the Tcl exit command. The TCL exit command does nothing. In particular, exit does not

destroy the Tcl interpreter. The Tcl interpreter is destroyed when the external function is expunged.

Tk_Init

Tk is a Tcl extension package which provides support for building GUI applications. The Tk_Init

command initializes the Tk environment and creates a top level window.

Customizing APL2 for Tcl

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

285

Before using the TCL external function you must install Tcl. The TCL external function supports Tcl and Tk

version 8.1 and higher. After installing Tcl, you must customize the APL2 environment.

During name association, the TCL external function loads Tcl. The name of the library containing Tcl must be

specified in the APL2 invocation option -tcl, by a TCL keyword definition in the [Invocation Options] section

of the apl2.ini configuration file, or in the APLTCL environment variable. For example, on Windows the

option might be coded as:

 -tcl tcl84.dll
On Unix systems the option might be coded as:

 -tcl libtcl8.4.so
If TCL is unable to load the library, the association fails.

The Tcl command Tk_Init loads Tk. To use Tk_Init, the name of the library containing Tk must also be

specified in the APL2 invocation option -tk, by a TK keyword definition in the [Invocation Options] section of

the apl2.ini configuration file, or in the APLTK environment variable. For example, on Windows the

options might be coded as:

 -tcl tcl84.dll -tk tk84.dll
On Unix systems the options might be coded as:

 -tcl libtcl8.4.so -tk libtk8.4.so
If Tk_Init is unable to load the library, a Tcl error is generated.

The TCL workspace contains demonstration and utility functions.

License Information

Portions of this program were derived from Tcl source code distributed by Scriptics Corporation and were

originally subject to the license shown below. The program is now subject to the IBM Program License

Agreement included with APL2. The IBM license overrides the original license.

Tcl license terms:

This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc., Scriptics

Corporation, and other parties. The following terms apply to all files associated with the software unless

explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its

documentation for any purpose, provided that existing copyright notices are retained in all copies and that this

notice is included verbatim in any distributions. No written agreement, license, or royalty fee is required for any

of the authorized uses. Modifications to this software may be copyrighted by their authors and need not follow

the licensing terms described here, provided that the new terms are clearly indicated on the first page of each

file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR

DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

286

THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF

THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS

IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE

MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government

shall have only "Restricted Rights" in the software and related documentation as defined in the Federal

Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the

Department of Defense, the software shall be classified as "Commercial Computer Software" and the

Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs.

Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission

to use and distribute the software in accordance with the terms specified in this license.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

287

TIME - Application Performance Analysis

report ← [namelist] TIME n

The TIME performance monitoring facility provides the capability to measure a running application and

determine the CPU time used by each defined program, each line within each defined program, or both.

The facility works by associating with each line of each specified program a pair of counters to record the

number of times the line is executed and the total CPU time consumed by the line.

namelist
An optional list of program names. If specified, the scope of the current operation is limited to the names

listed. If not specified, the operation applies to all programs currently defined in the name space.

The list can be a character scalar or vector containing a single name or a vector of character vectors each

containing one name. All names listed must currently exist in the name space.

n
An integer specifying the operation to be performed.

0 Enable timing and create counters for all lines in the specified programs. The counters are set to

zero.

1 Fetch times for all specified programs that have accumulated timing information.

2 Fetch times for all lines of the specified programs that have accumulated timing information.

3 Fetch times for all lines of the specified programs even if no timing has been accumulated.

4 Fetch timing state

¯1 Enable timing. If timing has been disabled, timing is resumed. A left argument is not allowed for

TIME ¯1.

¯2 Disable timing. Stops the accumulation of timing data. A left argument is not allowed for TIME
¯2.

¯3 Deletes the space used by the counters for the specified programs.

report
TIME 0, ¯1, ¯2 and ¯3 return an empty matrix.

TIME 1 returns a 4-column matrix.

TIME 2 and 3 return a 5-column matrix.

Column 1 Number of times the line or program was actually processed.

Column 2 Accumulated processing time (in seconds) of the line or program.

Column 3 Percentage of the total time used by the line or program.

Column 4 Name of the program

Column 5 Program line, preceded by the line number.

TIME 4 returns a Boolean: 0 - timing off, 1 - timing on

Notes:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

288

1. Use of the timing facility requires space in the workspace for the counters and also increases running

time by some small amount. Thus, in general you should not)SAVE after doing a time analysis.

2. Reported timings are approximate and should only be used for relative comparisons, not absolute times.

3. When a program is erased, its counters are deleted. When a program is created or changed, its counters

are not preserved.

Performance Analysis Using the TIME Function

The theory behind performance tuning through the TIME facility is that very often a small amount of code

within an application consumes the majority of CPU cycles. By quickly identifying these "hot spots", the

programmer can focus his attention on optimizations that provide the greatest effect in reducing overall

application CPU time. The following APL2 session demonstrates the use of TIME:

)LOAD COSTEST
SAVED 1993-09-19 14.13.20 COSTEST
 3 11 ⎕NA 'TIME' ⍝ Access TIME function
1
 TIME 0 ⍝ Zero time counters
 ESTIMATE 10 ⍝ Run the application
COMPLETED... SEE ¨COST_REPORT¨
 ⎕←T←TIME 1 ⍝ Fetch time summary
500 31.19 72.83469164 PRODCOST
500 7.4 17.28043341 CHARGE
 10 3.627 8.469747566 CALC
500 0.208 0.4857202905 EVAL
 10 0.196 0.457697966 PC
 10 0.103 0.2405249515 STORE
 1 0.05 0.1167596852 ESTIMATE
 1 0.044 0.102748523 TIME
 10 0.004 0.009340774817 FINDMAX
 10 0.001 0.002335193704 GETNEXT
 1 0 0 CLOSE
 1 0 0 OPEN
 +/T[;2] ⍝ Compute total CPU time
42.823
 'PRODCOST' TIME 2 ⍝ Fetch time detail
500 31.028 99.48060276 PRODCOST[2] PCOST←SCHG∘.×⍳WEEKS
500 0.162 0.5193972427 PRODCOST[1] SCHG←CHARGE N

The TIME 1 report identifies the function PRODCOST as the major CPU consumer, attributable to about 73%

of the total CPU time (31.19 of the total CPU 42.823 seconds for this small sample run). Further analysis of the

PRODCOST function with the TIME 2 report shows that the mathematical calculation performed in line 2 is the

best target for potential performance improvement.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

289

UTFTC - UTF to Character

result ← [bits] UTFTC data

Decodes UTF-7 and UTF-8 formatted data to APL2 character data.

UTF-7 and UTF-8 are Universal Character Set Transformation Formats. They are used for transmitting Unicode

data across networks which represent character data as bytes and use either 7 or 8 bits in each byte. UTF-7 and

UTF-8 are described by the Unicode standard and in the Internet Request for Comments (RFC) 2152 and 2279.

bits
The number of bits of significant data within individual encoded bytes. A value of 7 indicates data

contains UTF-7 data. A value of 8 indicates data contains UTF-8 data. If not given, data is assumed

to contain UTF-8 data.
data

A character vector of any length containing either UTF-7 or UTF-8 data to be decoded.
result

An APL2 character vector containing the decoded data.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

290

WSCOMP - Workspace Compare

WSCOMP

Use these functions to compare workspaces.

To use WSCOMP,

)LOAD your-workspace
 3 11 ⎕NA 'WSCOMP'
 WSCOMP
WSCOMP prompts for the following information:

 Two workspace names. Use the same syntax as you would for the system commands)IN or)COPY.

Library numbers are accepted. If specifying a complete path and file name, you must enclose it in

quotes.

 Whether the workspaces named are transfer files. This option controls whether)IN or)COPY is used to

access the workspace.

On UNIX, the initial prompt will also ask you what name classes you want to compare.

A report is produced showing the results of the comparison.

On Unix systems, the report takes the form of four variables containing lists of names:

WSC_ONLY_1
Objects in workspace 1 but not in workspace 2.

WSC_ONLY_2
Objects in workspace 2 but not in workspace 1.

WSC_DIFF
Objects with different definitions in the two workspaces.

WSC_SAME
Objects with the same definition in both workspaces.

The variable WSCOMP_RESULTS is also set; it contains all four lists.

On Windows, a dialog is presented with the four lists of names. Additional features include the ability to open

an object's definition and dynamically modify the lists to include or remove name classes.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

291

ZIP, UNZIP, ZIPWS, and UNZIPWS - Compression Utilities

The zip compression utilities are functions for compressing and decompressing objects and workspaces.

There are four compression utilities: ZIP, UNZIP, ZIPWS, and UNZIPWS. The ZIP and UNZIP functions are

used to compress and decompress arbitrary arrays. The ZIPWS and UNZIPWS functions are used to compress

and decompress the current workspace.

The zip compression utilities use the APL2 Java classes and require that Java is installed and configured for use

from APL2. For more information about installing Java, see Installing Java.

cv←ZIP array

Compresses an arbitrary array and returns a character vector.

array←UNZIP cv

Uncompresses an arbitrary array from a character vector produced by ZIP.

ZIPWS 'name'

Compresses the contents of the current workspace and places the result in the variable named in the right

argument. ZIPWS ignores shared variables, locked functions, and objects named ZIPWS and UNZIPWS.

ZIPWS erases any user objects included in the compressed result. ZIPWS includes the current values of the

following system variables in the compressed result: ⎕CT, ⎕FC, ⎕IO, ⎕LX, ⎕PP, ⎕PR, and ⎕RL. The value of

⎕LX is reset to null.

UNZIPWS 'name'

Reestablishes the definitions and associations of the objects stored by ZIPWS in the variable named in the right

argument. UNZIPWS replaces any objects in the current workspace that have the same names as objects in the

zipped workspace.

UNZIPWS erases the variable named in the right argument.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

292

Auxiliary Processors

Auxiliary processors are programs that provide asynchronous interfaces between the APL2 interpreter and

various system services. Shared variables are used to communicate between an APL2 program running in the

interpreter and an auxiliary processor. Commands and data are passed to the processor from the program, and

return codes and data are passed back to the program by the processor.

Since auxiliary processors are running asynchronously from the APL2 interpreter, applications must follow a

proper Shared Variable Processor (SVP) protocol when establishing shared variable communication with an

auxiliary processor, to avoid potential timing problems with the two processes running in parallel. Tools to

assist in setting up a connection using the proper protocol are discussed in Using the Share-Offer Utilities. For a

complete description of the SVP system functions, refer to APL2 Programming: Language Reference.

The auxiliary processors (APs) supplied with IBM APL2 are:

 AP 100 - Host Command Processor

 AP 101 - Alternate Input (Stack) Processor

 AP 119 - Socket Interface Processor

 AP 120 - Session Manager Interface

 AP 124 - Text Display Processor

 AP 127 - DB2 Processor

 AP 144 - X Window Services Processor

 AP 145 - GUI Services Processor

 AP 200 - Calls to APL2

 AP 207 - Universal Graphics Processor

 AP 210 - File Auxiliary Processor

 AP 211 - APL2 Object Library Processor

 AP 227 - ODBC Processor

 AP 488 - GPIB Support Processor

Note: AP 144 is provided only on Unix systems. AP 120, AP 145 and AP 488 are not provided on Unix

systems.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

293

Using the Share-Offer Utilities

To simplify the establishment of fully-coupled shares, and to ensure that the necessary access control is set for

typical communication with an auxiliary processor, two functions are distributed in the library 1 UTILITY

workspace for application developers. The two functions are SVOFFER and SVOPAIR. SVOFFER is for use

with auxiliary processors employing a single shared variable interface. SVOPAIR is used for auxiliary

processors AP 124, AP 210 and AP 488, which require a control and a data variable for communication.

The SVOFFER function must return a degree of coupling of 2 for each variable offered, before the shared

variable can be used to pass commands and data. This indicates that the auxiliary processor has accepted the

share offer. An indeterminate amount of time is required for the auxiliary processor to accept the offer.

Typically, an auxiliary processor accepts the shared variable offer immediately, but the SVOFFER function

queries the degree of coupling for a maximum of 15 seconds before exiting with a result of 1 indicating that the

auxiliary processor has not matched the offer.

The SVOPAIR function is used for auxiliary processors that support a two-variable interface, where the control

variable name begins with 'C' or 'CTL' and the data variable name begins with 'D' or 'DAT'. SVOPAIR

waits up to 15 seconds for all control variable offers to be accepted. It returns the final degree of coupling for all

variables offered. The expected coupling for the control variables is 2 (fully coupled), and the data variables can

properly return either 1 or 2, depending on the auxiliary processor.

Prior to sending commands to an auxiliary processor, shared variable access control should be set to ensure that

the SVP maintains the necessary sequencing of sets and references of the shared variable by both the APL2

application program and the auxiliary processor. SVOFFER and SVOPAIR set the necessary access controls for

typical auxiliary processor communication. SVOFFER sets access control on all of the variables offered, and

SVOPAIR sets access control only on the variables with names starting with the letter 'C' (that is, control

variables only - no access control is applied to data variables). The access control applied is 1 0 1 0, which

prevents two successive sets of the variable by the application without an intervening access by the auxiliary

processor, and also ensures that the auxiliary processor sets a new value in the variable between successive uses

by the APL2 application. This is the most common access protocol used for shared variable communication

with the auxiliary processors.

SVOFFER Examples

 ⍝ Single offer to host auxiliary processor
 100 SVOFFER 'CMD'
 2
 ⍝ Offer multiple variables to one AP
 100 SVOFFER 'V1' 'V2'
 2 2
 ⍝ Offer multiple variables to multiple APs
 100 211 SVOFFER 'V100' 'V211'
 2 2
 ⍝ Check degree of coupling for multiple variables
 SVOFFER 'V100' 'V211'
 2 2
 ⍝ Invalid shared variable offer
 211 SVOFFER 'BAD+NAME'
 0
 ⍝ Offer and trap errors
 ⎕ES (2∨.≠AP SVOFFER VARS)/'Share offer unaccepted by AP',⍕AP

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

294

SVOPAIR Examples

 ⍝ Offer a set of variables to the fullscreen processor
 124 SVOPAIR 'CTL124' 'DAT124'
 2 2
 ⍝ Offer using surrogates
 124 SVOPAIR 'Control C' 'Data D'
 2 2
 ⍝ Note: Access control set for control, not data
 ⎕SVC¨ 'Control' 'Data'
 1 0 1 1 0 0 0 0
 ⍝ Check degree of coupling
 SVOPAIR 'Control' 'Data'
 2 2
 ⍝ Offer improper control variable
 210 SVOPAIR 'A1' 'D1'
 1 1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

295

AP 100 - Host Command Processor

AP 100 is an auxiliary processor that allows operating system commands or programs to be executed. AP 100

itself imposes no specific limit on the number of concurrent shared variables that you can use. It accepts a

shared variable of any name. For example:

 100 SVOFFER 'SHR100'
2

offers variable SHR100 to AP 100 and sets access control. See Using the Share-Offer Utilities for a description

of the SVOFFER function (from workspace 1 UTILITY).

After sharing is established, a valid operating system command or program can be executed by assigning the

command to the shared variable. For example, to list the files in the current directory:

 SHR100←'DIR'

Notes:

1. If AP 100 is started automatically by the interpreter (the default), then any output generated by the

execution of the command appears in the window associated with the interpreter. This window is often

minimized, because it is not normally used for APL2 session input and output.

2. If an empty vector ('' or ⍳0) is given as the command, the shared variable returns with a character

string containing the name of the operating system.

3. Commands issued through AP 100 do not affect the interpreter environment. For example, issuing a

change directory command through either AP 100, or through)HOST, does not change the directory

that your current APL2 session is using.

AP 100 Return Codes

Code Meaning

0 Success

1 Invalid command

444 Invalid shared variable value

Other error codes are those returned as the exit status of the called routine.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

296

AP 101 - Alternate Input (Stack) Processor

The alternate input (stack) processor (AP 101) can be used to create a stack of programmable input to APL2.

Conceptually, the alternate-input stack is a vector of character vectors. Each item is one stacked input line of

variable length.

Although any one instance of APL2 can maintain only one stack, several shared variables can be used to add

entries to the stack. Entries are stacked in first-in, first-out (FIFO) order (the default) or last-in, first-out (LIFO)

order.

An input stack is normally created within a defined function. The top entry (the first item) in the stack is used

when the APL2 interpreter requests input. This occurs when:

 An APL2 statement prompts for user input (⎕ or ⍞)

 The APL2 line editor (selected by)EDITOR 1) prompts for input

 APL2 opens the keyboard for immediate execution

 APL2 execution is suspended as a result of an error or stop control (S∆)

Share a variable with AP 101. For example:

 101 SVOFFER 'SHR101'
2

offers variable SHR101 to AP 101 and sets access control. See Using the Share-Offer Utilities for a description

of the SVOFFER function.

After sharing is established, entries can be added to the stack by assigning the text to the shared variable

(SHR101 in this example):

 SHR101←'any character string'

The string can contain new-line characters (⎕TC[⎕IO+1]), which causes each portion of the string delimited

by a new-line to be treated as a separate entry on the stack.

 AP 101 Commands

 AP 101 Return Codes

AP 101 Commands

The stack can be purged of all or some entries, and the order (LIFO/FIFO) in which the entries are used can be

selected with the following commands:

SHR101←0
Purges the entire stack.

SHR101←0,n
Purges n entries from the stack. If n>0 these are dropped from the LIFO end, and if n<0 these are

dropped from the FIFO end.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

297

SHR101←10
Queries the state of the stack. Returns 1 if it is LIFO or ¯1 if it is FIFO.

SHR101←10 1
Sets the stack to LIFO

SHR101←10 ¯1
Sets the stack to FIFO (the default)

The maximum size of the stack is 1000 entries.

AP 101 Return Codes

Code Meaning

0 Success

12 Stack overflow

444 Invalid object

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

298

AP 119 - Socket Interface Processor

The socket interface processor is used to pass requests to the Transmission Control Protocol/Internet Protocol

(TCP/IP) product. TCP/IP provides communication facilities across networks. See your TCP/IP Programmer's

Reference for more information about TCP/IP.

Notes:

1. Commands are passed as nested vectors. The first element of the value assigned to the variable

determines the type of commands being issued. For the workstation, the command is 'TCPIP' for

commands to TCP/IP.

2. The general form of the result is a three-element vector:

 AP 119 return code

 TCP/IP return code or secondary AP 119 return code

 Data returned by the command

3. No AP invocation options are required or defined.

4. Commands that reference a machine on the network refer to the machine with an ip address or a domain

name. An ip address is a dotted decimal number like '12.34.555.6'. A domain name is a dotted

string of characters like 'stl.ibm.com'. If you use a domain name, AP119 will contact the domain

name server (DNS) defined in your TCP/IP configuration to find the equivalent ip address. The ip

address will work in a command even if the equivalent domain name is not known by the domain name

server.

 Blocking

 Using AP 119 - The TCPIP commands

 AP 119 Return Codes

 Sample AP 119 Session

Blocking

Some socket calls may not return control until a condition is satisfied. For example, the READ and RECV calls

may not return control until data is available to receive. The default state of a socket is blocking mode, which

means that these calls do not return control immediately.

Using the APL2 socket interface with sockets in the default mode, AP 119 does not receive control back from

TCP/IP until blocking calls complete. Since AP 119 does not have control, it is not able to set the shared

variable until the blocking condition is satisfied. A reference of the variable causes a shared variable interlock

until the blocking call completes.

A socket can be set to non-blocking mode with the AP 119 FCNTL command. If this is done, AP 119 receives

control on subsequent calls and returns the EWOULDBLOCK return code instead of blocking.

Using AP 119 - The TCPIP commands

The TCPIP commands provide a means to make calls to TCP/IP. The AP 119 TCP/IP interface closely matches

the TCP/IP C socket interface. The following sections describe the APL2 syntax used for making TCP/IP calls

through AP 119. The examples assume that a variable named SV119 has already been shared with AP 119.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

299

 ACCEPT

 BIND

 CLOSE

 CONNECT

 FCNTL

 GETHOSTID

 GETHOSTBYADDR

 GETHOSTBYNAME

 GETHOSTNAME

 GETPEERNAME

 GETSOCKNAME

 GETSOCKOPT

 LISTEN

 READ

 RECV

 RECVFROM

 SELECT

 SEND

 SENDTO

 SETSOCKOPT

 SHUTDOWN

 SOCKET

 WRITE

ACCEPT

Accepts a connection request. This call accepts the first connection on its queue of pending connections. A new

socket number is returned for the connection and the original socket remains available to accept more

connection requests. This call blocks if there are no pending connections, and the socket is in blocking mode.

Note: AP 119 imposes a limit of 256 active sockets per shared variable.

SV119←'TCPIP' 'ACCEPT' sn
(APRC TCPIPRC CMDRC)←SV119
(ns rp ra)←CMDRC

Where:

sn
is the socket number.

ns
is the new socket number assigned by TCP/IP.

rp
is the port number of the remote process that connected with you.

ra
is the IP address of the remote process that connected with you.

Example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

300

 SV119←'TCPIP' 'ACCEPT' 3
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
4 1023 9.113.12.92

BIND

Associates a local IP address and port with a socket number.

SV119←'TCPIP' 'BIND' sn lp la
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

lp
is the local port number. If this number is 0, TCP/IP assigns an unused port number.

la
is the local IP address or domain name. If this address is '0.0.0.0', the socket can be used with any

local network.
CMDRC

is 0.

Example:

 SV119←'TCPIP' 'BIND' 3 1023 '9.112.12.92'
 SV119
0 0 0
 SV119←'TCPIP' 'BIND' 4 1044 'stl.ibm.com'
 SV119
0 0 0

CLOSE

Shuts down a socket. If the socket is associated with an open TCP connection, the connection is closed.

SV119←'TCPIP' 'CLOSE' sn
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

CMDRC
is 0.

Example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

301

 SV119←'TCPIP' 'CLOSE' 4
 SV119
0 0 0

CONNECT

Completes the binding necessary for a socket if BIND has not been issued and establishes a connection to a

socket in listening mode. If the socket is in blocking mode, this call blocks until the connection is complete or

an error is returned.

SV119←'TCPIP' 'CONNECT' sn rp ra
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

rp
is the remote port number

ra
is the remote IP address or domain name

CMDRC
is 0.

Example:

 SV119←'TCPIP' 'CONNECT' 3 1002 '9.113.14.90'
 SV119
0 0 0
 SV119←'TCPIP' 'CONNECT' 4 1022 'tac.org.de'
 SV119
0 0 0

FCNTL

Allows an application to change the operating characteristics of a socket.

SV119←'TCPIP' 'FCNTL' sn cmd cdata
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

cmd
is the command.

The possible values for cmd are 'F_GETFL' and 'F_SETFL'.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

302

cdata
is the data associated with the command.

The possible values for cdata are 0 and 'FNDELAY'. See Blocking for more information on use of

'FNDELAY' to set non-blocking status for a socket.
CMDRC

is 0 (if setting the status) or the status flags (if getting the status).

Note: If the cmd is 'F_GETFL', the, cdata parameter is ignored.

Example:

 SV119←'TCPIP' 'FCNTL' 3 'F_SETFL' 'FNDELAY'
 SV119
0 0 0

GETHOSTBYADDR

Returns the domain name for the specified ip address.

SV119←'TCPIP' 'GETHOSTBYADDR' ia
(APRC TCPIPRC dn)←SV119

Where:

dn
is the domain name.

ia
is the IP address.

Example:

 SV119←'TCPIP' 'GETHOSTBYADDR' '9.112.12.92'
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
stl.ibm.com

GETHOSTBYNAME

Returns the IP address for the specified host.

SV119←'TCPIP' 'GETHOSTBYNAME' dn
(APRC TCPIPRC ia)←SV119

Where:

dn

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

303

is the domain name.
ia

is the IP address.

Example:

 SV119←'TCPIP' 'GETHOSTBYNAME' 'stl.ibm.com'
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
9.112.12.92

GETHOSTID

Returns the IP address for the host. If the host has more than one IP address, the primary one is returned.

SV119←'TCPIP' 'GETHOSTID'
(APRC TCPIPRC ia)←SV119

Where:

ia
is the primary host IP address.

Example:

 SV119←'TCPIP' 'GETHOSTID'
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
9.113.12.92

GETHOSTNAME

Returns the name of the host processor on which the user is running.

SV119←'TCPIP' 'GETHOSTNAME'
(APRC TCPIPRC hn)←SV119

Where:

hn
is the name of the host.

Example:

 SV119←'TCPIP' 'GETHOSTNAME'
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

304

STLVM20

GETPEERNAME

Returns the family, port and IP address of a peer connected to a given socket.

SV119←'TCPIP' 'GETPEERNAME' sn
(APRC TCPIPRC CMDRC)←SV119
(fm rp ra)←CMDRC

Where:

sn
is the socket number.

fm
is the family (always 2 - AF_INET)

rp
is the remote port.

ra
is the remote IP address

Example:

 SV119←'TCPIP' 'GETPEERNAME' 3
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
2 1002 9.113.14.90

GETSOCKNAME

Returns the family, port and IP address of a given socket.

SV119←'TCPIP' 'GETSOCKNAME' sn
(APRC TCPIPRC CMDRC)←SV119
(fm lp la)←CMDRC

Where:

sn
is the socket number.

fm
is the family (always 2 - AF_INET)

lp
is the local port.

la
is the local IP address.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

305

Example:

 SV119←'TCPIP' 'GETSOCKNAME' 3
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
2 1023 9.113.12.92

GETSOCKOPT

Gets options associated with a socket.

SV119←'TCPIP' 'GETSOCKOPT' sn lv op
(APRC TCPIPRC ov)←SV119

Where:

sn
is the socket number.

lv
is the communication level.

op
is the option name

ov
is the option value.

The following table provides the options and levels that are defined for the AP 119 GETSOCKOPT and

SETSOCKOPT calls. Not all values may be supported on all operating systems. TCP/IP will return an error if an

unsupported option is used.

Option Level

SO_BROADCAST SOL_SOCKET

SO_DEBUG SOL_SOCKET

SO_DONTROUTE SOL_SOCKET

SO_ERROR SOL_SOCKET

SO_KEEPALIVE SOL_SOCKET

SO_LINGER SOL_SOCKET

SO_OOBINLINE SOL_SOCKET

SO_RCVBUF SOL_SOCKET

SO_RCVLOWAT SOL_SOCKET

SO_RCVTIMEO SOL_SOCKET

SO_REUSEADDR SOL_SOCKET

SO_SNDBUF SOL_SOCKET

SO_SNDLOWAT SOL_SOCKET

SO_SNDTIMEO SOL_SOCKET

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

306

Option Level

SO_TYPE SOL_SOCKET

Example:

 LEV←'SOL_SOCKET'
 OPT←'SO_BROADCAST'
 SV119←'TCPIP' 'GETSOCKOPT' 4 LEV OPT
 SV119
0 0 1

Note: If the option specified is SO_LINGER, the third item is a vector of 2 integers, representing the linger

option on/off status and the timeout value in seconds. For all other options, the third item is a single integer.

LISTEN

Waits for a connection to a given socket if BIND has not been issued, and creates a connection request queue.

SV119←'TCPIP' 'LISTEN' sn bl
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

bl
is the length of the request queue.

Example:

 SV119←'TCPIP' 'LISTEN' 3 5
 SV119
0 0 0

READ

Reads data from a given socket. If the socket is in blocking mode and no data is available to read, this call

blocks.

READ is the same as RECV with flg set to 0

SV119←'TCPIP' 'READ' sn type
(APRC TCPIPRC CMDRC)←SV119

Where:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

307

sn
is the socket number.

type
is one of:

'B' No conversion of data

'E' Translate character data from EBCDIC to native format

'A' Translate character data from ASCII to native format

Note: Because workstation systems' native format is ASCII, no translation is done for option

'A'.

CMDRC
is the data received from the socket. Up to 32767 bytes of data can be received in one call. If the length

of the data is 0, the connection has been closed.

Example:

 SV119←'TCPIP' 'READ' 4 'B'
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
(data sent by partner)

RECV

Receives data from a given socket. If the socket is in blocking mode and no data is available to receive, this call

blocks.

SV119←'TCPIP' 'RECV' sn flg tp
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

flg
is the receive option flag and is one of:

0 No special options

1 MSG_OOB option - reads any out-of-band data on the socket

2 MSG_PEEK option - peeks at the data present on the socket; the data is returned but not

consumed, so that a later receive operation sees the same data.

3 Both MSG_OOB and MSG_PEEK

tp
is the type and is one of:

'B' No conversion of data

'E' Translate character data from EBCDIC to native format

'A' Translate character data from ASCII to native format

Note: Because workstation systems' native format is ASCII, no translation is done for option

'A'.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

308

CMDRC
is the data received from the socket. Up to 32767 bytes of data can be received in one call. If the length

of the data is 0, the connection has been closed.

Example:

 SV119←'TCPIP' 'RECV' 4 0 'B'
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
(data sent by partner)

RECVFROM

Receives data from a socket and identifies the source of the data.

SV119←'TCPIP' 'RECVFROM' sn flg tp
(APRC TCPIPRC CMDRC)←SV119
(dat add)←CMDRC
(fam rp ra)←add

Where:

sn
is the socket number.

flg
is the receive option flag and is one of:

0 No special options

1 MSG_OOB option - reads any out-of-band data on the socket

2 MSG_PEEK option - peeks at the data present on the socket; the data is returned but not

consumed, so that a later receive operation sees the same data.

3 Both MSG_OOB and MSG_PEEK

tp
is the type and is one of:

'B' No conversion of data

'E' Translate character data from EBCDIC to native format

'A' Translate character data from ASCII to native format

Note: Because workstation systems' native format is ASCII, no translation is done for option

'A'.

dat
is the data received from the socket. Up to 32767 bytes of data can be received in one call. If the length

of the data is 0, the connection has been closed.
fam

is the family (always 2 - AF_INET).
rp

is the remote port.
ra

is the remote IP address.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

309

Example:

 SV119←'TCPIP' 'RECVFROM' 4 0 'B'
 (APRC TCPIPRC CMDRC)←SV119
 CMDRC
(data sent by partner) 2 1003 9.113.14.90

SELECT

Monitors read, write, and exception status on a set of sockets.

Control returns when something happens on one of the sockets, or when a timeout occurs.

There are two forms of the SELECT command - one that uses integer vectors of socket numbers to identify the

sockets of interest and one that uses Boolean masks to identify the sockets of interest. The form with Boolean

masks is closer to the standard C-socket SELECT definition. The form with integer vectors is more convenient

for the APL2 programmer.

 SELECT - with Integer Vectors

 SELECT - with Boolean Masks

SELECT - with Integer Vectors

The first argument is zero. This is the indication that integer vectors are being used. The next three arguments

are vectors of integers containing the socket numbers to be monitored for read, write, and exception status. For

example, if the read vector contains socket number 3, this socket will be checked.

When something happens to one of the indicated sockets, the SELECT call returns three vectors of integers

listing the sockets that are ready. For example, if 3 is returned in the read vector of the result, then that socket

has data ready to read.

If the connection to a listening socket is completed, the socket number is returned in the read vector and an

ACCEPT call can be made, even though data is not available for reading.

If your partner closes the connection, the socket is also marked ready to read, but when you read it, you will get

zero bytes of data.

A socket is normally always ready to write.

The exception condition is noted if out of band data is received.

The timeout value specifies the number of seconds to wait for the call to complete. A value of zero means to

wait indefinitely.

SV119←'TCPIP' 'SELECT' 0 rv wv xv to
(APRC TCPIPRC CMDRC)←SV119
(rv wv xv)←CMDRC

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

310

Where:

rv
Sockets to check for ready to read status

wv
Sockets to check for ready to write status

xv
Sockets to check for exceptional conditions

to
is the timeout value

Example:

 R_V←2 5 1024
 W_V←⍳0
 X_V←⍳0
 SV119←'TCPIP' 'SELECT' 0 R_V W_V X_V 0
 (APRC TCPIPRC DATA)←SV119
 DATA
 5 2
The variable DATA above is a three-item vector with (5 2) as the first item, the read vector. The second and

third items, the write and exception vectors, are empty.

SELECT - with Boolean Mask

The first argument indicates how many elements of each mask vector to use. This would normally be 1 plus the

largest socket number allocated. The masks must be at least as long as this value. A one in the mask specifies a

corresponding socket to check.

Note: Mask positions are 0-origin. For example, if socket number 3 is to be monitored, the fourth mask bit

should be set.

Three masks are returned as soon as something happens on one of the selected sockets. For example, the read

mask has a one in the fourth position if socket number 3 has data ready to read.

If the connection to a listening socket is completed, the read mask is set to indicate that a connection has been

made to the socket and an ACCEPT call can be made. If your partner closes the connection, the socket is also

marked ready to read, but when you ready it, you will get zero bytes of data.

A socket is normally always ready to write.

The exception mask is set if out of band data is received.

The timeout value specifies the number of seconds to wait for the call to complete. A value of zero means to

wait indefinitely.

SV119←'TCPIP' 'SELECT' ns rm wm xm to
(APRC TCPIPRC DATA)←SV119
(rm wm xm)←DATA

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

311

Where:

ns
is the number of sockets to check.

rm
is a read mask

wm
is a write mask

xm
is an exception mask

to
is the timeout value

Example:

 R_MASK←0 0 0 1 1
 W_MASK←0 0 0 0 0
 X_MASK←0 0 0 0 0
 SV119←'TCPIP' 'SELECT' 5 R_MASK W_MASK X_MASK 0
 (APRC TCPIPRC DATA)←SV119
 DATA
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

SEND

Transmits data to a remote user whose remote address and port have been bound to the socket. If the socket is in

blocking mode, this call blocks until TCP/IP can send the data.

SV119←'TCPIP' 'SEND' sn flg tp dat
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

flg
is the send options flag and is one of:

0 No special options

1 MSG_OOB option - sends out-of-band data.

4 MSG_DONTROUTE option - data should not be subject to routing.

5 Both MSG_OOB and MSG_DONTROUTE

tp
is the type and is one of:

'B' No conversion of data

'E' Translate character data from EBCDIC to native format

'A' Translate character data from ASCII to native format

Note: Because workstation systems' native format is ASCII, no translation is done for option

'A'.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

312

dat
the data to be sent.

CMDRC
is the number of characters sent

Example:

 SV119←'TCPIP' 'SEND' 3 0 'B' 'CHARACTERS'
 (APRC TCPIPRC CMDRC)←SV119
0 0 10

SENDTO

Transmits data to a remote user whose remote address and port are specified in the command. For APL2, the

family is normally 2.

SV119←'TCPIP' 'SENDTO' sn flg tp dat fm rp ra
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

flg
is the send options flag and is one of:

0 No special options

1 MSG_OOB option - sends out-of-band data.

4 MSG_DONTROUTE option - data should not be subject to routing.

5 Both MSG_OOB and MSG_DONTROUTE

tp
is one of:

'B' No conversion of data

'E' Translate character data from EBCDIC to native format

'A' Translate character data from ASCII to native format

Note: Because workstation systems' native format is ASCII, no translation is done for option

'A'.

dat
is the data to be sent.

fm
is the family (always 2 - AF_INET)

rp
is the remote port number

ra
is the remote IP address or domain name

CMDRC
is the number of characters sent

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

313

Example:

 (FAM R_PORT R_ADDR)←2 '9.113.12.92' 1002
 DATA←'These are characters.'
 SV119←'TCPIP' 'SENDTO' 3 0 'B' DATA FAM R_PORT R_ADDR
 SV119
0 0 23

SETSOCKOPT

Sets options associated with a socket.

SV119←'TCPIP' 'SETSOCKOPT' sn lv op o1 [o2]
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

lv
is the level of communication.

op
is the option name.

o1
is the option value.

o2
is the optional second option value. This is used only if op is SO_LINGER.

The values and levels that are defined for the GETSOCKOPT and SETSOCKOPT calls are listed in

GETSOCKOPT.

Example:

 LEV←'SOL_SOCKET'
 OPT←'SO_BROADCAST'
 SV119←'TCPIP' 'SETSOCKOPT' 4 LEV OPT 1
 SV119
0 0 0

SHUTDOWN

Shuts down all or part of a duplex connection.

SV119←'TCPIP' 'SHUTDOWN' sn how
(APRC TCPIPRC CMDRC)←SV119

Where:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

314

sn
is the socket number.

how
is one of:

0 to end communication from socket sn

1 to end communication to socket sn

2 to end communication both to and from socket sn

Example:

 SV119←'TCPIP' 'SHUTDOWN' 4 1
 SV119
0 0 0

SOCKET

Creates an endpoint for communication. A socket number is allocated for use in other socket calls.

Note: AP 119 imposes a limit of 256 active sockets per shared variable.

SV119←'TCPIP' 'SOCKET' [type]
(APRC TCPIPRC CMDRC)←SV119

Where:

type
is the socket type desired. Valid values are 'STREAM' for a stream socket, and 'DGRAM' for a

datagram socket. If no type is specified, a stream socket is allocated.
CMDRC

is the socket number allocated.

Note: Stream sockets provide sequenced, duplex byte streams that are reliable and connection-oriented.

Datagram sockets provide connectionless message exchange with no guarantees of reliability and limited

message size. Datagram sockets should only be used by those with experience handling this type of

communication.

Examples:

 SV119←'TCPIP' 'SOCKET'
 SV119
0 0 3
 SV119←'TCPIP' 'SOCKET' 'DGRAM'
 SV119
0 0 4

WRITE

Writes data to a given socket.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

315

WRITE is the same as SEND with flg set to 0

SV119←'TCPIP' 'WRITE' sn tp dat
(APRC TCPIPRC CMDRC)←SV119

Where:

sn
is the socket number.

tp
is one of:

'B' No conversion of data

'E' Translate character data from EBCDIC to native format

'A' Translate character data from ASCII to native format

Note: Because workstation systems' native format is ASCII, no translation is done for option

'A'.

dat
is the data to be sent

CMDRC
is the number of characters written.

Example:

 SV119←'TCPIP' 'WRITE' 3 'B' 'Many characters'
 SV119
0 0 15

AP 119 Return Codes

Code Meaning

0 Success

1 Incorrect command

2 Wrong type

3 Wrong rank

4 Wrong shape

5 Item is wrong type. Second element of result is zero-origin index to item in error.

6 Item is wrong rank. Second element of result is zero-origin index to item in error.

7 Item is wrong shape. Second element of result is zero-origin index to item in error.

8 Item data is wrong. Second element of result is zero-origin index to item in error.

10 AP 119 subsystem support error. Second element indicates type of error.

1 - No more sockets available through this variable

2 - Insufficient storage to process the command

11 TCP/IP error occurred. Second element of result is TCP/IP return code.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

316

Sample AP 119 Session

In this example, User 1 on system 87.65.43.21 communicates with User 2 on system 12.34.56.78.

 ⍝ User 1 shares a variable with AP 119
 119 ⎕SVO 'A'
1
 0 0 1 1 ⎕SVC 'A'
0 0 1 1

 ⍝ User 1 allocates a socket
 A←'TCPIP' 'SOCKET'
 A
0 0 3

The return code shows that socket number 3 has been allocated. This is a stream socket that is allocated to the

user but not bound to a particular port or address and is not connected.

 ⍝ User 1 binds the socket to a port
 A←'TCPIP' 'BIND' 3 1023 '0.0.0.0'
 A
0 0 0

Notice that a zero IP address was specified. If a machine is connected to more than one network (and therefore

has more than one IP address), you can bind to a particular network, or specify '0.0.0.0' as the address

meaning that you accept a connection to any network. Using '0.0.0.0' as the IP address helps maintain the

portability of your application.

Port number 1023 is an arbitrary number agreed upon by both users. If the port number is being used by anyone

else on the local system, an EADDRINUSE error is returned and the BIND is not successful.

 ⍝ User 1 listens for a connection
 A←'TCPIP' 'LISTEN' 3 5
 A
0 0 0

 ⍝ User 2 shares a variable with AP 119
 119 ⎕SVO 'B'
1
 0 0 1 1 ⎕SVC 'B'
0 0 1 1

 ⍝ User 2 allocates a socket
 B←'TCPIP' 'SOCKET'
 B
0 0 17

 ⍝ User 2 binds the socket to a port
 B←'TCPIP' 'BIND' 17 1055 '0.0.0.0'
 B
0 0 0

 ⍝ User 2 connects to user 1
 B←'TCPIP' 'CONNECT' 17 1023 '87.65.43.21'
 B
0 0 0

 ⍝ User 1 accepts the connection
 A←'TCPIP' 'ACCEPT' 3

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

317

 A
 0 0 4 1055 12.34.56.78

When User 1 does an ACCEPT, a new socket is allocated (4 in this case) and the connection is completed using

the new socket. The original socket (3 in this case) remains listening for new connections.

There is now an established connection between the two users The result from the ACCEPT call has as its third

item the new socket number allocated and User 2's port number and IP address.

 ⍝ User 1 sends data to User 2
 A←'TCPIP' 'SEND' 4 0 'A' 'SOME DATA'
 A
0 0 9

The A means that ASCII characters are being sent. In this case, specifying type A is the same as type B since

both sides are already using ASCII. If the receiving side was EBCDIC-based then type E on the SEND would

cause translation to EBCDIC before the data is sent.

Note that you can send non-character data so long as you and your partner agree on formats. In this case, you

should always use the B type option. When the data is received by the partner, it is received as characters and

the external function RTA can be used to restore the data to the expected format.

 ⍝ User 2 receives the data
 B←'TCPIP' 'RECV' 17 0 'A'
 B
 0 0 SOME DATA

In this case, all the data was received at once but this may not always be the case. Stream socket protocol does

not guarantee that data that was sent is received in one RECV call. It is up to the users to agree on a convention

for saying how much data is sent so that the partner can tell when all data has been received.

 ⍝ Since a user cannot predict when data
 ⍝ arrives, it is not known when a
 ⍝ receive should be done. User 1 issues
 ⍝ a SELECT that requests that he be
 ⍝ informed when data arrives on socket 4.
 SOCKET←4
 R_MASK←W_MASK←X_MASK←(SOCKET+1)⍴0
 R_MASK[SOCKET+⎕IO]←1
 TIMEOUT←0
 A←'TCPIP' 'SELECT' (SOCKET+1) R_MASK W_MASK X_MASK TIMEOUT

Because the masks are numbered in 0-origin, the masks, and the number passed to specify the length of the

masks, must have a length which is 1 greater than the largest socket number. In this example, the 1 in the fifth

position of the first mask says that User 1 wants to be informed when socket 4 is ready to read. You can specify

more than one socket by specifying more than one 1.

Since SELECT is a blocking call, if User 1 now references A, execution stops until data arrives. Alternately

User 1 can do other computing. The user can use ⎕SVS 'A' and check for 0 1 0 1 to see if AP 119 has

assigned data to the variable. The user can use ⎕SVE to wait for an event on any of his shared variables or until

a specified amount of time has passed whichever comes first.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

318

 ⍝ User 2 sends some data
 B←'TCPIP' 'SEND' 17 0 'A' 'DATA BACK TO YOU'
 B
0 0 16

 ⍝ User 1 notices that data is available
 ⎕SVS 'A'
0 1 0 1
 A
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

The 1 in the read mask means that socket 4 is ready to read. The masks returned from the SELECT may have

zero or more 1 bits on but never more than originally specified in the SELECT call.

 ⍝ User 1 reads the data
 A←'TCPIP' 'RECV' 4 0 'A'
 A
 0 0 DATA BACK TO YOU

 ⍝ User 1 closes all his connections
 A←'TCPIP' 'CLOSE' 4
 A
0 0 0
 A←'TCPIP' 'CLOSE' 3
 A
0 0 0

 ⍝ User 2 closes his connection
 B←'TCPIP' 'CLOSE' 17
 B
0 0 0

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

319

AP 120 - Session Manager Interface

Note: This processor is not provided on Unix systems.

AP 120 provides a programming interface to the APL2 Session Manager.

AP 120 imposes no limit on the names or number of concurrent shared variables. The following descriptions

assume that a variable named SV120 has been shared with AP 120. For example:

 120 SVOFFER 'SV120'
2

shares the variable SV120 with AP 120 and sets access control. See Using the Share-Offer Utilities for a

description of the SVOFFER function (from workspace 1 UTILITY).

After a variable is shared, assign any AP 120 command to the variable. Reference the shared variable to retrieve

the command's return code and result. For example, to open an object named Foo:

 SV120←'OPEN' 'Foo'
 (RC RESULT)←SV120
 RC
0

Note: Most AP 120 commands simply return '' as a result. Those which return something else are identified

below.

AP 120 supports the following commands:

 CLOSE

 MESSAGE

 OPEN

 REFRESH

 WAIT

 WATCH

AP 120 uses the following return codes:

Code Meaning

0 Success

1 Object was already open

2 Object is not open

3 No event occurred in timeout seconds

-1 Invalid command

-2 System error

CLOSE

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

320

SV120←'CLOSE' 'objectname'

The CLOSE command closes an object editor window.

Where:

objectname

Character vector - the name of the object to close.

Example

Close the object named Foo:

 SV120←'CLOSE' 'Foo'
 (RC RESULT)←SV120
 RC
0

MESSAGE

SV120←'MESSAGE' 'objectname' 'text' [beep]

The MESSAGE command displays a message in the session manager's or an object editor's status area and

optionally sounds a beep.

Where:

objectname

Character vector - the name of the object editor window in which to display the message. Use '' to

display the message in the session manager window.

text

Character vector - the text of the message.

beep

Boolean scalar - 0 is silent, 1 sounds a beep.

Example

Display Hello World in the session manager's status area and sound a beep:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

321

 SV120←'MESSAGE' '' 'Hello World' 1
 SV120
0

OPEN

SV120←'OPEN' 'objectname'

The OPEN command opens an object.

Where:

objectname

Character vector - the name of the object to open.

Example

Open an object named Foo.

 SV120←'OPEN' 'Foo'
 (RC RESULT)←SV120

REFRESH

SV120←'REFRESH' 'objectname'

The REFRESH command refreshes the definition shown in an object editor window.

Where:

objectname

Character vector - the name of the object to refresh.

Example

Refresh the object named Foo:

 SV120←'REFRESH' 'Foo'
 (RC RESULT)←SV120
 RC
0

WAIT

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

322

SV120←'WAIT' timeout

The WAIT command waits for events in object editor windows.

Where:

timeout

Positive real number - The number of seconds to wait.

If the WAIT command detects an event, the result is a two element array. The first element is the event name.

The second element is the name of the object that signaled the event. AP 120 supports the following event

names:

Event Meaning

'Change' The user changed the definition.

'Close' The user closed the object editor window.

'Open' The user opened an object. The object name is the requested object.

'Refresh' The user refreshed the object definition.

'Save' The user saved the definition.

'Save and Close' The user saved the definition and closed the object editor window.

Notes

The WAIT command only returns events in object editor windows that were opened with the OPEN command

using the shared variable to which the WAIT command is specified.

The session manager starts saving events as soon as the WAIT command is issued. One event is returned for

each call to the WAIT command. Events are discarded when the variable shared with AP 120 is retracted.

Example

Wait for 10 seconds:

 SV120←'WAIT' 10
 (RC RESULT)←SV120
 RC
0
 DISPLAY RESULT
┌→───────────────┐
│ ┌→─────┐ ┌→──┐ │
│ │Change│ │VAR│ │
│ └──────┘ └───┘ │
└∊───────────────┘

WATCH

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

323

The WATCH command manages the windows that monitor APL2 objects and expressions.

SV120←'WATCH' 'NAME' objectname

The NAME subcommand opens a watch window for a variable or function by name. This is equivalent to

selecting Watch from the Popup Object Menu.

Where:

objectname

Character vector - the name of an APL2 object.

SV120←'WATCH' 'EXPRESSION' expression

The EXPRESSION subcommand opens a watch window for an APL2 expression. This is equivalent to pressing

Ctrl-Enter when the cursor is on an APL2 expression.

Where:

expression

Character vector - an APL2 expression.

SV120←'WATCH' 'CLOSE' {objectname | expression}

The CLOSE subcommand closes an open watch window.

Where:

objectname

Character vector - the name of an APL2 object.

expression

Character vector - an APL2 expression.

The object name or expression must match exactly to the title of an open watch window.

SV120←'WATCH' 'CLOSEALL'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

324

The CLOSEALL subcommand closes all open watch windows for the current APL2 session.

SV120←'WATCH' 'LIST'
(RC RESULT)←SV120

The LIST subcommand requests a list of all open watch windows for the current APL2 session.

RESULT is a character matrix with one row for each open watch window.

SV120←'WATCH' 'DISPLAY' {'ON' | 'OFF' | ''}
(RC RESULT)←SV120

The DISPLAY subcommand controls the setting Use DISPLAY in Watch Windows.

Where:

'ON'

Sets the option value on. The DISPLAY function is used in watch windows.

'OFF'

Sets the option value off. The DISPLAY function is not used in watch windows.

''

Requests the current value of the option. RESULT is a character vector containing 'ON' or 'OFF'.

SV120←'WATCH' 'ALWAYSONTOP' {'ON' | 'OFF' | ''}
(RC RESULT)←SV120

The ALWAYSONTOP subcommand controls the setting Watch Windows Always on Top.

Where:

'ON'

Sets the option value on. Watch windows are always on top.

'OFF'

Sets the option value off. Watch windows follow normal zorder rules.

''

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

325

Requests the current value of the option. RESULT is a character vector containing 'ON' or 'OFF'.

SV120←'WATCH' 'WSSIZE' {wssize | 'DEFAULT' | ''}
(RC RESULT)←SV120

The WSSIZE subcommand controls the setting Watch Workspace Size.

Where:

wssize

Character vector - workspace size to be used for watch windows' APL2 sessions. Syntax for wssize is

the same as for the -ws invocation parameter to APL2.

'DEFAULT'

Resets the watch workspace size to the default value (currently 10m).

''

Requests the current value of the watch workspace size. RESULT is a character vector containing the

workspace size in use.

Examples

Open a watch window for the variable Foo

 SV120←'WATCH' 'NAME' 'Foo'
 (RC RESULT)←SV120
 RC
0

Open a watch window for the expression Foo+⍳10

 SV120←'WATCH' 'EXPRESSION' 'Foo+⍳10'
 (RC RESULT)←SV120
 RC
0

Get a list of the currently open watch windows:

 SV120←'WATCH' 'LIST'
 (RC RESULT)←SV120
 RC
0
 DISPLAY RESULT
┌→──────┐
↓HOW │
│Foo+⍳10│
│Foo │

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

326

└───────┘

Close the watch window for variable HOW:

 SV120←'WATCH' 'CLOSE' 'HOW'
 (RC RESULT)←SV120
 RC
0

Close all open watch windows:

 SV120←'WATCH' 'CLOSEALL'
 (RC RESULT)←SV120
 RC
0

Query the current setting of the watch workspace size:

 SV120←'WATCH' 'WSSIZE' ''
 (RC RESULT)←SV120
 RC
0
 DISPLAY RESULT
┌→──┐
│10m│
└───┘

Turn the Use Display in Watch Windows setting off:

 SV120←'WATCH' 'DISPLAY' 'OFF'
 (RC RESULT)←SV120
 RC
0

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

327

AP 124 - Text Display Processor

AP 124 enables you to control a window from within an APL2 defined function. It enables your application to:

 Write to the formatted screen

 Read from the formatted screen

 Produce colors, highlighting, reverse video, and so on

 Control the keyboard translation

 Enter "Inkey" mode to monitor all keyboard activity

 Define up to 255 fields

AP 124 is discussed in detail in the following sections:

 AP 124 Operation

 Understanding Screen Management

 AP 124 Commands

 Summary of AP 124 Commands

 AP 124 Return Codes

AP 124 Operation

AP 124 requires two shared variables: a data variable and a control variable. They can be offered in any order.

The name of the data variable must always begin with the letter 'D' or the letters 'DAT', and the control

variable must begin with the letter 'C' or the letters 'CTL'. The remaining characters in both names (possibly

none) must be the same, because the coupling of both variables is recognized by their name. Examples of valid

pairs are: C and D, C1 and D1, and CXjj and DXjj. Also accepted as valid pairs (for compatibility with

APL2/370) are names such as CTL and DAT or CTL1 and DAT1. The control variable is used to select the

operation to perform and to control each input/output operation. For example:

 124 SVOPAIR 'C124' 'D124'
2 2

offers variables C124 and D124 to the auxiliary processor. See Using the Share-Offer Utilities for a description

of the SVOPAIR function (from the 1 UTILITY workspace).

AP 124 supports a single window for all operations. On most APL2 systems, AP 124 allows the user to share

multiple pairs of variables, with all the variables affecting that one window. On Windows systems, AP 124

allows only one set of variables to be shared. Programs written for use on multiple operating systems should not

use techniques that require more than one set of variables to be shared with AP 124.

Understanding Screen Management

To use the Text Display auxiliary processor, you should understand the screen and its attributes. This section

gives an overview of how the auxiliary processor logically views the screen.

 AP 124 Usage

 Screen Size

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

328

 Screen Fields

 Field Types and Attributes

AP 124 Usage

In the following, the "physical screen" refers to what is actually displayed in the AP 124 window. The "logical

screen" is a buffered image of that window stored in memory. Operations are normally performed on the logical

screen. The information stored in the logical screen is transferred to the physical screen (the physical screen is

refreshed) by certain calls ("Read and Wait" and "Immediate Write").

Screen Size

The physical screen (window) size can be controlled by the application program, by use of an AP 124 command

code, and by the application user through standard interactive window resizing techniques supported by the

system window manager.

The initial size when the window is opened is automatically determined by the number of rows and columns

defined by the logical screen format array, with a minimum default of 25x80.

The size of the active window can be queried or set at any time by the application program, by use of command

code 14 (see Set Window Attributes).

Screen Fields

The text display auxiliary processor views the screen in terms of rectangular areas called screen fields. You can

enter or display data only in these areas. Each screen field has a starting location, a width, and a height that you

define when you format the screen. The starting position of each field is the row and column address of the

upper left-hand character in the field. (The upper left-hand position of the screen is row 1 column 1.)

Field Types and Attributes

Each screen field has associated with it, a field type and a field attribute that qualify its content. For instance, a

field type may indicate that a field is to contain alphabetic or numeric data or that user input to the field is to be

allowed, and the field attribute may specify that the field is to be displayed as red characters on a white

background.

AP 124 Commands

The following section describes each AP 124 command in detail. The commands are summarized in Summary

of AP 124 Commands.

Each time the command-control variable (C124 in the following examples) is set, AP 124 attempts to perform

the requested operation and resets the command-control variable to indicate the degree of success or failure. A

value of 0 indicates that the operation was successful; anything else indicates that a problem has been

encountered - these values are listed in AP 124 Return Codes.

 Clear Screen

 Format the Screen into Fields

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

329

 Reformat the Screen

 Push Format Array

 Pop Format Array

 Immediate Write of Data to Screen

 Read and Wait or Read and Test

 Delayed Write of Data to Screen

 Get Data from the Logical Screen (as a Matrix)

 Update Field Types

 Update Field Attributes

 Control and Information Request

 Get Format Table

 Get the Current Logical Screen

 Sound a Beep to Alert User

 Set the Cursor

 Set Window Attributes

 Query Window Attributes

 Get Data from the Logical Screen (as a Vector)

 Get Field Attributes

 Clear Screen (VS APL Compatible)

 Set Title Bar Text

 Hide or Show Menubar

Clear Screen

Syntax:

 C124←0

This request clears both the physical screen and the logical field contents on the next operation requiring a

screen update.

Format the Screen into Fields

Syntax:

 D124←numeric_format_array
 C124←1

This call permits you to divide your logical screen into rectangular "fields". Each field is defined in terms of its

offset from the top left-hand corner of the screen, its depth, and its width. You can also indicate whether the

field is output only or input/output; and its display "attribute".

numeric_format_array is a four-, five-, or six-column numeric matrix with one row for each field to be

formatted. If only one field is to be formatted, a numeric vector can be passed, and is treated as a one row

matrix. The first or only row of the matrix defines the first field, the second row defines the second field, and so

on.

The first four elements of each row of the matrix (assigned to D124) are defined as:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

330

1. Start row of the field

2. Start column of the field

3. Field height

4. Field width

The fifth and sixth elements of each row of the matrix are optional and are defined as:

5. Field type:

0 Input/output/selectable

1 Numeric input only/any output/selectable

2 Output only (the default)

3 Output only/selectable

6. See the description of the call to Set the Cursor for the meaning of the "selectable" attribute.

7. Field attribute: An integer between 0 and 255. The default field attribute is 1, which normally gives blue

characters on a black background. The following diagram shows the meanings of the bits of the display

attribute byte on color display adapters:

7 6 5 4 3 2 1 0
──────┬────── ──────┬──────
 │ │
 │ └──────── Foreground color (4 bits)
 │
 └──────────────────────── Background color (4 bits)

The combinations of colors available are:

Code Bits Color

0 0 0 0 0 Black

1 0 0 0 1 Blue

2 0 0 1 0 Green

3 0 0 1 1 Cyan

4 0 1 0 0 Red

5 0 1 0 1 Magenta

6 0 1 1 0 Yellow

7 0 1 1 1 Gray

8 1 0 0 0 Light Gray

9 1 0 0 1 Light Blue

10 1 0 1 0 Light Green

11 1 0 1 1 Light Cyan

12 1 1 0 0 Light Red

13 1 1 0 1 Light Magenta

14 1 1 1 0 Brown

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

331

Code Bits Color

15 1 1 1 1 White

The format request clears any previously defined fields and establishes a new screen definition with one field

for each row of the format array given in D124. These fields are given field numbers, starting from one,

corresponding to the row number of the field in the format array. These field numbers are used to identify each

individual field in subsequent calls to AP 124.

Example:

 D124←1 6⍴10 5 1 6 0 7
 C124←1

defines a field in the tenth row, fifth column, one high, six wide. The field has a type of input/output/selectable

(0) and the attribute (7) specifies gray characters on a black background.

Notes:

1. A row in the format array can be all zeros. This can be used as a place holder, and the corresponding

field can be defined later with a reformat screen request (C124←1,Field_number(s)) as described

below.

2. Initially, the display screen contains only one field that covers the entire screen area.

Reformat the Screen

Syntax:

 D124←numeric_format_array
 C124←1,Field_number(s)

The reformat screen request modifies one or more existing field definitions. The number of rows given in the

format array (D124) must be the same as the number of Field_number(s) given in the control variable

(C124).

numeric_format_array is a four-, five-, or six-column numeric matrix with one row for each field to be

formatted.

Note: If a field is formatted so that it overlaps another, and then is reformatted to a smaller size so that more of

the overlapped field is revealed, the color of the newly revealed area will not be refreshed until its field is

affected by a format, reformat or change of attribute. The text in the area will not be refreshed until its field is

affected by a format or write.

Push Format Array

Syntax:

 D124←numeric_format_array
 C124←1 ¯1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

332

The push format array request saves the current screen format, data and cursor type on a last-in first-out (LIFO)

stack. The screen is then formatted according to the new format array, and the cursor type reset to normal.

Any areas of the screen not defined in the new format array retain their previous contents.

numeric_format_array is a four-, five-, or six-column numeric matrix with one row for each field to be

formatted.

Pop Format Array

Syntax:

 C124←1 ¯2 ⍝ Pop last pushed format array
 C124←1 ¯2,n ⍝ Pop last n format arrays

The pop format array request restores the last saved screen format, data and cursor type from the stack. If n is

specified, this process is repeated n times. If the stack is empty, the current format, data and cursor type are

retained and no error is given.

Immediate Write of Data to Screen

Syntax:

 D124←array_of_character_data
 C124←2,Field_number(s)

This call permits you to write data to the logical screen, which is then immediately transferred to the physical

screen.

If a single field is being updated, the data can be passed as a character vector or matrix. If a matrix is passed, it

will be treated as if it were raveled.

If multiple fields are being updated, the data can be passed as a character matrix with one row for each field, or

as a nested vector with one element for each field. Each of the vector elements can be a character vector or

matrix as described above for a single item.

Read and Wait or Read and Test

In normal operation, the physical screen is refreshed. Then, either the auxiliary processor waits for a certain key

to be pressed, or it returns to APL2 with information on whether a key was pressed.

Syntax Description

C124←3
C124←3 0

Allow interactive input and return to APL2 when a special key is pressed. Assigning the

control variable a scalar value of 3, or the two element vector 3 0, are completely

equivalent.

C124←3 1 Return to APL2 when any key is pressed.

C124←3 2 Test for a key pressed, and return immediately.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

333

Syntax Description

C124←3 3 Return to APL2 when any key except a cursor movement key is pressed. ("Semi-inkey"

mode.)

C124←3 4 Test for a key pressed, and return immediately. If a normal (non-special) key has been

pressed, it will be echoed to the display, and the field containing it will be marked as having

been updated.

If any of the above calls has three elements, this instructs the auxiliary processor not to refresh the physical

screen. (The value of the third element is ignored.)

After the return code is checked in C124, the D124 variable contains a vector of five or more elements. They

are:

D124[1 2]
For calls 3, (3 0), and (3 4), a code indicating the special key pressed to return to APL. See Special

Key Code Processing for the list of codes.

For calls (3 1), (3 2), and (3 3), the character code and extended function code returned by the APL2

keyboard routine. See Extended Key Code Processing for the list of codes.

For call (3 2), if no key has been pressed, return is (¯1 ¯1). Similarly, for call (3 4), if no special key

has been pressed, return is (¯1 ¯1).

D124[3]
Field number where the cursor was located at return to APL2, or 0 if the cursor was not in a defined

field.
D124[4 5]

Cursor position (row,column) within that defined field. If field number is 0, these elements give the

offset from top-left of the logical screen. Positions are given in origin one, for example, 1 1 specifies

the top-left corner of the field.
D124[6...]

List of fields updated during this call.

Special Key Code Processing

The codes returned for the 3, (3 0), and (3 4) commands are:

Code Description

0 0 Enter (New-line key)

1,N F-key, where N (1 ≤ N ≤ 48) is the number of the key that was depressed.

1-12: normal F-keys

13-24: F-keys in shift mode

25-36: F-keys in Ctrl mode

37-48: F-keys in Alt mode

Note: On Unix systems, some of the F-keys in Alt mode (particularly Alt-F1 through Alt-F4) may be

used by the desktop manager to perform windowing functions such as focus switching, minimization,

and window close. For these keystroke combinations, control will not be given to AP 124, and thus no

key codes will be returned to the APL2 application. For cross-system portability, it is best not to rely

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

334

Code Description

on these key combinations in your AP 124 applications.

4 1 Esc

6 1 Home

6 2 End

6 3 PageUp

6 4 PageDown

6 5 Ctrl-PageUp

6 6 Ctrl-PageDown

6 7 Ctrl-Left

6 8 Ctrl-Right

6 9 Ctrl-Up

6 10 Ctrl-Down

While AP 124 is in the (3 0) "Read and Wait" state, you can type on the screen. The cursor movement keys

can be used in the normal way. Three other keys have special functions:

Ctrl-Backspace

Toggles the keyboard between APL2 and national modes.

Ctrl-End

Clears to the end of the field. However, if the field has less than 80 columns, only the current line is

cleared to its end.

Ctrl-Home

Clears from the cursor to the start of the field. However, if the field has less than 80 columns, only the

current line is cleared to its beginning.

Extended Key Code Processing

The codes returned for the (3 1), (3 2), and (3 3) commands are:

 If D124[2] is 0 and D124[1] is non-zero, then D124[1] is the zero origin ⎕AV index of the

character corresponding to the key pressed.

 If D124[1] is 0, then D124[2] is an extended function code:

Code Description

0 Ctrl-Break or Ctrl-Backspace

3 Null character

15 Shift-Tab

16-25 Alt-q, w, e, r, t, y, u, i, o, p (national keyboard only)

30-38 Alt-a, s, d, f, g, h, j, k, l (national keyboard only)

44-50 Alt-z, x, c, v, b, n, m (national keyboard only)

59-68 Function keys 1-10

71 Home

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

335

Code Description

72,73 Cursor Up, PageUp

75,77 Cursor Left, Right

79 End

80,81 Cursor Down, PageDown

82,83 Insert, Delete

84-93 Shift-Function keys 1-10

94-103 Ctrl-Function keys 1-10

104-113 Alt-Function keys 1-10

Note: On Unix systems, some of the F-keys in Alt mode (particularly Alt-F1 through Alt-F4)

may be used by the desktop manager to perform windowing functions such as focus

switching, minimization, and window close. For these keystroke combinations, control will

not be given to AP 124, and thus no key codes will be returned to the APL2 application. For

cross-system portability, it is best not to rely on these key combinations in your AP 124

applications.

114 Ctrl-PrintScreen

115,116 Ctrl-Cursor Left, Right

117,118 Ctrl-End, Ctrl-PageDown

119 Ctrl-Home

120-131 Alt-1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -, = (national keyboard only)

132 Ctrl-PageUp

133,134 Function keys 11, 12

135,136 Shift-Function keys 11, 12

137,138 Ctrl-Function keys 11, 12

139,140 Alt-Function keys 11, 12

141,142 Ctrl-Cursor Up, Ctrl-Keypad -

143,144 Ctrl-Enter, Ctrl-Keypad +

145,146 Ctrl-Cursor Down, Ctrl-Insert

147,148 Ctrl-Delete, Ctrl-Tab

149,150 Ctrl-Keypad /, Ctrl-Keypad *

151,152 Alt-Home, Alt-Cursor Up

153 Alt-PageUp

155,157 Alt-Cursor Left, Right

159,160 Alt-End, Alt-Cursor Down

161 Alt-PageDown

162,163 Alt-Insert, Alt-Delete

164 Alt-Keypad /

165 Code 165 was originally defined in this table for the Alt-Tab keystroke. However, that

keystroke is not returned to AP 124 by the operating system. The operating system uses Alt-

Tab to change window focus. This behavior overrides any behavior defined by another

program, including AP 124.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

336

Code Description

166 Alt-Enter

Delayed Write of Data to Screen

Syntax:

 D124←array_of_character_data
 C124←4,Field_number(s)

This call permits you to write data to the logical screen, which is displayed at the next refresh of the physical

screen.

In all other respects, this service is identical to the immediate write service (see Immediate Write of Data to

Screen).

Get Data from the Logical Screen (as a Matrix)

Syntax:

 C124←5,Field_number(s)

This call enables you to read data from the logical screen. It returns a matrix in D124 with one row for each

data field requested and as many columns as the maximum field length (field length is the total number of

characters in a field).

If a field contains more than one row, its data is raveled into a single row of the matrix. If multiple fields are

requested, the data from each is padded to the length of the longest.

Update Field Types

Syntax:

 D124←New_field_type(s)
 C124←6,Field_number(s)

where each item of New_field_type is a number:

0 Field is input/output (selectable)

1 Field is numeric input only/any output (selectable)

2 Field is output only (non-selectable)

3 Field is output only (selectable)

See the description of the call to Set the Cursor for the meaning of the "selectable" attribute.

This call updates column five of the format array previously specified for the indicated fields.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

337

Update Field Attributes

Syntax:

 D124←Attribute(s)
 C124←7,Field_number(s)

Each item of Attribute is an integer from 0 to 255 as defined in Format the Screen into Fields.

It is also possible to define the attributes for each character position of a field. To do this, the D124 variable is

set to a vector of attributes, and only a single Field_number is specified. A value of ¯1 in the vector of

attributes specifies that this character position is to use the currently-defined field attribute.

Control and Information Request

Syntax:

 C124←8 ⍝ Set to APL2 keyboard
 C124←8 0 ⍝ Set to APL2 keyboard
 C124←8 1 ⍝ Set to national keyboard
 C124←8 2 ⍝ Return status

Returns in D124:

D124[1] Keyboard in APL2 mode

D124[2] Reserved (always 0)

D124[3] Reserved (always 1)

D124[4] Beep request pending

D124[5] Reserved (always 0)

D124[6] Cursor mode (0 = normal, 1 = field)

Get Format Table

Syntax:

 C124←9
Returns a n by 6 numeric matrix in D124, where n is the current number of fields defined.

This call returns the current format array stored by AP 124.

If no format array currently exists then D124 is set to:

 1 1, No_of_rows, No_of_columns, 2 1

This feature can be used to determine the number of rows and columns that the window is capable of

displaying.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

338

Note: On Unix systems, the default format array is a dummy array that may not be used for output. A format

array must be defined with command 1 before any input or output can be performed. On Windows and on the

mainframe APL2 systems, the default format array can be used for output. Applications being written to run on

multiple systems, however, should not take advantage of this feature.

Get the Current Logical Screen

Syntax:

 C124←10 1

Returns the logical screen as a character matrix in the D124 variable.

Sound a Beep to Alert User

Syntax:

 C124←11 ⍝ Delayed Beep
 C124←11 0 ⍝ Delayed Beep
 C124←11 1 ⍝ Immediate Beep
 C124←11 2 ⍝ Cancel previous delayed Beep

If the beep is delayed, it occurs at the next "Read and Wait" or "Read and Test" operation. To find out whether a

beep is pending, specify call 8 2 and examine the fourth element.

Set the Cursor

Syntax:

 D124←Field_no, Row_offset, Column_offset
 C124←12

Sets the cursor to a specific screen location. Field_no is the number of a defined field. If it is zero, then row

and column are considered as coordinates from the top left corner of the screen. D124 must be a three element

numeric vector. Positions are given in origin one, for example, 1 1 specifies the top-left corner of the field.

 C124←12 0

Sets cursor type to normal (the default).

 C124←12 1

Sets cursor type to field. Any fields with a field type that is "selectable" (field types 0, 1 or 3) are displayed in

reverse video whenever the cursor is situated within the field.

Set Window Attributes

The following section describes the syntax for setting window attributes.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

339

 Set Background Color

 Set Window Size and Placement

Set Background Color

Syntax:

 C124←14,color

Sets the screen background (all areas of the window not currently defined by any field in the format array

during the previous "reformat screen" operation) to the color specified. For example:

 C124←14 16

Sets the background to blue.

Set Window Size and Placement

Syntax:

 C124←14,row,column,height,width

Requests the window size and placement, through standard negotiation with the window manager. Logical

fields defined totally outside the window are not displayed, and fields that exceed the window boundaries are

clipped. Any parameter can be specified with a value of ¯1 to request default handling. The row and column

positions are zero origin offsets from the top left corner of the Desktop window.

Query Window Attributes

Syntax:

 C124←14

Returns a 5-element integer vector in D124:

 background_color,row, column, height, width

Get Data from the Logical Screen (as a Vector)

Syntax:

 C124←15,Field_number(s)

Returns a vector of arrays with as many elements as the number of fields requested. Each array element is either

a character vector (if the field height is 1) or a a character matrix with dimensions equal to the field height and

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

340

width (if the field height is not 1). Returns a vector of character arrays in D124 with as many elements as the

number of fields requested.

This call enables you to read data from the logical screen.

Get Field Attributes

Syntax:

 C124←17,Field_number(s)

Returns in D124, a character matrix (one row for each Field_number specified) containing the attribute

character for each character position of the field. The ⎕AV system variable can be used to convert these attribute

characters to the equivalent attribute integers.

Clear Screen (VS APL Compatible)

Syntax:

 C124←20

This is the same as call 0, and is provided purely for compatibility with the VS APL AP 124.

Set Title Bar Text

Syntax:

 D124←'text'
 C124←21 1

Sets the title bar of the AP 124 window to the specified text.

Hide or Show Menubar

Syntax:

 C124←22 ⍝ To hide menubar
 C124←22 0 ⍝ To hide menubar
 C124←22 1 ⍝ To show menubar

Hides or shows the AP 124 window's menubar. If command 22 is not used, the AP 124 window contains a

menubar.

Note: This command is ignored on Unix systems.

Summary of AP 124 Commands

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

341

Operation Control Variable Data Variable Response in Data Variable

Clear screen 0

Reformat screen 1 format

Push format array 1, -1 format

Pop format array 1, -2 [,n]

Reformat fields 1, field_nos format

Immediate write 2, field_nos data

Read and wait 3

3 0

3 1

3 3

key, cursor, field_no

Read and test 3 2

3 4

key, cursor, field_no

Delayed write 4, field_nos data

Get data 5, field_nos data

Update field type 6, field_nos type

Update field attribute 7, field_nos attribute

Set APL2 keyboard 8

8 0

Set national keyboard 8 1

Return status 8 2 keyboard, beep, cursor

Get format table 9 format

Get the current logical screen 10 1 data

Sound delayed beep 11

11 0

Sound immediate beep 11 1

Cancel delayed beep 11 2

Set the cursor 12 position

Set cursor type to normal 12 0

Set cursor type to field 12 1

Query window attributes 14 attributes

Set window background color 14, color

Set window placement and size 14, row, column,

height, width

Data as a vector of arrays 15, field_nos

Get field attributes 17, field_nos attributes

Clear screen 20

Set title bar text 21 1 data

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

342

Operation Control Variable Data Variable Response in Data Variable

Hide menubar 22

22 0

Show menubar 22 1

AP 124 Return Codes

Code Meaning

0 Success

11 Control variable rank error

12 Control variable length error

13 Control variable domain error

14 Invalid call

15 Request to position cursor in an undefined field

21 Data variable rank error

22 Data variable length error

23 Data variable domain error

24 Data variable not shared

25 Data variable value error

26 Data variable too large

30 Invalid field number

32 Defined field extends beyond the window

37 Invalid field type

38 Invalid attribute

53 Required storage not available

69 Window has been closed by user

89 Data variable interlocked

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

343

AP 127 - DB2 Processor

AP 127 allows you to use the Structured Query Language (SQL) to access IBM DATABASE 2 (DB2).

Supplied workspace SQL is a companion to AP 127.

The tables in the next sections provide a summary of AP 127 commands with their corresponding workspace

functions, and the AP 127 return code structure. See APL2 Programming: Using Structured Query Language for

complete information about AP 127 and the SQL workspace.

 AP 127 Commands

 AP 127 Return Codes

AP 127 Commands

Operation Code and Syntax Workspace Function

'CALL' name [values] CALL

'CLOSE' name CLOSE

'COMMIT' ['RELEASE'] COMMIT

'CONNECT' database-identifier CONNECT

'DECLARE' name ['HOLD'|'NOHOLD'] DECLARE

'DESCRIBE' name [type] DESC

'EXEC' stmt EXEC

'FETCH' name [options..] FETCH

'GETOPT' GETOPT

'ISOL' [setting] ISOL

'MSG' rcode MESSAGE

'NAMES' NAMES

'OPEN' name [values] OPEN

'PREP' name stmt PREP

'PURGE' name PURGE

'PUT' name values PUT

'ROLLBACK' ['RELEASE'] ROLLBACK

'SETOPT' options.. SETOPT

'SQLCA' SQLCA

'SQLSTATE' SQLSTATE

'SSID' [subsystem] SSID

'STATE' name STATE

'STMT' name STMT

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

344

Operation Code and Syntax Workspace Function

'TRACE' [(module level)..] TRACE

'XMLSIZE' [size] XMLSIZE

AP 127 Return Codes

Return Code Vector Meaning

0 0 0 0 0 Normal return. All operations completed. Result table retrieved by a FETCH

request is complete.

0 0 1 0 0 Normal return, but a result table may not have been completely retrieved.

1 0 0 1 msgn Error in auxiliary processor. msgn is the number of the auxiliary processor error

message.

1 0 0 2 msgn Error detected in the database system. msgn gives the SQL return code

(SQLCODE).

1 0 0 3 msgn Error detected in an SQL workspace function. msgn gives the message number.

0 1 0 n msgn Warning message. For example, FETCH has no more rows to retrieve, a DELETE

statement deletes nothing, or the value-list is longer than the highest vector index.

1 1 0 n msgn Transaction backout. All changes made to tables since the last COMMIT or

ROLLBACK have been discarded. Application must restore processing to point of

last COMMIT or ROLLBACK. All locks are released and all cursors closed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

345

AP 144 - The X Window System Interface Processor

Note: This processor is provided only on Unix systems.

AP 144 provides an interface to the X Window System library (Xlib). It enables a very large set of the X

Window System Xlib calls and data structures to be used from the APL2 environment, and in so doing, enables

APL2 to use a true windowing environment.

Before using AP 144 to exploit X Window System support within your application, it is recommended that you

first study the AP 207 interface, to determine if it satisfies your windowing requirements. AP 207 offers the

advantage of a high-level portable graphics interface and provides more extensive error handling capability.

While AP 144 offers an APL2 application programmer the extensive set of Xlib services available to

programmers writing windowing applications in other languages, it uses a pass through command interface to

the subroutine library, which is a much lower-level programming interface than that offered by AP 207.

To use AP 144, you must be able to read and write programs in APL2 and C, to use the underlying operating

system's facilities, and should have a good general knowledge of X Window System.

Since AP 144 uses a fast-path shared variable interface, it operates much like a subroutine call to the Xlib

functions. This implies that the APL2 application must ensure the validity of structures and parameters it passes

to the Xlib routines - AP 144 does a minimum amount of auditing of this data. Since many of the subroutines

use pointers as arguments, it is possible for the APL2 application to pass parameters to an Xlib routine that look

like valid addresses to AP 144, but can cause the Xlib subroutine to fail, and, if the error is severe enough, can

even abort the APL2 session.

AP 144 itself imposes no specific limit on the number of concurrent shared variables that you may use. A

variable can be shared with AP 144 using the SVOFFER function from the 1 UTILITY workspace. For

example:

 144 SVOFFER 'SHR144'
2

offers variable SHR144 to AP 144 and sets access control. See Using the Share-Offer Utilities for a description

of the SVOFFER function.

After sharing is established, X Window System calls can be made by assigning a command and any appropriate

parameters to the variable SHR144:

 SHR144←'command' [parm] [parm] ...
command

The name of the X Window System call to be invoked, specified as an APL2 character vector. The name

is case-sensitive and must be given exactly as required.
[parm]

All but a few of the X Window System calls require additional input parameters to be specified. These

are given after the name of the call itself, in the same order as listed in the X Window System

documentation.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

346

To reference the result of the call:

 (rc [results])←SHR144
rc

The operation return code
[results]

Results include the X Window System explicit result (if any), as well as any implicit results passed back

as output parameters given on the call.

Note It is recommended that AP 144 commands are passed to the AP using the XWIN function supplied in the

AP144 workspace. This simplifies the conversion of APL2 X Window System applications to use APL2 to X

Window System interfaces other than that provided by AP 144.

For a tutorial on the use of the AP 144 X Window System interface, see Using the X Window System Interface.

 AP 144 Commands and Structures

 AP 144 Return Codes

AP 144 Commands and Structures

X Window System Xlib Commands

The list of available X Window System Xlib commands can be generated using the AP 144 system command

 SHR144←')Cmds' 'Xlib'.

The result that is returned in the shared variable for the ')Cmds' command is a two item vector. The first item

of this is a scalar return code (which should be 0), and the second item is a nested n by 1 array containing n

nested three column matrices (n=1 for the case given above of a single parameter of 'Xlib'). The first

column of each matrix contains the names of the supported X Window System Xlib commands. The second and

third columns of the matrix identify the types of the input and output parameters (respectively) that are used

with the call.

The following table explains the character-type codes:

Type Category Description

B

B1

B8

I

I2

I4

Booleans

Integers

Used for integer parameters. Pointers are often in this category, as are the various X Window

System identifiers. On input, specify these as integers or Booleans.

The interface attempts to convert any input or output parameters to the type requested.

E8 Floating

Point

Used for floating point parameters.

The interface attempts to convert any input or output parameters to the type requested.

S Strings Used for character strings, (char * in C terms). Specify as a simple-character vector.

C Characters Used for single characters. Specify as a character scalar.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

347

Type Category Description

X

X2

X4

Hex Flags Used by X Window System flag parameters that typically modify the behavior of a specific

function. Specify either as a number, as a hexadecimal character string, or as a Boolean

vector. On return, this type code results in an integer (packed bits) being returned.

P Pointers Indicates that the given parameter is a pointer to a structure that also is defined in (and thus

available via) the interface. Specify pointers as for integers described above.

G Arrays On input, accept anything and store it unchanged. The called function can then perform

whatever additional verification is needed.

On output, results are specified by the called program.

The following table shows the parameter type code prefix and suffix characters:

Type Category Description

_ Ignore one This parameter is ignored. This type code is used on output for those X Window System

calls that don't produce any explicit results, but do pass back information as output

parameters.

? Optional

(prefix)

The parameter following is an optional one. If it is specified, it must match the type given.

* Indirection

(prefix)

One or more * codes can be used to indicate parameter indirection. This is equivalent to

the use of a "*" when defining variables in C.

... Repeat last

(suffix)

This code can only be used at the very end of the list of codes. It is an indication that the

last definition is repeated to accommodate the number of incoming parameters.

[]
;[n]

Array

Indexes

(suffix)

Array indexes can be specified with or without dimensions. If without, that dimension is

unbound and accepts any number of elements. If with, the dimensions of the incoming data

must match the specified dimension. Multiple dimensions can be specified by separating

each with a ";", (for example: [1;2;3]).

* Ignore rest

(suffix)

This code can only be used at the very end of the list of codes. It indicates that parameters

can follow the ones specified in the command so far and are to be ignored.

The interface performs any conversions needed such as conversion of Booleans to integers or vice versa.

The last digit in certain of the type codes specifies the number of bytes (or bits for the Boolean B types) used to

store the value.

X Window System Xlib Structures

The list of available X Window System Xlib structures can be generated using the AP 144 system command

 SHR144←')Structs' 'Xlib'

The following Xlib XEvent structures are defined:

XAllowEvent
XAnyEvent

XDestroyWindowEvent
XErrorEvent

XMapRequestEvent
XMotionEvent

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

348

XButtonEvent
XButtonPressedEvent
XButtonReleasedEvent
XCirculateEvent
XCirculateRequestEvent
XClientMessageEvent
XColormapEvent
XConfigureEvent
XConfigureRequestEvent
XCreateWindowEvent
XCrossingEvent

XEvent
XExposeEvent
XFocusChangeEvent
XGraphicsExposeEvent
XGravityEvent
XKeyEvent
XKeymapEvent
XKeyPressedEvent
XKeyReleasedEvent
XMapEvent
XMappingEvent

XNoExposeEvent
XPropertyEvent
XReparentEvent
XResizeRequestEvent
XSelectionClearEvent
XSelectionEvent
XSelectionRequestEvent
XUnmapEvent
XVisibilityEvent

The following Xlib regular structures are defined:

XAtoms
XCharStruct
XClassHint
XColor
XComposeStatus
XCursorFont
XFontStruct
XGCValues
XGeneral
XGeom
XGrab

XHost
XHostAddress
XIconSize
XImage
XInputFocus
XKeyboardControl
XKeysym
XModifierKeymap
XPixmapFormatValues
XProperty
XRectangle

XScreenSaver
XSetWindowAttributes
XSizeHints
XStandardColormap
XTextItem
XTextProperty
XVisualInfo
XWindow
XWindowChanges
XWMHints

Structure Commands - Summary

AP 144 structure commands are case-sensitive and must be entered exactly as given. The available commands

are:

Command Usage and Syntax

Clear Clear a structure instance

 SHR144←'Clear' struct handle
 rc←SHR144

Get Import an APL2 vector from a structure

 SHR144←'Get' struct handle
 (rc vals)←SHR144

GetConst Get a structure's constants

 SHR144←'GetConst' struct
 (rc const)←SHR144

GetFields Get a structure's fields

 SHR144←'GetFields' struct
 (rc fields)←SHR144

GetSize Get the byte size of a structure

 SHR144←'GetSize' struct
 (rc size)←SHR144

MClear Clear multiple structure instances at once

 SHR144←'MClear' struct handle start count

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

349

Command Usage and Syntax

 rc←SHR144

MFree Free multiple structure instances at once

 SHR144←'MFree' struct handle count
 rc←SHR144

MGet Import multiple structures into APL2

 SHR144←'MGet' struct handle start count
 (rc vals)←SHR144

MNew Create multiple new abutting structure instances

 SHR144←'MNew' struct count
 (rc handle)←SHR144

MPut Export multiple structures from APL2

 SHR144←'MPut' struct handle start array ...
 rc←SHR144

New Create a new structure instance

 SHR144←'New' struct
 (rc handle)←SHR144

NewPut Create a new structure instance and fill it with data

 SHR144←'NewPut' struct values
 (rc handle)←SHR144

Put Copy an APL2 nested array to a structure instance

 SHR144←'Put' struct handle array
 rc←SHR144

SFree Free a structure instance

 SHR144←'SFree' struct handle
 rc←SHR144

System Commands - Summary

AP 144 system commands are case sensitive and must be entered exactly as given. The available commands

are:

Command Usage and Syntax

)Cmds List the available commands

 SHR144←')Cmds' [env] ...
 (rc cmds)←SHR144

)Env Get Get the current or default list of environments

 SHR144←')Env' 'Get' ['Default']
 (rc envs)←SHR144

)Env Set Set a new list of environments

 SHR144←')Env' 'Set' env ...
 rc←SHR144

)RC List a return code message

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

350

Command Usage and Syntax

 SHR144←')RC' rc_no
 (rc erc)←SHR144
 (rc_no name msg)←erc

)Structs List the available structures

 SHR144←')Structs' [env] ...
 (rc structs)←SHR144

)Syntax List the syntax of a specific command

 SHR144←')Syntax' cmd
 (rc syntax)←SHR144
 (env cmd intypes outtypes)←syntax

)Version List the AP 144 version identifier

 SHR144←')Version'
 (rc version)←SHR144

Understanding the Return Codes

Each call to the command interface results in a return code being generated and passed back to the caller. A

nonzero return code is an indication that the command failed to execute for some reason or another.

If a nonzero return code is returned, and the error is found in the content of the parameter list, additional return

codes can be returned in the second return parameter. These parameter return codes relate one-to-one to the

parameters passed. For example, the success of the first parameter (the command name) is indicated by the first

parameter code. These return codes help you locate the source of the error. Some examples may clarify this. In

general, the command processor tries to provide a return code for each parameter specified or required:

 SHR144←'XOpenDisplay'
 SHR144
 16 0 16 ⍝ 16: Expected parameter missing
 SHR144←'XOpenDisplay' 'first' 'second'
 SHR144
 17 0 0 17 ⍝ 17: Too many parameters specified

AP 144 Return Codes

The text describing each valid return code can be retrieved from AP 144 by using the AP 144)RC system

command described above. The return codes are:

Code Meaning

0 Success

11 Parameter has invalid type

12 Unknown command or structure specified

13 Unknown environment specified

14 Command not implemented

15 Multiple errors have occurred

16 Expected parameter missing

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

351

Code Meaning

17 Too many parameters specified

21 Dimension incorrect

22 Parameter must be a vector

23 Invalid length of data

24 Invalid parameter specified

25 Invalid character in parameter

26 Cannot convert data type

27 Parameter type cannot fit value

28 APL service routine error

29 Unknown structure member or constant specified

31 AP 144 internal data structure is not owned, modify is prohibited

32 Unknown class specified

33 Invalid null pointer

34 Insufficient space left in argument space to store or retrieve data

41 Parameter does not contain any data

42 AP 144 internal data structure cannot be converted to result; prototype element missing

43 Unknown return type specified

44 Error building result

51 Type code parse error

52 Requested type not found

91 Exceeded internal limitation

92 Cannot open connection to external environment

99 Fatal error during command execution

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

352

AP 145 - GUI Services Processor

Note: This processor is not provided on Unix systems.

AP 145 provides facilities for building GUI applications, printing, and communication with other applications

using Dynamic Data Exchange (DDE).

For information about building GUI applications and AP 145's services, consult APL2 Programming:

Developing GUI Applications.

For information about printing, consult Printing Functions in the GUITOOLS chapter.

For information about DDE, consult DDESHARE - High-Level DDE Access.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

353

AP 200 - Calls to APL2

AP 200 is used to control additional APL2 interpreter sessions (known as slave interpreters). Its commands

allow you start and stop an APL2 slave interpreter session, create and manage objects within the slave session,

and execute expressions and functions in the slave session.

The slave sessions controlled by AP 200 run asynchronously in a separate process from the user's session. This

allow the user a great deal of flexibility in starting multiple sessions and allowing long-running computations to

run in the background without suspending the main user session.

For more information on this interface, see Calling APL2 from APL2.

 AP 200 Commands

 AP 200 Return Codes

Notes:

1. Each variable shared with AP 200 is used to control a single APL2 interpreter session. Multiple

variables may be shared if multiple sessions are required.

2. Commands are passed as nested vectors. The first element of the value assigned to the variable is a

character command. Additional parameters may be passed, as defined for the command.

3. The general form of the result is a two-element vector:

 AP 200 return code

 Result data as defined by the command, or null if the return code is non-zero or no result is

defined for the command.

4. No AP invocation options are required or defined.

AP 200 Commands

The following sections describe the syntax of the AP 200 commands. The examples assume that a variable

named SV200 has already been shared with AP 200.

