

APL2 Programming:

Developing GUI Applications
SC18-7383-17

APL Products and Services

IBM Silicon Valley Laboratory

555 Bailey Avenue

San Jose, California 95141

APL2@vnet.ibm.com

Copyrights

© Copyright IBM Corporation 2003, 2017 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corporation

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

1

Contents

Contents .. 1

Notices .. 4

Programming Interface Information ... 5

Trademarks ... 6

We Would Like to Hear from You ... 7

Overview ... 9

A Quick Example .. 10

GUI Fundamentals .. 12

Building Dialogs Dynamically ... 14

Creating a Dialog .. 15

Setting the Dialog’s Title .. 16

Using the Status area ... 17

Setting the Dialog’s Event Handlers ... 18

Adding a Menu Bar ... 19

Adding Controls .. 21

Size, Position, and Client Area Properties .. 23

Arranging Controls ... 25

Focus, Dialog Navigation, Groups, and Tab Stops ... 28

Mnemonics .. 29

Making Dialogs Resizable .. 31

Providing Online Help .. 34

Fonts .. 35

Building Dialogs using the Dialog Editor ... 36

Starting a New Dialog ... 37

Adding and Deleting Controls .. 38

Selecting and Arranging Controls ... 39

Controlling the Arrange Settings .. 40

Using Menus and the Status Area with Dialog Templates ... 41

Ordering Controls ... 42

Event Handlers .. 43

Changing a Dialog or Control ... 44

Providing help to your users ... 45

Testing the Dialog ... 46

Using Dialog Templates ... 47

Dialog Box Design Guidelines ... 48

Executing Dialogs ... 49

Getting User Input... 50

Supporting APL Input ... 51

Sharing Variables with Window Properties .. 52

Building More Complex Applications .. 53

Owned, Modal, and Modeless Windows .. 54

Creating Owned Dialogs ... 55

Executing Modal and Modeless Dialogs .. 56

Using Arbitrary Arrays as Event Handlers ... 58

Message Boxes.. 59

Popup Menus .. 61

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

2

Font Dialogs .. 62

File Dialogs ... 63

Displaying File Information in Dialogs .. 64

Tab Controls.. 66

Split Dialogs.. 68

Displaying Graphics in a Dialog ... 69

Using AP 145 with other Auxiliary Processors .. 70

Remaining Responsive During Long Operations ... 72

Using AP 145 Services ... 74

Using System Services .. 76

Objects: Timers and DDE ... 88

Timers ... 89

Dynamic Data Exchange... 90

Class Reference ... 93

Dialog .. 94

ActiveX ... 99

Check box ... 102

Combo box .. 104

Custom .. 108

Date ... 112

Entry field ... 114

Frame .. 116

Graphic Windows (AP 207).. 117

Grid ... 118

Group box ... 125

List box ... 127

Listview... 130

Menus and Menu Items ... 135

MLE .. 136

Month .. 139

Progress Bar .. 142

Push button.. 144

Radio button .. 146

Rectangle... 148

Scroll bar ... 149

Slider ... 151

Spin button .. 154

Tab .. 157

Text ... 160

Time .. 162

Treeview ... 164

Desktop ... 168

Common Property Reference .. 170

Object Reference ... 176

DDE DATA .. 177

DDE COMMAND .. 178

DDE SERVER .. 179

DDE TOPIC .. 180

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

3

DDE ITEM.. 181

TIMER .. 182

GUITOOLS Function Reference .. 183

GPDLGPROCESS - Dialog Processing Tools ... 184

GPUTILITY - Utilities ... 204

GPPRINT - Printing Tools and Constants .. 208

GUIVARS Constants Reference ... 209

Accelerator Flags .. 210

Accelerator Virtual Key Codes ... 211

Menu Style Flags .. 212

Menu Attribute Constants ... 213

Message Box Style Flags .. 214

Message Box Result Codes ... 215

DEMO145 Function Reference .. 216

Appendix A: AP 145 Services .. 218

Apl Services .. 220

Appendix B: Where to find Tools, Samples, and Other Information ... 233

Appendix C: Using APL2, DDE and Microsoft Excel ... 235

Appendix D: Using APL2, DDE and Microsoft Access... 236

Appendix E: Microsoft Windows Common Control Library ... 242

Appendix F: GDI+ Graphics Device Interface Plus ... 243

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

4

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make

these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is

not intended to state or imply that only IBM's product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe on any of IBM's intellectual property rights may

be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction

with other products, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject material in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries, in

writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

5

Programming Interface Information

This user's guide is intended to help programmers write applications in APL2. It documents General-Use