 START

 STOP

 PUT

 GET

 FREE

 EXECUTE

 EXTOKEN

START

Starts an APL2 interpreter session.

SV200 ← 'START' [options]
APRC ← ↑SV200

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

354

Where:

options
are invocation parameters, passed as a vector of character vectors with one element for each blank-

delimited item in a command line parameter list. Any APL2 invocation parameters may be passed, as

defined in Invoking APL2. However, the following parameters will be ignored if specified:

-hostwin
-input
-lx (is always OFF)
-quiet (is always ON)
-run
-rns
-sm (is always OFF)
-svplisten
-svptrace

The shared variable processor options -svplisten and -svptrace can be enabled by passing the

parameters to the master APL2 session or by setting environment variables APLSVPLISTEN and

APLSVPTRACE before starting APL2. On Windows, the menu options in The SVP Monitor Facility or

the SVPLISTEN and SVPTRACE keywords in the [Invocation Options] section of the apl2.ini

configuration file may also be used.

To accept the default invocation settings for APL2, pass any null array for options, or omit

options.

Note:

If a session is already running in association with this shared variable, it is terminated and a new session is

started. To run multiple sessions simultaneously, share multiple variables with AP 200.

Example:

 SV200←'START' ('-ws' '20m')
 SV200
 0

STOP

Stops the APL2 session.

SV200 ← 'STOP'
APRC ← ↑SV200

Example:

 SV200←'STOP'
 SV200
 0

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

355

PUT

Establishes an unnamed object in the interpreter session's workspace.

SV200 ← 'PUT' array
(APRC atoken) ← SV200

Where:

array
is the array to be established.

atoken
is the identifier token of the array in the slave session. This token must be used to refer to the array on

subsequent GET, FREE and EXTOKEN commands.

Example:

 SV200←'PUT' ('A CHARACTER ARRAY')
 SV200
0 11

GET

Gets the value of an unnamed array from the interpreter session's workspace.

SV200 ← 'GET' atoken
(APRC array) ← SV200

Where:

atoken
is identifier token of the array (from PUT).

array
is the value of the array

Example:

 SV200←'GET' 11
 SV200
 0 A CHARACTER ARRAY

FREE

Removes an unnamed array from the interpreter session's workspace.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

356

SV200←'FREE' atoken
APRC ← ↑SV200

Where:

atoken
is identifier token of the array (from PUT).

Example:

 SV200←'FREE' 11
 SV200
 0

EXECUTE

Executes a function or expression in the slave session.

SV200 ← 'EXECUTE' [left] expression [right]
(APRC RESULT) ← SV200
(codes ind result) ← RESULT

Where:

expression
is a character scalar or vector containing either a complete APL expression or the name of a function. If

a function, it can be a defined function, system function, primitive function, or the assignment arrow. If

the function is the assignment arrow, the left argument is the name of the object to be assigned, and the

right argument is the value to be assigned to it.
right

is the APL array to be used as the right argument to the specified function.
left

is the APL array to be used as the left argument to the specified function.
codes

are the error codes (⎕ET) from the execution of the function or expression.
ind

is a Boolean indicator of whether a result was created.
result

If codes is 0 0 and ind is 1, the result from execution of the function or expression.

If codes is not 0 0 and ind is 1, a character matrix containing the error message and execution stack

at the time of the error.

Otherwise, a null character vector.

Notes:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

357

APRC is an indicator of errors discovered by AP 200 only. Even if APRC is 0, it is possible that an APL error

occurred during the execution of the function or expression. In that case, the error is indicated by non-zero

values in codes.

The expression or function name and arguments are all passed directly to this service. The corresponding

objects for these parameters are automatically created in the slave session's workspace and the result, if any, is

automatically retrieved. Any objects handled automatically are deleted after the operation is complete.

Example:

 SV200←'EXECUTE' '⎕WA'
 SV200
 0 0 0 1 20964272
 SV200←'EXECUTE' (10 20 30) '+' (5 10 15)
 0 0 0 1 15 30 45
 SV200←'EXECUTE' (10 20 30) '+' 'ABC'
 SV200
 0 5 4 1 DOMAIN ERROR

EXTOKEN

Executes a function or expression in the slave session using object identifier tokens.

SV200 ← 'EXTOKEN' [ltoken] etoken [rtoken]
(APRC RESULT) ← SV200
(codes ind atoken) ← RESULT

Where:

etoken
is the identifier token of a character scalar or vector containing either a complete APL expression or the

name of a function. If a function, it can be a defined function, system function, primitive function, or the

assignment arrow. If the function is the assignment arrow, the left argument is the name of the object to

be assigned, and the right argument is the value to be assigned to it.
rtoken

is the identifier token of the APL array to be used as the right argument to the specified function.
left

is the identifier token of the APL array to be used as the left argument to the specified function.
codes

are the error codes (⎕ET) from the execution of the function or expression.
ind

is a Boolean indicator of whether a result was created.
result

If codes is 0 0 and ind is 1, the identifier token of the result from execution of the function or

expression.

If codes is not 0 0 and ind is 1, the identifier token of a character matrix containing the error

message and execution stack at the time of the error.

Otherwise, a null character vector.

Notes:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

358

APRC is an indicator of errors discovered by AP 200 only. Even if APRC is 0, it is possible that an APL error

occurred during the execution of the function or expression. In that case, the error is indicated by non-zero

values in codes.

The expression or function name and arguments are all passed to this service as locator tokens. This means that

these objects must exist in the workspace prior to calling the service. If executing an expression, there must be a

character object containing the expression. If executing a function, there must be a character object containing

the function name. These objects can be created in the workspace by use of the PUT command.

Example:

 SV200←'PUT' (10 20 30)
 SV200
0 11
 SV200←'PUT' (5 10 15)
0 13
 SV200←'PUT' '+'
0 14
 SV200←'EXTOKEN' 11 14 13
 0 0 0 1 19
 SV200←'GET' 19
 SV200
 0 0 0 1 15 30 45
 SV200←'FREE' 19
 0

AP 200 Return Codes

Code Meaning

0 Success

¯1 APL2 session not active

¯2 Shared variable rank error

¯3 Shared variable length error

¯4 Invalid command

¯5 Invalid object token

¯6 Invalid invocation parameter

¯7 Error starting APL2

¯8 No space in shared memory

¯9 No space in slave session

¯10 No space for AP 200 work areas

¯11 AP 200 internal error

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

359

AP 207 - Universal Graphics Processor

AP 207 enables you to generate fast, high-quality graphics and text, easily and quickly. It accepts an easy-to-

learn command syntax that has been designed for both simplicity of use and high performance. It has built-in

support for operating system window services, giving high-quality graphics combined with the flexibility of a

powerful window management facility. The following basic functions are supported:

 Representation of graphic information either as line segments or as higher-level structures, such as arcs

or sectors of a circle

 Generation of text characters in various sizes and orientations, using external image, vector, PostScript

or TrueType fonts.

 Definition of a world coordinate system

 Definition of clipping and scissoring rectangles

AP 207 is described in the following sections:

 AP 207 Interface

 AP 207 Commands

 AP 207 Programming Techniques

 AP 207 Return Codes

AP 207 Interface

AP 207 works with a single shared variable to control each graphics window. There are no special name

restrictions for the shared variables. For example:

 207 SVOFFER 'SHR207'
2

offers variable SHR207 to AP 207 and sets access control. See Using the Share-Offer Utilities for a description

of the SVOFFER function.

Once the variable has been shared and the appropriate access control established, commands can then be passed

to AP 207 in the form of a two-element vector, the first element of which is the name of the command and the

second contains the parameters required by the command. For example:

 SHR207←'OPEN' 0
 DISPLAY ⎕←SHR207
 0 1
┌→──────┐
│ ┌→┐ │
│ 0 │1│ │
│ └~┘ │
└∊──────┘
 SHR207←'DRAW' (1 100 100)
 DISPLAY ⎕←SHR207
 0
┌→──────┐
│ ┌⊖┐ │
│ 0 │0│ │
│ └~┘ │

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

360

└∊──────┘

This opens an AP 207 window, and then issues command DRAW with parameters 1 100 100.

Most commands return a two-element vector. The first element is the numeric return code for the call, and the

second contains any parameters returned by the call (as an enclosed array). Wherever possible, if a parameter is

given outside of the valid range of values, the closest possible available value is chosen.

Additional notes:

1. You can issue more than one command in a single call. This is explained later, in Multiple-Call

Sequences.

2. Command names can be entered in any combination of uppercase or lowercase letters.

3. Each shared variable controls a single graphics window.

4. AP 207 may run as a global auxiliary processor.

5. On Unix systems, AP 207 allows generation of PostScript output through use of a special driver. Details

of how to load and use the PostScript driver are discussed in Generating PostScript Output. Special

notes about the PostScript driver are also included in the descriptions of the individual AP 207

commands where appropriate.

AP 207 Commands

Command Description

ARC Draw arc

BEGAREA Begin filled area

BITMAP Read/write bitmap files

BOX Draw box

CLEAR or ERASE Clear the graphics window

CLOSE Close device

COLMAP Define color mapping

COLOR Set color

CURSOR Sets the mouse cursor image

DRAW Draw a line

ENDAREA End filled area

ESCAPE Send escape sequence to device

FONT Select font characteristics

FONTDEF Define font

GRDATA Query, show, or create formatted graphics data

IMAGE Display or read an image

LINETYPE Set line type

LOAD Load a device driver

MARKER Write marker

MENU Issue a menu command

MIX Set mix mode

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

361

Command Description

MOVE Move to new point

OPEN Open a device

PALETTE Set color palette

PATTERN Set area fill pattern

POINT Activate pointer device

PRINT Print graphics window

QUERY Query driver parameters

QWRITE Query position and size of string

SCISSOR Set scissoring rectangle

SECTOR or WEDGE Draw a sector

SETPEL Set one or more pels on

USE Select a driver

VIEW View graphics

WAIT Wait for an event

WINDOW Define window

WRITE Write a character string

ARC

Description:

Draws an arc, an ellipse, or a circle.

If used between BEGAREA and ENDAREA calls, each arc is filled independently.

On all operating systems except Windows, the current position is set to the end point of the arc. On Windows,

ARC does not change the current position.

Syntax:

C←'ARC' (x y x_rad y_rad start_ang end_ang)

x,y
give the center of the arc.

x_rad,y_rad
give the radius of the arc along the x and y axes.

start_ang,end_ang
give the starting and ending angles of the arc in degrees.

BEGAREA

Description:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

362

Start collecting points to define an area to fill. The ENDAREA call ends the collection of points and fills any

polygons defined since the previous BEGAREA call.

The following commands are valid between the BEGAREA and ENDAREA commands:

 ARC

 BOX

 COLOR

 DRAW

 MOVE

 PATTERN

 SECTOR

 WRITE

Other commands should not be used, as results are unpredictable.

If an area is already open when BEGAREA is called, the open area will be ended and a new area started. The

COLOR, PATTERN and WRITE commands cause the area to be closed and re-opened during their processing.

Syntax:

C←'BEGAREA' ''

BITMAP

Description:

This command reads and writes Device-Independent Bitmap (DIB) files.

Note: This command is not portable across platforms. It is not implemented on Unix systems.

Syntax:

C←'BITMAP' 'filespec'

Reads the bitmap file and returns the size in pels of the bitmap as defined in the bitmap file.

C←'BITMAP' ('filespec' width height)

Writes the bitmap to the window at the current position. The bitmap is scaled to fit the width and height

requested. Colors are mapped to the logical color table on a best fit basis. Returns the size of the bitmap as

defined in the bitmap file.

C←'BITMAP' ('filespec' xleft ybottom xright ytop)

Writes an area in world coordinates to the filespec. The area bounded by the world coordinates must be visible

on the screen as the data is read directly from the display. The resulting size and resolution of the bitmap is

dependent on the current window scale. For completely repeatable results, the window size, the world

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

363

coordinates, and the view coordinates should all be the same. Returns a character array comparable to the

IMAGE read command.

BOX

Description:

This command draws a rectangular box.

The current position is not altered.

Syntax:

C←'BOX' (xcorner ycorner)

Draws a rectangular box with square corners from the current position to the corner at xcorner, ycorner.

C←'BOX' (xcorner ycorner haxis vaxis)

Draws a rectangular box from the current position to the corner at xcorner, ycorner with the corners

rounded by the ellipse on the horizontal full axis of haxis and the vertical full axis of vaxis. Values of 0,0

for haxis,vaxis give a box with square corners. Values of xcorner,ycorner for haxis,vaxis give a

completely rounded box.

CLEAR or ERASE

Description:

Clears the graphics window. The window is filled with the specified color or, if none is specified, the default

background color.

If an area has been opened with BEGAREA, it is closed. All other properties of the window (colors, cursor

type, font, line type, marker, mix mode, pattern, position, scissoring rectangle, and window viewport) are

preserved. To clear the window and reset to the default properties, use OPEN.

Syntax:

C←'CLEAR' 'color_name'

color_name is one of:

BACKGROUND GREEN DCYAN

BLUE DGRAY (or DGREY) MAGENTA

BLACK DGREEN NEUTRAL

BROWN DMAGENTA RED

CYAN DRED WHITE

DBLUE YELLOW GRAY (or GREY)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

364

The closest matching color from the color map array is selected. Any color beginning with a "D" is a dark

version of the specified color. Returns the color map row number used.

C←'CLEAR' color_no

color_no is 0 to 255 and specifies the zero origin row number of the color map array, as defined by the

COLMAP call. Returns the color map row number used.

C←'CLEAR' (r,g,b)

The window is filled with the color that is the best possible match available in the current color map array. r, g,

and b are numbers in the range 0 to 1000 and specify the desired level of red, green, and blue. Returns the color

map row number used.

C←'CLEAR' ('')

The window is filled with the default background color. Returns the color map row number used.

PostScript Driver:

The CLEAR command causes any graphics from previous commands to be printed on the current page.

Graphics generated after the invocation of the CLEAR command appear on a new page. The background color

named (if any) is also set on the new page, except where the driver has been opened in black and white mode. In

this case the background of the printed page is always white. Since the default background color is white

instead of black, you must explicitly specify black as the parameter to the CLEAR command to get a black

background.

CLOSE

Description:

Close the active device.

Syntax:

C←'CLOSE' ('')

Closes the currently active device.

PostScript Driver:

This command is necessary to indicate to PostScript that all graphics generated for the current page are

complete and that at actual print time, the painted marks saved in PostScript memory are sent to the output

device for printing. If the close command is not specified, few (if any) printed marks appear when the file is

printed.

COLMAP

Description:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

365

Defines the mapping between the color numbers used with the COLOR call and the actual palette entry used.

The r, g, and b values are numbers in the range 0 to 1000 and specify the desired level of red, green and blue.

The first row of this table (index 0) defines the background color.

Syntax:

C←'COLMAP' ((n,3)⍴r1,g1,b1,...,rn,gn,bn)

Sets the color map table for entries 0 to n-1 with the color that is the best possible match available in the

current palette.

C←'COLMAP' ((n,4)⍴index1,r1,g1,b1,...,indexn,rn,gn,bn)

Sets the color map table for the entries specified in the first column with the color that is the best possible match

available in the current palette.

C←'COLMAP' (index,r,g,b)

Sets the color map table entry index with the color that is the best possible match available in the current

palette.

C←'COLMAP' (index 'color_name')

Sets the color map table entry index to the closest matching color available in the current palette.

color_name is one of:

BACKGROUND GREEN DCYAN

BLUE DGRAY (or DGREY) MAGENTA

BLACK DGREEN NEUTRAL

BROWN DMAGENTA RED

CYAN DRED WHITE

DBLUE YELLOW GRAY (or GREY)

C←'COLMAP' index

Returns the current setting for the color map table entry index as a 1-by-5 matrix.

C←'COLMAP' ¯1

Resets the color map table to match the current palette colors.

C←'COLMAP' ('')

Returns the current color map table as a 256-by-5 matrix, each row of which contains the color map table row

index, the corresponding row of the palette table and the r, g, b values for this row.

Note: The null parameter may not be used in a multiple-call sequence.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

366

COLOR

Description:

Sets a new foreground color.

If issued within a BEGAREA-ENDAREA sequence, this call forces the polygon defined by the points already

established to be filled with the previous color, and any new points are filled with the new color.

Syntax:

C←'COLOR' 'color_name'

color_name is one of:

BACKGROUND GREEN DCYAN

BLUE DGRAY (or DGREY) MAGENTA

BLACK DGREEN NEUTRAL

BROWN DMAGENTA RED

CYAN DRED WHITE

DBLUE YELLOW GRAY (or GREY)

The closest matching color from the color map is selected. Any color beginning with a "D" is a dark version of

the specified color. Returns the color map row number selected.

C←'COLOR' color_no

color_no is 0 to 255 and specifies the zero origin row number of the color map array, as defined by the

COLMAP call. Returns the color map row number selected.

C←'COLOR' (r,g,b)

Sets the active foreground color to the best possible match available in the current color map. r, g, and b are

numbers in the range 0 to 1000 and specify the desired level of red, green, and blue. Returns the color map row

number selected.

C←'COLOR' ('')

Returns the current color map row number of the active foreground color.

PostScript Driver:

If the driver is opened in black and white mode, all colors are converted to black and are not represented as

colors or greyscales. In greyscale mode, colors are represented as their greyscale equivalents, like a black and

white television shows color pictures. In all modes of the PostScript driver, the color BACKGROUND is white

and the color NEUTRAL is black. Using BACKGROUND and NEUTRAL instead of BLACK and WHITE

creates APL2 code that is usually more portable between drivers.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

367

CURSOR

Description:

Sets the mouse cursor image

Syntax:

C←'CURSOR' cursor

Selects the mouse cursor image. cursor is a number from 0 to 13. A value of 0 gives the default cursor image.

A value of 1 gives the cross-hair cursor image. Values from 2 to 13 give additional alternate cursor images

which are operating system dependent.

C←'CURSOR' ('')

Queries the current cursor image.

PostScript Driver:

This command is not supported under the PostScript driver.

DRAW

Description:

Move or draw to a specified point.

The line is drawn with the active foreground color and current linetype.

The current position is set to the last coordinate given.

Syntax:

C←'DRAW' (x,y)

Draws a line from the current position to (x,y).

C←'DRAW' (md,x,y)

Moves to (x,y) if md is 0, or draws a line to (x,y) if md is 1.

C←'DRAW' ((n,2)⍴x1,y1,...,xn,yn)

Performs a move to (x1,y1), and then draws to each (x,y) coordinate given in subsequent rows of the matrix.

C←'DRAW' ((n,3)⍴md1,x1,x1,...,mdn,xn,yn)

Performs successive moves (if md is 0) or draws (if md is 1) to the x and y coordinates given in each row of the

matrix.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

368

ENDAREA

Description:

Signal the end of a polygon to fill. This ends the collection of points and fills any polygons defined since the

previous BEGAREA call.

Syntax:

C←'ENDAREA' ('')

ESCAPE

Description:

Send a device-driver-dependent string to the driver. An application using this is not portable between systems.

Syntax:

C←'ESCAPE' (parameters)

As defined by device driver. Currently, the only driver for which escape sequences are defined is the PostScript

driver.

PostScript Driver:

ESCAPE can be used to insert single new lines of text at the end of the currently open print file. These lines can

be lines containing PostScript commands or lines of comments, in the PostScript language format. For example:

 SHR207←'ESCAPE' '%% A valid PostScript comment'
adds the line:

%% A valid PostScript comment

to the end of the opened print file. Line feed characters are automatically added to the end of the parameter

string.

FONT

Description:

Specifies the characteristics of a font. Sets the font direction, size, horizontal alignment, vertical alignment, and

various other parameters.

Syntax:

C←'FONT' ('fontname' size angle xjust yjust direction shear xmag noparse)

fontname

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

369

name of the font as defined with the FONTDEF call, or 0 to select the default font.
size

uppercase character height in world coordinate system units (ignored for image font for display; on

printers, this is scaled depending on the print driver)
angle

specifies the text baseline angle (must be 0 for an image font). angle is not supported for Image fonts

on Windows.
xjust

0 (left justify), 1 (center) or 2 (right justify)
yjust

0 (character baseline), 1 (center), 2 (uppercase character top), 3 (character box bottom), or 4 (character

box top). 1 and 2 are not supported for Image and TrueType fonts on Windows.
direction

(reserved - set to 0)
shear

angle (in degrees) to shear vector characters in order to produce effects such as italics (must be 0 for

image font). shear is not supported for Image and TrueType fonts on Windows.
xmag

magnification to be applied to x-axis of characters to produce effects like stretched characters (must be 1

for image font). xmag is not supported for Image and TrueType fonts on Windows.
noparse

(reserved - set to 0).

Any parameters that are not supplied default to 0, except xmag defaults to 1 and size defaults to the size

defined by the font.

Many parameters have no effect on image characters. Portable applications should use vector fonts since these

can be reproduced consistently on various devices.

C←'FONT' ('')

Returns current font parameters. This has four elements in addition to those defined above:

box_height
the total character box height

descender_height
the distance from the baseline to the bottom of the character box

max_width
the maximum width of any character in the font

font_type
0 for an image font, 1 for a vector font, 2 for a PostScript or TrueType font

Note: The null parameter may not be used in a multiple-call sequence.

PostScript Driver:

The fontname parameter may be set to 0 to use a Courier PostScript font in place of image fonts. As with

image fonts, the size, shear and xmag parameters are not supported; however, vector fonts are fully

supported. Portable applications should use vector fonts, because these can be reproduced consistently on

various devices.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

370

FONTDEF

Description:

Manages the AP 207 font table.

Syntax:

C←'FONTDEF' ('fontname' 'filename')

Adds a font to the AP 207 font table.

fontname
is the name by which you will refer to the font in subsequent FONT commands. It can be any character

string up to 12 characters in length.
filename

is the font locator. For APL2 vector fonts, this is the name of the file which contains the font, including

the .AVF extension (for example, 'GOTENG.AVF'). For system fonts (Image, Postscript, or

TrueType), it is the face name of the font (for example, 'Courier APL2').

System fonts must have been previously installed into the operating system font palette in order to be used.

APL2 vector fonts will be loaded from the file specified. The path used to search for vector font files can be

defined by passing invocation parameter -207fl when starting APL2, by a 207FL keyword definition in the

[Invocation Options] section of the apl2.ini file, or in the APL207FL environment variable. If a path is not

specified by any of those methods, the default path, /usr/APL2/fonts/vector/ on Unix systems or

ibmapl2w\fonts\ on Windows, is used. On Windows, if the file is still not found, the standard operating

system search order is used.

Notes:

1. The FONTDEF command can be used to load bitmap fonts. However, most bitmap fonts only contain

display resolution bitmaps. When printing on Windows, AP 207 substitutes Courier APL2 for bitmap

fonts which do not contain bitmaps matching the printer's resolution.

2. When you define a font, AP 207 discards any previous definition of fontname. When the same font

name is defined multiple times in the same picture, the behavior of the Windows and Unix versions of

AP 207 differ. On Windows, the new definition takes effect immediately. On Unix systems, the new

definition does not take effect until a FONT command is issued. For more predictable results, select a

unique name for each font.

C←'FONTDEF' ('fontname' ¯1)

Removes fontname from AP 207 font table. If fontname is the active font, the default font will be selected

as the new active font. The default font cannot be removed.

C←'FONTDEF' ('')

Returns current AP 207 font table. This is returned as three character arrays:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

371

1. Font status - a two-column matrix. The first column contains "A" if the font is active or a blank

otherwise. The second column contains "V" for a vector font, "I" for an image font, "P" for a PostScript

or TrueType font, or a blank if no font is defined for this row.

2. A matrix of font names (as specified on FONTDEF call).

3. A matrix of file names.

The first row of the font table describes the default font.

Note: The null parameter may not be used in a multiple-call sequence.

PostScript Driver:

Names can be defined only for vector font files. Image files are not supported.

GRDATA

Description:

Query, show, or create formatted graphics data.

Note: The GRDATA command is based in part on the work of the Independent JPEG Group. If any application

using GRDATA is distributed, then the application's accompanying documentation must state that "this

software is based in part on the work of the Independent JPEG Group".

Syntax:

C←'GRDATA' ('type' data)

Returns the width and height in pixels of the formatted picture stored in data. type identifies how the picture

was formatted.

C←'GRDATA' ('type' x y width height)

Returns a formatted picture of the area at position x y. width and height specify the width and height of the

area to be returned. x, y, width, and height are in world coordinates. type identifies how the picture

should be formatted.

The size of the formatted picture corresponds to the physical size, in pixels, of the area described by the world

coordinates. On Windows, user changes to the window size affect the size of the picture that is returned.

PostScript Driver:

Retrieving formatted pictures is not supported when using the PostScript driver.

C←'GRDATA' ('type' x y width height data)

Displays the formatted picture stored in data at position x y. The picture is scaled to fill an area width wide

and height tall. x, y, width, and height are in world coordinates. type identifies how the picture was

formatted. data is a character vector containing a formatted picture.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

372

The following table lists the valid values of type The values are case insensitive. Next to each value,

extensions are listed that are commonly used for files containing that type of picture.

type File Extensions

Bitmap BMP VGA BGA RLE DIB RL4 RL8

GemRas IMG

GIF GIF

Greymap PGM

ILBM IFF LBM

JPEG JPE JPG JPEG

PCX PCC PCX

PSEG PSE PSEG PSEG38PP PSEG3820

Pixmap PPM

Sprite SPR SPRITE

TIFF TIF TIFF

Targa TGA VST AFI

XBitmap XBM

YUV12C VID

Example:

⍝ Associate a name with the FILE external function
3 11 ⎕NA 'FILE'
⍝ Read a picture from a GIF file
PICTURE←FILE 'c:\sample.gif'
⍝ Query the size of the GIF picture
C←'GRDATA' ('GIF' PICTURE)
(RC SIZE)←C
⍝ Display the GIF picture at 0 0 scaled to 649 by 479
C←'GRDATA' ('GIF' 0 0 649 479 PICTURE)
⍝ Retrieve a portion of the window formatted as a JPEG.
C←'GRDATA' ('JPEG' 0 0 100 100)
(RC NEW_PICTURE)←C
⍝ Write the picture to a JPEG file.
NEW_PICTURE FILE 'c:\sample.jpg'

IMAGE

Description:

Display a character image array, or read an image.

Syntax:

C←'IMAGE' (x1,y1,x2,y2)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

373

Reads an image within the rectangle defined by the world coordinates x1, y1, x2, and y2. The coordinates

identify either pair of diagonally-opposite corners. The result is a character matrix. Each character is ⎕AF of the

index of the color map row that is the closest match to the color of the corresponding pel. The shape of the

matrix corresponds to the physical size, in pixels, of the rectangle defined by the world coordinates. User

changes to the window size affect this shape.

Note: The read form of IMAGE may not be used in a multiple-call sequence.

C←'IMAGE' IMAGE

Displays an image. The lower-left corner of the image is placed at the current position, as set by a previous

move call. IMAGE is a character matrix. Each character is ⎕AF of the index of a color map row in zero index

origin. You receive an error return code if you specify color indexes that are not defined in the color map.

On Unix systems, the number of rows and columns in IMAGE are used as the pixel height and width of the

displayed image.

On Windows, the number of rows and columns in IMAGE are used as the world coordinate system height and

width of the displayed image. To control the size of the displayed image, use WINDOW to set the world

coordinate viewport. For example:

 ⍝ Create an image using a 4000 by 3000 world coordinate viewport
 C←'OPEN' (0 'Image Demo' 640 480)
 C←'WINDOW' (0 0 639 479 0 0 4000 3000)
 C←'DRAW' (5 2⍴500 500 500 2500 3500 2500 3500 500 500 500)
 C←'IMAGE' (0 0 3999 2999)
 (RC IMAGE)←C
 ⍝ Use an adjusted viewport to fill the window with the image
 C←'WINDOW' (0 0 639 479 0 0,¯1+⌽⍴IMAGE)
 C←'MOVE' (0 0) 'IMAGE' IMAGE

PostScript Driver:

There are several driver modes that are selected with the OPEN command. Using drivers 1 and 2, the greyscale

modes, color image data is rendered in its greyscale equivalent, similar to a non-color newspaper photo. Using

color modes 3 and 4, color image data is printed in color. With black and white modes 5 and 6, all image data is

printed in black.

The ability to read images is not defined for the PostScript driver.

LINETYPE

Description:

Set the line attributes.

Syntax:

C←'LINETYPE' (width,style)

width

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

374

gives the width of the line. Default: 1 pixel wide

width is a number between 0 and the number of widths given by the QUERY call.
style

gives the style of the line. Default: solid

style is a number between 0 and the number of styles given by the QUERY call.

A value of 0 for either attribute gives the default value. Returns the selected line type parameters.

C←'LINETYPE' ('')

Returns the current line type attributes.

Notes:

1. On Windows, a width value of 0 or 1 results in lines 1 pixel wide. All other values produce lines that

are scaled as the window is resized. The maximum line width is given by the QUERY call.

Scaled lines are width÷2 pixels wide when the window is the width and height specified in the OPEN

command. If the window has been resized, line widths are scaled to maintain the same sizes relative to

the window.

Most modern printers have such high resolution that single pixel wide lines are barely visible. Scaled

width lines are usually more legible when printed.

2. On Unix systems, the line widths are defined with fixed sizes. The number of available line widths is

given by the QUERY call.

3. LINETYPE is an implicit argument for WRITE of APL Vector fonts.

LOAD

Description:

Load a device driver into the auxiliary processor.

Note: This command is ignored under Windows.

Syntax:

C←'LOAD' device_name

Loads the device driver with name device_name. Returns the device handle (an integer value that can be

used by the USE call) assigned to the driver.

C←'LOAD' ('')

Returns the device names of the available drivers, along with their device handles or a ¯1 if the driver is

available but not loaded.

Currently, the only alternate driver available for Unix systems is the PostScript driver ('PS').

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

375

MARKER

Description:

Write one or more markers centered at given positions.

Syntax:

C←'MARKER' marker

Selects marker type. marker is 1 to maximum. A value of 0 gives the default marker that is a cross. The

number of available markers is given by the QUERY call. Returns the marker selected.

C←'MARKER' (x,y)

Writes current marker centered at position (x,y).

C←'MARKER' ((n,2)⍴x1,y1,...,xn,yn)

Writes current marker centered at the x and y coordinates given by each row of the matrix.

C←'MARKER' ((n,3)⍴md1,x1,y1,...,mdn,xn,yn)

Writes current marker centered at the x and y coordinates of the ends of each line segment that would be drawn

by a DRAW call with the same array. (md indicates move or draw. A marker is drawn on all rows where md is

1 and on rows where md=0 precedes a row where md=1.)

C←'MARKER' ('')

Returns the current marker type.

MENU

Description:

Issues a menu command.

Note: This command is not portable across platforms. It is only implemented on Windows systems.

Syntax:

C←'MENU' 'OPEN'

Displays the Open dialog.

C←'MENU' 'SAVE AS'

Displays the Save As dialog.

C←'MENU' 'PRINTER SETUP'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

376

Displays the Print Setup dialog.

C←'MENU' ('PRINTER SETUP' 'FILENAME' filename)

Sets or queries the output filename for the 'MENU' 'PRINT' command.

filename should be a filename or '' to query the current output filename.

Returns the current output filename.

Note: The setting from this command does not affect menubar actions and dialogs.

C←'MENU' ('PRINTER SETUP' 'ORIENTATION' orientation)

Sets or queries the printer orientation.

Valid values for orientation are:

'LANDSCAPE' Specifies the image should be printed with its top along the long edge of the paper.

'PORTRAIT' Specifies the image should be printed with its top along the short edge of the paper.

'' Queries the printer orientation.

Returns the current printer orientation.

C←'MENU' ('PRINTER SETUP' 'OUTPUT' output)

Sets or queries the output target for the 'MENU' 'PRINT' command.

Valid values for output are:

'FILE' Specifies the printer driver should write to the current output filename.

'PRINTER' Specifies the output should be sent to the currently selected printer.

'' Queries the output target.

Returns the current output target.

Note: The setting from this command does not affect menubar actions and dialogs.

C←'MENU' ('PRINTER SETUP' 'PRINTERS' '')

Returns the names of the available printers.

C←'MENU' ('PRINTER SETUP' 'PRINTER' '')

Queries the current printer.

C←'MENU' ('PRINTER SETUP' 'PRINTER' printer)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

377

Sets the current printer. printer is a character vector containing the name of a printer.

C←'MENU' 'PRINT'

Prints the contents of the graphics area.

C←'MENU' 'COPY'

Copies the contents of the graphics area to the clipboard.

C←'MENU' 'PASTE'

Pastes the contents of the clipboard into the graphics area.

MIX

Description:

Sets the color mixing mode.

Notes:

1. The colors resulting from using color mix modes other than 0 are operating system dependent.

2. On Windows, MIX does not affect text written using image, PostScript, or TrueType fonts and output

sent to PostScript printers.

Syntax:

C←'MIX' 0

Pels to be written directly replace existing pels. This is the default. Returns the mixing mode selected.

C←'MIX' 1

Pels to be written are ANDed with existing pels. Returns the mixing mode selected.

C←'MIX' 2

Pels to be written are ORed with existing pels. This gives a color mixing effect. Returns the mixing mode

selected.

C←'MIX' 3

Pels to be written are exclusive-ORed with existing pels. This can be used to move objects around, since writing

the same object back into the same position in this mode restores the original screen, making the object

disappear. Returns the mixing mode selected.

C←'MIX' ('')

Returns the current mixing mode.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

378

PostScript Driver:

This command is not supported under the PostScript driver.

MOVE

Description:

Move to a specified point. The current position is set to the coordinate given. No line is drawn.

Syntax:

C←'MOVE' (x,y)

Moves to (x,y). Returns the new x,y position.

C←'MOVE' ('')

Returns the current x,y position.

OPEN

Description:

Open the window into a state of readiness for graphics.

An implicit CLOSE is performed if an open device exists.

Syntax:

C←'OPEN' (video_mode 'title' width height xpos ypos)

Opens a graphics window with a titlebar and sizing border.

video_mode
is the mode of the video device driver and is a numeric value.

0 Opens the driver in default mode, which is 1.

This mode is preferred since this allows AP 207 code to be portable between different

implementations.

1 Opens the driver in single-byte character mode.

Text input and output, if any, uses single-byte characters.

¯1 (Windows Only) Opens the driver in Unicode mode.

Text input and output uses the Unicode character set. See Support for Double-byte Characters for

more information.

title
is the name that appears on the title bar of the window and in the icon for this window. If not specified,

the title is "AP207".

width and height

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

379

specify the width and height of the initial window in device units (pels) and default to 640 and 480

respectively.

xpos and ypos

specify the initial x and y position of the window. If these are not given, interactive window placement

is used.

C←'OPEN' (handle id width height xpos ypos)

Opens a graphics window within the client area of a window created through AP 145.

handle
is a window handle returned by either of the functions CREATEDLG or WINDOWFROMID.

id
is a control window identifier. If id is omitted or is zero, the graphics window is opened within the

window identified by handle. If id is non-zero, the graphics window is opened within the child

window whose parent is handle and whose identifier is id.

width and height

specify the width and height of the graphic window in pixels. The default size fills the client area.

xpos and ypos

specify the position of the window within the client area. The default position is the origin.

When a graphic window is opened in a Unicode dialog, AP 207 Unicode support is automatically enabled.

When a graphic window is opened in a dialog the WAIT and POINT commands do not return tab and shift-tab

keystrokes. Dialog tab key processing is performed instead.

Graphic windows support the CONTEXT HELP property. The graphic window has identifier 32776

(FID_CLIENT). If a graphic window is opened within a control window, the control window's contextual help

text will be displayed if no contextual help has been supplied for the graphic window.

Note: Opening a graphic window within an AP 145 window is only supported on Windows.

C←'OPEN' (mode 'filename')

Opens the PostScript driver. OPEN has several modes to handle different printers and page orientations.

mode
is the only required parameter and is a numeric value from 0-6.

 Mode 0 opens the driver in default mode, which is 1.

 Modes 1, 3 and 5 are landscape modes, which means that all graphics are printed with the page

in "landscape" or sideways orientation.

 Modes 2, 4 and 6 cause graphics to be printed in "portrait" format.

 Modes 1 and 2 are greyscale modes, meaning that on black and white printers all color values are

converted to their greyscale equivalents before printing. All images are printed as greyscales.

 Modes 3 and 4 are similar to modes 1 and 2 except that PostScript color image commands are

used to represent images. Note that many non-color PostScript printers fail with PostScript

interpreter errors in modes 3 and 4.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

380

 Modes 5 and 6 are purely black and white modes where all color marks are converted to black

prior to printing.

'filename'

is used to specify the file used to collect PostScript commands. If not specified, a filename of PRN.207

is used. If the file already exists, it is overwritten from the beginning.

Note: Opening the PostScript driver is only supported on Unix systems.

C←'OPEN' ('')

Returns the current video mode or window handle. Returns 0 if an OPEN has not yet been issued.

PALETTE

Description:

Sets the color palette lookup table. Each row of this table defines the color to be displayed for a particular entry

in the color map table. Each entry is the intensity level of red, green, and blue, expressed as a number in the

range 0 to 1000 (0 = off, 1000 = maximum intensity.)

Initially, the color map table matches the palette lookup table. The color table for displaying an image can be set

using the COLMAP command. Doing this, however, limits your color selection to the 256 colors currently

loaded in the palette. Alternatively, use of the PALETTE command gives much more control over color

selection, enabling you to select 256 colors from millions of possible color shades on some displays.

Notes:

1. On Unix systems, the PALETTE command affects the colors shown in other windows on the same

display.

Syntax:

C←'PALETTE' ((n,3)⍴r1,g1,b1,...,rn,gn,bn)

Sets the palette table for entries 0 to n-1.

C←'PALETTE' ((n,4)⍴index1,r1,g1,b1,...,indexn,rn,gn,bn)

Sets the palette table for the entries specified in the first column.

C←'PALETTE' (index,r,g,b)

Sets the palette table entry index.

C←'PALETTE' (index 'color_name')

Sets the palette table entry index to the closest matching color. color_name is one of:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

381

BACKGROUND GREEN DCYAN

BLUE DGRAY (or DGREY) MAGENTA

BLACK DGREEN NEUTRAL

BROWN DMAGENTA RED

CYAN DRED WHITE

DBLUE YELLOW GRAY (or GREY)

C←'PALETTE' index

Returns the current setting for the palette table entry index as a 1-by-4 matrix.

C←'PALETTE' ¯1

Resets the palette table back to the default. The color map table is also reset.

C←'PALETTE' ('')

Returns the current palette table as an n-by-4 matrix, each row of which contains the palette row index,

followed by the r, g, b values for this row.

Note: The null parameter may not be used in a multiple-call sequence.

PATTERN

Description:

Sets the active fill pattern.

If issued within a BEGAREA-ENDAREA sequence, this call forces the polygon defined by the points already

established to be filled with the previous pattern and any new points are filled with the new pattern.

Syntax:

C←'PATTERN' pattern

Sets the active fill pattern. pattern is 1 to maximum. A value of 0 gives the default fill pattern that is a solid

fill. The number of available patterns is given by the QUERY call. Returns the pattern selected.

C←'PATTERN' ('')

Returns the current fill pattern number.

PostScript Driver:

The PATTERN command is supported for black and white modes 5 and 6. In modes 5 and 6, calls to

PATTERN create fill patterns using different shades of grey. In other modes, area fills use the current color

setting, which is converted to greyscale on non-color printers. In all modes, using the PATTERN command to

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

382

change the fill pattern will cause a fill of any unfilled polygon. The driver mode determines if the fill is

performed with the previous fill pattern, or with the current color or greyscale equivalent.

POINT

Description:

Activate the graphics pointer device.

POINT draws rubber band lines differently on different operating systems. Users should select a foreground

color that is visible against the background image. Rubber band lines are drawn as follows:

Windows The current color, line width and type, with mix 0.

Unix The current color, line width and type, with mix 3.

Syntax:

C←'POINT' (0[,x_initial,y_initial])

Activates the graphics pointer device, pointing initially at (x_initial, y_initial), or the current position

if an initial position is not given. Returns (1,x_final,y_final,button_no) when a mouse button is

released, or (2,x_final,y_final,c,s) when a keyboard key is pressed. c and s are the character code

and scan code as returned by the AP 124 calls (3 1), (3 2), and (3 3) as described for AP 124 under Read and

Wait or Read and Test.

Note: When the OPEN command has enabled Unicode support, the character codes returned are ⎕UCS

character codes.

C←'POINT' (1[,x_start,y_start[,x_initial, y_initial]])

Activates the graphics pointer device, pointing initially at (x_initial, y_initial) or the current position

if an initial position is not given. Draws a "rubber band" line from (x_start,y_start) (or the current

position if not given) to the location of the pointer. Returns the same data as for the 0 case.

C←'POINT' (2,s_start,y_start[,x_end,y_end [,x_initial,y_initial]])

Activates the graphics pointer device, pointing initially at (x_initial, y_initial) or the current position

if an initial position is not given. Draws a "rubber band" line from (x_start,y_start) to (x_end,y_end)

(or the current position if not given) as two line segments via the location of the pointer. Returns the same data

as for the 0 case.

C←'POINT' (3,x_start,y_start[,x_end,y_end [,x_initial,y_initial]])

Same as for 2 option, but an additional line is drawn to form a "rubber band" triangle between

(x_start,y_start), (x_end,y_end) and the current pointer location. Returns the same data as for the 0

case.

C←'POINT' (4[,x_start,y_start[,x_initial, y_initial]])

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

383

Same as for 1 option, but draws a "rubber band" rectangle with one corner at (x_start,y_start) and the

opposite corner at (x_initial,y_initial) or the current position if an initial position is not given. Returns

the same data as for the 0 case.

C←'POINT' ('')

Immediately returns the graphics pointer position and mouse button status. Returns

(0,x_pointer,y_pointer[,button_nos]). If the pointer lies outside of the AP 207 window,

x_pointer and y_pointer are still relative to the lower-left corner; therefore, negative values are possible.

button_nos are the numbers of any mouse buttons currently pressed.

PostScript Driver:

This command is not supported under the PostScript driver.

PRINT

Description:

Dumps the graphic window contents to the currently-selected printer (Windows) or user-supplied print program

(Unix).

Syntax (Windows):

C←'PRINT' 'filespec'

Stores the window contents in a metafile. If the file already exists, it will be replaced.

C←'PRINT' ('')

Prints the window contents on the default printer.

Notes:

1. The Printer Setup menu item gives access to change the default printer and job properties.

2. The 'MENU' 'PRINTER SETUP' command can be used to change the default printer and job

properties. Changes made with this command override settings specified with the Printer Setup menu

item.

3. When a filespec is supplied to the PRINT command, it produces an enhanced metafile. Use the

extension .EMF for compatibility with other applications.

Syntax (Unix Systems):

C←'PRINT' '[filename][,P][,opt1][,opt2][,...]'

Requests printing of the AP 207 graphics window.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

384

If the window contents are to be retained in a print file, filename should be provided as the first parameter. If

no file name is specified, AP 207 passes the print routine a default file name of PRN.207. The file name is

passed with the keyword -fn.

AP 207 also passes the window identifier to the called routine with the keyword -wid, followed by an integer

value.

Each optional keyword following a comma (,) in the parameter list is passed by AP 207 (without validation) to

the user-supplied print routine in the form -keyword [value].

If ,P is appended, the print routine is passed the -P keyword to request portrait-format printing.

The PRINT command returns two elements:

1. The return code from the AP 207 command

2. The return code from the called routine

When AP 207 receives the PRINT command, it looks for the name of the user-supplied print routine to be

called in the value of APL2 invocation option -prtg, or a PRTG keyword definition in the [Invocation

Options] section of the apl2.ini file, or environment variable APLPRTG. If a print routine name is not

supplied by any of those methods, a filename of /usr/APL2/bin/graphprt is used. If the specified print

routine is not found, return code 57 is issued.

PostScript Driver:

Under the PostScript driver, the PRINT command has only one parameter, 'filename', which is passed to

the print shell. All other parameters are ignored. 'filename' is the name of the file that holds the generated

PostScript commands. AP 207 also passes the driver name so the print shell can take different actions

depending on the active driver. In the example shell, PostScript files are queued for printing using qprt and are

sent to cps, a color printer queue.

Examples:

AP 207 Command Arguments passed to the print shell

'PRINT' '' -wid 536938136 -fn PRN.207

'PRINT' 'FILE1,P' -wid 536938136 -fn FILE1 -P

'PRINT' ',D 3812' -wid 536938136 -fn PRN.207 -D 3812

'PRINT' 'AP207.PS' -wid PostScript -fn AP207.PS

Sample Print Shell:

The following is an example of a print shell that can be called by AP 207 using the PRINT command. It uses

standard Unix print commands to allow the user to click the mouse pointer in a graphics window and dump the

image to a file (using xwd). The file is passed to the xpr command to format the dump file for printing, and

then piped through qprt to a 4029 printer queue (asc).

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

385

Note: This example is provided to illustrate one simple technique for enabling graphic printer support through

the AP 207 PRINT command; it produces very primitive hardcopy of a color graphics window - for instance,

there is no greyscale.

#! bin/ksh
#--#
Sample shell program to print a graphics window #
or a file containing PostScript commands #
to an IBM 4029 laser printer #
#--#
XWDparms='-bitmap -nobdrs ' # parameters for xwd
XPRparms='-rv ' # parameters for xpr
PRTshell='qprt ' # print program
PRTshellparms='-P asc ' # print program parms
PRTpsq='-P cps ' # alternate print parms
while test -n "$1" # loop through parms
do
 case $1 in
 -wid) shift; PRTdrive=$1;; # optional: driver name
 -fn) shift; XWDfile=$1;; # output file
 -D) shift; XPRparms=$XPRparms"-device $1 ";; # device name
 -P) shift; XPRparms=$XPRparms"-portrait ";; # portrait
 esac
 shift
done
XWDfile=${XWDfile:=PRN.207} # Default output file if none specified
if [$PRTdrive = "PostScript"] ; then # PostScript to print?
 qprt $PRTpsq $XWDfile # print to a PostScript queue
else # Simple graphics window?
 xwd $XWDparms -out $XWDfile # Dump window to output file
 cat $XWDfile | xpr $XPRparms | prtshell $PRTshellparms # and print
fi

QUERY

Description:

Queries driver parameters.

Syntax:

C←'QUERY' ('')

Returns: driver_name,parms.

On Windows, the default driver name is "Microsoft Windows".

On Unix systems, the default driver name is "X-Windows".

parms is a numeric matrix, each row of which is:

[;1]
Video mode or window handle.

On Unix systems, the active video mode is returned as 1. On Windows, if the window was opened with

a titlebar, the active video mode is returned as 1. If the window was opened within an AP 145 window,

the handle of that window is returned.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

386

[;2]
Width of screen in pels

[;3]
Height of screen in pels

Before an OPEN call is issued, the screen width and height are given as the total physical screen size.

After an OPEN call is issued, on Unix systems, the current window size is returned. On Windows, the

height and width from OPEN are returned.

[;4]
Number of different colors displayable

[;5]
Number of different line styles available

[;6]
Number of different line widths available

[;7]
Number of different fill patterns available

[;8]
Number of different markers available

[;9 10]
Aspect ratio. The ratio of these two numbers (÷/parms[;9 10]) gives the x size of a pel divided by

the y size of a pel.

Note: This command may not be used in a multiple-call sequence.

QWRITE

Description:

Returns the position and size of the character string specified.

Syntax:

C←'QWRITE' 'text'

Returns six elements specifying the x and y coordinates of the lower-left, upper-left and the lower-right corners

of the text box assuming it is placed at the current x and y location. The coordinates of the remaining corner

(upper-right) can be readily calculated from the three given.

SCISSOR

Description:

Defines the rectangular area within which graphics can be drawn. Any parts of a graphics object falling outside

of this rectangle are clipped at the boundary.

Setting the scissor window to (0 0 0 0) turns off scissoring. The default is off.

Syntax:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

387

C←'SCISSOR' (X1,Y1,X2,Y2)

Defines the lower-left and upper-right corners of the scissoring rectangle in world coordinate units. Returns the

new scissoring rectangle selected.

C←'SCISSOR' ('')

Returns the current scissoring rectangle.

SECTOR or WEDGE

Description:

Draw a sector of an ellipse or a circle.

The current position is set to the coordinates of the center of the sector.

If used between a BEGAREA and an ENDAREA, each sector is filled independently.

Syntax:

C←'SECTOR' (x,y,x_rad,y_rad,start_ang,end_ang)

x,y
give the center of the sector

x_rad,y_rad
give the radius of the sector along the x and y axes

start_ang,end_ang
give the starting and ending angles of the sector in degrees

SETPEL

Description:

Sets one or more pels to the specified color.

The current position is set to the coordinates of the last point.

Syntax:

C←'SETPEL' (color,x,y)

Sets the pel at (x,y) to the color defined by the row color in the color map array.

C←'SETPEL' ((n,3)⍴color1,x1,y1,...,colorn,xn,yn)

Sets the pel at each (x,y) location to the corresponding color in the color map array.

USE

Description:

Select a driver for subsequent use by AP 207.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

388

Note: This command is ignored under Windows.

Syntax:

C←'USE' device_handle

Device 0 is the internal AP 207 window services driver. This is automatically used when AP 207 is started and

need not be explicitly specified.

To use an alternate driver, the LOAD command must first be issued to load the driver and get the device handle.

That handle is then used as the parameter to USE.

Currently, the only alternate driver available for Unix systems is the PostScript driver ('PS').

C←'USE' ('')

Returns the name of the current driver.

VIEW

Description:

Activate or deactivate the AP 207 window.

Note: This command has no effect on Unix systems.

Syntax:

C←'VIEW' ('')

Makes the AP 207 window the active window.

C←'VIEW' ('ON')

Makes the AP 207 window the active window. The handle of the program that was active when this command

was issued is saved.

C←'VIEW' ('OFF')

Restores the active status to the window saved by the previous ON command.

PostScript Driver:

This command is not supported under the PostScript driver.

WAIT

Description:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

389

Wait for a user input or other event.

Syntax:

C←'WAIT' n

Waits for n seconds. If n is 0, returns immediately. Returns:

0,time,x,y if no event occurred during the specified interval

1,time,x,y,button_no,bpr if a mouse button was either pressed or released

2,time,x,y,c,s if a keyboard key was pressed

time
is the time (in seconds) that the event was detected.

x and y

give the current graphic pointer position. x or y may be negative if the cursor is outside of the AP 207

window.
button_no

is the number of the mouse button that was pressed or released. 1, 2, and 3 for the left, middle, and right

buttons respectively. Devices with more buttons may return other numbers.
bpr

is 1 if the button has been pressed, or 0 if the button has been released.

c and s

are the character code and scan code as returned by the AP124 calls (3 1), (3 2), and (3 3) as described

for AP 124 under Read and Wait or Read and Test.

Note: When the OPEN command has enabled Unicode support, the character codes returned are ⎕UCS

character codes.

To clear all queued events, use the expression: →(0≠↑↑1↓SHR207,SHR207←'WAIT' 0)/⎕LC

C←'WAIT' ('')

Waits indefinitely for an event. Returns the same data as above, except that the 0 time-out case is never

returned.

PostScript Driver:

This command is not supported under the PostScript driver.

WINDOW

Description:

Define a window on the device for graphics and establish a world coordinate system to be mapped into this

window. See Defining World Coordinates with Correct Aspect Ratio for details of using this call to preserve

screen aspect ratios.

Syntax:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

390

C←'WINDOW' (window,viewport)

window = wx1,wy1,wx2,wy2
Specifies the bottom left and top right of the display window box in device (pel) coordinates.

viewport = vx1,vy1,vx2,vy2
Specifies world coordinates corresponding to the bottom left and top right of the window.

C←'WINDOW' ('')

Returns the current window and viewport parameters. The window defaults to the entire screen, and the

viewport defaults to the device (pel) coordinates.

Note: The null parameter may not be used in a multiple-call sequence.

PostScript Driver:

The WINDOW command can be used to adjust for different paper sizes. For the PostScript driver, the window

size is based on 1043 units per centimeter or 2650 units per inch of paper. If the paper size differs from 8.5x11

inch USA paper size, it is necessary to change the default window size by changing the window parameter. For

example, to adjust the window size for A4 paper:

 SHR207←'WINDOW' (0 0 31009 21925 0 0 31009 21925)

WRITE

Description:

Write some text in the current setting of color, font, and position.

Note: LINETYPE is an implicit argument for WRITE of APL Vector fonts. For non-filled fonts, the current

line width and style will be used to draw the characters. For filled fonts, the behavior is as if within an area:

outlines are not drawn around the characters.

Syntax:

C←'WRITE' 'text'

Writes text at the current position.

Returns six elements specifying the x and y coordinates of the lower-left, upper-left and the lower-right corners

of the text box. The coordinates of the remaining corner (upper-right) can be readily calculated from the three

given.

AP 207 Programming Techniques

 Multiple-Call Sequences

 Defining World Coordinates with Correct Aspect Ratio

 Generating PostScript Output

 Image and Vector Font Support

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

391

 Support for Double-byte Characters

Multiple-Call Sequences

Several commands can be issued to AP 207 in a single call. This requires the calls to be catenated into an even-

length vector with alternating commands and parameters. The result is one longer than the number of

commands. Its first element is the highest return code encountered in all the calls issued, followed by the return

codes from each individual call. For example:

 SHR207←'COLOR' 'BLUE' 'ARC' (100 100 50 50 0 360)
 DISPLAY ⎕←SHR207
 0 0 1 0
┌→──────────────────────────────┐
│ ┌→──────┐ ┌→──────┐ ┌→──────┐ │
│ │ ┌⊖┐ │ │ ┌→┐ │ │ ┌⊖┐ │ │
│ │ 0 │0│ │ │ 0 │1│ │ │ 0 │0│ │ │
│ │ └~┘ │ │ └~┘ │ │ └~┘ │ │
│ └∊──────┘ └∊──────┘ └∊──────┘ │
└∊──────────────────────────────┘

This enables you to use the expression 0≠↑↑SHR207 to establish whether or not an error occurred in any of the

calls issued.

Defining World Coordinates with Correct Aspect Ratio

To get the aspect ratio for a particular mode after a window has been opened (using the OPEN command):

 ⎕IO←1
 SHR207←'OPEN' ''
 (RC MODE)←SHR207
 MODE←↑MODE
 SHR207←'QUERY' ''
 (RC DRIVER PARMS)←SHR207
 PARMS←⊃PARMS ⍝ Data for supported modes
 Q←,(PARMS[;1]=''⍴MODE)⌿PARMS ⍝ Q is data for this mode
 AR_PEL←÷/Q[9 10] ⍝ Ratio of pel x to y size
 AR_SCRN←÷/Q[2 3]×Q[9 10] ⍝ Screen aspect ratio.

Usually you want to define a set of world coordinates that are independent of the actual pel coordinates on the

screen. This is done by using the WINDOW call to AP 207. In many cases, the world coordinates should

preserve aspect ratio; that is, one unit in world coordinates in the x direction should be the same physical size on

the device as one unit in world coordinates in the y direction. The following example is useful in defining a

world coordinate system that preserves aspect ratio. To map the whole screen to world coordinates ranging from

0 to 1000 in x and pick the maximum y world coordinate to preserve aspect ratio:

 WIN_PARMS←0 0,(Q[2 3]-1),0 0 1000,¯1+⌊0.5+1001÷AR_SCRN
 SHR207←'WINDOW' WIN_PARMS

Generating PostScript Output

Note: Generation of PostScript output is supported only on Unix systems.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

392

The PostScript driver for AP 207 interprets each AP 207 command and generates the appropriate PostScript

commands. These commands are sent to a file. The PostScript commands can be executed to produce printed

graphics and text by sending the file to any printer with PostScript support. APL2 programs written to use the

default display driver of AP 207 need to be modified to make use of the PostScript driver.

The AP 207 LOAD command is needed to load the PostScript driver. This also has the effect of switching the

active driver to the PostScript mode:

 ⍝ Load the PostScript driver
 SHR207←'LOAD' 'PS'

The OPEN command is used to open the file that will collect the generated PostScript commands. It has several

modes to handle different printers and different printed page orientations. In the example below, the driver is

opened in default mode and the file test.ps is created (if it doesn't exist) and opened to receive generated

PostScript:

 ⍝ Open the driver: default mode
 SHR207←'OPEN' (0 'TEST.PS)

APL2 applications that use world coordinates rather than device or pel coordinates are portable to other device

drivers that have different coordinate systems. Use the WINDOW command to map world coordinates to

PostScript page coordinates. The ASPECT function from workspace 2 DEMO207 (see Defining World

Coordinate with Correct Aspect Ratio) can be called immediately after the OPEN command to establish the

correct world coordinates for PostScript. To use paper sizes that differ from 8.5x11 inches, change the window

size using the window parameter of the WINDOW command. Multiply the number of inches or centimeters in

paper size by 2650 points per inch or 1043 points per centimeter to derive the coordinates for the maximum

values of x and y (the upper right corner coordinates).

To close the driver and ready the file for printing, use the CLOSE command. Without the CLOSE command, no

graphics are printed when the file of generated PostScript commands is sent to the printer. CLOSE also closes

the file:

 ⍝ Close driver, ready file for printing
 SHR207←'CLOSE' ''

To execute the PostScript commands and print the AP 207 graphics, use the AP 207 PRINT command or any

operating system command that can send a file to a PostScript printer. The PRINT command requires a user-

supplied routine (see PRINT) and an environment variable (APLPRTG) to point to that routine. For example:

 ⍝ Invoke user-supplied routine
 SHR207←'PRINT' 'AP207.PS'

To switch to a different device driver, use the USE command. When AP 207 is switched to a different device

driver with the USE command, the driver should have been opened previously with the OPEN command. If the

device driver is not open after issuing USE, issue the OPEN command to open that driver. To switch to the

PostScript driver, the LOAD command must also have been executed previously to load the PostScript driver.

For example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

393

 ⍝ Execute AP 207 commands under the PostScript driver
 ...
 ⍝ Switch to the default X-Window driver
 SHR207←'USE' 0
 RC←SHR207
 ⍝ If necessary, open the X-Window driver
 SHR207←'OPEN' 1
 (RC MODE)←SHR207
 ⍝ All AP 207 commands will now be passed to X-windows

Image and Vector Font Support

AP 207 can use either external image (bitmap) or vector font files in writing text. This support provides for

rapid display of characters from any of a variety of fonts.

Image (bitmap) fonts are easy to read in small sizes since they are mapped directly to the pels on the screen.

They differ in appearance on different displays and in printed copies. The minimum size may also be larger than

desired.

Vector fonts can be scaled to any size and rotated, sheared, or stretched as desired. They are device-

independent, although they may be somewhat distorted on low-resolution displays.

 Supplied Vector Fonts

 Vector Font File Format

Supplied Vector Fonts

The vector fonts supplied with APL2 are listed below. Most of the fonts consist of straight-line segments only.

Thus the space between the vectors may become visible for characters in larger sizes. Fonts labeled as "Filled"

use the AP 207 area filling routines to fill the character interiors. These characters look better in large sizes,

although they are slower to draw and may not look as good in small sizes.

Font Filename Description

GOTENG.AVF Gothic English

GOTGER.AVF Gothic German

GOTITA.AVF Gothic Italian

GRESER.AVF Greek Serif (with some mathematical symbols)

GRESIM.AVF Greek Simplex (with some mathematical symbols)

MARKERS.AVF Markers (correspond to image markers from MARKERS call)

MODSIM.AVF Modern Simplex

ROMDUP.AVF Roman Duplex

ROMDUPF.AVF Roman Duplex Filled

ROMITA.AVF Roman Italic

ROMITAB.AVF Roman Italic Bold

ROMSER.AVF Roman Serif

ROMSERB.AVF Roman Serif Bold

ROMSIM.AVF Roman Simplex (contains all codepage 910 characters)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

394

Font Filename Description

ROMSIMM.AVF Roman Simplex Monospace

SANSER.AVF Sans Serif

SANSERF.AVF Sans Serif Filled

SCRIPT.AVF Script

THKRNDF.AVF Thick Round Filled

THKRNDO.AVF Thick Round Outlined

THKSQUF.AVF Thick Square Filled

THKSQUO.AVF Thick Square Outlined

Vector Font File Format

AP 207 vector fonts are stored in files with a file extension of ".AVF" (APL Vector Font.) Each file defines 256

vector characters. Code page 910 is used to assign the characters to the code points except for fonts consisting

of special characters not included in code page 910. The files consist of four parts:

Bytes Description

0 - 31 Font Header

32 - 545 Font Index

546 - 1057 Font Width Table

1058 - end Font Character Definition Data

Note: All two-byte and four-byte integers stored in APL2 vector fonts are stored in normal order (not byte-

reversed).

Font Header

The 32 bytes of the font header are further subdivided as follows:

Bytes Description

0 - 3 Total number of bytes in the file

4 - 5 Font type. The only type currently allowed is 1 (2-byte vector font.)

6 - 7 Flags. Bit 0 (low-order bit) is 0 if Monospace font and 1 if Proportional font. All other bits are

reserved.

8 - 9 Maximum character width in the font

10 - 11 Height of capital letters

12 - 13 Recommended vertical spacing between lines (height of the character box)

14 - 15 Distance from baseline (y=0) to bottom of the character box

16 - 31 Reserved (must be 0)

Font Index

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

395

These 514 bytes consist of 257 two-byte unsigned integers that give the offset from the beginning of the font

character definitions of the definition of each of the 256 characters. These offsets are in units of two bytes since

each coordinate is stored in two bytes (see below). These 256 integers are followed by an integer that contains

the total number of byte pairs of font character definition data. The first of the 257 integers must always be 0

since the definition of the first character is always at offset 0. If a character in the font is not defined, two

successive entries in the index are the same.

Font Width Table

These 512 bytes consist of 256 two-byte signed integers containing the widths of each of the 256 characters in

the font. If a character is undefined, its width must be 0. For a monospace font, all the entries are equal to the

number in the maximum character width field in the file header.

Font Character Definition Data

The remaining bytes consist of the vector data for the characters in the font. Each coordinate is stored in two

bytes; the first contains the x coordinate information, and the second contains the y information. The high-order

bit of x contains the beam-blanking information: a vector is drawn to this point with the beam on if this bit is 1,

and off if it is 0. The high-order bit of y contains information on filled areas. When this bit changes from 0 to 1,

a BEGAREA call is generated before the vector is drawn. When it changes from 1 to 0, an ENDAREA call is

generated before the vector is drawn.

The remaining seven bits for x and y are interpreted as unsigned integers, and 64 is subtracted to obtain a pair of

integers (x and y) in the range -64 to 63. These give the relative length of the vector to be drawn in x and y. All

characters start at coordinate (0,0), and the last vector must end at y=0. The character baseline (bottom of "A")

is at y=0.

The following APL2 function extracts the character definition for single character C from the font data stored as

a global character vector called FONTDATA, which can be read in as one long record using AP 210's Code C.

 ∇
[0] Z←GETFONT C;BEAM;FDATA;FHEADER;FILL;FINDEX;XY;⎕IO
[1] ⎕IO←1
[2] ⍝ FONTDATA is the font data in byte format.
[3] ⍝ It contains a 32-byte header, 514-byte index,
[4] ⍝ 512-byte width table, and font definition data.
[5] FHEADER←256⊥⍉16 2⍴⎕AF 32↑FONTDATA
[6] FINDEX←256⊥⍉257 2⍴⎕AF 32↓546↑FONTDATA
[7] FDATA←((¯1↑FINDEX),2)⍴1058↓FONTDATA
[8] C←⎕AF ''⍴C
[9] ⍝ Get rows of FDATA which describe character C
[10] Z←⎕AF FDATA[FINDEX[1+C]+⍳-/FINDEX[2 1+C];]
[11] BEAM←Z[;1]≥128
[12] FILL←Z[;2]≥128
[13] XY←+⍀¯64+128|Z
[14] ⍝ Z is a 4-column matrix: beam off/on,
[15] ⍝ fill off/on, x coord, y coord
[16] Z←BEAM,FILL,XY
 ∇

Support for Double-byte Characters

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

396

AP 207 supports four commands that use or return character information. WRITE and QWRITE are used to

display character data. POINT and WAIT accept character input. These commands operate in either single-byte

or Unicode mode. The parameters of the OPEN command control which mode is in effect.

When AP 207 is in single-byte mode, the WRITE and QWRITE commands support use of Multibyte DBCS

characters. When a single-byte character vector is passed to an AP 207 window, if the currently selected font

and the current input locale support Multibyte characters, any Multibyte data encoded in the vector is processed

as DBCS characters. The WAIT and POINT commands do not support entry of DBCS characters. Character

keystrokes are returned as the zero origin ⎕AV index of the character corresponding to the key pressed.

When AP 207 is in Unicode mode, the WRITE and QWRITE commands convert all character data to Unicode

before processing. The POINT and WAIT commands support entry of DBCS characters. Character keystrokes

are returned as the ⎕UCS index of the Unicode character corresponding to the key pressed.

Note: Unicode support is available only on Windows.

See Double-Byte Character Set Support for information about double-byte characters and support for them in

other APL2 components.

AP 207 Return Codes

AP 207 return codes are returned as the first element of the two elements returned for each call.

Code Meaning

0 Success

1 Unexpected driver or subsystem error

22 Buffer overflow

30 Display mode not supported by this driver

31 Invalid command

32 Shared variable domain error

33 Shared variable length error

34 Shared variable rank error

35 Invalid device handle

36 No device currently selected

37 Call not available with this driver or in this mode

38 Call not permitted in multiple-call sequence

39 Invalid parameter

40 Scissor boundary outside window

41 Attempt to place point outside of window

42 Conflicting window-viewport definition

50 Invalid video mode for this driver

51 Device was not opened

52 No fill area started

53 Insufficient space for fill point storage

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

397

Code Meaning

54 Printer not ready

55 Incorrect escape command

56 Device not available

57 Error while loading device driver

58 Invalid device driver

60 Font table is full

61 Requested font not in font table

62 Unable to load requested font

63 Cannot read image

64 File access denied

99 Command not implemented

¯26 Insufficient space

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

398

AP 210 - File Processor

The file auxiliary processor, AP 210, is used to read from, or write to, operating system files. The access can be

either sequential or random, and can use fixed-length or variable-length record conventions.

Two shared variables are required to process a file: a data variable and a control variable. The control variable

must be offered first. AP 210 then matches the earliest pending corresponding data variable offered by the

partner (after the control variable). This occurs the first time it is required to satisfy an AP 210 command.

The name of the data variable must always begin with the letter 'D' or the letters 'DAT', and the control

variable must begin with the letter 'C' or the letters 'CTL'. The remaining characters in both names (possibly

none) must be the same, because the coupling of both variables is recognized by their name. Examples of valid

pairs are: C and D, C1 and D1, and CXjj and DXjj. Also accepted as valid pairs (for compatibility with

APL2/370) are CTL and DAT or CTL1 and DAT1. The control variable is used to select the operation to perform

and to control each input/output operation. For example:

 210 SVOPAIR 'C210' 'D210'
2 1

offers two shared variables to AP 210 and sets access control. See Using the Share-Offer Utilities for a

description of the SVOPAIR function (from the 1 UTILITY workspace).

 Control Commands

 Control Subcommands

 Establishing the AP 210 Translate Table

 AP 210 Return Codes

 Example of Use

Control Commands

Once the control variable has been shared and the appropriate access control established, the first value you

assign to it should be a character vector, which is considered to be a command that describes the file name and

specifies the function to be performed. The following commands are accepted:

IR,filespec[,code] Open file for read-only

IW,filespec[,code] Open file for read/write

PR,filespec[,code] (Unix systems only) Open pipe file for read-only

PW,filespec[,code] (Unix systems only) Open pipe file for read/write

DL,filespec Delete file

RN,filespec,filespec Rename file

filespec is the file identification, of the form:

 ["][path]filename["]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

399

path is a valid path and filename is a valid file name. The surrounding quotes are required only if the file

identification contains the comma character, to distinguish commas in the file identification from commas in the

AP 210 command string.

code is a single letter selecting a given interpretation of the file data. Five different interpretations are

supported.

Code Interpretation of Data

A (APL2) The records in the file contain APL2 objects, with their headers. Arrays of arbitrary rank and

depth can be stored and recovered. Different records of a file can contain objects of different

types (for example, characters, integers, or real numbers). An APL2 object in a record may

occupy up to the actual record length (not necessarily the same number of bytes), but the header

fills a part of that area.

B (Bool) The records in the file contain strings of bits without any header (packed eight bits per byte).

The equivalent APL2 object is a Boolean vector. In this case, all records must be equal to the

selected record length.

C (Char) The contents of the record is a string of characters in ASCII, with no header. All records must

be equal to the selected record length with each character occupying one byte. Variable-length

records are not supported.

D (ASCII) The contents of the record is a string of characters in ASCII code, with no header. Each

character occupies one byte. Variable-length records are supported.

T (Translate) The contents of the record is a string of characters, without any header, translated according to

the AP 210 translate table defined as described in Establishing the AP 210 Translate Table. All

records must be equal to the selected record length except when variable-length operations are

being performed.

If the code is not stated explicitly, code A is the default.

The IR command opens the file for read-only operations. If the operation is successful, the control variable

passes into the subcommand state. You must then specify which data transfer operation you want to perform.

(See Control Subcommands.) The IW command works in a similar way, but the file is opened for both read and

write operations. If the file cannot be opened, the control variable remains in the command state.

The PR command opens a pipe file for read-only operations. The PW command opens a pipe file for write

operations. The syntax and behavior of these commands is generally the same as the IR and IW commands,

except that they are used for pipes. They can also be used to access external devices such as cassettes and

floppy disk drives.

Notes:

1. The pipe commands are intended for use on Unix systems only. However, they are not disabled on other

systems, and they may work to access some kinds of pipes on those systems, if the pipes are created first

by other programs. The creation of new pipes using AP 210 is only supported on Unix systems.

2. If an IR or IW command executes successfully (giving a return code of 0 in the control variable), the

data variable is set to the size, in bytes, of the file just opened. The size of pipe files (opened with PR or

PW) is not available. The data variable is set to ¯1 for these files.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

400

3. Subject to any further limitations of the file system in use, the largest file size accessible by AP 210 is 4

Gigabytes (4294967295). If they can exist on the file system, files larger than 4G can be opened, but the

size reported by AP 210 in the data variable for these files will be 4G and attempts to access data in the

file beyond the 4G limit will result in the end-of-file return code.

When the DL command is received, the file with the specified filespec is erased. Then the control variable

returns to the command state.

When the RN command is received, the name of the file specified in the first parameter is changed to the name

given in the second parameter. If a different path is given in the second parameter, a move is performed instead

of a rename. After this command has been executed, the control variable returns to the command state.

Once a command has been received and executed, a return code is passed back to APL2 through the control

variable, indicating whether or not the command was executed successfully and, if not, the reason for the

failure.

Control Subcommands

Once a file has been opened for input (command IR or PR) or input/output (command IW or PW), the control

variable passes into the subcommand state. It now accepts the assignment of numeric vectors specifying the

operation to perform, with the following structure:

 C210←op[,rn[,rs]]

The following are valid operations:

0 Read a fixed-length record. Record size is defaulted to 128 unless specified by the rs operand or by a

previous subcommand. Files are considered as being divided into fixed size records. rn is the record

number. If not given, sequential operation is assumed.

1 Write a fixed-length record. Record size is defaulted to 128 unless specified by the rs operand or by a

previous subcommand. Files are considered as being divided into fixed size records. rn is the record

number. If not given, sequential operation is assumed.

2 Direct read from a file. Record size is defaulted to 128 unless specified by the rs operand or by a

previous subcommand. Files are considered as being continuous strings of data. rn is the starting byte. If

not given, sequential operation is assumed.

3 Direct write to a file. Record size is defaulted to 128 unless specified by the rs operand or by a previous

subcommand. Files are considered as being continuous strings of data. rn is the starting byte. If not

given, sequential operation is assumed.

4 Read a variable-length record. This command can only be used if the file was opened with codes A, D, or

T.

rn is the record number. If not given, sequential operation is assumed. If rn is given but does not specify

the next record in sequence, the file is scanned in search of the requested record. If rn specifies a record

earlier in sequence than the previous record accessed, the scan restarts from the beginning of the file.

Either specifying rn in sequence, or not specifying it at all, gives fastest execution.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

401

rs is the scan distance. For codes D and T, the LF character is searched for within the first rs bytes of a

record. If rs is not given, the LF character is searched for within the first 128 bytes, unless rs has been

specified by a previous subcommand. If LF cannot be located, the record is not read, and a return code

¯44 is issued.

If reading with either code D or code T, the record returned in the data variable includes any record

delimiter characters (LF or CR/LF depending on the origin of the file).

5 Write a variable-length record. This command can only be used if the file was opened with codes A, D,

or T.

rn is the record number. If not given, sequential operation is assumed. If rn is given but does not specify

the next record in sequence, the file is scanned in search of the requested record. If rn specifies a record

earlier in sequence than the previous record accessed, the scan restarts from the beginning of the file.

Either specifying rn in sequence, or not specifying it at all, gives fastest execution. If rn is greater than

the number of records currently in the file, the record is appended to the end of the file.

rs is the scan distance. For codes D and T, the LF character is searched for within the first rs bytes of a

record when scanning for a requested record not in sequence. If rs is not given, the LF character is

searched for within the first 128 bytes, unless rs has been specified by a previous subcommand. If LF

cannot be located, the record is not read, and a return code ¯44 is issued.

Direct write of variable-length records is allowed, but should be done with great care. Records should be

replaced by others with exactly the same length. If this is not done, the whole file, starting at the replaced

record, can be damaged.

If the file was opened with either code D or code T, the CR/LF delimiters are appended to the end of each

record as expected for sequential files. If the record already has a LF character (⎕TC[⎕IO+2])

appended, no additional delimiters are added.

Code A files have no need for the LF record separator, as each record includes its own length, which

makes each record self-describing, allowing AP 210 to skip through the file to the requested record.

6 Operation 6 has the same syntax and behavior as operation 4, but end-of-line indicators (either CR/LF or

LF) are removed from the data.

Notes:

 rn is always defined in zero origin (the first record in a file is record 0; the first byte in a file is byte 0).

If not specifically stated, the first value of rn after opening a file is 0 (that is, the first record or byte

position in the file). For pipe files, all operations are sequential so rn values must be 0.

 Write operations are not allowed if the subcommand state was entered through the IR or PR commands.

 If the control variable is assigned an empty vector while in the subcommand state, the file is closed and

the control variable reverts to the command state.

 Retracting the shared variables, either explicitly, with ⎕SVR, or implicitly, by erasing the variables

()ERASE, ⎕EX, or, if the variables have been localized, by exiting the function), clearing the workspace

()CLEAR), loading a new workspace ()LOAD) or ending the session ()OFF) causes AP 210 to close the

appropriate files automatically.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

402

 Once an operation has been requested, the data variable is used as a buffer, where the actual transfer of

records takes place. If the operation is a read, the value of the record can be found in the data variable

after the successful completion of the requested operation (confirmed by the return code passed through

the control variable). If the desired operation is a write, the value of the record must be assigned to the

data variable before the corresponding subcommand is assigned to the control variable.

 A pipe file, sometimes called a FIFO file, is a special file with unique characteristics. Two processes can

communicate through a pipe file, with (typically) one process writing data to the pipe and the other

process reading data from the pipe in the same order it was written (first in, first out).

Once the data has been read from a pipe file, it is removed from the pipe and cannot be re-read. If the

writer stops writing, the read process continues to read until the pipe is empty. The reader than hangs up

in a "sleep" state on the reference of the control variable, instead of returning an EOF return code. If the

pipe is empty and the writer closes it, the read process wakes up from the sleep state and returns an EOF

return code. If the write process closes and there are no read processes, any m remaining data in the pipe

is removed.

Establishing the AP 210 Translate Table

AP 210 can be supplied with a translate table for use with files opened with code T. Each file opened can have

its own translate table. If no table has been defined, the data is not translated. The table can be defined or

redefined, at any time, by:

 C210←2 256⍴READ_TABLE,WRITE_TABLE

where READ_TABLE is applied to the data read as:

 D210←READ_TABLE[⎕AF DATA_READ]

and WRITE_TABLE is applied to the data written as:

 DATA_WRITTEN←WRITE_TABLE[⎕AF D210]

Both READ_TABLE and WRITE_TABLE must be 256-element character vectors.

AP 210 Return Codes

The following table lists the AP 210 return codes:

Code Meaning

0 Success

1 Invalid command

2 File not found

¯18 Insufficient User Authority

¯26 No space available

¯29 Invalid APL2 object

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

403

Code Meaning

¯31 Control variable domain error

¯32 Control variable rank error

¯33 Control variable length error

¯36 Invalid file translation code

¯37 Data variable value error

¯38 Data variable domain error

¯39 Data variable interlocked

¯40 Data variable not shared

¯41 File is not open, issue a primary command

¯44 LF not found in scan length

¯45 End of file

¯46 Incomplete record, padded with nulls

¯47 Invalid subcommand

¯48 Record only partially written (file system full)

¯49 Data variable size exceeds record size for fixed or variable replace

Note: Any other positive values are unexpected return codes from the operating system file services used by AP

210. The CHECK_ERROR function can be used to obtain more information.

Example of Use

Starting with a clear workspace, offer variables C1 and D1 to share with AP 210 using the SVOPAIR function

from the 1 UTILITY workspace:

)CLEAR
CLEAR WS
)COPY 1 UTILITY SVOPAIR
SAVED ...
 210 SVOPAIR 'C1' 'D1'
2 1

Attempt to create a file called FILE. Records contain APL2 objects with header (default code):

 C1←'IW,FILE'
 C1
0

We are now in subcommand mode. The first record is a vector of elements from 1 to 10, so assign this to D1:

 D1←⍳10

Now issue the subcommand to write the first record in the file. The default record number is 0.

 C1←5
 C1

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

404

0

Second record is a matrix of 2 rows, 3 columns, of elements from 1 to 6:

 D1←2 3⍴⍳6

Issue subcommand to write this record sequentially to the file:

 C1←5
 C1
0

An empty vector closes the file and puts the control variable into command mode:

 C1←''

Open the same file for read-only operation:

 C1←'IR,FILE'
 C1
0

Read the second record first:

 C1←4 1
 C1
0
 D1
 1 2 3
 4 5 6

Read the first record:

 C1←4 0
 C1
0
 D1
1 2 3 4 5 6 7 8 9 10

Close the file and go into command state:

 C1←⍳0

Rename the file to NEWFILE:

 C1←'RN,FILE,NEWFILE'
 C1
0

Delete the file:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

405

 C1←'DL,NEWFILE'
 C1
0

Finally, retract the shared variables:

 ⎕SVR 2 2⍴'C1D1'
2 2

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

406

AP 211 - APL2 Object Library Processor

AP 211 provides a facility for storing APL2 arrays in an object library.

AP 211 uses a single shared variable of any name to control access to a library.

The following description of the commands accepted by AP 211 assumes that a variable called SHR211 has

been shared with AP 211. For example:

 211 SVOFFER 'SHR211'
2

offers the shared variable to AP 211 and sets access control. See Using the Share-Offer Utilities for a

description of the SVOFFER function.

 AP 211 Commands

 AP 211 Return Codes

 Example of Use

AP 211 Commands

AP 211 accepts the following commands:

 CREATE

 DROP

 USE

 RELEASE

 SET

 GET

 RENAME

 ERASE

 LIST

CREATE

This command creates an AP 211 object library and must be issued before APL2 arrays can be assigned to a

given library file.

 SHR211←'CREATE' filespec [rec_size]
 return_code←SHR211

filespec is the file identification, of the form:

 [path]filename

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

407

rec_size specifies the record size used to store APL2 objects in the file. APL2 objects stored in the library

use one or more records depending on size. Objects smaller than the record size still use a full record and any

excess space is wasted. Therefore, you should carefully select an optimum size for your APL2 objects to reduce

the amount of wasted space in the file.

The number of blocks that are used is given by: ⌈object_size÷rec_size

where object_size can be obtained by: ↑4 ⎕AT object_name

AP 211 uses a default record size of 1024 if none is specified. The record size must be in the range 128 to

32704 bytes. If the record size is not an exact multiple of 64 bytes, it is rounded up to the next multiple of 64

bytes.

An error is given if the file already exists. It is the responsibility of the application developer to check that the

name is not already in use and to erase the file if necessary.

DROP

This command deletes an entire APL2 object library from disk.

 SHR211←'DROP' filespec
 return_code←SHR211

filespec is the file identification, of the form:

 [path]filename

USE

This command opens an already-existing AP 211 library file. It must be issued before using the SET, GET,

ERASE, and LIST commands.

 ←-----Access Control------→
 SHR211←'USE' filespec [user_id] │ ['PRIVATE'│'UPDATE'│'READ']
 (return_code rec_size)←SHR211

filespec is the file identification, of the form:

 [path]filename

user_id is a scalar integer, which can be used to implement an audit trail of updates, particularly where the

file is shared between many users. The default value is ↑⎕AI.

Access Control Parameters:

PRIVATE

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

408

opens the file for exclusive READ/WRITE access.

A file that is already open cannot be opened as PRIVATE, and once opened PRIVATE, cannot be

opened by anyone else until a RELEASE is issued or the shared variable is retracted.
UPDATE

opens the file for shared READ/WRITE access.
READ

opens the file for shared READ/ONLY access.

READ or UPDATE should be specified when accessing AP 211 files that require simultaneous multiuser READ

or READ/WRITE access. When running in this mode, AP 211 enables an internal locking procedure, which

ensures file integrity, but impacts performance for file updates. If you do not require shared access, opening the

file in PRIVATE mode provides a significant performance advantage for file writes.

If the USE command is issued without any of the optional Access Control parameters, the file is opened with

the maximum access authority permitted, for exclusive use if possible or shared access if the file is already

opened.

rec_size is the record size of the file (from the CREATE).

RELEASE

Releases the object library that was allocated to a shared variable. This command is issued implicitly when

retracting or erasing the shared variable, or if a subsequent USE or CREATE are specified to the same shared

variable.

 SHR211←'RELEASE'
 return_code←SHR211

SET

Allows you to associate a name in the object library with an APL2 array. The command requires a three-

element vector:

 SHR211←'SET' name APL2_object
 return_code←SHR211

The maximum permitted length of name is 31 characters.

If the name is already in use, the old definition is deleted, and the new definition added to the object library. The

space taken by the old definition is freed for later use.

GET

This returns the array (if any) associated with a given name.

 SHR211←'GET' name
 (return_code APL2_object)←SHR211

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

409

The response to this command is a two-element vector: the first item is the return code, the second is the

APL2_object array, if found.

RENAME

Renames an object stored in an AP 211 file.

 SHR211←'RENAME' oldname newname
 return_code←SHR211

ERASE

This command allows you to remove an APL2 array from an object library, and makes its storage available for

other updates. Note, however, that the overall size of the file remains unchanged.

 SHR211←'ERASE' name
 return_code←SHR211

LIST

This command allows you to list the contents of the current library:

 SHR211←'LIST' 'NAMES'
 ⍴⎕←SHR211
Object1
Object2
Object3
3 31
 SHR211←'LIST' 'ATTS'
 ⍴⎕←SHR211
1 1001 1991 1 2 12 30 14 12
2 1001 1991 1 2 12 30 14 12
1 1001 1991 1 2 12 30 14 12
3 9

The information returned is:

 The number of records used for this object

 User ID number (as specified on USE command) of user who last updated this object

 The date and time the object was updated (in ⎕TS format)

Note: The time is listed in Greenwich Mean Time.

Each row in this list corresponds to the equivalent row in the list of object names.

AP 211 Return Codes

The following table lists the AP 211 return codes.

Code Meaning

0 Success

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

410

Code Meaning

2 File not found

¯1 Old format file (access restricted to read only)

¯2 Rank error

¯3 Length error

¯4 Type error

¯7 Invalid command

¯8 Invalid block size

¯9 Invalid library file

¯10 No library file accessed

¯11 Name has no value

¯12 Invalid name specified

¯13 Error encountered during set operation

¯14 Invalid file name

¯15 Invalid access mode

¯16 Invalid user ID

¯17 Filename already in use

¯18 Insufficient user authority

¯19 Name already exists

¯20 Unsupported data format

¯21 Temporary interlock

¯22 Unexpected SVP return code

¯24 Media full

¯26 No space available

Note: Any other positive values are unexpected return codes from the operating system file services used by AP

211.

Example of Use

First share a variable with AP 211:

 211 SVOFFER 'SHR211'
2

Then create a new file called FILE:

 SHR211←'CREATE' 'FILE'
 SHR211
0

An empty file has now been created. Before we can go any further, the file must be opened for access:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

411

 SHR211←'USE' 'FILE'
 SHR211
0 1024

The 1024 returned by this call shows that the default record size was used when the file was created. Now we

can place data into the file:

 SHR211←'SET' 'ABC' (⍳10)
 SHR211
0

 SHR211←'SET' 'DEF' (3 5⍴'AP211IS EASY!')
 SHR211
0

This has placed two objects into the file. We can determine the names of objects stored on the file with:

 SHR211←'LIST' 'NAMES'
 SHR211
ABC
DEF

At any time, we can retrieve any objects stored in the file:

 SHR211←'GET' 'DEF'
 SHR211
 0 AP211
 IS
 EASY!

Note that a length two result is given by the GET call. Normally we want to separate the return code (the first

item) and the data array (the second item) into two variables. Vector assignment provides a simple way to do

this:

 SHR211←'GET' 'DEF'
 (RC ARR)←SHR211
 RC
0
 ARR
AP211
IS
EASY!

When we have finished with the file, we can release it:

 SHR211←'RELEASE'
 SHR211
0

And finally, if we have no further need for the file, we can delete it:

 SHR211←'DROP' 'FILE'
 SHR211
0

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

412

AP 227 - ODBC Processor

AP 227 allows you to use the Structured Query Language (SQL) to access databases and programs that support

the Open Database Connectivity (ODBC) protocol.

AP 227 has the same commands and return code structure as AP 127, the DB2 processor.

Supplied workspace SQL is a companion to both AP 127 and AP 227. To use the workspace with AP 227, set

variable SQL_AP to 227 before using the functions in the workspace. See APL2 Programming: Using

Structured Query Language for complete information about AP 127, AP 227 and the SQL workspace.

 AP 227 Commands

 AP 227 Return Codes

AP 227 Commands

Operation Code and Syntax Workspace Function

'CALL' name [values] CALL

'CLOSE' name CLOSE

'COMMIT' ['RELEASE'] COMMIT

'CONNECT' database-identifier CONNECT

'DECLARE' name ['HOLD'|'NOHOLD'] DECLARE

'DESCRIBE' name [type] DESC

'EXEC' stmt EXEC

'FETCH' name [options..] FETCH

'GETOPT' GETOPT

'ISOL' [setting] ISOL

'MSG' rcode MESSAGE

'NAMES' NAMES

'ODBC' type ODBC

'ODBCOPEN' name type ODBCOPEN

'OPEN' name [values] OPEN

'PREP' name stmt PREP

'PURGE' name PURGE

'PUT' name values PUT

'ROLLBACK' ['RELEASE'] ROLLBACK

'SETOPT' options.. SETOPT

'SQLCA' SQLCA

'SQLSTATE' SQLSTATE

'SSID' [subsystem] SSID

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

413

Operation Code and Syntax Workspace Function

'STATE' name STATE

'STMT' name STMT

'TRACE' [(module level)..] TRACE

'XMLSIZE' [size] XMLSIZE

AP 227 Return Codes

Return Code Vector Meaning

0 0 0 0 0 Normal return. All operations completed. Result table retrieved by a FETCH

request is complete.

0 0 1 0 0 Normal return, but a result table may not have been completely retrieved.

1 0 0 1 msgn Error in auxiliary processor. msgn is the number of the auxiliary processor error

message.

1 0 0 2 msgn Error detected in the database system. msgn gives the SQL return code

(SQLCODE).

1 0 0 3 msgn Error detected in an SQL workspace function. msgn gives the message number.

0 1 0 n msgn Warning message. For example, FETCH has no more rows to retrieve, a DELETE

statement deletes nothing, or the value-list is longer than the highest vector index.

1 1 0 n msgn Transaction backout. All changes made to tables since the last COMMIT or

ROLLBACK have been discarded. Application must restore processing to point of

last COMMIT or ROLLBACK. All locks are released and all cursors closed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

414

AP 488 - GPIB Support Processor

Note: This processor is not provided on Unix systems.

A GPIB (General Purpose Interface Bus) adapter provides an interface between a personal computer and the

IEEE-488 General Purpose Interface Bus (GPIB), allowing control of multiple devices or instruments (such as

plotters, multimeters, and disk drives).

Auxiliary processor 488 provides an interface between APL2 and the National Instruments GPIB Driver.

The following hardware is supported:

 National Instruments GPIB Adapter Card (for computers with PC bus)

 National Instruments MC-GPIB Adapter Card (for computers with Micro Channel bus)

The following software is required:

 National Instruments GPIB Driver (GPIB-32.DLL on Windows). This DLL must be accessible to be

loaded when AP 488 is loaded.

A GPIB adapter can perform as a controller, a talker, or a listener with compatible devices. The GPIB adapter

also provides capabilities for data transfer between workstations, and the connection of several computers for

sharing of instruments or peripheral I/O devices.

Shared Variable Protocols

Two shared variables may be required to process GPIB calls: a control variable and a data variable. The control

variable is used to select the operation to perform, and the data variable is used to send or receive additional

data as required by the command.

The control variable must be offered first. For some GPIB calls the control variable is all that is needed. For

other calls, the data variable is also required. At the time a data variable is required, AP 488 matches the earliest

pending corresponding data variable offered by the partner (after the control variable).

The name of the data variable must always begin with the letter 'D' or the letters 'DAT', and the control

variable must begin with the letter 'C' or the letters 'CTL'. The remaining characters in both names (possibly

none) must be the same, because the coupling of both variables is recognized by their name. Examples of valid

pairs are: C and D, C1 and D1, and CXjj and DXjj. Also accepted as valid pairs are CTL and DAT or CTL1

and DAT1. For example:

 488 SVOPAIR 'C488' 'D488'
2 1

offers two shared variables to AP 488 and sets access control. See Using the Share-Offer Utilities for a

description of the SVOPAIR function (from the 1 UTILITY workspace).

Note:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

415

Although AP 488 runs asynchronously from the APL2 interpreter, the interface between AP 488 and the GPIB

device is a synchronous call. If a GPIB request does not return to AP 488, AP 488 will hang. You can free up

your APL2 session by interrupting the shared variable reference, but AP 488 will continue to wait. To cancel

the hung GPIB request, you will need to kill AP 488. This can be done from the SVP Monitor window, in the

Processors dialog of the Info menu item.

General Information

The general format of AP 488 processor calls is:

 [D488←optional data]
 C488←command code,handle [,optional parms]
 VALUE←C488
 [DATA←D488]

All commands return VALUE, which is unlikely to be zero. In most cases, the integer representation of IBSTA

(the IEEE-488 sixteen bit integer status word) is returned. Two commands (19 - IBRPP, and 25 - IBRSP)

return integer poll responses if no error has occurred.

If AP 488 has detected an error in the commands or data passed to it, and cannot call the GPIB interface

routines, VALUE will be null (⍳0) and an error code will be returned in DATA. The error codes returned by AP

488 are defined in AP 488 Return Codes

C488 accepts only integer values and D488 accepts only character vectors. This is true for all commands.

In the command syntax descriptions for AP 488:

DEVICE
refers to a device connected to the GPIB, and the device-level commands that may be sent to it.

ADAPTER
refers to the GPIB adapter board, and the board-level commands that may be sent to it.

EITHER
refers to either an adapter or a device.

IBSTA Status Word Layout

The status variable is a sixteen bit integer variable. The bits have the following meanings:

Bit Value Name Meaning

0 0000000000000001 DCAS Device in Device Clear state

1 0000000000000010 DTAS Device in Device Trigger state

2 0000000000000100 LACS Device is Listener

3 0000000000001000 TACS Device is Talker

4 0000000000010000 ATN Attention is asserted

5 0000000000100000 CIC Device is Controller-In-Charge

6 0000000001000000 REM Device is in Remote State

7 0000000010000000 LOK Device is in Lockout State

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

416

Bit Value Name Meaning

8 0000000100000000 CMPL I/O Completed

9 0000001000000000

Reserved

10 0000010000000000

Reserved

11 0000100000000000 RQS Device Requires Service

12 0001000000000000 SRQI SRQ Detected

13 0010000000000000 END Device Detected END or EOS

14 0100000000000000 TIMO Time Limit Exceeded

15 1000000000000000 ERR GPIB Error

When ERR is true, the sixteen bit integer status word is returned to APL2 as a negative value, which indicates

that an error or abnormal condition has occurred. Any positive return code is good.

 IBSTA bits are set.

 IBERR numeric return code is available through command 20 (IBSTAT).

The sixteen bits may be easily decoded with (16⍴2)⊤IBSTA.

IBERR Error Number

Code Meaning

0 Driver or operating system error

1 Function requires GPIB adapter to be Controller-In-Charge

2 Write function detected no listeners

3 Interface adapter not addressed correctly

4 Invalid argument to function call

5 Function requires GPIB adapter to be System Active Controller

6 I/O operation aborted

7 Nonexistent interface adapter

8 Reserved

9 Reserved

10 Asynchronous operation not complete

11 No capability for operation

12 Unable to access file

13 Reserved

14 Bus command error during device call

15 Serial Poll status byte lost

16 SRQ remains asserted.

AP 488 Commands

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

417

Forty-four commands are defined to auxiliary processor 488, numbered 0 through 43. Each numeric command

code has a matching APL2 function in the AP488 workspace, as follows:

Code Function Description

0 IBWAIT Wait for Selected Event

1 IBONL Online or Offline

2 IBRSC Request or Release System Control

3 IBSIC Send Interface Clear

4 IBSRE Set or Clear Remote Enable Line

5 IBLOC Go to local

6 IBRSV Request Service

7 IBPPC Parallel Poll Configure

8 IBPAD Change Primary Address

9 IBSAD Change or Disable Secondary Address

10 IBIST Individual Status Bit

11 IBDMA Enable or disable DMA

12 IBEOS Change or Disable EOS Method

13 IBTMO Change or Disable Timeout Limit

14 IBEOT Enable or Disable END Message

15 IBGTS Active Controller Go To Standby

16 IBCAC Become Active Controller

17 IBRDF Read Data Into File

18 IBFIND Open Device or Adapter File Handle

19 IBRPP Conduct Parallel Poll

20 IBSTAT Return IBSTA, IBERR, IBCNT

21 IBSTOP Stop asynchronous Operation

22 IBCLR Clear a specific device

23 IBTRG Trigger selected device

24 IBPCT Pass control to another GPIB device with Controller capability

25 IBRSP Conduct a serial poll

26 IBBNA Change the access board of a device

27 IBSIZE Set data buffer size

28 IBRD Read Data

29 IBRDA Read Data Asynchronously

30 IBWRT Write Data

31 IBWRTA Write Data Asynchronously

32 IBCMD Send GPIB commands

33 IBCMDA Send GPIB commands asynchronously

34 IBWRTF Write Data From File

35 IBXTRC Reserved

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

418

Code Function Description

36 IBTRAP Reserved

37 IBPOKE Set Device Driver Parameters

38 IBDIAG Get Diagnostic Data

39 IBASK Get Software Configuration Parameters

40 IBCONFIG Change Software Configuration Parameters

41 IBDEV Open and Initialize Device

42 IBLINES Get Status of Control Lines

43 IBLN Check for Device

0 (IBWAIT) - Wait for Selected Event

 C488←0,EITHER,MASK
 IBSTA←C488

Causes the system to wait for any of the events specified in the MASK integer. The mask layout is exactly the

same as that of the IBSTA status word.

1 (IBONL) - Online or Offline

 C488←1,EITHER,FLAG
 IBSTA←C488

The inverse of IBFIND.

If FLAG is zero, the unit descriptor is closed. If FLAG is not zero, it does nothing (except waste time).

2 (IBRSC) - Request or Release System Control

 C488←2,ADAPTER,FLAG
 IBSTA←C488

Enables or disables system controller functions (Remote Enable, Interface Clear). The IEEE-488 specification

does not specifically permit schemes where system control may be passed back and forth between instruments,

but it does not forbid them either. This command would be used in such a scheme.

If FLAG is zero, system control is released. If FLAG is not zero, system control is requested. If no error occurs,

the previous System Controller state is returned in IBERR.

3 (IBSIC) - Send Interface Clear

 C488←3,ADAPTER
 IBSTA←C488

Causes the adapter board to assert the Interface Clear signal if the adapter is currently supporting system

controller functions.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

419

4 (IBSRE) - Set or Clear Remote Enable Line

 C488←4,ADAPTER,FLAG
 IBSTA←C488

Asserts the Remote Enable signal if FLAG is non-zero, else it unasserts it.

Note: Most instruments won't go into remote until they have been addressed.

5 (IBLOC) - Go to Local

 C488←5,EITHER
 IBSTA←C488

Temporarily removes Local Lockout from the specified instrument. Normally, this will re-enable front panel

controls. The next time the instrument is accessed via the interface, Local Lockout will resume. There is no way

to turn off this condition permanently, except by changing the device configuration.

6 (IBRSV) - Request Service

 C488←6,ADAPTER,STATUS
 IBSTA←C488

Sets the byte that is returned when the system controller performs a serial poll.

This command is used when the adapter is configured as an instrument, not the system controller.

If STATUS has the 0x40 bit on, this command will also assert SRQ.

7 (IBPPC) - Parallel Poll Configure

 C488←7,EITHER,CONFIG
 IBSTA←C488

Configures an instrument or an adapter to respond to a parallel poll. Be certain that the device to be configured

has a GPIB address in the range of zero through seven.

For information on the CONFIG integer, see the GPIB Function Reference Manual.

8 (IBPAD) - Change Primary Address

 C488←8,EITHER,ADDRESS
 IBSTA←C488

Permits you to override the primary address of the device or adapter that was specified by IBCONF. This

change remains in effect until IBONL is called, or your program ends.

9 (IBSAD) - Change or Disable Secondary Address

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

420

 C488←9,EITHER,ADDRESS
 IBSTA←C488

Permits you to override the secondary address of the device or adapter that was specified by IBCONF. This

change remains in effect until IBONL is called, or your program ends.

10 (IBIST) - Individual Status Bit

 C488←10,ADAPTER,FLAG
 IBSTA←C488

Sets the parallel poll response bit to true if FLAG is not zero, else the routine sets the response bit to false. The

adapter must have been previously configured to respond to a parallel poll.

11 (IBDMA) - Enable or disable DMA

 C488←11,ADAPTER,FLAG
 IBSTA←C488

Permits you to temporarily disable and re-enable DMA transfers.

If FLAG is zero, DMA is disabled and the adapter will use programmed I/O exclusively. If FLAG is not zero,

then the adapter will use DMA.

12 (IBEOS) - Change or Disable EOS Method

 C488←12,EITHER,FLAGWORD
 IBSTA←C488

Changes or disables the End-Of-String method.

FLAGWORD specifies both the EOS character, and what to do when it is detected during a read or write. If

FLAGWORD is 0, the EOS configuration is disabled. If it is non-zero, the low byte is the EOS character and the

high byte is the configuration bit.

For further information on the FLAGWORD integer, see the GPIB Function Reference Manual.

13 (IBTMO) - Change or Disable Timeout Limit

 C488←13,EITHER,FLAGWORD
 IBSTA←C488

Changes the amount of time that the interface will wait before reporting a timeout error. Limits range from 10

microseconds through one thousand seconds, or forever.

FLAGWORD ranges from zero through seventeen and is detailed in the IBTMO function description.

14 (IBEOT) - Enable or Disable END Message

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

421

 C488←14,EITHER,FLAG
 IBSTA←C488

Specifies whether or not EOI is set concurrently with the last byte of the data.

If FLAG is zero, then EOI is not sent. If FLAG is non-zero, then EOI is sent.

EITHER may be either an adapter or a device. If the handle refers to an adapter, then the value specified by

FLAG overrides the specification on all devices attached to the adapter card.

15 (IBGTS) - Active Controller Go To Standby

 C488←15,ADAPTER,FLAG
 IBSTA←C488

Unasserts the ATN line and goes to the standby state.

This command is very useful for transferring data between two instruments without bothering to read it into

APL2 first. It is normally used in conjunction with IBCMD.

If FLAG is non-zero, then the adapter monitors the data transfer and goes into a Not Ready For Data state when

the END message is detected. This permits synchronous resumption of control via IBCAC. If FLAG is zero, then

no monitoring is performed.

16 (IBCAC) - Become Active Controller

 C488←16,ADAPTER,FLAG
 IBSTA←C488

Resumes control of the GPIB system.

If FLAG is zero, then control is forced immediately (and possibly asynchronously with respect to data transfer).

If FLAG is non-zero, then control is resumed synchronously with respect to data transfer.

17 (IBRDF) - Read Data Into File

 D488←'FULL_FILE_SPECIFICATION' (Including Path)
 C488←17,EITHER
 IBSTA←C488

Reads data from the GPIB and writes it to an operating system file.

Any data already in the file is over-written.

The transfer will end when either the END or the EOS message is detected.

18 (IBFIND) - Open Device or Adapter File Handle

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

422

 D488←'UNIT_NAME'
 C488←18,0
 RESULT←C488

Performs an open on the specified device. You supply the name of the instrument or adapter board in D488,

and the command returns a unit descriptor.

RESULT is the file handle or unit descriptor if the integer that is returned is positive, or IBSTA if the integer is

negative.

19 (IBRPP) - Conduct Parallel Poll

 C488←19,EITHER,0
 RESULT←C488

Causes the adapter to perform a parallel poll.

RESULT is the response byte from the poll (if the value is positive) or IBSTA if the value is negative (an error

was detected).

EITHER may be either an adapter or a device. If the handle refers to a device, the software will actually

perform a parallel poll on the adapter board that owns the device.

20 (IBSTAT) - Return IBSTA, IBERR, IBCNT

 C488←20
 (IBSTA IBERR IBCNT)←C488

Retrieves the current values of IBSTA, IBERR, and IBCNT. No actual GPIB activity results, this command

only returns three integers from the auxiliary processor.

21 (IBSTOP) - Stop Asynchronous Operation

 C488←21,EITHER
 IBSTA←C488

Causes any asynchronous operations currently in progress to be aborted.

22 (IBCLR) - Clear Device with Selected Device Clear

 C488←22,DEVICE
 IBSTA←C488

Clears (or attempts to clear) the internal device dependent functions of the specified instrument. The routine

actually sends Selected Device Clear (SDC) to the device. Not all instruments support the SDC message.

23 (IBTRG) - Trigger Device

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

423

 C488←23,DEVICE
 IBSTA←C488

Sends the GET (Group execute trigger) message to the device specified by DEVICE.

Many devices do not support this function.

24 (IBPCT) - Pass Control

 C488←24,DEVICE
 IBSTA←C488

Passes Controller-In-Charge authority to the specified device.

Be certain that the device specified can support controller functions.

25 (IBRSP) - Conduct Serial Poll

 C488←25,DEVICE,0
 RESULT←C488

Performs a serial poll of the specified device.

RESULT is the response byte from the poll (if the value is positive) or IBSTA if the value is negative (an error

was detected).

26 (IBBNA) - Change Adapter Name

 D488←'GPIBx'
 C488←26,DEVICE
 IBSTA←C488

Changes the adapter used to access the instrument specified by DEVICE.

D488 is assigned a five character name that consists of GPIB followed by the character zero through three.

27 (IBSIZE) - Set Data Buffer Size

 C488←27,BUFFSIZE
 IBSTA←C488

Sets the default maximum read buffer size in the auxiliary processor. No I/O is performed.

If no IBSIZE call is ever issued, the default size used is 1024.

Maximum read buffer size can also be passed as an optional parameter to IBRD and IBRDA. In that case, the

default set by IBSIZE is temporarily overridden during the IBRD or IBRDA call.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

424

28 (IBRD) - Read Data

 C488←28,EITHER[,MAX_SIZE]
 IBSTA←C488
 DATA←D488

Reads data from the specified device or adapter and returns it to APL2 through D488.

If MAX_SIZE is not specified, the last size specified with IBSIZE will be used. If a size has never been

specified with IBSIZE a default size of 1024 will be used.

29 (IBRDA) - Read Data Asynchronously

 C488←29,EITHER[,MAX_SIZE]
 IBSTA←C488
 DATA←D488

Reads data asynchronously from the specified device or adapter and returns it to APL2 through D488. This call

may be used in place of IBRD when the application program needs to continue execution while the GPIB I/O

operation is in progress.

If MAX_SIZE is not specified, the last sized specified with IBSIZE will be used. If a size has never been

specified with IBSIZE a default size of 1024 will be used.

30 (IBWRT) - Write Data

 D488←DATA
 C488←30,EITHER
 IBSTA←C488

Writes data from a character vector to the instrument that is specified by EITHER.

31 (IBWRTA) - Write Data Asynchronously

 D488←DATA
 C488←31,EITHER
 IBSTA←C488

Writes data asynchronously from a character vector to the instrument that is specified by EITHER. This call

may be used in place of IBWRT when the application program needs to continue execution while the GPIB I/O

operation is in progress.

32 (IBCMD) - Send GPIB Commands

 D488←COMMANDS
 C488←32,ADAPTER
 IBSTA←C488

Sends GPIB commands out through the adapter. You may send any valid sequence of IEEE-488 commands.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

425

See the IBCMD workspace function description for a list of the GPIB board-level commands.

33 (IBCMDA) - Send GPIB Commands Asynchronously

 D488←COMMANDS
 C488←33,ADAPTER
 IBSTA←C488

Sends GPIB commands asynchronously out through the adapter. You may send any valid sequence of IEEE-

488 commands. This call may be used in place of IBCMD when the application program needs to continue

execution while the GPIB commands are being processed.

34 (IBWRTF) - Write Data From File

 D488←'FULL_FILE_SPECIFICATION' (Including Path)
 C488←34,EITHER
 IBSTA←C488

Reads data from an operating system file, and sends it to the specified device (or adapter) as one long record.

No translation is done.

37 (IBPOKE) - Set Device Driver Parameters

 C488←37,EITHER,SUB_FUNCTION,VALUE
 IBSTA←C488

Sets the device driver parameter identified by SUB_FUNCTION to VALUE.

38 (IBDIAG) - Get Diagnostic Data

 C488←38,EITHER,DATA_SIZE
 IBSTA←C488
 DIAG_DATA←D488

Returns a data block of length DATA_SIZE from the device driver's unit descriptor. The maximum

DATA_SIZE for an adapter is 99 bytes and for a device is 37 bytes.

39 (IBASK) - Get Software Configuration Parameters

 C488←39,EITHER,OPTION
 IBSTA←C488
 VALUE←D488

Return information about software configuration parameters.

OPTION is a numeric code for a configuration parameter. VALUE is the current value for that parameter.

For a complete list of parameters, see the GPIB Function Reference Manual.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

426

40 (IBCONFIG) - Change Software Configuration Parameters

 C488←40,EITHER,OPTION,VALUE
 IBSTA←C488

Change a software configuration parameter for a device.

OPTION is a numeric code for a configuration parameter. VALUE is the value the parameter is to be set to.

For a complete list of parameters, see the GPIB Function Reference Manual.

41 (IBDEV) - Open and Initialize Device

 C488←41,BDINDEX,PAD,SAD,TMO,EOI,EOS
 RESULT←C488

Open and initialize a device descriptor. The arguments are as follows:

BDINDEX
Index of the access board for the device

PAD
The primary GPIB address of the device

SAD
The secondary GPIB address of the device

TMO
The I/O timeout value

EOI
EOI mode of the device

EOS
EOS character and modes

RESULT is the unit descriptor if the integer that is returned is positive, or IBSTA if the integer is negative.

For more information on the valid values for the parameters to this call, see the GPIB Function Reference

Manual.

42 (IBLINES) - Get Status of Control Lines

 C488←42,EITHER
 IBSTA←C488
 STATUS←D488

Returns the status of the eight GPIB control lines.

STATUS is the numeric representation of the 8-bit mask of state information.

43 (IBLN) - Check for Device

 C488←43,EITHER,PAD,SAD

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

427

 IBSTA←C488
 STATUS←D488

Check for the presence of a device on the bus.

PAD is the primary GPIB address of the device. SAD is the secondary GPIB address of the device. Use 0 for

SAD to test only a primary address. Use ¯1 for SAD to test all secondary addresses.

STATUS is non-zero if a Listener is detected, 0 if not detected.

AP 488 Return Codes

The following table lists the codes returned in the AP 488 data variable when null is returned in the control

variable.

Code Meaning

¯1 Unexpected SVP error

¯2 Data variable not shared

¯3 Data variable interlocked

¯4 Data variable has no value

¯5 LENGTH ERROR in data variable

¯6 RANK ERROR in data variable

¯7 DOMAIN ERROR in data variable

¯8 Invalid command in control variable

¯9 LENGTH ERROR in control variable

¯10 RANK ERROR in control variable

¯11 DOMAIN ERROR in control variable

¯12 Insufficient storage to allocate read/write buffer

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

428

Supplied Workspaces

IBM APL2 supplies a number of workspaces to perform various tasks, and many of these are common to other

supported APL2 environments. These workspaces contain functions that you can call from your programs. The

functions listed can also be used as examples of how to program with auxiliary processors they utilize. For

example:

 FILE uses the file processors (AP 210 and AP 211)

 The host workspaces (AIX, LINUX, SOLARIS, and WINDOWS) use the host command processor (AP

100)

 DEMO124 and AP124 use the text display processor (AP 124)

 DEMO145, DDESHARE, and GUITOOLS use the GUI services processor (AP 145)

 DEMO207 and GRAPHPAK use the Universal Graphics processor (AP 207)

 SQL uses the DB2 processor (AP 127) or the ODBC processor (AP 227)

Each public workspace contains variables with information about the workspace. These variables are:

ABSTRACT, DESCRIBE, and HOW.

The workspaces distributed with APL2 are assigned to either library 1 or library 2, as is shown in following

table:

Name Library Systems Function

AIX 2 AIX Tools to access AIX functions and commands

AP124 2 All Aids in building text display applications

AP144 2 All Unix Aids in building X Window system applications

AP488 2 Windows Aids in using the GPIB support auxiliary processor

DDESHARE 2 Windows Dynamic Data Exchange shared variable utilities

DEMO124 2 All Demonstrations of some of the capabilities of the text display auxiliary

processor (AP 124)

DEMO144 2 All Unix Demonstrations of some of the capabilities of the X Window system

auxiliary processor (AP 144)

DEMO145 2 Windows Demonstrations of some of the capabilities of the GUI services auxiliary

processor (AP 145)

DEMO207 2 All Demonstrations of some of the capabilities of the universal graphics auxiliary

processor (AP 207)

DEMOJAVA 2 All Demonstration and utility functions for Associated Processor 14, the Calls to

Java processor

DISPLAY 1 All Display of array data structure

EDIT 1 All Compatibility editors

EXAMPLES 1 All Usage examples of APL2

FILE 2 All Tools for accessing operating system files

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

429

Name Library Systems Function

GRAPHPAK 2 All Business and analytic graphics

GUITOOLS 2 Windows A toolkit for writing Graphical User Interface (GUI) applications

GUIVARS 2 Windows A collection of variables defining constants useful in programming GUI

applications

IDIOMS 1 All Catalog of common APL2 phrases

LINUX 2 Linux Tools to access Linux functions and commands

MATHFNS 1 All Mathematical functions

MIGRATE 2 All Conversion of applications migrated from other systems

NETTOOLS 2 All Network tools including an HTTP 1.1 web server

PRINT 2 All Unix Printing utilities

PRINTWS 2 All Printing workspace contents

SOLARIS 2 Solaris Tools to access Solaris functions and commands

SQL 2 All Tools for using SQL auxiliary processors

TCL 2 All Demonstration and utility functions that use the TCL external function

interface to Tcl.

TIME 1 All Monitor performance

UTILITY 1 All Manipulations and services beyond those provided by primitive operations

WINDOWS 2 Windows Tools to access Windows functions and commands

WSCOMP 1 All Comparing the contents of workspaces.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

430

Host Workspaces - AIX, LINUX, SOLARIS, WINDOWS

The host workspaces contain functions for performing operating system dependent tasks.

 Operating System Commands

 Listing the APL2 Libraries

 Error Code Translation

 Character Set Translation

Operating System Commands

The set of functions described in this section perform some useful operating system tasks, such as renaming

files and creating directories. They are common to all the host workspaces. Note, however, that while these

functions have the same names in each host workspace, their contents are slightly different from operating

system to operating system. When porting an application from one system to another, new copies of these

functions should be obtained from the workspace on the new system to ensure correct operation.

The host workspaces use AP 100 to invoke operating system commands.

Except where noted, these are monadic functions. All functions return either 0 or data if successful. They return

a numeric error code if an error occurs. The functions available are:

Z←DIR path

Returns a directory list. This is equivalent to the dir command on Windows, and the ls command on

Unix systems. The right argument, path, is the path leading to the directory whose contents are to be

displayed.
Z←ERASE filename

Erases a file. This is equivalent to the delete command on Windows, and the rm command on Unix

systems. filename is the name of the file to be erased, and can include a path definition.
Z←HOST cmd

Issues command cmd to the host operating system through AP 100. When HOST '' is executed (cmd

is null), it returns the name of the currently running operating system.
Z←MKDIR path

Creates a new subdirectory.
Z←cmd PIPE data

Provides a means to pipe APL2 data to an operating system command and returns any output generated

by the command.

The right argument, data, must be either a simple character vector, a character matrix, or a vector of

character vectors specifying the input to be passed to the command as stdin (standard input). If this is an

empty vector, no input is passed to the command. The left argument, cmd, must be a simple character

vector specifying the command to be executed. The result is a vector of vectors containing the output

stdout (standard output) generated by executing the command. Some examples of the use of the PIPE

function:

To get names of APL workspaces and transfer files, sorting by date:

⊃'dir /b/od *.atf *.apl' PIPE ''

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

431

To run batch scripts through the interpreter:

JOB1←')LOAD 1 DISPLAY' 'DISPLAY ''APL2'' 123'
JOB2←')LOAD 2 WINDOWS' '∇PIPE[⎕]∇'
OUTPUT←(⊂'apl2 -sm piped -quiet on')PIPE¨JOB1 JOB2

Z←RENAME oldnew
Z←old RENAME new

Renames a file. When called monadically, the right argument, oldnew, has the form 'oldname
newname' where oldname is the name of the file to be renamed (and may include a path definition),

and newname is the new name by which the file is to be known. RENAME can also be used dyadically,

with the old name as the left argument and the new name as the right argument.
Z←RMDIR path

Removes the subdirectory pointed to by path.

Listing the APL2 Libraries

Z←LIBS
A Processor 11 external function which returns a character matrix giving the definition of each valid

library number for this APL2 session. For more information, see LIBS - Get APL2 Library Definitions.

Error Code Translation

Z←CHECK_ERROR num
A Processor 11 external function which converts the message number specified by the right argument to

a text error message. The message number can be a number returned by one of the other functions in this

workspace, or a return code from an external function or auxiliary processor that is not defined for that

function or processor. For more information, see CHECK_ERROR - Get System Error Text.

Character Set Translation

The WINDOWS workspace includes two functions for translating between the APL2 and the Windows

Character Set:

R←APL2_TO_WINDOWS 'APL2'
R←WINDOWS_TO_APL2 'Windows'

The arguments are simple character arrays. 'Windows' is data that was created using a Windows font or

application. 'APL2' is data that was created using an APL2 font or application. R is the translated data.

Note: Because the APL2 and Windows character sets contain different characters, these functions are not

complete inverses.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

432

AP124 Workspace

This workspace contains a set of cover functions to assist in the use of the text display auxiliary processor, AP

124, in an application. A screen definition facility makes it possible to define a screen as a set of fields, each

one with its own name or number, where information can be sent or retrieved by means of appropriate

functions.

 Fundamentals

 Building a Menu

 Primary Functions

 Additional Functions

 Example Driver Function

 AP124 Internal Operation and Global Variables

Fundamentals

The window you are using on your display should be regarded as a character array for the purposes of the

following discussion.

The size of this array defaults to 25 by 80, but the window can be resized using normal desktop facilities. This

area can be subdivided into smaller rectangular sections that are more convenient to your data processing needs.

These rectangular areas are called fields. The text display auxiliary processor, AP 124, works only in terms of

fields. Functions in the AP124 workspace perform actions to a field or a group of fields.

Every field has a type, which determines how it can be acted upon. There are three basic types of fields:

Input/output

Allowing input from the keyboard to be typed and displayed

Numeric input only/any output

Allowing only numbers to be input from the keyboard, but allowing any characters to be displayed

Output only

Capable of receiving data from an APL2 function but not from the keyboard.

Fields also have attributes that define how the information contained in the fields is to be displayed. An attribute

is expressed as an integer value, depending on the actual display to be used, and defines the color of the field.

Building a Menu

As an example of the use of the AP124 workspace, a sample screen is defined, containing some information and

requesting data from a user. The AP124 workspace includes functions enabling you to define menus quickly,

and making it easy to maintain them.

Assume the menu you wish to define is for an overtime payment system. You should collect and process the

following data:

 Employee serial number

 Employee name

 Number of overtime hours worked each day (Monday to Sunday)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

433

 Per-day overtime rate. This is fixed at the moment, but can be adjusted at a later date.

Now we have to step though some simple decisions to design the screen. The following is a representation of

the desired menu:

 00000000011111111112222222222333333333344444444445555555555666666666677777777778
 12345678901234567890123456789012345678901234567890123456789012345678901234567890
01 APL2 Overtime System
02--
03
04
05 Input the following data, press Enter:
06
07 Employee Number XXXXXXX
08 Employee Name XXXXXXXXXXXXXXX
09
10 Mon Tue Wed Thu Fri Sat Sun
11 Hours X.XX X.XX X.XX X.XX X.XX X.XX X.XX
12 Rate 1.25 1.25 1.25 1.25 1.25 1.50 2.00
13
14
15
16
17 /
18
19
20--
21 The following options can also be used:
22
23 F1 - Help F3 - Exit
24
25

The row and column numbers at the top and left of the diagram are included just for clarity.

A name is needed for the screen. Use the name OVERTIME.

Now that everything is planned and ready, we will look at the AP124 workspace functions we need to build the

menu.

 FSDEF - Define fields

 FSSHOW - Display a panel

FSDEF - Define fields

FSDEF 'Menu_Name'

the first time it is used, and:

Field_Def FSDEF 'Field_Data'

once per field to be defined.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

434

Menu_Name defines the name by which this screen is to be known. This name should begin with an uppercase

or lowercase letter, the delta (∆) character or the delta underbar (⍙) character; it can continue with any of these,

plus the digits 0-9, overbar (¯) or underbar (_).

Field_Def is a vector containing four, five, or six elements with the following information:

1. Start row of the field

2. Start column of the field

3. Field height

4. Field width

The fifth and sixth elements of the vector are optional, and are defined as:

5. Field type:

0 Input/output/selectable

1 Numeric input only/any output/selectable

2 Output only (the default)

3 Output only/selectable

6. Field Attribute: an integer between 0 and 255. The default field attribute is 1, which normally gives blue

characters on a black background. The following diagram shows the meanings of the bits of the display

attribute byte on color display adapters:

7 6 5 4 3 2 1 0
──────┬────── ──────┬──────
 │ │
 │ └──────── Foreground color (4 bits)
 │
 └──────────────────────── Background color (4 bits)

The combinations of colors available are:

Code Bits Color

0 0 0 0 0 Black

1 0 0 0 1 Blue

2 0 0 1 0 Green

3 0 0 1 1 Cyan

4 0 1 0 0 Red

5 0 1 0 1 Magenta

6 0 1 1 0 Yellow

7 0 1 1 1 Gray

8 1 0 0 0 Light Gray

9 1 0 0 1 Light Blue

10 1 0 1 0 Light Green

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

435

Code Bits Color

11 1 0 1 1 Light Cyan

12 1 1 0 0 Light Red

13 1 1 0 1 Light Magenta

14 1 1 1 0 Brown

15 1 1 1 1 White

If the field width is given as 0, the width is automatically derived from the value of Field_Data. This is the

data to be written on the field at initial menu usage. It must be a character vector.

Alternatively, the following field definition format can be used to assign a name to the field being defined:

 Field_Def FSDEF 'Field_Name' FSDEF 'Field_Data'
Field_Def and Field_Data are the same as above. Field_Name is the name you wish to assign to this

field. This name should consist of upper or lowercase letters, digits, delta (∆), delta underbar (⍙), overbar (¯) or

underbar (_).

You can also use FSDEF to define a group of fields so that they can be referred to collectively. This is

especially useful for reading or writing a set of fields or for changing the attribute of a complete set of fields, or

for switching the type of a set of fields from input/output to output only, or vice versa. This is done in the

following way:

 'Group_Name' FSDEF Number_of_Fields
Number_of_Fields is the number of fields defined immediately before the execution of this line that are to

be included in the group. You can define nonconsecutive fields as a group of fields by issuing this call with the

same group name after each individual field or after each consecutive group of fields. Groups must be

exclusive. Each field can be defined as being in only one group.

If workspace is at a premium, any repeated items in the screen definition variables can be converted to aliases of

the first unique occurrence of each item by using FSDEF with an empty character right argument:

 FSDEF ''

You can use this after each (or the last) menu is defined, and after you have copied menus into the active

workspace, using the)IN,)PIN,)COPY, or)PCOPY system commands.

FSSHOW - Display a panel

FSSHOW 'Menu_Name'

FSSHOW can be used to display a menu after it has been completely defined.

The following example is a function written to define our sample menu and display it on the screen.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

436

 ∇
[0] DEFINE;A
[1] FSDEF 'OVERTIME'
[2] 1 30 1 20 2 7 FSDEF 'APL2 Overtime System'
[3] 2 1 1 80 2 7 FSDEF 80⍴'-'
[4] A←'Input the following data, press Enter:'
[5] 5 21 1 0 2 7 FSDEF 'PROMPT' FSDEF A
[6] 7 24 1 16 2 7 FSDEF 'Employee Number'
[7] 8 24 1 16 2 7 FSDEF 'Employee Name'
[8] 7 42 1 7 0 7 FSDEF 'Emp_No' FSDEF ''
[9] 8 42 1 15 0 7 FSDEF 'Emp_Name' FSDEF ''
[10] A←'Mon Tue Wed Thu Fri Sat Sun'
[11] 10 27 1 0 2 7 FSDEF A
[12] 11 21 1 0 2 7 FSDEF 'Hours'
[13] 12 21 1 0 2 7 FSDEF 'Rate'
[14] 11 27 1 4 0 7 FSDEF 'Hours_Mon' FSDEF ''
[15] 11 32 1 4 0 7 FSDEF 'Hours_Tue' FSDEF ''
[16] 11 37 1 4 0 7 FSDEF 'Hours_Wed' FSDEF ''
[17] 11 42 1 4 0 7 FSDEF 'Hours_Thu' FSDEF ''
[18] 11 47 1 4 0 7 FSDEF 'Hours_Fri' FSDEF ''
[19] 11 52 1 4 0 7 FSDEF 'Hours_Sat' FSDEF ''
[20] 11 57 1 4 0 7 FSDEF 'Hours_Sun' FSDEF ''
[21] 'Hours' FSDEF 7
[22] 12 27 1 4 0 7 FSDEF 'Rate_Mon' FSDEF '1.25'
[23] 12 32 1 4 0 7 FSDEF 'Rate_Tue' FSDEF '1.25'
[24] 12 37 1 4 0 7 FSDEF 'Rate_Wed' FSDEF '1.25'
[25] 12 42 1 4 0 7 FSDEF 'Rate_Thu' FSDEF '1.25'
[26] 12 47 1 4 0 7 FSDEF 'Rate_Fri' FSDEF '1.25'
[27] 12 52 1 4 0 7 FSDEF 'Rate_Sat' FSDEF '1.50'
[28] 12 57 1 4 0 7 FSDEF 'Rate_Sun' FSDEF '2.00'
[29] 'Rates' FSDEF 7
[30] 18 21 1 40 2 7 FSDEF 'Msg_Area' FSDEF ''
[31] 20 1 1 80 2 7 FSDEF 80⍴'-'
[32] A←'The following options can also be used:'
[33] 21 10 1 0 2 7 FSDEF A
[34] A←'F1 - Help F3 - Exit'
[35] 23 23 1 0 2 7 FSDEF A
[36] FSDEF ''
[37] FSSHOW 'OVERTIME'
 ∇

Notice that some of the fields have been named. These are the ones the example operates with. Also observe

that an extra field, called Msg_Area, has been defined, where the program can output any errors found in input

validation, or any other system message.

Ordinarily a function is written like this for each panel in the system. Each of these panel definition functions

then needs to be executed only once in order to create the global variables that are used by other functions in

this workspace. (They would have to be re-executed if you change the panels by editing the appropriate panel

definition function.)

Primary Functions

Look at the next stage of combining the screen with the function that drives the input-output operation (a

"driver"). The following cover functions can be used in the driver:

 FSUSE - Initialize a panel

 FSSETCURSOR - Position the cursor

 FSWRITE - Put data into fields

 FSWAIT - Wait for a user response

 FSREAD/FSREADV - Read field contents

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

437

FSUSE - Initialize a panel

Z←FSUSE 'Menu_Name'

This function initializes the menu named Menu_Name. This is the basic call used to allow you to start using a

menu. It shares variables with AP124, loads the indicated predefined menu, and leaves you ready to use it. The

result is 0 if successful, 1 if the function failed.

FSSETCURSOR - Position the cursor

Z←Cursor_Offset FSSETCURSOR Field

This call sets the cursor in a specific field or at any position on the screen. The left argument can be omitted,

and the cursor offset is defaulted to the first position in that field. Field can be either a character vector

containing the name you selected for the field during definition of the menu, or an integer field number. The

result is 0 if successful, 1 if the function failed.

FSWRITE - Put data into fields

Z←Data FSWRITE Field

This function writes Data to the field or fields identified by Field. Field can be either a character scalar or

vector to identify a single field, or a character matrix of names or a vector of names to identify several fields.

Field can also be a numeric scalar or a vector of field numbers. If one field is being written, Data should be a

character scalar, a vector, or a one-row matrix. If more than one field is being written, Data must be a character

matrix with the corresponding number of rows or a vector of character arrays with the corresponding number of

elements. The result is 0 if successful, 1 if the function failed.

FSWAIT - Wait for a user response

Z←FSWAIT

This function displays the active menu, and waits for user input. When a user presses certain keys, control

returns to APL2, and the result, Z, of function FSWAIT is the following:

Z[1] Return code: 0 if successful, otherwise 1.

Z[2 3] Key pressed to complete the call, as defined in Special Key Code Processing.

Z[4] Field number where cursor was located at return to APL2, or zero if it was outside all the fields.

Z[5 6] Cursor offset (row/column) into that field. If field was zero, then offset is from the top-left corner of

the screen.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

438

Z[7...] List of fields updated during this request.

The list of updated fields that is returned enables you to optimize the panel processing time. In general, it is

necessary to read and validate only those fields, rather than to read back and check all of the fields, which, for a

very large screen, could be a very long process.

FSREAD/FSREADV - Read field contents

Z←FSREAD Field

This function reads data from the field or fields identified by Field. Field can be either a character scalar or

vector to identify a single field, or a character matrix of names or a vector of names to identify several fields.

Field can also be a numeric scalar or a vector of field numbers.

If the result, Z, is numeric, it is a return code indicating that the operation has failed. Otherwise, Z is a character

matrix containing the requested field data.

Z←FSREADV Field

This function reads data from a field or a group of fields. If the result is numeric, it is a return code indicating

that the operation failed. Otherwise, the result is a nested vector of character or numeric arrays containing the

requested field or group field data.

Additional Functions

The following functions assist in the use of the screen.

Z←FSAPLOFF
Z←FSAPLON

FSAPLOFF and FSAPLON turn the keyboard from APL2 to National mode (FSAPLOFF), and vice versa

(FSAPLON). The result is 0 if successful, 1 if the function failed.

Z←FSBEEP

FSBEEP sets the beep flag. A beep sounds at the next read and wait call (FSWAIT). The result is 0 if

successful, 1 if the function failed.

Z←FSCLEAR

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

439

Clears the display. The result is 0 if successful, 1 if the function failed.

Z←FSCLOSE

FSCLOSE retracts the AP124 shared variables and expunges all global variables associated with the AP124

full-screen functions (except the 'fsf',Name panel definition variables). It should be used at the end of your

session. The result is 0 if successful, 1 if the function failed.

Z←FSCOPY

Returns the current screen contents as a matrix.

Z←FSFIELD Field_Name
Z←FSFIELD Field_Number

This function translates a field name to the corresponding field number, or vice versa.

Z←FSFORMAT

Returns, in Z, the active format array. If this is used immediately after an FSOPEN, it returns a format array of

one field completely covering the screen. You can use this to determine how many rows and columns are

available for display on the screen.

Z←FSINKEY

Waits for the user to press any single key, or reports on any key pressed since the most recent FSWAIT,

FSINKEY, or FSSCAN. The result is a 6-element vector:

Z[1] Return code: 0 if successful, otherwise 1.

Z[2 3] Key pressed to complete the call, as defined in Extended Key Code Processing.

Z[4] Field number where cursor was located at return to APL2, or zero if it was outside all the fields.

Z[5 6] Cursor offset (row/column) into that field. If field was zero, then offset is from the top-left corner of

the screen.

Z←Data FSIWRITE Field

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

440

Immediate write of Data to the selected fields on the display. It is used in the same way as the FSWRITE

function, described in FSWRITE - Put data into fields. The result is 0 if successful, 1 if the function failed.

Z←FSMENUON
Z←FSMENUOFF

FSMENUOFF hides the menu in the AP 124 window, and FSMENUON shows the menu. The result is 0 if

successful, 1 if the function failed. These functions have no effect on AIX and Sun.

Note: The menubar cannot be turned on or off until after at least one field has been formatted (FSUSE or

FSSHOW functions).

Z←FSMODE 'mode'

Clears the screen and establishes display mode indicated (APL2/PC compatibility). The result is 0 if successful,

1 if the function failed.

Z←FSOPEN

Shares variables with AP124. This function is used internally by FSUSE. The result is 0 if successful, 1 if the

function failed.

Z←FSSCAN

Scan for a key pressed. The result is a 6-element vector like that returned by FSINKEY, except that if no key

had been pressed, Z[23] will be ¯1 ¯1.

Z←FSSCREEN

Return the contents of the screen.

Z←A FSSETFI Field

Changes the attribute of a field or a group of fields to A. The result is 0 if successful, 1 if the function failed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

441

Z←T FSSETFT Field

Changes the type of a field or a group of fields to T. The result is 0 if successful, 1 if the function failed.

Z←FSSTATUS

Returns the status of the session:

Z[1] Return code of the AP124 status call (normally 0)

Z[2] Keyboard mode (0 = national mode, 1 = APL2 mode)

Z[3] Reserved; always 0

Z[4] Reserved; always 1

Z[5] Beep request pending (1 = beep pending)

Z[6] Reserved; always 0

Z[7] Cursor mode (0 = normal, 1 = field)

Z←FSTITLE Title

Sets the title bar on the AP 124 window to the character string named in Title. The result is 0 if successful, 1

if the function failed.

Note: The title bar cannot be set until after at least one field has been formatted (FSUSE or FSSHOW functions).

Example Driver Function

The following is an example of a driver function that uses the menu defined above:

[0] DRIVER;R;A
[1] →(FSOPEN)/E124
[2] →(FSUSE 'OVERTIME')/E124
[3] →(FSSETCURSOR 'Hours_Mon')/E124
[4] ASK:→(↑R←FSWAIT)/E124
[5] →(1=R[2])/FK
[6] ⍝ Examine fields changed
[7] ⍝ These are listed by 6↓R
[8] A←FSREAD 'Emp_No' 'Emp_Name' 'Hours' 'Rates'
[9]
[..] FK:....
[..] E124:'Full-screen error in driver'

AP124 Internal Operation and Global Variables

The FSOPEN function shares variables called Cfs and Dfs with AP124. It also creates a two-element numeric

variable, called fss, containing the number of rows and columns that can be displayed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

442

The FSDEF function creates a screen definition variable with the name 'fsf',Name, where Name is the

menu name. The screen definition is stored as a three- or four-column nested matrix with one row for each field

defined. The columns are:

1. Field format (six-element numeric vector)

2. Field contents (character vector)

3. Field name (character vector, or empty vector for no name)

4. Group name that this field belongs to (character vector, or empty vector if not defined as a group

member). This column is not present if no groups are defined.

The FSUSE function calls FSOPEN if the AP124 variables are not already shared, and then copies the group

definition 'fsf',Name to variable fsf. It also adds an extra column to fsf containing the field numbers for

each group definition.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

443

AP144 Workspace

Note: This workspace is provided only on Unix systems.

AP 144 is an interface between APL2 and the X Window System. It enables a very large subset of the X

Window System Xlib calls and data structures to be used from the APL2 environment, and in so doing enables

APL2 to use a true windowing environment. Several sample APL2 programs using the interface are provided in

the DEMO144 workspace.

Note: Using these functions rather than the AP 144 interface directly allows operation with the APL2/370 X

Window System interface provided with the Transmission Control Program/Internet Protocol Version 2 for VM

Licensed Program (Program Number 5375-FAL).

The AP144 workspace contains cover functions for the X Window System auxiliary processor (AP 144). For a

tutorial on the use of the X Window System interface, see Using the X Window System Interface.

To call the X Window System from APL2, use the following APL2 function:

[[rc] [data] ←] [c] XWIN command [parm] [parm] ...

command
The name of the X Window System call to be invoked, specified as an APL2 character vector.

[parm]
Most of the X Window System calls require that additional input parameters be specified. These are

given after the name of the call itself, in the order in which they are listed in the X Window System

documentation.
[c]

An optional vector of one or two elements controlling the behavior of the XWIN function. The two

elements are independent of each other.

The first or only element of c (↑c) determines what is returned by the function:

0 Do not return a result.

1 Return an integer return code rc.

2 Return any result data produced by the call, if any. If no data is produced, nothing is returned by

XWIN.

3 Return a one- or two-element vector. The first element always contains the return code. The

second element, if present, contains the result data generated by the call.

The second element of c (c[⎕IO+1]) determines what happens if the call results in an error:

0 Ignore any errors

1 Display error messages describing the cause of any errors

2 Halt execution

3 Display error message and halt execution

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

444

If only the first element is given, the second is assumed to be equal to 0. c can be omitted entirely, in

which case the behavior is equivalent to a setting of 2 3.

The different control options cater for many different possibilities. If called with a setting of 3 0, XWIN returns

a numeric error code as part of the function result. It is then up to the calling program to check this code and

take appropriate action on a nonzero return code.

If, on the other hand, XWIN is called with the control setting of 2 3 (which is the default if no left argument is

given), then XWIN provides a default error-handler to check the return codes as they are returned from each call

to the X Window System. If an error is encountered, XWIN suspends operation in the function so that the

programmer can correct the problem interactively.

The AP144 workspace also contains a couple of useful APL2 functions that extend the use of the structure

commands:

(rc nl) ← prefix axGetFF struct

axGetFF creates a series of variables in the workspace that can be used when working with a particular

structure class. The variables are created from the structure field and constant information retrieved by using the

'GetFields' struct and 'GetConst' struct commands.

The field information is used to create a set of index variables that can help you index a particular element in

the data structure. These variables are all prefixed with a common, user-definable constant, since many structure

fields use the same names.

Normally, this function would be run only if the C library is changed and the constants need to be reinitialized.

An APL2 variable is created for each constant, and the constant's value is assigned to that variable.

struct
The name of the structure. The structure must already be defined to the X Window System interface.

prefix
A prefix that is added to all the structure field names returned. This enables you to load the fields from

multiple structures without any conflict of field names.
rc

The function return code.
nl

A list of the APL2 variables defined given as a vector of character vectors. This can be used to expunge

all the defined variables once they are no longer needed by executing ⎕EX¨nl. Any . characters found

in the C field names are replaced by the APL2 overbar (¯) to create a syntactically valid identifier.

Note: The field indexes created are sensitive to the ⎕IO setting in place when the axGetFF is called; that is,

the variable describing the first field in the structure has a content of either 0 or 1, depending on the setting of

⎕IO.

Example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

445

 (RC NL)←'SH_' axGetFF 'XSizeHints'
 RC
0
 2↑NL
 SH_flags SH_x
 SH_flags
0
 SH_x
1

(rc values) ← names axGetFF1 struct

axGetFF1 extracts the values of selected field indexes or constants defined in a C structure.

struct
The name of the structure. The structure must already have been defined to the X Window System

interface.
names

One or more names of fields or constants defined in the structure. Only the actual C field name is

considered in the structure definition, not any type of information.
rc

The function return codes: 0 for value set, 29 if there is no field or constant by that name, or 32 if an

unknown structure is specified.
values

If a name matches a field name, the field index is returned. If it matches the name of a constant, the

value of that constant is returned. Field names take precedence over constants, if there is a name overlap.

All names must find a match, or the function does not complete successfully.

If any of the given names refer to field names, the values returned are dependent on the current ⎕IO setting, as

described above for axGetFF.

Examples:

 'flags' axGetFF1 'XSizeHints'
 0 0
 'x' axGetFF1 'XSizeHints'
 0 1
 'unknown' axGetFF1 'XSizeHints'
 29 29

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

446

AP488 Workspace

Note: This workspace is not provided on Unix systems.

The AP488 workspace provides a set of cover functions to make it easier to use AP 488 - GPIB Support

Processor.

AP 488 is an interface to the device driver software that is supplied with the programming support for the

National Instruments GPIB/IEEE-488 hardware. Most, but not all, of the functions that are available in the

GPIB driver software package have been implemented.

If you have not already done so, please read the introductory chapters of the documentation supplied with the

appropriate GPIB driver software before continuing with AP488. It is easy to become frustrated unless you are

familiar with the basic concepts of the IEEE-488 standard.

Some hints to avoid trouble:

 Few instruments can support tri-state timing (the default with the National Instruments support

packages). Unless you are certain that all instruments on your interface adapter can support this option,

you should select the open collector interface instead.

 Local Lockout is good in a production environment, but not when you are setting up the hardware.

 Automatic Serial Polling is not always a good idea. Some instruments cannot respond to a serial poll.

 Do not try to read from, or write to a file that has the same name as an instrument. For example, if you

have an instrument named DVM, do not try to access a file named DVM.DAT. This access will be

interrupted and send the data to your instrument with sometimes amusing but always unpredictable

results.

 Read your instrument manual carefully. Some instruments are very sensitive to the format of data that is

sent to them. For example, one instrument may require line feed terminator on every message, while

another may totally lock up if it receives one. Data format is instrument specific and not part of the

IEEE-488 standard.

 Description of AP488 Functions

 Example of AP488 Usage

Description of AP488 Functions

All functions in this workspace return one or more values. For those functions that do not return a data value,

the IBSTA status word is returned.

Before any of these functions may be used, you must execute the SHARE_488 function to establish the

appropriate shared variables. Similarly, when the usage of the AP488 functions is complete, you may execute

RETRACT_488 to retract and expunge the shared variables.

The following variables are reserved:

 C488 - The AP488 control variable

 D488 - The AP488 character vector data variable

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

447

 IBSTA - The GPIB status variable

 IBERR - The GPIB error number variable

 IBCNT - The GPIB auxiliary count variable.

In all functions, the word device refers to the integer that is returned by the IBFIND or IBDEV function. This

always refers to an instrument. The word adapter is also an integer returned by IBFIND, but in this case it

refers to the GPIB adapter board itself, not an instrument. The word either means either an instrument or an

adapter board.

Function Description

IBASK Get Software Configuration Parameters

IBBNA Change the access board of a device

IBCAC Become Active Controller

IBCLR Clear a specific device

IBCMD Send GPIB commands

IBCMDA Send GPIB commands asynchronously

IBCONFIG Change Software Configuration Parameters

IBDEV Open and Initialize Device

IBDIAG Get Diagnostic Data

IBDMA Enable or disable DMA

IBEOS Change or Disable EOS Method

IBEOT Enable or Disable END Message

IBFIND Open Device or Adapter File Handle

IBGTS Active Controller Go To Standby

IBIST Individual Status Bit

IBLINES Get Status of Control Lines

IBLN Check for Device

IBLOC Go to local

IBONL Online or Offline

IBPAD Change Primary Address

IBPCT Pass control to another GPIB device with Controller capability

IBPOKE Set Device Driver Parameters

IBPPC Parallel Poll Configure

IBRD Read Data

IBRDA Read Data Asynchronously

IBRDF Read Data Into File

IBRPP Conduct Parallel Poll

IBRSC Request or Release System Control

IBRSP Conduct a serial poll

IBRSV Request Service

IBSAD Change or Disable Secondary Address

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

448

Function Description

IBSIC Send Interface Clear

IBSIZE Set data buffer size

IBSRE Set or Clear Remote Enable Line

IBSTAT Return IBSTA, IBERR, IBCNT

IBSTOP Stop asynchronous Operation

IBTMO Change or Disable Timeout Limit

IBTRG Trigger selected device

IBWAIT Wait for Selected Event

IBWRT Write Data

IBWRTA Write Data Asynchronously

IBWRTF Write Data From File

CHK_488 Check Return Code

IBASK - Get Software Configuration Parameters

VALUE←option IBASK either

Returns information about software configuration parameters.

option is a numeric code for a configuration parameter. VALUE is the current value for that parameter.

For a complete list of parameters, see the GPIB Function Reference Manual.

IBBNA - Change Adapter Name

Z←device IBBNA adaptername

Changes the adapter used to access the specified device.

adaptername is a string containing GPIBx where x is a number from zero through three.

This change is temporary and disappears after you leave APL2.

IBCAC - Become Active Controller

Z←flag IBCAC adapter

flag is zero to take control immediately (possibly asynchronously), and non-zero to force synchronous

assumption of control with respect to data transfer.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

449

adapter refers to a GPIBx adapter handle obtained from IBFIND.

IBCLR - Clear Device with Selected Device Clear

Z←IBCLR device

Sends the listen address(es) of the specified device followed by Selected Device Clear (SDC), unlisten and

untalk.

Usually clears a device to some specified initial state.

Not all devices respond to SDC.

IBCMD - Send GPIB Commands

Z←gpib_commands IBCMD adapter

Sends the data in gpib_commands out through the specified adapter with ATN true.

It is up to you to ensure that the string contains valid GPIB commands.

The following is a table of IEEE-488 addresses with their character equivalents (in ASCII).

Listen Address Talk Address Device Number Notes

0x20 (sp)
0x21 !
0x22 "
0x23 #
0x24 $
0x25 %
0x26 @
0x27 '

0x40 @
0x41 A
0x42 B
0x43 C
0x44 D
0x45 E
0x46 F
0x47 G

00
01
02
03
04
05
06
07

These addresses may
be used with Parallel
Polling.

0x28 (
0x29)
0x2A *
0x2B +
0x2C ,
0x2D -
0x2E .
0x2F /
0x30 0
0x31 1
0x32 2
0x33 3
0x34 4
0x35 5
0x36 6
0x37 7
0x38 8

0x48 H
0x49 I
0x4A J
0x4B K
0x4C L
0x4D M
0x4E N
0x4F O
0x50 P
0x51 Q
0x52 R
0x53 S
0x54 T
0x55 U
0x56 V
0x57 W
0x58 X

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Primary Listen Address =
 Device number + 32
Primary Talk Address =
 Device number + 64
Secondary addresses extend
from 0x60 through 0x7E and
are always device dependent.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

450

Listen Address Talk Address Device Number Notes

0x39 9
0x3A :
0x3B ;
0x3C <
0x3D =
0x3E >

0x59 Y
0x5A Z
0x5B [
0x5C \
0x5D]
0x5E ^

25
26
27
28
29
30

0x3F ?

0x5F _

Unlisten/Untalk

IBCMDA - Send GPIB Commands Asynchronously

Z←gpib_commands IBCMDA adapter

Asynchronously sends the data in gpib_commands out through the specified adapter with ATN true.

May be used in place of IBCMD when the application program needs to continue execution while the GPIB

commands are being processed.

It is up to you to ensure that the string contains valid GPIB commands.

See IBCMD for a table of IEEE-488 addresses with their character equivalents (in ASCII).

IBCONFIG - Change Software Configuration Parameters

Z←(option value) IBCONFIG either

Changes a software configuration parameter for a device.

option is a numeric code for a configuration parameter. value is the value the parameter is to be set to.

For a complete list of parameters, see the GPIB Function Reference Manual.

IBDEV - Open and Initialize Device

DEVICE←IBDEV info

Opens and initializes a device descriptor.

info is a 6-element integer vector containing:

1. Index of the access board for the device

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

451

2. The primary GPIB address of the device

3. The secondary GPIB address of the device

4. The I/O timeout value

5. EOI mode of the device

6. EOS character and modes

DEVICE is an integer handle that must be used in all subsequent device calls.

IBDIAG - Get Diagnostic Data

INFO←size IBDIAG either

Returns a data block of length size from the device driver's unit descriptor. The maximum size for an

adapter is 99 bytes and for a device is 37 bytes.

IBDMA - Enable or disable DMA

Z←flag IBDMA adapter

Enables or disables DMA on the specified adapter, provided that DMA was not disabled when you configured

your device driver.

If flag is zero, programmed I/O is used (temporarily). If flag is non-zero, DMA is reactivated.

IBEOS - Change or Disable EOS Method

Z←flag IBEOS either

Changes the way the EOS termination byte is handled by IBRD and IBWRT. See the GPIB Function Reference

Manual for a full description.

IBEOT - Enable or Disable END Message

Z←flag IBEOT either

If flag is zero, the END message (EOI) is not sent concurrently with the last byte of an IBWRT. If flag is

non-zero, then it is.

This can be very useful when you're making adapter-level writes.

IBFIND - Open Device or Adapter File Handle

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

452

EITHER←IBFIND unit_name

This function is the first thing that has to be done before an instrument or controller may be accessed.

EITHER is an integer handle that must be used in all subsequent device or board level calls.

If the integer returned is negative, then an error has occurred. See IBSTA and IBERR for a complete

description of the error.

IBGTS - Active Controller Go To Standby

Z←flag IBGTS adapter

If flag is zero, disables the controller function. If flag is non-zero, then the controller is disabled, but

monitors the bus waiting for an END message. When the END message is detected, the adapter enters the

NRFD holdoff state.

This function is normally used in board level I/O calls.

IBIST - Individual Status Bit

Z←flag IBIST adapter

Although an adapter is specified, this function is used when the PC is NOT the active controller but rather a

device being controlled elsewhere.

If zero, flag sets the parallel poll status bit false. If non-zero, it sets this bit true. The actual state of the bit (0

or 1) is specified by the external controller when it sends the parallel poll configure message.

IBLINES - Get Status of Control Lines

STATUS←IBLINES either

Returns the status of the eight GPIB control lines.

STATUS is the numeric representation of the 8-bit mask of state information.

IBLN - Check for Device

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

453

STATUS←(pad sad)IBLN either

Check for the presence of a device on the bus.

pad is the primary GPIB address of the device. sad is the secondary GPIB address of the device. Use 0 for

sad to test only a primary address. Use ¯1 for sad to test all secondary addresses.

STATUS is non-zero if a Listener is detected, 0 if not detected.

IBLOC - Go to Local

Z←IBLOC either

Sends unlisten, listen address(es) of the specified device, "Go to Local" (GTL), unlisten and untalk. This

temporarily overrides the "Local Lockout" state. (Local Lockout is useful in a production environment, but less

so when you are setting up the hardware.)

IBONL - Online or Offline

Z←flag IBONL either

If flag is zero, the device or adapter is placed in an offline state (essentially a close function). The device

descriptor is no longer valid and cannot be used to place the device back online!

If flag is non-zero, this function does nothing. IBFIND is the inverse of this function.

IBPAD - Change Primary Address

Z←address IBPAD either

Specifies a new primary address for subsequent GPIB activity.

address may range from zero through thirty (be sure not to conflict with anything already on the bus).

This function is primarily useful when you are adding a device to a system temporarily and don't want to

configure it in permanently.

See also IBSAD, IBEOS and IBEOT.

IBPCT - Pass Control

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

454

Z←IBPCT device

Passes control of the GPIB bus to another controller. The adapter enters controller idle state at the end of this

function (CIDS).

Be sure that the device you specify can act as a controller.

IBPOKE - Set Device Driver Parameters

Z←(sub_function value) IBPOKE either

Sets the device driver parameter identified by sub_function to value.

IBPPC - Parallel Poll Configure

Z←config IBPPC either

Configures an instrument or an adapter to respond to a parallel poll.

See the GPIB Function Reference Manual for a description of the config word.

IBRD - Read Data

DATA←[max_size] IBRD either

Reads data from the specified device or adapter until:

 EOS is detected (if active)

 END is detected (always)

 Buffer is full (always).

If max_size is not specified, the last size specified with IBSIZE will be used. If a size has never been

specified with IBSIZE a default size of 1024 will be used.

IBRDA - Read Data Asynchronously

DATA←[max_size] IBRDA either

Reads data asynchronously from the specified adapter or device until:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

455

 EOS is detected (if active)

 END is detected (always)

 Buffer is full (always).

If max_size is not specified, the last size specified with IBSIZE will be used. If a size has never been

specified with IBSIZE a default size of 1024 will be used.

This function may be used in place of IBRD when the application program needs to continue execution while

the GPIB I/O operation is in progress.

IBRDF - Read Data Into File

Z←filename IBRDF either

Performs a read from the specified device or adapter and sends the output to an operating system file rather than

back to APL2.

filename is a character vector that may include a full drive, path, filename and extension specification.

The file is opened for output, not append, so only one record may be placed in each unique file.

IBRPP - Conduct Parallel Poll

RESPONSE←IBRPP either

Returns a parallel poll byte.

If you specify a device, it is mapped into the correct adapter instead.

IBRSC - Request or Release System Control

Z←flag IBRSC adapter

If flag is zero, all system control functions are disallowed until an IBONL followed by an IBFIND occurs.

IBRSP - Conduct Serial Poll

RESPONSE←IBRSP device

Returns the serial poll byte from the specified instrument as an integer.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

456

If the integer is negative, an error has occurred. Analyze IBSTA, IBERR and IBCNT to find the exact problem.

IBRSV - Request Service

Z←flag IBRSV adapter

Puts flag into the serial poll response register of the specified controller.

If bit 6 (0x40) is true, then service is requested as well.

Normally used when the adapter is not the system controller.

IBSAD - Change or Disable Secondary Address

Z←address IBSAD either

Specifies a new secondary address for subsequent GPIB activity.

address may range from 0x60 through 0x7E normally. If address is zero or 0x7F then the secondary

address is disabled.

This is a temporary function.

See also IBPAD, IBEOS and IBEOT.

IBSIC - Send Interface Clear

Z←IBSIC adapter

Sends the interface clear message for 100 microseconds.

The adapter must be the system controller.

IBSIZE - Set Data Buffer Size

Z←IBSIZE integer

Specifies the maximum data size for IBRD and IBRDA.

If no IBSIZE call is ever issued, the default size used is 1024.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

457

Maximum data size can also be passed as an optional left argument to IBRD and IBRDA. In that case, the

default set by IBSIZE is temporarily overridden during the IBRD or IBRDA call.

IBSRE - Set or Clear Remote Enable Line

Z←flag IBSRE adapter

If flag is zero, the remote enable line of the specified adapter is turned off; if flag is non-zero, it is turned

on.

IBSTAT - Return IBSTA, IBERR, IBCNT

Z←IBSTAT

Refreshes workspace variables IBSTA, IBERR and IBCNT to their current values.

IBSTOP - Stop Asynchronous Operation

Z←IBSTOP either

Any asynchronous operations currently in progress are aborted.

IBTMO - Change or Disable Timeout Limit

Z←time IBTMO either

Changes the timeout limit on the specified device or adapter.

time may range from zero through seventeen. The value should be chosen so as to be sufficiently large to

allow all expected operations to complete. Too small a value may cause data to be lost on commands like

IBRD, IBWRT or IBCMD.

The following is a list of the available timeout control codes:

Mnemonic Code Time Out

TNONE 0 10 us

T10US 1 30 us

T30US 2 100 us

T100US 3 300 us

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

458

Mnemonic Code Time Out

T300US 4 1 ms

T1MS 5 3 ms

T3MS 6 10 ms

T10MS 7 30 ms

T30MS 8 100 ms

T100MS 9 300 ms

T300MS 10 1 s

T1S 11 3 s

T3S 12 10 s

T10S 13 30 s

T30S 14 100 s

T100S 15 300 s

T300S 16 1000 s

T1000S 17 Infinite

IBTRG - Trigger Device

Z←IBTRG device

Sends a "Group Execute Trigger" message (GET) to the specified device.

Not all instruments respond to GET.

IBWAIT - Wait for Selected Event

Z←mask IBWAIT either

Permits waiting for a specified event or events to occur.

mask is as defined by the IBSTA status word.

IBWRT - Write Data

Z←data IBWRT either

Sends data to the specified adapter or device until:

 EOS is detected (if active)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

459

 Buffer is empty (always).

IBWRTA - Write Data Asynchronously

Z←data IBWRTA either

Sends data asynchronously to the specified adapter or device until:

 EOS is detected (if active)

 Buffer is empty (always).

This function may be used in place of IBWRT when the application program needs to continue execution while

the GPIB I/O operation is in progress.

IBWRTF - Write Data From File

Z←filename IBWRTF either

Writes all of the data from the specified operating system file to the device or adapter.

A full drive, path, filename and extension specification may be given for filename.

No translation is done; ALL characters are sent. This includes any CR/LF's in the file and the Ctrl-Z that is

placed in the file by many editors.

EOI is sent concurrent with the last byte of data.

CHK_488 - Check Return Code

This function may be used to validate the return codes generated by the functions in the AP488 workspace. It

takes a right argument of the value returned by the functions, and a left argument listing the valid return codes

that should be accepted.

Example of AP488 Usage

This example assumes:

 An adapter card with name GPIB0 at address zero

 A digital volt meter (DVM) with name DEV08 at address eight.

 ⍝ First establish the shared variables
 SHARE_488
 ⍝ Now get the adapter card device handle
 HANDLE ← IBFIND 'GPIB0'
 ⍝ Set Remote Enable Line

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

460

 ⍝ This puts device into remote mode
 ⍝ Suppress return code of 256
 256 CHK_488 1 IBSRE HANDLE
 ⍝ Set Interface Clear
 304 CHK_488 IBSIC HANDLE
 ⍝ Send command to GPIB:
 ⍝ Unlisten (ASCII "?"), PC Talk address, DVM Listen address.
 ⍝ Suppress both 376 and 312 return codes
 376 312 CHK_488 '?@(' IBCMD HANDLE
 ⍝ Now send command string to the DVM to initialize it such
 ⍝ that it will send data. This is device dependent!
 372 296 CHK_488 'Command string' IBWRT HANDLE
 ⍝ DVM now ready to send out data.
 ⍝ Send commands to GPIB:
 ⍝ Unlisten, DVM Talk address, PC Listen address
 372 CHK_488 '?H ' IBCMD HANDLE
 ⍝ Now listening to DVM
 ⍝ Get the handle for the DVM
 HANDLEDVM ← IBFIND 'DEV08'
 ⍝ Read in the data
 VOLTS ← IBRD HANDLEDVM
 VOLTS
+1.234567E+02(cr,lf)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

461

DDESHARE Workspace

Note: This workspace is not provided on Unix systems.

Dynamic Data Exchange (DDE) is used to share data between applications. Many programs such as

spreadsheets, word processors, graphic display tools, databases, and language products support DDE. The

DDESHARE workspace contains tools and sample applications for sharing data with these applications.

The following sections describe these facilities:

 The DDE Protocol

 Easy DDE Functions

 Objects and Utility Functions

 Sample Functions

 DDE Limitations

The DDE Protocol

DDE is a protocol for communication between programs. The tools in DDESHARE conceal most of the details

of the protocol so that in many cases you can simply share variables with other applications. However, to make

effective use of these shared variables, some background knowledge of the protocol and its terminology is

required.

The DDE protocol defines two types of programs: servers and clients. DDESHARE provides tools to help you

create both servers and clients.

DDE servers can provide two types of services:

1. Executing commands

2. Providing shared access to data

DDE clients can request two corresponding types of services:

1. Request that commands be executed

2. Request access to share data

Before a client can issue a request to a server, the client must link to the server. In order to establish a link, a

client needs three pieces of information:

1. The name of the server application. For example, Excel and APL2 DDE Server are server names.

2. The name of a topic the server supports. Topic names are usually file names. For example, Excel uses

spreadsheet file names as topic names.

3. The name of an item within the topic. For example, Excel item names refer to a cell or group of cells.

The item name is not needed if the client is only going to issue commands.

When working with DDE applications, there are two common techniques for supplying this information to

clients so they can link to servers:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

462

1. Copy data to the clipboard from a source document managed by a server and Paste Link or Paste

Special the data from the clipboard into a destination document managed by a client.

When you Copy the data, the server puts the link information clients need on the clipboard. When you

Paste Special, the client retrieves this information and uses it to link to the server.

2. Tell a client explicitly what server you want to link to and what data within the server you want to

access.

DDESHARE provides tools to help you establish links using both of these techniques.

Easy DDE Functions

In many cases you simply need to share data with another application. For example, you want to be able to

share data with or issue commands to a non-APL application such as a spreadsheet or graphics display tool. In

these cases, the non-APL application can be the DDE server and your APL2 application can be the client. Three

functions are provided in DDESHARE which make it easy to establish links with servers:

 PASTE_SPECIAL

 APL2_DDE_CONNECT

 APL2_XLTABLE_CONNECT

Some DDE applications, particularly word processors, do not operate as servers; they only operate as clients.

When communicating with these applications, your application needs to be a DDE server so that the non-APL

application can behave as a DDE client. The following function can be used to easily create a server for use

with applications that only operate as clients:

 COPY_LINK

Many DDE applications use the tab character to delimit data. For example, some spreadsheets use tab to delimit

columns. However, this use of tab is not part of the DDE text protocol and many applications such as word

processors use tab for other purposes. So, APL2's support for DDE text does not automatically delimit data

using tabs. The following functions are supplied for working with tab delimited text:

 DDE_MATRIX_TO_TEXT

 DDE_TEXT_TO_MATRIX

 DDE_TEXT_TO_MATRIX_NUM

These functions are not necessary when APL2 clients share data with Excel and other servers which support the

XLTABLE data format. APL2 provides support that automatically converts between the APL2 and XLTABLE

formats.

PASTE_SPECIAL

HDATA←'property' PASTE_SPECIAL 'variable_name'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

463

After copying data to the clipboard from a server, use this function to share a variable with the data. The

function retrieves the server's link information, creates a DDE DATA object, shares a variable with the object,

and returns the object's handle.

Arguments:

variable_name

Name of the variable to be shared with the DDE DATA object

property

Name of the property to be shared. property defaults to 'DATA'.

'XLTABLE DATA' can be used when sharing with Excel and other servers which support the

XLTABLE data format.

For further information see Data Objects.

Result:

Handle of the object. If link information is not available on the clipboard, or the link cannot be established, zero

is returned. The handle can be passed to DESTROYOBJ to destroy the object.

APL2_DDE_CONNECT

HANDLE←[link_info] APL2_DDE_CONNECT variable_name [class_name]

This function displays the active servers and topics available on the system and prompts the user to make a

selection and enter an item; it then establishes the link. The function creates a DDE object, shares a variable

with the object, and returns the object's handle. When it completes, you can simply specify and reference the

variable to set and query the value of the server's item or issue commands to the server.

Arguments:

variable_name

Name of the variable to be shared with the DDE object

class_name

Class of object to create; the class of object determines the type of link that will be established. Use

'DDE DATA' to share data. Use 'DDE COMMAND' to issue commands. If you only supply a variable

name, the class defaults to 'DDE DATA'.

If you use 'DDE DATA', specifying and referencing the shared variable sets and queries the server's

value for the item.

If you use 'DDE COMMAND', specifying the shared variable sends the server a command and

referencing it retrieves the return code.

link_info

Server, topic, and item with which to establish link. Item is not required if DDE COMMAND class is

specified. If this argument is supplied, the function does not prompt the user.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

464

Item names are server and country dependent. Some spreadsheets in the United States use the following

syntax:

RxCy

where x and y are a cell's row and column number (index origin 1)

Rx1Cy1:Rx2Cy2

where x1 and y1 are the row and column numbers of the upper left cell in a rectangular group of cells

and x2 and y2 are the row and column numbers of the lower right cell in the group of cells.

Consult the documentation for the application to which you want to link to determine the syntax used for

item names. Alternatively, use PASTE_SPECIAL.

Result:

Handle of the DDE object. If the link cannot be established, zero is returned. The handle can be passed to

DESTROYOBJ to destroy the object.

Here is an example of using APL2_DDE_CONNECT:

 HDATA←'Excel' '[Book1]Sheet1' 'R1C1' APL2_DDE_CONNECT 'VAR'
 ⎕ES(HDATA=0)/'Link to Excel failed'
 ...
 DESTROYOBJ HDATA

APL2_XLTABLE_CONNECT

HANDLE←[link_info] APL2_XLTABLE_CONNECT variable_name

This function displays the active servers and topics available on the system and prompts the user to make a

selection and enter an item; it then establishes the link using the XLTABLE data format. The function creates a

DDE object, shares a variable with the object, and returns the object's handle. When it completes, you can

simply specify and reference the variable to set and query the value of the server's item.

Note: Not all servers support the XLTABLE format. Excel is the primary server which supports it.

Arguments:

variable_name

Name of the variable to be shared with the DDE object

link_info

Server, topic, and item with which to establish link. If this argument is supplied, the function does not

prompt the user.

Item names are server and country dependent. Some spreadsheets in the United States use the following

syntax:

RxCy

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

465

where x and y are a cell's row and column number (index origin 1)

Rx1Cy1:Rx2Cy2

where x1 and y1 are the row and column numbers of the upper left cell in a rectangular group of cells

and x2 and y2 are the row and column numbers of the lower right cell in the group of cells.

Consult the documentation for the application to which you want to link to determine the syntax used for

item names. Alternatively, use PASTE_SPECIAL.

Result:

Handle of the DDE object. If the link cannot be established, zero is returned. The handle can be passed to

DESTROYOBJ to destroy the object.

Here is an example of using APL2_XLTABLE_CONNECT:

 HDATA←'Excel' '[Book1]Sheet1' 'R1C1' APL2_XLTABLE_CONNECT 'VAR'
 ⎕ES(HDATA=0)/'Link to Excel failed'
 ...
 DESTROYOBJ HDATA

COPY_LINK

HANDLES←value COPY_LINK 'server name' 'topic name' 'item name'
'variable_name'

This function creates a hierarchy of DDE server, topic, and item objects, shares a variable with the item, and

returns the objects' handles. It also turns on the STATE LINK property of the item so that all assignments to the

item will be copied to the clipboard. This enables client's Paste Special processing to work. When it completes,

you can simply specify and reference the variable to set and query the value of the item.

Arguments:

server name

DDE server application name

topic name

Topic name

item name

Item name

variable_name

Name of the variable to be shared with the DDE item

value

Optional initial value to assign to item.

Note: If a left argument is not supplied, COPY_LINK does not assign an initial value to the shared

variable. Client application's Paste Special facilities will not work until you have assigned a value.

Result:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

466

Handles of the DDE server, topic, and item objects. If any of the objects cannot be created, zero is returned as

their handle. The handles can be passed to DESTROYOBJ to destroy the objects.

Here is an example of using COPY_LINK:

 (HSERVER HTOPIC HITEM)←COPY_LINK 'App' 'Topic' 'Item' 'VAR'
 ⎕ES(HITEM=0)/'Create of item failed'
 ...
 DESTROYOBJ HSERVER

Objects and Utility Functions

You have seen that the functions PASTE_SPECIAL, APL2_DDE_CONNECT and

APL2_XLTABLE_CONNECT can be used to establish links between APL2 variables and server applications.

The rest of this chapter describes the underlying facilities that these functions use to establish links. For

interactive work sharing data between APL2 and other applications, you generally do not need to work with

these facilities. If you build DDE applications, you should be familiar with this material.

APL2's shared variable support for DDE is based on objects creating using the CREATEOBJ function. DDE

objects are special invisible windows which manage the details of the DDE protocol. You can use the function

SHAREWINDOW to share variables with DDE objects. These variables are then specified and referenced to set

and query the objects' contents and behavior.

For example, to create an object linked with a cell in an Excel spreadsheet and share a variable with the object's

data in XLTABLE format, you could do this:

 HDATA←CREATEOBJ 'DDE DATA' 'Excel' '[Book1]Sheet1' 'R1C1'
 'XLTABLE DATA' SHAREWINDOW HDATA 'CELL1'

To change or query the contents of the Excel cell, you simply specify or reference the variable CELL1.

Like windows which signal events when users interact with them, DDE objects signal events when DDE events

occur. To respond to these events, you specify APL expressions to variables shared with objects' EVENTS

property and then use the EXECUTEDLG operator to process the events.

The following sections describe using DDE objects in greater detail:

 Client Applications

 Server Applications

Detailed information on CREATEOBJ can be found in the GUITOOLS workspace and the online help for

AP145. Use the function HELP145 to display the online help for AP 145.

Detailed information on using SHAREWINDOW to share variables with window properties and using

EXECUTEDLG to respond to events can be found in AP 145 - GUI Services Processor.

Client Applications

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

467

Objects used in client applications issue requests to read and write items and execute commands and retrieve

command return codes when you reference and specify variables. They signal events when new values are

available and if the server terminates.

Two different classes of objects are used in DDE client applications:

1. Data Objects

2. Command Objects

Data Objects

Data objects share data with server applications.

Data objects support the following properties:

EVENTS

The EVENTS property is used to specify APL expressions that should be executed when server events

occur. Two events are supported:

'New value'

When the 'New value' event occurs, the server has changed the value of the item; referencing a variable

shared with the DATA property will return the new value.

'Server close'

When the 'Server close' event occurs, no further uses of the object should be attempted. Using the handle

returned from CREATEOBJ, the object should be destroyed and any variables shared with its properties

retracted.

DATA

The DATA property is used to read and write shared data. Referencing a variable shared with the DATA

property will always return the server's latest value. Specifying a value will cause a write request to be

sent to the server; if the server rejects the write request, a message box will be displayed. The format of

the data that can be written is server dependent; most servers accept character vectors and vectors of

character vectors. Many servers use tab characters to delimit data. Only one variable can be shared with

the DATA or XLTABLE DATA property of a data object.

XLTABLE DATA

The XLTABLE DATA property is used to read and write data shared with Excel and other servers

which support the XLTABLE data format. The XLTABLE DATA property is used like the DATA

property except that the format of the data is different.

The XLTABLE DATA property supports APL2 matrices. Each element of the matrix can be a character

scalar, a character vector, a real numeric scalar, or a length 1 integer vector. Length 1 integer vectors are

error codes. The following variables in public workspace DDESHARE define the supported error codes:

 XLERROR_DIVZERO←7
 XLERROR_NA ←42
 XLERROR_NAME ←29
 XLERROR_NULL ←0
 XLERROR_NUM ←36
 XLERROR_REF ←23
 XLERROR_VALUE ←15

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

468

When using the XLTABLE DATA property, Microsoft date and time data is returned to APL2 as

floating point numbers. The functions MS2TS and TS2MS can be used to convert data between APL2's

⎕TS and Microsoft's date and time formats.

To create a data object, supply server, topic and item names:

 HDATA←CREATEOBJ 'DDE DATA' 'Server name' 'Topic Name' 'Item name'
 'EVENTS' SHAREWINDOW HDATA 'DATA_EVENTS'
 'DATA' SHAREWINDOW HDATA 'DATA'
 DATA_EVENTS←2 2⍴'Server close' '→0' 'New value' 'PROCESS_NEW_VALUE'

When a data object is destroyed, AP145 retracts any variables shared with the objects' DATA property.

Command Objects

Command objects issue commands to server applications.

Command objects support the following properties:

EVENTS

The EVENTS property is used to specify APL expressions that should be executed when server events

occur. One event is supported:

'Server close'

When the 'Server close' event occurs, no further uses of the object should be attempted. Using the handle

returned from CREATEOBJ, the object should be destroyed and any variables shared with its properties

retracted.

DATA

The DATA property is used to specify the command to be executed and reference the server's return

code. Commands must be character vectors. Return codes are integer scalars from 0 to 255. Only one

variable can be shared with the DATA property of a command object.

To create a command object, supply server and topic names:

 HCOMMAND←CREATEOBJ 'DDE COMMAND' 'Server name' 'Topic Name'
 'EVENTS' SHAREWINDOW HCOMMAND 'COMMAND_EVENTS'
 'DATA' SHAREWINDOW HCOMMAND 'COMMAND'
 COMMAND_EVENTS←1 2⍴'Server close' '→0'

When a command object is destroyed, AP145 retracts any variables shared with the objects' DATA property.

Server Applications

Generally if you only need to share data with other applications, you can use only APL2 client objects.

However, if your application needs to be able to execute commands sent by other applications, then you will

need to write a server application.

Objects used in server applications automatically manage client links, terminations, and requests to read data.

When you modify items within your application, the objects automatically notify your clients that the items

have changed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

469

When clients issue requests to write data or have commands executed, events will be signaled that your

application should respond to.

Three different classes of objects are used in DDE server applications:

 Server Objects

 Topic Objects

 Item Objects

Server, topic, and item objects must be created in a hierarchy. The handle of a server object must be supplied

when creating a topic object, and the handle of a topic object must be supplied when creating an item object.

Server Objects

Server objects manage topic objects.

Server objects support no properties and signal no events.

To create a server object, supply a server name:

 HSERVER←CREATEOBJ 'DDE SERVER' 'Server name'

When a server object is destroyed, all topics within the server are destroyed.

Topic Objects

Topic objects process client requests to execute commands and write data, and manage item objects.

Topic objects support the following properties:

EVENTS

The EVENTS property is used to specify APL expressions that should be executed when client events

occur. Two events are supported:

'Execute value'

When the 'Execute value' event occurs, a variable shared with the DDE EXECUTE property can be

referenced to retrieve the command to be executed. If no APL expression is supplied to handle this

event, the server will return a Not Processed signal.

'Write value'

When the 'Write value' event occurs, a variable shared with the DDE WRITE property can be referenced

to retrieve the item name and value to be written. If no APL expression is supplied to handle this event,

the server will return a Not Processed signal.

DDE EXECUTE

A variable shared with the DDE EXECUTE property is referenced when an 'Execute value' event occurs

to retrieve the command to be executed. Commands are character vectors.

After the command has been executed, the variable is then specified with a return code. Return codes

should be 2 element integer vectors. The first element should be 0 or 1. The second element should be

from 0 to 255. If the first element is 1, then the response sent to the client is a 'Not Processed' signal. If

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

470

the first element is 0, then a successful response is sent to the client and the second element is the server

application return code.

Once a variable shared with the DDE EXECUTE property is referenced in response to an 'Execute

value' event, the server will respond to all further requests to execute commands with a 'Busy' signal

until a return code is specified.

Only one variable can be shared with the DDE EXECUTE property of a topic object.

DDE WRITE

A variable shared with the DDE WRITE property is referenced when an 'Write value' event occurs to

retrieve the the item name and value to be written. References return a two element array. The first

element is the name of an item a client has requested be written. The second element is the value to be

written.

After the write request has been processed, the variable is then specified with a return code. Return

codes should be Boolean scalars. If the value is 1, then the response sent to the client is a 'Not Processed'

signal. If the value is 0, a successful response is sent to the client.

Once a variable shared with the DDE WRITE property is referenced in response to a 'Write value' event,

the server will respond to all further requests to write data with a 'Busy' signal until a return code is

specified. If the item being written is modified during processing of the 'Write value' event, all clients

will be notified that the item has changed except for the client which sent the write request.

Only one variable can be shared with the DDE WRITE property of a topic object.

Although APL2 high level DDE client facilities do not support requests to write items which do not

already exist at the server, the DDE protocol does allow this. Your code to process 'Write value' events

should be prepared to handle requests to write items which do not exist.

If no variable is shared with the DDE WRITE property, the topic will automatically accept clients' write

requests and replace the value of the appropriate item. A 'New Value' event will be signaled for the item.

To create a topic object, supply a server object handle and a topic name:

 HTOPIC←CREATEOBJ 'DDE TOPIC' HSERVER 'Topic name'
 'EVENTS' SHAREWINDOW HTOPIC 'TOPIC_EVENTS'
 'DDE EXECUTE' SHAREWINDOW HTOPIC 'TOPIC_EXECUTE'
 'DDE WRITE' SHAREWINDOW HTOPIC 'TOPIC_WRITE'
 EV_EXEC←'Execute value' 'PROCESS_EXECUTE'
 EV_WRITE←'Write value' 'PROCESS_WRITE'
 TOPIC_EVENTS←⊃EV_EXEC EV_WRITE

When a topic object is destroyed, all clients linked to issue commands with the item are informed that the server

is terminating, all items within the topic are destroyed, and AP145 retracts any variables shared with the topic

object's DDE WRITE or DDE EXECUTE properties.

Item Objects

Item objects share data with clients.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

471

Item objects support the following properties:

DATA

The DATA property is used to specify and reference the value of the item. Any value can be specified to

a variable shared with the DATA property of a item, but non-APL clients will only be able to process

character vectors and vectors of character vectors.

STATE LINK

The STATE LINK property is used to control whether values specified to the item's DATA property are

copied to the clipboard. If the link property is set to 0, no data is copied to the clipboard. If the link

property is set to 1, each time a variable shared with the data property is specified, the value will be

copied to the clipboard and appropriate link information will also be be placed there. This enables

client's Paste Special processing to work.

Note: Setting the STATE LINK property to 1 impacts the server's performance and space requirements.

EVENTS

The EVENTS property is used to specify APL expressions that should be executed when client events

occur. One event is supported:

'New value'

The 'New value' event occurs when a client has written a new value for the item.

Note: The 'New value' event is only signaled if no variable is shared with the DDE WRITE property of

the DDE TOPIC object.

To create a item object, supply a topic object handle and an item name :

 HITEM←CREATEOBJ 'DDE ITEM' HTOPIC 'Item name'
 'DATA' SHAREWINDOW HITEM 'ITEM'
 'STATE LINK' SHAREWINDOW HITEM 'ITEM_LINK'

When an item object is destroyed, all clients sharing the item are informed that the server is terminating.

Sample Functions

Three sample functions are provided in DDESHARE which demonstrate how to build DDE server and client

applications. Their comments and coding style illustrate how to integrate the use of DDE within APL2

applications. All three functions are niladic and return no result. Each function should be run from a separate

APL2 session.

APL2_DDE_SERVER

The function is a sample DDE server. It displays shared data in a dialog window. It accepts all requests to write

the sample item. It also supports execution of commands as APL expressions. It displays received commands

and their result in a dialog window.

APL2_DDE_SERVER supports the following link information:

Server APL2 DDE Server

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

472

Topic Sample topic

Item Sample item

APL2_DDE_COMMAND

The function is a sample DDE client which issues commands to the APL2 DDE sample server. It prompts for

commands in a dialog window.

APL2_DDE_CLIENT

The function is a sample DDE client which shares data with the APL2 DDE sample server. It displays the

shared data in a dialog window.

DDE Limitations

The Microsoft implementations of DDE use 16 bits to store the size of DDE objects. If you try to pass too large

an array to a server, APL2 will display a message box stating that the DDE server application responded to an

assignment with a not processed signal. To avoid this problem, you will need to understand how data is passed

through DDE connections.

The DDE protocol specifies that clients and servers must negotiate what format will be used to pass data in

DDE connections. APL2 automatically performs these negotiations and converts between DDE formats when

necessary. APL2 provides support for three formats:

The CF_TEXT format is used to pass data between APL2 and non-APL applications other than Excel. The

CF_TEXT format is defined as a vector of single byte characters with carriage return line feed sequences

delimiting paragraphs within the vector. The vector is terminated by a hex zero character.

The XLTABLE format is used to pass data matrixes to and from Excel. The following table lists the amounts of

storage required for each type of data:

Boolean 2 bytes

Other numbers 8 bytes

Characters 1 byte for vector length and 1 byte per character

Error 2 bytes

If the array is homogeneous, the data is preceded by 8 bytes which provide the size and type of the array.

If the array is non-homogeneous, each element is preceded by 4 bytes which provide the type of the element,

and the first type bytes are preceded by 4 bytes which provide the size of the array.

For further information about the XLTABLE format, please consult the Microsoft Developer's Network

(MSDN) web site. Search for XLTABLE or the Fast Table Format.

The APL2 CDR format is used to pass data between APL2 applications. CDR format is described in Common

Data Representation. The first number returned by the 4 ⎕AT system function can be used to determine the

number of bytes required to convert an array to a CDR.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

473

DEMO124 Workspace

This workspace is designed to give the user a sample of the capabilities of the AP 124 text display processor.

The demonstration provides an online reference to the various calls to AP 124, and shows some sample

applications.