Programming Interface and Associated Guidance Information provided by APL2. General-use programming

interfaces allow the customer to write programs that obtain the services of APL2.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

6

Trademarks

IBM Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

APL2

IBM

OS/2

Presentation Manager

VisualAge

Other Trademarks

The following terms are trademarks of the Microsoft Corporation:

ActiveX

Excel

Internet Explorer

Microsoft

Visual Basic

Visual Studio

Windows

Windows NT

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

7

We Would Like to Hear from You

Developing GUI Applications with APL2

Please let us know how you feel about this online documentation by placing a check mark in one of the columns

following each question below:

To return this form, print it, write your comments, and then mail it to:

 International Business Machines Corporation

 APL Products and Services

 PGUA/E1

 555 Bailey Avenue

 San Jose, California

 95141

 USA

For postage-paid mailing, please give the form to your IBM representative.

You can also send us your comments on Internet. To send us this form, copy it to a file, write your comments

using a file editor, and then send it to:

 apl2@vnet.ibm.com

Overall, how satisfied are you with the online documentation?

 Very Very

 Satisfied Dissatisfied

 1 2 3 4

 Overall Satisfaction ___ ___ ___ ___

Are you satisfied that the online documentation is:

 Accurate ___ ___ ___ ___

 Complete ___ ___ ___ ___

 Easy to find ___ ___ ___ ___

 Easy to understand ___ ___ ___ ___

 Well-organized ___ ___ ___ ___

 Applicable to your tasks ___ ___ ___ ___

Please tell us how we can improve the online documentation:

 __

mailto:apl2@vnet.ibm.com

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

8

 __

 __

Thank you! May we contact you to discuss your responses?

 ___Yes ___No

Name:

 __

 Title:

 __

 Company or Organization:

 __

 Address:

 __

 __

 __

 Phone:

 (___)___

 Fax:

 (___)___

 E-mail:

 __

Please do not use this form to request IBM publications. Please direct any requests for copies of publications, or

for assistance in using your IBM system, to your IBM representative or to the IBM branch office servicing your

locality.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

9

Overview

Workstation APL2 includes tools for building Graphical User Interface (GUI) applications on Microsoft®

Windows®. These tools make it easy to build applications with the interface features users have come to

expect.

This document describes the tools and procedures used to build GUI applications.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

10

A Quick Example

Here is an example that demonstrates how easy it can be to build a GUI application:

And here is the window the example creates:

Briefly, the example creates a window with a typing area, sets the data displayed by the window, specifies what

should happen when the user closes the window, and retrieves the user’s data after the window has been closed.

Here are some notes about the sample. It is not important that you understand them all now, but they should

give you the flavor of GUI programming in APL2.

 CREATEDLG is used to create an empty visible dialog. (The window with a titlebar.)

 SET_PROPERTY is used to set properties, or attributes, of windows. In this case, it sets the dialog's title.

 CREATECTL creates components such as list boxes, push buttons, and here, a Multi-Line Edit field.

 The EVENTS property specifies what should happen in response to user actions. In this case, we specify

the program should stop waiting for events, or branch to zero, when the user closes the dialog.

 EXECUTEDLG is used to actually wait for and respond to user actions.

 GET_PROPERTY retrieves window properties. In this case, it retrieves the contents of the typing area.

)LOAD 2 GUITOOLS
SAVED 2002-10-01 16.05.15 (GMT-4)
Licensed Materials - Property of IBM
(c) Copyright IBM Corp. 1994, 2002.
 DIALOG←CREATEDLG 'VISIBLE'
 SET_PROPERTY DIALOG 'Sample Title'
 MLE←CREATECTL DIALOG 'MLE' '' 32776
 SET_PROPERTY MLE ('Sample data' 'More data')
 'EVENTS' SET_PROPERTY DIALOG (1 2⍴'CLOSE' '→0')
 0 EXECUTEDLG DIALOG
 DATA←GET_PROPERTY MLE
 DESTROYDLG DIALOG

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

11

 DESTROYDLG is used to destroy the dialog. It ends the program.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

12

GUI Fundamentals

This section is a short course on Graphical User Interface concepts as provided by APL2. If you are new to GUI

applications, this section should provide you with the information you need to understand the world of GUI

programming.

Graphical User Interfaces enable applications to use windows to interact with users. Applications that use

standard graphical user interfaces have a consistent look and feel, which makes them easier for users to learn.