The demonstration can be run by entering:

)LOAD 2 DEMO124
 DEMO

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

474

DEMO144 Workspace

Note: This workspace is provided only on Unix systems.

The DEMO144 workspace contains some sample programs that make use of the AP 144 X Window System

interface auxiliary processor.

Chaos - Example of Drawing Lines and Points

Chaos

The Chaos function is an example of how to draw lines and points by using X Window System calls.

The program redraws the image whenever an Expose event or a MousePress event is detected. To terminate the

function, position the mouse pointer in the Chaos window and press the "q" key.

The function displays an example of chaotic behavior. The algorithm implemented in the function is very

simple:

1. Draw a triangle.

2. Select one of the three corners as a starting point.

3. Select one of the three corners at random, move half the distance from the current location toward this

corner, and draw a point. Keep repeating this step ad infinitum.

The expectation is that the surface is randomly covered by the points given a long enough timespan - but

instead, a strange figure is created.

In fact, no matter what the starting point is (either inside or outside the triangle), the same figure ultimately

results. With the Chaos function, you can try this out. You can set the starting point by simply moving the

mouse pointer to any location within the window and pressing a mouse button. This is then the starting point.

Towers of Hanoi - A Dynamic X Window System Example

Hanoi 'parms'

The purpose of Hanoi is to show that an APL2 application can drive an interactive graphics program displayed

on an X Window System workstation.

This function is a graphical version of the classic example of recursive programming. The underlying goal of

the task is to move a series of differently-sized blocks from an originating tower to a target tower, using a

temporary tower as needed. Only one block can be moved at a time, and a block must not be placed on top of

another block that is smaller than itself. The parameters are specified in a C-like syntax:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

475

-a Solve the problem automatically.

-d

host:disp
Workstation display address.

-i Solve the problem interactively.

-n blocks Number of blocks in the problem. Up to eight blocks can be specified; five blocks is the default.

-r Reverse background and foreground.

-s speed
The block-move speed (when auto-solve is used). The speed parameter must be in the range 1-1000

and defaults to 250.

Each of these options must be specified with the leading -, if used. The default settings are equivalent to the

call:

 Hanoi '-a -n 5 -s 250'

Initially, the towers are drawn, and the specified number of blocks placed on the leftmost tower. The other two

towers are empty.

If the -a auto-solve option is being used, the blocks start to move from tower to tower, progressing toward the

final solution, which is to place the blocks on the right-most tower in the original stacking order. When this has

been achieved, the program pauses briefly, and then reverses to the original state.

The alternative to the auto-solve option is the interactive mode given by the -i option. The user has the

responsibility of solving the problem. You do so by using the mouse to grasp a block, moving it to another

tower, and dropping it on the tower. To grasp a block, move the mouse-pointer to the block and press (and hold)

any mouse button; to place it on a new tower, move the mouse-pointer (and the block) to the new tower, and

release the button. Only top blocks can be grabbed, and the function disallows cheating (for example, larger

blocks cannot be placed on smaller blocks). Any invalid move results in a beep.

In either case, moving the mouse pointer to the Hanoi window and pressing the "q" key closes the window and

terminates the function. Any other key is ignored.

 ⍝ Autosolve problem at a reasonably fast pace
 Hanoi '-a -s 100'
 ⍝ Manual solve with 3 blocks; reverse colors
 Hanoi '-i -n 3 -r'

The function was inspired by the xhanoi.c sample X Window System program created by Douglas Earl from

The University of Michigan.

HelloWorld - The Standard X Window System Sample Program

HelloWorld

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

476

This is the "standard" sample program that comes with all windows-based environments. It shows how much

work is required to display a simple message (Hello, World.) on the display and illustrates the basic layout of

such a program.

There are no parameters for this function, and it has no explicit result.

HelloWorld creates a new window, displays it on the screen, and writes the message "Hello, World." to the

window. It then waits for events to occur. It responds to the following events:

MousePress

Moving the mouse pointer to the HelloWorld window and pressing any of the mouse buttons writes

the word "Hi!" at the position of the mouse pointer.

KeyPress

Moving the mouse pointer to the HelloWorld window and pressing any alphanumeric key causes the

key character to be written in the window at the position of the mouse pointer. Pressing the "q" key

closes the window and terminates the function.

Expose

Redraws the window using the initial layout and message. Any text written to the window as a result of

either of the two actions mentioned above is lost.

A full tutorial on the operation of this function is given in The HelloWorld Function.

Xfonts - Another Sample X Window System Program

Xfonts

This sample program creates a window on the default X Window System screen, and prints a line of text using a

variety of fonts.

Expose, Keyboard, and Mouse-button events are enabled. If the window is Exposed (for example, by being

resized, moved, or uncovered), it redraws itself. If it receives a Keyboard event, it types the character pressed on

a line following the last font displayed.

The sample program can be terminated by pressing any of the mouse buttons.

There are no parameters for this function, and no explicit results of calling the function. Upon termination, it

writes a message to the screen:

 Xfonts
Bang!!!

Xsamp1 - A Sample X Window System Program

Xsamp1

augx144.htm#hiwrld

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

477

This sample program creates a window on the default X Window System screen, displays a window for 10

seconds, and then erases the window again.

There are no parameters for this function, and no explicit results of calling the function. The function, however,

writes a couple of lines to the screen through APL2 ⎕ output.

A window appears on the X Window System display, remains there for approximately ten seconds, and is

closed automatically.

 Xsamp1
Hold for 10 seconds ...
...Okay, back again

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

478

DEMO145 Workspace

Note: This workspace is not provided on Unix systems.

This workspace contains functions that demonstrate the use of AP 145, the GUI services processor.

The demonstrations illustrate how to use the dialog functions from the GUITOOLS workspace to process

dialogs, and how to use the APL2 print object cover functions from GUITOOLS.

The main demonstration can be run by entering:

)LOAD 2 DEMO145
 DEMO

The PRINT function prints a character matrix. It displays a print selection dialog and then a print cancel dialog

as the matrix is printed.

This workspace also contains a HELP145 function which displays the online help for AP 145.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

479

DEMO207 Workspace

This workspace is designed to give the user a sample of the capabilities of the Universal Graphics auxiliary

processor, AP 207.

The demonstration provides an online view of text characters in various sizes and orientations. It displays

various geometric shapes that can be used in business graphics along with the possible colors and symbols

available. An image is also displayed as part of the demonstration.

The demonstration can be run by entering:

)LOAD 2 DEMO207
 DEMO

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

480

DEMOJAVA Workspace

This workspace contains demonstration and utility functions for Associated Processor 14, the Calls to Java

processor.

The workspace contains the following demonstration functions:

DEMO_JAVA Demonstrate calling Java from APL2

DEMO_HASH Demonstrate using the Java Hashtable class

DEMO_SWT Demonstrate using the Eclipse Standard Widget Toolkit

DEMO_THREAD Demonstrates running a slave APL2 interpreter in a separate thread

The workspace contains the following utility functions:

APL2OBJECT_TO_ARRAY Extract the array value of an Apl2object

APL2XML Convert an APL array to XML

FORMAT_OBJECT Format an object for printing

JAR_READ Read a file from a JAR file

JAVA_PRINT Print data

JAVA_PROPERTY Set or get the value of a Java system property

JAVAMAIL_SEND Send an email using the JavaMail API

P14_ASSOC Associate a name with Processor 14

P14_CALL Call a Java method

P14_GET Reference a Java field

P14_MAKE Instantiate an instance of a class

P14_SET Specify a Java field

XML2APL Convert XML to an APL array

For further information, consult the workspace variables DESCRIBE, HOW, and HOW_XML.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

481

DISPLAY Workspace

This workspace contains DISPLAY, DISPLAYC, and DISPLAYG, which are functions useful in showing the

structure of nested and mixed arrays.

Z←DISPLAY X
Z←DISPLAYC X
Z←DISPLAYG X

Z is a character matrix representing the array X.

DISPLAY and DISPLAYG use box characters. DISPLAYG is identical to DISPLAY and is included for

compatibility with the DISPLAY workspace distributed with APL2 on mainframe systems. DISPLAYC uses

characters that display on all implementations. This is functionally equivalent to the DISPLAY function in the

APL2 mainframe DISPLAY workspace.

The following characters are used to convey shape information:

→ or ↓ Indicates a dimension of at least one.

⊖ or ⌽ Indicates an axis of length zero. If an array is empty, its prototype is displayed.

(None of the above) Indicates no dimension (a rank 0 array).

The following characters are used to convey type information:

~ Indicates numeric.

+ Indicates mixed.

∊ Indicates nested.

_ Indicates a scalar character that is at the same depth as non-scalar arrays.

(None of the above) Indicates a character array that is not a simple scalar.

To use each of the DISPLAY functions:

)PCOPY 1 DISPLAY DISPLAY DISPLAYC DISPLAYG
SAVED ...
 (DISPLAY ⍳5) (DISPLAYC ⍳5) (DISPLAYG ⍳5)
 ┌→────────┐ .→--------. ┌→────────┐
 │1 2 3 4 5│ │1 2 3 4 5│ │1 2 3 4 5│
 └~────────┘ '~--------' └~────────┘
 X←⊂⍳5
 (DISPLAY X) (DISPLAYC X) (DISPLAYG X)
 ┌─────────────┐ .-------------. ┌─────────────┐
 │ ┌→────────┐ │ │ .→--------. │ │ ┌→────────┐ │
 │ │1 2 3 4 5│ │ │ │1 2 3 4 5│ │ │ │1 2 3 4 5│ │
 │ └~────────┘ │ │ '~--------' │ │ └~────────┘ │
 └∊────────────┘ '∊------------' └∊────────────┘
 X←(⊂⊂⍳4)(2 2⍴'ABCD')(2 2⍴'42' 'IS' 'THE' 'ANSWER')
 DISPLAY X
 ┌→──┐
 │ ┌───────────────┐ ┌→─┐ ┌→───────────────┐ │

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

482

 │ │ ┌───────────┐ │ ↓AB│ ↓ ┌→─┐ ┌→─┐ │ │
 │ │ │ ┌→──────┐ │ │ │CD│ │ │42│ │IS│ │ │
 │ │ │ │1 2 3 4│ │ │ └──┘ │ └──┘ └──┘ │ │
 │ │ │ └~──────┘ │ │ │ ┌→──┐ ┌→─────┐ │ │
 │ │ └∊──────────┘ │ │ │THE│ │ANSWER│ │ │
 │ └∊──────────────┘ │ └───┘ └──────┘ │ │
 │ └∊───────────────┘ │
 └∊──┘
 ⍴X
 3
 ⍴¨X
 2 2 2 2
 DISPLAY ⍴¨X
 ┌→────────────────┐
 │ ┌⊖┐ ┌→──┐ ┌→──┐ │
 │ │0│ │2 2│ │2 2│ │
 │ └~┘ └~──┘ └~──┘ │
 └∊────────────────┘
 DISPLAYC X
 .→--.
 │ .---------------. .→-. .→---------------. │
 │ │ .-----------. │ ↓AB│ ↓ .→-. .→-. │ │
 │ │ │ .→------. │ │ │CD│ │ │42│ │IS│ │ │
 │ │ │ │1 2 3 4│ │ │ '--' │ '--' '--' │ │
 │ │ │ '~------' │ │ │ .→--. .→-----. │ │
 │ │ '∊----------' │ │ │THE│ │ANSWER│ │ │
 │ '∊--------------' │ '---' '------' │ │
 │ '∊---------------' │
 '∊--'
 ⍴X
 3
 ⍴¨X
 2 2 2 2
 DISPLAYC ⍴¨X
 .→----------------.
 │ .⊖. .→--. .→--. │
 │ │0│ │2 2│ │2 2│ │
 │ '~' '~--' '~--' │
 '∊----------------'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

483

EDIT Workspace

This workspace contains two alternative editors.

 EDIT, a simple fullscreen editor.

 EDITOR_2, a fullscreen editor compatible with the mainframe editor)EDITOR 2

EDIT

This is a simple, limited-function APL2 full-screen editor for editing defined functions and operators. It uses the

text display auxiliary processor, AP 124.

This editor can be used to create new defined functions or operators and to modify existing ones.

To edit an APL2 function or operator with the editor, copy the EDIT workspace into your active workspace

with the command:

)PCOPY 1 EDIT EDIT

If the name of the function you want to create or edit is FN1, enter:

 EDIT 'FN1'

After you invoke the editor, a window pops up and the function is displayed, or as much of it as can fit into the

available screen area. One line is reserved for definitions of function keys.

You can now move the cursor, using the four arrow keys on the numeric keypad, change any character in the

lines displayed, insert characters (with the Ins key), delete characters (with the Del key), delete to the end of a

line (with the Ctrl-End key combination), delete to the beginning of a line (with the Ctrl-Home key

combination), and move the cursor to the beginning of the next line (by pressing the Tab key). Also, you can

use the function keys as indicated in the lowest line of the screen. The full purpose of these, and other special

keys, is described below:

F3 QUIT Cancels function definition. No changes are kept. The function remains as it was at the

beginning of the edit session. If you have made changes, you are prompted to confirm the

intention to quit.

F4 FILE Ends function definition. All modifications to the function are kept and the new definition

of the function is established in the active workspace. If this process fails, the bottom line of

the display is updated with an error message to indicate the line number found to be in

error.

F5 TOP Displays the first or top page of the function.

F6 BOT Displays the last or bottom portion of the function, with room to add additional lines.

F7 LINE Clears the screen and displays only the line pointed to by the current cursor position. You

can use this to edit lines longer than the screen width. The maximum line length this

method allows is 800 characters.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

484

F8 INS Inserts a new line after the current cursor position.

Shift-F8 DEL Deletes the line pointed to by the cursor.

F9 EXEC Executes the line pointed to by the cursor. The line is executed under the control of ⎕EA, so

that any error that occurs does not suspend the execution of EDIT.

F10 COPY Copies a line. Move the cursor to the line you want to be copied, and press F10. The F10

definition on the bottom line of the screen is now highlighted. The system is now in "copy"

state. Then move the cursor to the line after which the indicated line is to be copied

(possibly on another page). Finally, press F10 again to cause the copy to take place. The

highlighting of the F10 definition is then removed, and the system is no longer in "copy"

state.

All other function keys are ignored.

Other Special Keys:

Tab Moves the cursor to the beginning of the next line.

Shift-Tab Moves the cursor to the beginning of the preceding line.

PageDown Displays the next page.

PageUp Displays the preceding page.

End Moves the cursor to the end of the current line (unless that line is wider than the screen).

Home Moves the cursor to the start of the current line.

Enter Moves the cursor down one line at a time. If the cursor is in the last displayed line when this

key is pressed, the whole function is scrolled up one line.

Esc Provides a limited "UNDO" facility. All changes made since the last press of the Enter key or a

function key are removed, and the changed lines revert to their original state. Esc does not

interrupt execution of EDIT.

Locked functions or operators cannot be edited with this function.

If you use EDIT to edit an APL2 function that is already suspended in the active workspace, you create a new

version of the function. The suspended version remains unaltered, but disappears once execution is complete, or

the state indicator is cleared.

You can also use this editor to copy a function to a new name, leaving the old version intact. Just invoke EDIT

for the original function, change the name in the header line, and press FILE (F4).

EDITOR_2

EDITOR_2 is functionally equivalent to Editor 2 (available through)EDITOR 2) on APL2 mainframe

systems. Editor 2 is fully described in APL2 Programming: Language Reference.

To use this function, copy it into the active workspace, and then invoke it with a right argument of the name of

the object to be edited:

)PCOPY 1 EDIT EDITOR_2
 EDITOR_2 'object_name'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

485

This is equivalent to entering the mainframe APL2 commands:

)EDITOR 2
 ∇object_name

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

486

EXAMPLES Workspace

This section describes the EXAMPLES workspace.

 Introduction

 Mathematical Calculations

 Miscellaneous Utility Functions

 The Group GPAPL2

Introduction

The functions in this workspace are examples of ways to use APL2 in solving problems. The functions are brief,

often no more than one or two statements, but they illustrate some of the ways in which APL2, with relatively

few statements, can do calculations that require many more statements in other programming languages. These

functions are not necessarily the best way, or the only way, to solve the problem. Rather, they illustrate ways to

use APL2 that are not always obvious. We encourage you to examine the listings of all functions and operators

in the workspace. Some of them are very simple.

The examples fall into three categories: scientific, miscellaneous, and special examples of the new capabilities

of APL2. There are also a few of interest to programmers, such as decimal-hexadecimal conversions and

hexadecimal arithmetic.

Mathematical Calculations

 ASSOC - Associativity

 BIN - Binomial coefficients

 COMB/FC/LFC - Combinations

 GCD - Greatest common divisor

 HILB - Hilbert matrix

 PALL/PER/PERM - Permutations

 PO/POL/POLY/POLYB - Polynomials

 TRUTH - Truth tables

 ZERO - Roots of a function

ASSOC - Associativity

Z←ASSOC M

The function ASSOC tests any putative group operation table M (assuming square matrix M with group elements

in ⍳↑⍴M) for associativity and yields a value of 1 if it is associative, 0 otherwise.

 MULTTABLE←5 5⍴(6⍴1),(4⍴2),(⍳3),(2⍴3),(⍳4),4,⍳5
 MULTTABLE
1 1 1 1 1
1 2 2 2 2
1 2 3 3 3

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

487

1 2 3 4 4
1 2 3 4 5
 ASSOC MULTTABLE
1
 MULTTABLE[3;3]←1
 MULTTABLE
1 1 1 1 1
1 2 2 2 2
1 2 1 3 3
1 2 3 4 4
1 2 3 4 5
 ASSOC MULTTABLE
0

BIN - Binomial coefficients

Z←BIN N

The function BIN produces all binomial coefficients up to order N.

 BIN 7
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
1 3 3 1 0 0 0 0
1 4 6 4 1 0 0 0
1 5 10 10 5 1 0 0
1 6 15 20 15 6 1 0
1 7 21 35 35 21 7 1

COMB/FC/LFC - Combinations

Z←COMB N
Z←FC N
Z←LFC N

The function COMB uses recursive definition to produce a 2!N by 2 matrix of all possible pairs of elements

from ⍳N.

 COMB 5
1 2
1 3
2 3
1 4
2 4
3 4
1 5
2 5
3 5
4 5

The function FC shows an alternative method that yields the same pairs but in a different order.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

488

 FC 5
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

The function LFC uses FC to generate letter pairs.

 LFC 5
AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

GCD - Greatest common divisor

Z←L GCD R

The function GCD uses the Euclidean algorithm to produce the greatest common divisor.

 30 GCD 40
10
 GCD/ 30 40
10
 GCD/ 30 40 45
5
 GCD/ 30 40 39 45
1
 GCD/ 30 42 39 45
3

HILB - Hilbert matrix

Z←HILB N

The function HILB produces a Hilbert matrix of order N.

PALL/PER/PERM - Permutations

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

489

Z←PALL N
Z←PER N
Z←PERM N

The function PALL produces the matrix of all permutations of order N. Its subfunction PERM produces the B-th

permutation of order N.

The function PER uses recursive definition. It produces all permutations by a method much faster than that used

in the function PALL. The permutations are not produced in the same order as those produced by PALL.

 PALL 3
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
 PER 3
1 3 2
2 3 1
1 2 3
2 1 3
3 2 1
3 1 2

PO/POL/POLY/POLYB - Polynomials

Z←C POLY X ⍝ Scalar right argument only
Z←C POL X ⍝ Scalar right argument only
 ⍝ (uses inner product)
Z←C POLYB X ⍝ Scalar right argument only
 ⍝ (uses base value)
Z←C PO X ⍝ Scalar or vector right argument

The functions POLY, POL, PO, and POLYB each evaluate a polynomial or polynomials whose coefficients are

determined by the left argument, and whose point or points of evaluation are determined by the right argument.

The coefficients are in ascending order of associated powers.

 ¯1 0 1 PO ¯2 ¯1 0 1 2
3 0 ¯1 0 3
 ¯1 0 1 POL 2
3
 ¯1 0 1 POLY 1
0
 ¯1 0 1 POLYB ¯1
0

To find the zeros of polynomials, see the POLYZ function from the MATHFNS workspace, described in Roots

of Polynomials.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

490

TRUTH - Truth tables

Z←TRUTH N

The function TRUTH produces the matrix of arguments of the truth table of N logical variables.

 TRUTH 3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

ZERO - Roots of a function

Z←TOL (F ZERO) R

The operator ZERO uses the bisection method to determine, within a tolerance TOL, a root of the function F

lying between the bounds R[1] and R[2]. F(R[1]) and F(R[2]) must have opposite signs. ZERO should

be applied only to continuous functions.

 ⎕FX 'Z←SIN X' 'Z←1○X'
SIN
 .1 SIN ZERO ¯1 1
0
 .1 SIN ZERO 1 4
3.0625
 .001 SIN ZERO 1 4
3.141601563

Miscellaneous Utility Functions

 PACK/UNPACK - Illustration of Base and Representation

 DEC2HEX/HEX2DEC/HEX - Hexadecimal arithmetic and conversions

 SORTLIST - Sort with collating sequence

 TIME - Provide CPU time used

PACK/UNPACK - Illustration of Base and Representation

Z←PACK X
Z←UNPACK X

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

491

The functions PACK and UNPACK illustrate the use of the ⊤ and ⊥ functions in transforming between a four-

number encoding of SERIAL NUMBER (1 to 9999), MONTH, DAY, and YEAR, and a single number

encoding of the same data.

 PACK 117 1 1 84
4315283
 UNPACK 4315283
117 1 1 84

DEC2HEX/HEX2DEC/HEX - Hexadecimal arithmetic and conversions

Z←DEC2HEX R
Z←HEX2DEC R
Z←L(F HEX)R

The functions DEC2HEX and HEX2DEC work with nonnegative hexadecimal numbers represented as strings of

characters selected from '0123456789ABCDEF'. The HEX operator performs an arithmetic function F on

hexadecimal arguments, and returns a (character) hexadecimal result. The arguments presented to a function

derived by the HEX operator must have a depth no greater than two.

DEC2HEX Converts decimal to hexadecimal

HEX2DEC Converts hexadecimal to decimal

+ HEX Performs hexadecimal addition

- HEX Performs hexadecimal subtraction

... and so on

 'FF' +HEX '1'
100
 (⍳HEX '5')∘.×HEX(⍳HEX 'C')
1 2 3 4 5 6 7 8 9 A B C
2 4 6 8 A C E 10 12 14 16 18
3 6 9 C F 12 15 18 1B 1E 21 24
4 8 C 10 14 18 1C 20 24 28 2C 30
5 A F 14 19 1E 23 28 2D 32 37 3C

SORTLIST - Sort with collating sequence

Z←SORTLIST R

R is a character matrix. Z is R with its rows sorted according to the collating sequence defined in DCS, a global

variable.

TIME - Provide CPU time used

Z←TIME

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

492

The function TIME yields the amount (in minutes, seconds, and milliseconds) of CPU time used since its

previous execution. It is useful in measuring the execution times of other functions. The global variable TIMER

is assigned the value of the cumulative CPU time at each execution of the function TIME.

The Group GPAPL2

The group GPAPL2 consists of various functions and operators designed to show some of the capabilities of

APL2.

 Workspace Information Functions

 Miscellaneous Functions

 Operators to Conform Arguments

 Operators for Debugging

 Operators to Handle Depth

 Operators for Program Control

 Miscellaneous Operators

Workspace Information Functions

EXAMPLE R

This function executes the examples found in the leading comments of the program named in R.

EXAMPLES

This function executes the examples found in the leading comments of all the programs in the workspace.

Miscellaneous Functions

Z←L IOTAU R

This is the Find Index function from an early experimental version of APL2. R and L may be any arrays. Z is an

integer matrix containing the starting positions (in row major order) where pattern R begins in the array L.

 ⍴'A' IOTAU 'A'
0 1
 'ABABABA' IOTAU 'AB'
1
3
5
 1 (2 3) (4 5) 2 3 4 5 IOTAU 2 3
4
 L←4 5⍴'ABCABA'
 L
ABCAB
AABCA

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

493

BAABC
ABAAB
 L IOTAU 'BA'
3 1
4 2
 L IOTAU 2 1⍴'BA'
1 2
1 5
2 3
3 1
3 4

Z←L REPLICATE R
Z←L EXPAND R

These functions are identical to their primitive counterparts, Replicate and Expand, respectively represented by

"/" and "\", except that the primitive versions are operators, so you cannot apply operators to them. The

defined REPLICATE and EXPAND really are functions, so you can apply operators to them.

 (1 0 1)(0 3) REPLICATE¨ 'ABC' 'DE'
 AC EEE
 REPLICATE/ 5 '*'

 (1 0 1)(0 1 0) EXPAND¨ (2 4) 6
 2 0 4 0 6 0

Z←L ENLISTA R

Returns (in Z) the array L with each item of the enlist of L (∊L) replaced by the corresponding item from R. By

using this, you can replace the selective specification (∊L)←R with L←L ENLISTA R.

Z←EXPUNGE NL

Expunges the objects listed in NL. NL may be a character matrix with one name per row, or a character vector

with names separated by blanks. If a name is enclosed in parentheses, it is assumed to be the name of a

character array (rank not greater than 2) containing a list of objects to be expunged. Unlike the)ERASE system

command, this expunges the local copy of an object that is localized in a pendent or suspended function or

operator.

Z←REP R

Z is a "representation" of the array, function, or operator named in R. Specifically, Z is ⍎R or ⎕CR, whichever is

appropriate. This is an example of the ELSE operator in this group.

Z←TYPE R

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

494

Z is a scalar zero if R is numeric, and a scalar blank if it is character. This function is compatible with a VS APL

library function of the same name. It is not meant to be applied to mixed or nested arguments.

Z←UNIQUE R

R is a vector. Z is a vector containing the elements of R with duplicates eliminated.

 UNIQUE 'THE ANTS WERE HERE'
THE ANSWR
 UNIQUE 'GUFFAW' 17 (⍳4) 'GUFFAW'
 GUFFAW 17 1 2 3 4

Operators to Conform Arguments

Z←L (F CR) R ⍝ Conform Ranks
Z←L (F PAD) R
Z←L (F TRUNC) R ⍝ TRUNCate

The CR operator "conforms the ranks" of L and R and then applies the function F. The PAD operator conforms

the axes of L and R by overtake. The TRUNC operator conforms the axes of L and R by undertake.

 (4 4⍴'WE THEYUS OURS') ^.(=PAD) ⍉ 2 3⍴'WE OUR'
1 0
0 0
0 0
0 0
 (4 4⍴'WE THEYUS OURS') ^.(=TRUNC) ⍉ 2 3⍴'WE OUR'
1 0
0 0
0 0
0 1
 (2 3 4⍴⍳24) +PAD CR 5 6⍴100×⍳30
 101 202 303 404 500 600
 705 806 907 1008 1100 1200
1309 1410 1511 1612 1700 1800
1900 2000 2100 2200 2300 2400
2500 2600 2700 2800 2900 3000
 13 14 15 16 0 0
 17 18 19 20 0 0
 21 22 23 24 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

Operators for Debugging

Z←L (F TRACE) R
Z←(F TRACE) R

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

495

Traces the execution of F. It is most useful when the derived function is passed to another operator. Every time

F is called, the derived function displays its argument(s) and the result.

 +TRACE\ 1 4 9 ⍝ Expression as entered
1 4 ⍝ TRACE output
5 ⍝ &colon.
4 9 ⍝ &colon.
13 ⍝ &colon.
1 13 ⍝ &colon.
14 ⍝ TRACE output
1 5 14 ⍝ Final result
 2 +TRACE\ 1 2 3 4 ⍝ Expression as entered
1 2 ⍝ TRACE output
3 ⍝ &colon.
2 3 ⍝ &colon.
5 ⍝ &colon.
3 4 ⍝ &colon.
7 ⍝ TRACE output
3 5 7 ⍝ Final result

Z←L (F TRAP) R
Z←(F TRAP) R

The derived function (F TRAP) is just like F, except that if an error occurs during the execution of F, the

enclosed error message becomes the result.

 2 ÷TRAP 0
 DOMAIN ERROR
 L F R
 ^
 ⍴⊃2 ÷TRAP 0
3 12

Operators to Handle Depth

Z←L (F EL) R ⍝ Each Left
Z←L (F ER) R ⍝ Each Right
Z←(F ER) R

These operators are like the Each operator (¨), except that EL applies Each only on the left argument, and ER

applies Each only on the right argument.

 (2 2 3)(4 3)(2 6) ⍴EL ⍳12
 1 2 3 1 2 3 1 2 3 4 5 6
 4 5 6 4 5 6 7 8 9 10 11 12
 7 8 9
 7 8 9 10 11 12
 10 11 12
 2 3 ⍴ER 4 5 6
 4 4 4 5 5 5 6 6 6
 4 4 4 5 5 5 6 6 6

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

496

Z←L (F PL) R ⍝ Pervasive Left
Z←L (F PR) R ⍝ Pervasive Right
Z←(F PR) R

PL causes F to be treated as pervasive down to depth 1 (simple arrays) on its left argument, and PR causes F to

be treated as pervasive down to depth 1 on its right argument.

 1 (2 3)⍴PL ⍳6
 1 1 2 3
 4 5 6
 3 ⍴PR 1,⊂2,⊂3 4
 1 1 1 2 2 2 3 4 3
 (⍴PR 'A' 'BC' ('DEF' 'HIJK')) ⍴ PL '⎕'
 ⎕ ⎕⎕ ⎕⎕⎕ ⎕⎕⎕⎕

Operators for Program Control

Z←C (F ELSE G) R

If C is 1, then Z is F R. If C is 0, then Z is G R.

Z←(F IF C) R

If C is 1, then Z is F R. Otherwise, Z is R.

Miscellaneous Operators

Z←L (F AND G) R
Z←(F AND G) R

Applies two functions to the same argument(s).

 3 +AND× 5
8 15
 +AND- 5
5 ¯5
 (⍳4) (∘.×)AND(∘.+) (⍳4)
 1 2 3 4 2 3 4 5
 2 4 6 8 3 4 5 6
 3 6 9 12 4 5 6 7
 4 8 12 16 5 6 7 8

Z←L (F COMMUTE) R

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

497

Switches the arguments of the function to which it is applied.

 0.5 *COMMUTE 9
3

Z←L (F FAROUT) R ⍝ FAr Reaching OUTer product

Applies outer product to all levels of the arrays L and R.

 (10 20)(30 40 50) +FAROUT (1 2)(3 4 5)
 11 12 13 14 15
 21 22 23 24 25
 31 32 33 34 35
 41 42 43 44 45
 51 52 53 54 55

Z←L (F NOP) R
Z←(F NOP) R

The derived function (F NOP) is just F. This operation is useful for separating the array right operand of an

operator from the right argument of the derived function. It sometimes eliminates one layer of parentheses.

 ⍝ Compare with the next example.
 ⍴ POWER 2 NOP 2 3 4⍴⍳24
3

Z←(F POWER N) R

Applies F monadically N times.

 (⍴ POWER 2) 2 3 4⍴⍳24
3

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

498

FILE Workspace

The FILE workspace has been designed to help you work with operating system files.

There are four groups of functions in the FILE workspace:

 AP 210 Group - functions for accessing files with AP 210

 AP 211 Group - REBUILD211 and TRYLOAD

 Delta Group - ∆FM and ∆FV

 Transfer Group - IN, PIN, and OUT

AP 210 Group

The functions in this group aid in manipulating operating system files. They allow either sequential or random

access, using fixed or variable-length records. They use the file auxiliary processor, AP 210.

This group of functions enables you to create a file, write into it, and read from it. To write into a file, you

WOPEN an old or new file, and WRITE data into it. You then CLOSE the file to save it on disk. If you only want

to read data from an old file, without writing any more data into it, you OPEN the file and READ records, either

randomly or sequentially.

To use the functions described here, you can copy them from the FILE workspace into your active workspace

by entering:

)PCOPY 2 FILE (GPAP210)

 Terminology

 OPEN - Open a file for read/only

 WOPEN - Open a file for read/write

 CLOSE - Close a file

 EBCDIC - Set up an EBCDIC translation table

 SIZE - Return file size in bytes

 READ - Read a fixed-length record

 READD - Read designated bytes

 READV - Read a variable-length record

 READVS - Read a record, stripping EOL

 WRITE - Write a fixed-length record

 WRITED - Write designated bytes

 WRITEV - Write a variable-length record

 APPENDFILEV - Append to a variable-length record file

 COMPARE - Compare two files

 DELETE - Delete a file

 RENAME - Rename a file

 READFILEV - Read a file of variable-length records

 TYPE - Display the contents of a file

 WRITEFILEV - Write a file of variable-length records

 Auxiliary Functions and Variables

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

499

 Example of Use

Terminology

The following common terms and definitions are used in the descriptions of the syntax of the functions in this

group:

sequential access

to a file occurs when the first record of the file (record 0) is accessed by the first read or write command

immediately after the OPEN or WOPEN; the second record (record 1) is accessed on the next command,

and so on.

The READ, READD, READV, READVS, WRITE, WRITED, and WRITEV functions work from the same

access point, meaning that the access point is advanced sequentially to the next record each time any of

these commands is issued.

Brackets []

indicate that a parameter is optional.
file_no

is a positive integer that you define for future reference to a file when you open it.
filespec

must be in the following syntax: ["][path]filename["]

The surrounding quotes are required only if the file identification contains the comma character, to

distinguish commas in the file identification from commas in the AP 210 command string.
code

can be any of the following characters:

A (APL) The records in the file are APL2 objects and their headers in APL2 internal form. Arrays

of arbitrary rank and depth can be stored and recovered. Different records of a file can contain

objects of different types (for example, characters, integers, or real numbers). The number of

bytes occupied by the object includes APL2 header information as well as the actual data.

B (Bool) The records in the file contain strings of bits with no header (packed eight bits per byte).

The equivalent APL2 object is a Boolean vector. In this case, all records must be equal to the

selected record length.

C (Char) The contents of the record is a string of characters in ASCII, with no header. All records

must be equal to the selected record length, with each character occupying one byte. Variable-

length records are not supported.

D (ASCII) The contents of the record is a string of characters in ASCII code, with no header. Each

character occupies one byte. Variable-length records are supported.

T (Translate) The contents of the record is a string of characters, with no header, translated

according to the AP 210 translate table defined as described in Establishing the AP 210 Translate

Table. Each character occupies one byte. Variable-length records are supported.

Note: Errors encountered during the execution of these functions can cause a message containing an AP 210

return code to be displayed. The meanings of these return codes are listed in AP 210 Return Codes.

OPEN - Open a file for read/only

[file_no] OPEN 'filespec[,code]'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

500

This function opens the specified file for read-only access.

If no file by the name indicated in filespec exists, an error results; see AP 210 Return Codes for a list of all

possible return codes.

If code is omitted, A (APL) is assumed.

If file_no is omitted, 1 is assumed.

OPEN creates three global variables, with the following names:

'CZ',⍕:file_no Control shared variable

'DZ',⍕:file_no Data shared variable

'EZ',⍕:file_no File size in bytes

Issuing OPEN on a file_no without having closed a file previously opened using that same number causes

the open file to be closed, and a new open to be issued according to the new request.

WOPEN - Open a file for read/write

[file_no] WOPEN 'filespec[,code]'

This function opens the specified file for read/write access.

If no file by the name indicated in filespec exists, a new file is created.

If code is omitted, A (APL) is assumed.

If file_no is omitted, 1 is assumed.

WOPEN creates three global variables, with the following names:

'CZ',⍕file_no Control shared variable

'DZ',⍕file_no Data shared variable

'EZ',⍕file_no File size in bytes

Issuing WOPEN on a file_no without having closed a file previously opened using that same number causes

the open file to be closed, and a new open to be issued according to the new request.

CLOSE - Close a file

CLOSE file_no

This function closes a file that has been opened with OPEN or with WOPEN. The previously assigned file_no

is now available for reuse.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

501

If you OPEN or WOPEN a file_no without having closed a file previously opened using that same number,

the open file is closed, and a new open issued according to the new request.

EBCDIC - Set up an EBCDIC translation table

EBCDIC file_no

The EBCDIC function defines an APL2-EBCDIC translation table to AP 210. This can be used after opening an

AP 210 file with code T.

file_no must match the number you specified on OPEN or WOPEN.

SIZE - Return file size in bytes

Z←SIZE file_no

This function returns the size of a file when it was opened.

SIZE can only be used after the file has been successfully been opened with OPEN or WOPEN.

file_no must match the number you specified on OPEN or WOPEN.

READ - Read a fixed-length record

Z←READ file_no [record_no [record_size]]

This function reads fixed-length records from a data file that was opened using OPEN or WOPEN.

file_no must match the number that you specified on OPEN or WOPEN.

Random access is designated by specifying a particular record number in record_no.

If record_no is not specified, the default is sequential access to the file.

record_size indicates the number of bytes in each record. If record_size is not specified, the default is

the record_size specified on the previous read or write operation. If record_size is not specified on the

first read or write operation, the default is 128 bytes.

READD - Read designated bytes

Z←READD file_no [byte_no [record_size]]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

502

This function reads a fixed number of bytes from a data file that was opened using OPEN or WOPEN.

file_no must match the number that you specified on OPEN or WOPEN.

Random access is designated by specifying a particular byte_no position in the file (0≤byte_no).

If byte_no is not specified, the default is sequential access to the file.

record_size indicates the number of bytes to be read. If record_size is not specified, the default is the

record_size specified on the previous read or write operation. If record_size is not specified on the

first read or write operation, the default is 128 bytes.

READV - Read a variable-length record

Z←READV file_no [record_no [scan_length]]

This function reads a variable-length record from a data file that was opened using OPEN or WOPEN. This

function can be used only if the file was opened with codes A, D, or T.

file_no must match the number that you specified on OPEN or WOPEN.

Random access is designated by specifying a particular record number in record_no.

If record_no is not specified, the default is sequential access to the file.

For files opened with code D or T, scan_length defines the maximum distance for which AP 210 will scan

the file for the end-of-record delimiter (linefeed). It should be set to the maximum record length that you expect

to read. If scan_length is not specified, the default is the scan_length specified on the previous read or

write operation. If scan_length is not specified on the first read or write operation, the default is 128 bytes.

For files opened with code A, scan_length is ignored.

If the file was opened with codes D or T, the record returned by READV includes the end-of-record delimiter(s).

On PC systems, this is normally two characters - carriage return and linefeed. On Unix systems, this is normally

a single linefeed.

READVS - Read a record, stripping EOL

Z←READVS file_no [record_no [scan_length]]

This function is the same as READV, except that the end-of-record delimiters (carriage return and/or linefeed)

are not returned with the data.

WRITE - Write a fixed-length record

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

503

[file_no [record_no [record_size]]] WRITE data

This function writes a fixed-length record to a data file that was opened using WOPEN.

When the WRITE function is issued, it writes over any existing data at the specified record. If the size of data

is greater than the record size, an error is reported. If the size of data is less than the record size, it is padded

with X'00'.

file_no must match the number that you specified on WOPEN. If no number is given, 1 is assumed.

Random access is designated by specifying a particular record. in record_no.

If record_no is not specified, the default is sequential access to the file.

record_size indicates the number of bytes in each record. If record_size is not specified, the default is

the record_size specified on the previous read or write operation. If record_size is not specified on the

first read or write operation, the default is 128 bytes.

WRITED - Write designated bytes

[file_no [byte_no [record_size]]] WRITED data

This function writes a fixed number of bytes to a data file that was opened using WOPEN.

When the WRITED function is issued, it writes over any existing data at the specified record. If the size of

data is greater than the record size, an error is reported. If the size of data is less than the record size, it is

padded with X'00.

file_no must match the number that you specified on WOPEN. If no number is given, 1 is assumed.

Random access is designated by specifying a particular byte_no position in the file (0≤byte_no).

If byte_no is not specified, the default is sequential access to the file.

record_size indicates the number of bytes to be written. If record_size is not specified, the default is

the record_size specified on the previous read or write operation. If record_size is not specified on the

first read or write operation, the default is 128 bytes.

WRITEV - Write a variable-length record

[file_no [record_no [scan_length]]] WRITEV data

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

504

This function writes a variable-length record to a data file that was opened using WOPEN. This function can be

used only if the file was opened with codes A, D, or T.

file_no must match the number that you specified on WOPEN. If no number is given, 1 is assumed.

Random access is designated by specifying a particular record number in record_no. If record_no is

greater than the number of records currently in the file, the record is appended to the end of the file.

If record_no is not specified, the default is sequential access to the file.

Note: In general, random access when writing variable-length records is not recommended. If a record is

replaced with a new record that does not contain exactly the same number of bytes as the one it is replacing,

partial records will be created when the new data either does not cover all the old data, or when it covers part of

the next record in the file. All data after the replaced record is likely to be corrupted.

For files opened with code D or T, scan_length defines the maximum distance for which AP 210 will scan

for the end of record delimiter (linefeed) when searching for a record during random access. It should be set to

the maximum record length that you expect to use. If scan_length is not specified, the default is the

scan_length specified on the previous read or write operation. If scan_length is not specified on the

first read or write operation, the default is 128 bytes.

For files opened with code A, scan_length is ignored.

If the file was opened with code D or code T, carriage return and linefeed characters are appended to the end of

each record as expected by the operating system for sequential files. If the record already has a linefeed

character (⎕TC[⎕IO+2]) at the end, however, no additional end-of-record delimiters are added.

APPENDFILEV - Append to a variable-length record file

'filespec' APPENDFILEV vector_of_charvectors

This function accepts a vector of character vectors as its right argument and a file name as its left argument; it

then appends each vector in vector_of_charvectors as code D (ASCII) variable-length records to the

file filespec. To write a single character vector as one record, enclose (⊂) the right argument.

COMPARE - Compare two files

[record_size] COMPARE filespec_matrix

This function compares two files. The right argument is a two-row character matrix, each row containing the

filespec of one of the files to be compared, followed by a comma, followed by the code with which the file is to

be read. The optional left argument, record_size, specifies the record length with which the files are to be

read. If this left argument is not specified, the files are assumed to contain variable-length records.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

505

If the files are identical, the COMPARE function gives no output. Otherwise, it lists the pairs of corresponding

records that differ. It also indicates which of the files is shorter, if applicable.

Example:

 80 COMPARE ⊃'FILE1,D' 'FILE2,D'

This example compares files, FILE1 and FILE2, both of which are read as 80-byte fixed-length record ASCII

files.

DELETE - Delete a file

DELETE 'filespec'

This function deletes a file.

RENAME - Rename a file

'new_filespec' RENAME 'old_filespec'

This function changes the name of the file specified in the right argument to the name and extension specified in

the left argument. If a different subdirectory is specified, a move is performed instead of a rename.

READFILEV - Read a file of variable-length records

Z←READFILEV 'filespec[,code]'

This function reads a code A (APL), code D (ASCII), or code T (Translate) variable-length record file and

returns each record as an element of a vector of arrays.

If code is not specified, the file is assumed to be an ASCII (code D) file. End-of-record delimiters are

removed.

Note: The ∆FV function, described in Delta Group, provides a similar facility and is independent of other

functions in this workspace.

TYPE - Display the contents of a file

[record_size [n]] TYPE 'filespec[,code]'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

506

This function displays the contents of a file.

The file identified by filespec is displayed at the terminal.

If the left argument is given, record_size specifies the record length to be used, and n specifies the number

of characters of each record to be displayed. If n is not specified, the full record_size is displayed. If code

is not specified, code A (APL) is used.

If the left argument is not given, the file is assumed to contain ASCII variable-length records (code D). Any

code specified is ignored.

WRITEFILEV - Write a file of variable-length records

'filespec[,code]' WRITEFILEV vector_of_arrays

This function accepts a vector of arrays as its right argument and a file name as its left argument; it then writes

each vector in vector_of_arrays as a variable-length record in the file filespec.

If specified, code must be A (APL), code D (ASCII), or code T (Translate). If code is not specified, the file is

written as an ASCII (code D) file.

For code D or code T, vector_of_arrays must be a vector of character vectors. To write a single array as

one record, enclose (⊂) the right argument.

Note: The ∆FV function, described in Delta Group, provides a similar facility and is independent of other

functions in this workspace.

Auxiliary Functions and Variables

ok_list ∆CHK return_code

Translates return codes. ok_list is optional and, if included, contains a specific list of return codes (in

addition to 0) which should be treated as non-error conditions. return_code is the code to be checked. If an

error condition is encountered a message is printed and the application is terminated.

∆SH file_no

Shares a pair of variables with AP 210. Uses file_no as a variable suffix.

EOF

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

507

The EOF variable contains the data value to be returned by the READ, READD, READV, and READVS functions

when reading has gone beyond end of file. As shipped, this variable contains the null value (⍳0). The user may

modify this value as desired for their application.

ole

The ole variable contains error message text. It is used by the function ∆CHK.

Example of Use

The following is an example of how to use some of the file-handling functions contained in the FILE

workspace:

)LOAD 2 FILE

First create a new file. The records contain strings of ASCII character data. The file number is set to 1:

 1 WOPEN 'NAMEFILE,D'

The first record (record 0) is a variable-length record written to file number 1. Line feed characters are added

automatically as record separators:

 1 0 WRITEV 'Jane Doe, Megabyte System, 555-5555'

Write a second record to file 1:

 1 1 WRITEV 'Jim Diaz, Success Inc., 555-9999'

Close the file:

 CLOSE 1

Open the same file for read-only operations, with the same file number:

 OPEN 'NAMEFILE,D'

Read the second record first with the linefeed character stripped off:

 READVS 1 1
Jim Diaz, Success Inc., 555-9999

Now request the first record, again removing the linefeed separator:

 READVS 1 0

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

508

Jane Doe, Megabyte Systems, 555-5555

Close the file:

 CLOSE 1

Delete the file:

 DELETE 'NAMEFILE'

AP 211 Group

This group contains the following two functions:

REBUILD211 Rebuild an AP 211 file

TRYLOAD Load a workspace saved under TryAPL2

[record_size] REBUILD211 filespec

Rebuild the AP 211 file indicated by filespec. The optional left argument, record_size, specifies the

block size to be used in the file. If no left argument is supplied, the existing record size of filespec is used.

The resulting file has data stored in contiguous records and uses the minimum space on the disk.

TRYLOAD 'filespec'

This function loads a workspace saved under TryAPL2. filespec is the name of the file to be loaded. The

extension .TRY is added to the name.

Delta Group

This group contains the following two functions:

∆FM Read or write a file with fixed-length records

∆FV Read or write a file with variable-length records

These two functions emulate the ∆FM and ∆FV external functions of Processor 10. They can be used to read and

write files that can be interchanged with other non-APL2 applications.

Note: These functions can handle either the CR/LF or LF end-of-record indicators. They automatically write the

correct indicator for the running system, and can read files with either type of indicator.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

509

Z←[array] ∆FM 'filespec'

R←∆FM 'filespec'
Reads the file filespec and returns a character matrix. Records are padded on the right with blanks to

the length of the longest record.

If the operation is not successful, R is a numeric return code from AP 210.

R←array ∆FM 'filespec'
Writes the data from the matrix or vector of vectors array to the file filespec. If array is a

character matrix, all records are padded with blanks to the full width of the array.

R is 0 if the operation is successful, or a numeric return code from AP 210 if not successful.

If array is empty, the file specified by the right argument is erased, if it exists, and a return code of 0

is returned. If the file does not exist, a return code of 2 is given.

Z←[array] ∆FV 'filespec'

R←∆FV 'filespec'
Reads the file filespec and returns a vector of character vectors. Trailing blanks in any records are

deleted.

If the operation is not successful, R is a numeric return code from AP 210.

R←array ∆FV 'filespec'
Writes the data from the matrix or vector of vectors array to the file filespec. A file with variable-

length records is created. Trailing blanks in each record are deleted.

R is 0 if the operation is successful, or a numeric return code from AP 210 if not successful.

If array is empty, the file specified by the right argument is erased, if it exists, and a return code of 0

is returned. If the file does not exist, a return code of 2 is given.

Transfer Group

This group contains the following three functions:

 IN - Simulated)IN

 OUT - Simulated)OUT

 PIN - Simulated)PIN

IN - Simulated)IN

Z←[namelist] IN 'filespec'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

510

Z← IN 'filespec names'

This function imitates the)IN command under the control of AP 210. It can be called from another APL2

function, thus effectively providing a powerful IN facility.

You can call this function in two different ways:

1. To copy a whole file into your active workspace, call the IN function in the following way:

 IN 'filespec'

where filespec is the name of the file you want to copy. This can include an extension. If no

extension is specified, a default extension of .atf is initially used.

The result is 1 if the file exists or 0 if it does not.

Example:

 IN 'MYFILE'

This line copies the whole APL2 transfer file, MYFILE.atf, into your active workspace.

2. To copy only part of a file (for example, some particular operators, functions, or variables) into your

active workspace, call the IN function in either of the following ways:

 namelist IN 'filespec'

or,

 IN 'filespec names'

In namelist, you give the names of the operators, functions, and variables (APL2 objects) you want

to copy. If there is more than one object, each name must be given as a row of a character matrix, as an

element of a vector of character vectors, or in a character vector with each name separated by one or

more blanks. Alternatively, the names can follow the filespec, separated from one another by one or

more blanks. If a name is enclosed in parentheses, it is assumed to be the name of a character array (rank

not greater than 2) containing a list of objects to be copied. Only the indicated objects are copied into the

active workspace. The function returns a logical vector result - a 1 for each object copied and 0 for each

object not copied.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

511

Example:

 (2 3⍴'FUNVAR') IN 'MYFILE'

The left argument of the IN function in this example is a 2-by-3 character matrix, in which the first row

is FUN and the second is VAR. This line copies into your active workspace the objects (which can be

operators, functions, or variables), FUN and VAR, from MYFILE.atf.

OUT - Simulated)OUT

Z←[namelist] OUT 'filespec'
Z← OUT 'filespec names'

This function emulates the)OUT command under the control of AP 210, and can be called from another APL2

function, thus effectively providing a powerful OUT facility. You can call this function in two different ways:

1. To copy your entire active workspace (all operators, functions, and variables) into an .atf file (that is, a

transfer file), call the OUT function in the following way:

 OUT 'filespec'

where filespec is the name of the transfer file. This can include an extension. If no extension is

specified, a default extension of .atf will be used.

The result is 1 if the operation is successful, or 0 otherwise.

Example:

 OUT 'MYFILE'

This line copies all operators, functions, and variables of your active workspace into the file

MYFILE.atf.

2. To copy only part of your workspace (some particular operators, functions or variables) into a file, call

the OUT function in either of the following ways:

 namelist OUT 'filespec'

or,

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

512

 OUT 'filespec names'

In namelist, you give the names of the operators, functions, and variables (APL2 objects) you want

to copy. If there is more than one object, each name must be given as a row of a character matrix, as an

element of a vector of character vectors, or in a character vector with each name separated by one or

more blanks. Alternatively, the names can follow the filespec, separated from one another by one or

more blanks. If a name is enclosed in parentheses, it is assumed to be the name of a character array (rank

not greater than two) containing a list of objects to be copied. Only the indicated objects are included in

the file. The function returns a logical vector result - 1 for each object copied and 0 for each object not

copied.

Example:

 (2 3⍴'FUNVAR') OUT 'MYFILE'

The left argument of the OUT function in the preceding example is a 2-by-3 character matrix, in which

the first row is FUN and the second is VAR. This line creates a transfer file called MYFILE.atf and writes

into it the objects FUN and VAR in the transfer form.

PIN - Simulated)PIN

Z←[namelist] PIN 'filespec'
Z← PIN 'filespec names'

This function imitates the)PIN command under the control of AP 210. It performs a protected IN, which

works like IN except that an object is copied only if the object name in the active workspace has no current

value.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

513

GRAPHPAK Workspace

The GRAPHPAK workspace distributed with the workstation APL2 products uses the AP 207 Universal

Graphics auxiliary processor to display results.

GRAPHPAK is a powerful general-purpose graphical library. For a full description of GRAPHPAK, refer to

APL2 GRAPHPAK: User's Guide and Reference.

Users should be aware of the following differences between the workstation AP 207 version of GRAPHPAK,

and GRAPHPAK as implemented for APL2 on mainframes:

1. Area fill may not fill some areas (such as a torus) in exactly the same way as the mainframe or APL2/PC

versions of GRAPHPAK. In general, when multiple polygons are used, the fill is compatible, but when

images include arcs or sectors, there may be discernible differences.

2. The workstation GRAPHPAK generates "stroked" characters as its default.

3. The SMFIELD function is not implemented.

4. The workstation GRAPHPAK permits the use of a mouse in addition to certain function keys when

using the READ function discussed in APL2 GRAPHPAK: User's Guide and Reference. When the left

argument of READ is a null, and the intent is to do freehand drawings within the graphics window, the

mouse buttons offer an easy alternative to the use of the cursor. Each button produces a different color.

To draw freehand, place the mouse pointer where you wish to start and press a mouse button, then

release it and move to the next position, and again press one of the mouse buttons. Alternatively,

function keys may be used to draw the line, in a variety of colors and patterns. Repeat this procedure

until you are finished, then press Enter.

The GRAPHPAK workspace includes seven groups that form a set of functions implemented compatibly across

all APL2 platforms.

The seven groups are:

GPBASE Contains the fundamental drawing and writing functions. This group contains the base code to use

the AP 207 Universal Graphics auxiliary processor.

GPCHT Contains functions for drawing charts.

GPCONT Contains functions for drawing contour maps.

GPDEMO Contains functions illustrating various aspects of GRAPHPAK.

GPFIT Contains functions for curve fitting.

GPGEOM Contains descriptive geometry functions.

GPPLOT Contains plotting functions.

To run the demonstration contained in the GRAPHPAK workspace, enter:

)LOAD 2 GRAPHPAK
 DEMO

GPBASE

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

514

This group contains the fundamental drawing and writing functions, and is required by all other GRAPHPAK

workspaces. It contains the following functions:

COLOR Changes the current color

DRAW Draws lines between points

ERASE Clears the screen

FILL Fills a polygon

FIXVP Sets the viewport

GRFIELD Sets the graphics field

INTO Used in coordinate transformations

MODE Changes the current line mode (not functional, included for compatibility only)

READ Reads coordinates or character data from the screen

SMFIELD Sets the session manager field

STYLE Changes the current fill or line style

USE Permanently changes the current attributes (color and width)

USING Temporarily changes the current attributes (color and width)

VIEW Displays the current contents of the graphics field

VIEWPORT Returns the coordinates of the corners of the current clipping viewport

WIDTH Changes the current line mode

WRITE Writes text on the current graphics field

XFM Used in coordinate transformations

GPCHT

This group contains functions for drawing charts. It requires GPBASE and GPPLOT, and the following

functions are available:

CHART Draws a bar or column chart

FREQ Plots a frequency chart

HCHART Plots a hierarchical chart

PIECHART Draws a pie chart

PIELABEL Labels a pie chart

SAXES Plots all three default axes on a surface or skyscraper chart

SAXISX Plots the X axis of a surface or skyscraper chart with definable labels and annotation

SAXISY Plots the Y axis of a surface or skyscraper chart with definable labels and annotation

SAXISZ Plots the Z axis of a surface or skyscraper chart with definable labels and annotation

SLABEL Writes the default labels on the axes of a surface or skyscraper chart.

SLBLX Places definable labels on the X axis of a surface or skyscraper chart

SLBLY Places definable labels on the Y axis of a surface or skyscraper chart

SLBLZ Places definable labels on the Z axis of a surface or skyscraper chart

SS Plots a skyscraper chart

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

515

STEP Plots a step chart

STITLE Adds a title to a surface or skyscraper chart

SURFACE Plots a surface chart

SXFM Maps three-dimensional coordinates into a screen window

WITH Formats data for use with PIECHART

GPCONT

This group contains functions for drawing contour maps. It requires GPBASE and GPPLOT, and contains the

following functions:

BY Used to structure the input to CONTOUR

CONTOUR Draws a contour map

OF Used to structure the input to CONTOUR

GPDEMO

This group contains functions illustrating many aspects of GRAPHPAK. The demonstration can be started with

the DEMO function, and it cycles through the complete set of demonstrations.

The individual demonstration functions contained in this workspace are:

APPLE Shows the use of DRAW to create a picture

ATTRIBUTES Shows the various line type and fill options available

BLI Shows the use of DRAW to create a picture

CAYUGAPLOT Shows the use of PLOT to create line graphs

DEMO Cycles through all the demo functions in the workspace

FLAG Shows the use of DRAW to create a picture

FSTAR Shows the use of DRAW to create a picture

HEALTH Shows the use of CHART to produce a column chart

IBMF Draws the IBM logo

MILERUN Shows the use of CHART to produce a bar chart

NHIST Shows the use of CHART to produce a step chart

PIES Shows the use of CHART to produce a pie chart

REVB Shows the use of CHART to produce a simple bar chart

REVC Shows the use of CHART to produce a simple column chart

REVENUES Shows the use of PLOT to create line graphs

SKYSCRAPER Shows the use of SS to produce a skyscraper chart

SPIRAL Shows the use of SKETCH, THREEVIEWS, and PERSPECTIVE to create pictures

WAVEGUIDE Shows the use of SURFACE to produce a surface chart

WGCONT Shows the use of SURFACE to produce a contour chart

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

516

GPFIT

This group contains functions for curve fitting. It requires GPBASE and GPPLOT, and contains the following

functions:

AVG Prepares data for FIT to plot the average Y value

CLEAR Clears the display screen

FIT Draws a line graph through data points prepared by AVG, SL, POLY, EXP, LOG, POWER, LOGLOG,

or SPLINE

EXP Prepares data for FIT to plot the best log-linear fit on linear axes

FITFUN Executes the last function plotted

LOG Prepares data for FIT to plot the best log-linear fit on log-linear axes

LOGLOG Prepares data for FIT to plot the best log-log fit on log-log axes

POLY Prepares data for FIT to plot the best polynomial of specified degree

POWER Prepares data for FIT to plot the best log-log fit on linear axes

SCRATCH Erases points from a data array

SL Prepares data from which FIT can plot the best straight-line fit

SPLINE Prepares data for FIT to use in plotting a cubic spline through specified points

GPGEOM

This group contains descriptive geometry functions. It requires GPBASE and GPPLOT, and contains the

following functions:

ISOMETRIC Restructures data so that SKETCH produces an isometric projection

MAGNIFY Transforms a data array so that the object represented is magnified in size

OBLIQUE Restructures data so that SKETCH produces an oblique projection

PERSPECTIVE Restructures data so that SKETCH produces a perspective drawing

RETICLE Draws an outline of the clipping viewport and a pair of axes, showing the extent of the window

into problem space

ROTATE Transforms a data array so that the object represented is rotated

SCALE Scales all elements of a data array so that the largest lies within set bounds

SKETCH Produces an orthogonal projection

STEREO Produces a stereo pair of images of an object

THREEVIEWS Produces three views of an object, projected into the planes of the axes

TRANSLATE Transforms a data array so that the object represented is moved

GPPLOT

This group contains plotting functions. It is required by GPFIT, GPCONT, and GPCHT, and requires GPBASE.

It contains the following functions:

AND Aids in formatting input for PLOT or SPLOT

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

517

ANNX Draws an annotated horizontal axis with definable label positions

ANNY Draws an annotated vertical axis with definable label positions

AXES Draws default axes

AXIS Draws definable axes

HOR Draws an annotated horizontal axis with default label positions

LABEL Produces the default labels for the X and Y axes

LBLX Produces definable labels for the X axis

LBLY Produces definable labels for the Y axis

PLOT Plots a line graph

RESTORE Restores all attribute and plotting variables to their default values

SPLOT Similar to PLOT, but allows more user control over plotting characteristics

TITLE Adds a title to the graph

VER Draws an annotated vertical axis with default label positions

VS Aids in formatting input for PLOT or SPLOT.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

518

GUITOOLS Workspace

Note: This workspace is not provided on Unix systems.

GUITOOLS contains tools for building GUI applications. The general classes of functions are:

 Dialog Processing Functions

 Utility Functions

 Printing Functions

Dialog Processing Functions

The dialog processing tools support processing dialogs in applications. For detailed information, consult APL2

Programming: Developing GUI Applications and the HOW_DLGPROCESS variable in the GUITOOLS

workspace.

ALIGN Align controls

BITWISE Apply function between bit representations of integers

CALLCOM Call Component Object Model interface from AP 145

CALLAPI Call an API

CENTER_CHILD Center a child window within its parent's client area

CENTER_WINDOW Center one window within another

CHECK_EVENTS Process events during long running operations

CONTEXTHELP Show context help

CREATECTL Create a control window

CREATEDLG Create a dialog

CREATEMENU Create a menu

CREATEOBJ Create an instance of an object class.

DEFAULTPROC Send a message to a window's default procedure

DESTROYDLG Destroys a dialog

DESTROYOBJ Destroys an object

EXECUTEDLG Execute a dialog and it's event handlers

EXECUTEDLGX Execute a dialog and monitor other shared variable events

FILEDLG Display a file dialog

FILEDLGM Display a file dialog that allows multiple selections

FOLDERDLG Display a browse for folder dialog

FONTDLG Display a font dialog

FREEAPI Free an API

GETCHILDREN Get the handles of a parent window's children

GETPARENT Get the handle of a child window's parent.

GET_CELLSIZE Get the size of a grid control cell

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

519

GET_PROFILE Get and list profile values from the registry or an INI file

GET_PROPERTY Get a window property

GET_RANGE Get a window range property

GUIRETRACT Retract SV145

GUISHARE Share SV145

HANDLE_DESKTOP Retrieve the actual handle of the desktop

IDFROMWINDOW Retrieve a window's identifier

ISWINDOW Determine whether a window handle is valid

LOADAPI Load an API

MOVEWINDOW Move a window

MSGBOX Display a message box

POPUPMENU Display a popup menu

POSTMSG Post a Message

RESIZE Resize controls

SENDMSG Send a message

SET_CELLSIZE Set the size of a grid control cell

SET_PROFILE Set and delete profile values in the registry or an INI file

SET_PROPERTY Set a window property

SET_RANGE Set a window range property

SHAREWINDOW Share a variable with a window property

SHOW Show or hide a window

SIZETOTEXT Resize a control to fit its text

SPACE Space controls

STARTWAIT Start AP 145 holding application messages

UNICREATEDLG Create a Unicode dialog

UNICREATEMENU Create a Unicode menu

UNIFILEDLG Display a Unicode file dialog

UNIFILEDLGM Display a Unicode file dialog that allows multiple selections

UNIFOLDERDLG Display a Unicode browse for folder dialog

UNIMSGBOX Display a Unicode message box

UNIPOPUPMENU Display a Unicode popup menu

WAIT_EVENT Wait for an event

WINDOWFROMID Retrieve a child window's handle

Utility Functions

The following functions are tools for performing common high level user interface operations. For detailed

information, consult the HOW_UTILITY variable in the GUITOOLS workspace.

APLEDIT Use Apledit to edit a function or operator

APLEXECPGM Execute a system command

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

520

EDIT Allows the user to edit an array.

HELP145 Access the on-line documentation for AP 145

PROMPT Displays a prompt and provides an entry field

QUERYSYSCOLOR Query the RGB value associated with a system color index

SELECT_1 Prompts the user to select one item from a matrix

SELECT_SOME Prompts the user to make selections from a matrix

UNIEDIT Allows the user to edit an array containing Unicode characters.

UNIFILE Read a Multibyte or Unicode file or write a Unicode file as a character vector

UNI∆FM Read a Multibyte or Unicode file or write a Unicode file as a character matrix

UNI∆FV Read a Multibyte or Unicode file or write a Unicode file as a vector of character vectors

Printing Functions

The printing functions allow applications to produce printed documents.

To create a typical document, the printing functions are used as follows:

1. Create a logical printer with CREATE_PRINTER.

2. Select a printer by using PRINT_PROPERTY to set the PRINTER property to the name of the desired

printer. Use the PRINTERS property to retrieve the names of the available printers. Alternatively,

display a printer selection dialog with SELECT_PRINTER.

3. Set other printer properties such as orientation and margins with PRINT_PROPERTY. Alternatively,

display a page customization dialog with PAGE_SETUP.

4. Start the document with OPEN_DOCUMENT.

5. Set desired attributes for the document with PRINT_PROPERTY and the SET_ functions.

6. Add text to the document with PRINT_SENTENCE.

7. Begin new lines and pages with NEWLINE and NEWPAGE.

8. Repeat steps 5, 6, and 7 as needed to create the entire document.

9. Close and send the document to the printer with CLOSE_DOCUMENT.

10. Destroy the logical printer with DESTROY_PRINTER.

For detailed information, consult the HOW_PRINT variable in the GUITOOLS workspace.

CREATE_PRINTER Creates a logical printer

CREATE_UNICODE_PRINTER (Windows only) Creates a Unicode logical printer

DESTROY_PRINTER Destroys a logical printer

SELECT_PRINTER Displays the print queue selection dialog

PAGE_SETUP Displays the page customization dialog

PRINTER_PROPERTIES Display printer properties dialog

PRINT_PROPERTY Queries and sets printer properties

OPEN_DOCUMENT Starts a print job

CANCEL_DOCUMENT Cancels a print job

CLOSE_DOCUMENT Completes a print job

PRINT_SENTENCE Adds a sentence to a print job

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

521

NEWLINE Starts a new line

NEWPAGE Starts a new page

QUERY_PAGENUMBER Returns the current page number

QUERY_LENGTH Returns the length, in points, of a string

SET_COLOR Sets the color of the body of the document

SET_FONT Sets the font for a section of the document

SET_INDENT Sets the indentation amount

SET_MARGIN Sets the inside margin (used when output is duplex)

SET_WORDBREAK Enables or disables wordbreak

SET_LINESPACE Enables or disables interline spacing

SET_HEADING Sets the running heading

SET_FOOTING Sets the running footing

SET_PAGENUMBERS Enables of disables page numbering

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

522

GUIVARS Workspace

Note: This workspace is not provided on Unix systems.

The GUIVARS workspace contains variables that define a set of common constants used in GUI programs.

Some AP 145 services require parameters that contain specific numeric or character values. These values are

used to indicate what operation the service is to perform.

For example, when attempting to retrieve the handle of a standard control like a titlebar, you need to use the

standard titlebar identifier. This identifier is called FID_TITLEBAR. The variable FID_TITLEBAR can be

found in the GUIVARS workspace.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

523

IDIOMS Workspace

APL2 is a very powerful and concise language. Although experienced APL2 programmers can produce working

solutions to complex problems in a very short time, learning the APL2 language can take years. The novice is

usually entranced with the power of APL2, but may have a hard time thinking in vector notation. APL2

algorithms are not always obvious!

In order to speed up the learning process of APL2, IDIOMS was developed. With over 600 distinct APL2

phrases, sorted into 24 general categories, IDIOMS represents a fairly complete list of solutions to common

application problems and lets you take advantage of algorithms that many others have developed.

Since this list is in soft copy, you can access it directly from your workspace and dynamically insert the idioms

into your own code.

 Executing the IDIOMS Function

 Categories

 Naming Conventions

Executing the IDIOMS Function

Copy the IDIOMS function into your active workspace and then execute it:

)PCOPY 1 IDIOMS IDIOMS
 IDIOMS

You can run this program from your own workspace, because it does not overwrite any programs you use. The

IDIOMS function and all the subroutines it uses are stored in an APL2 namespace, APL2IDI.ans.

Once IDIOMS is running, a full-screen interface gives you control over all the facilities available. The

following keys can be used from the main screen. Use the F1 (Help) key to get assistance on the Window or

Group screen.

Key Function Description

F1 Help Display a series of screens that give assistance for the current screen.

F2 Window Display a window of previous searches. Move the cursor to the desired item and press

Enter to select a search, which appears on the main screen. Press F3 to return to the

main screen.

F3 Return Return to the APL2 session, passing any idioms selected with F9 to the workspace as

an explicit result.

F4 Function Save the APL2 idiom identified by the cursor as a function called IDIOM_LIST. If

IDIOM_LIST already exists, the selected idiom is appended as a new line to the end

of the function. This function can be a prototype for a new program using the selected

expressions to accomplish the desired task.

F5 Local

Search

Search the displayed group of idioms for the search argument. This can be used to

narrow the search to a particular group of idioms.

F6 Group Display a list of each group of idioms. Place the cursor beside the desired group and

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

524

Key Function Description

press F6 again to select that group. Press F3 to return to the main screen without

selecting a group.

F7 PageUp Scroll one screen toward the top.

F8 PageDown Scroll one screen toward the bottom.

F9 Result Append the idiom identified by the cursor to the result of the IDIOMS function. Using

the session manager, you can place these lines in your function by entering function

definition mode and then inserting a line number [n] at the beginning of each desired

idiom.

F10 Environment Cycle environment for which appropriate idioms are displayed. Note that idioms

selected from a different environment than you are running may not run in your

environment.

Shift-F7 Home Scroll to the top.

Shift-F8 End Scroll to the bottom.

PageUp PageUp Scroll one screen toward the top.

PageDown PageDown Scroll one screen toward the bottom.

Home Home Scroll to the top.

End End Scroll to the bottom.

Enter Search Search through all the idioms for the search argument.

The idioms are available in either index origin. The IDIOMS program lets you select the index origin preferred

for the code you are writing. To change the origin, overtype the displayed value with the desired index origin

and press Enter.

To trace the searches that you generate, IDIOMS calls itself recursively. You can do multiple searches, without

losing the results of any intermediate search.

A history of searches is saved from session to session in an external file named IDIOMS.asf. The file is

created automatically, if it does not already exist, in the user's default working directory.

Categories

To facilitate fast selection of idioms, they are grouped into categories, as follows:

Category Type of Algorithms

1 Assignment

2 Boolean Selection

3 Boolean Tests General

4 Boolean Tests Numeric

5 Computational

6 Conversion

7 Date and Time

8 External Name Routine

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

525

Category Type of Algorithms

9 Financial

10 Formatting

11 Function

12 Manipulating Characters

13 Manipulating Numbers

14 Numeric Range

15 Numerical Geometry

16 Selecting Positions

17 Sorting

18 Statistics Descriptive

19 Statistics Distribution

20 Structural

21 Text Arrangement

22 Text Selection and Change

23 Trigonometry

24 Vectorizing

Naming Conventions

A consistent naming convention is used throughout the list. The names used are:

Rank Type Usage

A (Array)
M (Matrix)
O (One-item vector)
S (Scalar or
 one-item vector)
V (Vector)

B (Boolean)
C (Character)
F (Floating point)
I (Integer)
N (Numeric)
Z (Complex)

G (Graded or grouped)
L (Lengths)
P (Positions)
U (Unique)
X (Extension)
Y (Extension)

These are combined in various ways to identify the type of object. For example:

Name Contents

A,AX,AY General arrays

IM Integer matrix

BM Boolean matrix

N,NX,NY Numeric vectors

BS Boolean scalar

PAV Position array of vectors

CA Character array

PS Position scalar

C,CX,CY Character vectors

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

526

Name Contents

UM Unique matrix

GAF Graded array of floating point

VM Vector of matrices

GI Graded integer vector

VV Vector of vectors

GM Graded matrix

V,X,Y General vectors

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

527

MATHFNS Workspace

The functions in this workspace are as follows:

Matrix Inverse and Matrix Divide

DOMINO Computes matrix inverse or matrix divide

DOMINOF Computes matrix inverse or matrix divide (fast)

Eigenvalues and Eigenvectors

EIGEN Computes eigenvalues and eigenvectors

EIGENVALUES Computes eigenvalues

Factorial and Binomial

FACTORIAL Computes factorials and binomials

Fast Fourier Transform

FFT Computes fast Fourier transform

IFFT Computes inverse fast Fourier transform

Formatting Complex Numbers

FMTPD Formats in polar form with angular measure in degrees

FMTPR Formats in polar form with angular measure in radians

Roots of Polynomials

POLYZ Computes the zeros of polynomials

Matrix Inverse and Matrix Divide

Z← DOMINO R ⍝ Matrix inverse
Z←L DOMINO R ⍝ Matrix divide
Z← DOMINOF R ⍝ Matrix inverse (fast)
Z←L DOMINOF R ⍝ Matrix divide (fast)

These two functions provide a direct replacement for the matrix inverse and matrix divide (⌹) primitive when

applied to arguments containing complex numbers. DOMINO is a direct APL2 implementation of the algorithm

used by the primitive ⌹ function of the mainframe APL2 interpreter. By applying the primitive ⌹ function to

combinations of the real and imaginary parts of its arguments, DOMINOF produces results equivalent to those

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

528

given by the DOMINO function. This is usually faster than DOMINO, but the intermediate applications of the

primitive ⌹ function may fail for some arguments.

Eigenvalues and Eigenvectors

Z← EIGEN R
Z←L EIGEN R

The right argument R must be a simple square matrix of real numbers. Z is a simple real or complex matrix of

shape 1 0+⍴R containing the eigenvalues and the eigenvectors of R. If R has shape N by N, then Z has N+1

rows and N columns. The first row of Z contains the eigenvalues of R, and the remaining rows of Z contain the

corresponding right eigenvectors of R. That is, each column of Z contains an eigenvalue and its corresponding

right eigenvector.

 EIGEN 2 2⍴1 0 0 2
1 2
1 0
0 1

The eigenvalues X and the right eigenvectors V can be obtained by:

 Z←EIGEN R
 X←Z[1;]
 V←1 0↓Z

These statements obey the identity:

 X×[2]V ←→ R+.×V

The eigenvalues X and the left eigenvectors V can be obtained by:

 Z←⍉ EIGEN ⍉R

 X←Z[;1]

 V←0 1↓Z

They obey the identity:

 X×[1]V ←→ V+.×R

In the dyadic case, L is also a simple square matrix of real numbers, and ⍴L equals ⍴R. Z is a simple real or

complex matrix of shape 1 0+⍴R containing the solution to the generalized eigenvalue problem for L and R:

 Z←L EIGEN R
 X←Z[1;]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

529

 V←1 0↓Z

They obey the identity:

 (L+.×X)×[2]V ←→ R+.×V

The eigenvalues and eigenvectors are computed by using the "QZ Algorithm". (See "An Algorithm for

Generalized Matrix Eigenvalue Problems" by C.B. Moler and G.W. Stewart, SIAM Journal of Numerical

Analysis, 10: 241 - 256, 1973.) The numerical accuracy of the result depends upon the "condition" of the matrix

of eigenvectors. In particular, accuracy may be degraded if there are repeated eigenvalues.

Z← EIGENVALUES R
Z←L EIGENVALUES R

This function takes the same arguments as EIGEN but returns only the eigenvalues. It is faster than the EIGEN

function for the same inputs, and can be used whenever the full result is not required.

Factorial and Binomial

Z← FACTORIAL R ⍝ Factorial
Z←L FACTORIAL R ⍝ Binomial

This function provides a direct replacement for the primitive factorial or binomial (!) function when applied to

arguments containing complex numbers. FACTORIAL is a direct APL2 implementation of the algorithm used

by the primitive ! function of the mainframe APL2 interpreter.

Fast Fourier Transform

Z←FFT R ⍝ Fast Fourier Transform

This function computes the discrete Fourier transform of a set of numbers.

The right argument R is a simple vector of 2*N complex or real numbers where N is a positive integer. The

result Z is a simple vector of 2*N complex numbers with the discrete Fourier transform of R.

The result of the FFT function corresponds to that of the discrete Fourier transform as defined by SC23-0526,

Engineering and Scientific Subroutine Library, Guide and Reference:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

530

Z←IFFT R ⍝ Inverse Fast Fourier Transform

This function computes the inverse Fourier transform of a set of numbers.

 R ←→ IFFT FFT R

The right argument R is a simple vector of 2*N complex or real numbers where N is a positive integer. The

result Z is a simple vector of 2*N complex numbers with the inverse discrete Fourier transform of R.

The IFFT function differs only in scale and phase.

For example:

 IFFT 2 0J1 0 0J¯1
0.5 1 0.5 0
 IFFT 2 1 0 1
1 0.5 0 0.5

Formatting Complex Numbers

Z←FMTPD R ⍝ ForMaT Polar Degrees

This function formats complex numbers in the right argument R in polar form, with angular measure in degrees.

Z is a simple character array.

Z←FMTPR R ⍝ ForMaT Polar Radians

This function formats complex numbers in the right argument R in polar form, with angular measure in radians.

Z is a simple character array.

Roots of Polynomials

Z←POLYZ R ⍝ POLYnomial Zeros

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

531

The right argument R must be a simple nonempty vector of real or complex numbers, and must not contain

leading zeros. R represents a polynomial with coefficients in decreasing order of powers (constant on the right).

Z is a simple vector of shape ¯1+⍴R, containing the zeros of the polynomial R.

If F is the polynomial represented by R, and F(x) = Ax3 + Bx2 + Cx + D, then R is the vector (A B C D). If

the result Z is the vector (P Q R), then F(x) = (x-P)(x-Q)(x-R). If R is real, and the length of R is even, then Z

contains at least one real number.

 POLYZ ¯2 1
0.5
 POLYZ 2 0J1
0J¯0.5
 POLYZ 1 ¯2 1
1 1
 POLYZ 1 0 1
0J1 0J¯1
 POLYZ 1 ¯6 11 ¯6
1 2 3
 POLYZ 1 ¯20 154 ¯584 1153 ¯1124 420
1 1.999999978 2.000000022 3 5 7

The zeros are computed using the Jenkins and Traub algorithms. The accuracy of the solution depends on the

"condition" of the polynomial. In particular, accuracy can be degraded if there are repeated zeros. Also,

numerical roundoff can cause a pair of equal real zeros to appear as a complex conjugate pair.

POLYZ uses subroutines POLYZC and POLYZF.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

532

MIGRATE Workspace

The MIGRATE workspace contains functions useful in migrating workspaces from other APL2 platforms.

ATFUSTOLC - Remove Underbarred Characters

ATFUSTOLC 'filename'

Takes the name of a transfer form file that has been downloaded in binary from a mainframe APL2 system. and

changes all the underbarred letters to the equivalent lowercase characters.

This differs from using CASE(1) or CASE(2) on the host before creating and downloading a transfer file, in

that this converts underbarred letters even in literal constants, function or operator comments, and arrays.

VSCOPY - Convert VS APL Workspaces

VSCOPY 'wsname [object_list]'

VSCOPY is a function that makes it possible for objects from a VS APL workspace (saved with the VS APL

)SAVE command as a CMS file or a TSO data set, and then downloaded in binary to a workstation system) to

be copied directly into the active workspace of APL2.

wsname

is the workspace name. If no extension is given, a default extension of .VWS is appended. If the name

contains one or more dots or is enclosed in quotes, it is used exactly as given.
object_list

is the list of names of objects to be copied. This may be omitted, in which case all objects in the

workspace are copied.

Groups are copied in as character arrays, with each name represented as a row in the array. The names of all

groups copied are added into the variable grps.

Object names may be prefixed by an asterisk (*):

*function_name
causes the function to be left in its canonical form

*group_name
causes the group definition, but not its contents to be copied

*variable_name
causes the variable to be left untranslated

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

533

NETTOOLS Workspace

The NETTOOLS workspace contains tools for writing network enabled applications. The workspace includes

the following groups of tools:

GPDESC Descriptive variables and functions

GPDATE Date formatting and parsing tools

GPENCODE Data encoding and decoding tools

GPHTTP HTTP 1.1 Web Server and Client Tools

The workspace contains documentation that is designed to be viewed with a web browser. To view the

documentation, start the APL2 web server. The server prints out the network name and IP address of the

machine.

)LOAD 2 NETTOOLS
 HTTP_SERVER
Host name: AplMachine
Host IP address: 9.112.25.240

Next, start a web browser and type in the name or IP address of the machine. Use either of the following

formats:

 http://AplMachine
 http://9.112.25.240

On systems where the default listening port number specified in CONFIGURE_HTTP_SERVER is not 80, that

port number must be specified explicitly:

 http://AplMachine:8000
 http://9.112.25.240:8000

To shut down the server, use the browser to connect to the server's administration port. Use either of the

following methods:

 http://AplMachine:8888
 http://9.112.25.240:8888

You will be prompted for a user name and a password. Type the user name "IBM" and the password "APL2".

The APL2 HTTP Server Administration page will be displayed. Push the Stop button.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

534

PRINT Workspace

Note: This workspace is provided only on Unix systems.

This workspace sends text to an attached printer or to a file. The three main functions in the workspace are

PRINTER, PRINT, and NEWPAGE.

The PRINT and PRINTWS facilities share common code. Be sure to read PRINT and PRINTWS: Common

Features before reading about the PRINT workspace functions.

 PRINT and PRINTWS: Common Features

 The PRINTER Function: Using PRINTER ON and PRINTER OFF

 Filling In the Full-Screen Prompts

 The PRINT and NEWPAGE Functions

 A Typical Use of PRINT

 Modifying Applications to Use PRINT

 Additional Functions

 Additional Details for Programmers

PRINT and PRINTWS: Common Features

Both the PRINT and PRINTWS workspaces send data to an attached printer or to a file. PRINT is designed to

send your own reports, while PRINTWS displays images of the functions, operators and variables in the

workspace. These two facilities share some common code, by means of a function file. When each facility is

invoked, they bring in subfunctions from a file (PRINTWS.aof). These functions are brought in as local

functions, and are not seen in the workspace.

Both facilities bring up a set of full-screen panels to prompt for your printer configuration and printing

parameters. They can direct your output to the screen, to a printer, or to an AIX file. The prompts on the first

menu differ slightly between the two facilities; for details on your entries on these full-screen panels, refer to

Filling in the Full-Screen Prompts in the PRINT or PRINTWS documentation.

Here is the action of each of the function keys on the main panel:

F1 HELP. Online help is available on all of the menus by pressing F1. For context-sensitive help, position the

cursor to the field of interest and press F1. To view more extensive help text, press F1 again.

F2 SELECT A PRINTER. Both PRINT and PRINTWS support a variety of printers. Different printers have

different capabilities with regard to fonts (character sets) and other parameters. F2 takes you to a second

menu panel that lets you position the cursor and press Enter to select the characteristics of the printer that

you wish to use. For each of the printers listed, PRINT and PRINTWS either downloads an APL font to the

printer or selects an APL font cartridge. If your printer does not have provision for either of these methods of

support, you can select the menu item marked Other: APL chars generated as graphics. This causes the

printer to use its default character set for alphanumeric characters, and, as the selection implies, it generates

each of the APL symbols that you print as graphics images. This is less desirable than using an APL font,

because it causes slow printing and because the APL characters may be lower-resolution than the text.

However, it provides a means for printing APL characters on printers that would not otherwise support them.

F3 CANCEL. If you want to exit from the full-screen panels without starting a report, press F3. F12 can be

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

535

used as an alternate key.

F5 AIX SMIT. When running under AIX, the F5 key within both PRINT and PRINTWS gives access to the

System Management Interface Tool (SMIT). The command smit spooler is issued through AP 100, so

only the portions of SMIT related to printer support are available. This provides an easy menu-driven means

for selecting information regarding, among other things, the printer queue names and queue status.

F9 START. This key begins your report, and in the PRINT facility, takes you out of the full-screen panels.

All of the values that you enter on each of the full-screen panels are retained in a profile in your home directory.

The next time that you use either facility, only changes need to be entered. Often, your only entry is a single

function key.

The profile is called .PRINT.prf in the PRINT facility, or .PRINTWS.prf in the PRINTWS facility. In

this way, titles and parameters are kept separate between the two facilities.

The PRINTER Function: Using PRINTER ON and PRINTER OFF

Z←PRINTER ON Starts printing session; brings up full-screen panels

Z←PRINTER OFF Ends printing session; returns control to the screen

Z←PRINTER-ON Same as PRINTER ON, but suppresses the panels

Z←PRINTER-OFF Same as PRINTER OFF

Z←PRINTER 0 Same as PRINTER OFF

Z←PRINTER 1 Same as PRINTER ON

Z←PRINTER ⍳1 Same as PRINTER-ON

Z←PRINTER 2 Sends data to a file; brings up full-screen panels

Z←PRINTER ⍳2 Same, but suppresses full-screen panels

Z←PRINTER 2 '@output.fns' Explicitly names the output file

Z←PRINTER ⍳2 ⍙_FileName Explicitly names the output file

ON and OFF are two small utility functions that return a 1 and a 0, respectively. Calling PRINTER ON brings

up a set of full-screen panels to prompt for your printer configuration and printing parameters. It can direct your

output to the screen, to a printer, or to an AIX file. For details on your entries on these full-screen panels, refer

to Filling in the Full-Screen Prompts. A negative number as the argument bypasses the panels, so to suppress

the full-screen panels and use the values previously entered on those panels, use PRINTER-ON (or PRINTER
⍳1).

PRINTER ON presents you with a full-screen menu panel, requesting the information discussed below. Online

help is available by pressing F1. For context-sensitive help, position the cursor to the field of interest and press

F1. After you have filled in the full-screen prompts, press F9 to exit from the panels and begin your printing (or

F3 to cancel).

PRINTER OFF ends the printing session, and switches control back to the screen.

The result from PRINTER ON is a three-element vector:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

536

Panel Selection Three-Element Result

F3 (exit) pressed ⍳1 'PRINTER CANCELLED: ' 'reason'

S (for Screen) 0 'PRINTER OFF: ' 'reason'

P (for Printer) 1 'PRINTER ON: ' 'printer info'

F (for File) 2 'WRITING TO FILE: ' 'file name'

Note: The output is spooled to a file before printing. It is PRINTER OFF that sends this file to the printer (and

also controls the downloading of fonts and the font selection). Therefore, "PRINTER OFF" must be run in

order to get printed output. If this step is skipped, no output is generated.

Filling In the Full-Screen Prompts

Title
You can enter an optional title, up to 32 characters long. This entry is not used by the functions provided

in PRINT, but it is available for use by a customized "HEADING" function.

Width of Printed Report
Indicate the maximum number of printed characters you wish to have on a line of output, so that the

program can break output lines at the proper places.

Lines Per Page
Indicate the number of printed lines per page that your printer can handle. This tells the program when

to skip to a new page. If the value is set to 0, no paging occurs. This number includes the page headings,

if you use that facility.

Margin Control
The size of the left margin is the amount of blank indentation that this program should provide. You

may want to position the text close to the margin (to get more onto the page) or leave some extra space

(for three-hole-punched pages, for instance).

Duplexing
Indicate whether the printed pages should be duplexed (printed on both sides) or not, for printers that

support this operation. This entry is not used by the functions provided in PRINT, but it is available for

use by a customized "HEADING" function. See the description of the "⍙_Duplex" variable.

Output

P sends the output to a file during processing, and then routes the file to a printer when the report is

finished.

S displays the output on your screen. This may be useful when you are capturing the session log for

inclusion in another report.

F sends the output to a file, and does not spool it further.

File Name
This field lets you specify the name of the file to which the output is directed.

The PRINT and NEWPAGE Functions

PRINT can be used to print any APL2 object or result, of any rank or type from your APL2 program. It can be

used directly or it can be called from any other APL2 user-defined function, thus giving the program control of

the printer.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

537

PRINT object

The PRINT function formats the array object and sends the output to the attached printer. The current page

position is maintained by global variables named "⍙_PageNo" (page number) and "⍙_LineNo" (line

number).

The following examples show what is printed for various entries:

Entry Printed

PRINT 2+2 4

PRINT 'ABCabc' ABCabc

PRINT ⍳10 1 2 3 4 5 6 7 8 9 10

PRINT 2 3⍴'ABCDEF' ABC
DEF

(A variable can also be printed)

X←'IS A VARIABLE'

PRINT 'X ',X X IS A VARIABLE

When the Printer or File options are in use, the PRINT function displays the page numbers of the material being

printed, as feedback on the progress of the printing. (These page numbers are produced by the HEADING

function, to be described later. HEADING is called from within PRINT.)

NEWPAGE

Causes following output (if any) to be printed starting at the top of a fresh page.

A Typical Use of PRINT

A typical use of the PRINT facility would be to call PRINTER ON to start the printing session, then use

PRINT as many times as needed to send all of the data to the printer, with calls to NEWPAGE wherever you

specifically want material to start at the top of a page, and finally a call to PRINTER OFF to end the session.

Modifying Applications to Use PRINT

You can easily incorporate the PRINT facility into existing applications, so that reports, for instance, can be

displayed at your screen or sent to a printer or file.

As an example, assume that you have a simple reporting function, like this:

 ∇
 [0] REPORT;YEAR;REGION;TABLE;SALES
 [1] LOOP:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

538

 [2] YEAR←PROMPT 'Enter the year desired: '
 [3] →(0=⍴YEAR)/END
 [4] REGION←PROMPT 'Enter the region: '
 [5] OPEN 'YESALES'
 [6] TABLE←GET REGION
 [7] SALES←(TABLE[;1]=YEAR)⌿TABLE
 [8] 'Sales Report for Region ',⍕REGION
 [9] '¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯'
 [10] 'Year' 'Salesman' 'Customer' 'Calls' 'Cost' 'Net'
 [11] '¯¯¯¯' '¯¯¯¯¯¯¯¯' '¯¯¯¯¯¯¯¯' '¯¯¯¯¯' '¯¯¯¯' '¯¯¯'
 [12] ⎕←SALES
 [13] ''
 [14] →LOOP
 [15] END:
 [16] 'DONE.'
 ∇ 03/17/1991 12.11.25 (GMT-7)

Using the functions supplied in the PRINT facility, you can place a call to the PRINT function on each of the

lines that cause printing to occur, and include a call to PRINTER ON and PRINTER OFF, like this:

 ∇
 [0] REPORT;YEAR;REGION;TABLE;SALES;R
>[1] R←PRINTER ON
>[2] →(¯1=↑R)/0
 [3] LOOP:
 [4] YEAR←PROMPT 'Enter the year desired: '
 [5] →(0=⍴YEAR)/0
 [6] REGION←PROMPT 'Enter the region: '
 [7] OPEN 'YESALES'
 [8] TABLE←GET REGION
 [9] SALES←(TABLE[;1]=YEAR)⌿TABLE
>[10] PRINT 'Sales Report for Region ',⍕REGION
>[11] PRINT '¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯'
>[12] PRINT 'Year' 'Salesman' 'Customer' 'Calls' 'Cost' 'Net'
>[13] PRINT '¯¯¯¯' '¯¯¯¯¯¯¯¯' '¯¯¯¯¯¯¯¯' '¯¯¯¯¯' '¯¯¯¯' '¯¯¯'
>[14] PRINT SALES
>[15] PRINT ''
>[16] NEWPAGE
 [17] →LOOP
>[18] END:R←PRINTER OFF
 [19] 'DONE.'
 ∇ 05/02/1993 14.13.19 (GMT-7)

Prompting still occurs at the screen, and the finished report is directed to the point desired: screen, printer, or

file. If the "screen" option is selected, this function operates essentially the same way that it did before the

modifications.

Additional Functions

Z←HEADING

This function is called by the PRINT function; it is not meant to be called directly. In its supplied form, it

returns a 0-by-0 matrix, so that no page heading is generated. For application building, you can edit this

function to insert whatever code you wish into it; the explicit result of this function is used as the heading for

each page. The ⍙_Title and ⍙_PageNo variables could be used here (see the next page). Also, the

⍙_Duplex variable could be checked to see if alternation of headings was requested, so that, for instance, page

numbers could be made to always print at the outside (nonbinding edge) of a page. For example,

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

539

 Z←(¯1 1⍴⍙_Width)[1+0=2|⍙_PageNbr]↑'Page ',⍕⍙_PageNbr

prints the current page number at the left side of even-numbered pages and at the right side of odd-numbered

pages.

Page numbers (showing how far along your printer output has gotten) are generated from within this function. If

you want to suppress the numbers or capture them, this function can be altered.

HEADING is an optional function; if it does not exist in your workspace, there are simply no headings and no

feedback of page numbers as printer output is being generated.

Z←FN name

Returns the canonical representation of the function name with line numbers added to the left-hand side and

any comments or labels exdented. This can be used to print the definition of a function F with PRINT FN 'F'

or PRINT WRAP FN 'F' (see below).

Z←L WRAP R

This function "wraps" the lines in the matrix R so that they are no greater than the length specified by the

integer value in L. Z is always of rank 2. If L is omitted, the maximum width of the lines is controlled by

⍙_Width.

By using the FN and WRAP functions, you can create function listings similar to those produced by the

PRINTWS facility, but with more flexibility. For instance, you may wish to display a small function in a large

typesize with no page headings, for creating viewfoils. Or you may want to show the definition of a function

along with examples of its use.

Additional Details for Programmers

The responses that you enter on either of the full-screen panels cause several global variables to be set, which

are used to control the printing. These variables could be referenced by your application code. They are:

PRINTGP Names of all of the functions and variables used by the PRINT facility; useful for expunging

objects

⍙_Duplex (1=duplex); could be used by a HEADING function that you define yourself

⍙_Indent Number of characters of indent at left margin

⍙_PageLng Page length (the number of lines that can be printed on the page, using the current font). If

⍙_PageLng is specified as 0 or as an empty vector, no page breaks are generated.

⍙_PageNo Page number

⍙_PtrFlag Screen/Printer/File flag (0, 1 or 2, respectively)

⍙_PtrInfo Information regarding printer and fonts

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

540

⍙_Title Title for this report

⍙_Width Line-length of output, in characters

The following names are also created, and exist in your workspace after you use PRINT. However, these

variables are intended for use only by the PRINT facility itself. They are not intended to be accessed by other

application code:

⍙_C210 and ⍙_D210 Are the shared variables

⍙_Facility Identifies the PRINT or PRINTWS facility

⍙_FileName File name for output (option "F" only)

⍙_LineNo Current line number being printed

⍙_PageText Page of data being printed

⍙_RecNo Record number for output

⍙_PRINTER_ON, ⍙_PRINTER_OFF, and ⍙_ERR also need to be in your workspace; they are subfunctions

called by the PRINTER function.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

541

PRINTWS Workspace

The PRINTWS workspace provides a means for printing the contents of the active workspace. It produces a

listing of all the variables, functions, and operators in the workspace.

The workspace contains a function named PRINTWS. It is available on all systems. To use it:

)LOAD your-workspace
)PCOPY 2 PRINTWS PRINTWS
 PRINTWS

You are prompted to select a printer and to set the print job properties.

 Limitations of PRINTWS

 Using PRINTWS on Windows

 Using PRINTWS on Unix Systems

On Windows the workspace also contains an external function named PRINTWSG. Unlike PRINTWS,

PRINTWSG prompts for formatting options. To use it:

)LOAD your-workspace
)PCOPY 2 PRINTWS PRINTWSG
 PRINTWSG
Output generated by the PRINTWSG function does not include a display of its own code. PRINTWSG has no

other limitations regarding name conflicts.

Limitations of PRINTWS

The PRINTWS function has the following limitations:

1. Objects with names that conflict with the local names used by PRINTWS will not be printed. In general,

all local names begin with the characters ⍙_.

On Windows, the name AP145 is also localized.

2. Output generated by the PRINTWS function does not include a display of its own code.

Using PRINTWS on Windows

Local variables control some of the properties of the printed output which users may want to customize. These

variables are set at the top of the PRINTWS function. They are:

Variable Contents

⍙_Header Text for the header

⍙_Width Width in characters of the print output

⍙_Margin Width of left margin in points

⍙_HeaderFont Font for header information

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

542

Variable Contents

⍙_FooterFont Font for footing information

⍙_BodyFont Font for functions, variables and operators

⍙_JobName Document name for the print job

⍙_PMTOOLS Location of printing utilities

AP145 GUI interface AP number

PRINTWS creates and uses an APL print object with AP 145. Cover functions for using print objects are

provided in the GUITOOLS Workspace.

Using PRINTWS on Unix Systems

The PRINT and PRINTWS workspaces share common code. For more information, see PRINT and PRINTWS:

Common Features.

PRINTWS presents you with a fullscreen menu panel, requesting the information discussed below. Online help

is available by pressing F1. For context-sensitive help, position the cursor on the field of interest and press F1.

After you have filled in the fullscreen prompts, press F9 to exit from the panels and begin printing, or F3 to

cancel.

Title
You can enter an optional title, up to 32 characters long. This title is printed a tthe top of each page of

printed output.

Pagination
This field lets you control the pagination of the printed reports. Possible values are:

1 One function or variable per page

2 Several per page, as space permits

3 Continuous forms, no page breaks

Width of Printed Report
Indicate the maximum number of printed characters you wish to have on a line of output, so that the

program can break output lines at the proper places.

Lines Per Page
Indicate the maximum number of printed lines per page that your printer can handle. This tells the

program to skip to a new page. The number should include the page headings, which are four lines long.

Margin Control
The size of the left margin is the amount of blank indentation that this program should provide. You

may want to position the text close to the margin (to get more onto the page) or leave some extra space

(for three-hole-punched pages, for instance).

Duplexing
Indicate whether the printed pages should be duplexed (printed on both sides) or not, for printers that

support this operation. This controls the page headings: duplexed output has page numbers alternated on

the left and right sides of the pages, so that they are all away from the binding edge; non-duplexed pages

have all of the page numbers on the right-hand side.

Select - Function and Operators
Functions and operators are time-stamped automatically by the system whenever they are edited.

Y displays all of the functions and operators in the workspace (except the PRINTWS function).

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

543

S displays just the selected functions and operators (those that have changed since a given date; you

are prompted for this date).

N indicates that no functions or operators are to be shown.

Functions Since a Given Date
If you want to print only those functions and operators that have changed since a specified date (option

S), indicate that date here in a "yyyy mm dd" format. The number of functions and operators to be

displayed is shown at the left side of the screen.

Select - Variables
Do you want to have variables included in the printed report?

Y displays all of the variables in the workspace.

N indicates that no variables are to be shown.

Output

P sends the output to a file during processing, and then routes the file to a printer when the report is

finished.

S displays the output on your screen. This may be useful when you are capturing the session log for

inclusion in another report.

F sends the output to a file, and does not spool it further.

File Name
This field lets you specify the name of the file to which the output is directed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

544

SQL Workspace

The SQL workspace enables you to execute SQL statements and retrieve information from databases using AP

127 (the DB2 processor) or AP 227 (the ODBC processor).

The following table lists the syntax of the functions and operator provided with the SQL workspace, along with

their corresponding auxiliary processor operations. For additional information about the SQL workspace, AP

127 and AP 227, see APL2 Programming: Using Structured Query Language

Function Name and Syntax Auxiliary Processor Operation

CALL name [values] 'CALL'

CHART data

CLOSE name 'CLOSE'

COMMIT 'COMMIT'

CONNECT database-identifier 'CONNECT'

format DATE ts

DECLARE name ['HOLD'|'NOHOLD'] 'DECLARE'

DESC name [type] 'DESCRIBE'

EVAL data

EVALSIM data

EXEC stmt 'EXEC'

FETCH name [options..] 'FETCH'

GETOPT 'GETOPT'

IN

ISOL setting 'ISOL'

MESSAGE rcode 'MSG'

NAMES 'NAMES'

ODBCOPEN name type 'ODBCOPEN'

ODBC type 'ODBC'

OFFER

OPEN name [values] 'OPEN'

PREP name stmt 'PREP'

PROCEDURE stmt [values]

PURGE name 'PURGE'

PUT name values 'PUT'

QUE stack

QUERY stmt [values]

RESUME stack

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

545

Function Name and Syntax Auxiliary Processor Operation

ROLLBACK 'ROLLBACK'

SETOPT options.. 'SETOPT'

SHOW result

SQL stmt [values]

SQLCA 'SQLCA'

SQLHELP keyword

SQLSTATE 'SQLSTATE'

SSID subsystem 'SSID'

STATE name 'STATE'

STMT name 'STMT'

format TIME ts

TIMESTAMP ts

TRACE (module level).. 'TRACE'

(f UNTIL) stack

XMLSIZE size 'XMLSIZE'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

546

TCL Workspace

Tool Command Language (Tcl) is a popular scripting language that is available for many operating systems. Tcl

provides a wide variety of routines including tools for string parsing and file IO. There are also numerous

extensions available including packages for building graphical user interfaces (GUI), database access, object-

oriented programming, and network access.

The TCL external function executes one or more Tcl commands.

The TCL workspace contains functions that demonstrate using Tcl from APL2. Consult the HOW variable for

further information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

547

TIME Workspace

The TIME workspace contains the an association to the TIME external function, to assist with the performance

monitoring and tuning of APL2 code.

The performance monitoring facility provides the capability to measure a running application and determine the

CPU time used by each defined program, each line within each defined program, or both.

The facility works by associating with each line of each defined program, a pair of counters to record the

number of times the line is executed and the total CPU time consumed by the line.

Typically, timing information can be obtained for an application as follows:

)LOAD workspace
)PCOPY 1 TIME TIME ⍝ To gain access to the facility
 TIME 0 ⍝ To enable and zero counters
 ⍝ (Run application here)
 TIME 1 ⍝ To see times for program run
 ⍝ (Analyze timing information here)
 TIME 2 ⍝ To see times for each line
 ⍝ (Analyze timing information here)
)CLEAR ⍝ When time analysis is complete

Use of the timing facility requires space in the workspace for the counters and also increases running time by

some small amount. Thus, in general you should not)SAVE after doing a time analysis.

TIME 0
Enable timing and create counters for all lines in all unlocked programs. The counters are set to zero.

TIME 1
Fetch times for all programs for which timing has been gathered and return a matrix containing for each

function or operator actually executed, the number of times the function or operator was executed, the

total CPU time used by the function or operator, the percentage of the CPU time used by the function or

operator, and the name of the program. If column headings are desired, the following may be used:

HD1←'COUNT' 'TIME' '%' 'PROGRAM'
HD1,[⎕IO] TIME 1

Three heading vectors - HD1, HD2, and HD3 - are already defined in the workspace, with the values

shown here.

The figure given for the number of times each program is executed is based on the assumption that this

count is the same as that for the first executable (noncomment) line of the program.

TIME 2
Fetch times for all lines of all programs for which timing has been accumulated. The result is a matrix of

the same format as TIME 1 except the line from the function or operator is also listed. If column

headings are desired, the following may be used:

HD2←'COUNT' 'TIME' '%' 'PROGRAM' 'STMT'
HD2,[⎕IO] TIME 2

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

548

Each of the above uses of TIME also accepts an optional left argument that must be a character list of names. If

provided, the left argument limits the scope of TIME to the programs named in the left argument.

Additional uses of the TIME function are:

TIME 3
Fetch times for all lines of all programs even if no timing has been accumulated. The result is a matrix

of the same columnar format as TIME 2 and is sequenced by line within each function or operator. A

left argument can be used to obtain the timing for the specified programs. If column headings are

desired, the following can be used:

HD3←'COUNT' 'TIME' '%' 'PROGRAM' 'STMT'
HD3,[⎕IO] TIME 3

TIME 4
Fetch timing state. The result is a Boolean: 0 - timing off, 1 - timing on.

TIME ¯1
Enable timing. If timing has been disabled, timing is resumed. A left argument is not allowed for TIME
¯1.

TIME ¯2
Disable timing. Stops the accumulation of timing data. A left argument is not allowed for TIME ¯2.

TIME ¯3
Deletes the space used by the counters. A name list left argument is allowed and can be used to delete

the timing data for selected functions and operators.

Use of the timing facility increases space utilization and execution time. Reported timings are approximate and

should only be used for relative comparisons, not absolute times.

When a program is erased, its counters are deleted. When a program is created or changed, its counters are not

preserved.

Performance Analysis Using the TIME Function

The theory behind performance tuning through the TIME facility is that very often a small amount of code

within an application consumes the majority of CPU cycles. By quickly identifying these "hot spots", the

programmer can focus his attention on optimizations that provide the greatest effect in reducing overall

application CPU time. The following APL2 session demonstrates the use of TIME:

)LOAD COSTEST
SAVED 1993-09-19 14.13.20 COSTEST
)PCOPY 1 TIME TIME ⍝ Fetch TIME function
SAVED 1993-12-02 12.00.00 TIME
 TIME 0 ⍝ Zero time counters
 ESTIMATE 10 ⍝ Run the application
COMPLETED... SEE ¨COST_REPORT¨
 ⎕←T←TIME 1 ⍝ Fetch time summary
500 31.19 72.83469164 PRODCOST
500 7.4 17.28043341 CHARGE
 10 3.627 8.469747566 CALC
500 0.208 0.4857202905 EVAL
 10 0.196 0.457697966 PC
 10 0.103 0.2405249515 STORE
 1 0.05 0.1167596852 ESTIMATE
 1 0.044 0.102748523 TIME

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

549

 10 0.004 0.009340774817 FINDMAX
 10 0.001 0.002335193704 GETNEXT
 1 0 0 CLOSE
 1 0 0 OPEN
 +/T[;2] ⍝ Compute total CPU time
42.823
 'PRODCOST' TIME 2 ⍝ Fetch time detail
500 31.028 99.48060276 PRODCOST[2] PCOST←SCHG∘.×⍳WEEKS
500 0.162 0.5193972427 PRODCOST[1] SCHG←CHARGE N

The TIME 1 report identifies the function PRODCOST as the major CPU consumer, attributable to about 73%

of the total CPU time (31.19 of the total CPU 42.823 seconds for this small sample run). Further analysis of the

PRODCOST function with the TIME 2 report shows that the mathematical calculation performed in line 2 is the

best target for potential performance improvement.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

550

UTILITY Workspace

This section describes the UTILITY workspace.

 Introduction

 GPDATACV: Converting Between External and Internal Representations

 GPMISC: Miscellaneous Utility Functions

 GPSTRIP: Removing Comments

 GPSVP: Controlling Communication through SVP

 GPTEXT: Manipulating Text

 GPTRACE: Setting and Removing Trace and Stop Vectors

 GPXLATE: Translating from One Character Representation to Another

Introduction

The UTILITY workspace is made up of defined functions organized into groups of functions. The groups are

listed in the next section and described in the sections that follow.

The two major ways in which you are likely to find the UTILITY workspace useful are:

 Functional

 Instructional

The functional use is relatively straightforward:

 Copy the objects you need from the UTILITY workspace into the active workspace

 Use the UTILITY functions as "pseudo-primitives" in your own defined functions.

The instructional use may not be as obvious but may be even more important. Instructionally, you can use the

UTILITY workspace to:

 Acquire familiarity with APL2 by experimenting with the functions in the UTILITY workspace, listing

and reading them, trying to deduce what each statement does and why you might choose that particular

way to do it.

 Develop your APL2 programming skills by modifying the functions to improve their efficiency or to

add features you need.

 Extend your programming skills by adding complementary utility functions that you find useful.

This workspace is of most use to you if you try to use it for both functional and instructional purposes.

GPDATACV: Converting Between External and Internal Representations

 LI/LO - Boolean (Logical)

 II/IO - System/370 Integer

 PCII/PCIO - IBM PC Integer

 FI/FO - System/370 Floating Point

 IEEEFI/IEEEFO - IEEE Floating Point

 PCFI/PCFO - IBM PC Floating Point

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

551

 PDI/PDO - Packed Decimal

LI/LO - Boolean (Logical)

Z←LI R ⍝ Logical In

R is a simple character array whose last axis contains IBM PC or System/370 logical data; that is, a string of

bits.

Z is a numeric array consisting of zeros and ones representing the logical data in R. The rank of Z is the same as

the rank of R, but the last axis is 8 times as long as the last axis of R. A scalar value for R produces an 8-element

vector.

⍴Z ←→ (¯1↓⍴R),8×¯1↑1,⍴R

Z←LO R ⍝ Logical Out

R is a simple numeric array consisting of only zeros and ones. The length of its last axis must be a multiple of 8.

Z is a character array whose last axis contains the IBM PC or System/370 representation of the logical data in

the last axis of R. The rank of Z is the same as the rank of R, but the length of the last axis of Z is one-eighth of

the last axis of R.

⍴Z ←→ (¯1↓⍴R),(¯1↑⍴R)÷8

II/IO - System/370 Integer

Z←II R ⍝ Integers In

R is a simple character array whose last axis must have a length of between 1 and 7 inclusive, and which

contains the System/370 binary representations of integers.

Z is an array of integers representing the binary numbers in R. The rank of Z is one less than the rank of R.

⍴Z ←→ ¯1↓⍴R

Z←L IO R ⍝ Integers Out

R is a simple array of integers. L is an integer scalar not greater than 7. It gives the number of bytes in which

each integer is to be represented. L must be large enough to represent the largest magnitude of the integers in R.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

552

Z is a character array whose last axis contains the System/370 binary representation of the integers in R. The

rank of Z is one greater than the rank of R.

⍴Z ←→ (⍴R),L

PCII/PCIO - IBM PC Integer

Z←PCII R ⍝ PC Integers In

R is a simple character array whose last axis must have a length of 1, 2 or 4, and which contains the IBM PC

(reversed) binary representations of integers.

Z is an array of integers representing the binary numbers in R. The rank of Z is one less than the rank of R.

⍴Z ←→ ¯1↓⍴R

Z←L PCIO R ⍝ PC Integers Out

R is a simple array of integers. L is an integer scalar with a value of 1, 2 or 4, and gives the number of bytes in

which each integer is to be represented. L must be large enough to represent the largest magnitude of the

integers in R.

Z is a character array whose last axis contains the IBM PC (reversed) binary representation of the integers in R.

The rank of Z is one greater than the rank of R.

⍴Z ←→ (⍴R),L

FI/FO - System/370 Floating Point

Z←FI R ⍝ Floating In

R is a simple character array, the last axis of which must have a length of 4 or 8. The last axis thus represents

either single- or double-precision System/370 floating-point numbers.

Z is an array of numbers equivalent to the floating-point representations in R. The rank of Z is one less than the

rank of R.

⍴Z ←→ ¯1↓⍴R

Z←FO R ⍝ Floating Out

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

553

R is a simple numeric array. Z is a character array whose last axis has length 8, and which contains the

System/370 double-precision floating-point representations of the numbers in R. The rank of Z is one greater

than the rank of R. If single precision is required, then drop the last four columns of the result.

⍴Z ←→ (⍴R),8

IEEEFI/IEEEFO - IEEE Floating Point

Z←IEEEFI R ⍝ IEEE Floating In

R is a simple character array, the last axis of which must have a length of 4 or 8. The last axis thus represents

either single- or double-precision IEEE floating-point numbers.

Z is an array of numbers equivalent to the floating-point representations in R. The rank of Z is one less than the

rank of R.

⍴Z ←→ ¯1↓⍴R

Z←L IEEEFO R ⍝ IEEE Floating Out

R is a simple numeric array. L is an integer scalar with a value of 4 or 8. A value of 4 for L gives single-

precision floating point representation, and a value of 8 gives double precision. Z is a character array whose last

axis has length L, and which contains the IEEE single or double-precision floating-point representations of the

numbers in R. The rank of Z is one greater than the rank of R.

⍴Z ←→ (⍴R),L

PCFI/PCFO - IBM PC Floating Point

Z←PCFI R ⍝ PC Floating In

R is a simple character array, the last axis of which must have a length of 4 or 8. The last axis thus represents

either single- or double- precision IBM PC (reversed) IEEE floating-point numbers.

Z is an array of numbers equivalent to the floating-point representations in R. The rank of Z is one less than the

rank of R.

⍴Z ←→ ¯1↓⍴R

Z←L PCFO R ⍝ PC Floating Out

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

554

R is a simple numeric array. L is an integer scalar with a value of 4 or 8. A value of 4 for L gives single

precision floating point representation, and a value of 8 gives double precision. Z is a character array whose last

axis has length L, and which contains the IBM PC (reversed) IEEE single- or double-precision floating-point

representations of the numbers in R. The rank of Z is one greater than the rank of R.

⍴Z ←→ (⍴R),L

PDI/PDO - Packed Decimal

Z←PDI R ⍝ Packed Decimal In

R is a simple character array whose last axis must have a length of between 1 and 16 inclusive, and which

contains valid System/370 packed decimal representations of numbers.

Z is an array of integers representing the packed decimal numbers in R. The rank of Z is one less than the rank

of R.

⍴Z ←→ ¯1↓⍴R

Note that if the length of the packed decimal number is greater than 9 bytes, a loss of precision can result.

Z←L PDO R ⍝ Packed Decimal Out

R is a simple array of integers. L is an integer scalar not greater than 16. It gives the number of bytes in which

each integer of R is to be represented. L must be large enough to represent the largest magnitude of the integers

in R.

Z is a character array whose last axis contains the System/370 packed decimal representations of the integers in

R. The rank of Z is one greater than the rank of R.

⍴Z ←→ (⍴R),L

GPMISC: Miscellaneous Utility Functions

 ANNOTATE - Add comments to lines

 ASSIGN - Specify values for a set of names

 CASE - Gives case attribute of active workspace

 CODECOUNT - Count lines in all workspace programs

 CONCEAL - Make a function non-suspendable

 DATETIME - Format date and time

 EXPAND - Function version of \

 FNHEADS - List headers for a set of functions

 FRAME - Put a border around a character matrix

 HEXDUMP - Produce character+hex display of data

 LINECOUNT - Count lines in a list of programs

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

555

 LIST - Convert an arbitrary array to a vector

 MASKCONV - Splits numbers into n-bit fields

 MESH - Mesh two or more vectors as prescribed by a mask

 NAMEREFS - Find all names in a defined program

 NAMES - Find all names in a string

 NHEAD - Produce character representations of index vectors

 REPLICATE - Function version of /

 REVEAL - Make a function suspendable

 TYPE - Determine if array is alphabetic or numeric

 UNIQUE - Remove duplicates

 WSID - Return active workspace name

ANNOTATE - Add comments to lines

Z←L ANNOTATE R

R is a simple character matrix and L is a numeric scalar. Z is R with rows padded or truncated to length L and

with comments interactively appended to each row.

ASSIGN - Specify values for a set of names

L ASSIGN R

L is a character matrix of names. R is a character matrix of valid APL2 expressions. Each row of L is evaluated

and its value given the name in the corresponding row of R.

CASE - Gives case attribute of active workspace

Z←CASE

Z is the case attribute of the active workspace. In workstation APL2 systems, Z always has a value of 2 to

indicate that lowercase characters are used in object names.

CODECOUNT - Count lines in all workspace programs

Z←CODECOUNT

This function counts the function and operator lines in the workspace, and returns a 2-element numeric vector.

Z[1] is the total number of lines in the workspace that contain something other than a comment. Z[2] is the

total number of lines that consist only of a comment. CODECOUNT does not count its own lines. See also

LINECOUNT in LINECOUNT - Count lines in a list of programs.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

556

CONCEAL - Make a function non-suspendable

CONCEAL R

Make the function named by R non-suspendable.

DATETIME - Format date and time

Z←DATETIME

Z is the date and time in the form of mm/dd/yy hh:mm:ss.

 DATETIME
06/27/85 10:00:42

EXPAND - Function version of \

Z←L EXPAND R

R is any array. L is a Boolean vector. Z is L\R. See Miscellaneous Functions for a discussion of this function.

FNHEADS - List headers for a set of functions

Z←FNHEADS R ⍝ FuNction HEADerS

R is a character matrix of function or operator names. Z is a character matrix of corresponding function and

operator headers, exclusive of explicit local variables.

FRAME - Put a border around a character matrix

Z←FRAME R

R is a simple character scalar, vector, or matrix. Z is R bordered by straight lines.

HEXDUMP - Produce character+hex display of data

Z←HEXDUMP R

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

557

R is a simple character array. Z is a four row matrix with one column for each element of ,R. The first row of Z

is R; the second is ⎕AF ,R; the third row contains the hexadecimal representations of the numbers in the

second row; and the fourth row contains characters that mark off character positions by fives.

LINECOUNT - Count lines in a list of programs

Z←LINECOUNT R

R is a character scalar, simple vector or matrix, or a vector or vectors. LINECOUNT counts the lines of the

functions and operators named in R and returns a 2-element numeric vector. Z[1] is the number of lines

containing something other than a comment; Z[2] is the total number of lines that consist only of a comment.

This function does not count its own lines. See also CODECOUNT in CODECOUNT - Count lines in all

workspace programs.

LIST - Convert an arbitrary array to a vector

Z←LIST R

This function creates a vector or scalar out of R. R may be any array. If R is a simple scalar, then Z is ,R. If R is

a simple vector, then Z is ,⊂R. If R is a nested scalar or vector, then Z is R. Otherwise, Z is R enclosed along all

axes but the first, which forms a nested vector.

MASKCONV - Splits numbers into n-bit fields

Z←L MASKCONV R ⍝ MASK CONVert

MASKCONV encodes the number (or numbers) R to the base 2*L. It is primarily useful in analyzing sections of

storage defined by fields of varying lengths from one bit to a full word.

 1 2 1 4 24 MASKCONV ¯1+2*32
1 3 1 15 16777215

MESH - Mesh two or more vectors as prescribed by a mask

Z←L MESH R

L is a mask and R is a concatenation of the vectors to be meshed. If the mask L consists of 0s and 1s, the

elements of R are placed, in order of occurrence, in the positions of Z corresponding to 0s; after these have been

filled, the remaining elements are placed in the positions corresponding to 1s. If R is a catenation of vectors of

lengths equal to the number of 0s and the numbers of 1s respectively, the result is to "mesh" them. This can be

generalized to any number of vectors by providing masks with elements of 0, 1, 2, ...

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

558

 00122233333333'
 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓
 0 2 2 1 3 3 3 3 3 2 3 0 3 3 MESH 'HE IS WORDSMAN'
HIS WORDS MEAN
↑↑↑↑↑↑↑↑↑↑↑↑↑↑
02213333323033

In the example above, 0 selects the first two characters ('HE') and puts them in the first and twelfth positions

of the result; 1 puts a blank in the fourth position; 2 puts 'IS ' in positions 2, 3, 10; and 3 puts the remainder.

NAMEREFS - Find all names in a defined program

Z←NAMEREFS R

R is the name of a function or operator. Z is a character matrix containing a list of all the names that occur in R.

NAMES - Find all names in a string

Z←NAMES R

R is a character vector. Z is a matrix of all the names in R.

NHEAD - Produce character representations of index vectors

Z←L NHEAD R ⍝ Numeric HEADers

L and R are integers. Z is a character array giving ⍳R in column form if L is 0 and row form if it is not.

 0 NHEAD 5
1
2
3
4
5
 1 NHEAD 5
12345
 1 NHEAD 40
 1111111111222222222233333333334
1234567890123456789012345678901234567890

REPLICATE - Function version of /

Z←L REPLICATE R

R is any array. L is a vector of integers. Z is L/R. See Miscellaneous Functions for a discussion of this function.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

559

REVEAL - Make a function suspendable

REVEAL R

If possible, make the function named by R suspendable.

TYPE - Determine if array is alphabetic or numeric

Z←TYPE R

Z is a scalar zero if R is numeric, and a scalar blank if it is character. This function is compatible with a VS APL

library function of the same name. It is not meant to be applied to mixed or nested arguments.

UNIQUE - Remove duplicates

Z←UNIQUE R

R is a vector. Z is a vector containing the elements of R with duplicates eliminated.

 UNIQUE 'THE ANTS WERE HERE'
THE ANSWR
 UNIQUE 'GUFFAW' 17 (⍳4) 'GUFFAW'
 GUFFAW 17 1 2 3 4

WSID - Return active workspace name

Z←WSID

Z is a character vector containing the active workspace name. In a clear workspace, a null character vector is

returned.

This function is designed to work on all APL2 systems. It contains logic to determine the operating system, and

use appropriate code for that operating system.

 WSID
1 UTILITY

GPSTRIP: Removing Comments

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

560

DECOMMENT

Removes comment lines from all unlocked functions and operators in the active workspace. Running

decommented functions requires less storage. When using this function, you should keep a backup copy of the

workspace.

STRIP R

Removes comments from all unlocked functions and operators named in R. R is a simple character matrix, a

nested vector of names, or a simple string of names separated by blanks.

Z←L WORDS R

Splits a character vector into nested pieces, and is equivalent to the mainframe APL2 external function DAN

(Delete And Nest). R is a character vector. L is a scalar or vector of delimiter characters. Z is a character vector,

each of whose elements is a vector of the elements of R lying between occurrences of the delimiters L in R.

Consecutive occurrences of delimiters in R are ignored. For example:

 Z←'And what exactly ARE the commercial '
 Z←Z,'possibilities of ovine aviation?'
 ⍴Z
68
 Z←' ' WORDS Z
 ⍴Z
10
 ⊃Z
And
what
exactly
ARE
the
commercial
possibilities
of
ovine
aviation?
 ⍴¨Z
 3 4 7 3 3 10 13 2 5 9

GPSVP: Controlling Communication through SVP

APSERVER R

A general AP server for implementing auxiliary processors using a client-server protocol over a single shared

variable interface. For more information about APSERVER, see Writing Auxiliary Processors Using

APSERVER.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

561

Z←L ID R

Converts enclosed character processor IDs to large integers and vice versa. Typically used with the SVP profile

(apl2svp.prf) in support of cross-system SVP shares for cooperative processing.

Z←L SVOFFER R

Offers shared variables, named in right argument, to SVP processors identified by numbers in the left argument.

Returns the final degree of coupling for each shared variable. The function delays up to 15 seconds for shares to

be accepted by the partner. It sets standard access control to inhibit a double set or use.

R is a character scalar, vector, matrix, or vector of vectors containing the name or names of the shared variables

to be offered to an auxiliary processor. Surrogate names for shared variables can also be used. L is a numeric

scalar or vector containing the processor ID (the number) of the AP. Z is the degree of coupling for the shared

variable; a 2 indicates that the corresponding variable is fully shared with the AP.

 211 SVOFFER 'S1' 'S2'
2 2

Z←L SVOPAIR R

Offers shared variables, named in right argument, to SVP processors identified by numbers in the left argument.

This function is used for auxiliary processors that support a two-variable interface, where the control variable

begins with "C" or "CTL," and the data variable begins with "D" or "DAT" (that is, AP 124, AP 210).

Z←L SVRETRACT R

Retracts shared variable(s), named in the right argument, from processor identified by the number in the left

argument. Waits for the partner to retract the variable so that subsequent offers of the same variable name will

be considered as new offers rather than re-offers.

This function can be useful for cross-system shared variables and variables shared between two APL2

interpreter sessions on the same system. It is not needed when sharing with IBM-supplied auxiliary processors

on the same system, as those auxiliary processors contain internal logic to correctly control the retract and re-

offer process when the share is local.

R is a character scalar, vector, matrix, or vector of vectors containing the name or names of the shared variables

to be retracted. L is a numeric scalar or vector containing the processor ID (the number) of the processor with

which the variables are shared. Z is the degree of coupling before retract.

 100 SVRETRACT 'CMD'
2

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

562

 12345 SVRETRACT 2 2⍴'V1' 'V2'
2 2
 12345 SVRETRACT 'V1' 'V2'
2 2

Z←L ∆SVO R

⎕SVO extension to support enclosed character vectors as processor IDs. Typically used with the SVP profile

(apl2svp.prf) in support of cross-system SVP shares for cooperative processing.

Z←L ∆SVQ R

⎕SVQ extension to support enclosed character vectors as processor IDs. Typically used with the SVP profile

(apl2svp.prf) in support of cross-system SVP shares for cooperative processing.

GPTEXT: Manipulating Text

Note: Many "text" functions also work on other kinds of data.

 DOUBLE - Replace selected characters with pairs

 FIND - Search for text in all workspace programs

 GATHER - Collect parsed and delimited fields

 GVCAT - Catenate rows to arrays of any rank

 HCAT - Catenate matrixes by columns

 INBLANKS - Separate characters by blanks

 LADJ - Left adjust

 LINEFOLD - Fold and indent line as specified

 MAT - Make a matrix out of any array

 MATFOLD - Fold and indent matrix lines as specified

 NOQUOTES - Remove quoted substrings

 OBLANKS - Remove outer blanks

 QREPLACE - Replace ? occurrences by character strings

 RADJ - Right adjust

 RCNUM - Produce numerical headings for rows and columns

 REPLACE - Replace substrings in character strings

 RTBLANKS - Remove trailing blanks

 VCAT - Catenate matrixes by rows

 XBLANKS - Remove all excess blanks

DOUBLE - Replace selected characters with pairs

Z←L DOUBLE R

DOUBLE replaces each occurrence of the scalar L in the vector R by a pair of scalars L.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

563

 V←'ABC''DEFGH''IJK'
 V
ABC'DEFGH'IJK'
 '''' DOUBLE V
ABC''DEFGH''IJK

FIND - Search for text in all workspace programs

[namelist] FIND 'text' ['newtext']

Gives a listing of all functions and operators in the active workspace that contain the indicated text.

If 'newtext' is specified, this function replaces 'text' in the objects listed in namelist with the new

text.

GATHER - Collect parsed and delimited fields

Z←L GATHER R

L is a scalar or one or two element vector, for example '()'. R is any array. GATHER searches the rows of R

for a sequence "enclosed" within the first and second elements of L and ravels them into a vector. If L is a scalar

or one element vector then it is used as the trailing delimiter also. A blank is inserted at each point where the

resulting vector crosses a row boundary in R.

GVCAT - Catenate rows to arrays of any rank

Z←L GVCAT R ⍝ Generalized Vertical CATenation

L and R Z is the result of catenating L to R along the first coordinate of the array of higher rank.

HCAT - Catenate matrixes by columns

Z←L HCAT R ⍝ Horizontal CATenation

HCAT catenates columns: given two matrixes, it places them side-by-side. L and R should not be of rank greater

than 2. Z is always of rank 2.

INBLANKS - Separate characters by blanks

Z←L INBLANKS R

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

564

If characters in L are contained in R, separate them with blanks.

LADJ - Left adjust

Z←LADJ R ⍝ Left ADJust

R can be any array. Z is that array with non-blank characters shifted to the left as far as possible.

LINEFOLD - Fold and indent line as specified

Z←L LINEFOLD R

This function "folds" the line R so that it is no greater than the length specified by the first (or only) element in

L. If L has a second element, then this specifies the number of blanks to be used in offsetting the second and all

following rows in the output Z. Z is always of rank 2.

MAT - Make a matrix out of any array

Z←MAT R ⍝ MATrix

Z is an array of rank 2 containing all the elements of R.

MATFOLD - Fold and indent matrix lines as specified

Z←L MATFOLD R ⍝ MATrix FOLD

L has one or two integer components. R may be any array. Z is a matrix with a number of columns equal to the

first (or only) component of L. Any lines longer than this width are "folded" as in LINEFOLD.

NOQUOTES - Remove quoted substrings

Z←NOQUOTES R

R is a character vector. Z is the same vector with all quoted substrings removed.

OBLANKS - Remove outer blanks

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

565

Z←OBLANKS R ⍝ Outer BLANKS

Remove "outer blanks". R is a vector. Z is R with all leading and trailing blanks removed.

QREPLACE - Replace ? occurrences by character strings

Z←L QREPLACE R ⍝ Question mark REPLACEment

R is a vector containing one or more question marks. L is a character vector containing one or more subvectors

to be substituted for the question marks. The first character of L is a delimiter used to identify the substitution

vectors. This delimiter must also be the last character of L. Z is R with the substitutions made.

RADJ - Right adjust

Z←RADJ R ⍝ Right ADJust

Z is R "right-adjusted", so that the rightmost character of each row is not blank unless all the characters of the

row are blank. R can be an array; the rows are "right-adjusted" individually.

RCNUM - Produce numerical headings for rows and columns

Z←RCNUM R ⍝ Row and Column NUMbers

R is a matrix. Z is R with column numbers across the top and row numbers along the left side.

REPLACE - Replace substrings in character strings

Z←L REPLACE R

R may be any array. Z is R with every occurrence of a "seek" string replaced by a "replace" string. L is a two

element vector, each of whose elements is a scalar or vector. The first element is the "seek" string and the

second element is the "replace" string.

REPLACEV is a subfunction of REPLACE.

 TEXT←4 4⍴'HEREIS SOMETEXT'
 REPLACE/' _' ('HERE' 'THERE') TEXT
THERE
IS___
SOME_

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

566

TEXT_

RTBLANKS - Remove trailing blanks

Z←RTBLANKS R ⍝ Remove Trailing BLANKS

R is a simple array. Z is R with trailing blanks or trailing blank columns removed.

VCAT - Catenate matrixes by rows

Z←L VCAT R ⍝ Vertical CATenation

L and R are arrays of rank 2 or less. Z is a matrix. Its width is that of the wider of L or R. L is at the top of Z and

R is at the bottom.

XBLANKS - Remove all excess blanks

Z←XBLANKS R ⍝ remove eXtra BLANKS

Remove "extra blanks". R must be a vector. Z is R with leading and trailing blanks removed and intermediate

blank sequences reduced to a single blank.

GPTRACE: Setting and Removing Trace and Stop Vectors

The functions in this group can be used in debugging your defined APL2 operations by establishing trace and

stop vectors when you're checking the operations out, and removing them when you're finished.

STOPALL

Creates stop vectors for all the lines of all the functions and operators in the active workspace.

STOPOFF

Cancels all the stop vectors in the active workspace.

STOPONE

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

567

Creates stop vectors for the first statements of all the functions and operators in the active workspace.

TRACEALL

Creates trace vectors for all the statements of all the functions and operators in the active workspace.

TRACEBR R

Creates a trace vector for every branch statement of the function or operator named in R. R is a single name.

TRACELIST R

Creates trace vectors for all the statements in the functions and operators named in R. R is a simple scalar,

vector, or matrix, or a vector of vectors.

TRACEOFF

Cancels all the trace vectors in the active workspace.

TRACEONE

Creates trace vectors for the first statements of all the functions and operators in the active workspace.

GPXLATE: Translating from One Character Representation to Another

GPXLATE contains three functions and two global variables. The variables are used as translate-tables by the

functions LCTRANS (which converts from uppercase to lowercase), and UCTRANS (which converts from

lowercase to uppercase).

The third function, TRANSLATE, is a general-purpose translate function that requires a translate table as its left

argument.

The following example demonstrates the use of the uppercase and lowercase translate functions:

 CV←'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
 UCTRANS CV
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ
 LCTRANS CV
abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

568

Here is how the lowercase translate table was constructed:

(1) ⎕IO←0

(2) LOWERINDICES←⎕AF 'abcdefghijklmnopqrstuvwxyz'

(3) UPPERINDICES←⎕AF 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

(4) LCTt←⎕AV

(5) LCTt[UPPERINDICES]←⎕AF LOWERINDICES

(6) LOWERINDICES
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122

(7) UPPERINDICES
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90

(8) ⎕AF LCTt[UPPERINDICES]
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
113 114 115 116 117 118 119 120 121 122

(9) ⎕CR 'LCTRANS'
A←LCTRANS B
⍝ A is B with uppercase letters translated to lowercase letters.
A←LCTt[⎕IO+⎕AF B]

Notes for the example:

(1) Since translation requires selecting values from tables, it is important to establish a known index

origin. The first action is to set the origin to 0, because 0 is more useful than 1 for translating

purposes.

(2) The indexes of the lowercase letters in ⎕AV are determined by the use of ⎕AF.

(3) Similarly for uppercase.

(4) The lowercase translate table is initialized as ⎕AV.

(5) The lowercase letters replace the uppercase letters in the translate table.

(6), (7),

and (8)

Show how the index sets and the translate table are interconnected.

(9) Is a canonical representation of the LCTRANS function, showing how it does lowercase translation.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

569

WSCOMP Workspace

WSCOMP compares the contents of two workspaces or transfer files.

WSCOMP contains one external function: WSCOMP. Use this function to compare workspaces.

To use WSCOMP,

)LOAD your-workspace
)COPY 1 WSCOMP WSCOMP
 WSCOMP
WSCOMP prompts for the following information:

 Two workspace names. Use the same syntax as you would for the system commands)IN or)COPY.

Library numbers are accepted. If specifying a complete path and file name, you must enclose it in

quotes.

 Whether the workspaces named are transfer files. This option controls whether)IN or)COPY is used to

access the workspace.

On UNIX, the initial prompt will also ask you what name classes you want to compare.

A report is produced showing the results of the comparison.

On Unix systems, the report takes the form of four variables containing lists of names:

WSC_ONLY_1
Objects in workspace 1 but not in workspace 2.

WSC_ONLY_2
Objects in workspace 2 but not in workspace 1.

WSC_DIFF
Objects with different definitions in the two workspaces.

WSC_SAME
Objects with the same definition in both workspaces.

The variable WSCOMP_RESULTS is also set; it contains all four lists.

On Windows, a dialog is presented with the four lists of names. Additional features include the ability to open

an objects' definitions and dynamically modify the lists to include or remove name classes.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

570

APL2 Programming Interface (Calls to APL2)

The APL2 Programming Interface (APL2PI) enables APL2 to be called from other languages and programs.

APL2PI supports the following capabilities:

 Starting and stopping the APL2 interpreter

 Creation and management of workspace objects

 Execution of APL2 expressions and functions

APL2PI is useful for accessing APL2's array processing facilities from scalar programming languages. Using

this technique can combine the performance benefits of compilation for scalar operations with the conciseness,

productivity and performance of APL2 for array processing.

Using APL2PI, multiple APL2 interpreters can be run in the same process. This is useful for providing

complete namescope isolation and, with some languages' multi-threading capabilities, asynchronous APL2

processing.

An APL2 interpreter running under APL2PI has the same restrictions as the APL2 Runtime Library. The

development environment (session manager), interactive input, and library system commands are not supported.

For more detail, see Restrictions of the Runtime Library.

Before using the APL2 Programming Interface, the APL2 system environment must be established. See the

following section, Establishing the APL2 Environment for more information.

Support is included with APL2 for using APL2PI from the following languages and programs:

 Calling APL2 from APL2

A Processor 11 external function or an auxiliary processor may be used to control additional APL2

sessions.

 Calling APL2 from C

An include file contains the C prototype and constant definitions for the interface.

 Calling APL2 from Java

A set of Java classes for APL2 are provided.

 Calling APL2 from Visual Basic

A set of routines are provided for use as Visual Basic external procedures.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

571

Establishing the APL2 Environment

Before using the APL2 Programming Interface, several environment variables must be set that enable APL2PI

to locate APL2's components.

Establishing the APL2 Environment on Unix Systems

The APL2 Environment is established by running a shell script called apl2env. The apl2env script sets the

environment variables required by the APL2 Programming Interface.

The apl2env script resides in the default installation directory. The installation of APL2 defines a symbolic

link, /usr/bin/apl2env, that points to the apl2env shell script.

If you will be using a script to start the program that uses the APL2 Programming Interface, you may copy the

appropriate commands from apl2env or you may call apl2env from your script.

Note:

The apl2env script must be run with . in order for its settings to affect the calling shell's environment. For

example:

 . apl2env

Establishing the APL2 Environment on Windows Systems

On Windows, the install program typically sets the appropriate environment variables.

If you choose not to have the APL2 install program modify your environmental settings, you need to make the

following changes for the APL2 Programming Interface to run correctly. The examples assume a top-level

directory of C:\Program Files\IBMAPL2W\.

1. Add the following directory to PATH: C:\Program Files\IBMAPL2W\bin

2. Set variable APL207FL to: C:\Program Files\IBMAPL2W\fonts

3. Set variable APLP11 to: C:\Program Files\IBMAPL2W\bin\aplnm011.nam

4. If you will using the Java interface, add the following file to CLASSPATH: C:\Program
Files\IBMAPL2W\bin\apl2.jar

You can add environment settings in the System notebook of the Control Panel.

If you will be using a .BAT file to start the program that uses the APL2 Programming Interface, you may also

set the environment variables in your .BAT file.

As an alternative to environment variables, the APL207FL and APLP11 values may be supplied in the

[Invocation Options] section of the apl2.ini file, using keywords 207FL and P11.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

572

For more information on how to set environment variables or create the apl2.ini file, see the section on

customizing APL2 in the Installing and Customizing APL2 section for your operating system.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

573

Calling APL2 from APL2

The interfaces to call APL2 from APL2 are provided in two different forms. External function APL2PIA

provides a synchronous interface. Auxiliary processor AP 200 provides an asynchronous interface.

To use the external function, associate a name with APL2PIA and call it as if it were an APL function in your

workspace.

 3 11 ⎕NA 'APL2PIA'
1

The APL2PIA function's right argument is a nested array containing a character command (service name)

followed by additional parameters, as defined by the service. Its optional left argument is a Boolean indicator of

how errors should be handled. If omitted or 0, errors will be reported as regular APL2 errors and execution will

be suspended on error. If 1, errors will be reported as part of the result.

To use the auxiliary processor, share a variable with AP 200. Specify requests by assigning to the variable and

retrieve results by referencing it.

)COPY 1 UTILITY SVOFFER
 200 SVOFFER 'SV200'
2

AP 200 always returns a 2-item array where the first item is the AP return code and the second item is the

service-defined result. The second item is null if the return code is non-zero or no result is defined for the

service. For a complete list of return codes defined for AP 200, see AP 200 Return Codes.

The following sections discuss the services defined for calling APL2 from APL2.

 Controlling the APL2 Interpreter

 Creating and Managing Workspace Objects

 Executing Expressions and Functions.

The syntax diagrams at the beginning of each service's description show the APL2PIA external function in the

top half of the box, with both forms of error handling, and AP 200 in the bottom half of the box. The examples

all use APL2PIA with default error handling. For examples using AP 200, see AP 200 Commands.

Controlling the APL2 Interpreter

Before beginning to call APL2 from APL2, a separate APL2 interpreter session (known as a slave interpreter)

must be started, and when finished with APL operations in the slave interpreter, it should be terminated. Once

the slave interpreter is started, the APL2 environment there is available for APL operations. The slave

interpreter runs under the same restrictions as the APL2 Runtime Library. The development environment

(session manager), interactive input, and library system commands are not supported. For more detail, see

Restrictions of the Runtime Library.

The following set of services is provided for controlling the slave interpreter:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

574

 START - Starting the Interpreter

 STOP - Stopping the Interpreter

Multiple instances of APL2 may be started. When using the APL2PIA function, each initialization request

returns a unique identifier for that instance. The identifier must be used on all subsequent requests for that

instance. When using AP 200, each shared variable controls one instance of the interpreter.

START - Starting the Interpreter

itoken ← APL2PIA 'START' [options]
(codes ind itoken) ← 1 APL2PIA 'START' [options]

SV200 ← 'START' [options]
rc ← ↑SV200

Parameters:

options APL2 invocation parameters, passed as a vector of character vectors with one element for each

blank-delimited item in a command line parameter list. Any APL2 invocation parameters may

be passed, as defined in Invoking APL2. However, the following parameters will be ignored if

specified:

-hostwin
-input
-lx (is always OFF)
-quiet (is always ON)
-run
-rns
-sm (is always OFF)
-svplisten
-svptrace

The shared variable processor options -svplisten and -svptrace can be enabled by

passing the parameters to the master APL2 session or by setting environment variables

APLSVPLISTEN and APLSVPTRACE before starting APL2. On Windows, the menu options

in The SVP Monitor Facility or the SVPLISTEN and SVPTRACE keywords in the [Invocation

Options] section of the apl2.ini configuration file may also be used.

To accept the default invocation settings for APL2, omit options or pass any null array for

options.

Results:

itoken Interpreter instance identifier. This identifier must be passed on all subsequent calls to

APL2PIA for this instance.

codes Error codes (⎕ET)

ind Boolean indicator of whether a result or error message text was created. If 1, the third item of

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

575

the result contains the result or error message text. If 0, the third item of the result is empty.

rc AP 200 return code.

Examples:

 SESS1 ← APL2PIA 'START' ('-ws' '50m' '-id' '12000')
 SESS2 ← APL2PIA 'START' ''

STOP - Stopping the Interpreter

APL2PIA 'STOP' itoken
(codes ind msg) ← 1 APL2PIA 'STOP' itoken

SV200 ← 'STOP'
rc ← ↑SV200

Parameters:

itoken The interpreter instance identifier as returned by START.

Results:

codes Error codes (⎕ET)

ind Boolean indicator of whether a result or error message text was created. If 1, the third item of

the result contains the result or error message text. If 0, the third item of the result is empty.

msg Error message text or null.

rc AP 200 return code.

Example:

 APL2PIA 'STOP' SESS2

Creating and Managing Workspace Objects

Named objects can be created in the slave interpreter's workspace by executing APL expressions in that

workspace which establish objects using assignment, ⎕FX, ⎕TF or ⎕NA. Once the objects are established, they

can then be referred to by name when executing other expressions.

Unnamed objects are also created in the slave interpreter's workspace, during the processing of APL expressions

and functions via the EXECUTE and EXTOKEN services.

In many circumstances, the creation and management of unnamed objects can be left to be automatically

handled by the interface code (APL2PIA function or AP 200). APL2 arrays can be passed directly to the

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

576

EXECUTE service for use as APL expressions, function names, and arguments to functions. These arrays will be

moved to the slave interpreter's workspace as needed and any results of the functions and expressions will be

automatically retrieved.

When the unnamed arrays are handled automatically, however, they only reside in the slave workspace

temporarily, and there is a cost to establishing these objects on each call to the EXECUTE service. In some

circumstances, particularly when certain arrays will be used repeatedly, the user may want to manage the

unnamed arrays directly, to obtain the best performance possible. For these circumstances, a set of services are

provided to manage unnamed arrays. The EXTOKEN service executes expressions and functions using this type

of array.

The following set of services is provided for managing APL2 objects in the workspace:

 PUT - Establish an Array in the Workspace

 GET - Obtain the Value of an Array from the Workspace

 FREE - Remove an Array from the Workspace

PUT - Establish an Array in the Workspace

atoken ← APL2PIA 'PUT' itoken array
(codes ind atoken) ← 1 APL2PIA 'PUT' itoken array

SV200 ← 'PUT' array
(rc atoken) ← SV200

Parameters:

itoken The interpreter instance identifier as returned by START.

array The array to be established.

Results:

atoken The locator token of the array. This token must be used on subsequent calls to the EXTOKEN,

GET and FREE services to refer to the array.

codes Error codes (⎕ET)

ind Boolean indicator of whether a result or error message text was created. If 1, the third item of

the result contains the result or error message text. If 0, the third item of the result is empty.

rc AP 200 return code.

Examples:

 LEFTID←APL2PIA 'PUT' SESS1 'LEFT ARGUMENT DATA'
 RIGHTID←APL2PIA 'PUT' SESS1 'RIGHT ARGUMENT DATA'
 CATID←APL2PIA 'PUT' SESS1 ','

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

577

 SAMPID←APL2PIA 'PUT' SESS1 'SAMP'

GET - Obtain the Value of an Array from the Workspace

array ← APL2PIA 'GET' itoken atoken

(codes ind array) ← 1 APL2PIA 'GET' itoken atoken

SV200 ← 'GET' atoken
(rc array) ← SV200

Parameters:

itoken The interpreter instance identifier as returned by START.

atoken The locator token of the array to be referenced.

Results:

array The value of the array

codes Error codes (⎕ET)

ind Boolean indicator of whether a result or error message text was created. If 1, the third item of

the result contains the result or error message text. If 0, the third item of the result is empty.

rc AP 200 return code.

Example:

 APL2PIA 'GET' SESS1 LEFTID
LEFT ARGUMENT DATA

FREE - Remove an Array from the Workspace

APL2PIA 'FREE' itoken atoken

(codes ind msg) ← 1 APL2PIA 'FREE' itoken atoken

SV200 ← 'FREE' atoken
rc ← ↑SV200

Parameters:

itoken The interpreter instance identifier as returned by START.

atoken The locator token of the array to be removed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

578

Results:

codes Error codes (⎕ET)

ind Boolean indicator of whether a result or error message text was created. If 1, the third item of

the result contains the result or error message text. If 0, the third item of the result is empty.

msg Error message text or null.

rc AP 200 return code.

Example:

 APL2PIA 'FREE' SESS1 LEFTID

Executing Expressions and Functions

The EXECUTE and EXTOKEN services allow execution of expressions and functions in the APL2 session. The

two services are identical except that EXECUTE is passed APL arrays directly for its last three arguments, and

EXTOKEN is passed identifier tokens for arrays already established by PUT.

 EXECUTE - Execute Expression or Function

 EXTOKEN - Execute Using Array Tokens

Note:

Functions processed under control of these services operate in the same manner as those processed under

control of ⎕EC, and exhibit the following behavior:

 System commands are not allowed.

 Assignment expressions return a value.

 Requests for quad input are handled the same as quad input under ⎕EC.

 Errors generated during processing do not cause suspension of the function being processed. Errors are

percolated back to the caller.

 Branch escape (→) causes the service to return.

 Stop control vectors (S∆) are ignored.

 An attention signal does not cause suspension; an interrupt signal causes the service to halt and return

control to the caller.

EXECUTE - Execute Expression or Function

[result ←] APL2PIA 'EXECUTE' itoken [left] expression [right]
(codes ind result) ← 1 APL2PIA 'EXECUTE' itoken [left] expression [right]

SV200 ← 'EXECUTE' [left] expression [right]
(rc result) ← SV200
(codes ind result) ← result

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

579

Parameters:

itoken The interpreter instance identifier as returned by START.

expression A character scalar or vector containing either a complete APL expression or the name of a

function. If a function, it can be a defined function, system function, primitive function, or the

assignment arrow. If the function is the assignment arrow, the left argument is the name of the

object to be assigned, and the right argument is the value to be assigned to it.

right The APL array to be used as the right argument to the specified function.

left The APL array to be used as the left argument to the specified function.

Note that the expression or function name and arguments are all passed directly to this service. The

corresponding objects for these parameters are automatically created in the slave workspace and the result, if

any, is automatically retrieved. Any objects handled automatically are deleted after the operation is complete.

Results:

codes Error codes (⎕ET)

ind Boolean indicator of whether a result was created.

result If codes is 0 0 and ind is 1, the result from execution of the function or expression.

If codes is not 0 0 and ind is 1, a character matrix containing the error message and

execution stack at the time of the error.

Otherwise, a null character vector.

rc AP 200 return code.

Examples:

 APL2PIA 'EXECUTE' SESS1 (1.1 2.2 3.3) '+' 100
101.1 102.2 103.3
 APL2PIA 'EXECUTE' SESS1 '⎕FX'('Z←L SAMP R' 'Z←L R')
SAMP
 APL2PIA 'EXECUTE' SESS1 (1.1 2.2 3.3) 'SAMP' ('ABC')
 1.1 2.2 3.3 ABC

EXTOKEN - Execute Using Array Tokens

[rtoken ←] APL2PIA 'EXTOKEN' itoken [ltoken] etoken [rtoken]
(codes ind rtoken) ← 1 APL2PIA 'EXTOKEN' itoken [ltoken] etoken [rtoken]

SV200 ← 'EXTOKEN' [ltoken] etoken [rtoken]
(rc result) ← SV200

(codes ind rtoken) ← result

Parameters:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

580

itoken The interpreter instance identifier as returned by START.

etoken The identifier token of a character scalar or vector in the slave workspace containing either a

complete APL expression or the name of a function. If a function, it can be a defined function,

system function, primitive function, or the assignment arrow. If the function is the assignment

arrow, the left argument is the name of the object to be assigned, and the right argument is the

value to be assigned to it.

rtoken The identifier token of an APL array in the slave workspace to be used as the right argument to

the specified function.

ltoken The identifier token of an APL array in the slave workspace to be used as the left argument to

the specified function.

Note that the expression or function name and arguments are all passed to this service as locator tokens. This

means that these objects must exist in the workspace prior to calling the service. If executing an expression,

there must be a character object containing the expression. If executing a function, there must be a character

object containing the function name. These objects can be created in the workspace by use of the PUT service.

See Creating and Managing Workspace Objects for more information.

Results:

codes Error codes (⎕ET)

ind Boolean indicator of whether a result was created.

rtoken If codes is 0 0 and ind is 1, the locater token of the result from execution of the function or

expression.

If codes is not 0 0 and ind is 1, the locator token of a character matrix containing the error

message and execution stack at the time of the error.

The GET service can be used to retrieve the value of the array.

Otherwise, a null character vector.

rc AP 200 return code.

Example:

 APL2PIA 'EXTOKEN' SESS1 LEFTID CATID RIGHTID
11
 APL2PIA 'GET' SESS1 11
LEFT ARGUMENT DATA RIGHT ARGUMENT DATA

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

581

Calling APL2 from C

The APL2 Programming Interface for C is a routine entry point named apl2pi in the APL2 shared library (on

Windows, apl2lib.dll; on Unix systems, libapl2.so.)

int _System apl2pi(CALL *);
The prototype for this routine, and associated structure and constant definitions, are found in the include file

aplfun.h in the include subdirectory of the APL2 main directory. On Windows, the library file

apl2lib.lib required to link the routine to your C program is found in the lib subdirectory.

The apl2pi routine takes a single argument, a pointer to a CALL structure. A set of services are defined for

use by callers of APL2. Before calling the apl2pi routine, the fields of this structure must be filled in

appropriately for the type of service being requested. Results are returned in CALL structure fields, as defined

for the service.

Note: The CALL structure used for this interface is the same structure used for external routines called by

APL2. Some fields of the structure are not used when calling apl2pi. All unused fields should be initialized to

0 to avoid confusion between the two interfaces.

Before beginning to use APL2 the interpreter must be started, and when finished with APL2 operations the

interpreter should be terminated. Once the interpreter is started, the APL2 environment is available for APL

operations. The interpreter runs under the same restrictions as the APL2 Runtime Library. The development

environment (session manager), interactive input, and library system commands are not supported. For more

detail, see Restrictions of the Runtime Library.

The following sections discuss the services defined for apl2pi:

 Controlling the APL2 Interpreter

 Creating and Managing Workspace Objects

 Executing Expressions and Functions.

 Miscellaneous Services

The following section discusses handling exceptions in C and APL2.

 Handling Exceptions under C

A sample program which demonstrates how to call APL2 from C is shipped as callapl2.c, in the samples

(Windows) or examples/qna (Unix) subdirectory of the APL2 product directory..

Controlling the APL2 Interpreter

The following set of services is provided for controlling the interpreter:

 APL2PI_INIT - Starting the Interpreter

 APL2PI_TERM - Stopping the Interpreter

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

582

Multiple instances of APL2 may be started. Each initialization request returns a unique identifier for that

instance. The identifier must be used on all subsequent requests for that instance.

APL2PI_INIT - Starting the Interpreter

Parameters:

->request 0 (APL2PI_INIT)

->parm1 A caller anchor word. This can be any value as defined by the caller to uniquely identify

itself. The value will be saved in the interpreter environment and passed in field -

>parm2 on every call to an external name. An associated processor or external routine

can examine this word to identify the caller of the APL2 environment. If no anchor is

needed, this word must be set to 0.

->parm2 The APL2 invocation parameter count (corresponds to the standard C argc), or 0 to

accept the APL2 default invocation option values for the runtime environment.

->parm3 The APL2 invocation parameter array, in standard C argv format, or NULL to accept

the APL2 default invocation option values for the runtime environment. Any APL2

invocation parameters may be passed, as defined in Invoking APL2. However, the

following parameters will be ignored if specified:

-hostwin
-input
-lx (is always OFF)
-quiet (is always ON)
-run
-rns
-sm (is always OFF)
-svplisten
-svptrace

The shared variable processor options -svplisten and -svptrace can be enabled

by setting environment variables APLSVPLISTEN and APLSVPTRACE before starting

APL2. On Windows, the menu options in The SVP Monitor Facility or the SVPLISTEN

and SVPTRACE keywords in the [Invocation Options] section of the apl2.ini

configuration file may also be used.

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMLIMIT) - if APL2 could not be initialized.
The same code will also be returned as the result of apl2pi.

->reason reason code, if ->request is MSG_SYSTEMLIMIT:

5 (ET_INTERFACENA) - if the APL2 message tables could not be found,
the APL2 shared variable processor would not start, or there was
insufficient storage available to allocate the required work areas.
Additional messages indicating the source of the problem may be printed
in the program console window.
6 (ET_INTERFACEQUOTA) - if the APL2 interpreter is time-limited and has
expired.

->token the interpreter instance identifier. This identifier must be passed in the ->token field

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

583

on all subsequent calls to apl2pi for this instance.

->reloc_count the workspace relocation counter. This value can be tested after each call to apl2pi to

determine when workspace garbage collection has taken place.

Example:

 static char *argv[2] = {"-ws","20m"};
 long APL2_inst1;
 memset(call, 0x00, sizeof(CALL));
 call->request = APL2PI_INIT;
 call->parm1 = 0;
 call->parm2 = 2;
 call->parm3 = (long)argv;
 if (MSG_OK != apl2pi(call) {
 printf("APL2 initialization failed: %i %i\n",call->request,call->reason);
 return(1);
 }
 APL2_inst1 = call->token;

APL2PI_TERM - Stopping the Interpreter

Parameters:

->request 255 (APL2PI_TERM)

->token The interpreter instance identifier as returned by APL2PI_INIT.

Results:

->request 0 (MSG_OK)

Example:

 call->request = APL2PI_TERM;
 call->token = APL2_inst1;
 apl2pi(call);

Creating and Managing Workspace Objects

The following set of services is provided for managing APL2 objects in the workspace:

 ARRAYSPACE - Allocate an Array in the Workspace

 ARRAYRESIZE - Change the Size of an Allocated Array

 ARRAYREF - Reference an Array in the Workspace

 ARRAYCONVERT - Convert an Array to a New Type

 FREESPACE - Remove a Reference to an Array

 TOKEN_TO_ADDRESS - Obtain the Address of an Array

 LCDR_TO_ARRAY - Convert a Linear CDR to an Array

 ARRAY_TO_LCDR - Convert an Array to a Linear CDR

Locating APL2 Objects

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

584

Each APL2 object has a unique identifier, called the locator token or just token. The token is the means by

which the interpreter can always locate the object, regardless of whether it has moved within the workspace.

At any given time, each APL2 object resides at a specific address in the user machine. A caller must use the

address to actually access the contents of the object. The address may change when the interpreter storage

management routines move objects within the workspace. The caller needs to be aware of when that happens,

and obtain new addresses for objects when necessary.

When the caller uses the ARRAYSPACE, ARRAYCONVERT or LCDR_TO_ARRAY services to allocate

storage, or the ARRAYRESIZE service to lengthen an array, objects in the workspace can move during the time

the interpreter has control to allocate the storage. Also, during execution of APL2 expressions

(EXECUTE_APL), allocation of temporary objects and garbage collection can affect object addresses.

Upon return from these services, the caller can test to see whether it is necessary to refresh object addresses.

The ->reloc_count field in the CALL block can be used to do this. Before calling apl2pi, save the value

from ->reloc_count. If the value has changed when the service returns, objects in the workspace have

moved, and all addresses of objects stored locally within the caller's program must be refreshed.

To obtain new addresses for workspace objects, use the TOKEN_TO_ADDRESS service.

Processing APL2 Objects

Each APL2 workspace object contains information that describes its data type, shape, size, and origin. This

information is called its header, and is located at the beginning of the object. The header consists of the

following fields (defined in C include file aplobj.h):

 typedef struct aplobj {
 unsigned long ptr ;
 unsigned long nb ;
 unsigned long nelm ;
 unsigned char type ;
 unsigned char rank ;
 unsigned char fill[2] ;
 unsigned long dim[1] ;
 } APLOBJ ;

ptr The locator token of the object.

nb The number of bytes in this APL2 object. If the datatype of this object is that of a nested array the

byte count includes only this object - it does not include the subitems. (Note: this is different from the

APL2 objects passed to auxiliary processors.) The length of each object must be rounded to an even

multiple of 16.

nelm The number of elements in this APL2 object.

type APL2 object type:

0 (BOOLEAN) Boolean 1 bit per item
1 (INTEGER) Integer 4 bytes per item
2 (FLOAT) Real 8 bytes per item
3 (COMPLEX) Complex 16 bytes per item
4 (CHARACTER) ASCII Character 1 byte per item
5 (CHARLONG) Extended Character 4 bytes per item
6 (APV) Progression Vector 8 bytes
7 (NESTED) General Array 4 bytes per item

rank Rank of object (0-64).

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

585

fill Unused; should be set to 0.

dim[] Length of each dimension (number of elements in dim = rank)

Immediately following the header for each object is the data associated with the object. The length of the data

for each type is shown above. If the object has more than one dimension, its elements are stored in row order (as

if the APL2 primitive Ravel had been applied to the variable).

Immediately following the data are enough fill bytes to make the length of the object an even multiple of 16.

If the array is a general array, the data consists of a set of locator tokens - one for each subitem of the array. If

the general array is null, the data consists of one locator token - for an array which is the prototype for the

general array. To obtain the addresses for the sub-items of a nested array, use the TOKEN_TO_ADDRESS

service.

Building APL2 Objects

There are two ways that a routine can create an APL2 object. One method is to allocate the array (and its

subitems if general) directly in the workspace with the ARRAYSPACE service and build the object there. The

other is to build the object in local storage within your program, and when the array is complete, use the

LCDR_TO_ARRAY service to place the array into the workspace.

In general, building the array in the workspace is more efficient. The array contents do not have to be copied

into the workspace, they will be placed directly there. However, there are several reasons that you may want to

build the object in local storage first.

1. You may be in a situation (such as reading data from a pipe or port) where you do not know in advance

how large the array will be. Allocating an array much larger than necessary could result in WS FULL.

2. You may be in situation (such as fetching data from a database) where you need to rearrange or

compress the data after obtaining it to make the APL2 object.

3. When you have a nested array, each item and subitem must be allocated separately with a call to

ARRAYSPACE. If any of the calls fails (usually because of WS FULL) the items which were allocated

successfully must be freed, and depending on your routine, additional cleanup may be necessary. When

you build the array locally, there is a single call to LCDR_TO_ARRAY.

4. There is an additional degree of safety in this method. When you build an array directly in the

workspace, no validation of your object is done. If you make an error, you can potentially corrupt the

workspace. When you build the array locally and use LCDR_TO_ARRAY, a complete validation of

your object is performed before copying it to the workspace. If there are errors in the object, control will

be returned to your routine, which can then perform any desired cleanup before returning an error.

When you build a result array in local storage to pass to the LCDR_TO_ARRAY service, the contents of some

of the fields on the APLOBJ structure are different from that of workspace objects. The object format used is

the same format as is used by auxiliary processors, called Common Data Representation (CDR). The

differences between the workspace object format and CDR format are:

1. The ->ptr field of a workspace object contains its locator token. The ->ptr field of a CDR contains a

platform identifier.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

586

2. For general arrays, the data section of a workspace object contains the locator tokens of the subarrays,

which are separate objects. The data section of a general array CDR contains the offsets to the subarrays,

which must follow the general array CDR in left-list order.

3. For general arrays, the ->nb field of a workspace object is the number of bytes in the general array

only. The ->nb field of a general array CDR is the total number of bytes in the general array and all of

its subitems.

For complete information on building a CDR, see Common Data Representation.

ARRAYSPACE - Allocate an Array in the Workspace

Parameters:

->request 21 (ARRAYSPACE)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 number of elements

->parm2 rank

->parm3 type, one of:

0 (BOOLEAN)
1 (INTEGER)
2 (FLOAT)
3 (COMPLEX)
4 (CHARACTER)
5 (CHARLONG)
6 (APV)
7 (NESTED)

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if an invalid type is passed.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.
4 (MSG_SYSTEMLIMIT) - if rank or number of elements is out of range.

->reason reason code, if ->request is MSG_SYSTEMLIMIT:

8 (ET_ARRAYRANK) - if the rank requested was greater than 64.
9 (ET_ARRAYSIZE) - if the number of elements and type caused the
number of bytes required for this array to exceed the largest possible
integer value.

->parm1 the locator token of the array

->parm2 the address of the start of the array (descriptor section)

->parm3 the address of the start of the data section

Notes:

1. This service allocates an array in the workspace. It should be freed with FREESPACE when no longer

needed.

2. The array descriptor fields are filled in for you, except where the array is rank 2 or higher. In that case,

the dim[] fields are not filled in, and must be filled in before using the array in any further operations.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

587

Example:

 call->request = ARRAYSPACE;
 call->token = APL2_inst1;
 call->parm1 = 2;
 call->parm2 = 1;
 call->parm3 = INTEGER;
 if (MSG_OK == apl2pi(call)) {
 longdata = (LONG *)call->parm3;
 longdata[0] = 0;
 longdata[1] = 75;
 }

ARRAYRESIZE - Change the Size of an Allocated Array

Parameters:

->request 22 (ARRAYRESIZE)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 the locator token of the array

->parm2 the new number of elements

->parm3 the new rank

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.
4 (MSG_SYSTEMLIMIT) - if rank or number of elements is out of range.

->reason reason code, if ->request is MSG_SYSTEMLIMIT:

8 (ET_ARRAYRANK) - if the rank requested was greater than 64.
9 (ET_ARRAYSIZE) - if the number of elements and type caused the
number of bytes required for this array to exceed the largest possible
integer value.

->parm2 the address of the start of the array (descriptor section)

->parm3 the address of the start of the data section

Notes:

1. If this service is used to shorten an array, MSG_WSFULL and garbage collection will not happen. The

address of the start of the array will not move. The address of the data section will move only if the rank

is changed. Any data already in the array will not be moved. If rank is changed the user is responsible

for moving data accordingly.

2. If this service is used to lengthen an array, WS_FULL and garbage collection are possible, and the

addresses of the start of the array and data section will move. The contents of the old array are copied to

the new array, but adjustments are not made for any change in rank.

3. If the rank of the array is 2 or higher, the dim[] fields must be filled in before using the array in any

further operations.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

588

Example:

 call->request = ARRAYRESIZE;
 call->token = APL2_inst1;
 call->parm1 = array_token;
 call->parm2 = 3;
 call->parm3 = 1;
 if (MSG_OK == apl2pi(call)) {
 longdata = (LONG *)call->parm3;
 longdata[2] = 99;
 }

ARRAYREF - Reference an Array in the Workspace

Parameters:

->request 23 (ARRAYREF)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 the locator token of the array

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.

Notes:

1. This service would be used, for example, if an array is part of a nested array, and will be used more than

once when building the nested array.

2. The FREESPACE service should be used to remove the reference when it is no longer needed.

Example:

 call->request = ARRAYREF;
 call->token = APL2_inst1;
 call->parm1 = array_token;
 if (MSG_OK != apl2pi(call)) {
 return 1;
 }

ARRAYCONVERT - Convert an Array to a New Type

Parameters:

->request 24 (ARRAYCONVERT)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 the locator token of the array

->parm2 the new type, one of:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

589

0 (BOOLEAN)
1 (INTEGER)
2 (FLOAT)
3 (COMPLEX)
4 (CHARACTER)
5 (CHARLONG)
6 (APV)
7 (NESTED)

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid
or an invalid type is passed.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.
4 (MSG_SYSTEMLIMIT) - if rank or number of elements is out of range.
11 (MSG_DOMAINERROR) - if the array cannot be converted to the new type.

->reason reason code, if ->request is MSG_SYSTEMLIMIT:

8 (ET_ARRAYRANK) - if the rank requested was greater than 64.
9 (ET_ARRAYSIZE) - if the number of elements and type caused the
number of bytes required for this array to exceed the largest possible
integer value.

->parm1 the locator token of the new array

->parm2 the address of the start of the array (descriptor section)

->parm3 the address of the start of the data section

Notes:

1. Not all type conversions are possible. For example, numeric arrays cannot be converted to character,

integer arrays can only be converted to Boolean if all the values are 0 or 1, and most nested arrays

cannot be converted to a non-nested type. This service makes validity checks to ensure that the data will

be representable in the new type, and returns MSG_DOMAINERROR if the conversion is not possible.

2. This service allocates a new array. WS_FULL and garbage collection are possible. The old array is not

deleted. It is still present, and it, along with any other workspace objects, can move during this call.

3. The array should be freed with FREESPACE when no longer needed.

Example:

 call->request = ARRAYCONVERT;
 call->token = APL2_inst1;
 call->parm1 = array_token;
 call->parm2 = INTEGER;
 if (MSG_OK == apl2pi(call)) {
 longdata = (LONG *)call->parm3;
 }

FREESPACE - Remove a Reference to an Array

Parameters:

->request 2 (FREESPACE)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

590

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 the locator token of the array

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.

Notes:

1. This service removes a reference to an array. If the reference removed is the only remaining reference to

that array, the array is then deleted, and the storage it occupied is freed for other uses.

2. This service is used to free arrays allocated with ARRAYSPACE, ARRAYCONVERT and

LCDR_TO_ARRAY, and to remove references to arrays added by ARRAYREF.

Example:

 call->request = FREESPACE;
 call->token = APL2_inst1;
 call->parm1 = array_token;
 if (MSG_OK == apl2pi(call)) {
 array_token = 0;
 }

TOKEN_TO_ADDRESS - Obtain the Address of an Array

Parameters:

->request 11 (TOKEN_TO_ADDRESS)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 the locator token of the array

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.

->parm2 the address of the start of the array (descriptor section)

->parm3 the address of the start of the data section

Notes:

1. This service is used to obtain addresses for sub-items of nested arrays, and to re-address arrays after

garbage collection has taken place.

Example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

591

 call->request = TOKEN_TO_ADDRESS;
 call->token = APL2_inst1;
 call->parm1 = local_token;
 if (MSG_OK == apl2pi(call)) {
 local_desc = call->parm2;
 local_data = call->parm3;
 }

LCDR_TO_ARRAY - Convert a Linear CDR to an Array

Parameters:

->request 18 (LCDR_TO_ARRAY)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm2 the address of the buffer containing the CDR

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the CDR in the buffer is invalid.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.

->parm1 the locator token of the allocated array

Notes:

1. This service allocates an array in the workspace. The array should be freed with FREESPACE when it is

no longer needed.

Example:

 call->request = LCDR_TO_ARRAY;
 call->token = APL2_inst1;
 call->parm2 = buffer;
 if (MSG_OK == apl2pi(call)) {
 array_token = call->parm1;
 }

ARRAY_TO_LCDR - Convert an Array to a Linear CDR

Parameters:

->request 19 (ARRAY_TO_LCDR)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 the locator token of the array to be converted

->parm2 the address of a buffer to receive the CDR.

The first four bytes of the buffer must contain an integer which is the total length of the buffer.

Results:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

592

->request return code:

0 (MSG_OK) - the request was successful.

->parm2 the actual length of the CDR.

If the buffer was at least this length, the CDR has been built in the buffer.

Notes:

1. If you want to find out how large a buffer is needed to contain the CDR, call this service with the

address of a 4-byte area containing the integer 4. On return, ->parm2 will contain the required buffer

size.

Example:

 call->request = ARRAY_TO_LCDR;
 call->token = APL2_inst1;
 call->parm2 = buffer;
 (*(long *)buffer) = buffersize;
 apl2pi(call);
 if (call->parm2 > buffersize) {
 buffersize = call->parm2;
 buffer = malloc(buffersize);
 call->request = ARRAY_TO_LCDR;
 call->parm2 = buffer;
 (*(long *)buffer) = buffersize;
 apl2pi(call);
 }

Executing Expressions and Functions

The EXECUTE_APL and EXECUTE_APL_ESTACK services allow execution of expressions and functions in

the APL2 session. EXECUTE_APL and EXECUTE_APL_ESTACK take the same arguments and behave in the

same manner. The difference between the two is the type of object returned in ->parm1 when an error occurs.

Parameters:

->request 5 (EXECUTE_APL) or
38 (EXECUTE_APL_ESTACK)

->token The interpreter instance identifier as returned by APL2PI_INIT.

->parm1 the locator token of the expression or function name. If a function, it can be a defined function,

system function, primitive function, or the assignment arrow. If the function is the assignment

arrow, the left argument is the name of the object to be assigned, and the right argument is the

value to be assigned to it.

->parm2 the locator token of the right argument, or 0 if none

->parm3 the locator token of the left argument, or 0 if none

Note that the expression or function name and arguments are all passed to this service as locator tokens. This

means that all required objects must exist in the workspace prior to calling the service. If executing an

expression, there must be a character object containing the expression. If executing a function, there must be a

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

593

character object containing the function name as well as the function itself. Objects can be created in the

workspace by several methods:

1. Use of the ARRAYSPACE or LCDR_TO_ARRAY services.

2. Executing expressions which access objects in APL2 namespaces using ⎕NA.

3. Executing expressions which establish objects using assignment, ⎕FX or ⎕TF.

4. Executing an assignment directly with this service.

See Creating and Managing Workspace Objects for more information.

Results:

->request one of the message codes defined in Message Codes.

->reason if applicable, one of the message type codes defined in Message Codes.

->parm1 If ->request is MSG_OK: the locator token of the result, or 0 if none

If ->request is MSG_APLERROR: the locator token of the error message (EXECUTE_APL)

or error stack (EXECUTE_APL_ESTACK)

->parm2 If ->request is MSG_OK: the address of the start of the result (descriptor section)

If ->request is MSG_APLERROR: the APL event class (first element of ⎕ET)

->parm3 If ->request is MSG_OK: the address of the start of the data section

If ->request is MSG_APLERROR: the APL event type (second element of ⎕ET)

Notes:

1. Functions processed under control of this interface operate in the same manner as those processed under

control of ⎕EC, and exhibit the following behavior:

 System commands are not allowed.

 Assignment expressions return a value.

 Requests for quad input are handled the same as quad input under ⎕EC.

 Errors generated during processing do not cause suspension of the function being processed.

Error codes are returned via the CALL structure.

 Branch escape (→) causes EXECUTE_APL to return.

 Stop control vectors (S∆) are ignored.

 An attention signal does not cause suspension; an interrupt signal causes EXECUTE_APL to halt

and return control to the caller.

2. If a result or error message is returned in ->parm1, a new array has been allocated. The array should be

freed with FREESPACE when no longer needed.

3. WS_FULL and garbage collection are possible during the course of APL operations, regardless of

whether a result is returned. Any previously allocated arrays may move if garbage collection occurs.

Example:

 /* Allocate an array for the expression */
 call->request = ARRAYSPACE;
 call->token = APL2_inst1;
 call->parm1 = 3;
 call->parm2 = 1;
 call->parm3 = CHARACTER;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

594

 if (MSG_OK == apl2pi(call)) {
 exptoken = call->parm1;
 memcpy((char *)call->parm3,"⎕TS",3);
 /* Execute the expression */
 call->request = EXECUTE_APL;
 call->token = APL2_inst1;
 call->parm1 = exptoken;
 call->parm2 = 0;
 call->parm3 = 0;
 apl2pi(call);
 restoken = call->parm1;
 /* Free the expression array */
 call->request = FREESPACE;
 call->token = APL2_inst1;
 call->parm1 = exptoken;
 apl2pi(call);
 }

Miscellaneous Services

The following additional services are available through the apl2pi interface:

 QUAD_CT - Obtain the Current Comparison Tolerance

 QUAD_IO - Obtain the Current Index Origin

QUAD_CT - Obtain the Current Comparison Tolerance

Parameters:

->request 40 (QUAD_CT)

->token The interpreter instance identifier as returned by APL2PI_INIT.

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_QUADERROR) - if ⎕CT is missing or invalid.

->reason reason code, if ->request is MSG_QUADERROR:

3 (ET_CT)

->parm1 the address of a double containing the current value of ⎕CT

Example:

 call->request = QUAD_CT;
 if (MSG_OK == (call->service)(call)) {
 local_ct = *(double *)call->parm1;
 }

QUAD_IO - Obtain the Current Index Origin

Parameters:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

595

->request 15 (QUAD_IO)

->token The interpreter instance identifier as returned by APL2PI_INIT.

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_QUADERROR) - if ⎕IO is missing or invalid.

->reason reason code, if ->request is MSG_QUADERROR:

2 (ET_IO)

->parm1 the current value of ⎕IO

Example:

 call->request = QUAD_IO;
 if (MSG_OK == apl2pi(call)) {
 local_io = call->parm1;
 }

Handling Exceptions under C

Each time you call the APL2 Programming Interface, APL2 uses the C runtime library signal facility to save the

caller's handler for the SIGSEGV signal and then registers a new handler. On Unix systems, APL2 also saves

the caller's handlers and registers new handlers for the following additional signals:

 SIGCHLD - Child process termination

 SIGHUP - Hang up

 SIGINT - Ctrl+C

 SIGQUIT - Dump request

 SIGTERM - Process termination

Before returning from each call to the APL2 Programming Interface, APL2 restores the caller's signal handlers.

When exceptions occur during a call to APL2, the C runtime library's signal facility normally catches the

exceptions and passes control to APL2's signal handlers.

On Windows however, Microsoft Visual Studio's C and C++ __try and __except structured exception handling

mechanism and C++ try and catch exception handling mechanism catch exceptions before they are passed to the

signal facility. Therefore, if one of these exceptions occurs inside a __try or try block, the __except or catch

block will receive control.

If you call the APL2 Programming Interface from within a __try or try block and an access violation occurs,

APL2's signal handler will not receive control and the APL2 interpreter will be left in an unpredictable state.

If your __except or catch block receives control during a call to the APL2 Programming Interface, you should

not attempt any further calls to APL2 other than APL2PI_TERM.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

596

Calling APL2 from Java

APL2 applications can be called from Java. The APL2-Java interface supports the following features:

 Starting and Stopping APL2 Interpreters

 Creating and Deleting Workspace Objects

 Assigning, Associating, and Expunging Names

 Executing Expressions and Functions

 Using APL Characters in Java Programs

 Querying Workspace Object Attributes

 Retrieving Workspace Object Values

 Handling APL2 Errors

 Handling Exceptions under Java

An APL2 interpreter called from Java has the same restrictions as the APL2 Runtime Library. Primarily, the

session manager and workspace system commands are not supported. For a complete description, see

Restrictions of the Runtime Library.

This section concludes with several samples that illustrate how to use the APL2-Java interface:

 Calling APL2 from Java

 Calling APL2 from APL2

 Working with CDRs

Finally, the APL2-Java interface can be used to call APL2 from WebSphere. This topic is described in detail in

APL2 Programming: Using APL2 with WebSphere.

Installing Java

The APL2-Java interface requires Java 2 Version 1.4 or later. However, APL2 does not include Java. You may

have to install Java before you can use the APL2-Java interface.

Checking if Java is Installed

You can check whether an appropriate version of Java is already installed by entering the following command:

java -version

Notes:

If more than one version of Java is installed, this command will tell you only about the one that

is first in the current search order.

Other installed products may include Java. You should not use a copy of Java that is included in

another product. Copies of Java installed by other products may be customized for use by those

products. You should install a stand-alone copy of Java for use with APL2.

Downloading Java

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

597

If you need to install Java, you can download Java installation programs for AIX, Linux, and Windows from the

IBM developerWorks Java technology site, http://www.ibm.com/developerworks/java and for Linux, Solaris,

and Windows from the Sun Developer Network, http://java.sun.com.

Several editions of Java are available including the Standard (SE), Enterprise (EE), and Micro Editions (ME).

The IBM APL Products and Services group recommends the Standard Edition.

Within each edition, two Java packages are available for download:

 Java runtime environment (JRE)

The JRE includes the files that are necessary to run Java programs.

 Java Development Kit (JDK)

The JDK includes the files that are necessary to develop Java programs. The JDK also includes the JRE;

if you install the JDK, you do not need to also install the JRE.

If you intend to develop Java programs, install the JDK. If you are only going to use Java programs developed

by others, including running the APL2 sample programs and calling Java from APL2, you can install just the

JRE.

Follow the instructions that come with the Java installation package that you download.

Adding the Java Virtual Machine to the Search Order

Once you have installed Java, you may still need to modify the system's search order. The JDK and JRE

installation packages typically update the system's search order so you can run Java programs, (like the java -

version command.) However, the installation packages do not always update the search order so other

programs like APL2 can locate the Java Virtual Machine (VM) library. You may have to do this yourself.

Consult the instructions for your Java installation package to find out the name of the directory that contains the

VM library.

Add the name of the directory containing the VM library to the system's search order. Add the name to the

LD_LIBRARY_PATH environment variable on UNIX systems and the PATH environment variable on Windows

You can verify you have located the correct directory by searching for the VM library. The VM library has

these names:

AIX libjvm.a

Linux libjvm.so

Solaris libjvm.so

Windows jvm.dll

Installing the APL2-Java Interface Classes

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

598

The APL2-Java interface includes several Java classes which manage the interface between Java and APL2.

The APL2-Java interface classes are shipped in the apl2.jar file in the APL2 product's bin directory. The

APL2 installation process (Windows) or the invocation script (Unix) may make them available to Java

automatically by adding the jar file to the CLASSPATH environment variable. If you choose not to have the

install program or invocation script modify your environment settings, you need to add apl2.jar to

CLASSPATH. For example on Windows:

SET CLASSPATH=%CLASSPATH%;C:\Program Files\ibmapl2w\bin\apl2.jar
or on Unix:

export CLASSPATH=$CLASSPATH:/usr/APL2/bin/apl2.jar

In addition to the APL2-Java interface classes, the apl2.jar file contains two sample classes named

Apl2demo and Apl2swt which are used by the DEMO_JAVA and DEMO_SWT functions in the library 2

DEMOJAVA workspace. The Apl2demo class and Apl2swt.class were compiled from the Apl2demo.java

and Apl2swt.java files in the APL2 samples directory.

The APL2-Java Interface Classes

The APL2-Java interface includes the following classes for using APL2 from Java:

Apl2interp Make APL2 interpreter requests

Apl2object Manage APL2 workspace objects

Apl2exception Indicate and detect APL2 errors

Apl2cdr Convert between workspace and CDR formats

Starting and Stopping APL2 Interpreters

To start an APL2 interpreter, instantiate a new Apl2interp object:

 Apl2interp Slave = new Apl2interp("-ws","20m");

The Apl2interp constructor parameter list is an array of character strings. The array is a list of pairs of values;

each pair is an invocation option name followed by an invocation option value. If no parameters are supplied,

the interpreter starts with the default invocation option values.