There are two main features of APL2 GUI applications: windows and event handlers. Windows are the

components of the user interface that the user interacts with. Event handlers are APL expressions to be

executed in response to user actions.

Types of Windows

Applications usually have a top-level window that contains a titlebar and a border. These windows are called

dialog windows. Dialog windows provide a consistent user interface for application management. For

example, they typically include a border, a titlebar, and a system menu containing Move, Size, and Close.

Components such as push buttons, list boxes, and entry fields are called control windows or simply controls.

Each different type of control window is called a class. Each class of control window is used to display

information in a specialized way or to gather specific types of information. For example, entry fields display

and gather text data.

Styles and Properties

Both dialog and control windows have styles and properties. Styles are set when the window is created and

generally can't be changed for the life of the window. For example, the Max style is used to create a dialog with

a Maximize button. Properties are set, and can be changed, after the window is created. For example, the SIZE

property is used to set or query the size of a window.

Parents and Children

Controls within a dialog are said to be children of the dialog. Likewise, the dialog is the parent of its controls.

Parent windows control the appearance of child windows. For example, if a dialog is invisible, all its children

are hidden.

Events

Windows generate events in response to user actions. For example, when a user presses a push button, the

button generates a Command event. Some classes of windows generate many different kinds of events, and

some generate no events at all. For example, dialogs generate events for many user actions including Close,

Minimize, and Maximize. Text controls generate no events at all since they do not support any user

interactions.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

13

AP 145 performs default processing for some, but not all, events. For example, when the user presses a dialog’s

Maximize button, AP 145 automatically maximizes the dialog. When the user presses a dialog’s Close button,

AP 145 does not process the event. The application must process the Close event.

To process a window’s events, an application must specify event handlers for the events. An event handler is

processed when an event occurs. Event handlers are assigned to windows' EVENTS property. Event handlers

are only required for the events the application needs to detect.

Creating Windows

APL2 supports two techniques for designing and creating application windows: dynamic dialog creation and

dialog editing.

The CREATEDLG and CREATECTL functions are used to create dialogs and controls dynamically. Parameters

of these functions are used to specify window styles. First an empty dialog is created with CREATEDLG and

then controls are created with CREATECTL. The SET_PROPERTY and GET_PROPERTY functions are then

used to set window properties such as size and position.

The Dialog Editor is a graphical tool for designing dialogs. Using the dialog editor you can drag and drop

controls on a dialog, resize and arrange windows, and specify window styles, event handlers, and other

properties. The Dialog Editor produces dialog templates. A dialog template defines a dialog and all the

controls within it. The CREATEDLG function is then used to create a complete application window from the

dialog template. Dialog templates can also be created by referencing the TEMPLATE property of a dynamically

created dialog.

Dynamic creation supports definition of application windows at runtime. The Dialog Editor supports use of

predefined application windows. The Dialog Editor and dialog templates can provide higher performance

window creation at the expense of some runtime flexibility. Which technique you use may depend on the

degree of control you need at runtime and your preferred style of programming.

Running GUI Applications

Once an application has created its dialogs and controls, including the appropriate event handlers, it typically

calls an APL2 cover function to wait for events. APL2 handles execution of the event handlers. It is important

to realize this means that GUI applications usually do not have a single sequential list of instructions. Rather,

they have a series of event handler expressions that are executed in response to user actions.

For example, an application could specify the event handler expressions 'PUSH' for a push button’s Command

event and '→0' for a dialog’s Close event. When the button was pushed, the function PUSH would be

executed. When the user closed the window, the Close event handler would cause APL2 to stop waiting for

events.

What's to Come

The next chapter of this book describes creating dialogs and controls dynamically. It provides a step-by-step

explanation of the use of the GUI application development tools. The following chapter describes using the

Dialog Editor to design windows. Some of the material in the first chapter is also applicable to dialogs created

with the dialog editor. You should read both chapters so that you understand all the facilities that are available.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

14

Building Dialogs Dynamically

The first step in building a GUI application is to load the tools used to create and process windows:

)LOAD 2 GUITOOLS
SAVED 2002-10-01 16.05.15 (GMT-4)
Licensed Materials - Property of IBM
(c) Copyright IBM Corp. 1994, 2002.