Any APL2 invocation parameters may be passed, as defined in Invoking APL2. However, these parameters will

be ignored if specified:

 -hostwin

 -input

 -lx (is always OFF)

 -quiet (is always ON)

 -run

 -rns

 -sm (is always OFF)

 -svplisten

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

599

 -svptrace

The shared variable processor options -svplisten and -svptrace can be enabled by setting environment variables

APLSVPLISTEN and APLSVPTRACE before starting APL2. On Windows, the menu options in The SVP

Monitor Facility or the SVPLISTEN and SVPTRACE keywords in the [Invocation Options] section of the

apl2.ini configuration file may also be used.

To stop an interpreter, call the Apl2interp class's Stop method:

 Slave.Stop();

Once an interpreter has been stopped, any attempt to use the interpreter or any objects in the interpreter's

workspace results in an error.

Creating and Deleting Workspace Objects

The Apl2object class is used to work with objects within interpreters' workspaces. To create a workspace object,

instantiate a new Apl2object object:

 Apl2object Array = new Apl2object(Slave,new int[] {1,2,3,4,5,6});

The Apl2object's constructors take two parameters: an Apl2interp object and an arbitrary Java value. The

constructor copies the value into the APL2 workspace and returns an instance that can be used to refer to the

workspace object.

To delete a workspace object, use the Free method:

 Array.Free();

When a workspace object is created from a Java object, the Apl2object constructor normally converts the Java

object's contents to an APL2 array. If you need to pass the object itself to APL2, use the global reference form

of the Apl2object constructor.

Use global references like objects instantiated through associated processor 14. However, use the Apl2object's

Free method to delete global references; do not use DeleteLocalRef.

This example demonstrates how to use the global reference form of the Apl2object constructor:

 Apl2interp Interp = new Apl2interp() ;
 Apl2object GlobalRef = new Apl2object(Interp,Object,true) ;
 Interp.Execute("FUNCTION",GlobalRef) ;
 GlobalRef.Free() ;
 Interp.Stop() ;
[0] FUNCTION GlobalRef;Class;ClassName
[1] ⎕ES(1≠3 14 ⎕NA 'DeleteLocalRef')/1 5
[2] Class←P14_CALL GlobalRef '()Ljava/lang/Class;' 'getClass'
[3] ClassName←P14_CALL Class '()Ljava/lang/String;' 'getName'
[4] DeleteLocalRef Class

Assigning, Associating, and Expunging Names

Use the Apl2interp class's Assign method to assign a name to an object:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

600

 Slave.Assign("NAME",Array);

The Assign method takes two parameters.

1. A String or an Apl2object instance containing the name to assign.

2. An Apl2object to which the name should be assigned.

Use the Apl2interp class's Associate method to associate a name:

 Slave.Associate(3,11,"DISPLAY");

 Slave.Associate("GRAPHPAK",11,"PLOT");

The Associate method takes three parameters.

1. Either an integer name class or a namespace locator string

2. An associated processor number

3. A string containing the name to be associated

Use the Apl2interp class's Expunge method to expunge a name:

 Slave.Expunge("DISPLAY");

 Slave.Expunge("PLOT");

The Expunge method's parameter is a string containing the name of the object to be expunged.

Executing Expressions and Functions

Use the Apl2interp class's Execute method to execute functions:

 Apl2object Matrix = Slave.Execute("DISPLAY",Array);

The Execute method takes 1, 2, or 3 parameters.

 If 1 parameter is supplied, it may be either a string or an Apl2object that refers to a character vector in

the workspace. The string or character vector is executed.

 If 2 parameters are supplied, the first may be either a string or an Apl2object that refers to a character

vector in the workspace. The string or character vector is the name of a monadic function. The second

parameter is an Apl2object instance. The function is executed and the second parameter is passed as the

function's argument.

 If 3 parameters are supplied, the first parameter is an Apl2object instance. The second may be either a

string or an Apl2object that refers to a character vector in the workspace. The string or character vector

is the name of a dyadic function. The third is an Apl2object instance. The function is executed; the first

parameter is passed as the function's left argument and the third parameter is passed as the right

argument.

If execution of the function or expression returns a result, the Execute method returns an Apl2object. If

execution of the function or expression does not return a result, the Execute method returns null.

Functions processed under control of the Execute method operate in the same manner as those processed under

control of ⎕EC, and exhibit the following behavior:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

601

 Assignment expressions return a value.

 Requests for quad input are handled the same as quad input under ⎕EC.

 Errors generated during execution cause Execute to throw an Apl2exception.

 Branch escape (→) causes Execute to throw an Apl2exception.

 Stop control vectors (S∆) are ignored.

 Attention and interrupt signals do not occur.

Using APL Characters in Java Programs

The Apl2interp class includes static final character and string fields corresponding to the APL2 primitive

symbols, system functions, and system variables.

Primitive Symbols System Variables System Functions

 Assignment
 Branch
 Ceiling
 Circle
 Comment
 Decode
 Del
 DelTilde
 Delta
 DeltaBar
 Diamond
 Divide
 Drop
 Each
 Enclose
 Encode
 Enlist
 Execute
 Find
 Floor
 Format
 GradeDown
 GradeUp
 GreaterEqual

 IBeam
 Index
 Interval
 Jot
 LessEqual
 Match
 MatrixInverse
 Multiply
 Nand
 NaturalLog
 Nor
 Not
 NotEqual
 Or
 Pick
 Quad
 QuoteQuad
 Reverse
 Rotate
 Shape
 SlashBar
 SlopeBar
 Take
 Transpose

 QAI
 QAV
 QCT
 QEM
 QET
 QFC
 QIO
 QLC
 QLX
 QNLT
 QPP
 QPR
 QPW
 QRL
 QSVE
 QTC
 QTS
 QTZ
 QUL
 QWA

 QAF
 QAT
 QCR
 QDL
 QEA
 QEC
 QES
 QEX
 QFX
 QIB
 QNA
 QNC
 QNL
 QPK
 QTF
 QSVC
 QSVO
 QSVQ
 QSVR
 QSVS
 QUCS

These fields are helpful for using APL2 characters in Java programs. For example,

 Apl2object Definition = new Apl2object(Slave,new String[] {
 'Z' + Apl2interp.Assignment + "FOO",
 'Z' + Apl2interp.Interval + "10"}) ;
 Apl2object Name = Slave.Execute(Apl2interp.QFX,Definition);
The corresponding APL2 code looks like this:

 ⎕FX 'Z←FOO' 'Z←⍳10'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

602

Querying Workspace Object Attributes

Use the Apl2object class's Type, Rank, and Shape methods to query a workspace object's structure:

 int Type = Matrix.type();

 int Rank = Matrix.rank();

 int[] Shape = Matrix.shape();

The Apl2object class includes the following static final int fields that correspond to the values returned by the

Type method.

 CDWRTB - Boolean

 CDWRTI - Integer

 CDWRTR - Real

 CDWRTJ - Complex

 CDWRTC - Character

 CDWRTD - Character long (dbcs)

 CDWRTA - Integer Progression vector

 CDWRTG - General array

Retrieving Workspace Object Values

The Apl2object class includes the following methods for retrieving values from the workspace.

 booleanValue
 byteValue
 charValue
 doubleValue
 floatValue
 intValue
 longValue
 shortValue
 stringValue
 booleanarrayValue
 bytearrayValue
 chararrayValue
 doublearrayValue
 floatarrayValue
 intarrayValue
 longarrayValue
 shortarrayValue
 stringarrayValue

These methods return a Java value or array of values from an Apl2object. For example:

 int[] IntArray = Array.intarrayValue();

If the APL2 workspace object cannot be converted to the specified Java type, an Apl2exception is thrown.

Handling APL2 Errors

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

603

When an error occurs in APL2, a Java Apl2exception is thrown. The Apl2exception class's Type and Code

fields contain the elements of ⎕ET. The Stack field contains the APL2 stack at the time of the error as an array

of strings.

The Apl2exception class includes the following static final fields that correspond to the values placed in the

Type field:

 TYPE_DEFAULTS
 TYPE_RESOURCE
 TYPE_SYNTAX
 TYPE_VALUE
 TYPE_IMPLICIT
 TYPE_EXPLICIT

The following static final fields correspond to the values placed in the Code field:

 CODE_DEFAULTS_NOERROR
 CODE_DEFAULTS_UNCLASSIFIED

 CODE_RESOURCE_INTERRUPT
 CODE_RESOURCE_SYSTEMERROR
 CODE_RESOURCE_WSFULL
 CODE_RESOURCE_SYMBOLTABLE
 CODE_RESOURCE_INTERFACENA
 CODE_RESOURCE_INTERFACEQUOTA
 CODE_RESOURCE_INTERFACECAP
 CODE_RESOURCE_ARRAYRANK
 CODE_RESOURCE_ARRAYSIZE
 CODE_RESOURCE_DEPTH
 CODE_RESOURCE_PROMPTLENGTH
 CODE_RESOURCE_VALUEUNREP
 CODE_RESOURCE_RESTRICTION

 CODE_SYNTAX_NOARRAY
 CODE_SYNTAX_ILLFORMED
 CODE_SYNTAX_NAMECLASS
 CODE_SYNTAX_INVALIDOP
 CODE_SYNTAX_COMPATABILITY

 CODE_VALUE_NOVALUE
 CODE_VALUE_NORESULT

 CODE_IMPLICIT_PP
 CODE_IMPLICIT_IO
 CODE_IMPLICIT_CT
 CODE_IMPLICIT_FC
 CODE_IMPLICIT_RL
 CODE_IMPLICIT_PR

 CODE_EXPLICIT_VALENCE
 CODE_EXPLICIT_RANK
 CODE_EXPLICIT_LENGTH
 CODE_EXPLICIT_DOMAIN
 CODE_EXPLICIT_INDEX
 CODE_EXPLICIT_AXIS

Handling Exceptions under Java

When you start Java, Java registers handlers for a variety of signals. These handlers have priority over handlers

registered by the APL2 Programming Interface.

If you call the APL2 Programming Interface from Java and an exception occurs for which Java has registered a

handler, APL2 will not handle the exception and will not return. Java's handler will receive control and the

APL2 interpreter will be left in an unpredictable state.

If your Java code catches an exception during a call to the APL2 Programming Interface, you should not

attempt any further calls to APL2 other than APL2PI_TERM.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

604

Calling APL2 from Java

Here is a complete Java program that calls APL2 and handles errors:

 //* Import the apl2 package of classes
 import com.ibm.apl2.*;
 public class Sample
 {
 public static void main(String[] args) {
 try {
 //* Create a slave interpreter
 Apl2interp Slave = new Apl2interp(new String[] {"-ws","1m"}) ;
 //* Reference QuadTS
 Apl2object Time = Slave.Execute(Apl2interp.QTS) ;
 //* Convert it to a Java integer array
 int[] TimeArray = Time.intarrayValue() ;
 //* Free the workspace object that resulted from the reference
 Time.Free();
 //* Stop the interpreter
 Slave.Stop();
 //* Print the time
 System.out.println("The time is " + TimeArray[4] + ':' + TimeArray[5] + '.') ;
 }
 catch (Apl2exception Exception) {
 System.out.println("Apl2exception caught.");
 System.out.println("Exception message: " + Exception.getMessage());
 System.out.println("Exception cause: " + Exception.getCause());
 System.out.println("Event: " + Exception.Type + " " + Exception.Code) ;
 }
 return ;
 }
 }

Complete reference information about the APL2 Java classes can be found in the javahtml subdirectory of

the APL2 documentation directory.

Calling APL2 from APL2

The APL2 Java interface can also be used as a means to control slave APL2 interpreters from APL2. Slave

interpreters provide a convenient means to run utility applications with complete workspace isolation.

Using APL2's Processor 14, an Apl2interp constructor is used to start an APL2 interpreter. The class's other

methods are used to associate and assign names and execute expressions in the slave interpreter. The following

example illustrates how to use Java to drive a slave interpreter from APL2:

⍝ Associate a name with the Apl2interp class's constructor
⎕ES(1≠('com/ibm/apl2/Apl2interp' '()V')14 ⎕NA 'Constructor <init>')/'Apl2interp
constructor not available'
⍝ Start a slave interpreter
Slave←Constructor
⍝ Associate a name with the interpreter's Execute method
⎕ES(1≠(Slave '(Ljava/lang/String;)Lcom/ibm/apl2/Apl2object;')14 ⎕NA 'Execute')/'Execute
not available'
⍝ Execute an expression in the slave interpreter. This returns an Apl2object
OBJECT←Execute,⊂'⎕TS'
⍝ Convert the Apl2object to an array
ARRAY←APL2OBJECT_TO_ARRAY OBJECT
⍝ Associate a name with the Apl2object's Free method
⎕ES(1≠(OBJECT '()V') 14 ⎕NA 'Free')/'Free unavailable'
⍝ Delete the object from the slave interpreter's workspace

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

605

Free
⍝ Associate a name with the Processor 14 built-in DeleteLocalRef function
⎕ES(1≠3 14 ⎕NA 'DeleteLocalRef')/'DeleteLocalRef unavailable'
⍝ Delete the reference to the object
DeleteLocalRef OBJECT
⍝ Stop the slave interpreter
⎕ES(1≠(Slave '()V')14 ⎕NA 'Stop')/'Stop not available'
Stop
⍝ Delete the associations with Apl2interp instance methods
0 0⍴⎕EX⊃'Execute' 'stop'
⍝ Delete the Apl2interp object
Delete Slave

Working with CDRs

The Apl2interp and Apl2object classes are not serializable. That is, standard Java facilities cannot be used to

flatten them to simple byte representations that can be written to IO streams. Apl2interp objects cannot be

serialized because an APL2 interpreter is a dynamic environment containing a workspace and an execution

state. Apl2object objects cannot be serialized because internally they contain references to Apl2interp objects

and arrays in the interpreters' workspaces. However, sometimes it is desirable to serialize APL2 data and write

it to a stream. For example, it might be desirable to write and read APL2 data to a file, or send it across a

network or copy it between interpreters. The Apl2cdr class provides this capability. Unlike the Apl2interp and

Apl2object classes, the Apl2cdr class is serializable.

The Apl2cdr class stores an APL2 array in Canonical Data Representation (CDR) format. The CDR is stored in

the Apl2cdr object in a Java byte array. Apl2cdr objects can be constructed either using a CDR returned by the

ATR external function or by using the Apl2object class's cdrValue method.

The Apl2cdr class has one method named bytearrayValue. The bytearrayValue method produces a byte

array containing a CDR. The CDR can be used to create an array using the RTA external function.

The Apl2object class includes a constructor that takes an Apl2cdr object as a parameter. This constructor can be

used to create an Apl2object from an Apl2cdr object.

Here is a Java program that uses the Apl2cdr class to save an APL2 array in a file:

 //* Import the apl2 and java io class packages
 import com.ibm.apl2.*;
 import java.io.*;
 public class DemoSerialize
 {
 public static void main(String[] args)
 throws FileNotFoundException, IOException, ClassNotFoundException {
 try {
 //* Start a slave interpreter, create an object, and a CDR
 Apl2interp Slave = new Apl2interp() ;
 Apl2object Array = new Apl2object(Slave,3.14159) ;
 Apl2cdr Cdr = Array.cdrValue() ;
 Array.Free() ;
 //* Write the Apl2cdr object to a file
 String FileName = new String("Apl2DemoSerialize") ;
 FileOutputStream fos = new FileOutputStream(FileName) ;
 ObjectOutputStream oos = new ObjectOutputStream(fos) ;
 oos.writeObject(Cdr) ;
 oos.flush() ;
 //* Read the Apl2cdr object from the file
 FileInputStream fis = new FileInputStream(FileName) ;
 ObjectInputStream ois = new ObjectInputStream(fis) ;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

606

 Apl2cdr NewCdr = (Apl2cdr)ois.readObject() ;
 //* Delete the file
 File f = new File(FileName) ;
 f.delete() ;
 //* Create a new array in the workspace from the CDR
 Apl2object NewArray = new Apl2object(Slave,NewCdr) ;
 NewArray.Free() ;
 Slave.Stop() ;
 }
 catch (Apl2exception Exception) {
 System.out.println("Apl2exception caught.");
 System.out.println("Exception message: " + Exception.getMessage());
 System.out.println("Exception cause: " + Exception.getCause());
 System.out.println("Event: " + Exception.Type + " " + Exception.Code) ;
 }
 return ;
 }
 }

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

607

Calling APL2 from Visual Basic

APL2 applications can be called from Visual Basic.

The Visual Basic to APL2 interface supports the following features:

 Starting and Stopping APL2 Interpreters

 Using Workspace Objects

 Assigning, Associating, and Expunging Names

 Executing Expressions and Functions

 Using APL Characters in Visual Basic Programs

 Handling APL2 Errors

 Data Conversion Between Visual Basic and APL2

An APL2 interpreter called from Visual Basic has the same restrictions as the APL2 Runtime Library.

Primarily, the session manager and workspace system commands are not supported. For a complete description,

see Restrictions of the Runtime Library.

This section concludes with an example that illustrates how to use the Visual Basic to APL2 interface:

 Example Visual Basic Program

Note: The Visual Basic to APL2 interface is only available on Windows.

Starting and Stopping APL2 Interpreters

To start an APL2 interpreter, call the StartApl2 function:

Declare Function StartApl2 Lib "apl2vb" (Optional ByRef Options As Variant) As Long
Dim Token As Long
Token = StartApl2(Array("-ws","2m"))

StartApl2's optional argument is an array of strings containing invocation options.

Any APL2 invocation parameters may be passed, as defined in Invoking APL2. However, these parameters will

be ignored if specified:

 -hostwin

 -input

 -lx (is always OFF)

 -quiet (is always ON)

 -run

 -rns

 -sm (is always OFF)

 -svplisten

 -svptrace

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

608

The shared variable processor options -svplisten and -svptrace can be enabled by setting environment variables

APLSVPLISTEN and APLSVPTRACE before starting APL2, setting values for the SVPLISTEN and

SVPTRACE keywords in the [Invocation Options] section of the apl2.ini configuration file, or using the

menu options in The SVP Monitor Facility.

StartApl2's result is an APL2 interpreter token or zero if an error occurred.

To stop an interpreter, call the StopApl2 function:

Declare Function StopApl2 Lib "apl2vb" (ByVal Token As Long) As Long
StopApl2(Token)

StopApl2's argument is an APL2 interpreter token.

Using Workspace Objects

The VariantToLocator, LocatorToVariant, and FreeLocator functions are used to create,

reference, and free APL2 workspace objects.

Declare Function VariantToLocator Lib "apl2vb" (ByVal Token As Long, _
 ByRef Var As Variant) As Long
Declare Function LocatorToVariant Lib "apl2vb" (ByVal Token As Long, _
 ByVal Locator As Long, ByRef Var As Variant) As Boolean
Declare Function FreeLocator Lib "apl2vb" (ByVal Token As Long, _
 ByVal Locator As Long) As Long
Dim Array As Variant
Dim Locator as Long
Dim BoolRc as Boolean
' Add code here to build Array
Locator = VariantToLocator(Token, Array)
BoolRc = LocatorToVariant(Token, Locator, Array)
FreeLocator Token, Locator

VariantToLocator's arguments are an APL2 interpreter token and a variant. The result is a workspace

object locator or zero if the variant cannot be converted.

The LocatorToVariant function's three arguments are an APL2 interpreter token, a workspace object

locator, and a variant that is to be updated with the contents of the workspace object. The result is a Boolean

that indicates whether an error occurred. False indicates success; true indicates failure.

See Data Conversion Between Visual Basic and APL2 for information on how data is converted when using

this interface.

FreeLocator's arguments are an APL2 interpreter token and a workspace object locator. Locators with a

value of zero are ignored.

Assigning, Associating, and Expunging Names

Use the Assign function to assign a name to an object.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

609

Declare Function Assign Lib "apl2vb" (ByVal Token As Long, _
 ByVal Name As Long, ByVal Value As Long) As Long
Dim VarName As Long
Dim VarValue As Long
VarName = VariantToLocator(Token,"VARNAME")
VarValue = VariantToLocator(Token,3.14159)
Assign(Token,VarName,VarValue)

Assign's arguments are an APL2 interpreter token and two APL2 object locators. The first is the name to be

assigned to the object. The second is the object.

Assign's result is 1 if the assignment worked, 0 if it failed.

Use the Associate function to associate names in the APL2 workspace.

Declare Function Associate Lib "apl2vb" (ByVal Token As Long, _
 ByVal Class As Long, ByVal Processor As Long, ByVal Name As Long) As Long
Dim AplRc As Long
Dim Class As Long
Dim Processor As Long
Dim Name As Long
Class = VariantToLocator(Token,3)
Processor = VariantToLocator(Token,11)
Name = VariantToLocator(Token,"BEEP")
AplRc = Associate(Token,Class,Processor,Name)
If AplRc = 0 Then
 ' Association failed
End If

Associate's arguments are an APL2 interpreter token and three APL2 object locators. The first two are used

to form the left argument of ⎕NA; the third is the right argument.

Associate's result is the result from ⎕NA - 1 for success; 0 for failure.

Use the Expunge function to expunge a name in the APL2 workspace.

Declare Function Expunge Lib "apl2vb" (ByVal Token As Long, _
 ByVal Class As Long)
Expunge Token, Name

Executing Expressions and Functions

Use the ExecuteExpression, ExecuteMonadic, and ExecuteDyadic functions to execute APL2

expressions and functions.

Declare Function ExecuteExpression Lib "apl2vb" (ByVal Token As Long, _
 ByVal Func As Long) As Long
Declare Function ExecuteMonadic Lib "apl2vb" (ByVal Token As Long, _
 ByVal Func As Long, ByVal Right As Long) As Long
Declare Function ExecuteDyadic Lib "apl2vb" (ByVal Token As Long, _
 ByVal Left As Long, ByVal Func As Long, ByVal Right As Long) As Long
Dim Exp As Long
Dim Ambi As Long
Dim Left As Long
Dim Right As Long
Exp = VariantToLocator(Token,"3+4 5 6")

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

610

Ambi = VariantToLocator(Token,"FOO")
Left = VariantToLocator(Token,45)
Right = VariantToLocator(Token,"ABC")
Result = ExecuteExpression(Token,Exp)
Result = ExecuteMonadic(Token,Ambi,Right)
Result = ExecuteDyadic(Token,Left,Ambi,Right)

The ExecuteExpression function's arguments are an APL2 interpreter token and a APL2 object locator.

The locator identifies a workspace object containing an expression to be executed. The result is another locator;

it is zero if no result is produced or an error occurred.

The ExecuteMonadic function's arguments are an APL2 interpreter token and two APL2 object locators.

The first locator identifies a workspace object containing the function name; the second identifies the right

argument. The result is another locator; it is zero if no result is produced or an error occurred.

The ExecuteDyadic function's arguments are an APL2 interpreter token and three APL2 object locators.

The first locator identifies the function's left argument; the second identifies the function name; the third

identifies the right argument. The result is another locator; it is zero if no result is produced or an error occurred.

Functions processed under control of these Execute functions operate in the same manner as those processed

under control of ⎕EC, and exhibit the following behavior:

 Assignment expressions return a value.

 Requests for quad input are handled the same as quad input under ⎕EC.

 Errors and branch escape (→) during execution cause a zero locator to be returned.

 Stop control vectors (S∆) are ignored.

 Attention and interrupt signals do not occur.

Using APL Characters in Visual Basic Programs

Visual Basic does not support use of APL characters in source code. However, Visual Basic's ChrW function

can be used to create Unicode characters including APL characters.

The following example creates an APL2 object containing the character vector ⎕TS.

TS = VariantToLocator(Token, ChrW(9109) & "TS")

Use the ⎕UCS function to determine the Unicode codepoint of APL characters.

Handling APL2 Errors

Use the GetET, GetMsg, and GetStack functions to retrieve error information from APL2.

Declare Function GetET Lib "apl2vb" (ByVal Token As Long) As Variant
Declare Function GetMsg Lib "apl2vb" (ByVal Token As Long) As Variant
Declare Function GetStack Lib "apl2vb" (ByVal Token As Long) As Variant
Dim ET As Variant
Dim Msg as Variant
Dim Stack As Variant
ET = GetET(Token)
Msg = GetMsg(Token)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

611

Stack = GetStack(Token)

When an error occurs in APL2, the values of ⎕ET and ⎕EM and the contents of the APL2 stack are stored in the

Visual Basic interface. Use GetET to retrieve the value of ⎕ET. Use GetMsg to retrieve the value of the first

row of ⎕EM. Use GetStack to retrieve the APL2 stack as an array of character strings.

Note: All the other Visual Basic interface functions reset the stored error information. To retrieve error

information, use GetET, GetMsg, or GetStack before calling any other Visual Basic interface functions.

Data Conversion Between Visual Basic and APL2

Visual Basic and APL2 use different internal data types. When moving data between the environments, the

Visual Basic to APL2 interface performs automatic data conversion.

The following table shows the supported Visual Basic types and the APL2 data types produced by the Visual

Basic to APL2 interface data conversion routines:

Data Conversion from Visual Basic to APL2

Visual Basic APL2

Boolean Integer

Character string Vector of 4 byte characters

Currency Floating point

Date Floating point

Error code Integer

Floating point (4 or 8 bytes) Floating point (8 byte)

Integer (signed or unsigned 1, 2, or 4 byte) Integer

Integer (signed or unsigned 8 byte values) Floating point

Interface pointer (IDispatch or IUnknown) Integer

Empty and Null Empty character vector

Restrictions:

 Other Visual Basic data types are not supported and produce an error.

The following table shows the APL2 types and the Visual Basic data types produced by the Visual Basic to

APL2 interface data conversion routines:

Data Conversion from APL2 to Visual Basic

APL2 Visual Basic

Boolean Integer

Integer Integer

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

612

Data Conversion from APL2 to Visual Basic

APL2 Visual Basic

Floating point Floating point

Character scalar or vector Character string

Restrictions:

 Character arrays with rank greater than 1 are not supported

 Complex numbers are not supported

 Rank must be 60 or less

Notes on Handling Boolean Data:

When passing data from APL2 to Visual Basic programs, the Visual Basic to APL2 interface converts APL2

Boolean values of 1 to Visual Basic Integer values of 1. This provides correct behavior for Visual Basic

programs with integer arguments, and normally provides correct behavior for Visual Basic programs with

Boolean arguments because most Visual Basic programs treat any non-zero Boolean arguments as TRUE.

However, Visual Basic programs store Boolean TRUE values as integer -1. The Visual Basic to APL2 interface

converts Visual Basic Boolean TRUE values to APL2 integer -1 values. There is no way to determine from an

APL2 application whether a value of -1 returned by a Visual Basic program is a Boolean TRUE or an integer -

1. Consult the documentation for the Visual Basic program to determine argument and result types.

Example Visual Basic Program

Here is a complete Visual Basic program that calls APL2 and handles errors:

' Visual Basic to APL2 Programming Interface Function Declarations
Private Declare Function StartApl2 Lib "apl2vb" (Optional ByRef Options As _
 Variant) As Long
Private Declare Function StopApl2 Lib "apl2vb" (ByVal Token As Long) As Long
Private Declare Function VariantToLocator Lib "apl2vb" (ByVal Token As Long, _
 ByRef Var As Variant) As Long
Private Declare Function LocatorToVariant Lib "apl2vb" (ByVal Token As Long, _
 ByVal Locator As Long, ByRef Var As Variant) As Boolean
Private Declare Function ExecuteExpression Lib "apl2vb" (ByVal Token As Long, _
 ByVal Func As Long) As Long
Private Declare Function ExecuteMonadic Lib "apl2vb" (ByVal Token As Long, _
 ByVal Func As Long, ByVal Right As Long) As Long
Private Declare Function ExecuteDyadic Lib "apl2vb" (ByVal Token As Long, _
 ByVal Left As Long, ByVal Func As Long, ByVal Right As Long) As Long
Private Declare Function Assign Lib "apl2vb" (ByVal Token As Long, _
 ByVal Name As Long, ByVal Value As Long As Long
Private Declare Function Associate Lib "apl2vb" (ByVal Token As Long, _
 ByVal Class As Long, ByVal Processor As Long, ByVal Name As Long) As Long
Private Declare Function Expunge Lib "apl2vb" (ByVal Token As Long, _
 ByVal Name As Long) As Long
Private Declare Function FreeLocator Lib "apl2vb" (ByVal Token As Long, _
 ByVal Locator As Long) As Long
Private Declare Function GetET Lib "apl2vb" (ByVal Token As Long) As Variant
Private Declare Function GetMsg Lib "apl2vb" (ByVal Token As Long) As Variant
Public Sub CallAPL2()
' This subroutine demonstrates how to call APL2 from Visual Basic under Excel.
Dim A1 As Variant

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

613

Dim B1 As Variant
Dim Token As Long
Dim Class As Long
Dim Processor As Long
Dim Func As Long
Dim Left As Long
Dim Right As Long
Dim Result As Long
Dim ET As Variant
Dim Msg As Variant
Dim BoolRc as Boolean
' Extract the values of cells A1 and B1
A1 = Worksheets("Sheet1").Range("A1:A1").Formula
B1 = Worksheets("Sheet1").Range("B1:B1").Formula
' Validate they are numeric
If Not (IsNumeric(A1) And IsNumeric(B1)) Then
 MsgBox "Cells A1 and B1 are not both numeric"
 Exit Sub
End If
' Convert them to numbers
A1 = Val(A1)
B1 = Val(B1)
' Start an APL2 interpreter
' StartApl2's optional argument is an array containing invocation options.
' The result is an APL2 interpreter token or zero if an error occurred.
Token = StartApl2(Array("-ws", "2m"))
' Create an APL2 object from an array of frequency and duration values
' VariantToLocator's arguments are an APL2 interpreter token and a variant.
' The variant can contain any of the following types of data:
'
' Boolean values
' Character vectors (Unicode)
' Currency values
' Dates
' Error codes
' Floating point numbers (4 or 8 bytes)
' Integers (signed or unsigned 1, 2, 4, or 8 byte values)
' Interface pointers (IDispatch or IUnknown)
' Empty and Null values (converted to '')
'
' The data can be scalar or an array with any number of dimensions.
'
' The result is a APL2 object locator or zero if the variant cannot be converted.
Right = VariantToLocator(Token, Array(440, 250))
' Create some APL2 objects for use as arguments to the Associate function
Class = VariantToLocator(Token, 3)
Processor = VariantToLocator(Token, 11)
Func = VariantToLocator(Token, "BEEP")
' Associate a name
' Associate's arguments are an APL2 interpreter token and three APL2 object
' locators. The first two are the left argument of QuadNA; the third is the right
' argument.
' The result is a 0 or 1. Note: The result is a long: 1 for success; 0 for failure.
AplRc = Associate(Token, Class, Processor, Func)
' Free the APL2 object locators for the namespace and processor.
' FreeLocator's arguments are an APL2 interpreter token and an object locator.
' Zero object locators are ignored.
FreeLocator Token, Class
FreeLocator Token, Processor
' Make sure the association worked
If AplRc = 0 Then
 MsgBox "Association with BEEP function failed!"
 FreeLocator Token, Right
 FreeLocator Token, Func
 StopApl2 Token
 Exit Sub
End If
' Call the BEEP function
' The ExecuteMonadic function's arguments are an APL2 interpreter token and two
' APL2 object locators. The first locator is the function name; the second

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

614

' is the right argument.
' The result is a locator; it is zero if no result is produced or an error occurred.
Result = ExecuteMonadic(Token, Func, Right)
' Expunge the associated name
' The Expunge function's arguments are an APL2 interpreter token and an object
' locator for an object name.
' The result is a 0 or 1. Note: The result is a long: 1 for success; 0 for failure.
Expunge Token, Func
' Free the function name, argument, and any result
FreeLocator Token, Func
FreeLocator Token, Right
FreeLocator Token, Result
' Create a APL2 object containing the name of an APL2 primitive
Func = VariantToLocator(Token, "+")
' Create APL2 objects from the cell values
Left = VariantToLocator(Token, A1)
Right = VariantToLocator(Token, B1)
' Execute the primitive function with two arguments
' The ExecuteDyadic function's arguments are an APL2 interpreter token and three
' APL2 object locators. The first locator is the function's left argument;
' the second is the function name; the third is the right argument.
' The result is a locator; it is zero if no result is produced or an error occurred.
Result = ExecuteDyadic(Token, Left, Func, Right)
' If an error occurred,,,
If Result = 0 Then
 ' Get the Event Type
 ' GetET has one argument: an interpreter token.
 ' It returns a variant containing two integers corresponding to the value of
 ' QuadET after the last error.
 ET = GetET(Token)
 ' GetMsg has one argument: an interpreter token.
 ' It returns a variant containing a string corresponding to the first row of
 ' QuadEM after the last error.
 Msg = GetMsg(Token)
 MsgBox "Execution of + failed. " _
 & vbLf & vbLf & "Event type: " & Str(ET(0)) & Str(ET(1)) _
 & vbLf & vbLf & "Error Message: " & Msg
 StopApl2 Token
 Exit Sub
End If
' Free the locators for the function name and arguments; we no longer need them.
FreeLocator Token, Left
FreeLocator Token, Right
FreeLocator Token, Func
' Extract the result
' The LocatorToVariant function's three arguments are an APL2 interpreter token,
' a locator, and a variant that is updated with the contents of the workspace object.
' The result is a Boolean that indicates whether the function failed.
' False indicates success; true indicates failure.
' Any depth 0 or 1 APL2 array can be converted except that complex numbers are not
' supported (by Visual Basic.) Depth 2 arrays of character vectors are also supported.
BoolRc = LocatorToVariant(Token, Result, Var)
' Free the result's locator
FreeLocator Token, Result
' Put the result in cell C1
Worksheets("Sheet1").Range("C1:C1").Formula = Var
' Create a APL2 object containing the string QuadTS.
Func = VariantToLocator(Token, ChrW(9109) & "TS")
' Execute QuadTS
' The ExecuteExpression function's arguments are an APL2 interpreter token and a
' APL2 object locator. The locator is an expression to be executed.
' The result is a locator; it is zero if no result is produced or an error occurred.
Result = ExecuteExpression(Token, Func)
' Free the locator containing the expression
FreeLocator Token, Func
' Extract the value of the result
BoolRc = LocatorToVariant(Token, Result, Var)
' Free the result's locator
FreeLocator Token, Result
' Put the value in the cells B14 to H14

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

615

Worksheets("Sheet1").Range("B14:H14").Formula = Var
' Stop the APL2 interpreter
' StopApl2's argument is an APL2 interpreter token
StopApl2 Token
End Sub

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

616

Writing Your Own External Routines

The following topics discuss how to write your own external routines to be called through processor 11. For

more information about processor 11, see Processor 11 - Accessing External Routines.

 Using Prebuilt DLLs (Runtime Libraries)

 Creating SYSTEM Linkage Routines

 Creating FUNCTION Linkage Routines

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

617

Exception Handling in External Functions

APL2 uses the C runtime library signal routine to register handlers for the following signals:

 SIGBREAK - Ctrl+Break (Windows only)

 SIGCHLD - Child process termination (Unix systems only)

 SIGHUP - Hang up (Unix systems only)

 SIGINT - Ctrl+C

 SIGQUIT - Dump request (Unix systems only)

 SIGSEGV - Access violations

 SIGTERM - Process termination

External functions that set handlers for these signals should save APL2's handlers upon entry and restore them

before returning to APL2.

APL2 does not use signal to manage floating point conditions. Instead, APL2 accesses the floating point control

and status words directly. APL2 disables all floating point exceptions and uses the floating point status flags to

detect error conditions.

External functions that manipulate the floating point control and status words should save APL2's settings upon

entry and restore them before returning to APL2.

Note:

If APL2 itself will be called by a C or Java program using the APL2 Programming Interface (APL2PI),

additional considerations apply. See Handling Exceptions under C and Handling Exceptions under Java for

more information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

618

Loading the APL2 Fonts (Windows Only)

When the APL2 installation is performed by a user with administrator authority, the APL2 fonts supplied by

IBM will be automatically installed into the Windows Fonts directory where they can be found by any program

on the system. The fonts may also be installed there manually per the instructions in Installing the APL2 Fonts.

However, there is no guarantee that the fonts will always be installed.

If your user-written function requires the APL2 fonts, you may not want to rely on the fonts being already

present. To ensure that the fonts are loaded, you can call routine LoadApl2Fonts in aplwin.dll.

Since aplwin.lib is not provided for use at link time, the Windows APIs LoadLibrary and GetProcAddress

must be used to load the dll and obtain the address of the routine at run time.

LoadApl2Fonts takes no arguments, and returns a Boolean result indicating success (0) or failure (1).

Example:

HINSTANCE dllwin;
void *ploadfonts;
BOOL boolrc;
typedef BOOL ((loadfonts)()) ;
dllwin = LoadLibrary("aplwin.dll");
if (dllwin)
{
 ploadfonts = (void *)GetProcAddress(dllwin, "LoadApl2Fonts");
 if (ploadfonts)
 boolrc = (*(loadfonts *)ploadfonts)();
 FreeLibrary(dllwin);
}

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

619

Using Prebuilt DLLs (Runtime Libraries)

Note: This section applies only to Windows.

Many 32-bit DLLs can be called directly by Processor 11. These DLLs can be part of a subroutine library or

program product. To use them directly, you must ensure that they can be called with 32-bit _System linkage.

(On some non-IBM compilers, this is known as __stdcall.) If the DLL was meant to be called with Optlink,

Pascal, or some other linkage convention, then an intervening stub program is needed. Refer to the

documentation received with the library for parameter lists and linkage conventions.

For _System linkage DLLs, you need only create routine descriptors for the routines you wish to access. The

routine descriptor can be placed in an external file (NAMES file) or passed in the left argument when

associating the routine name with Processor 11.

For more information on routine descriptors see NAMES files and Routine Descriptors. For general information

on using Processor 11, see Processor 11 Overview.

Example

The following routine descriptor is for GetCurrentDirectory in the Windows dll KERNEL32.DLL.

:nick.DIRECTORY :link.SYSTEM
 :lib.kernel32 :proc.GetCurrentDirectoryA
 :valence.1 1 0
 :rslt.(1 I4 0)
 :rarg.(2 G0 1 2)(1 I4 *)
 :rarg. (G4 0)(>S1 1 *)
 :desc.DWORD GetCurrentDirectory(DWORD nBufferLength,
 :desc. LPTSTR lpBuffer);

This example uses a 2-element depth 3 array to pass the data. The return buffer has a pass by name indicator

and its value is a character vector that contains the name of an APL object having the desired size and type.

 DD← (255⍴'+') ⍝ named variable
 DIRECTORY (1+⍴DD) (⊂'DD') ⍝ here is the call
 29

The result value as indicated by the :rslt. keyword is the length of the data stored. The value of DD has been

updated in place. DD must be large enough to hold the result.

 DD ⍝ here is the updated variable
C:\Program Files\IBMAPL2W\BIN

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

620

Creating SYSTEM Linkage Routines

To create your own SYSTEM linkage routine to be called by Processor 11:

1. Write your subroutine as a 32-bit object using _System linkage. (On some non-IBM compilers, this is

known as __stdcall.) For example:

/* IBM VisualAge example */
#include <stdio.h>
#include <string.h>
int _System MyFunction(char *string)
{
 return strlen(string);
}

On Unix systems, the default linkage would be used instead of _System:

/* Unix example */
#include <stdio.h>
#include <string.h>
int MyFunction(char *string)
{
 return strlen(string);
}

2. Create a routine descriptor as described in NAMES Files and Routine Descriptors. The routine

descriptor can be placed in a NAMES file or passed in the left argument of ⎕NA. For this example, we

will place it in a file called P011.NAM.

:nick.MY :link.SYSTEM :lib.example :proc.MyFunction :path.C:\MYDIR
 :valence.1 1 0
 :rarg. (G4 0)(S1 1 *)
 :rslt. (I4 0)
:desc.Returns the length of a character vector to the first null.

On Unix systems, the :path. data would follow Unix conventions:

:nick.MY :link.SYSTEM :lib.example :proc.MyFunction :path./u/mydir
 :valence.1 1 0
 :rarg. (G4 0)(S1 1 *)
 :rslt. (I4 0)
:desc.Returns the length of a character vector to the first null.

3. Create a definition or export file as described in your C compiler documentation:

On Windows:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

621

example.def

LIBRARY
EXPORTS
 __DLL_InitTerm@8
 _MyFunction@4

On AIX:

example.exp

MyFunction

Note: The export file is not required on Solaris and Linux systems.

4. Compile the program.

On Windows:

icc /Ti /Gd- /Ge- /Gt- /O- /B"/noe /noi" example.c example.def

On AIX Systems:

cc -o example example.c -bE:example.exp -bM:SHR -e _nostart

On Solaris Systems:

cc -G -o example example.c

On Linux Systems:

cc -shared -o example example.c

5. Put the files EXAMPLE.DLL (on Unix systems, example) and P011.NAM in the directory specified

by the :path. tag, or if :path. was not specified, the directory APL2 will be started from.

6. Execute the ⎕NA:

 '<C:\MYPATH\P011.NAM>' 11 ⎕NA 'MY'

7. Test the function:

 MY ⊂ 'sssss',(⎕AF 0),'ttttt'
5

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

622

Creating FUNCTION Linkage Routines

Like a :link.SYSTEM routine, a :link.FUNCTION routine is coded, compiled and linked as a 32-bit

object with _System (or __stdcall) linkage. See Creating SYSTEM Linkage Routines for details on the

compile process.

Unlike :link.SYSTEM routines, however, arguments are not passed as direct parameters to the C routine, and

results are not passed back in the C routine result. All :link.FUNCTION routines have the same prototype:

 int _System RoutineName(CALL *call)

Communication between the interpreter and the routine, including location of arguments and results, is handled

using a control block structure.

The routine descriptors for :link.FUNCTION routines are similar to those for :link.SYSTEM routines,

except that :rarg and :rslt tags are not used. Processor 11 passes the arguments directly from the

workspace to the routine, and returns whatever array the routine builds for its result. The routine is responsible

for validating that the arguments meet its criteria. The following is a sample nickname file routine descriptor for

the routine prototyped above:

 :nick.MYFUN :link.FUNCTION :lib.my :proc.RoutineName
 :valence.1 1 0

The CALL structure, and other constants used in this section, are defined in a macro, aplfun.h, which is

shipped with APL2 in the include subdirectory of the APL2 product directory. A set of sample routines

which demonstrate many of the services described in this chapter is shipped as aplfun.c, in the samples

(Windows) or examples/qna (Unix) subdirectory.

 The CALL Structure

 Entry and Exit Conventions

 Handling APL2 Objects

 Callback Services

 Message Codes

 Sample Routines

The CALL Structure

The CALL structure is used for all communication between the interpreter and the :link.FUNCTION routine.

The address of the structure is passed as the argument to the routine. The same structure is used as the argument

to the callback services used by the routine.

 typedef struct _call {
 short request; /* request code on entry */
 /* return code on return */
 short reason; /* reason code if applicable */
 PFN service; /* pointer to Service Routine */
 long parm1; /* service parameter 1 */

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

623

 long parm2; /* service parameter 2 */
 long token; /* routine token (user word) */
 void *result; /* address of result */
 long result_token; /* result object locator token */
 void *left_arg; /* address of left arg */
 long left_arg_token; /* left arg locator token */
 long left_fn; /* reserved for future use */
 long operator_token; /* reserved for future use */
 long right_fn; /* reserved for future use */
 long right_arg_token;/* right arg locator token */
 void *right_arg; /* address of right arg */
 long reloc_count; /* relocation count */
 long parm3; /* service parameter 3 */
 } CALL ;

Entry and Exit Conventions

A :link.FUNCTION routine is entered with ->request set to:

1 (FUNCTION_INIT) when the name is resolved (associated).
->service

is the callback service routine
->reloc_count

is the relocation count

The routine can set ->token to point to its own anchor block or any desired resource. The value in -

>token will be retained across calls.

0 (FUNCTION_CALL) each time the name is called.
->service

is the callback service routine
->token

is the routine token from FUNCTION_INIT
->left_arg_token

is the left arg locator or 0 if there is no left argument
->left_arg

is the address of the left arg or NULL if there is no left argument
->right_arg_token

is the right arg locator or 0 if there is no right argument
->right_arg

is the address of the right arg or NULL if there is no right argument
->reloc_count

is the relocation count

The routine must process the argument(s) and set ->result_token to the locator of an APL object

to be used as the result, if one is required.

-1 (FUNCTION_TERM) when the name is expunged.
->service

is the callback service routine
->token

is the routine token from FUNCTION_INIT

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

624

->reloc_count

is the relocation count

The routine should free any resources associated with ->token before returning.

In all cases the routine must set ->request before returning. If not set to 0, it must be set to one of the error

message codes defined in Message Codes. If appropriate for the error message code chosen, ->reason can

also be set to one of the values defined for the message.

Handling APL2 Objects

Since the APL2 objects with which a :link.FUNCTION routine deals reside directly in the workspace, the

routine must understand their structure, and be aware of some aspects of how storage is managed within the

workspace.

 Locating APL2 Objects

 Processing APL2 Objects

 Building APL2 Objects

Locating APL2 Objects

Each APL object has a unique identifier, called the locator token or just token. The token is the means by which

the interpreter can always locate the object, regardless of whether it has moved within the workspace.

At any given time, each APL object resides at a specific address in the user machine. A routine must use the

address to actually access the contents of the object. The address may change when the interpreter storage

management routines move objects within the workspace. The routine needs to be aware of when that can

happen, and obtain new addresses for objects when necessary.

When the routine is entered, both the token and the address for the routine's argument(s) are passed in the

CALL block. The routine starts with these, and may access more objects (if the arguments are nested) or build

new objects (for the routine result).

As long as control remains inside the routine, objects in the workspace cannot move and the addresses remain

valid. At some point, however, the routine is going to need to allocate some space in the workspace for its

result. When the routine uses the ARRAYSPACE, ARRAYCONVERT or LCDR_TO_ARRAY callback

services to allocate storage, or the ARRAYRESIZE callback service to lengthen an array, objects in the

workspace can move during the time the interpreter has control to allocate the storage.

Upon return from these callback services, the routine can test to see whether it is necessary to refresh object

addresses. The ->reloc_count field in the CALL block can be used to do this. Before calling the callback

service, save the value from ->reloc_count. If the value has changed when the callback service returns,

objects in the workspace have moved, and all addresses of objects stored locally within the routine must be

refreshed.

The addresses in the CALL block (for the arguments and result, if any) are always refreshed automatically

before the callback service returns to the routine. If you have made local copies of these addresses, you can

simply re-copy them. For other objects, use TOKEN_TO_ADDRESS callback service to obtain new addresses.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

625

Processing APL2 Objects

Each APL2 workspace object contains information that describes its data type, shape, size, and origin. This

information is called its header, and is located at the beginning of the object. The header consists of the

following fields (defined in C include file aplobj.h):

 typedef struct aplobj {
 unsigned long ptr ;
 unsigned long nb ;
 unsigned long nelm ;
 unsigned char type ;
 unsigned char rank ;
 unsigned char fill[2] ;
 unsigned long dim[1] ;
 } APLOBJ ;

ptr The locator token of the object.

nb The number of bytes in this APL2 object. If the datatype of this object is that of a nested array the byte

count includes only this object - it does not include the subitems. (Note: this is different from the APL2

objects passed to auxiliary processors.) The length of each object must be rounded to an even multiple

of 16.

nelm The number of elements in this APL2 object.

type APL2 object type:

0 (BOOLEAN) Boolean 1 bit per item
1 (INTEGER) Integer 4 bytes per item
2 (FLOAT) Real 8 bytes per item
3 (COMPLEX) Complex 16 bytes per item
4 (CHARACTER) ASCII Character 1 byte per item
5 (CHARLONG) Extended Character 4 bytes per item
6 (APV) Progression Vector 8 bytes
7 (NESTED) General Array 4 bytes per item

rank Rank of object (0-64).

fill Unused; should be set to 0.

dim[] Length of each dimension (number of elements in dim = rank)

Immediately following the header for each object is the data associated with the object. The length of the data

for each type is shown above. If the object has more than one dimension, its elements are stored in row order (as

if the APL2 primitive Ravel had been applied to the variable).

Immediately following the data are enough fill bytes to make the length of the object an even multiple of 16.

If the array is a general array, the data consists of a set of locator tokens - one for each subitem of the array. If

the general array is null, the data consists of one locator token - for an array which is the prototype for the

general array. To obtain the addresses for the sub-items of a nested array, use the TOKEN_TO_ADDRESS

callback service.

Building APL2 Objects

There are two ways that a routine can build an APL object for its result. One method is to allocate the array (and

its subitems if general) directly in the workspace with the ARRAYSPACE callback service and build the object

there. The other is to build the object in local storage within the routine, and when the array is complete, use the

LCDR_TO_ARRAY callback service to place the array into the workspace.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

626

In general, building the array in the workspace is more efficient. The array contents do not have to be copied

into the workspace, they will be placed directly there. However, there are several reasons that you may want to

build the object in local storage first.

1. You may be in a situation (such as reading data from a pipe or port) where you do not know in advance

how large the array will be. Allocating an array much larger than necessary could result in WS FULL.

2. You may be in situation (such as fetching data from a database) where you need to rearrange or

compress the data after obtaining it to make the APL2 object.

3. When you have a nested array, each item and subitem must be allocated separately with a call to

ARRAYSPACE. If any of the calls fails (usually because of WS FULL) the items which were allocated

successfully must be freed, and depending on your routine, additional cleanup may be necessary. When

you build the array locally, there is a single call to LCDR_TO_ARRAY.

4. There is an additional degree of safety in this method. When you build an array directly in the

workspace, no validation of your object is done. If you make an error, you can potentially corrupt the

workspace. When you build the array locally and use LCDR_TO_ARRAY, a complete validation of

your object is performed before copying it to the workspace. If there are errors in the object, control will

be returned to your routine, which can then perform any desired cleanup before returning an error.

When you build a result array in local storage to pass to the LCDR_TO_ARRAY service, the contents of some

of the fields on the APLOBJ structure are different from that of workspace objects. The object format used is

the same format as is used by auxiliary processors, called Common Data Representation (CDR). The

differences between the workspace object format and CDR format are:

1. The ->ptr field of a workspace object contains its locator token. The ->ptr field of a CDR contains a

platform identifier.

2. For general arrays, the data section of a workspace object contains the locator tokens of the subarrays,

which are separate objects. The data section of a general array CDR contains the offsets to the subarrays,

which must follow the general array CDR in left-list order.

3. For general arrays, the ->nb field of a workspace object is the number of bytes in the general array

only. The ->nb field of a general array CDR is the total number of bytes in the general array and all of

its subitems.

For complete information on building a CDR, see Common Data Representation.

Callback Services

A set of interpreter services to assist in handling APL arrays is available to external routines written with

:link.FUNCTION linkage. These services are accessed by calling the service address found in the -

>service field of the CALL block.

Parameters and results are passed using the CALL block, as defined for each service.

In general, each service returns an error message code as its result, and stores that same message code in the -

>request field of the CALL block. When an error occurs, the routine should free any temporary resources it

has allocated, and can then return with the ->request and ->reason fields as set by the service.

The services are:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

627

ARRAYSPACE Allocate an array in the workspace

ARRAYRESIZE Change the number of elements in an allocated array

ARRAYREF Reference an array in the workspace

ARRAYCONVERT Convert an array to a new type

FREESPACE Remove a reference to an array

EXECUTE_APL_ESTACK Execute an APL expression or function, return stack on error

EXECUTE_APL Execute an APL expression or function

TOKEN_TO_ADDRESS Get the address of an array

QUAD_CT Get the current comparison tolerance

QUAD_IO Get the current index origin

LCDR_TO_ARRAY Convert a linear CDR to an array

ARRAY_TO_LCDR Convert an array to a linear CDR

DOAP1EVENTS Allow AP 1 to handle pending events

GETSIGNALS Query and/or clear the signal state

ARRAYSPACE - Allocate an array in the workspace

Parameters:

->request 21 (ARRAYSPACE)

->parm1 number of elements

->parm2 rank

->parm3 type, one of:

0 (BOOLEAN)
1 (INTEGER)
2 (FLOAT)
3 (COMPLEX)
4 (CHARACTER)
5 (CHARLONG)
6 (APV)
7 (NESTED)

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if an invalid type is passed.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.
4 (MSG_SYSTEMLIMIT) - if rank or number of elements is out of range.

->reason reason code, if ->request is MSG_SYSTEMLIMIT:

8 (ET_ARRAYRANK) - if the rank requested was greater than 64.
9 (ET_ARRAYSIZE) - if the number of elements and type caused the
number of bytes required for this array to exceed the largest possible
integer value.

->parm1 the locator token of the array

->parm2 the address of the start of the array (descriptor section)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

628

->parm3 the address of the start of the data section

Notes:

1. This service allocates an array in the workspace. If later on it is decided not to use the array as part of

the routine result, or the routine returns with an error set in ->request, it should be freed with

FREESPACE before returning.

2. The array descriptor fields are filled in for you, except where the array is rank 2 or higher. In that case,

the dim[] fields are not filled in, and must be filled in by the function before returning the array to the

interpreter.

3. ->left_arg, ->right_arg and ->result are refreshed if garbage collection occurs during this

call. If local copies of these addresses exist they may need to be updated.

Example:

 call->request = ARRAYSPACE;
 call->parm1 = 2;
 call->parm2 = 1;
 call->parm3 = INTEGER;
 if (MSG_OK == (call->service)(call)) {
 call->result_token = call->parm1;
 longdata = (LONG *)call->parm3;
 longdata[0] = 0;
 longdata[1] = 75;
 }

ARRAYRESIZE - Change the number of elements in an allocated array

Parameters:

->request 22 (ARRAYRESIZE)

->parm1 the locator token of the array

->parm2 the new number of elements

->parm3 the new rank

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.
4 (MSG_SYSTEMLIMIT) - if rank or number of elements is out of range.

->reason reason code, if ->request is MSG_SYSTEMLIMIT:

8 (ET_ARRAYRANK) - if the rank requested was greater than 64.
9 (ET_ARRAYSIZE) - if the number of elements and type caused the
number of bytes required for this array to exceed the largest possible
integer value.

->parm2 the address of the start of the array (descriptor section)

->parm3 the address of the start of the data section

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

629

Notes:

1. If this service is used to shorten an array, MSG_WSFULL and garbage collection will not happen. The

address of the start of the array will not move. The address of the data section will move only if the rank

is changed. Any data already in the array will not be moved. If rank is changed the user is responsible

for moving data accordingly.

2. If this service is used to lengthen an array, WS_FULL and garbage collection are possible, and the

addresses of the start of the array and data section will move. The contents of the old array are copied to

the new array, but adjustments are not made for any change in rank.

3. If the rank of the array is 2 or higher, the dim[] fields must be filled in by the function before returning

the array to the interpreter.

4. ->left_arg, ->right_arg and ->result are refreshed if garbage collection occurs during this

call. If local copies of these addresses exist they may need to be updated.

Example:

 call->request = ARRAYRESIZE;
 call->parm1 = call->result_token;
 call->parm2 = 3;
 call->parm3 = 1;
 if (MSG_OK == (call->service)(call)) {
 call->result = call->parm3;
 longdata = (LONG *)call->parm3;
 longdata[2] = 99;
 }

ARRAYREF - Reference an array in the workspace

Parameters:

->request 23 (ARRAYREF)

->parm1 the locator token of the array

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.

Notes:

1. This service would be used, for example, if any array in the routine's arguments will be returned as part

of the result, or if an array is part of a nested array, and will be used more than once when building the

nested array.

2. If later it is decided not to use the array as planned, the FREESPACE service should be used to remove

the reference.

Example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

630

 call->request = ARRAYREF;
 call->parm1 = call->right_arg_token;
 if (MSG_OK == (call->service)(call)) {
 call->result_token = call->right_arg_token;
 }

ARRAYCONVERT - Convert an array to a new type

Parameters:

->request 24 (ARRAYCONVERT)

->parm1 the locator token of the array

->parm2 the new type, one of:

0 (BOOLEAN)
1 (INTEGER)
2 (FLOAT)
3 (COMPLEX)
4 (CHARACTER)
5 (CHARLONG)
6 (APV)
7 (NESTED)

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid
or an invalid type is passed.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.
4 (MSG_SYSTEMLIMIT) - if rank or number of elements is out of range.
11 (MSG_DOMAINERROR) - if the array cannot be converted to the new type.

->reason reason code, if ->request is MSG_SYSTEMLIMIT:

8 (ET_ARRAYRANK) - if the rank requested was greater than 64.
9 (ET_ARRAYSIZE) - if the number of elements and type caused the
number of bytes required for this array to exceed the largest possible
integer value.

->parm1 the locator token of the new array

->parm2 the address of the start of the array (descriptor section)

->parm3 the address of the start of the data section

Notes:

1. Not all type conversions are possible. For example, numeric arrays cannot be converted to character,

integer arrays can only be converted to Boolean if all the values are 0 or 1, and most nested arrays

cannot be converted to a non-nested type. This service makes validity checks to ensure that the data will

be representable in the new type, and returns MSG_DOMAINERROR if the conversion is not possible.

2. This service allocates a new array. WS_FULL and garbage collection are possible. The old array is not

deleted. It is still present, and it, along with any other workspace objects, can move during this call.

3. If the new array allocated by this service will not be used as part of the routine result, or the routine

returns with an error set in ->request, it should be freed with FREESPACE before returning.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

631

4. ->left_arg, ->right_arg and ->result are refreshed if garbage collection occurs during this

call. If local copies of these addresses exist they may need to be updated.

Example:

 call->request = ARRAYCONVERT;
 call->parm1 = call->right_arg_token;
 call->parm2 = INTEGER;
 if (MSG_OK == (call->service)(call)) {
 longdata = (LONG *)call->parm3;
 }

FREESPACE - Remove a reference to an array

Parameters:

->request 2 (FREESPACE)

->parm1 the locator token of the array

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.

Notes:

1. This service removes a reference to an array. If the reference removed is the only remaining reference to

that array, the array is then deleted, and the storage it occupied is freed for other uses.

2. This service is used to free arrays allocated with ARRAYSPACE, ARRAYCONVERT and

LCDR_TO_ARRAY, and to remove references to arrays added by ARRAYREF.

Example:

 call->request = FREESPACE;
 call->parm1 = call->result_token;
 if (MSG_OK == (call->service)(call)) {
 call->result_token = 0;
 }

EXECUTE_APL_ESTACK - Execute an APL expression or function, return stack on error

EXECUTE_APL_ESTACK takes the same arguments and behaves in the same manner as EXECUTE_APL. The

difference between the two is the type of object returned in ->parm1 when an error occurs.

EXECUTE_APL - Execute an APL expression or function

Parameters:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

632

->request 5 (EXECUTE_APL) or
38 (EXECUTE_APL_ESTACK)

->parm1 the locator token of the expression or function name. If a function, it can be a defined function,

system function, primitive function, or the assignment arrow. If the function is the assignment

arrow, the left argument is the name of the object to be assigned, and the right argument is the

value to be assigned to it.

->parm2 the locator token of the right argument, or 0 if none

->parm3 the locator token of the left argument, or 0 if none

Note that the expression or function name and arguments are all passed to this service as locator tokens. This

means that all required objects must exist in the workspace prior to calling the service. If executing an

expression, there must be a character object containing the expression. If executing a function, there must be a

character object containing the function name as well as the function itself. Objects can be created in the

workspace by several methods:

1. Use of the ARRAYSPACE or LCDR_TO_ARRAY services.

2. Executing expressions which access objects in APL2 namespaces using ⎕NA.

3. Executing expressions which establish objects using assignment, ⎕FX or ⎕TF.

4. Executing an assignment directly with this service.

See Handling APL2 Objects for more information.

Results:

->request one of the message codes defined in Message Codes.

->reason if applicable, one of the message type codes defined in Message Codes.

->parm1 If ->request is MSG_OK: the locator token of the result, or 0 if none

If ->request is MSG_APLERROR: the locator token of the error message (EXECUTE_APL)

or error stack (EXECUTE_APL_ESTACK)

->parm2 If ->request is MSG_OK: the address of the start of the result (descriptor section)

If ->request is MSG_APLERROR: the APL event class (first element of ⎕ET)

->parm3 If ->request is MSG_OK: the address of the start of the data section

If ->request is MSG_APLERROR: the APL event type (second element of ⎕ET)

Notes:

1. Functions processed under control of this service operate in the same manner as those processed under

control of ⎕EC, and exhibit the following behavior:

 System commands are not allowed.

 Assignment expressions return a value.

 Requests for quad input are handled the same as quad input under ⎕EC.

 Errors generated during processing do not cause suspension of the function being processed.

Error codes are returned via the CALL structure.

 Branch escape (→) causes EXECUTE_APL to return.

 Stop control vectors (S∆) are ignored.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

633

 An attention signal does not cause suspension; an interrupt signal causes EXECUTE_APL to halt

and return control to the caller.

2. If a result is returned in ->parm1, a new array has been allocated. If the array will not be used as part

of the routine result, or the routine returns with an error set in ->request, it should be freed with

FREESPACE before returning.

3. If an error message or error stack is returned in ->parm1, a new array has been allocated. If the error

object will not be passed on with the MSG_APLERROR error, or used as part of the routine result, it

should be freed with FREESPACE.

4. WS_FULL and garbage collection are possible during the course of APL operations, regardless of

whether a result is returned. Any previously allocated arrays may move if garbage collection occurs.

5. ->left_arg, ->right_arg and ->result are refreshed if garbage collection occurs during this

call. If local copies of these addresses exist they may need to be updated.

Example:

 /* Allocate an array for the expression */
 call->request = ARRAYSPACE;
 call->parm1 = 3;
 call->parm2 = 1;
 call->parm3 = CHARACTER;
 if (MSG_OK == (call->service)(call)) {
 exptoken = call->parm1;
 memcpy((char *)call->parm3,"⎕TS",3);
 /* Execute the expression */
 call->request = EXECUTE_APL;
 call->parm1 = exptoken;
 call->parm2 = 0;
 call->parm3 = 0;
 (call->service)(call);
 restoken = call->parm1;
 /* Free the expression array */
 call->request = FREESPACE;
 call->parm1 = exptoken;
 (call->service)(call);
 }

TOKEN_TO_ADDRESS - Get the address of an array

Parameters:

->request 11 (TOKEN_TO_ADDRESS)

->parm1 the locator token of the array

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the locator token passed is invalid.

->parm2 the address of the start of the array (descriptor section)

->parm3 the address of the start of the data section

Notes:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

634

1. This service is used to obtain addresses for sub-items of nested arrays passed as the left and right

arguments to the routine, and to re-address arrays after garbage collection has taken place.

2. The addresses stored in ->left_arg, ->right_arg and ->result are automatically refreshed

(from the tokens in ->left_arg_token, ->right_arg_token and ->result_token) by the

callback service routine at the end of each callback.

Example:

 call->request = TOKEN_TO_ADDRESS;
 call->parm1 = local_token;
 if (MSG_OK == (call->service)(call)) {
 local_desc = call->parm2;
 local_data = call->parm3;
 }

QUAD_CT - Get the current comparison tolerance

Parameters:

->request 40 (QUAD_CT)

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_QUADERROR) - if ⎕CT is missing or invalid.

->reason reason code, if ->request is MSG_QUADERROR:

2 (ET_CT)

->parm1 the address of a double containing the current value of ⎕CT

Example:

 call->request = QUAD_CT;
 if (MSG_OK == (call->service)(call)) {
 local_ct = *(double *)call->parm1;
 }

QUAD_IO - Get the current index origin

Parameters:

->request 15 (QUAD_IO)

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_QUADERROR) - if ⎕IO is missing or invalid.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

635

->reason reason code, if ->request is MSG_QUADERROR:

2 (ET_IO)

->parm1 the current value of ⎕IO

Example:

 call->request = QUAD_IO;
 if (MSG_OK == (call->service)(call)) {
 local_io = call->parm1;
 }

LCDR_TO_ARRAY - Convert a linear CDR to an array

Parameters:

->request 18 (LCDR_TO_ARRAY)

->parm2 the address of the buffer containing the CDR

Results:

->request return code - one of:

0 (MSG_OK) - if the request was successful.
2 (MSG_SYSTEMERROR) - if the CDR in the buffer is invalid.
3 (MSG_WSFULL) - if there is no room in the workspace for this object.

->parm1 the locator token of the allocated array

Notes:

1. This service allocates an array in the workspace. If later on it is decided not to use the array as part of

the routine result, or the routine returns with an error set in ->request, it should be freed with

FREESPACE before returning.

2. ->left_arg, ->right_arg and ->result are refreshed if garbage collection occurs during this

call. If local copies of these addresses exist they may need to be updated.

Example:

 call->request = LCDR_TO_ARRAY;
 call->parm2 = buffer;
 if (MSG_OK == (call->service)(call)) {
 call->result_token = call->parm1;
 }

ARRAY_TO_LCDR - Convert an array to a linear CDR

Parameters:

->request 19 (ARRAY_TO_LCDR)

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

636

->parm1 the locator token of the array to be converted

->parm2 the address of a buffer to receive the CDR.

The first four bytes of the buffer must contain an integer which is the total length of the buffer.

Results:

->request return code:

0 (MSG_OK) - the request was successful.

->parm2 the actual length of the CDR.

If the buffer was at least this length, the CDR has been built in the buffer.

Notes:

1. If you want to find out how large a buffer is needed to contain the CDR, call this service with the

address of a 4-byte area containing the integer 4. On return, ->parm2 will contain the required buffer

size.

Example:

 call->request = ARRAY_TO_LCDR;
 call->parm2 = buffer;
 (*(long *)buffer) = buffersize;
 (call->service)(call);
 if (call->parm2 > buffersize) {
 buffersize = call->parm2;
 buffer = malloc(buffersize);
 call->request = ARRAY_TO_LCDR;
 call->parm2 = buffer;
 (*(long *)buffer) = buffersize;
 (call->service)(call);
 }

DOAP1EVENTS - Allow AP 1 to handle pending events

Parameters:

->request 35 (DOAP1EVENTS)

Results:

->request return code:

0 (MSG_OK) - the request was successful.

Notes:

1. This service would normally be used periodically by a long-running function, to allow AP 1 to handle

pending shared variable interpreter interface requests.

Example:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

637

 call->request = DOAP1EVENTS;
 (call->service)(call);

GETSIGNALS - Query and/or clear the signal state

Parameters:

->request 32 (GETSIGNALS)

->parm1 indicates whether pending interrupts should be cleared

0 - do not clear pending interrupts
1 - clear interrupts if pending

Results:

->request return code:

0 (MSG_OK) - the request was successful.

->parm1 the signal state:

0 - if there are no pending interrupts
2 - if there is a pending interrupt

Notes:

1. This service would normally be used periodically by a long-running function, to check whether it should

terminate due to interrupts signaled by the APL2 user.

2. The DOAP1EVENTS service should be called before GETSIGNALS to allow new user interrupts to be

processed.

3. The signal state returned is the state before any clear of pending interrupt is done.

4. If a function requests that pending interrupts be cleared, it must then take responsibility for that

interrupt. The normal procedure is to do any internal cleanup and return with code MSG_INTERRUPT

so the interpreter will then process the interrupt normally.

Example:

 call->request = GETSIGNALS;
 call->parm1 = 1;
 (call->service)(call);
 if (call->parm1 == 2) {
 fncleanup();
 call->request = MSG_INTERRUPT;
 call->reason = 0;
 return;
 }

Message Codes

The following message codes are defined as return codes from the apl2pi and external routine callback

services, and for use as return codes from external routines to the interpreter. The message codes correspond to

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

638

the interpreter event type codes used for ⎕ET, and will be mapped to those codes on return to the interpreter.

The message codes are placed in the ->request field of the CALL block.

Some messages have type, or reason, codes. When applicable, the type codes are placed in the ->reason field

of the CALL block.

0 MSG_OK

1 MSG_INTERRUPT

2 MSG_SYSTEMERROR

3 MSG_WSFULL

4 MSG_SYSTEMLIMIT

4 ET_SYMBOLTABLE
5 ET_INTERFACENA
6 ET_INTERFACEQUOTA
7 ET_INTERFACECAPACITY
8 ET_ARRAYRANK
9 ET_ARRAYSIZE
10 ET_ARRAYDEPTH
11 ET_PROMPTLENGTH
12 ET_INTERFACEREP
13 ET_IMPLEMENTATION

5 MSG_SYNTAXERROR

1 ET_OMITTED
2 ET_ILLFORMED
3 ET_NAMECLASS
4 ET_CONTEXT
5 ET_COMPATIBILITY

6 MSG_VALUEERROR

1 ET_NOVALUE
2 ET_NORESULT

7 MSG_QUADERROR

1 ET_PP
2 ET_IO
3 ET_CT
4 ET_FC
5 ET_RL
7 ET_PR

8 MSG_VALENCEERROR

9 MSG_RANKERROR

10 MSG_LENGTHERROR

11 MSG_DOMAINERROR

12 MSG_INDEXERROR

13 MSG_AXISERROR

99 MSG_APLERROR

MSG_APLERROR

The MSG_APLERROR code is used to receive or return APL error information.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

639

On return from the EXECUTE_APL and EXECUTE_APL_ESTACK services, this code indicates that an APL

error occurred during processing of the APL expression or function. When MSG_APLERROR is received from

the interpreter, the following additional error information is received:

->parm1 For EXECUTE_APL, the locator token of the error message (a character vector, the first row of

⎕EM).

For EXECUTE_APL_ESTACK, the locator token of the error stack (a character matrix, in the

same format as the third element of the result from ⎕EC).

->parm2 the APL event class (first element of ⎕ET)

->parm3 the APL event type (second element of ⎕ET)

When an external routine returns to APL2, this code may be used by the routine to signal a non-standard APL

error. When sending MSG_APLERROR to the interpreter, the following fields are defined for the error

information (corresponding to the arguments of ⎕ES.)

->parm1 the locator token of the error message (must be a character vector), or 0 if none

->parm2 the APL event class

->parm3 the APL event type

To signal a numeric event code:

Set ->parm1 to 0.

Set ->parm2 and ->parm3 to the error codes.

To signal a character event message:

Allocate a character vector object containing the message in the workspace.

Set ->parm1 to the locator token of the object.

Set ->parm2 to 0 and ->parm3 to 1.

To signal both a numeric event code and a character event message:

Allocate a character vector object containing the message in the workspace.

Set ->parm1 to the locator token of the object.

Set ->parm2 and ->parm3 to the error codes.

Note: An external routine may wish to return upon receiving error codes, passing those same error codes back

to the interpreter. If the error code is MSG_APLERROR, care must be taken to preserve the values in the -

>parm1, ->parm2 and ->parm3 fields. If the CALL block will be used to call other services before

returning, these fields, along with ->request and ->reason, should be saved and restored so that all

information associated with the error is returned.

Sample Routines

The following set of routines are samples of :link.FUNCTION routines written in C.

/*--*/
/* Include files */
/*--*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "aplfun.h"
#include "aplobj.h"

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

640

/*--*/
/* */
/* Function: funsample1 */
/* */
/* Routine descriptor: */
/* */
/* :nick.NEST :link.FUNCTION */
/* :lib.aplfun :proc.funsample1 */
/* :valence.1 2 0 */
/* */
/* Purpose: This routine simply returns a nested array whose */
/* elements are copies of the left and right argument. */
/* Demonstrates ARRAYSPACE, ARRAYREF. */
/* */
/*--*/
int _System
funsample1(CALL * call) /* EXPORT */
{
 long * dataobj;
 /*--*/
 /* Handle INIT and TERM cases */
 /*--*/
 switch (call->request) {
 case FUNCTION_INIT:
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
 case FUNCTION_CALL:
 break;
 case FUNCTION_TERM:
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
 default:
 call->request = MSG_SYSTEMERROR;
 call->reason = MSG_OK;
 return 0;
 }
 /*--*/
 /* FUNCTION_CALL - main logic for function */
 /*--*/
 /*--*/
 /* Make sure there are both left and right arguments */
 /*--*/
 if ((call->left_arg_token == 0) || (call->right_arg_token == 0)) {
 call->request = MSG_VALENCEERROR;
 call->reason = 0;
 return 0;
 }
 /*--*/
 /* Allocate a nested array for the result */
 /*--*/
 call->request = ARRAYSPACE;
 call->parm1 = 2;
 call->parm2 = VECTOR;
 call->parm3 = NESTED;
 if ((call->service)(call)) return 0;
 call->result_token = call->parm1;
 call->result = (void *) call->parm2;
 /*--*/
 /* Set the array data to the tokens for the left and right arg */
 /*--*/
 dataobj = (long *) call->parm3;
 dataobj[0] = call->left_arg_token;
 dataobj[1] = call->right_arg_token;
 /*--*/
 /* Reference the left and right arg */
 /*--*/
 call->request = ARRAYREF;
 call->parm1 = call->left_arg_token;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

641

 ((call->service)(call));
 call->request = ARRAYREF;
 call->parm1 = call->right_arg_token;
 ((call->service)(call));
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
}
/*--*/
/* */
/* Function: funsample2 */
/* */
/* Routine descriptor: */
/* */
/* :nick.REMOVEFROM :link.FUNCTION */
/* :lib.aplfun :proc.funsample2 */
/* :valence.1 2 0 */
/* */
/* Purpose: This routine removes the left argument items */
/* from the right. */
/* Demonstrates ARRAYSPACE, ARRAYRESIZE. */
/* */
/*--*/
int _System
funsample2(CALL * call) /* EXPORT */
{
 APLOBJ *objleft, *objright, *objres;
 char *dataleft, *dataright, *datares;
 int left, right, res;
 /*--*/
 /* Handle INIT and TERM cases */
 /*--*/
 switch (call->request) {
 case FUNCTION_INIT:
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
 case FUNCTION_CALL:
 break;
 case FUNCTION_TERM:
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
 default:
 call->request = MSG_SYSTEMERROR;
 call->reason = MSG_OK;
 return 0;
 }
 /*--*/
 /* FUNCTION_CALL - main logic for function */
 /*--*/
 /*--*/
 /* Make sure there are both left and right arguments */
 /*--*/
 if ((call->left_arg_token == 0) || (call->right_arg_token == 0)) {
 call->request = MSG_VALENCEERROR;
 call->reason = 0;
 return 0;
 }
 /*--*/
 /* Make sure the left argument is what we need */
 /*--*/
 objleft = (APLOBJ *) call->left_arg;
 if (objleft->type != CHARACTER) {
 call->request = MSG_DOMAINERROR;
 call->reason = 0;
 return 0;
 }
 if (objleft->rank > VECTOR) {
 call->request = MSG_RANKERROR;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

642

 call->reason = 0;
 return 0;
 }
 /*--*/
 /* Make sure the right argument is what we need */
 /*--*/
 objright = (APLOBJ *) call->right_arg;
 if (objright->type != CHARACTER) {
 call->request = MSG_DOMAINERROR;
 call->reason = 0;
 return 0;
 }
 if (objright->rank > VECTOR) {
 call->request = MSG_RANKERROR;
 call->reason = 0;
 return 0;
 }
 /*--*/
 /* Allocate an array for the result. Assume nothing will be */
 /* removed. */
 /*--*/
 call->request = ARRAYSPACE;
 call->parm1 = objright->nelm;
 call->parm2 = VECTOR;
 call->parm3 = CHARACTER;
 if ((call->service)(call)) return 0;
 call->result_token = call->parm1;
 objres = (APLOBJ *) call->parm2;
 datares = (char *) call->parm3;
 /*--*/
 /* Refresh the left and right arg addresses in case they moved */
 /* during the call to ARRAYSPACE. */
 /*--*/
 objleft = call->left_arg;
 objright = call->right_arg;
 dataleft = (char *) &objleft->dim[objleft->rank];
 dataright = (char *) &objright->dim[objright->rank];
 /*--*/
 /* Copy the data (first pass is into the result from the right) */
 /*--*/
 for (right=0, res = 0; right < objright->nelm; right++) {
 if (dataright[right] != dataleft[0]) {
 datares[res] = dataright[right];
 res++;
 }
 }
 objres->nelm = res;
 /*--*/
 /* For rest of left, do it in place (use res as right) */
 /*--*/
 objright = objres;
 dataright = datares;
 for (left = 1; left nelm; left++) {
 for (right=0, res = 0; right < objright->nelm; right++) {
 if (dataright[right] != dataleft[left]) {
 datares[res] = dataright[right];
 res++;
 }
 }
 objres->nelm = res;
 }
 /*--*/
 /* Shorten the result to its actual size */
 /* Return ->request and ->reason as set by ARRAYRESIZE */
 /* Chance of error is minimal since we are shortening */
 /*--*/
 call->request = ARRAYRESIZE;
 call->parm1 = call->result_token;
 call->parm2 = res;
 call->parm3 = VECTOR;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

643

 (call->service)(call);
 return 0;
}
/*--*/
/* */
/* Function: funsample3 */
/* */
/* Routine descriptor: */
/* */
/* :nick.TYPE :link.FUNCTION */
/* :lib.aplfun :proc.funsample3 */
/* :valence.1 1 0 */
/* */
/* Purpose: This routine returns the type of the argument. */
/* (If simple, returns type, If nested, returns type */
/* if each subitem). Builds array in workspace. */
/* Demonstrates ARRAYSPACE, TOKEN_TO_ADDRESS, */
/* FREESPACE. */
/* */
/*--*/
int _System
funsample3(CALL * call) /* EXPORT */
{
 APLOBJ *input, *subinput, *result;
 long *restok, *inptok;
 char *typestr;
 int i;
 long reloc_count;
 /*--*/
 /* Handle INIT and TERM cases */
 /*--*/
 switch (call->request) {
 case FUNCTION_INIT:
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
 case FUNCTION_CALL:
 break;
 case FUNCTION_TERM:
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
 default:
 call->request = MSG_SYSTEMERROR;
 call->reason = MSG_OK;
 return 0;
 }
 /*--*/
 /* FUNCTION_CALL - main logic for function */
 /*--*/
 /*--*/
 /* Make sure there is not a left argument and is a right argument */
 /*--*/
 if ((call->left_arg_token != 0) || (call->right_arg_token == 0)) {
 call->request = MSG_VALENCEERROR;
 call->reason = 0;
 return 0;
 }
 /*--*/
 /* Make sure the right argument meets criteria */
 /*--*/
 input = (APLOBJ *) call->right_arg;
 if (input->rank > VECTOR) {
 call->request = MSG_RANKERROR;
 call->reason = 0;
 return 0;
 }
 if (input->nelm == 0) {
 call->request = MSG_LENGTHERROR;
 call->reason = 0;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

644

 return 0;
 }
 /*--*/
 /* Allocate the top-level result array */
 /*--*/
 call->request = ARRAYSPACE;
 if (input->type == NESTED)
 call->parm1 = input->nelm;
 else
 call->parm1 = 1;
 call->parm2 = VECTOR;
 call->parm3 = NESTED;
 if ((call->service)(call)) return 0;
 call->result_token = call->parm1;
 call->result = (void *) call->parm2;
 result = (APLOBJ *) call->parm2;
 restok = (long *) call->parm3;
 /*--*/
 /* Recopy right arg pointer in case it moved during ARRAYSPACE */
 /*--*/
 input = (APLOBJ *) call->right_arg;
 inptok = (long *) &input->dim[input->rank];
 /*--*/
 /* Initialize the token pointers to 0 */
 /*--*/
 for (i = 0; i < result->nelm; i++) restok[i] = 0;
 /*--*/
 /* For each item in the input, allocate an array subitem */
 /*--*/
 reloc_count = call->reloc_count;
 for (i = 0; i < result->nelm; i++) {
 if (input->type == NESTED) {
 call->request = TOKEN_TO_ADDRESS;
 call->parm1 = inptok[i];
 if ((call->service)(call)) break;
 subinput = (APLOBJ *) call->parm2;
 }
 else {
 subinput = input;
 }
 switch (subinput->type) {
 case BOOLEAN:
 typestr = "BOOLEAN";
 break;
 case INTEGER:
 typestr = "INTEGER";
 break;
 case FLOAT:
 typestr = "FLOAT";
 break;
 case COMPLEX:
 typestr = "COMPLEX";
 break;
 case CHARACTER:
 typestr = "CHARACTER";
 break;
 case CHARLONG:
 typestr = "LONG CHARACTER";
 break;
 case APV:
 typestr = "PROGRESSION";
 break;
 case NESTED:
 typestr = "NESTED";
 break;
 default:
 typestr = "UNKNOWN";
 break;
 }
 call->request = ARRAYSPACE;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

645

 call->parm1 = strlen(typestr);
 call->parm2 = VECTOR;
 call->parm3 = CHARACTER;
 if ((call->service)(call)) break;
 /*---*/
 /* Recopy right arg and result addresses if needed */
 /*---*/
 if (call->reloc_count != reloc_count) {
 input = (APLOBJ *) call->right_arg;
 inptok = (long *) &input->dim[input->rank];
 result = (APLOBJ *) call->result;
 restok = (long *) &result->dim[result->rank];
 reloc_count = call->reloc_count;
 }
 /*---*/
 /* Set the data sections of the main array and subarray */
 /*---*/
 restok[i] = call->parm1;
 memcpy((char *)call->parm3, typestr, strlen(typestr));
 }
 /*--*/
 /* If anything failed, back it all out */
 /*--*/
 if (i < result->nelm) {
 int rc = call->request; /* Save rc and reason for return */
 int reas = call->reason;
 for (i = 0; i < result->nelm; i++) { /* Free each subitem */
 if (restok[i] != 0) {
 call->request = FREESPACE;
 call->parm1 = restok[i];
 (call->service)(call);
 }
 }
 call->request = FREESPACE; /* Free main array */
 call->parm1 = call->result_token;
 (call->service)(call);
 call->result_token = 0;
 call->request = rc;
 call->reason = reas;
 }
 return 0;
}
/*--*/
/* */
/* Function: funsample4 */
/* */
/* Routine descriptor: */
/* */
/* :nick.TABLE :link.FUNCTION */
/* :lib.aplfun :proc.funsample4 */
/* :valence.1 1 0 */
/* */
/* Purpose: This routine returns a table of data. */
/* The argument is the number of rows to return. */
/* It builds the array in routine storage. */
/* Demonstrates ARRAYCONVERT, LCDR_TO_ARRAY, and */
/* the use of call->token. */
/* */
/*--*/
int _System
funsample4(CALL * call) /* EXPORT */
{
 APLOBJ *right;
 long rows;
 APLOBJ *result, *subitem;
 long *datanest;
 long *dataint;
 char *datachar;
 double *datareal;
 int i;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

646

 char *names[5] = {"Doug Aiton",
 "Roy Bei",
 "David Liebtag",
 "Ed Oddo",
 "Nancy Wheeler"};
 double extension[5] = {3.3590,3.4632,3.2739,3.4167,3.4031};
 /*--*/
 /* Handle INIT and TERM cases */
 /*--*/
 switch (call->request) {
 case FUNCTION_INIT:
 call->token = (long) malloc(4096);
 if (call->token == NULL) {
 call->request = MSG_SYSTEMLIMIT;
 call->reason = ET_INTERFACECAPACITY;
 }
 else {
 call->request = MSG_OK;
 call->reason = MSG_OK;
 }
 return 0;
 case FUNCTION_CALL:
 break;
 case FUNCTION_TERM:
 free((void *)call->token);
 call->request = MSG_OK;
 call->reason = MSG_OK;
 return 0;
 default:
 call->request = MSG_SYSTEMERROR;
 call->reason = MSG_OK;
 return 0;
 }
 /*--*/
 /* FUNCTION_CALL - main logic for function */
 /*--*/
 /*--*/
 /* Make sure there is not a left argument and is a right argument */
 /*--*/
 if ((call->left_arg_token != 0) || (call->right_arg_token == 0)) {
 call->request = MSG_VALENCEERROR;
 call->reason = 0;
 return 0;
 }
 /*--*/
 /* Process the right argument */
 /*--*/
 right = (APLOBJ *) call->right_arg;
 if (right->rank > VECTOR) {
 call->request = MSG_RANKERROR;
 call->reason = 0;
 return 0;
 }
 if (right->nelm != 1) {
 call->request = MSG_LENGTHERROR;
 call->reason = 0;
 return 0;
 }
 if (right->type == INTEGER) { /* Already have what we want */
 rows = right->dim[right->rank];
 }
 else { /* Try to get it to integer */
 call->request = ARRAYCONVERT;
 call->parm1 = call->right_arg_token;
 call->parm2 = INTEGER;
 if ((call->service)(call)) { /* conversion impossible */
 return 0; /* ->request and ->reason set by ARRAYCONVERT */
 }
 rows = *((long *)call->parm3); /* copy the data we want */
 call->request = FREESPACE; /* and now we can free it */

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

647

 (call->service)(call); /* ->parm1 already set */
 }
 if (rows < 0) rows = 0;
 if (rows > 5) rows = 5;
 /*--*/
 /* Create the APL array in the buffer */
 /*--*/
 result = (APLOBJ *) call->token;
 result->ptr = CDRID;
 result->nb = ObjSize(VECTOR) + /* Descriptor */
 (4 * sizeof(long)); /* Data */
 result->nb = ((result->nb+15)>>4)<nelm = 4;
 result->type = NESTED;
 result->rank = VECTOR;
 result->fill[0] = 0x0;
 result->fill[1] = 0x0;
 result->dim[0] = 4;
 datanest = (long *) &result->dim[result->rank];
 /*--*/
 /* Create the first subitem */
 /*--*/
 datanest[0] = result->nb; /* Offset to this item */
 subitem = (APLOBJ *) (result->nb + (char *)result); /* This item */
 subitem->ptr = CDRID;
 subitem->nb = ObjSize(MATRIX) + /* Descriptor */
 (rows * sizeof(long)); /* Data */
 subitem->nb = ((subitem->nb+15)>>4)<nelm = rows;
 subitem->type = INTEGER;
 subitem->rank = MATRIX;
 subitem->fill[0] = 0x0;
 subitem->fill[1] = 0x0;
 subitem->dim[0] = rows;
 subitem->dim[1] = 1;
 dataint = (long *) &subitem->dim[subitem->rank];
 for (i = 0; i < rows; i++) {
 dataint[i] = i + 1;
 }
 result->nb += subitem->nb; /* Update total size */
 /*--*/
 /* Create the second subitem */
 /*--*/
 datanest[1] = result->nb; /* Offset to this item */
 subitem = (APLOBJ *) (result->nb + (char *)result); /* This item */
 subitem->ptr = CDRID;
 subitem->nb = ObjSize(MATRIX) + /* Descriptor */
 (rows * 4); /* Data */
 subitem->nb = ((subitem->nb+15)>>4)<nelm = rows * 4;
 subitem->type = CHARACTER;
 subitem->rank = MATRIX;
 subitem->fill[0] = 0x0;
 subitem->fill[1] = 0x0;
 subitem->dim[0] = rows;
 subitem->dim[1] = 4;
 datachar = (char *) &subitem->dim[subitem->rank];
 memcpy(datachar,"D122D132D121F326D127", rows*4);
 result->nb += subitem->nb; /* Update total size */
 /*--*/
 /* Create the third subitem */
 /*--*/
 datanest[2] = result->nb; /* Offset to this item */
 subitem = (APLOBJ *) (result->nb + (char *)result); /* This item */
 subitem->ptr = CDRID;
 subitem->nb = ObjSize(MATRIX) + /* Descriptor */
 (rows * sizeof(double)); /* Data */
 subitem->nb = ((subitem->nb+15)>>4)<nelm = rows;
 subitem->type = FLOAT;
 subitem->rank = MATRIX;
 subitem->fill[0] = 0x0;
 subitem->fill[1] = 0x0;
 subitem->dim[0] = rows;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

648

 subitem->dim[1] = 1;
 datareal = (double *) &subitem->dim[subitem->rank];
 for (i = 0; i < rows; i++) {
 datareal[i] = extension[i];
 }
 result->nb += subitem->nb; /* Update total size */
 /*--*/
 /* Create the fourth subitem */
 /*--*/
 datanest[3] = result->nb; /* Offset to this item */
 subitem = (APLOBJ *) (result->nb + (char *)result); /* This item */
 subitem->ptr = CDRID;
 subitem->nb = ObjSize(MATRIX) + /* Descriptor */
 (rows * 20); /* Data */
 subitem->nb = ((subitem->nb+15)>>4)<nelm = rows * 20;
 subitem->type = CHARACTER;
 subitem->rank = MATRIX;
 subitem->fill[0] = 0x0;
 subitem->fill[1] = 0x0;
 subitem->dim[0] = rows;
 subitem->dim[1] = 20;
 datachar = (char *) &subitem->dim[subitem->rank];
 memset(datachar,' ', rows*20);
 for (i = 0; i < rows; i++) {
 memcpy(datachar,names[i],strlen(names[i]));
 datachar += 20;
 }
 result->nb += subitem->nb; /* Update total size */
 /*--*/
 /* Put the result in the workspace */
 /* If it fails call->parm1 will be 0, return codes already set */
 /*--*/
 call->request = LCDR_TO_ARRAY;
 call->parm2 = (long) result;
 (call->service)(call);
 call->result_token = call->parm1;
 return 0;
}

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

649

Writing Your Own Auxiliary Processors

The following topics discuss how to write your own auxiliary processors. Auxiliary processors can be written

either in APL or in C.