The GUITOOLS workspace contains many tools for use in GUI applications. This section will provide step-by-

step instructions for using the basic tools. For more information on the GUITOOLS workspace, see Where to

find Tools, Samples, and Other Information.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

15

Creating a Dialog

To begin, use the CREATEDLG function to build a dialog:

 DIALOG←CREATEDLG 'MIN'

The right argument of CREATEDLG is a list of dialog styles. By default, CREATEDLG creates a dialog with a

system menu, a titlebar, and a 3 dimensional border. The statement above adds a minimize button to the dialog.

For a complete list of the supported dialog styles, see Class Reference.

By default the dialog is initially invisible. This lets the application initialize the window by adding and

positioning controls before showing the dialog to the user. If you want to be able to see the dialog when it is

initially created, add the VISIBLE style or use the SHOW function. After it is visible, the dialog looks like this:

CREATEDLG returns an integer scalar called a window handle that uniquely identifies the dialog. The

application can use the window handle to refer to the window in calls to other functions. For example, you can

destroy the dialog like this:

 DESTROYDLG DIALOG

The GUITOOLS functions use Auxiliary Processor 145 to create and manage windows. The CREATEDLG

function shares a variable named SV145 with AP 145. This variable should be localized in each application’s

top-level function. When the variable is retracted, all windows created using it are destroyed. It is good style

however, to explicitly destroy windows during application termination.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

16

Setting the Dialog’s Title

Use the SET_PROPERTY function to set the dialog’s titlebar:

 'DATA' SET_PROPERTY DIALOG 'Sample Title'

In this example, the right argument of SET_PROPERTY has 2 elements. The first element is the handle

returned by CREATEDLG and the second element is the text to display in the titlebar.

The left argument of SET_PROPERTY is the name of a property. The DATA property is used to set the data

displayed by a window. Since dialogs display data in their titlebars, the DATA property is used to set dialog

titlebars. The dialog now looks like this:

Different properties for different classes of windows require different types of values. In this case, the dialog

window’s DATA property must be a character vector. For more information about the properties supported by

the different classes of windows see Class Reference.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

17

Using the Status area

Each dialog has a status area that can be used for displaying messages. By default, the status area is invisible.

The STATUS VISIBLE property is used to make it visible:

 'STATUS VISIBLE' SET_PROPERTY DIALOG 1

Notice the STATUS VISIBLE property uses a different type of value. It requires a Boolean value; 1 means

visible and 0 means invisible.

Use the STATUS DATA property to set the message displayed in the dialog’s status area:

 'STATUS DATA' SET_PROPERTY DIALOG 'Initial message'

Now the dialog looks like this:

Like the dialog’s DATA property, the STATUS DATA property requires a character vector value.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

18

Setting the Dialog’s Event Handlers

The EVENTS property is used to specify the event handlers that should be executed in response to user actions.

The EVENTS property is a 2-column matrix. For windows, each row specifies an event name and an event

handler.

 'EVENTS' SET_PROPERTY DIALOG (1 2⍴'Close' '→0')

This example specifies that when the Close event occurs, the event handler →0 should be executed. (The Close

event occurs when the user closes the dialog.)

The event handler is a character vector and can be any APL2 expression. In this case, the branch to zero causes

APL2 to stop waiting for events and return to the application.

Note: Event handlers are usually character vectors. However, they can also be arbitrary arrays. For more

information, see Using Arbitrary Arrays as Event Handlers.

For a complete list of the events supported by each class of window, see Class Reference.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

19

Adding a Menu Bar

A menu bar provides users with access to an application’s commands. Each main application window should

have a menu bar.

Use the CREATEMENU tool to add a menu bar to a dialog. The simplest menu bar is just a row of choices:

 ARRAY←(11 'Quit') (12 'Start') (13 'Stop')
 MENU←CREATEMENU DIALOG ARRAY

The right argument of CREATEMENU is a dialog handle and an array of menu items. For the simple menu bar

above, each menu item contains an integer and a character vector. The integers are used to identify the menu

items when setting properties.

CREATEMENU returns a handle that identifies the menu. It is used to set properties for the menu and its menu

items.

Menus can also contain pull-down menus. Selecting Commands in the window below displays a pull-down

menu:

 FILE←(0 'File') (11 'Quit')
 CMDS←(0 'Commands') (21 'Start') (22 'Stop')
 MENU←CREATEMENU DIALOG (FILE CMDS)

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

20

Notice in this case the array passed to CREATEMENU is two vectors of menu items. Each level of nesting adds

a pull-down menu. The first item in each vector of menu items supplies the title of the pull-down menu.

Subsequent items provide the pull-down menu's items.

Menu items that do not display pull-down menus correspond to application actions and must be assigned unique

positive integer identifiers less than or equal to 65535. Menu items that display pull-down menus do not

correspond to application actions and their identifiers can be zero. In the example above, because the File and

Commands choices display pull-down menus, their identifiers are both zero.

Menu items with identifiers 1 and 2 have special behavior. When the user hits the Enter key the event for menu

item with identifier 1 is signaled if no control with identifier 1 exists. When the user hits the Escape key the

event for menu item with identifier 2 is signaled if no control with identifier 2 exists.

Continuing with our dialog, here is how to add a menu bar with one pull-down menu. Notice the use of enclose

to force creation of a pull-down menu:

 MENU←CREATEMENU DIALOG (,⊂(0 'File')(11 'Quit'))

The dialog now has a File pull-down menu and looks like this:

For further information about creating menus, see and the DEMO_MENU function in the

DEMO145 workspace.

Setting the Menu’s Event Handlers

The EVENTS property is also used to specify event handlers that should be executed in response to user

selections of menu choices. The EVENTS property for menus is a 2-column matrix. Each row specifies a

menu item identifier and an event handler.

 'EVENTS' SET_PROPERTY MENU (1 2⍴11 '→0')

This example associates the event handler →0 with the menu item that has identifier 11, in the example, the Quit

item.

Menu items that display pull-down menus do not generate events. Do not specify event handlers for them.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

21

Adding Controls

Use the CREATECTL function to add control windows to dialogs:

 TEXT←CREATECTL DIALOG 'TEXT' '' 101
 MLE←CREATECTL DIALOG 'MLE' 'HSCROLL VSCROLL'
 OK←CREATECTL DIALOG 'PUSH BUTTON' 'DEFAULT' 1
 CANCEL←CREATECTL DIALOG 'PUSH BUTTON' '' 2

The CREATECTL function’s right argument has 3, 4, or 5, elements:

[1] A handle returned by CREATEDLG specifying the parent window.

[2] A character vector containing the class of control to create.

[3] A character vector containing a list of styles.

[4] An optional integer scalar or character vector used to identify the control

In addition to a window handle, each control window can have an integer identifier and a character name.

They can be used with the parent window’s handle to refer to the control in calls to GUITOOLS functions.

If an integer is supplied to CREATECTL, it is used as the control’s identifier. If a character vector is

supplied, it is used as the control’s name. The name is case sensitive. The identifier defaults to 0 and the

name defaults to null. The ID and NAME properties can be used to reference the control’s identifier and

name.

You can use identifiers of 1 and 2 or names of ‘OK’ and ‘CANCEL’ with push buttons to automatically

assign the text Ok and Cancel to the buttons.

If the dialog will have only one visible control, you can use identifier 32776 or the name ‘CLIENT’ to make

the control automatically fill the dialog’s client area. This control is automatically resized as the dialog is

resized.

When using any value other than 32776 or ‘CLIENT’, CREATECTL creates the control with a default size

that is appropriate to display data using the dialog’s current font. For example, push buttons are the correct

height to display a line of text. This fact can be useful when resizing controls.

[5] Control Data

Control data specifies the amount or range of data the control will contain. It is only used with grid and

slider controls.

For detailed information about the supported control classes and styles, see Class Reference.

CREATECTL returns a window handle that uniquely identifies the control. The handle can be used to set and

reference the control’s properties. If the control was created with a nonzero identifier, the parent window’s

handle and the identifier can also be used. For example, these two statements have the same effect:

 SET_PROPERTY TEXT 'Sample Text'
 SET_PROPERTY DIALOG 'Sample Text' 101

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

22

The example demonstrates that the text control’s properties can be set using either the control’s handle or the

parent’s handle and the control’s identifier. Notice also that if no left argument is supplied to

SET_PROPERTY, the default property of DATA is set.

The WINDOWFROMID function can be used to retrieve the handle of a control from the parent window handle

and the control’s identifier or name:

 ⎕←DIALOG←CREATEDLG 'TITLEBAR'
16188708
 ⎕←TEXT←CREATECTL DIALOG 'TEXT' '' 'CTLNAME'
13763616
 WINDOWFROMID DIALOG 'CTLNAME'
13763616

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

23

Size, Position, and Client Area Properties

The CREATEDLG and CREATECTL functions create windows with default sizes and positions. CREATECTL

positions all controls at the lower left corner of the parent so our example dialog now looks like this:

Notice that the controls overlap each other and need to be repositioned.

Windows can be resized and repositioned using the SIZE and POSITION properties.