 The basic interface for communicating between an APL auxiliary processor and the shared variable

processor is the set of shared variable system functions and variables (⎕SVC, ⎕SVE, ⎕SVO, ⎕SVQ,

⎕SVR, and ⎕SVS) defined in APL2 Programming: Language Reference.

 The basic interface for communicating between a C auxiliary processor and the shared variable

processor is a set of service calls defined in SVP Programming Interface.

The data structures used by this interface are defined in Common Data Representation

 A higher level APSERVER interface to the shared variable processor is also available for auxiliary

processors written in either APL or C. This is defined in Writing Auxiliary Processors Using

APSERVER.

Note: This chapter shows sample code and excerpts from C include files to be used when writing auxiliary

processors. These samples and include files can be found in the subdirectories \samples and \include

(Windows) or /examples/svp and /include (Unix) under the main APL2 installation directory.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

650

Writing Auxiliary Processors Using APSERVER

The Shared Variable Processor (SVP) is a general purpose communication facility that can support various

protocols, including peer-to-peer, client-server, full or half duplex, or uni-directional data flow for device

drivers or instrumentation. However, the most common type of auxiliary processor (AP) is the server, which

accepts requests from one or more client processors, performs some action, and returns a response.

The purpose of the APSERVER API (application program interface) is to simplify the implementation of server

APs by handling all of the SVP communication and process control, leaving you to concentrate on just the AP-

specific service routine. Both an APL2 function call interface and a C function call interface are provided so

client-server APs can be easily written in either APL or in compiled languages such as C or Fortran.

Although the APSERVER can be used to implement dual-variable APs (typically a control and data variable),

IBM recommends that a single variable interface be used for simplicity. By using APL2's general array support,

it is easy to pass control information and its accompanying data through a single variable. APSERVER provides

access to client processor information and shared variable name to support share restrictions when appropriate.

A server AP can run as either a dependent or independent processor, local or remote, and can be automatically

started on the first incoming share offer. When using the C API, each incoming share spawns a separate

execution thread to achieve the maximum benefit of multitasking or multiprocessing.

APSERVER allows common APs to be written to run on different operating systems (for example, Windows

and AIX) by handling platform-dependent functions, such as process threading and event handling.

 APSERVER - APL2 Programming Interface

 APSERVER - C Programming Interface

Note: The examples shown in the following sections assume that the auxiliary processors created will be started

automatically as dependent processors under the interpreter session that issues the offer to them. To start the

processor independently, manually invoke the AP, passing the -id invocation parameter to assign the AP

number. Independent processors must use an id number greater than 1000. For more information on

independent vs. dependent processors, see Sending a Share Offer

APSERVER - APL2 Programming Interface

To use the APSERVER function to implement an AP written in APL2, first copy the function from the

distributed library:

)COPY 1 UTILITY APSERVER
The APSERVER function uses a registered callback interface, where you choose to supply a minimum of zero

(for the default "echo" AP) to a maximum of four callback function names. The syntax of the APSERVER call

is:

 APSERVER 'Init_fn' 'Wait_fn' 'Process_fn' 'Exit_fn'

If a callback function is not provided, the corresponding item in the 4 element general array argument should

contain an empty character vector.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

651

The first name in the argument list is the name of the initialization function that gets called by APSERVER

when a new share offer arrives. The syntax of the Init_fn is:

 RC←Init_fn PID SVNAME

APSERVER passes to the initialization function the SVP processor number of the client and the name of the

shared variable being offered. If the AP chooses to accept the share, it returns an explicit result of 1. To reject

the share offer, a 0 is returned.

The initialization function can be used to open files, establish shares with other APs, or to initialize global

variables. Since the AP runs as a single task, care should be taken to avoid blocking on a shared variable access

within the callback functions if the AP is designed to support multiple shares or multiple clients.

The second name in the APSERVER argument list is the name of the wait callback function. If no wait routine

is supplied the default action of the APSERVER is to enter a ⎕SVE wait for any shared variable event, then

scan for new offers, new client requests, or shared variable retractions. The Wait_fn function, if provided,

must be a niladic function with no explicit result. You may wish to provide your own wait function to issue

⎕SVE so that you can check the state of other shared variables used for your own purposes, or so that you can

provide a time-out on the ⎕SVE wait (for example, to do some administrative work such as journaling). When

you supply wait routine exits, the APSERVER performs the usual checking for client events.

The third item in the APSERVER argument list is the name of the process function - the meat of the AP. The

syntax is:

 RESULT←(PID SVNAME) Process_fn REQUEST

The right argument is the APL2 array representing the client request. The APSERVER provides the client

processor ID and shared variable name in the left argument. Provide the necessary code in the process routine to

service the client request, and then return, as the explicit result of the function, the APL2 array that is to be sent

back to the client in response to the request. If the process callback is elided, the default action of the

APSERVER is to echo the request back to the client.

The fourth item in the APSERVER argument list is the name of the exit callback function. The syntax is:

 Exit_fn PID SVNAME

The APSERVER again passes the client processor ID and shared variable name in the right argument. The exit

function is called when the client retracts the shared variable. The exit function is often used as the inverse to

the initialization function, to close files, retract other associated shares, and expunge global variables. When the

APSERVER gets control back from the exit routine, it completes the retraction from the server side.

Note: A current restriction of APs written in APL2 using the APSERVER client-server protocol is that the

client must reference all return values sent by the server, prior to issuing another request. Failure to do so could

result in a request being lost due to a race condition.

An APL2 Example Using APSERVER

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

652

This example shows the creation of a .bat file for starting the AP on Windows. On Unix systems, a shell script

can be used instead. A sample shell script is found in /usr/APL2/examples/svp/ap555.

)CLEAR
CLEAR WS
)COPY 1 UTILITY APSERVER ID SVOFFER
SAVED 1996-06-20 19.07.51 (GMT-8)
 ∇ap555
[1] ⍝ Sample AP using 'init' and 'exit' callbacks. This AP uses AP207
[2] ⍝ to create a window where client requests are randomly displayed.
[3] ⍝ Returns 'OK' if write to window was successful, or 'OOPS' if not.
[4] APSERVER 'INIT555' '' 'PROC555' 'EXIT555'
[5] ∇
 ∇R←INIT555 SVinfo;N;PID;SVNAME
[1] (PID SVNAME)←SVinfo
[2] →(~R←2=↑207 SVOFFER N←SVNAME,'207')/0
[3] ⍎N,'←''OPEN'' (0 ''',(⍕∊ID PID),' ',SVNAME,''' ',(⍕200+?4⍴300),')'
[4] ⍎N,'←''COLOR'' ''CYAN'''
[5] →(R←0=↑⍎N)/0
[6] N←⎕EX N
[7] ∇
 ∇R←SVinfo PROC555 String;N;PID;SVNAME
[1] (PID SVNAME)←SVinfo
[2] N←SVNAME,'207'
[3] ⍎N,'←''MOVE'' (?2⍴150)'
[4] ⍎N,'←''WRITE'' ''',String,''''
[5] R←∊↑(0=↑⍎N)↓'OOPS' 'OK'
[6] ∇
 ∇EXIT555 SVinfo;N;PID;SVNAME
[1] (PID SVNAME)←SVinfo
[2] N←SVNAME,'207'
[3] ⍎N,'←''CLOSE'' '''''
[4] N←⎕EX N
[5] ∇
)FNS
APSERVER EXIT555 ID INIT555 PROC555 SVOFFER ap555
)SAVE AP555
2002-02-12 13.27.30 (GMT-8) AP555
 3 10 ⎕NA '∆FV'
1
 (⌽⍞ ⍞ ⍞)∆FV 'AP555.BAT'
@ECHO OFF
REM Windows .BAT file to start AP 555
apl2win -sm off -input "')LOAD AP555' 'ap555' ')OFF'" %1 %2 %3 %4 %5 %6 %7 %8 %9
0
)CLEAR
CLEAR WS
 555 ⎕SVO 'X'
1
 ⎕SVO 'X'
2
 ⎕SVC 'X'
0 0 0 1
 1 0 1 0 ⎕SVC 'X'
1 0 1 1
 X←'SAY HI'
 X
OK
 ⎕SVR 'X'
2

APSERVER - C Programming Interface

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

653

The APSERVER uses a registered callback interface, where you choose to supply a minimum of zero (for

default "echo" AP) to a maximum of four callback function names. The definition of the APSERVER function

call is:

int apserver(int argc, char ** argv, int(*initfn)(void *),
 int(*waitfn)(void *),
 int(*procfn)(void *),
 int(*exitfn)(void *));

The first two arguments passed to APSERVER are the argc and argv parameters that were passed to the AP

main routine. The APSERVER uses this information to determine the processor identification for signing on to

the SVP. It scans for the keyword -id followed by one to three numeric values, with the form

id[,pid[,ppid]], representing the ID and, optionally, the parent and grandparent IDs for dependent

processors. If no -id parameter is found, APSERVER uses the numeric portion of the executable module's

name (of the form apnnn) to determine the default processor number.

The next four arguments are the names of your supplied callback functions. These callback routines are

described as follows:

initfn AP initialization (prior to accepting client's share)

waitfn Multiple event wait and non-SVP event handling

procfn Process a client request (the meat of the AP)

exitfn AP clean-up (just prior to retraction of the share)

Each of these callback routines receives a single argument that is a pointer to an SRVTOKEN structure. This

token is used by subsequent APSERVER service routines that are described later. All callback functions return

an integer return code, with zero indicating success.

In each case, if no callback routine is supplied, a NULL pointer must be provided instead. If a NULL value is

specified for all four callback functions, the APSERVER functions as an echo AP, reflecting the client

processor's request value back to the client as the server's response value.

For example, the following C function represents the simplest form of a fully functional AP (default echo AP),

supporting multiple clients, multiple shares, and multitasking on a per-share basis:

/* ap555 - echo AP (source module: ap555.c, executable module: ap555) */
#include "apserver.h"
int main(int argc, char **argv) {
return(apserver(argc, argv, NULL, NULL, NULL, NULL)); }

If the executable ap555 module is placed in the search path for an APL2 session, the first share offer to

processor 555 causes the AP to be auto-started as a dependent AP of the APL2 session. Alternatively, the AP

could be started explicitly and may run as an independent processor. Optionally, by use of the TCP/IP processor

profile, the server AP can also be accessed by remote client processors.

 Defining the Process Callback Function

 Defining the Init Callback Function

 Defining the Exit Callback Function

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

654

 Defining the Wait Callback Function

 Execution Environment and Exception Handling

 A C Example Using APSERVER

Defining the Process Callback Function

To be of more practical use, an AP should serve as more than just a reflector of client requests. That is where

the "process" callback function comes into play. The process routine name is passed as the fifth argument to

APSERVER. On entry to the process routine, the client's request value is stored in a shared variable buffer that

is accessed by two APSERVER macros: SRVBUF and SRVBUFL. Note that when passing APL2 arrays,

SRVBUFL is typically not required because the size of the array is defined in the self-describing array header

(see Common Data Representation).

All APSERVER macros take the SRVTOKEN as an argument. A brief summary of the service macros follows:

 (void *)SRVBUF(srvtoken) - pointer to shared variable buffer
(unsigned long)SRVBUFL(srvtoken) - length of shared variable buffer
 (struct xid *)SRVPXID(srvtoken) - pointer to client's SVP ID
 (char *)SRVNAME(srvtoken) - pointer to shared variable name
(unsigned long)SRVNTOK(srvtoken) - SVP event notification token
 (void *)SRVUTOK(srvtoken) - user token (for your use)
 (struct srb *)SRVSRBP(srvtoken) - pointer to SVP share request block

On return from the process routine, the AP stores the result of the client's request in the shared variable buffer.

If the size of the buffer on entry is not large enough for the result, the AP can request reallocation of storage via

the srv_alloc service routine. The syntax of the srv_alloc call is:

void * srv_alloc(void * srvtoken, unsigned long size);

The first argument is the SRVTOKEN pointer and the second is the number bytes of storage required. The

SRVTOKEN pointer is returned. Note that srv_alloc does not preserve the previous contents of the buffer,

so if the client request data is to be used later, a copy must be made. The SRVBUF macro is used to get

addressability to the newly-allocated buffer. A NULL pointer is returned by SRVBUF if the allocation failed.

To calculate the storage requirement for an APL2 array, the service routine aplobjsize can be called. The

definition of aplobjsize is:

unsigned long aplobjsize(unsigned char type, unsigned char rank,
 unsigned long nelm);

See Common Data Representation for a description of the valid argument values. The function returns the

number of bytes of storage required.

Since srv_alloc only reallocates shared memory when necessary, you do not need to keep track of the buffer

size to achieve optimum performance, but can simply call srv_alloc to request space for the result at any

time.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

655

If the AP process routine enters a potentially long wait (for example, due to a blocking read), it should release

the lock that is implicitly held on the shared memory buffer. This is done by calling the srv_free service

routine, which has the following definition:

srv_free(void * srvtoken);

After the srv_free service call, the buffer is no longer addressable and SRVBUF returns a NULL pointer.

For best performance in non-blocking AP process routines that return a response to the client, srv_free

should not be called. The AP holds the lock on the shared variable between the reference of the request and the

setting of the result value.

You can also write an AP server that accepts client requests, performs some action, but does not send a response

back to the client. In this case, srv_free is called prior to return from the process callback routine, with no

intervening srv_alloc calls.

Defining the Init Callback Function

While practical APs can be written using only the process callback routine, three other callbacks are provided

for additional flexibility: init, wait, and exit. The init routine is called by APSERVER prior to accepting a

new share from a client processor.

Using the SRVNAME and SRVPXID macros, the AP can determine the name of the shared variable and the

identity of the client. By setting the return code SRV_REJECT_SHARE, the AP init routine can instruct the

APSERVER to ignore the incoming share. A return code of 0 results in the accepting of the incoming share to

complete the coupling with the client processor.

Typical things done in an init routine are file opens, environment initialization, and allocation of global data

structures. The APSERVER maintains a user token for you to use as an anchor to a malloc'd data area. The

SRVUTOK macro can be used to store and retrieve the user token.

Defining the Exit Callback Function

The exit callback routine usually provides the inverse function of the init routine. It is called by

APSERVER just prior to retraction of the shared variable and termination of the execution thread. Using

SRVUTOK to get the user token, which is typically the pointer to malloc'd storage, the exit routine can be

used to close open files and windows, and to free any dynamic storage that was allocated in the init routine.

Defining the Wait Callback Function

The wait callback function is used only for special APs that need to wait on multiple events. If no wait routine

is provided, the default action of the APSERVER is to wait for a client specification or retraction of the shared

variable.

APSERVER obtains a separate event notification token for each shared variable as it spawns a new execution

thread. The SRVNTOK macro can be used to retrieve the SVP event notification token. For APs that need to

monitor additional file or window handles, the SVP notification token can be included in a multi-wait call (for

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

656

example, select, poll, or muxwait). After handling non-SVP events, the wait routine should return to allow

processing of the next client request.

Execution Environment and Exception Handling

One of the goals of the APSERVER is to assume responsibility for most of the exception handling required for

a robust auxiliary processor, including interrupt or termination signal trapping, re-dispatching of SVP requests

in the case of temporary shared variable interlocks, and the orderly signoff and shutdown of the processor,

including cases of severe error conditions.

In the case of an unrecoverable error on a shared variable SVP call, the APSERVER issues an error message

with return code information, then calls the exit registered callback function prior to retracting the shared

variable and terminating the execution thread. The execution states of threads associated with other shared

variables are generally unaffected by the one share failure.

When the APSERVER is started, it immediately defines a signal handler to capture SIGTERM (software

termination request) and SIGINT (interrupt signal). The signal handler is the same function that handles normal

SVP-broadcast SHUTDOWN events. It issues a standard SVP processor SIGNOFF request before termination

of the auxiliary processor.

When a child process is spawned for each shared variable, the SIGTERM and SIGINT signals are reset to the

default handlers. The auxiliary processor's init registered callback function can be used to establish the

desired exception handling environment for the main "process" routine.

In the unlikely event of an unrecoverable SVP error while monitoring the processor event queue, an error

message is issued and an attempt is made to complete a normal processor SIGNOFF. During a normal processor

SIGNOFF, the parent (dispatcher) process waits up to a maximum of 15 seconds for the child threads to

complete a normal retraction of the associated shared variables and terminate.

A C Example Using APSERVER

/*-P-ap999--
 *
 * Module Name: ap999.c
 *
 * Descriptive Name: Auxiliary Processor 999
 *
 * Function: Sample Auxiliary Processor implementing client-server
 * protocol. For hard working programmers with deadlines,
 * this sample server will "catch some ZZZZZZ's" for a
 * client who has no time to sleep for himself.
 *
 -Z--/
#include
#include
#include "aplobj.h"
#include "apserver.h"
#define INVALID_REQ -1 /* catch-all rc for unfriendly AP */
#define SYSTEM_LIMIT -2 /* requested space is unavailable */
int _System sleep_init(void *); /* AP Server "init" callback fn */
int _System sleep_server(void *); /* AP Server "process" callback fn */
int _System sleep_exit(void *); /* AP Server "exit" callback fn */
static int error_code(void *, int); /* error handler */

/*-F-main---

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

657

 *
 * Purpose: Auxiliary Processor 999 - main routine runs the general
 * AP Server with standard callback to one or more of the 4
 * AP Server callback routines identified in the parameter list.
 * The 4 callback routines are named in parms 3-6 of apserver, and
 * provide the following function:
 * 1. AP initialization, prior to accepting the client share
 * 2. multiple event wait and non-SVP event handling
 * 3. process a client request (passed in shared variable)
 * 4. AP exit cleanup on retraction of the share
 * (Note: if a callback function is not provided, set parm to NULL)
 *
 * Arguments: int argc Number of elements in argv
 * char ** argv Argument pointer array
 * char ** envp Environment pointer array
 *
 * Results: int Exit Return Code
 *
 --/
int main(int argc, char **argv, char **envp) {
 return(apserver(argc, argv, sleep_init, NULL, sleep_server, sleep_exit));
/* init wait process exit */
}

/*-F-sleep_init---
 *
 * Purpose: Server initialization callback - called by the AP
 * Server prior to accepting the share to fully couple
 * with the client. The typical things done by an AP
 * here are to open files, allocate global storage,
 * initialize a global data structure and store its
 * address in the user token field of the srvtoken, etc...
 * Via SRVPXID and SRVNAME, the AP can examine the client's
 * fully-qualified SVP identification and the name of
 * the share. If the AP decides not to accept the share,
 * it returns from this init routine with return code
 * SRV_REJECT_SHARE.
 *
 * Arguments: void * srvtoken pointer to AP Server token
 *
 * SRVUTOK(srvtoken) macro returns user token (AP defined)
 * SRVNAME(srvtoken) macro returns shared variable name
 * SRVPXID(srvtoken) macro returns partner's extended ID
 * SRVSRBP(srvtoken) macro returns SVP share request block ptr
 *
 * Results: int Return Code
 * 0 = success
 * SRV_REJECT_SHARE = AP Server just quietly ends thread
 * other = error condition (Server message & end thread)
 *
 --/
int _System sleep_init(void * srvtoken) {
 SRVUTOK(srvtoken) = malloc(8); /* fake control block as an example */
 if (SRVUTOK(srvtoken) == NULL)
 return(SRV_REJECT_SHARE); /* reject share if malloc failed */
 memset(SRVUTOK(srvtoken),'Z',8); /* initialize fake control block */
 return(0);
}

/*-F-sleep_server---
 *
 * Purpose: Auxiliary processor 999 is a sample server AP which
 * uses the general AP Server interface (apserver.c) to
 * implement a client-server type protocol through the
 * Shared Variable Processor. It uses a single shared
 * variable interface, with no name restrictions, and
 * runs each share request stream asynchronously under
 * a separate process (Unix) or thread (OS/2, Windows).
 *
 * AP999 accepts 2 element integer vectors, where the first

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

658

 * value is the number of milliseconds to sleep, and the second
 * element is the size of the resulting character vector to
 * return. To demonstrate the handling of short versus long
 * requests, AP999 uses a fast path through the SVP for a
 * sleep of 1 second or less (holding the shared variable
 * lock from pre-ref until post-spec), while releasing the
 * lock (via srv_free call) for longer requests.
 *
 * Arguments: void * srvtoken pointer to AP Server token
 *
 * SRVBUF(srvtoken) macro returns ptr to shared var buffer
 * SRVBUFL(srvtoken) macro returns shared var buffer length
 * SRVUTOK(srvtoken) macro returns user token (AP defined)
 * SRVNAME(srvtoken) macro returns shared variable name
 * SRVPXID(srvtoken) macro returns partner's extended ID
 * SRVSRBP(srvtoken) macro returns SVP share request block ptr
 *
 * Results: int Return Code
 * 0 = success
 * other = error condition (Server retracts & exits)
 *
 * On return, the AP stores the result of the client's request
 * in the shared variable buffer, enlarging it if necessary (or
 * reallocating it if freed with srv_free) using the srv_alloc
 * callback to the AP Server. Note that srv_alloc will NOT
 * preserve the previous contents of the buffer, and SRVBUF
 * must be used to get addressability to the buffer after the
 * call to srv_alloc.
 *
 --/

int _System sleep_server(void * srvtoken) {
 int rc = 0;
 APLOBJ *obj = (APLOBJ *) SRVBUF(srvtoken); /* request is an APL2 object */
 int objsize;
 int msecs = obj->dim[1]; /* 1st item of request is sleep time*/
 int shape = obj->dim[2]; /* 2nd is shape of char array result*/
 if ((obj->type != INTEGER && obj->type != BOOLEAN) ||
 obj->rank != VECTOR || obj->dim[0] != 2) {
 rc = error_code(srvtoken, INVALID_REQ); /* generate error return code*/
 return rc;
 }
 if (obj->type == BOOLEAN) { /* if Boolean, convert to integer */
 msecs = ((unsigned long)obj->dim[1]) >> ((8*sizeof(long))-1);
 shape = (((unsigned long)obj->dim[1]) << 1) >> ((8*sizeof(long))-1);
 }
 if (msecs <= 1000) { /* short wait - OK to hold the lock */
 if (msecs > 0) {
 svsleep(msecs);
 }
 }
 else { /* long wait */
 srv_free(srvtoken); /* AP Server releases space, unlocks*/
 obj = NULL; /* no longer have addressability */
 if (msecs <= 60000) { /* bypass sleep if more than 60 */
 svsleep(msecs); /* seconds in this sample AP */
 }
 }
 objsize = aplobjsize(CHARACTER, VECTOR, shape); /* result size? */
 obj = (APLOBJ *) SRVBUF(srv_alloc(srvtoken, objsize)); /* ask for space*/
 if (obj == NULL) { /* if allocation failed, */
 rc = error_code(srvtoken, SYSTEM_LIMIT); /* set error return code */
 return rc;
 }
 obj->ptr = CDRID; /* build the CDR header for result */
 obj->nb = objsize;
 obj->nelm = shape;
 obj->type = CHARACTER;
 obj->rank = VECTOR;
 obj->dim[0] = shape;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

659

 memset(&obj->dim[1], 'Z', shape); /* return some Z's for sleepy client*/
 return rc;
}

/*-F-error_code---
 *
 * Purpose: Return an error return code to client for this request
 *
 * Arguments: void * srvtoken pointer to AP Server token
 * int rc AP return code
 *
 * Results: int Return Code (from this function)
 * 0 = success
 * -1 = error condition (srv_alloc failed)
 *
 --/
int error_code(void * srvtoken, int rc) {
 APLOBJ *obj; /* ptr to APL2 object in CDR format */
 int objsize;
 objsize = aplobjsize(INTEGER, SCALAR, 1); /* result size? */
 obj = (APLOBJ *) SRVBUF(srv_alloc(srvtoken, objsize)); /* ask for space*/
 if (obj == NULL) { /* we're in trouble if we */
 return (-1); /* can't get 32 bytes - die!*/
 }
 obj->ptr = CDRID; /* construct result header */
 obj->nb = objsize;
 obj->nelm = 1;
 obj->type = INTEGER;
 obj->rank = SCALAR;
 obj->dim[0] = rc;
 return (0);
}

/*-F-sleep_exit---
 *
 * Purpose: Server exit callback - called by the AP Server prior to
 * shared variable retraction and termination of this process
 * thread. Typical use by the AP is for freeing any dynamic
 * storage it allocated, closing files and pipes, etc.
 *
 * Arguments: void * srvtoken pointer to AP Server token
 *
 * SRVUTOK(srvtoken) macro returns user token (AP defined)
 *
 * Results: int Return Code
 * 0 = success
 * other = error condition (Server prints error msg)
 *
 --/
int _System sleep_exit(void * srvtoken) {
 free(SRVUTOK(srvtoken)); /* free the fake control block */
 return(0);
}

/*==*/
/* The following wait callback routine is not used in this sample AP, but */
/* is provided for documentation purposes. */
/*==*/
/*-F-multi_wait---
 *
 * Purpose: Server callback to allow wait on multiple file descriptors,
 * semaphores, or message queues, including the shared variable
 * event queue.
 *
 * Return from this function allows the AP Server to handle
 * shared variable (SVP) events. Typically an AP will wait on the
 * notification token along with window, file, or pipe descriptors.
 * The AP handles non-SVP events, and simply returns from this
 * function when it wants the AP Server to process SVP events
 * (which normally result in a call-back to the AP "process" exit

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

660

 * function to handle the client request).
 *
 * Arguments: void * srvtoken pointer to AP Server token
 *
 * SRVNTOK(srvtoken) macro returns shared variable event
 * notification token (system dependent)
 * SRVUTOK(srvtoken) macro returns user token (AP defined)
 *
 * Results: int Return Code
 * 0 = success
 * other = error condition (Server retracts & ends)
 *
 --/
int _System multi_wait(void * srvtoken) {
/* Get message queue id (Unix) or semaphore handle (OS/2, Windows) */
 unsigned long wait_token = SRVNTOK(srvtoken);
/* AP typically does poll/select (Unix) or wait (OS/2, Windows) */
/* and continues processing non-SVP events in a while loop until the only */
/* event outstanding is an SVP event, at which time it simply returns */
/* to the AP Server to read the share event queue and handle the event. */
 return(0);
}

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

661

SVP Programming Interface

Interface to the SVP is by C function call. There are three entry points based on the service desired. The

following sections describe the structures used on these calls:

int _System svpp(struct prb *); for SIGNON and SIGNOFF

int _System svpe(struct wrb *); for SVEVENT (for example, wait)

int _System svps(struct srb *); for all other SVP requests

Notes:

1. The APL2 interpreter passes all of its command line arguments to any auxiliary processor that is started

automatically. An auxiliary processor should be prepared to receive arguments that might not be

applicable. The auxiliary processor should, however, always look for the -id parameter and use the

information from the values given when issuing an SVSIGNON. If no -id parameter is found, the

auxiliary processor should sign on with its own default processor number, and no parent or grandparent.

2. The ntoken returned on an SVSIGNON and SVSHARE is the handle of an event semaphore.

Normally this token is only used on an SVEVENT call, but it can be waited on directly or added to a

multiple wait. It should never be posted or reset by the auxiliary processor.

3. A SHUTDOWN event is posted to a dependent processor by the SVP when the parent issues an

SVSIGNOFF, or when the Shutdown option is selected from the Info->Processors menu item of the

SVP Monitor window. It is the responsibility of the auxiliary processor to retract all variables and issue

an SVSIGNOFF when this signal is received.

 PRB Requests

 WRB Requests

 SRB Requests

 SVP Control Blocks

PRB Requests

 SVSIGNON - Sign on to the SVP

 SVSIGNOFF - Sign off from the SVP

SVSIGNON - Sign on to the SVP

prb.req = SVSIGNON

Sign on to the Shared Variable Processor. The following additional prb fields must be provided:

prb.xid.pparent Grandparent processor number.

prb.xid.parent Parent processor number.

prb.xid.procid Processor ID of caller.

Note: If the auxiliary processor will be run independently, pparent and parent must both be specified as 0.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

662

The following fields are optional:

prb.user An arbitrary token returned on SVEVENT for incoming offers or shutdown.

prb.emask Event conditions to be masked (not signaled). See WRB Requests for names of the events.

prb.PRBFNPOST If true, disable posting to event queue.

prb.PRBFNOTRC If true, disable tracing of SVP events for this processor.

The following prb fields are returned:

prb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_INVARG Argument error
SVP_ERROR_ASO Already signed on as xid
SVP_ERROR_PUSED Another process signed on as xid

prb.PRBFOFFS TRUE if one or more offers exist.

prb.ntoken Token used for waiting on SVP events.

prb.pcbx Processor token that must be used on all subsequent SVP calls.

Note: If the SVP shared memory control area has not been initialized, this call automatically starts the process

that establishes and owns that area.

SVSIGNOFF - Sign off from the SVP

prb.req = SVSIGNOFF

Sign off from the Shared Variable Processor. The following additional prb field must be provided:

prb.pcbx The processor token that was returned by SVSIGNON.

prb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_INVARG Argument error
SVP_ERROR_NSO Processor not signed on

Notes:

1. If the SVP was automatically started by a signon, a usage count of processors is maintained and the SVP

process is shut down when that count reaches 0.

2. The SVP retracts all variables shared with or offered from the processor during signoff.

WRB Requests

wrb.req = SVEVENT

Wait for an SVP event. This can be either a processor event (such as an incoming offer) or a shared variable

event (such as variable set by partner). The following additional wrb fields must be provided:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

663

wrb.pcbx The processor token that was returned by SVSIGNON.

wrb.ntoken A notification token returned by either SVSIGNON or SVSHARE.

wrb.timeout Maximum time to wait in milliseconds if nonnegative. Use -1 to wait indefinitely for an

event.

The following flag is optional:

wrb.WRBFFLUSH If true, causes the event queue to be flushed on return.

The following wrb fields are filled in on return:

wrb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument
SVP_ERROR_NOEVENT No event found before time expired
SVP_ERROR_TIMEOUT Timeout occurred with no event

wrb.user For SVP_EVENT_SHUTDOWN or SVP_EVENT_OFFEREX this is the value provided in

prb.user at SVSIGNON. For all other events it is the value provided in srb.user at

SVSHARE.

wrb.event One of the following event codes:

SVP_EVENT_SHUTDOWN SVP shutdown
SVP_EVENT_OFFEREX Offer extended
SVP_EVENT_OFFERAC Offer accepted
SVP_EVENT_SMAVAIL Shared memory available
SVP_EVENT_PRETRACT Partner retracted
SVP_EVENT_PSETACV Partner set ACV
SVP_EVENT_PSPEC Partner specified
SVP_EVENT_PREF Partner referenced
SVP_EVENT_FSPEC Partner failed specified
SVP_EVENT_FREF Partner failed reference
SVP_EVENT_PRELEASE Partner released variable

wrb.scbx (except for SVP_EVENT_SHUTDOWN) For SVP_EVENT_OFFEREX, a variable token that can be

used for a matching SVSHARE. For other events, the variable token that was used when sharing

the variable.

wrb.osn (SVP_EVENT_OFFEREX only) A sequence number that can be used for a matching SVSHARE to

verify that the offer being reported is still outstanding.

Note: Only one event is returned. The auxiliary processor should continue to make calls (to retrieve all events)

until SVP_ERROR_NOEVENT is received.

SRB Requests

The following sections discuss the SRB requests.

 Offering and Retracting Variables

 Setting and Using Data in Variables

 Obtaining or Setting Information about Variables

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

664

Offering and Retracting Variables

 SVSHARE - Offer a variable

 SVSHARE - Match an offer

 SVRETRACT - Retract a share

SVSHARE - Offer a variable

srb.req = SVSHARE srb.scbx = 0

Use this service to offer a new variable to some processor. The following additional srb fields must be

provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.pxid.procid The identification number of the partner to whom the offer is made.

srb.scbx Must be zero to indicate a new offer.

The following fields are optional:

srb.osn Offer sequence number. Only offers with osn greater than this can be used to match the

offer.

srb.user User field, returned on SVEVENT.

srb.acv Access control (see SVP Control Blocks).

srb.name Variable name (up to 255 chars).

srb.SRBFNEWQ True to request a separate event queue to be used for this variable. If false, the processor

event queue is used for all events.

srb.SRBFNPOST True to request that no events be signaled for this variable.

srb.SRBFNOFFR True to disable automatic reoffer on partner's retract. It is recommended that all auxiliary

processors turn this flag on.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_SHRSLF Offer to self
SVP_ERROR_INVARG Invalid argument

srb.pxid Extended ID of corresponding offer, if found.

srb.osn Offer sequence number.

srb.scbx A token associated with this share, that must be used on all subsequent requests.

srb.ntoken A signaling token. This is unique to the variable if srb.SRBFNEWQ was set, otherwise the

processor ntoken is returned.

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

665

srb.coupling Degree of coupling.

Note: If a share request is made and no corresponding offer is found, a search is made for a file named apnnn,

where nnn is the srb.procid. If this file is found, it is executed.

SVSHARE - Match an offer

srb.req = SVSHARE srb.scbx = variable_token

Match an offer that has already been made to this processor. This service requires information (including

srb.scbx) that has been provided by SVSCAN or SVEVENT. The following additional srb fields must be

provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx As returned by SVSCAN or SVEVENT.

srb.osn As returned by SVSCAN or SVEVENT.

srb.acv Access control (see SVP Control Blocks).

srb.SRBFNEWQ True to request a separate event queue to be used for this variable. If false, the processor

event queue is used for all events.

srb.SRBFNPOST True to request no event queue to be used for this variable.

srb.user (Optional) User field, returned on SVEVENT.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_SHRSLF Offer to self
SVP_ERROR_INVARG Invalid argument (including OSN mismatch)
SVP_ERROR_NOOFFER No offer found

srb.pxid Extended ID of corresponding offer, if found.

srb.ntoken A signaling token. This is unique to the variable if srb.SRBFNEWQ was set, otherwise the

processor ntoken is returned.

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

SVRETRACT - Retract a share

srb.req = SVRETRACT

Retract a shared variable or share offer. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

666

srb.scbx The variable token that was returned or used by SVSHARE.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument

srb.coupling Degree of coupling.

Setting and Using Data in Variables

In order to gain access to shared variable data, a processor must obtain a temporary lock, so that the partner

does not attempt to update the data or change the variable's state during the accessing process. The processor

commonly gets a lock implicitly through an SVPREREF or SVPRESPEC request. It is also possible to issue any

of the SVPREREF or SVPRESPEC requests when the variable's lock is already held. Eventually, the processor

must issue SVRELEASE, or more typically SVREF or SVSPEC, to release the lock. Applications should

minimize the time that they hold the lock. No count is maintained, so a single unlocking request unlocks the

variable no matter how many lock requests were issued.

The second function provided by the locking requests is to give the calling program access to a data buffer.

When SVPREREF is used, this buffer contains the current value of the variable. For SVPRESPEC, a buffer is

provided of a caller-specified size. In either case, the buffer is available only until the next locking or unlocking

request is issued.

The three unlocking requests differ only in the effects they have on the access state of the variable. The system

does not check for any correspondence between the locking request and the subsequent unlocking request. The

normal sequence is, of course, to use SVPREREF followed by SVREF to reference a variable, and SVPRESPEC

followed by SVSPEC to specify a new value for a variable. However, other sequences that can be useful on

occasion include:

 SVPREREF or SVRELEASE to peek at a value set by your partner without actually referencing it.

 SVPREREF, SVPRESPEC, or SVSPEC to look at a value set by your partner and then replace it without

losing the lock between reference and specification.

 SVPREREF or SVSPEC to update part of the value in place, and inform your partner that the change has

occurred.

 SVRELEASE to look at the last value assigned to a variable even though you have already referenced it.

 SVPREREF - Start variable reference

 SVREF - Finish variable reference

 SVPRESPEC - Start variable assignment

 SVSPEC - Finish variable assignment

 SVRELEASE - Release a preRef or preSpec

SVPREREF - Start variable reference

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

667

srb.req = SVPREREF

First stage of referencing (obtaining the current value of) a variable. This call provides a pointer to the variable's

value, and locks the variable until SVREF is issued. The partner cannot issue further requests against the

variable until it is unlocked by an SVSPEC, SVREF, or SVRELEASE. The following additional srb fields must

be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_INTERLOCK Variable interlocked
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_NOVALUE No new value
SVP_ERROR_INVARG Invalid argument

srb.vlen Size of object.

srb.value Pointer to object.

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

SVREF - Finish variable reference

srb.req = SVREF

Second stage of referencing (obtaining the current value of) a variable. This call notifies the SVP that the value

has been extracted, and unlocks the variable. The value pointed to by srb.value on return from SVPREREF

can no longer be accessed after issuing this call. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

668

SVPRESPEC - Start variable assignment

srb.req = SVPRESPEC

First stage of specifying a value for a variable. This call provides a pointer to a location where the new value for

the variable is to be placed, and locks the variable until SVSPEC is issued. The partner cannot issue further

requests against the variable until it is unlocked. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

srb.vlen Size of object.

srb.SRBFIGNV True to ignore any unreferenced value.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument
SVP_SMNOSPACE Space not available
SVP_INTERLOCK Variable interlocked
SVP_ERROR_VOS Partner's value not read

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.value Pointer to area to write object.

srb.coupling Degree of coupling.

SVSPEC - Finish variable assignment

srb.req = SVSPEC

Second stage of specifying a value for a variable. This call notifies the SVP that the new value is in place, and

unlocks the variable. The area pointed to by srb.value on return from SVPRESPEC can no longer be

accessed after issuing this call. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument

srb.acv Access control (see SVP Control Blocks).

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

669

srb.state Shared variable state.

srb.coupling Degree of coupling.

SVRELEASE - Release a preRef or preSpec

srb.req = SVRELEASE

Release a variable previously locked by SVPREREF or SVPRESPEC without changing its state. The area

pointed to by srb.value on return from the locking call can no longer be accessed after issuing this call. The

following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

Obtaining or Setting Information about Variables

 SVSHARE - Inquire about a share offer

 SVSCAN - Scan for a share offer

 SVSEEACV - Query access control

 SVSETACV - Set access control

 SVSTATE - Query variable state

SVSHARE - Inquire about a share offer

srb.req = SVSHARE srb.scbx = variable_token

Obtain information about a previous share offer. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.pxid Partner extended ID, or zero. If zero, this value is returned.

srb.scbx Variable token from original offer.

The following srb fields are filled in on return:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

670

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument
SVP_ERROR_NOOFFER No offer found

srb.pxid Extended ID of partner.

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

SVSCAN - Scan for a share offer

srb.req = SVSCAN

Scan for an incoming shared variable offer. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.pxid If pxid.procid is zero, scan for offers from any processor. Otherwise, only offers from the specified

processor are checked.

srb.osn Offer sequence number. If non-zero, and srb.scbx=0, only offers with a sequence number

greater than that specified are checked. This allows the scan to be repeated to search for additional

offers, and also assists in rotating limited resources among requestors.

If both srb.osn and srb.scbx are non-zero, the osn value is used as a verification against the

offer identified by the scbx.

srb.name A null-delimited character string. If a non-empty name is specified, only offers for this variable

name are checked.

srb.scbx Normally must be zero, but can be set to identify a specific partner.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument
SVP_ERROR_NOOFFER No offer found

srb.pxid Extended ID of corresponding offer, if found.

srb.osn Offer sequence number.

srb.scbx SCB index of offer.

srb.name Variable name.

SVSEEACV - Query access control

srb.req = SVSEEACV

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

671

Query access control. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

SVSETACV - Set access control

srb.req = SVSETACV

Set access control. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

srb.acv Access control desired (see SVP Control Blocks).

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

SVSTATE - Query variable state

srb.req = SVSTATE

Query shared variable state. The following additional srb fields must be provided:

srb.pcbx The processor token that was returned by SVSIGNON.

srb.scbx The variable token that was returned or used by SVSHARE.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

672

The following srb fields are filled in on return:

srb.rc One of the following return codes:

SVP_OK Success
SVP_UNAVAILABLE SVP not available
SVP_ERROR_NSO Processor not signed on
SVP_ERROR_INVARG Invalid argument

srb.acv Access control (see SVP Control Blocks).

srb.state Shared variable state.

srb.coupling Degree of coupling.

Notes:

1. In addition to the return codes listed, SVP_ERROR_SYSTEM can be returned if the SVP receives an

error from an operating system call. If this return code is received, prb.reason (or srb.reason or

wrb.reason) provides an additional reason code. (See SVP Reason Codes for a listing of these reason

codes beginning with SVP_ERRSYS_xxx.)

2. Similarly, if the SVP_ERROR_INVARG return code is received, the reason code is set to one of the

SVP_ARGERR_xxx values.

SVP Control Blocks

The control blocks shown here are defined in C include file aplap.h. See also Common Data Representation.

 Extended ID Structure

 Processor Request Block

 Share Request Block

 Wait Request Block

 SVP Requests

 SVP Return Codes

 SVP Reason Codes

 SVP Event Codes

 Function Prototypes

 Access Control Constants

Extended ID Structure

struct xid { /* Extended ID structure */
 unsigned long pparent; /* Parent's Parent ID */
 unsigned long parent; /* Parent ID */
 unsigned long procid; /* Processor ID */
 unsigned long hostid; /* Host ID (TCP/IP address) */
 unsigned long res1; /* Reserved */
 unsigned long res2; /* Reserved */
 char userid[8]; /* User ID */
 char surrid[8]; /* Surrogate ID */
 };
struct flags {
 unsigned int b1:1;
 unsigned int b2:1;
 unsigned int b3:1;
 unsigned int b4:1;

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

673

 unsigned int b5:1;
 unsigned int b6:1;
 unsigned int b7:1;
 unsigned int b8:1;
 unsigned int b9:1;
 unsigned int b10:1;
 unsigned int b11:1;
 unsigned int b12:1;
 unsigned int b13:1;
 unsigned int b14:1;
 unsigned int b15:1;
 unsigned int b16:1;
 unsigned int b17:1;
 unsigned int b18:1;
 unsigned int b19:1;
 unsigned int b20:1;
 unsigned int b21:1;
 unsigned int b22:1;
 unsigned int b23:1;
 unsigned int b24:1;
 unsigned int b25:1;
 unsigned int b26:1;
 unsigned int b27:1;
 unsigned int b28:1;
 unsigned int b29:1;
 unsigned int b30:1;
 unsigned int b31:1;
 unsigned int b32:1;
 };

Processor Request Block

struct prb {
 short req; /* Request code */
 short rc; /* Return code */
 short reason; /* Reason code */
 short res1; /* Reserved */
 struct xid xid; /* Extended ID */
 void *user; /* User field */
 unsigned long emask; /* Event mask */
 unsigned long ntoken; /* Notification token */
 unsigned long pcbx; /* PCB index */
 unsigned long socket; /* Socket number */
 unsigned long socksem; /* Socket semaphore */
 char ** argv; /* Command line args ptr */
 int argc; /* Count of args */
 void *res2; /* Reserved */
 struct flags prbflags; /* Processor flags */
 char socksemname[20]; /* Socket semaphore name */
 char reserved[12]; /* Reserved */
 };
#define PRBFOFFS prbflags.b1 /* Offers outstanding */
#define PRBFNPOST prbflags.b3 /* Don't post */
#define PRBFNOTRC prbflags.b4 /* Don't trace */

Share Request Block

struct srb {
 short req; /* Request code */
 short rc; /* Return code */
 short reason; /* Reason code */
 short res1; /* Reserved */
 void *user; /* User field */
 unsigned long ntoken; /* Notification token */
 unsigned long pcbx; /* PCB index */

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

674

 unsigned long scbx; /* SCB index */
 struct xid pxid; /* Extended Partner ID */
 long osn; /* Offer sequence number */
 long vlen; /* Length of value */
 void *value; /* Pointer to value */
 unsigned long pvrba; /* Reserved */
 unsigned short acv; /* Access control */
 unsigned short state; /* State */
 unsigned short coupling; /* Coupling */
 unsigned short res2; /* Reserved */
 struct flags srbflags; /* Flags */
 unsigned long socket; /* socket number */
 unsigned long socksem; /* socket send sem-id (UNIX) */
 char socksemname[20]; /* Socket semaphore name */
 char reserved[12]; /* Reserved */
 char name[256]; /* Variable name */
 };
#define SRBFIGNV srbflags.b1 /* Ignore value waiting */
#define SRBFNEWQ srbflags.b2 /* Request new event queue */
#define SRBFNPOST srbflags.b4 /* Don't post */
#define SRBFNOFFR srbflags.b5 /* No offer back on retract */

Wait Request Block

struct wrb {
 short req; /* Request code */
 short rc; /* Return code */
 short reason; /* Reason code */
 short res1; /* Reserved */
 void *user; /* User field */
 unsigned long ntoken; /* Notification token */
 unsigned long pcbx; /* PCB index */
 unsigned long scbx; /* SCB index */
 unsigned long osn; /* offer sequence number */
 long timeout; /* Timeout value */
 unsigned long event; /* Event code */
 struct flags wrbflags; /* Flags */
 char reserved[16]; /* Reserved */
 };
#define WRBFFLUSH wrbflags.b1 /* Flush event queue */

SVP Requests

#define SVINIT 0
#define SVSIGNON 1
#define SVSIGNOFF 2
#define SVSCAN 3
#define SVSHARE 4
#define SVSEEACV 5
#define SVSETACV 6
#define SVREF 7
#define SVSPEC 8
#define SVRELEASE 11
#define SVRETRACT 12
#define SVSTATE 13
#define SVQUERY 14
#define SVPREREF 15
#define SVPRESPEC 16
#define SVEVENT 17
#define SVPOST 18
#define SVGETTOKEN 19

SVP Return Codes

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

675

#define SVP_ERROR_SYSTEM - 3 /* System Error */
#define SVP_SMNOSPACE - 2 /* No space for object */
#define SVP_INTERLOCK - 1 /* variable interlocked */
#define SVP_OK 0 /* A-OK */
#define SVP_UNAVAILABLE 1 /* SVP is unavailable */
#define SVP_ERROR_PROTEXCP 2 /* Protection exception */
#define SVP_ERROR_NSO 3 /* Not signed on */
#define SVP_ERROR_ASO 4 /* Already signed on */
#define SVP_ERROR_PUSED 5 /* Processor in use */
#define SVP_ERROR_SHRSELF 8 /* Share with self */
#define SVP_ERROR_VTL 10 /* Value too large */
#define SVP_ERROR_NOVALUE 11 /* No value */
#define SVP_ERROR_NOOFFER 12 /* No offer found */
#define SVP_ERROR_INVREQ 13 /* Invalid request */
#define SVP_ERROR_VOS 14 /* Unread value exists */
#define SVP_ERROR_INVARG 15 /* Invalid argument */
#define SVP_ERROR_NOEVENT 16 /* No event found */
#define SVP_ERROR_TIMEOUT 17 /* Timeout on SVEVENT */
#define SVP_ERROR_INTERRUPT 18 /* Interrupt on wait */

SVP Reason Codes

#define SVP_ERRSYS_GETNMEM 100 /* Error getting named sh mem */
#define SVP_ERRSYS_FREEMEM 101 /* Error freeing sh mem */
#define SVP_ERRSYS_SUBFREE 102 /* Error freeing pcb/scb space */
#define SVP_ERRSYS_NOPCBS 103 /* Limit on processors exceeded */
#define SVP_ERRSYS_NOSCBS 104 /* Limit on variables exceeded */
#define SVP_ERRSYS_GETESEM 105 /* Error creating event sem */
#define SVP_ERRSYS_POSTQUEUE 106 /* Error on post of queue */
#define SVP_ERRSYS_WAITESEM 107 /* Error on wait for semaphore */
#define SVP_ERRSYS_RESETESEM 108 /* Reset semaphore error */
#define SVP_ERRSYS_OPENSEM 109 /* Error opening a semaphore */
#define SVP_ERRSYS_REQSEM 110 /* Error requesting sm semaphore */
#define SVP_ERRSYS_RELSEM 111 /* Error releasing sm semaphore */
#define SVP_ERRSYS_CREATESEM 112 /* Error creating sm semaphore */
#define SVP_ERRSYS_GETXID 113 /* Error in side file lookup */
#define SVP_ERRSYS_GETQUEUE 114 /* Error creating msg queue */
#define SVP_ERRSYS_FREESEM 115 /* Error freeing semaphore */
#define SVP_ERRSYS_FREEQUEUE 116 /* Error freeing queue */
#define SVP_ERRSYS_WAITQUEUE 117 /* Error waiting on queue */
#define SVP_ERRSYS_PEEKQUEUE 118 /* Error peeking queue */
#define SVP_ERRSYS_OPENFAIL 119 /* Error opening file */
#define SVP_ERRSYS_QEMPTY 120 /* Error queue is empty */
#define SVP_ERRSYS_PURGEQUE 121 /* Error purging queue */
#define SVP_ERRSYS_VARLOCK 122 /* Error acquiring variable lock */
#define SVP_ERRPRF_FNF 201 /* Profile not found */
#define SVP_ERRPRF_SNF 202 /* Svopid not found */
#define SVP_ERRPRF_INVF 203 /* Invalid file */
#define SVP_ERRPRF_IOERR 204 /* I/O Error */
#define SVP_ERRPRF_INVWC 205 /* Invalid wild card */
#define SVP_ERRPRF_NOAUTH 206 /* Authorization failed */
#define SVP_ERRPRF_CRYPT 207 /* Could not load crypt routine */
#define SVP_ARGERR_INVPCBX 301 /* Invalid PCB Index */
#define SVP_ARGERR_INVSCBX 302 /* Invalid SCB Index */
#define SVP_ARGERR_INVNAME 303 /* Invalid Variable name */
#define SVP_ARGERR_NOLOCK 304 /* Lock not held on post-op */
#define SVP_ARGERR_INVTOKEN 305 /* Invalid token on SVEVENT */
#define SVP_ARGERR_INVPARENT 306 /* Parent not signed on */
#define SVP_ARGERR_INVOSN 307 /* Invalid Offer Sequence Number */
#define SVP_ARGERR_INVSPI 308 /* Invalid Process Number */

SVP Event Codes

#define SVP_EVENT_OFFEREX 0x01 /* Offer extended */

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

676

#define SVP_EVENT_OFFERAC 0x02 /* Offer accepted */
#define SVP_EVENT_SMAVAIL 0x04 /* Shared Memory Available */
#define SVP_EVENT_PRETRACT 0x08 /* Partner retracted */
#define SVP_EVENT_PSETACV 0x10 /* Partner set ACV */
#define SVP_EVENT_PSPEC 0x20 /* Partner specified */
#define SVP_EVENT_PREF 0x40 /* Partner referenced */
#define SVP_EVENT_FSPEC 0x80 /* Partner failed spec */
#define SVP_EVENT_FREF 0x100 /* Partner failed ref */
#define SVP_EVENT_SHUTDOWN 0x200 /* SVP shutdown */
#define SVP_EVENT_PRELEASE 0x400 /* Partner released var */

Function Prototypes

int _System svpp(struct prb *);
int _System svps(struct srb *);
int _System svpe(struct wrb *);
void _System svsleep(unsigned long);
unsigned long _System aplobjsize(char, char, unsigned long);
void * _System APV2Integer(void *);
void * _System Boolean2Integer(void *);
void * _System Matrix2VectorOfVectors(void *, int);
int _System Nested2Simple(void *);
int _System CompareCdrs(void *, void *);
char * _System GetEnvOpt(char *, int, char **);
char * _System GetEnvLib(int);
char * _System GetSvpOpt(char *);
char * _System GetLibraryStrings(void);
int _System msgs_to_qets(long, long, long *, long *);

Access Control Constants

/* sv state */
#define INITSTATE 0x03
#define PARTSPEC 0x05
#define USERSPEC 0x0A
/* sv coupling */
#define ISSHARED 0x02
#define ISOFFER 0x01
#define ISNTSHAR 0x00
/* sv acv */
#define ACVMYSET 0x08
#define ACVPARTSET 0x04
#define ACVMYUSE 0x02
#define ACVPARTUSE 0x01

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

677

Common Data Representation

Data passed from APL2 to an auxiliary processor, and data passed back to APL2, must be in a special format. If

you pass invalid data to APL2, unpredictable errors may occur.

Each APL2 object contains information that describes its data type, shape, size, and origin. This information is

called its header, and is located at the beginning of the object. The header consists of the following fields

(defined in C include file aplobj.h):

 typedef struct aplobj {
 unsigned long ptr ;
 unsigned long nb ;
 unsigned long nelm ;
 unsigned char type ;
 unsigned char rank ;
 unsigned char fill[2] ;
 unsigned long dim[1] ;
 } APLOBJ ;

ptr An identifier that indicates the system on which the object was built. The valid values are indicated by a

set of C #define's:
#define CDRid6000 0x40400000

indicates a 32-bit system without numeric byte reversal (AIX, Solaris).
#define CDRidOS2 0x00002020

indicates a 32-bit system with numeric byte reversal (OS/2, Linux, Windows).

Auxiliary processors should set the value of this field for objects they create. The constant CDRID

provides the correct value for the running system.

 #if defined(__OS2__) || defined(__WINDOWS__) || defined(WIN32) ||
defined(LINUX)
 #define CDRID 0x00002020
 #else
 #define CDRID 0x40400000
 #endif

nb The number of bytes in this APL2 object. If the datatype of this object is that of a nested array the byte

count must include this object and all of its subitems. (Note: this is different from the APL2 objects

passed to :link.FUNCTION routines.) The length of each object must be rounded to an even multiple

of 16.

nelm The number of elements in this APL2 object.

type APL2 object type:

0 (BOOLEAN) Boolean 1 bit per item
1 (INTEGER) Integer 4 bytes per item
2 (FLOAT) Real 8 bytes per item
3 (COMPLEX) Complex 16 bytes per item
4 (CHARACTER) ASCII Character 1 byte per item
5 (CHARLONG) Extended Character 4 bytes per item
6 (APV) Progression Vector 8 bytes
7 (NESTED) General Array 4 bytes per item

rank Rank of object (0-63).

fill Unused; should be set to 0.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

678

dim[] Length of each dimension (number of elements in dim = rank)

Immediately following the header for each object is the data associated with the object. The length of the data

for each type is shown above. If the object has more than one dimension, its elements are stored in row order (as

if the APL2 primitive Ravel had been applied to the variable).

Immediately following the data are enough fill bytes to make the length of the object an even multiple of 16.

Special Notes for General Arrays

1. General arrays (type 7) have a recursive structure. Their data section consists of one 4-byte word per

item, each containing the offset from the beginning of the general object to the corresponding subitem.

The subitems (each of which can also be a general array) follow in left-list order.

2. General arrays that are empty (nelm=0) must have a prototype definition, so their data section consists

of a single 4-byte offset field, which is the offset from the beginning of the general array to the

beginning of the object that contains the prototype.

Byte Reversal

On systems where numbers are stored in byte-reversed order, all numeric 4-byte header fields (nb, nelm, and

dim) and all numeric data are expected to be stored in the object in byte-reversed order. However, note that

Boolean data is stored as 1 bit per element, 8 bits per byte. It is not stored in byte-reversed order.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

679

The SVP Monitor Facility

Note: This section does not apply to Unix systems. On Unix systems, the SVP Monitor is a simple output-only

window for display of trace messages.

The APL2 SVP monitor facility provides a variety of services to aid in the understanding of shared variable

processor events.

Error messages and traces of those events are displayed in its window. It includes dialogs which provide

statistics of SVP usage, information about processors that are signed on to the SVP, and variables that are

shared by those processors. The dialogs can also be used to control tracing selectively and to send shutdown or

kill requests to processors. Menu items are also provided to start, stop, and issue commands to the APL2 port

server (used for cooperative processing).

There is never more than one monitor window active at a time, and it shows events for all processors on the

system that are using the SVP.

Note: You might want to start the SVP monitor manually before starting APL2 to avoid the overhead of SVP

initialization when invoking APL2. If you have TCP/IP installed, the SVP monitor must be started after TCP/IP

is fully initialized.

 Starting the SVP Monitor Facility

 Event Traces and Messages

 Menu Options

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

680

Starting the SVP Monitor Facility

The SVP Monitor is started automatically only if the invocation option -svptrace is specified when starting

a processor.

It can also be started explicitly by clicking on the SVP Monitor icon or by invoking apl2svpt.exe from an

operating system command window.

The syntax is:

 apl2svpt [optional parameters]

The following invocation options may be used:

-trace [on|off|log|both]
-svptrace [on|off|log|both]

Enables display and/or logging of shared variable events.

on sends trace messages to the SVP Monitor window.

log sends trace messages to a file.

both sends trace messages to the window and a file.

The default file name used is apl2svp.trc in the current directory. This can be changed by setting

environment variable APL2SVPLOG, or the SVPLOG keyword in the [Shared Variable Processor]

section of the apl2.ini file, to any valid operating system file name.

-trace and -svptrace are equivalent, except that -svptrace takes effect immediately and -

trace takes effect after the SVP Monitor is initialized.

-listen [on|off]
-svplisten [on|off]

Specifying on starts the APL2 port server and TCP/IP server for cooperative processing.

-listen and -svplisten are equivalent, except that -svplisten is processed immediately and

-listen is processed after the SVP Monitor is initialized.

Both of the options can also be specified in the apl2.ini configuration file, or by using environment

variables. In apl2.ini, add keyword definitions for SVPLISTEN and/or SVPTRACE in the [Invocation

Options] section. The environment variables correspond to the invocation options with the character "APLSVP"

prefix. For example:

 SET APLSVPTRACE=ON

is equivalent to starting apl2svpt with the -svptrace on option.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

681

Event Traces and Messages

In most cases, SVP requests generate two trace messages; one on entry to the service and one on exit. If the exit

return code is not 0, an additional message can be generated. During initialization trace messages are also

displayed which give information about the system environment, including the time and date that the SVP was

started and the amount of shared memory allocated for processor and variable control blocks.

When SVP tracing is in effect, trace messages are output to the SVP Monitor window.

When SVP logging is in effect, trace messages are written to a file. The log file is always cleared when it is

opened, so it shows trace information from only one instance of the trace window. The default file name used is

apl2svp.trc in the current directory. This can be changed by setting environment variable APL2SVPLOG,

or the SVPLOG keyword in the [Shared Variable Processor] section of the apl2.ini file, to any valid

operating system file name.

SVP trace messages are color coded as follows:

Blue SVP initialization

Black SVP trace

Red SVP error

Green APL2 port server

Light Cyan APL2 TCP/IP server

Dark Cyan Cross-system SVP trace messages

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

682

Menu Options

This section describes each of the menu options available on the SVP Monitor window.

 File

 Options

 Actions

 Info

 Help

File

The following choices appear in the File menu:

Printer Setup
Presents a dialog to select and set up the printer.

Print
Prints the SVP trace queue.

Exit
Closes the window and shuts down the SVP monitor facility.

Options

The Options menu allows you to control the display of SVP trace messages. The following choices appear in

the Options menu:

Trace on
Toggle for displaying SVP trace entries in the trace window.

Logging on

Toggle for writing SVP trace entries to a file. The default file name is apl2svp.trc in the current

directory. This can be changed by setting environment variable APL2SVPLOG, or the SVPLOG

keyword in the [Shared Variable Processor] section of the apl2.ini file, to any valid operating

system file name.

Timestamp on
Toggle for including timestamps with SVP trace entries.

Actions

The Actions menu allows you to affect the behavior of the Shared Variable Processor. The following choices

appear in the Actions menu:

Cross System
Starts and stops the APL2 port server and APL2 TCP/IP server. These programs must be started to use

cooperative processing with a remote APL2 system.

Port Server
Issues commands to the APL2 port server.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

683

Purge Queue
Empties the SVP trace queue. This does not affect the log file, if any.

A dialog appears while starting the cross system programs. The Port Server is used to identify processors by

their TCP/IP port number. You can select the TCP/IP port number that it uses for itself. The default is 31415.

Info

The Info menu contains choices that display information about processors using the SVP.

Statistics

The Statistics dialog displays the following information:

Maximum Processors
The maximum number of processors allowed to sign on to the SVP.

Processors signed on
The total number of processors currently signed on to the SVP.

Maximum Variables
The maximum number of variables that can be shared at one time.

Variables in use
The total number of variables currently shared or offered.

Maximum Shared Memory
The maximum size (in bytes) of APL2 shared memory.

Shared Memory in use
The total amount of memory (in bytes) currently in use by shared variables for data.

Maximum per Variable
The maximum size (in bytes) of one shared variable.

The Maximum values are controlled by the SVP parameter file. The APL2SVPPARMS environment variable,

or the SVPPARMS keyword value in the [Shared Variable Processor] section of the apl2.ini configuration

file, can be used to specify the name of this file. If the file name is not established using either of those methods,

the default is apl2svp.prm. For more information, see The SVP Parameter File.

Processors

The Processors dialog displays a list of processors that are signed on to the SVP. Dependent processors have

their parent processor and grandparent processor (if any) displayed in parentheses after the processor number.

For example:

 120 (1001)

This refers to processor 120, which is a child of processor 1001.

If a processor is selected in the list, the following buttons are activated:

Info
Displays information about the selected processor.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

684

Variables
Displays a dialog listing the variables currently shared with, offered to, or offered from the selected

processor.

Shutdown
Sends an SVP Shutdown signal to the selected processor. See SVP Programming Interface for more

information.

Kill
Removes all information about the processor from the SVP and sends a kill signal to the process

associated with the selected processor. This should only be attempted as a last resort. The SVP is not

always able to clean up properly after an auxiliary processor has been killed.

Help

Use the choices on the Help menu to display:

 An index of help topics

 General help about the SVP Monitor Facility

 Information about using Help

 A list and description of the keys you can use

 Product level information

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

685

The APL2 Runtime Library

The APL2 Runtime Library is a subset of the full APL2 system. It provides the environment necessary to run

applications written using the full APL2 system, but within the restrictions documented for the Runtime

Library. The APL2 Runtime Library is available for all platforms supported by APL2 Version 2.

The APL2 Runtime Library enables developers to freely distribute applications which do not require the

development facilities of the full APL2 system. Using the APL2 Runtime Library end-users can run APL2

applications without purchasing and installing the full APL2 product.

The APL2 Runtime Library can be used to run:

 Namespaces created using the external function CNS, using the -rns invocation option.

 APL2 statements and scripts, using the -input and -sm piped invocation options.

 Packages created by the APL2 Runtime Environment for Windows workspace packager, using the -

run invocation option.

The APL2 Runtime Library cannot be used to run applications which require interactive input through the

session manager or use library system commands (such as)LOAD) to manage the application code.

 Restrictions of the Runtime Library

 Testing your Application with the Runtime Interpreter

 Distributing the Runtime Library

 Installing the Runtime Library

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

686

Restrictions of the Runtime Library

The APL2 Runtime Library interpreter supports all the features of the full APL2 interpreter except for the

following restrictions:

 The -sm invocation option does not support the value on. The default value is off.

 Even if a CONTINUE workspace exists, it is not loaded.

 The)CONTINUE system command does not save a CONTINUE workspace.

 The following system commands are not supported:

)COPY)LIB)PIN

)DROP)LOAD)SAVE

)EDITOR)OUT)WSID

)IN)PCOPY

 When the -sm off invocation option is used, the interpreter terminates when the statements supplied

in the -input invocation option are exhausted and the AP 101 stack is empty.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

687

Testing your Application with the Runtime Interpreter

The APL2 Runtime Library need not be installed on a system where the full APL2 product is already installed.

You can test your application to make sure it will run properly with the APL2 Runtime Library, using the full

APL2 product. The runtime version of the interpreter is shipped with the full APL2 product, and sample

invocation command files are provided.

On Windows, sample file apl2runt.bat is provided in the \IBMAPL2W\samples directory. On Unix

systems, shell script apl2runt is provided in the /APL2/bin directory.

You will need to either modify the sample script to add the invocation parameters needed to start your

application, or pass the invocation parameters to the script on the command line. Without additional input from

invocation parameters, the runtime interpreter will terminate immediately.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

688

Distributing the Runtime Library

Once your application has been tested with the runtime interpreter, you will want distribute it to your users

together with the APL2 Runtime Library.

The APL2 Runtime Library may be redistributed without charge. The APL2 Runtime Library includes all the

components of the full APL2 product except the following:

 Full APL2 interpreter

 Session manager

 Object editor

 Dialog editor

 File editor

 Library Manager

 Public workspaces (Objects from public workspaces may be copied into your applications and saved

with them before distribution).

 Certain supplied external routines:

APL2CFG COMBROWSE EDITOR_2 IDIOMSG PCOPY WSCOMP

APL2LM COPY IDIOMS LIB PRINTWSG

 Online documentation

For each operating system platform supported, the /runtime subdirectory of the main APL2 installation

directory contains installation files for the APL2 Runtime Library. You must distribute the complete installation

file as provided. Individual components of APL2 may not be redistributed.

Your application containing the APL2 Runtime Library must be labeled as follows:

CONTAINS Runtime Modules of IBM Workstation APL2 for Multiplatforms Version 2.0

(c) Copyright IBM Corporation 1991-2008 All Rights Reserved

See the LICENSE INFORMATION section of the README file in the main APL2 directory for complete

terms and conditions of redistribution.

You may incorporate the installation of the APL2 Runtime Library into your application's installation process,

or you may require the user to install the APL2 Runtime Library as a pre-requisite to installing and running

your application. The next section describes the installation process for each platform.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

689

Installing the Runtime Library

AIX

The /runtime subdirectory of the main APL2 directory contains an installp image named
apl2ar20.installp

To install the APL2 Runtime Library on AIX:

1. Copy the .installp file to the end-user's machine in binary mode.

2. Use the installp command to install the product:

installp -ac -X -d APL2run.obj

3. Exit from root authority.

Use apl2run to invoke the APL2 Runtime Library interpreter. You will probably want to provide a cover

shell script that invokes apl2run with the appropriate parameters to start your application.

Linux

The /runtime subdirectory of the main APL2 directory contains an install script named apl2lr20 and a

tarred, gzipped install file named apl2lr20.tgz.

To install the APL2 Runtime Library on Linux:

1. Copy the install script and .tgz file to the end-user's machine in binary mode.

2. Change to the directory where the files have been copied.

3. Make the install script executable:

chmod 755 apl2lr20

4. Switch to root authority:

su root

5. Run the install:

./apl2lr20

6. Exit from root authority.

Use apl2run to invoke the APL2 Runtime Library interpreter. You will probably want to provide a cover

shell script that invokes apl2run with the appropriate parameters to start your application.

Sun Solaris

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

690

The /runtime subdirectory of the main APL2 directory contains an install script named apl2sr20 and a

tarred, compressed install file named apl2sr20.tarz.

To install the APL2 Runtime Library on Solaris:

1. Copy the install script and .tarz file to the end-user's machine in binary mode.

2. Change to the directory where the files have been copied.

3. Make the install script executable:

chmod 755 apl2sr20

4. Switch to root authority:

su root

5. Run the install:

./apl2sr20

6. Exit from root authority.

Use apl2run to invoke the APL2 Runtime Library interpreter. You will probably want to provide a cover

shell script that invokes apl2run with the appropriate parameters to start your application.

Windows

The \runtime subdirectory of the main APL2 directory contains a self-extracting executable named

apl2wr20.exe.

To install the APL2 Runtime Library on Windows:

1. Copy the self-extracting executable to the end-user's machine in binary.

2. Run apl2wr20.exe.

Use apl2run.exe to invoke the APL2 Runtime Library interpreter. You will probably want to provide a

custom icon or command file that invokes apl2run.exe with the appropriate parameters to start your

application.

Note: On some versions of Windows, if the installation process is performed from a userid that is a member of

the administrator group, you may be prompted to choose whether the installation will be for the current user or

all users.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

691

Using The X Window System Interface

Note: This section applies only to Unix systems.

AP144 is an interface between APL2 and the X Window System. It enables the full set of X Window System

Xlib calls and data structures to be used from the APL2 environment, and in so doing, enables APL2 to use a

true windowing environment. Several APL2 sample programs using the interface are provided in the DEMO144

workspace. One of these sample programs, the HelloWorld function, is explained in detail in The

HelloWorld Function

To use this tutorial, you should be able to read and write programs in APL2 and C, have a good general

knowledge of X Window System and be able to use the underlying operating system's facilities.

 Invoking X Window System Calls

 Deviations From Standard X Window System Call Syntax

 AP144 System Commands

 How To Use X Data Structures And Constants

 AP144 Structure Commands

 System Structures

 The HelloWorld Function

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

692

Invoking X Window System Calls

AP144 enables X Window System calls to be issued from within APL2 by associating the Xlib calls with

AP144 commands. These commands are defined in several command tables, along with other information

describing the command parameters and the actual C function to be executed.

The AP144 command interface:

1. Verifies the X Window System input parameters

2. Passes control to a designated X Window System call

3. Returns any output generated by this call

4. Returns extended return codes identifying any errors, if any occurred

The command interface includes some built-in system commands. These commands deal with the operation of

the interface itself, not with the X Window System environment that can be reached through the interface. The

names of these commands all start with a), in keeping with APL2.

Calling X Window System from APL2

X Window System is called from APL2 using the XWIN function supplied in the AP144 Workspace.

The following example of the XOpenDisplay call illustrates the close correspondence between an X Window

System call issued from C, and the same call issued from APL2. In C, the call might look like:

 dp = XOpenDisplay("");

In APL2, the same call is issued through AP144 as:

 dp ← XWIN 'XOpenDisplay' ''

The X Window System call name becomes the first parameter and everything else remains the same. The name

is case sensitive and must be given exactly as required.

If additional parameters are needed to complete the X Window System call (and most do), they are specified in

a vector, with the command name forming the first element in the vector. All parameters are mapped to either

numeric or character items. This mapping is done with the help of type codes provided for each call. Each call

has an associated set of input and output type codes that control the syntactic mapping of data between APL2

and X Window System. The type codes that are used by AP144 are listed in AP 144 Commands and Structures.

The)Syntax command lists the type codes for a specific command.)Cmds lists all commands as well as

their associated type codes:

 3 XWIN ')Syntax' 'XParseGeometry'
 0 Xlib XParseGeometry S IIIII

See AP144 System Commands for more on these two system commands.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

693

Results

A large proportion of the available X Window System calls generate results when they are executed. When

available, these results are passed back as an explicit result of calling the XWIN APL2 function. The X Window

System calls can produce results in two forms, explicit and implicit. Explicit X Window System results are

always passed back as the first parameter of the APL2 result. Any additional output parameters (parameters

specified in the X Window System documentation with a _return suffix) follow.

The parameter type codes are also used for the mapping of the result and output parameters. Note that one extra

level of indirection for the output types is required by the C language function syntax, but the interface

automatically handles this requirement.

If no result is returned by a given X Window System call, then XWIN does not return anything. If you try to

assign the (nonexistent) result of such a call to a variable, APL2 stops with an error:

 dp←XWIN 'XCloseDisplay' dp
VALUE ERROR
 dp←XWIN 'XCloseDisplay' dp
 ^

Each call to the command interface results in a return code being generated and passed back to the caller. A

non-zero return code is an indication that the command failed to execute for some reason.

If a non-zero return code is returned, and the error is found in the content of the parameter list, additional return

codes can be returned in the second return parameter. These parameter return codes relate one-to-one to the

parameters passed. The correctness of the first parameter (the command name) is indicated by the first

parameter code. These return codes help you to locate the source of the error.

The parameter return codes also extend into nested arrays to match the structure of the parameter list.

The list of all possible return codes can be found in AP 144 Return Codes.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

694

Deviations From Standard X Window System Call Syntax

One of the objectives of AP144 has been to provide an implementation of the X Window System Xlib in APL2

that remains as close to the C version as possible. However, some differences are inevitable due to the

differences between an interactive, interpreted environment such as APL2, and the compiled environment of C.

The parts of this section detail these differences.

Naming Conventions

The names of the implemented X Window System functions and structures are the same as found in the X

Window System Xlib. X Window System macros are implemented in their function form, that is, with a leading

X prefix. This is also true for the Is...Key group of macros. These macros do not have a function form

equivalent in the native X Window System, but are implemented in AP144 as though they did:

IsCursorKey is renamed XIsCursorKey

IsFunctionKey is renamed XIsFunctionKey

IsKeypadKey is renamed XIsKeypadKey

IsMiscFunctionKey is renamed XIsMiscFunctionKey

IsModifierKey is renamed XIsModifierKey

IsPFKey is renamed XIsPFKey

Character Strings

When a C function requires a character string as input or returns it on output, the content of the string is not

passed to the function, but rather a pointer to the string. The function can then access the content of the string

via the passed pointer. Another characteristic of C character strings is that they are null-terminated. That is, an

extra, null character is appended at the end of the string to indicate the end of, and thus the extent of, the string.

APL2, on the other hand, passes all data by value. Not only is the data content always present, the type, rank,

and dimensions are also always available to the program.

The AP144 interface performs the appropriate transformations between these two schemes. When a character

string is called for by an X Window System call, it should be given as a regular APL2 character vector. For

example:

 XWIN 'Put' 'XTextItem' h ('More text' 1 2 3)
 DISPLAY 3 XWIN 'Get' 'XTextItem' h
┌→────────────────────────┐
│ ┌→──────────────────┐ │
│ 0 │ ┌→────────┐ │ │
│ │ │MORE TEXT│ 1 2 3 │ │
│ │ └─────────┘ │ │
│ └∊──────────────────┘ │
└∊────────────────────────┘

Numeric or Character String (argv) Arrays

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

695

Arrays must be passed by value from APL2 on any X Window System call requiring such input, and values are

returned on output in the same way. This is analogous to the treatment of character strings described above.

AP144 generates the appropriate C array and substitute the pointer to this array on the call to X Window

System.

Character string array (argv) parameters must be given as an APL2 (nested) vector of strings. It is not accepted

in the form of an APL2 character matrix. The generated C construct is similar in structure to the familiar C

argv structure, that is, an array of string pointers, including an additional, final null pointer.

 xy← 4 2⍴0 0 10 0 10 10 0 0
 c ← CoordModeOrigin
 XWIN 'XDrawLines' dp w gc (,xy) (↑⍴xy) c
 XWIN 'XSetFontPath' dp (⊂'/usr/lpp/fonts/') 1

Specifying X Window System Input Parameters

AP144 maintains as close a fidelity to the X Window System call syntax as possible. One area where this may

seem out of place in the APL2 environment is on calls where strings or arrays are passed as input parameters.

These calls require the specification of the string or array length in addition to the data itself. Although it is

possible to determine the length of any APL2 array, the AP144 interface still requires that this information be

given explicitly on the call. This may be seen as a bad choice, but it does maintain consistency with the base X

Window System documentation. For example:

 t ← 'Some text to be shown'
 XWIN 'XDrawString' dp w gc x y t (⍴t)
 xy← 4 2⍴0 0 10 0 10 10 0 0
 c ← CoordModeOrigin
 XWIN 'XDrawLines' dp w gc (,xy) (↑⍴xy) c
 XWIN 'XSetFontPath' dp (⊂'/usr/lpp/fonts/') 1

Result and Output Parameters

The X Window System calls can produce two types of output to the calling program (in addition to their effect

on the windows displayed on the workstation). Some calls have explicit function results, others pass back

results in or via storage addresses provided as parameters to the call, and yet others combine the two

approaches. In the X Window System documentation, parameters that are used to return information usually

have a name that ends with a _return suffix.

APL2 functions do not have the capability of passing back results in predetermined storage locations (ignoring

for the moment using global variables to accomplish this). They do, however, have the possibility of returning

multiple values as part of their explicit return. We use this capability for those X Window System calls that

return multiple results.

If an X Window System call produces an explicit result, this result is the first element of the data returned to

APL2. Any results returned via storage addresses (if any) are appended to the explicit result. These result

parameters must not be specified as input to the X Window System call. They are generated automatically by

the AP144 interface.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

696

Note: The type codes of the parameters returned for a given X Window System call can be listed by using the

)Syntax call. The return type codes are the second element returned, following the input type codes. For

example:

 XWIN ')Syntax' 'XParseGeometry'
Xlib XParseGeometry S IIIII
 XWIN 'XParseGeometry' '10x20-30+40'
31 ╚30 40 10 20

Calls Using Event Structures

When structures are used in X Window System calls, the general rule is that they are passed or returned by

reference. It is up to the program to set up the structure instance before the call, or to import it after the call has

returned, using the AP144 structure support.

The calls that use any of the event-type structures are an exception to this general rule.

Events are always returned to APL2 by value, and as a result the value is immediately available for use. The

reason for this change is performance. In the X Window System itself, the XNextEvent call also specifies a

second parameter, a pointer to an XAnyEvent structure. XNextEvent fills in the structure fields, thereby making

the event values available to the calling program.

To follow the same strategy in AP144 would require three calls through the interface:

1. Call XNextEvent with a pointer to an XAnyEvent structure.

2. Retrieve the event type by using Get XAnyEvent. All structures have the first four fields in common, one

of which is the event type.

3. Find out which type of event it is. Use this information to retrieve the event fields by using the

appropriate event structure.

The calls covered by this are:

XCheckMaskEvent
XCheckTypedEvent
XCheckTypedWindowEvent
XCheckWindowEvent
XLookupKeysym
XMaskEvent

XNextEvent
XPeekEvent
XPutBackEvent
XRefreshKeyboardMapping
XSendEvent
XWindowEvent

For example:

 XWIN 'XNextEvent' dp
2 11 0 6949392 8388609 524395 0 1193985641 183 135
 554 756 1 17 1

Events are also used as input on a few X Window System calls. They can either be specified by value, for

example, in the same form as they are returned from X Window System, or they can be specified by a pointer to

an event structure that has been previously allocated.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

697

XGetEventBuffer

This call is not part of the standard X Window System Xlib set of calls, but is specific to AP144. It returns a

pointer to the event buffer that is used to hold all events being returned to APL2, before the event is being

translated into an APL2 array of values. It can be used on those calls that require an event pointer to be passed

as a parameter, as long as the buffer has not been modified. The buffer content is updated whenever a call is

made to a command that returns an event structure.

Structures Within Structures

Some structures contain sub-structures within their definition. XSizeHints is an example of such a structure:

 typedef struct {

 struct {
 int x; /* numerator */
 int y; /* denominator */
 } min_aspect, max_aspect;

 } XSizeHints;

In AP144, such substructures are fully expanded. Thus, in the case of XSizeHints, the structure fields are listed

as:

 3 XWIN 'GetFields' 'XSizeHints'
 0 long flags X

 int max_aspect.x I
 int max_aspect.y I
 int base_width I
 int base_height I
 int win_gravity I

Note: The APL2 function axGetFF uses the field names to generate APL2 variables by the same name. Since

periods (.) cannot be a part of a valid APL2 name, they are replaced by an overbar (¯). See AP144 Workspace

for more information on axGetFF.

Error Handling

The X Window System error handling calls XSetErrorHandler and XSetIOErrorHandler use a pointer to a C

function as their one and only parameter. When an error occurs, this C function gets control, rather than the

standard X Window System error handler.

It is not possible to mimic this behavior from APL2. It is not possible to set up an APL2 function that assumes

control when the error occurs. Instead, AP144 has defined an error handler of its own. This error handler is a bit

more lenient than the one provided by X Window System, and it enables the program or programmer to

continue beyond the point at which an error occurred.

The input parameter to each of the two X Window System calls has been replaced by a name parameter. The

valid names are:

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

698

Default The standard X Window System error handler

XErrorHandler The AP144 error handler

None The standard X Window System error handler (same as Default)

For example:

 p ← XWIN 'XSetErrorHandler' 'XErrorHandler'
 p ← XWIN 'XSetIOErrorHandler' 'Default'

The AP144 error handler is the initial one activated, when the interface is first activated.

Warning: AP144 is not notified when a user closes an AP144 window by some means other than issuing an

Xlib call through AP144. For instance, some window managers allow you to close a window by clicking a

button, or entering a special key sequence. Since AP144 commands typically include a pointer to the window, a

fatal error occurs when the Xlib subroutine tries to access a window that no longer exists.

X Window System Calls Requiring Special Changes In APL2

XFetchBuffer and XFetchBytes

Both of these functions return only the buffer content. The length of the buffer is not returned. The

content is returned by value, hence there is no need to explicitly free the space.

XGetClassHints

The status is returned in all cases. The class hints are returned by value, if present.

XGetKeyboardControl

The keyboard control parameters are returned by value.

XGetNormalHints

The status is returned in all cases. The hints are returned by value, if present.

XGetSizeHints

The status is returned in all cases. The hints are returned by value, if present.

XGetWindowAttributes

The status is returned in all cases. The attributes are returned by value, if present.

XGetWindowProperty

If the specific property does not exist, this function returns an empty string, else it returns the values.

XGetWMHints

The status is returned in all cases. The hints are returned by value, if present.

XGetZoomHints

The status is returned in all cases. The hints are returned by value, if present.

XLookupString

The event structure is the only input parameter from APL2. The call returns the count, the string buffer,

the key symbol, and a pointer to an XComposeStatus structure.

XMatchVisualInfo

The status is returned in all cases. The hints are returned by value, if present.

XQueryTree

Status, Root, Parent, Children, and NChildren are returned as explicit parameters if Status ≠ 0; else only

status is returned. The function frees up the Children array malloc space before returning.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

699

AP144 System Commands

AP144 contains some system commands and structures that help you to control and interrogate the interface

itself. The following describes these commands that can be used in the same way as the X Window System

calls.

)Cmds - List the available commands

Returns an array of command names available for use by AP144 with associated parameter requirements and

expected results. Separate three-column tables of structure names are returned for the specified environment, or

for all active environments if no name is given on the command line.

(rc cmds) ← 3 XWIN ')Cmds' [env]

[env] ...
An optional environment name. If this parameter is specified, only a single table is returned, listing the

commands defined within the given environment. If the parameter is not specified, then there is a table

of commands returned for each active environment.
rc

The operation return code.
cmds

Lists all commands available in the user command table. The list of commands is made up a three-

column matrix containing a row for each command available, with the rows made up of the command

name, parameter types, and expected return:

Command: The name of the call or structure

Input parms: The type codes of the required inputs

Output parms: The type codes of the output parameters

Example:
3 XWIN ')Cmds' 'Structs'

Note: The absence of commands in either user or system command tables may indicate that no commands are

available, or that no list command is available for the table.

)Env Get - Get the current or default list of environments

)Env Get gets the current environment list, or gets a list of all available environments.

All commands and structures available through AP144 reside in tables called environment tables, or just

environments for short. An environment is typically a group of related commands and structures. As an

example, all the X Window System calls are grouped into a single environment called Xlib. When searching for

a command, the environment tables are searched in the order given by the environment list. This environment

list can be manipulated by the)Env Get and)Env Set commands.

(rc env_list) ← 3 XWIN ')Env' 'Get' ['Default']

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

700

rc
The operation return code.

env_list
If 'Default' is specified, then the default list of environments is returned. If it is not specified, the

currently active environment list (as set by)Env Set) is returned.

Examples:
3 XWIN ')Env' 'Get'
3 XWIN ')Env' 'Get' 'Default'

)Env Set - Change the list of environments

This command allows you to change the list of environments. You can rearrange the order in which the

environments appear in the list, leave out some environments entirely, or add ones previously not active. Using

the command completely replaces the current list; thus if you want to retain any or all of the current

environments, you need to specify them in the command.

rc ← 3 XWIN ')Env' 'Set' env_list

env ...
The new list of environments to be used, in the order given. Only valid environment names will be

accepted; invalid names are just ignored. The present list is left intact if no valid names are specified.
rc

The operation return code.

Example:
3 XWIN ')Env' 'Set' 'System'

Note: Commands can be accessed even though the environment they are included in are not part of the current

environment list. To do so you must specify the environment name as part of the command itself, separated

from the command name by a period (.). As an example, 'System.)Cmds' can be used to list all available

commands, even though System is not currently part of the environment list.

)RC - List a return code message

Return the message associated with a single return code.

(rc erc) ← 3 XWIN ')RC' rc_no
(rc_no name msg) ← erc

rc_no
The return code number whose message you want retrieved.

rc
The operation return code.

name
An internal name used to identify the message within AP144.

msg
The message relating to that return code. The message returned is the C character string used during

parameter verification tracing, so it may contain C printf() substitution variables.

Example:
3 XWIN ')RC' 24

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

701

)Structs - List the available structures

Return an array of structures available for use by AP144. Separate one-column tables of structure names are

returned for the specified environment, or for all active environments if no name is given.

(rc structs) ← 3 XWIN ')Structs' [env]

[env]
An optional environment name. If this parameter is specified, only a single table is returned, listing the

structures defined within the given environment. If the parameter is not specified, a table of structures is

returned for each active environment.
rc

The operation return code.
structs

If [env] is set, a single, one-column table listing all the structures defined within this environment.

This may be an empty table.

If [env] is not set, then structs contains an n-by-1 matrix of tables, with one table for each active

environment. Each of these tables lists the structures defined within the matching environment.

Example:
3 XWIN ')Structs' 'Structs'

)Syntax - List the syntax of a specific command

Return the input and output type codes for a named command. .

(rc syntax) ← 3 XWIN ')Syntax' cmd
(env cmd intypes outtypes) ← syntax

cmd
Name of the command.

rc
The operation return code.

env
Environment in which the command is defined.

intypes
A vector of type codes used to validate input parameters to the specific command.

outtypes
A vector of type codes specifying the function return types.

If the first element is specified, it always refers to the explicit return from the C function. If no explicit

return is available, the type code is given as a _, and no return from the (missing) explicit return is

passed back to APL2. Subsequent type codes refer to the output parameters.

Example:
3 XWIN ')Syntax' 'XParseGeometry'

)Version - List the AP144 version identifier

Return a character string identifying the currently implemented version of AP144.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

702

(rc version) ← 3 XWIN ')Version'

version
A character string identifying the installed version of AP144.

rc
The operation return code.

Example:
3 XWIN ')Version'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

703

How To Use X Data Structures And Constants

X defines a large number of C data structures and constants for its own use. These structures and constants are

also available for use by APL2 via the AP144 interface.

Each defined C data structure is mapped to an APL2 vector. The vector may be simple or nested, depending on

the underlying C definition. When in APL2, the array can be processed in normal APL2 fashion. For each

structure defined to the interface there is a corresponding command that lets you create, change, and delete

structure instances of the given type. Each of these commands use a common set of subcommands that is

described later in this chapter. The instances are stored in space controlled by C and thus directly available to X.

To be processed by APL2 the instances must be imported or exported to and from APL2. The subcommands

perform this task, as well as the basic chores of allocating space for a new structure instance, getting data into

and out of it, and freeing up the space when it is no longer needed.

The structure field names and types are also available to APL2 via the interface. This is useful when using the

data structures from within APL2, in that it associates each element in the vector with its related field name in

C.

Constants defined in the C header files are also available in the same way. An APL2 utility function is provided

to load these constants into the active workspace. The constants are grouped with the structures they relate to, so

only relevant constants are loaded.

Introductory Examples

The structure commands are illustrated by way of examples. The examples use the XTextItem structure found in

the X Window System Xlib.h file. This structure is defined as follows in the X Window System:

 typedef struct {
 char *chars; /* Pointer to string */
 int nchars; /* Number of characters */
 int delta; /* Delta between strings */
 Font font; /* Font to be used, None don't change */
 } XTextItem;

The first set of commands performs some very basic manipulation on a simple structure:

⍝ Create a new XTextItem instance
 s ← XWIN 'New' 'XTextItem'
 s
5897984
⍝ Initially it is empty
 XWIN 'Get' 'XTextItem' s
 0 0 0
⍝ The first item is hard to spot, so ...
 DISPLAY 3 XWIN 'Get' 'XTextItem' s
┌→────────────────┐
│ ┌→──────────┐ │
│ 0 │ ┌⊖┐ │ │
│ │ │ │ 0 0 0 │ │
│ │ └─┘ │ │
│ └∊──────────┘ │
└∊────────────────┘

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

704

⍝ Now fill it with data
 XWIN 'Put' 'XTextItem' s ('Simple' 1 2 3)
⍝ Verify that the data made it in
 XWIN 'Get' 'XTextItem' s
 Simple 1 2 3

At this point, the data structure is ready and available for use from any X call requiring a pointer to a structure

as an input parameter:

⍝ Data can also be reset
 XWIN 'Clear' 'XTextItem' s
⍝ ... as can be seen here
 XWIN 'Get' 'XTextItem' s
 0 0 0
⍝ Remember to free when all done
 XWIN 'SFree' 'XTextItem' s

XDrawText is one of the X Window System calls that use the XTextItem structure. Ignoring for a second the

preceding calls needed to set up the proper display, window and graphics context variables, a call to XDrawText

using the above structure (before it was freed) looks like:

 XWIN 'XDrawText' dp w gc s

Continuing

⍝ Create and Put can be combined
 s ← XWIN 'NewPut' 'XTextItem' ('New & Put' 4 5 6)
⍝ ... as can be seen here
 XWIN 'Get' 'XTextItem' s
 New & Put 4 5 6
⍝ Again, remember to free when done
 XWIN 'SFree' 'XTextItem' s

X often refers to multiple instances of a given structure via a single pointer. The structures are stored adjacent to

one another. AP144 uses the MNew, MGet and MFree commands to support these constructs; essentially they

are multistructure versions of the New, Get, Put, and Free calls.

⍝ Multiple instances are also possible
 s ← XWIN 'MNew' 'XTextItem' 3
⍝ Fill the first instance like this
 XWIN 'Put' 'XTextItem' s ('First' 1 11 111)
⍝ ... or like this
 XWIN 'MPut' 'XTextItem' s 0 ('First' 1 11 111)
⍝ Store the second like this
 XWIN 'MPut' 'XTextItem' s 1 ('Second' 1 11 111)
⍝ Or both at once
 aaa ← ('aaa' 1 1 1)
 bbb ← ('bbb' 2 2 2)
 XWIN 'MPut' 'XTextItem' s 0 aaa bbb
⍝ Get them all at once
 XWIN 'MGet' 'XTextItem' s 0 3
 aaa 1 1 1 bbb 2 2 2 0 0 0
⍝ Clear them
 XWIN 'MClear' 'XTextItem' s 0 3
⍝ MFree frees all in one call
 XWIN 'MFree' 'XTextItem' s 3

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

705

The mapping of data from APL2 to the X Window System or back is controlled by a definition stored internally

in AP144. This definition ensures that the needed validations and proper conversions take place before the data

is actually copied from one environment to the other. The information in this definition is also directly available

to the user of the AP144 interface:

⍝ Get all XTextItem fields
 XWIN 'GetFields' 'XTextItem'
 char *chars S
 int nchars I
 int delta I
 Font font I
⍝ ... and constants
⍝ (but XTextItem doesn't have any defined)
 XWIN 'GetConst' 'XTextItem'
⍝ ... so get the constants in XSizeHints
⍝ (another X structure) instead
 XWIN 'GetConst' 'XSizeHints'
 USPosition X 1
 USSize X 2
 PPosition X 4
 PSize X 8
 PMinSize X 16
 PMaxSize X 32
 PResizeInc X 64
 PAspect X 128
 PBaseSize X 256
 PWinGravity X 512
 PAllHints X 1020
⍝ An XTextItem instance requires this many bytes:
 XWIN 'GetSize' 'XTextItem'
16

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

706

AP144 Structure Commands

All the defined structure commands use the same format:

(rc [result]) ← 3 XWIN command struct [parms]

or,

[result] ← XWIN command struct [parms]

struct
The name of the structure to be used.

command
The name of the action to be performed. These are all defined below.

Some of the commands require that one or more additional parameters be specified, as indicated by the

[parms] items. Two common parameters are:

handle
The handle (reference) to the structure instance

values
The structure instance values as a nested array

If the C interface function is used , then a return code is returned in all cases:

rc
The operation return code

Clear - Clear a structure instance

Clear is used to reset a structure instance to the state of a new instance. Numeric fields are set to 0, and

character strings and other pointer fields to NULL. Any space pointed to by the character string fields are

assumed to have been malloc'd and are freed by the call.

rc ← 3 XWIN 'Clear' struct handle

struct
The name of a command referring to an implemented structure.

handle
Handle to the structure instance to be used.

rc
The operation return code.

Example:
3 XWIN 'Clear' 'XSizeHints' 3524424

Get - Build an APL2 vector from a C structure instance

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

707

Get extracts the data previously stored in a structure instance and returns it to APL2 in the form of a vector of

elements. The structure instance is identified by its handle.

(rc array) ← 3 XWIN 'Get' struct handle

struct
The name of a command referring to an implemented structure.

handle
Handle to the structure instance to be used.

rc
The operation return code.

array
A vector of elements representing each field in the referenced structure. The type of each element is

determined by the field type as defined in the structure definition.

Example:
3 XWIN 'Get' 'XSizeHints' 3524424

GetConst - Get all constants belonging to a particular structure

Retrieve a list of all the constants associated with a given structure. These constants are defined at the same time

as the actual structure, and tend to contain C's #define constants used by the structure, although there is no

requirement that this be the case.

(rc const) ← 3 XWIN 'GetConst' struct

struct
The name of a command referring to an implemented structure.

rc
The operation return code.

const
An n-by-3 matrix, with each row listing a defined constant in the structure. The first column in the

matrix contains the name of the constant, almost invariably the same name as used in a C #define

statement. The second column returns the constant type, again using the same type codes as used for

parameter verification. The third column contains the value of the constant.

Example:
3 XWIN 'GetConst' 'XSizeHints'

GetFields - Get all fields of a particular structure

Get the list of a structure's field definitions and types.

(rc fields) ← 3 XWIN 'GetFields' struct

struct
The name of a command referring to an implemented structure.

rc
The operation return code.

fields

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

708

An n-by-2 matrix, with each row listing a defined field in the structure. The first column contains the

field name, and the second column the field type. The field type uses the same parameter type codes that

were used to describe the command parameters.

Example:
3 XWIN 'GetFields' 'XSizeHints'

GetSize - Get the size of a structure instance when allocated

Get the space needed (in bytes) to store an instance of a structure. The space needed comes out of the pool of

space managed by the C environment.

(rc size) ← 3 XWIN 'GetSize' struct

struct
The name of a command referring to an implemented structure.

rc
The operation return code.

size
The number of bytes needed to store an instance.

Example:
3 XWIN 'GetSize' 'XSizeHints'

MClear - Clear a number of consecutive structure instances

MClear resets a number of structure instances that are stored in consecutive storage locations. The structure

instances are identified by the overall handle, the starting offset and the number of structures to be cleared.

rc ← 3 XWIN 'MClear' struct handle start count

struct
The name of a command referring to an implemented structure.

handle
Handle to the structure instance to be used.

start
The index (in origin 0) of the first structure to be cleared.

count
The number of structure instances to be cleared.

rc
The operation return code.

Example:
3 XWIN 'MClear' 'XTextItem' 5897984 0 2

MFree - Free multiple structure instances at once

MFree is used to free the storage space occupied by multiple consecutive structure instances, when none of

them are no longer needed. It is the responsibility of the user to determine when an instance is no longer needed,

and to call the MFree subcommand to make the space available for other use.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

709

rc ← 3 XWIN 'MFree' struct handle count

struct
The name of a command referring to an implemented structure.

handle
Handle to the structure instance to be used.

count
The number of structure instances stored in consecutive storage areas.

rc
The operation return code.

Example:
3 XWIN 'MFree' 'XTextItem' 5897984 2

MGet - Build an APL2 nested array from multiple C structure instances

MGet extracts the data previously stored in one or more structure instances stored consecutively and returns it

to APL2 in the form of a vector of structures, where each structure is a vector of elements. The structure

instances are identified by the overall handle, the starting offset and the number of structures to be returned.

(rc vals) ← 3 XWIN 'MGet' struct handle start count

struct
The name of a command referring to an implemented structure.

handle
Handle to the structure instance to be used.

start
The index (in origin 0) of the first structure to be returned.

count
The number of structure instances to be returned.

rc
The operation return code.

vals
A vector of structure instances. Each structure is a vector itself, with its elements representing the fields

in the referenced structure. The type of each element is determined by the field type as defined in the

structure definition.

Example:
3 XWIN 'MGet' 'XTextItem' 5897984 0 2

MNew - Create multiple new abutting structure instances

Create new instances of a particular structure, allocating its space from C's free-space pool. The call returns a

handle to the new instances of the structure. This handle must be used on all subsequent calls to the structure, as

it uniquely identifies the particular instance.

This mimics declaring a structure in C. In both cases some amount of storage is set aside to be used by an

instance of the structure.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

710

(rc handle) ← 3 XWIN 'MNew' struct count

struct
The name of a command referring to an implemented structure.

count
The number of structure instances to be allocated. The structures are stored in consecutive storage areas.

rc
The operation return code.

handle
The structure instance handle that must be used in all future reference to the structure instance. It

uniquely identifies the new instances. Only the handle to the first structure is returned. The subsequent

instances can be accessed by using the MClear, MFree, MGet and MPut commands.

Example:
3 XWIN 'MNew' 'XTextItem' 2

Note: The instances created with MNew can only be freed as a block. Use MFree to free all at once.

MPut - Fill multiple structure instances with data

Fill multiple structure instances with data passed from APL2. The data is stored in structure instances assumed

to be stored in consecutive storage locations. The initial storage location is identified by a handle and an offset

count.

rc ← 3 XWIN 'MPut' struct handle start array ...

struct
The name of a command referring to an implemented structure.

handle
Handle to the structure instance to be used.

start
The offset count of the first structure instance to be used to store data in.

array
The data to be stored in the structure. The data must be specified in form of a vector of elements. Each

data element is verified to be of a correct type for that field before being stored in the structure.

Multiple value arrays can be specified. They are stored in consecutive elements, starting at the start

element. It is the caller's responsibility to ensure that the indices remain within the allocated range.

rc
The operation return code.

Example:
3 XWIN 'MPut' 'XTextItem' 5897984 0

New - Create a new structure instance

Create a new instance of a particular structure, allocating its space from C's free-space pool. The call returns a

handle to this new instance of the structure. This handle must be used on all subsequent calls to the structure, as

it uniquely identifies the particular instance.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

711

This mimics declaring a structure in C. In both cases some amount of storage is set aside to be used by an

instance of the structure.

(rc handle) ← 3 XWIN 'New' struct

struct
The name of a command referring to an implemented structure.

rc
The operation return code.

handle
The structure instance handle that must be used in all future reference to the structure instance. It

uniquely identifies the new instance of the structure.

Example:
3 XWIN 'New' 'XSizeHints'

NewPut - Create a new structure instance and fill it with data

Create a new instance of a particular structure, allocating its space from C's free-space pool. Then initialize the

structure with data passed on the call. The call returns a handle to the new instance. This handle must be used

on all subsequent calls to the structure, as it uniquely identifies the particular instance.

(rc handle) ← 3 XWIN 'NewPut' struct values

struct
The name of a command referring to an implemented structure.

values
The data to be stored in the structure. The data must be specified in form of a vector of elements. Each

data element is verified to be of a correct type for that field before being stored in the structure.
rc

The operation return code.
handle

The structure instance handle that must be used in all future reference to the structure instance. It

uniquely identifies the new instance of the structure.

Example:
3 XWIN 'NewPut' 'XSizeHints' (⍳15)

Put - Copy an APL2 nested array to a C structure instance

Replace all data in structure with the new set of data. The data must be specified in the form of a vector. Each

element in the vector is verified to have a type appropriate to that structure field. The data is saved in the

structure if they all verify correctly, and the normal command return code indicates that this has happened:

rc ← 3 XWIN 'Put' struct handle array

struct
The name of a command referring to an implemented structure.

handle

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

712

Handle to the structure instance to be used.
array

The data to be stored in the structure. The data must be specified in form of a vector of elements. Each

data element is verified to be of a correct type for that field before being stored in the structure.
rc

The operation return code.

Example:
3 XWIN 'Put' 'XSizeHints' 3524424 (⍳15)

SFree - Free a structure instance

SFree is used to free the storage space occupied by the structure instance, when it is no longer needed. It is the

responsibility of the user to determine when an instance is no longer needed, and to call the SFree command to

make the space available for other use. (The name of the command is SFree rather than the expected Free. This

is due to free being used as a counterpart to malloc in keeping with normal C conventions.

rc ← 3 XWIN 'SFree' struct handle

struct
The name of a command referring to an implemented structure.

handle
Handle to the structure instance to be used.

rc
The operation return code.

Example:
3 XWIN 'SFree' 'XSizeHints' 3524424

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

713

System Structures

A small number of system structures have been defined. Each of these is available independently of the X

Window System, although they can also be usefully used in conjunction with the X Window System. They all

define single-element data structures. As an example, I defines the following C data structure:

 struct {
 long I;
 } I;

These structures can be used to process arrays returned as a pointer using the Get or MGet structure commands:

C1 One-byte character

B8 One-byte integer (uchar)

I,I4 Four-byte integer (long or ulong)

I2 Two-byte integer (short or ushort)

P Four-byte pointer (void *)

S Four-byte character string pointer (char *)

X,X4 Four-byte integer (long or ulong)

X2 Two-byte integer (short or ushort)

E8 Eight-byte floating point

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

714

The HelloWorld Function

The HelloWorld function included in the DEMO144 workspace demonstrates two fundamental concepts of

windows-based systems: manipulation of the window and responding to user-generated events. As such, it

serves as an excellent vehicle to introduce these concepts. The following text describes the HelloWorld

function section-by-section and explains the X Window System calls used:

Initialization

[0] HelloWorld;⎕IO;dp;w;gc;s;e;k;rw;bp;wp;m;hello;hi
 ;done;None;hp;hints;rc;nl;x
[1] ⍝ Sample X program, based on helloworld.c from
[2] ⍝ Oliver Jones:
[3] ⍝ Introduction to the X Window system
[4] ⍝ Prentice-Hall, 1989; ISBN 0-13-499997-4
[5] ⎕IO←0
[6]
[7] ⍝ Define some constant text-strings
[8] hello←'Hello, World.'
[9] ⍝ The exclamation point makes hi ugly:
[10] hi←'Hi',('A'=⎕AF 65)⊃⎕AF 90 33
[11]

All that happens in this section is the setting up of the text strings that are shown in the window later on, and

definition of some local identifiers.

Note that the exclamation point (after 'Hi') is defined so that a suitable character is given in both mainframe

and workstation environments.

Connect to X Window System

[12] ⍝ Initialization
[13] →(0=dp←XWIN 'XOpenDisplay' '')↓lopen
[14] ⎕←'XOpenDisplay failed ... HelloWorld aborted'
[15] →lexit
[16] lopen:
[17]

The first call to the X Window System is to open a connection to the display. The call results in a handle or

magic number that are used to identify the connection in all subsequent X Window System call requests. The

handle is saved in the dp variable.

 All X Window System calls pass through the XWIN function. The first parameter to this function is

always the name of the X Window System call.

 If the X Window System call requires parameters to be specified, these are given following the name of

the call. The XOpenDisplay call has one parameter: the name of the display to be used. This is given as

an APL2 character string. (The default display is used, because we have specified an empty string.)

 Character strings are passed (and returned) by value. AP144 converts these parameters to the C char *

pointers that X Window System ultimately requires. AP144 also handles null-termination of the

character strings.

 All output from invoking an X Window System call is returned as an explicit result of XWIN.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

715

 The HelloWorld function performs minimal error checking. This is obviously undesirable for

programs designed for a production environment.

Get More Information

[18] ⍝ Default pixel values
[19] s←XWIN 'XDefaultScreen' dp
[20] bp←XWIN 'XBlackPixel' dp s
[21] wp←XWIN 'XWhitePixel' dp s
[22]

Once the connection to the display is established, X Window System can provide the calling program with

various items of information. Here we retrieve the number designating the default screen and the pixel values

for black and white.

 All input and output parameters on these three calls are integers. They are passed to (and returned from)

the X Window System by value.

 AP144 handles any required conversion between Boolean and integer data types.

Using X Constants

[23] ⍝ Define an X constant
[24] None←0
[25]
[26] ⍝ Prepare to set window position and size
[27] (rc nl)←'H¯' axGetFF 'XSizeHints'
[28] m←+/PPosition PSize
[29]

X Window System defines a large number of named constants in its C header files. These constants should also

be available to APL2. However, there are too many constants defined to keep them all in the workspace.

(Although technically feasible, it would define so many symbols in the workspace that it would obscure the real

application variables.

The simplest solution to this problem is to specify these constants by value rather than by name. However, by so

doing, we lose a lot of the information associated with the constant, and we increase any future maintenance

effort.

Another simple solution is to define the required constants as APL2 variables, and then to use these variables

whenever the constant is needed. The variables can either be defined as global variables, or as local variables

within the applicable functions, as is done with None. This is not a recommended solution, though, as it relies

on the constants remaining unchanged. (None is used further down in the function, in the call to

XSetStandardProperties.)

A better way is to use the support for constants built into AP144. AP144 groups the constants by categories.

Each group can be brought into the workspace independently of other groups, ensuring that the latest values are

used. The axGetFF function loads a named group of constants and establishes them as APL2 variables in the

workspace. PPosition and PSize are examples of two such constants.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

716

 axGetFF returns a list of names of constants established in the workspace. Use the list later on to clear

away the variables when they are no longer needed.

 The name of the group of constants is specified as the right argument to axGetFF. This name is the

name of an X Window System data structure. This topic is discussed in additional detail below.

 PPosition and PSize each contain 32 individual bits, although passed to APL2 as four-byte

integers. The simple addition works here because their bits are orthogonal. In general this cannot be

assumed to be the case, and the following expression would be better:

 m←2⊥∨/(32⍴2)⊤PPosition PSize

Creating a New Structure Instance

[30] ⍝ Build an XSizeHints structure instance
[31] hp←XWIN 'New' 'XSizeHints'

AP144 provides extensive support for X Window System data structures. A number of these commands exist to

help you manipulate the X Window System data structures from APL2. The command is specified as the first

parameter, and the structure name as the second. Additional parameters are often required, and follow the

structure name on the call.

In this case, New allocates space for a new instance of the XSizeHints structure and returns the address of this

instance to APL2. The structure instances are stored in C free storage space (using calls to the C malloc()

routine).

Importing a Structure Into APL2

[32] hints←XWIN 'Get' 'XSizeHints' hp

To be used from within the APL2 workspace, the structure must be imported into the workspace using the Get

command. This command copies the values of the structure into an APL2 vector. Each field in the structure is

mapped to an element in the vector in the same order as in the X Window System structure definition. AP144

handles the appropriate data conversions when copying the data.

Changing The Values in a Structure (Within APL)

[33] hints[H¯flags H¯x H¯y]←m 200 300
[34] hints[H¯width H¯height]←350 250

Once copied into the workspace, the structure instances can be used like any regular APL2 array. Here five of

the fields are updated.

The indexes of the elements to be changed are given by constant variables prefixed by H¯. These constants were

generated by the axGetFF function when the XSizeHints structure definition was loaded in line 25. To recall:

[27] (rc nl)←'H¯' axGetFF 'XSizeHints'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

717

The axGetFF function establishes a number of global variables in the workspace. These variables can be

divided into two separate groups:

Field indexes:

These variables are used to indicate the location of a given field in a structure. They provide a rough

equivalence between the C structure member operation hints.mask and the APL2 version

hints[H¯mask].

Since structure field names all tend to be very common identifiers, for example, x, name, or size, it is

possible (and advisable) to specify a prefix that is applied to each field name before it is established in

APL2. This avoids name clashes between the various structure's field-name index variables. H¯ is the

prefix used in the example given here.

Constants:

We met these earlier on. They are combined with the structure definitions because they are often used in

conjunction with them. The valid values for a given field in a structure are commonly given by

constants, but they can be used in other ways. Names of constants are never changed; the prefix does not

apply to constants.

Updating a Structure Instance (Within C)

[35] XWIN 'Put' 'XSizeHints' hp hints
[36]

Changing the values of a structure variable only has effect within APL2. The Put command is necessary to

make the updated structure values available to the X Window System calls.

The Put command expects exactly three parameters: the name of the structure ('XSizeHints'), a pointer to

the storage location containing an instance of the structure (hp), and the data values (hints) to be inserted into

the structure instance. The structure data values must be specified as a single nested array in the fourth element

of the command vector (the vector passed to XWIN).

Creating a Simple X Window System Window

[37] ⍝ Window creation
[38] rw←XWIN 'XDefaultRootWindow' dp
[39] x←hints[⎕IO+1 2 3 4],5 bp wp
[40] w←XWIN 'XCreateSimpleWindow' dp rw,x

We are now in a position to create our application window that is accomplished with these two calls.

The hints values can be used like any other APL2 variable. Here four of them are used to specify the window

start and extent.

Using The Structure Pointer

[41] x←hello hello None ('A' 'test') 2 hp
[42] XWIN 'XSetStandardProperties' dp w,x

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

718

The XSizeHints structure created is now put to use. As the name of the call implies, it defines defaults for a

number of the window attributes.

 XSetStandardProperties uses an argv parameter. This type of parameter is specified in APL2 as a vector

of character vectors. (argv and argc are well-known C variable types. X Window System uses them in

several of its calls.

 The argv parameter is followed by an argc parameter. The information content of this parameter is, in a

sense, redundant in APL2, since the information can be determined by examining the argv variable. One

of the general design rules in building the AP144 interface has been to maintain a fidelity to the standard

X Window System call syntax, even though at times, it means specifying more information in the call

than is strictly necessary.

Freeing The Structure After Use

[43] XWIN 'SFree' 'XSizeHints' hp
[44]

It is important that the structure is freed after it is no longer needed. If this is not done, it continues to occupy

space in storage, and can lead to storage fragmentation.

The name SFree is used in place of Free, so as not to conflict with the free associated with the C malloc

function.

Creating a Graphics Context

[45] ⍝ Graphics Context creation and initialization
[46] gc←XWIN 'XCreateGC' dp w 0 0
[47] XWIN 'XSetBackground' dp gc bp
[48] XWIN 'XSetForeground' dp gc wp
[49]

A graphics context is the X Window System version of a magic paintbrush. It is used on any drawing calls to

define colors, patterns, and other attributes. We define one here, so we can use it later to write some text to the

window.

Show The Window Outline

[50] ⍝ Window mapping
[51] XWIN 'XMapRaised' dp w
[52]

We are now ready to show the window to the user. This call does just that, but note that we have yet to write

any text into it, nor are we quite ready to accept input from the user.

What Events Are We Interested In?

[53] ⍝ Input event selection
[54] m←'ButtonPressMask' 'KeyPressMask'
[55] m←m,⊂'ExposureMask'

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

719

[56] (rc m)←m axGetFF1 'XEvent'
[57] XWIN 'XSelectInput' dp w(+/m)
[58] ep←XWIN 'XGetEventBuffer'
[59]

XSelectInput tells the X Window System what events we are interested in being notified about. The last

parameter of this call is a bit-mask. The various constants defining the individual bits are defined in the XEvent

structure. We could now use the axGetFF function to load in all fields and constants, and then use the

variables thus established. However, we choose to take a slightly different route:

The axGetFF1 function is used in place of axGetFF. Instead of establishing variables based on the names of

the fields and constants, it returns the values of a set of named items. Because we are only interested in three

specific constants, we use axGetFF1 to retrieve their values.

 The values retrieved represent individual bits. It is therefore possible to simply add them instead of

performing a bit-wise or.

 Bit-flags are returned in packed form, as integers.

The XGetEventBuffer call establishes a pointer to the buffer used to hold events. The same buffer is used for all

events, hence we only need to make this call once per session.

Get The Event Codes

[60] ⍝ Get some more constants
[61] m←'KeyPress' 'ButtonPress'
[62] m←m,'Expose' 'MappingNotify'
[63] (rc m)←m axGetFF1 'XEvent'
[64] ⍝ ... and some event structure layouts
[65] nl←nl,1⊃'K_' axGetFF 'XKeyEvent'
[66] nl←nl,1⊃'B_' axGetFF 'XButtonEvent'
[67] nl←nl,1⊃'E_' axGetFF 'XExposeEvent'
[68]

X Window System notifies us of the user's actions by returning events to us when requested. The type of events

is limited to ones enabled by the XSelectInput call just executed. One of the fields in the returned event specifies

the type of event that is being returned. These event types are also defined in the XEvent structure. To be able to

distinguish between the returned events by type, a vector has been set up with the expected types by using the

axGetFF1 function.

The field definition variables describing the event structures that might be received are also loaded. These help

access the correct fields in the structures.

The Event Loop

[69] ⍝ Main event-reading loop
[70] done←0
[71] levent:→(done=0)↓lend
[72]

We now sit in an event loop, responding to the incoming events as they come in from the display, until done.

XNextEvent

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

720

[73] ⍝ Read and process the next event
[74] x←lKeyPress lButtonPress lExpose lMappingNotify
[75] →(m=K_type⊃e←XWIN 'XNextEvent' dp)/x
[76]

XNextEvent returns the next event in the queue to us. Once the event has been returned, the event type is

compared with the mask defined earlier to set up the proper branch. Effectively this serves as a case-on-event

statement.

The event is returned as a vector of structure fields, in much the same way as the structure Get call would return

a structure instance.

This differs from the way that the XNextEvent call is handled in X Window System. In the native X Window

System, the XNextEvent call also specifies a second parameter, a pointer to an XAnyEvent structure. XNextEvent

fills in the structure fields, thereby making the event values available to the calling program. This is an example

of how AP144 differs from native X Window System by automatically handling the call's output parameters.

Handling The Expose Events

[77] lExpose: ⍝ Repaint window on expose events
[78] →e[E_count]↑levent ⍝ Count > 0 ?
[79] x←e[E_display E_window],gc,50 50
[80] XWIN(⊂'XDrawImageString'),x,hello(⍴hello)
[81] →levent
[82]

Expose events are generated whenever a window is made visible on the screen. Multiple expose events can be

generated, so it makes sense only to respond to the last one. X Window System caters to this approach by

providing a count of future, already pending, expose events as one of the fields in the expose event itself. We

use this field to ignore all but the last expose event.

When we receive the final expose event we want to write the content of the hello variable to the screen. We

do this using the XDrawImageString call.

 All events provide the value of the originating display connection in the e[E_display] item in the

event structure. This identifies the origins of an event, in case multiple concurrent display connections

have been established. Here its value equals that of dp.

 Most (but not all) events also specify the window that generated the event (some events do not come

from windows). This equals the value of w here.

 The last parameter ((⍴hello)) may seem superfluous. This is certainly the case in the APL2

environment, where the information could be derived from the preceding parameters. However, as stated

earlier, AP144 follows, as closely as possible, the syntax of the X Window System calls.

Handling The ButtonPress Events

[83] lButtonPress: ⍝ Process mouse-button presses
[84] x←e[B_display B_window],gc,e[B_x B_y]
[85] XWIN(⊂'XDrawImageString'),x,hi(⍴hi)
[86] →levent
[87]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

721

The processing here is much the same as for Expose events. The only noteworthy change is the use of

events[B_x B_y] to indicate the position where the writing is to start. This coordinate pair is returned as

part of the ButtonPress event structure, and indicates the position of the tip of the mouse pointer when its button

was pressed.

The effect of this code fragment is to write the text "Hi!" at the position of the mouse pointer when a mouse

button is pressed.

Handling The KeyPress Events

[88] lKeyPress: ⍝ Process keyboard input
[89] →(done←(↑k←∆1⊃XWIN 'XLookupString' ep)∆'qQ')↑levent
[90] x←e[K_display K_window],gc,e[K_x K_y]
[91] XWIN(⊂'XDrawImageString'),x,k(⍴k)
[92] →levent
[93]

KeyPress events are generated when the user presses any of the keys on the keyboard. However, information

about the key pressed is not part of the returned event structure, so we need to use the XLookupString call to

acquire this information. This call has one input parameter, the event whose key we want to ascertain. This

parameter can be specified either as the set of values returned on the XNextEvent call, or using the pointer to the

event buffer that we set up earlier on. The latter method is faster, as it does not involve passing a lot of

information through the interface, so we use it here.

The key pressed is returned as the second element of the XLookupString return. We test this field to see if it

matches a q. If so, we terminate the program. If not, we print the key character at the current mouse pointer

location.

All event structures are exactly as defined by X Window System, except for the XKeyEvent structure returned

by the KeyPress (and KeyRelease) events. The XKeyEvent structure contains one additional field not found in

the X Window System definition: the character representation of the key. This last field is named key, and is

appended onto the end of the structure.

Mapping Notify

[94] lMappingNotify: ⍝ Reset keyboard
[95] XWIN 'XRefreshKeyboardMapping' e
[96] →levent
[97]

The MappingNotify event is used to ensure that your keyboard mapping is restored to the state it was in when

the window was last used. Each window in the X Window System can define its own keyboard mapping, so this

call is needed to ensure that you get the proper definition restored whenever you return to this window.

Termination

[98] lend: ⍝ Termination
[98] XWIN 'XFreeGC' dp gc
[100] XWIN 'XDestroyWindow' dp w
[101] XWIN 'XCloseDisplay' dp
[102] nl←⎕EX¨nl

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

722

[103]lexit:

Before terminating the HelloWorld sample program we free up the resources we have used. Some of these

resources are controlled by the X Window System, so the X Window System must free them.

We also clear the workspace of all the AP144-defined variables. These could conceivably be saved with the

workspace, obviating the necessity of loading them every time the application is run. A production application

probably should take this latter approach, unless the underlying structures change very frequently.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

723

Windows Character Set Support

APL2 and Windows use different character sets. The character sets contain different characters and some of the

characters are in different positions. Examine the following figure which shows the two character sets with the

characters in their native arrangements:

APL2 Windows

 !"#$%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_
`abcdefghijklmno
pqrstuvwxyz{|}~•
ÇüéâäàåçêëèïîìÄÅ
⎕⍞⌹ôöòûù⊤ÖÜø£⊥₧⌶
áíóúñÑªº¿⌈¬½∪¡⍕⍎
░▒▓│┤⍟∆∇→╣║╗╝←⌊┐
└┴┬├─┼↑↓╚╔╩╦╠═╬≡
⍸⍷∵⌷⍂⌻⊢⊣⋄┘┌█▄¦Ì▀
⍺ß⊂⊃⍝⍲⍴⍱⌽⊖○∨⍳⍉∊∩
⌿⍀≥≤≠×÷⍙∘⍵⍫⍋⍒¯¨

 !"#$%&'()*+,-./

0123456789:;<=>?

@ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\]^_

`abcdefghijklmno

pqrstuvwxyz{|}~•

€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž�

�‘’“”•–—˜™š›œ�žŸ

 ¡¢£¤¥¦§¨©ª«¬®¯

°±²³´µ¶·¸¹º»¼½¾¿

ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏ

ÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞß

àáâãäåæçèéêëìíîï

ðñòóôõö÷øùúûüýþÿ

The Windows character set does not contain APL characters. In addition, notice that the accented characters are

in different locations. This can cause confusion if you use both APL2 and other Windows applications to view

character data containing these characters.

The APL2 display and printing facilities (the Session Manager, Editors, AP 124, AP 145, and AP 207)

automatically use the APL2 character set when you use the APL2 Image, APL2 Italic, Courier APL2, Courier

APL2 Bold or any font that contains glyphs for the Unicode codepoints for APL2 characters. When you use any

other font, APL2 uses the Windows character set.

APL2's other facilities for accessing data outside the workspace (AP 100, AP 119, AP 127, AP 227, AP 210,

and FILE) do not translate between the character sets. If you use these facilities to share data with non-APL2

applications, you need to translate character data between the APL2 and Windows character sets to ensure

accented characters are displayed properly.

The WINDOWS workspace includes Character Set Translation tools for translating such character data.

Note: These tools do not provide a reversible one-to-one translation. Translation in either direction causes some

information loss.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

724

Double-Byte Character Set Support

The next sections discuss various aspects of support for double-byte character sets.

 Overview of Double-Byte Characters

 APL2 Support of Double-Byte Characters

 DBCS in the APL2 Programming Environment

 Migration of DBCS Data from APL2/370

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

725

Overview of Double-Byte Characters

Workstation operating systems support two primary character-encoding schemes:

Multibyte

Each character is represented by 1 or more bytes. The system algorithmically determines how many

bytes are used by each character. The algorithm used depends on the current code page. Some code

pages support only single-byte characters; some code pages support Multibyte characters. The code page

can be specified explicitly during conversion or implied by the current input locale.

Single-byte APL characters can be used with single-byte character code pages. Multibyte character sets,

such as Shift-JIS, do not support APL characters.

Unicode

Each character is represented by the operating system using 2 bytes.

Unicode supports APL characters.

Windows Support of Double-Byte Characters

Some parts of Windows store data in Multibyte; some parts of Windows store data in Unicode. When Multibyte

data is passed to a Unicode part or when Unicode data is passed to a Multibyte part Windows automatically

converts the data as necessary.

Windows uses several techniques to determine which codepage to use to convert data between Multibyte and

Unicode:

 When data is transferred between applications and the operating system, Windows uses the current input

locale to determine which code page to use.

 When printing Multibyte data, Windows uses the character set of the currently selected font. If the

character set includes only single-byte characters, then one character is drawn for each byte. If the

character set includes Multibyte characters, the code page implied by the character set is used for

decoding the data.

 When printing Unicode data, no conversion is performed.

 When displaying data on the screen, some classes of windows use the current input locale and some

classes use the character set of the currently selected font.

Note:

The input locale is set either during installation or with the Language for non-Unicode Programs setting in

the Regional and Language Options dialog.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

726

APL2 Support of Double-Byte Characters

Internally, APL2 stores characters using either 1 or 4 bytes per character. If all the characters in an array are

elements of •AV, the array may be stored using 1 byte per character. If any of the characters are not elements of

⎕AV, the array will be stored using 4 bytes per character.

Conceptually, APL2 treats all characters as Unicode characters. The use of 1 byte per character is merely a

technique to conserve storage. The APL2 interpreter automatically converts data between single-byte and

Unicode as necessary. These automatic conversions always use the Unicode codepoints for characters that are

elements of ⎕AV.

The following character conversion tools are provided with APL2:

 Use the ⎕UCS system function to convert between APL2 characters and numeric Unicode code points.

 Use the CTUTF and UTFTC external functions to convert between APL2 character arrays and the UTF-7

and UTF-8 transformation formats used to send Unicode characters across networks.

 Windows Only: Use the CTK and KTC external functions to convert between APL2 character arrays

and Multibyte format.

The following sections provide more detail about APL2 support for double-byte characters:

 Accessing Files

 Printing

 Text Windows

 Graphic Windows

 GUI Windows

Accessing Files

When using APL file formats (AP 211, AP 210 type 'A', and Processor 12 type 'A'), any APL2 array may be

stored in the file.

When using text file formats (FILE, AP 210 type 'D' or 'C', Processor 10 functions, and Processor 12 type 'F'),

only single-byte character data is supported.

All APL2 file access functions and processors support Multibyte filenames. The operating systems use the

current input locale to interpret Multibyte file names.

On Windows, the FILE external function and the UNIFILE function from the GUITOOLS workspace also

support Unicode filenames.

Printing

On Windows, AP 145's printing facilities support both Multibyte and Unicode data.

The CREATE_PRINTER function is used to create Multibyte printer objects. APL2 single-byte data sent to a

Multibyte printer object is passed directly to Windows. APL2 4-byte data sent to a Multibyte printer object is

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

727

converted to single-byte characters and then passed to Windows. Characters that are not in ⎕AV are converted to

the ⍵ character.

When using a Multibyte printer object, the APL2 Italic and Courier APL2 fonts can be used to print APL

characters. The APL2 Image font cannot be used because it is a screen-only bitmap font.

The CREATE_UNICODE_PRINTER function is used to create Unicode printer objects. APL2 4-byte data sent

to a Unicode printer object is passed directly to Windows. APL2 single-byte data sent to a Unicode printer

object is converted to Unicode by AP 145 using the Unicode codepoints for the APL characters and then passed

to Windows.

To print Multibyte data with a Unicode printer and bypass AP 145's conversion of data using Unicode

codepoints for APL characters, use the external function KTC to convert the data before sending it to the printer.

When using a Unicode printer object, the APL2 Unicode Italic and Courier APL2 Unicode fonts can be used to

print APL characters.

Text Windows

AP 124 does not support display or entry of double-byte characters.

Graphic Windows

AP 207 supports display of Multibyte characters when a Multibyte system font is selected. Entry of Multibyte

characters is not supported.

On Windows, AP 207 supports display and entry of Unicode characters.

See Support for Double-byte Characters in the AP 207 documentation for more information.

GUI Windows

On Windows, AP 145 and the GUITOOLS workspace are used to create Multibyte and Unicode GUI windows.

The following GUITOOLS functions can be used to create Multibyte dialogs, menus, and controls:

 CREATEDLG
 CREATEMENU
 EDIT
 FILE
 FILEDLG
 FOLDERDLG
 MSGBOX
 POPUPMENU
 ∆FV

The following functions can be used to create Unicode dialogs, menus, and controls:

 UNICREATEDLG

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

728

 UNICREATEMENU
 UNIEDIT
 UNIFILE
 UNIFILEDLG
 UNIFOLDERDLG
 UNIMSGBOX
 UNIPOPUPMENU
 UNI∆FV

Multibyte and Unicode properties are used for passing data to and from windows.

The following properties use the Multibyte encoding scheme:

 CELL DATA (Range property)

 CONTEXT HELP

 DATA

 DATA LIST

 DROPPED FILES

 FONT

 HEADINGS

 PATH

 PATH SELECTION

 PICTURE

 PICTURE LIST

 STATUS DATA

 TOOL TIP

The following properties use the Unicode encoding scheme:

 UNICODE CELL DATA (Range property)

 UNICODE CONTEXT HELP

 UNICODE DATA

 UNICODE DATA LIST

 UNICODE FONT

 UNICODE HEADINGS

 UNICODE STATUS DATA

 UNICODE TOOL TIP

How Multibyte properties work

When the Multibyte properties are used to send data to a window, AP 145 converts each APL2 4-byte character

to a single-byte character. 4-byte characters that are not elements of ⎕AV are converted to ⍵. The single-byte

characters are then passed to Windows. If the recipient window uses the Multibyte scheme to encode data,

Windows then simply delivers the data. If the recipient window encodes data in Unicode, Windows first

converts the data from Multibyte to Unicode and then delivers it.

When the Multibyte properties are used to retrieve data from a window that uses the Multibyte encoding

scheme, Windows delivers the data directly to AP 145. The Multibyte data is then stored in the workspace as a

vector of APL2 single-byte characters.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

729

When the Multibyte properties are used to retrieve data from a window that uses the Unicode encoding scheme,

Windows converts the data from Unicode to Multibyte using the current codepage. Characters which cannot be

represented by the current code page are replaced with a substitution character. The Multibyte data is then

stored in the workspace as a vector of APL2 single-byte characters.

How Unicode properties work

When the Unicode properties are used to send data to a window, AP 145 converts each APL2 character to a

Unicode character. Single-byte characters are converted to their equivalent Unicode characters. The data is then

passed to Windows. If the recipient window uses the Unicode scheme to encode data, Windows then simply

delivers the data. If the recipient window uses the Multibyte scheme to encode data, Windows first converts the

data from Unicode to Multibyte and then delivers it.

To send Multibyte data with a Unicode property and prevent AP 145 converting the data as single byte APL

characters, use the external function KTC to convert the Multibyte data to Unicode.

When the Unicode properties are used to retrieve data from a window that uses the Multibyte encoding scheme,

Windows converts the data from Multibyte to Unicode using the current code page. The Unicode data is then

stored in the workspace as a vector of APL2 4-byte characters.

When the Unicode properties are used to retrieve data from a window that uses the Unicode encoding scheme,

Windows delivers the data directly AP 145. The Unicode data is then stored in the workspace as a vector of

APL2 4-byte characters.

How to use APL and National Language Characters

Workstation operating systems use codepages that reserve codepoints greater than 127 for single-byte national

language characters and first bytes of double-byte characters. APL2 reuses many of those codepoints for APL

characters. This can cause errors if data is incorrectly converted between Multibyte and Unicode.

Depending on whether your application uses characters from the upper half of ⎕AV, you may be able to use

Multibyte dialogs, controls, and properties. You can use Multibyte components if:

 Your application only uses characters in the lower half of ⎕AV or,

 Your application will only run on machines that have the same input locale as your development

machines

Otherwise, to guarantee correct display and processing of APL and national language characters worldwide, use

Unicode dialogs, controls, and properties.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

730

DBCS in the APL2 Programming Environment

The following sections describe the DBCS support provided by the APL2 programming environment:

Interpreter

 4-byte characters may be used in character constants and comments

 4-byte characters are converted to ⍵ characters in default display and error messages.

 4-byte characters are displayed as ⍵ characters in)EDITOR 1. Changing a line containing 4-byte

characters permanently changes them to ⍵ characters.

Session Manager

 Double-byte characters are not supported in the session log.

 4-byte characters not in ⎕AV are displayed as ⍵ characters.

 Multibyte characters are displayed as single-byte characters.

 Multibyte characters are supported in file names.

 Double-byte characters may be entered in the Find and Function Key dialogs but they will be converted

to omegas.

Open Object Dialog

 Double-byte characters may be entered in the Open Object dialog but they will produce unpredictable

results.

Object Editor

 Double-byte characters are supported in the editing area.

 Double-byte characters are supported in the Find dialog.

Dialog Editor

 Multibyte characters are supported in the Text entry field.

 APL characters are only supported in the event handlers dialogs.

 On systems configured to use a single-byte character codepage, the default font used by the dialog editor

is MS Sans Serif. On systems configured to use the Japanese ANSI codepage 932, the default font used

by the dialog editor is MS Mincho. On systems configured to use other double-byte character

codepages, the dialog editor uses the operating system's default font. Use the Presentation Properties

dialog to select other fonts.

File Editor

 Double-byte characters are supported in the editing area.

 Double-byte characters are supported in the Find dialog.

 Multibyte characters are supported in file names.

Other Tools

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

731

 The UNIEDIT function in the GUITOOLS workspace may also be used to edit arrays and program

definitions that contain 4-byte characters. By selecting an appropriate Unicode font and input locale,

characters that are not elements of ⎕AV can be displayed and entered.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

732

Migration of DBCS Data from APL2/370

APL2/370 uses a 4-byte format for storing double-byte characters. The first two bytes contain the code page

identifier (CPGID), the value specified in the APL2/370 DBCS invocation option, or zero. If the first two bytes

are not zero, the second two bytes contain the code point in the code page. If the first two bytes are zero, the

third byte is also zero and the fourth byte is an EBCDIC character.

The workstation APL2 systems use a different format for 4-byte characters. The values are Unicode code

points.

Data containing 4-byte characters can be migrated from APL2/370 to workstation APL2 systems. The)IN

command, cross-system shared variables and AP 211 provide translation for mainframe 4-byte characters.

Characters will be translated when they are in the EBCDIC format or when the CPGID is one of the following:

Code Page Description

037 CECP: USA, Canada (ESA*), Netherlands, Portugal, Brazil, Australia ...

290 Japanese Katakana Host Extended SBCS

300 Japanese Latin Host Double-Byte including 4370 UDC

833 Korean Host Extended SBCS

834 Korean Host Double-Byte including 1880 UDC

835 Traditional Chinese Host Double-Byte including 6204 UDC

836 Simplified Chinese Host Extended SBCS

837 Simplified Chinese Host Double-Byte including 1880 UDC

930 Japanese Katakana-Kanji Host Mixed including 4370 UDC, Extended SBCS

933 Korean Host Mixed including 1880 UDC, Extended SBCS

935 Simplified Chinese Host Mixed including 1880 UDC, Extended SBCS

937 Traditional Chinese Host Mixed including 6204 UDC, Extended SBCS

939 Japanese Latin-Kanji Host Mixed including 4370 UDC, Extended SBCS

1027 Japanese Latin Host Extended SBCS

1200 Unicode

For code pages not in this list, the data will be left unchanged.

The following procedure can be used to extract the code page identifier and code point from a 4-byte character

which has not been translated:

1. Use the ⎕AF system function to convert the 4-byte character to an integer.

2. Use the ⊤ primitive to convert the integer into two base 65536 integers. The first integer is the code

page; the second integer is the code point.

Note: APL2/370 uses EBCDIC, which defines a different set of code pages from the code pages defined for

workstation systems. Thus the code points extracted in this way do not match their workstation counterparts.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

733

Implementation Limits

In this section the term workstation refers to all workstation implementations except APL2/PC.

The APL2 interpreter has the following implementation limits:

Largest and smallest representable numbers in an array

Workstations 1.7976931348E308 and ¯1.7976931348E308

Mainframes 7.2370055773E75 and ¯7.2370055773E75

Most infinitesimal (near 0) representable numbers in an array

Workstations 2.2250738585E¯308 and ¯2.2250738585E¯308

Mainframes 5.397605346934E¯79 and ¯5.397605346934E¯79

Maximum rank of an array

Workstations 64

Mainframes 64

Maximum length of any axis in an array
¯1+2*31 (2147483647)

Maximum product of all dimensions in an array
¯1+2*31 (2147483647)

Maximum depth of an array applied with the primitive functions depth (≡R) and match (L≡R)
181

Maximum depth of a shared variable
181

Maximum depth of a copied variable
181

Maximum number of characters in the name of a shared variable
255

Maximum number of characters in a comment (minus leading blanks)

Workstations 4090

Mainframes 32764

Maximum length of line

Workstations 32767

Mainframes N/A

Maximum number of lines in a defined function or operator

Workstations ̄ 1+2*15 (32767)

Mainframes ¯1+2*31 (2147483647)

Maximum number of labels in a defined function or operator

Workstations Limited by number of lines

Mainframes 32767

Maximum number of local names (excluding labels) in a defined function or operator

Workstations Limited by lengths of lines and names

Mainframes 32767

Maximum number of slots in the internal symbol table. A slot is required for each unique name, each unique

constant, and each ill-formed constant in the workspace.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

734

Workstations N/A

Mainframes 32767

Maximum value of ⎕PW

Workstations 254

Mainframes 390

Maximum value of ⎕PP

Workstations 16

Mainframes 18

Maximum number of users with whom a user can share cross-system variables

Workstations N/A

Mainframes 59

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

735

Deviations from

APL2 Programming: Language Reference

This appendix describes the areas in which this implementation of APL2 differs from the APL2 language as

defined in APL2 Programming: Language Reference.

The differences are classified as follows:

Deviation

The feature is implemented, but the implementation is different from that defined in APL2

Programming: Language Reference.

Restriction

The feature is not fully implemented

System dependency

The feature is not required or is implemented differently due to system requirements.

 General Language Differences

 APL2 Statement Entry

 APL2 Error Reporting

 Display of Output

 System Functions and Variables

 Defined Functions and Operators

 System Commands

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

736

General Language Differences

Restriction

 Selective specification is not implemented for all cases available in APL2/370. For example:

 (L0¨V)←A

gives DOMAIN ERROR.

Any usage of bracket indexing in a selective assignment expression, such as

 (2↑V[⍳4])←3

gives SYNTAX ERROR. The index primitive (⌷) may be used instead of bracket indexing to accomplish

the same result.

Selective specification of a shared variable also gives SYNTAX ERROR.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

737

APL2 Statement Entry

Deviation

 Some rules are relaxed for syntax validation. For example, combinations such as A⎕, ⎕⎕ and ⍞⍞ are

accepted as A ⎕, ⎕ ⎕ and ⍞ ⍞ (respectively), instead of giving SYNTAX ERROR.

System Dependency

 Exact fidelity of statements is not maintained. Function and operator statement lines are tokenized, and

when redisplayed, these may not appear exactly as entered. This can cause redundant spaces to be

removed and the display format of numbers to be changed.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

738

APL2 Error Reporting

Deviation

 Where multiple errors occur in an operation, a different error may be reported. For example:

 'AB'⌽3 3⍴⍳9 ⍝ Workstation implementations
DOMAIN ERROR
 'AB'⌽3 3⍴⍳9
 ^ ^

 'AB'⌽3 3⍴⍳9 ⍝ APL2/370
LENGTH ERROR
 'AB'⌽3 3⍴⍳9
 ^ ^

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

739

Display of Output

Deviations

 An array that exceeds the printing width (⎕PW) is wrapped line by line, rather than being folded plane by

plane.

 Default display of columns of data of an array of mixed type right-justifies all numeric items. APL2/370

aligns numeric items in the same column on the decimal point. For example:

 3 2⍴'APL2' 2 (○1)

gives:

 APL2 2
3.141592654 APL2
 2 3.141592654

instead of:

 APL2 2
3.141592654 APL2
2 3.141592654

 Dyadic format with negative left argument leaves additional spaces to allow for an exponent containing

up to three digits, and a negative sign. For example:

 ⍴⎕←¯1⍕1 1

gives:

 1E0 1E0
14

instead of:

 1E0 1E0
8

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

740

Also:

 5 ¯1⍕1

gives:

DOMAIN ERROR
 5 ¯1⍕1
 ^ ^

instead of:

 5 ¯1⍕1
1E0

Restriction

 Dyadic format by specification gives DOMAIN ERROR if formatting an element of an array creates

output longer than 32767 characters. For example:

 0⍕⊂33000⍴'ABC'
DOMAIN ERROR
 0⍕⊂33000⍴'ABC'
 ^^

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

741

System Functions and Variables

Restrictions

 ⎕L and ⎕R are not recognized; they return VALUE ERROR.

 ⎕NLT can be referenced, but not set. National language is set with the -nlt invocation option.

 The contents of ⎕AI are incorrect after they reach 2*31. This can occur for sessions active longer than

24 days.

 General shared variable offers are not supported.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

742

Defined Functions and Operators

Deviation

 The header line (line 0) of a function does not accept a comment. Any comment given is ignored, and no

error is generated. For example:

 ∇TEST ⍝ COMMENT
[1] LINE 1
[2] [⎕]
[0] TEST
[1] LINE 1
[2]

Restrictions

 Recursive editing and entry of system commands while editing are not allowed.

 Editing of a line with the line editor removes stop (S∆) and trace (T∆) controls for that line.

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

743

System Commands

Deviations

 The maximum length of the workspace name parameter to)SAVE,)COPY,)PCOPY,)LOAD,)IN,

)PIN, and)OUT is 64 rather than 8.

)DROP accepts a suffix in a quoted filename format for deleting transfer form files.

)ERASE erases and)COPY replaces the most local, rather than the global, referent of an object.

)FNS,)VARS,)OPS,)NMS, and)LIB allow specification of multiple ranges of names on one

command, where the language defines only one range per command. The syntax for specification of

multiple ranges is:

Workstations: [[first | first-last][...]

APL2/370: [first][-][last]

 The)SYMBOLS command gives a different report: size of table (bytes), number of bytes in use, number

of symbols.

)SYMBOLS n contracts or expands symbol table to n bytes.

Restrictions

)EDITOR 2 is not implemented. See the EDITOR_2 function, described in the EDIT Workspace, for

details of a defined function that is equivalent to the APL2/370 Editor 2.

)EDITOR name is implemented with some restrictions. It enables a system editor to be invoked, and

allows ∇name to be used to edit a function, operator or a simple character matrix. The restrictions are

the same as those imposed by "⎕FX ⎕CR name"; for instance, all stop (S∆) and trace (T∆) controls on

the function are removed.

)MORE always displays NO MORE INFORMATION.

)OUT of the entire workspace with a nonempty stack is not allowed. The error reports SI WARNING

and NOT SAVED are given.

)SAVE does not save shared variables.

System Dependencies

)EDITOR name accepts an option, -u, which causes Unicode data representation to be used in the

temporary editor file.

)EDITOR editorname [-u]

)IN accepts a library number.

)IN [libno] filename [obj1 [obj2]...]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

744

)PIN accepts a library number.

)PIN [libno] filename [obj1 {obj2}...]

)LIB accepts a different syntax and lists operating system files. The syntax is:

)LIB [libno | 'path'] [initials] [{.apl | .atf}]

This displays files with names that start with the characters initials and that have an extension of

.apl or .atf in the library indicated by libno or 'path'.

)LIB [libno | 'path'] [first]-[last] [{.apl | .atf}]

This displays files with names that fall alphabetically between first and last, and have an extension

of .apl or .atf in the indicated library. If either first or last is omitted, that end of the range is

unbounded.

If neither initials nor first-last are given, all files are listed that meet the other qualifications.

For both syntax variations, if no library number is given, the files for library ↑⎕AI are listed. This is

normally defined as being the directory from which APL2 is invoked. If neither .apl nor .atf are

specified, both are assumed.

Examples:

)LIB 1

Lists all .apl and .atf files in library 1
)LIB 2 AP

Lists all .apl and .atf files with names beginning with AP in library 2
)LIB AP .apl

Lists all .apl files with names beginning with AP
)LIB -C

Lists all .apl and .atf files beginning with letters A through C
)LIB C-

Lists all .apl and .atf files beginning with letters C through z
)LIB A-C

Lists all .apl and .atf files beginning with letters A through C
)LIB A C

Lists all .apl and .atf files beginning with letters A and C

)OUT accepts a library number.

)OUT [libno] filename [obj1 {obj2}...]

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

745

Bibliography

 APL2 Publications

 Other Books You Might Need

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

746

APL2 Publications

The following table shows all the books in the APL2 library, organized by the tasks for which they are used.

The APL2 library can be found on the web at http://www.ibm.com/software/awdtools/apl/library.html.

Information Book Publication

Number

Introductory

language

material

An Introduction to APL2

APL2 Language Summary

SH21-1073

SX26-3851

Common

reference

material

APL2 Programming: Language Reference

APL2 Reference Summary

APL2 GRAPHPAK: User's Guide and Reference

APL2 Programming: Using SQL

APL2 Migration Guide

SH21-1061

SX26-3999

SH21-1074

SH21-1057

SH21-1069

Mainframe

programming

APL2 Programming: System Services Reference

APL2 Programming: Using the Supplied Routines

APL2 Programming: Processor Interface Reference

APL2 Installation and Customization under CMS

APL2 Installation and Customization under TSO

APL2 Messages and Codes

APL2 Diagnosis

SH21-1054

SH21-1056

SH21-1058

SH21-1062

SH21-1055

SH21-1059

LY27-9601

Workstation

programming

APL2 User's Guide

APL2 Programming: Developing GUI Applications

APL2 Programming: Using APL2 with WebSphere

SC18-7021

SC18-7383

SC18-9442

APL2 User's Guide SC18-7021-23

© Copyright IBM Corporation 1994, 2017

747

Other Books You Might Need

The following book is recommended:

APL2 at a Glance, by James Brown, Sandra Pakin, and Raymond Polivka, published by Prentice-Hall, ISBN 0-

13-038670-7 (1988). (Copies can be ordered from IBM as SC26-4676.)

A set of APL2 Keyboard Decals, SC33-0604, are included with this product. Additional sets of these decal

sheets can be ordered from IBM.

	Copyrights
	Contents
	Notices
	Programming Interface Information
	Trademarks
	IBM Trademarks
	Other Trademarks

	We Would Like to Hear from You
	About This Book
	APL2 Publications
	Conventions Used in This Book

	Overview
	Why Should You Learn APL2?
	What is IBM APL2?
	Required Hardware
	Required Software

	Installing and Customizing APL2
	Installing APL2 on Unix Systems
	Installing APL2
	AIX Systems:
	Linux Systems:
	Solaris Systems:
	National Language Selection

	APL2 Directory Structure
	Displaying APL2 Characters
	AIX and Sun Solaris Only:
	APL Characters on Remote Workstations

	APL2 Keyboard Support
	APL2 Keyboard Layouts
	Keyboard Decals
	Keyboards

	Customizing APL2
	The apl2 Shell Script
	The apl2.ini Configuration File
	The SVP Parameter File
	The SVP Profile

	Installing APL2 on Windows Systems
	Installing APL2
	Installing APL2 from a CD-ROM
	Installing from a LAN Server
	APL2 Directory Structure
	Installing the APL2 Fonts
	Accessing the Online Documentation
	Establishing the APL2 Environment

	Customizing APL2
	The Configure APL2 Tool
	The apl2.ini Configuration File
	Batch Files
	APL2 and TCP/IP
	The SVP Parameter File
	The SVP Profile

	APL2 Keyboard Support
	The APL2 Keyboard Handler
	APL2 Keyboard Layouts
	Keyboard Decals
	Keyboards

	Invoking APL2
	Invoking APL2 on Unix Systems
	The APL2 Environment
	Windows Opened by APL2
	Invocation Syntax
	Invocation Parameters
	APL2 Environment Variables
	System Environment Variables

	Examples of APL2 Invocation
	Running APL2 in Batch Mode
	Additional Considerations for Remote Access

	Invoking APL2 on Windows Systems
	APL2 on the Desktop
	Windows Opened by APL2
	Invocation Syntax
	Invocation Parameters
	APL2 Environment Variables
	System Environment Variables

	Examples of APL2 Invocation
	From the Desktop, Using a Mouse
	From a Command Window
	Driving an APL Application from the Desktop
	Running APL2 in Batch Mode

	Migrating from Version 1 to Version 2
	Features of Version 2
	Migrating Workspaces to Version 2
	Windows Considerations

	General Information
	The APL2 Interpreter
	An Example of the Use of APL2
	An Isolated Calculation
	Storing Functions and Data

	Characteristics of APL2

	Workspaces and Libraries
	Library Specification
	Default Libraries
	User-Defined Libraries

	Explicit File Specifications

	Using the Session Manager
	The APL2 Session Manager on Unix Systems
	APL Characters and Fonts
	National Language Support (NLS)
	Screen Layout
	The Menu Bar
	File Menu
	Signals Menu
	Options Menu
	Help Menu
	Status Area
	Main Work Area and Associated Color Resources

	Customizing with Resources and Options
	Syntax
	Command Line Parameters
	Customizing with the .Xdefaults File
	System Defaults

	Other Invocation Options and Associated X Resources
	Customizing the Keyboard
	Translation Overview
	Default Keyboard Mapping

	The APL2 Session Manager on Windows

	Editing APL Objects
	The Object Editor
	The Dialog Editor
	The Line Editor
	System Editors
	The EDIT Workspace

	Editing Text Files
	The File Editor

	The APL2 Library Manager
	The APL2 Library Manager Environment
	Effects of External Names
	Your APL2 Libraries

	Cooperative Processing
	Processor Network Identification
	Processor Profile Structure
	Using the Port Server
	Sending a Share Offer
	Receiving a Share Offer
	Processor Profile Syntax
	Identification Entries
	:svopid.id
	:processor.id[,id[,id]]
	:address.addr
	:userid.userid
	:crypt.routine,library

	Authorization Entries
	:procauth.id[,id[,id]]
	:rsvopid.id[,id[,...]]

	Processor Profile Examples
	User to User Shared Variables
	User to Auxiliary Processor Shared Variables
	Using Asterisks in Processor Profile Entries

	Running a Remote Session Manager
	Workstation Interpreters
	APL2/370 Interpreters

	Shared Variable Interpreter Interface
	General Concepts
	Shared Variable Protocols
	Interpreter Input Data
	Interpreter Output Data

	Transferring Workspaces and Files
	Workspace Transfer Between APL2 Systems
	Migration of TryAPL2 Workspaces
	Migration of VS APL Workspaces
	AP 210 Files
	AP 211 Files

	Associated Processors
	Applications of External Names
	Managing External Names from APL
	Creating and Destroying an Association
	Invoking an External Name
	Querying an Associated Name
	Checking the Association Information
	Checking for Active Associations

	Avoiding Name Conflicts

	Environmental Considerations
	Processor 10 - Communicating with Rexx
	Using Rexx Functions as APL Functions
	Associating Names with Processor 10
	Constructing the Rexx Arguments
	Handling Results and Errors

	Creating Rexx Routines from APL Arrays
	Accessing Operating System Files

	Processor 11 - External Routines and Namespaces
	Accessing Non-APL Routines
	Accessing Namespaces
	Characteristics of Namespaces
	Portability of Namespace Applications

	Name Association Left Argument Syntax
	NAMES Files and Routine Descriptors
	Routine Descriptor Tags
	:nick.name
	:desc.description
	:link.type
	:lib.file
	:path.fullpath :path.(envvar)
	:macro.name definition
	:proc.entrypoint
	:valence.er fv ov
	:rarg.pattern
	:rslt.pattern

	Array Patterns
	Array Item Patterns
	Nested or Mixed Arrays
	Array Patterns for Non-APL Programs
	Array Patterns for ATR, PFA, RTA, SIZEOF, and Associated Processor 15

	Processor 12 - Files as Arrays
	Name Association Syntax for Processor 12
	Supported Primitive Operations
	APL Files as External Variables
	Text Files as External Variables
	Format Descriptors for External Variables
	Vector of Character Vectors
	Vector of Character Matrices
	Simple Data Vectors

	Processor 12 Errors
	Portability of Processor 12 Applications

	Processor 14 - Calls to Java
	Java Language Overview
	Name Association Syntax for Processor 14
	Java Signatures
	Supported Primitive Operations for Fields
	Creating Java Objects
	Sample Associations
	Managing Java Objects
	Managing Associations with Instance Methods and Fields
	Calling Back to APL2 from Java
	Handling Errors and Interrupts
	Handling Signals
	DEMOJAVA Workspace

	Processor 15 - Access Structured Storage
	Name Association Syntax for Processor 15
	Syntax Examples
	Supported Primitive Operations for Structured Storage
	Usage Guidelines
	Accessing Variable Addresses
	Monitoring Variable Changes
	Calling External Functions with Structured Storage
	Using Structured Storage to Access Exported Variables
	Using Structured Storage to Validate APL2 Data

	Supplied External Routines
	APL2CFG - Configure APL2
	APL2LM - APL2 Library Manager
	APL2PIA - APL2 Programming Interface for APL2
	ATR - Array to Record
	ATS - Array to SCAR
	BEEP - Sound a Beep
	CHECK_ERROR - Get System Error Text
	CNS - Create Namespace
	COM - Component Object Model Interface
	COM Overview
	COM Error Handling
	Querying COM Classes and Objects
	Prototypes

	Creating COM Objects
	Connecting to Running COM Objects
	Referencing and Specifying COM Properties
	Invoking COM Methods
	Period Delimited Member Names
	Indexed Properties
	Positional, Named, and Omitted Method Arguments
	Output Arguments
	By Reference Arguments
	Calling the Evaluate Method
	Enumerations
	Managing COM Objects
	Handling COM Events
	Configuring the COM Interface
	Data Conversion Between COM and APL2
	COM Microsoft Agent Example
	COM Excel Example
	COM Internet Explorer Example
	COM Word Example
	COM Office Visual Basic Example

	COMBROWSE - COM Browser
	COPY - Copy Workspace Objects
	CPUCOUNT - Get Number of Processors
	CTK - Character to Kanji
	CTN - Character to Numeric
	CTUTF - Character to UTF
	DATATYPE - Array Data Type
	DISPLAY, DISPLAYC and DISPLAYG - APL2 Array Structures
	EDITOR_2 - APL2 Editor 2
	EXP - Execute in Previous Namescope
	FDELETE - File Delete
	FILE - File Read or Write
	FILE Namespace
	FSTAT - File Status
	GETENV - Get Environment Variable
	GETLIB - Get Path for Library Number
	GMTSTAMP - Get or Set Timestamp
	GRAPHPAK Namespace
	GUITOOLS Namespace
	GUIVARS Namespace
	Host System Utilities
	IDIOMS and IDIOMSG - APL2 Idiom Library
	KTC - Kanji to Character
	LEXP - Lexical Parse
	LIB - List Library Contents
	LIBS - Get APL2 Library Definitions
	LTM - Tcl List to APL2 Matrix
	MATHFNS Namespace
	MD5 - Encode Data to MD5
	MTL - APL2 Matrix to Tcl List
	OPTION - Query or Set Session Options
	PCOPY - Protected COPY
	PEACHP and PEACHT - Parallel Each Operators
	PFA - Pattern From Array
	PRINTWSG - Print Workspace with GUI Interface
	QNS - Query Namescope
	REPLACEX - Replace Strings
	ROUNDC - Commercial Rounding
	RF - RowFind
	RTA - Record to Array
	SCANDIR - List Files in a Directory
	SI - State Indicator
	SIS - State Indicator with Statements
	SIZEOF - Size of Array
	SQL Namespace
	STA - SCAR to Array
	TCL - Tool Command Language Interface
	The Tcl Environment
	Customizing APL2 for Tcl
	License Information

	TIME - Application Performance Analysis
	Performance Analysis Using the TIME Function

	UTFTC - UTF to Character
	WSCOMP - Workspace Compare
	ZIP, UNZIP, ZIPWS, and UNZIPWS - Compression Utilities

	Auxiliary Processors
	Using the Share-Offer Utilities
	SVOFFER Examples
	SVOPAIR Examples

	AP 100 - Host Command Processor
	AP 100 Return Codes

	AP 101 - Alternate Input (Stack) Processor
	AP 101 Commands
	AP 101 Return Codes

	AP 119 - Socket Interface Processor
	Blocking
	Using AP 119 - The TCPIP commands
	ACCEPT
	BIND
	CLOSE
	CONNECT
	FCNTL
	GETHOSTBYADDR
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	LISTEN
	READ
	RECV
	RECVFROM
	SELECT
	SEND
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	WRITE

	AP 119 Return Codes
	Sample AP 119 Session

	AP 120 - Session Manager Interface
	CLOSE
	Example

	MESSAGE
	Example

	OPEN
	Example

	REFRESH
	Example

	WAIT
	Example

	WATCH
	Examples

	AP 124 - Text Display Processor
	AP 124 Operation
	Understanding Screen Management
	AP 124 Usage
	Screen Size
	Screen Fields
	Field Types and Attributes

	AP 124 Commands
	Clear Screen
	Format the Screen into Fields
	Reformat the Screen
	Push Format Array
	Pop Format Array
	Immediate Write of Data to Screen
	Read and Wait or Read and Test
	Delayed Write of Data to Screen
	Get Data from the Logical Screen (as a Matrix)
	Update Field Types
	Update Field Attributes
	Control and Information Request
	Get Format Table
	Get the Current Logical Screen
	Sound a Beep to Alert User
	Set the Cursor
	Set Window Attributes
	Query Window Attributes
	Get Data from the Logical Screen (as a Vector)
	Get Field Attributes
	Clear Screen (VS APL Compatible)
	Set Title Bar Text
	Hide or Show Menubar

	Summary of AP 124 Commands
	AP 124 Return Codes

	AP 127 - DB2 Processor
	AP 127 Commands
	AP 127 Return Codes

	AP 144 - The X Window System Interface Processor
	AP 144 Commands and Structures
	X Window System Xlib Commands
	X Window System Xlib Structures
	Structure Commands - Summary
	System Commands - Summary
	Understanding the Return Codes

	AP 144 Return Codes

	AP 145 - GUI Services Processor
	AP 200 - Calls to APL2
	AP 200 Commands
	START
	STOP
	PUT
	GET
	FREE
	EXECUTE
	EXTOKEN

	AP 200 Return Codes

	AP 207 - Universal Graphics Processor
	AP 207 Interface
	AP 207 Commands
	ARC
	BEGAREA
	BITMAP
	BOX
	CLEAR or ERASE
	CLOSE
	COLMAP
	COLOR
	CURSOR
	DRAW
	ENDAREA
	ESCAPE
	FONT
	FONTDEF
	GRDATA
	IMAGE
	LINETYPE
	LOAD
	MARKER
	MENU
	MIX
	MOVE
	OPEN
	PALETTE
	PATTERN
	POINT
	PRINT
	QUERY
	QWRITE
	SCISSOR
	SECTOR or WEDGE
	SETPEL
	USE
	VIEW
	WAIT
	WINDOW
	WRITE

	AP 207 Programming Techniques
	Multiple-Call Sequences
	Defining World Coordinates with Correct Aspect Ratio
	Generating PostScript Output
	Image and Vector Font Support
	Support for Double-byte Characters

	AP 207 Return Codes

	AP 210 - File Processor
	Control Commands
	Control Subcommands
	Establishing the AP 210 Translate Table
	AP 210 Return Codes
	Example of Use

	AP 211 - APL2 Object Library Processor
	AP 211 Commands
	CREATE
	DROP
	USE
	RELEASE
	SET
	GET
	RENAME
	ERASE
	LIST

	AP 211 Return Codes
	Example of Use

	AP 227 - ODBC Processor
	AP 227 Commands
	AP 227 Return Codes

	AP 488 - GPIB Support Processor
	Shared Variable Protocols
	General Information
	IBSTA Status Word Layout
	IBERR Error Number

	AP 488 Commands
	0 (IBWAIT) - Wait for Selected Event
	1 (IBONL) - Online or Offline
	2 (IBRSC) - Request or Release System Control
	3 (IBSIC) - Send Interface Clear
	4 (IBSRE) - Set or Clear Remote Enable Line
	5 (IBLOC) - Go to Local
	6 (IBRSV) - Request Service
	7 (IBPPC) - Parallel Poll Configure
	8 (IBPAD) - Change Primary Address
	9 (IBSAD) - Change or Disable Secondary Address
	10 (IBIST) - Individual Status Bit
	11 (IBDMA) - Enable or disable DMA
	12 (IBEOS) - Change or Disable EOS Method
	13 (IBTMO) - Change or Disable Timeout Limit
	14 (IBEOT) - Enable or Disable END Message
	15 (IBGTS) - Active Controller Go To Standby
	16 (IBCAC) - Become Active Controller
	17 (IBRDF) - Read Data Into File
	18 (IBFIND) - Open Device or Adapter File Handle
	19 (IBRPP) - Conduct Parallel Poll
	20 (IBSTAT) - Return IBSTA, IBERR, IBCNT
	21 (IBSTOP) - Stop Asynchronous Operation
	22 (IBCLR) - Clear Device with Selected Device Clear
	23 (IBTRG) - Trigger Device
	24 (IBPCT) - Pass Control
	25 (IBRSP) - Conduct Serial Poll
	26 (IBBNA) - Change Adapter Name
	27 (IBSIZE) - Set Data Buffer Size
	28 (IBRD) - Read Data
	29 (IBRDA) - Read Data Asynchronously
	30 (IBWRT) - Write Data
	31 (IBWRTA) - Write Data Asynchronously
	32 (IBCMD) - Send GPIB Commands
	33 (IBCMDA) - Send GPIB Commands Asynchronously
	34 (IBWRTF) - Write Data From File
	37 (IBPOKE) - Set Device Driver Parameters
	38 (IBDIAG) - Get Diagnostic Data
	39 (IBASK) - Get Software Configuration Parameters
	40 (IBCONFIG) - Change Software Configuration Parameters
	41 (IBDEV) - Open and Initialize Device
	42 (IBLINES) - Get Status of Control Lines
	43 (IBLN) - Check for Device

	AP 488 Return Codes

	Supplied Workspaces
	Host Workspaces - AIX, LINUX, SOLARIS, WINDOWS
	Operating System Commands
	Listing the APL2 Libraries
	Error Code Translation
	Character Set Translation

	AP124 Workspace
	Fundamentals
	Building a Menu
	FSDEF - Define fields
	FSSHOW - Display a panel

	Primary Functions
	FSUSE - Initialize a panel
	FSSETCURSOR - Position the cursor
	FSWRITE - Put data into fields
	FSWAIT - Wait for a user response
	FSREAD/FSREADV - Read field contents

	Additional Functions
	Example Driver Function
	AP124 Internal Operation and Global Variables

	AP144 Workspace
	AP488 Workspace
	Description of AP488 Functions
	IBASK - Get Software Configuration Parameters
	IBBNA - Change Adapter Name
	IBCAC - Become Active Controller
	IBCLR - Clear Device with Selected Device Clear
	IBCMD - Send GPIB Commands
	IBCMDA - Send GPIB Commands Asynchronously
	IBCONFIG - Change Software Configuration Parameters
	IBDEV - Open and Initialize Device
	IBDIAG - Get Diagnostic Data
	IBDMA - Enable or disable DMA
	IBEOS - Change or Disable EOS Method
	IBEOT - Enable or Disable END Message
	IBFIND - Open Device or Adapter File Handle
	IBGTS - Active Controller Go To Standby
	IBIST - Individual Status Bit
	IBLINES - Get Status of Control Lines
	IBLN - Check for Device
	IBLOC - Go to Local
	IBONL - Online or Offline
	IBPAD - Change Primary Address
	IBPCT - Pass Control
	IBPOKE - Set Device Driver Parameters
	IBPPC - Parallel Poll Configure
	IBRD - Read Data
	IBRDA - Read Data Asynchronously
	IBRDF - Read Data Into File
	IBRPP - Conduct Parallel Poll
	IBRSC - Request or Release System Control
	IBRSP - Conduct Serial Poll
	IBRSV - Request Service
	IBSAD - Change or Disable Secondary Address
	IBSIC - Send Interface Clear
	IBSIZE - Set Data Buffer Size
	IBSRE - Set or Clear Remote Enable Line
	IBSTAT - Return IBSTA, IBERR, IBCNT
	IBSTOP - Stop Asynchronous Operation
	IBTMO - Change or Disable Timeout Limit
	IBTRG - Trigger Device
	IBWAIT - Wait for Selected Event
	IBWRT - Write Data
	IBWRTA - Write Data Asynchronously
	IBWRTF - Write Data From File
	CHK_488 - Check Return Code

	Example of AP488 Usage

	DDESHARE Workspace
	The DDE Protocol
	Easy DDE Functions
	PASTE_SPECIAL
	APL2_DDE_CONNECT
	APL2_XLTABLE_CONNECT
	COPY_LINK

	Objects and Utility Functions
	Client Applications
	Server Applications

	Sample Functions
	APL2_DDE_SERVER
	APL2_DDE_COMMAND
	APL2_DDE_CLIENT

	DDE Limitations

	DEMO124 Workspace
	DEMO144 Workspace
	Chaos - Example of Drawing Lines and Points
	Towers of Hanoi - A Dynamic X Window System Example
	HelloWorld - The Standard X Window System Sample Program
	Xfonts - Another Sample X Window System Program
	Xsamp1 - A Sample X Window System Program

	DEMO145 Workspace
	DEMO207 Workspace
	DEMOJAVA Workspace
	DISPLAY Workspace
	EDIT Workspace
	EDIT
	EDITOR_2

	EXAMPLES Workspace
	Introduction
	Mathematical Calculations
	ASSOC - Associativity
	BIN - Binomial coefficients
	COMB/FC/LFC - Combinations
	GCD - Greatest common divisor
	HILB - Hilbert matrix
	PALL/PER/PERM - Permutations
	PO/POL/POLY/POLYB - Polynomials
	TRUTH - Truth tables
	ZERO - Roots of a function

	Miscellaneous Utility Functions
	PACK/UNPACK - Illustration of Base and Representation
	DEC2HEX/HEX2DEC/HEX - Hexadecimal arithmetic and conversions
	SORTLIST - Sort with collating sequence
	TIME - Provide CPU time used

	The Group GPAPL2
	Workspace Information Functions
	Miscellaneous Functions
	Operators to Conform Arguments
	Operators for Debugging
	Operators to Handle Depth
	Operators for Program Control
	Miscellaneous Operators

	FILE Workspace
	AP 210 Group
	Terminology
	OPEN - Open a file for read/only
	WOPEN - Open a file for read/write
	CLOSE - Close a file
	EBCDIC - Set up an EBCDIC translation table
	SIZE - Return file size in bytes
	READ - Read a fixed-length record
	READD - Read designated bytes
	READV - Read a variable-length record
	READVS - Read a record, stripping EOL
	WRITE - Write a fixed-length record
	WRITED - Write designated bytes
	WRITEV - Write a variable-length record
	APPENDFILEV - Append to a variable-length record file
	COMPARE - Compare two files
	DELETE - Delete a file
	RENAME - Rename a file
	READFILEV - Read a file of variable-length records
	TYPE - Display the contents of a file
	WRITEFILEV - Write a file of variable-length records
	Auxiliary Functions and Variables
	Example of Use

	AP 211 Group
	Delta Group
	Transfer Group
	IN - Simulated)IN
	OUT - Simulated)OUT
	PIN - Simulated)PIN

	GRAPHPAK Workspace
	GPBASE
	GPCHT
	GPCONT
	GPDEMO
	GPFIT
	GPGEOM
	GPPLOT

	GUITOOLS Workspace
	Dialog Processing Functions
	Utility Functions
	Printing Functions

	GUIVARS Workspace
	IDIOMS Workspace
	Executing the IDIOMS Function
	Categories
	Naming Conventions

	MATHFNS Workspace
	Matrix Inverse and Matrix Divide
	Eigenvalues and Eigenvectors
	Factorial and Binomial
	Fast Fourier Transform
	Formatting Complex Numbers
	Roots of Polynomials

	MIGRATE Workspace
	ATFUSTOLC - Remove Underbarred Characters
	VSCOPY - Convert VS APL Workspaces

	NETTOOLS Workspace
	PRINT Workspace
	PRINT and PRINTWS: Common Features
	The PRINTER Function: Using PRINTER ON and PRINTER OFF
	Filling In the Full-Screen Prompts
	The PRINT and NEWPAGE Functions
	A Typical Use of PRINT
	Modifying Applications to Use PRINT
	Additional Functions
	Additional Details for Programmers

	PRINTWS Workspace
	Limitations of PRINTWS
	Using PRINTWS on Windows
	Using PRINTWS on Unix Systems

	SQL Workspace
	TCL Workspace
	TIME Workspace
	Performance Analysis Using the TIME Function

	UTILITY Workspace
	Introduction
	GPDATACV: Converting Between External and Internal Representations
	LI/LO - Boolean (Logical)
	II/IO - System/370 Integer
	PCII/PCIO - IBM PC Integer
	FI/FO - System/370 Floating Point
	IEEEFI/IEEEFO - IEEE Floating Point
	PCFI/PCFO - IBM PC Floating Point
	PDI/PDO - Packed Decimal

	GPMISC: Miscellaneous Utility Functions
	ANNOTATE - Add comments to lines
	ASSIGN - Specify values for a set of names
	CASE - Gives case attribute of active workspace
	CODECOUNT - Count lines in all workspace programs
	CONCEAL - Make a function non-suspendable
	DATETIME - Format date and time
	EXPAND - Function version of \
	FNHEADS - List headers for a set of functions
	FRAME - Put a border around a character matrix
	HEXDUMP - Produce character+hex display of data
	LINECOUNT - Count lines in a list of programs
	LIST - Convert an arbitrary array to a vector
	MASKCONV - Splits numbers into n-bit fields
	MESH - Mesh two or more vectors as prescribed by a mask
	NAMEREFS - Find all names in a defined program
	NAMES - Find all names in a string
	NHEAD - Produce character representations of index vectors
	REPLICATE - Function version of /
	REVEAL - Make a function suspendable
	TYPE - Determine if array is alphabetic or numeric
	UNIQUE - Remove duplicates
	WSID - Return active workspace name

	GPSTRIP: Removing Comments
	GPSVP: Controlling Communication through SVP
	GPTEXT: Manipulating Text
	DOUBLE - Replace selected characters with pairs
	FIND - Search for text in all workspace programs
	GATHER - Collect parsed and delimited fields
	GVCAT - Catenate rows to arrays of any rank
	HCAT - Catenate matrixes by columns
	INBLANKS - Separate characters by blanks
	LADJ - Left adjust
	LINEFOLD - Fold and indent line as specified
	MAT - Make a matrix out of any array
	MATFOLD - Fold and indent matrix lines as specified
	NOQUOTES - Remove quoted substrings
	OBLANKS - Remove outer blanks
	QREPLACE - Replace ? occurrences by character strings
	RADJ - Right adjust
	RCNUM - Produce numerical headings for rows and columns
	REPLACE - Replace substrings in character strings
	RTBLANKS - Remove trailing blanks
	VCAT - Catenate matrixes by rows
	XBLANKS - Remove all excess blanks

	GPTRACE: Setting and Removing Trace and Stop Vectors
	GPXLATE: Translating from One Character Representation to Another

	WSCOMP Workspace

	APL2 Programming Interface (Calls to APL2)
	Establishing the APL2 Environment
	Establishing the APL2 Environment on Unix Systems
	Establishing the APL2 Environment on Windows Systems

	Calling APL2 from APL2
	Controlling the APL2 Interpreter
	START - Starting the Interpreter
	STOP - Stopping the Interpreter

	Creating and Managing Workspace Objects
	PUT - Establish an Array in the Workspace
	GET - Obtain the Value of an Array from the Workspace
	FREE - Remove an Array from the Workspace

	Executing Expressions and Functions
	EXECUTE - Execute Expression or Function
	EXTOKEN - Execute Using Array Tokens

	Calling APL2 from C
	Controlling the APL2 Interpreter
	APL2PI_INIT - Starting the Interpreter
	APL2PI_TERM - Stopping the Interpreter

	Creating and Managing Workspace Objects
	Locating APL2 Objects
	Processing APL2 Objects
	Building APL2 Objects
	ARRAYSPACE - Allocate an Array in the Workspace
	ARRAYRESIZE - Change the Size of an Allocated Array
	ARRAYREF - Reference an Array in the Workspace
	ARRAYCONVERT - Convert an Array to a New Type
	FREESPACE - Remove a Reference to an Array
	TOKEN_TO_ADDRESS - Obtain the Address of an Array
	LCDR_TO_ARRAY - Convert a Linear CDR to an Array
	ARRAY_TO_LCDR - Convert an Array to a Linear CDR

	Executing Expressions and Functions
	Miscellaneous Services
	QUAD_CT - Obtain the Current Comparison Tolerance
	QUAD_IO - Obtain the Current Index Origin

	Handling Exceptions under C

	Calling APL2 from Java
	Installing Java
	Checking if Java is Installed
	Downloading Java
	Adding the Java Virtual Machine to the Search Order

	Installing the APL2-Java Interface Classes
	The APL2-Java Interface Classes
	Starting and Stopping APL2 Interpreters
	Creating and Deleting Workspace Objects
	Assigning, Associating, and Expunging Names
	Executing Expressions and Functions
	Using APL Characters in Java Programs
	Querying Workspace Object Attributes
	Retrieving Workspace Object Values
	Handling APL2 Errors
	Handling Exceptions under Java

	Calling APL2 from Java
	Calling APL2 from APL2
	Working with CDRs

	Calling APL2 from Visual Basic
	Starting and Stopping APL2 Interpreters
	Using Workspace Objects
	Assigning, Associating, and Expunging Names
	Executing Expressions and Functions
	Using APL Characters in Visual Basic Programs
	Handling APL2 Errors
	Data Conversion Between Visual Basic and APL2
	Example Visual Basic Program

	Writing Your Own External Routines
	Exception Handling in External Functions
	Loading the APL2 Fonts (Windows Only)
	Using Prebuilt DLLs (Runtime Libraries)
	Example

	Creating SYSTEM Linkage Routines
	Creating FUNCTION Linkage Routines
	The CALL Structure
	Entry and Exit Conventions
	Handling APL2 Objects
	Locating APL2 Objects
	Processing APL2 Objects
	Building APL2 Objects

	Callback Services
	ARRAYSPACE - Allocate an array in the workspace
	ARRAYRESIZE - Change the number of elements in an allocated array
	ARRAYREF - Reference an array in the workspace
	ARRAYCONVERT - Convert an array to a new type
	FREESPACE - Remove a reference to an array
	EXECUTE_APL_ESTACK - Execute an APL expression or function, return stack on error
	EXECUTE_APL - Execute an APL expression or function
	TOKEN_TO_ADDRESS - Get the address of an array
	QUAD_CT - Get the current comparison tolerance
	QUAD_IO - Get the current index origin
	LCDR_TO_ARRAY - Convert a linear CDR to an array
	ARRAY_TO_LCDR - Convert an array to a linear CDR
	DOAP1EVENTS - Allow AP 1 to handle pending events
	GETSIGNALS - Query and/or clear the signal state

	Message Codes
	MSG_APLERROR

	Sample Routines

	Writing Your Own Auxiliary Processors
	Writing Auxiliary Processors Using APSERVER
	APSERVER - APL2 Programming Interface
	An APL2 Example Using APSERVER

	APSERVER - C Programming Interface
	Defining the Process Callback Function
	Defining the Init Callback Function
	Defining the Exit Callback Function
	Defining the Wait Callback Function
	Execution Environment and Exception Handling
	A C Example Using APSERVER

	SVP Programming Interface
	PRB Requests
	SVSIGNON - Sign on to the SVP
	SVSIGNOFF - Sign off from the SVP

	WRB Requests
	SRB Requests
	Offering and Retracting Variables
	SVSHARE - Offer a variable
	SVSHARE - Match an offer
	SVRETRACT - Retract a share
	Setting and Using Data in Variables
	SVPREREF - Start variable reference
	SVREF - Finish variable reference
	SVPRESPEC - Start variable assignment
	SVSPEC - Finish variable assignment
	SVRELEASE - Release a preRef or preSpec
	Obtaining or Setting Information about Variables
	SVSHARE - Inquire about a share offer
	SVSCAN - Scan for a share offer
	SVSEEACV - Query access control
	SVSETACV - Set access control
	SVSTATE - Query variable state

	SVP Control Blocks
	Extended ID Structure
	Processor Request Block
	Share Request Block
	Wait Request Block
	SVP Requests
	SVP Return Codes
	SVP Reason Codes
	SVP Event Codes
	Function Prototypes
	Access Control Constants

	Common Data Representation
	Special Notes for General Arrays
	Byte Reversal

	The SVP Monitor Facility
	Starting the SVP Monitor Facility
	Event Traces and Messages
	Menu Options
	File
	Options
	Actions
	Info
	Statistics
	Processors

	Help

	The APL2 Runtime Library
	Restrictions of the Runtime Library
	Testing your Application with the Runtime Interpreter
	Distributing the Runtime Library
	Installing the Runtime Library
	AIX
	Linux
	Sun Solaris
	Windows

	Using The X Window System Interface
	Invoking X Window System Calls
	Calling X Window System from APL2
	Results

	Deviations From Standard X Window System Call Syntax
	Naming Conventions
	Character Strings
	Numeric or Character String (argv) Arrays
	Specifying X Window System Input Parameters
	Result and Output Parameters
	Calls Using Event Structures
	XGetEventBuffer
	Structures Within Structures
	Error Handling
	X Window System Calls Requiring Special Changes In APL2

	AP144 System Commands
)Cmds - List the available commands
)Env Get - Get the current or default list of environments
)Env Set - Change the list of environments
)RC - List a return code message
)Structs - List the available structures
)Syntax - List the syntax of a specific command
)Version - List the AP144 version identifier

	How To Use X Data Structures And Constants
	Introductory Examples

	AP144 Structure Commands
	Clear - Clear a structure instance
	Get - Build an APL2 vector from a C structure instance
	GetConst - Get all constants belonging to a particular structure
	GetFields - Get all fields of a particular structure
	GetSize - Get the size of a structure instance when allocated
	MClear - Clear a number of consecutive structure instances
	MFree - Free multiple structure instances at once
	MGet - Build an APL2 nested array from multiple C structure instances
	MNew - Create multiple new abutting structure instances
	MPut - Fill multiple structure instances with data
	New - Create a new structure instance
	NewPut - Create a new structure instance and fill it with data
	Put - Copy an APL2 nested array to a C structure instance
	SFree - Free a structure instance

	System Structures
	The HelloWorld Function
	Initialization
	Connect to X Window System
	Get More Information
	Using X Constants
	Creating a New Structure Instance
	Importing a Structure Into APL2
	Changing The Values in a Structure (Within APL)
	Updating a Structure Instance (Within C)
	Creating a Simple X Window System Window
	Using The Structure Pointer
	Freeing The Structure After Use
	Creating a Graphics Context
	Show The Window Outline
	What Events Are We Interested In?
	Get The Event Codes
	The Event Loop
	XNextEvent
	Handling The Expose Events
	Handling The ButtonPress Events
	Handling The KeyPress Events
	Mapping Notify
	Termination

	Windows Character Set Support
	Double-Byte Character Set Support
	Overview of Double-Byte Characters
	Windows Support of Double-Byte Characters

	APL2 Support of Double-Byte Characters
	Accessing Files
	Printing
	Text Windows
	Graphic Windows
	GUI Windows

	DBCS in the APL2 Programming Environment
	Interpreter
	Session Manager
	Open Object Dialog
	Object Editor
	Dialog Editor
	File Editor
	Other Tools

	Migration of DBCS Data from APL2/370

	Implementation Limits
	Deviations from APL2 Programming: Language Reference
	General Language Differences
	Restriction

	APL2 Statement Entry
	Deviation
	System Dependency

	APL2 Error Reporting
	Deviation

	Display of Output
	Deviations
	Restriction

	System Functions and Variables
	Restrictions

	Defined Functions and Operators
	Deviation
	Restrictions

	System Commands
	Deviations
	Restrictions
	System Dependencies

	Bibliography
	APL2 Publications
	Other Books You Might Need