The SIZE property is the width and height of the window in pixels.

 'SIZE' SET_PROPERTY DIALOG (50 100)

The SIZETOTEXT function can be used to resize control windows so they are the correct size to display their

data. For example, the pictures below show a button with the default size and after it has been resized with

SIZETOTEXT.

 BUTTON←CREATECTL DIALOG 'PUSH BUTTON' ''
 SET_PROPERTY BUTTON 'Button'
 SIZETOTEXT BUTTON

The POSITION property is two integers that indicate the distance in pixels of the window’s lower left hand

corner from the lower left hand corner of the parent window.

 'POSITION' SET_PROPERTY DIALOG (400 200)

If the parent is the desktop (the default for dialogs), the distances are from the lower left hand corner of the

screen.

It is often useful to position a window relative to its parent’s client area. The client area is the area within the

parent’s borders, menu, status area, and scroll bars. The CLIENT POSITION property is the position of the

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

24

window relative to the lower left hand corner of the parent’s client area. For example, compare these two

images:

The left button was positioned using the POSITION property; the right with the CLIENT POSITION property:

 'POSITION' SET_PROPERTY BUTTON (0 0)
 'CLIENT POSITION' SET_PROPERTY BUTTON (0 0)

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

25

Arranging Controls

Although the CLIENT POSITION and SIZE properties can be used to arrange controls, the RESIZE, ALIGN,

and SPACE functions make it easy.

RESIZE resizes controls so they have the same width or height. The position of the controls is not changed.

For example, consider these two pictures:

The two buttons were made the same width with this statement:

 0 RESIZE BUTTON1 BUTTON2

The left argument of RESIZE is a Boolean scalar. A value of 0 indicates the controls should be made the same

width; 1 indicates they should be made the same height.

The right argument is a list of control handles. All the controls are made the same width or height as the first

control.

The ALIGN function aligns a list of controls. The size of the controls is not changed. Here are another two

pictures:

The two buttons were aligned along the bottom edge using this statement:

 0 0 0 1 ALIGN BUTTON1 BUTTON2

The left argument of ALIGN indicates which edges of the controls should be aligned. It is a Boolean vector

containing 4 elements corresponding to the left, top, right, and bottom edges. 1 should be specified for the edges

that should be aligned. (1 should not be specified for two opposite edges.)

The right argument is a list of control handles. The controls are aligned along the specified edges of the first

control in the list.

SPACE repositions a list of controls so that they are evenly spaced. The size of the controls is not changed.

Here are still two more pictures:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

26

The two buttons were repositioned so they are 5 pixels apart with this statement:

 0 5 SPACE BUTTON1 BUTTON2

The left argument of SPACE is an integer vector containing 2 elements. The first element is 0 or 1. 0 indicates

the controls should be arranged horizontally; 1 indicates they should be arranged vertically. The second

element indicates how far apart the controls should be spaced. The distance is expressed in pixels.

The right argument is a list of control handles. The position of the first control is used as the starting point for

positioning the other controls.

After rearranging controls, it is usually necessary to resize the dialog so it fits the rearranged controls. The

CLIENT SIZE property can be use to resize a dialog so its client area is a specific size.

 'CLIENT SIZE' SET_PROPERTY DIALOG (200 200)

The CLIENT SIZE property is the width and height of the window’s client area in pixels. Usually, you

calculate the position of the right most and top most control edges and add a few pixels for spacing.

Going back to our earlier example, here are is how to arrange the Text, MLE, Ok, and Cancel controls and

resize the dialog to fit them:

 SIZETOTEXT TEXT
 'CLIENT POSITION' SET_PROPERTY OK (5 5)
 0 0 0 1 ALIGN OK CANCEL
 1 0 0 0 ALIGN OK MLE TEXT
 0 5 SPACE OK CANCEL
 1 5 SPACE OK MLE TEXT
 WIDTH←+/1⊃¨'CLIENT POSITION' 'SIZE' GET_PROPERTY¨MLE
 HEIGHT←+/2⊃¨'CLIENT POSITION' 'SIZE' GET_PROPERTY¨TEXT
 'CLIENT SIZE' SET_PROPERTY DIALOG (WIDTH HEIGHT+5)

And here’s how the dialog appears after being rearranged:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

27

The Desktop

Finally, it is nice to position the dialog on the screen. To position the dialog, you need the screen size. Use 1

for the handle of the desktop and query the SIZE property:

 SCREEN←'SIZE' GET_PROPERTY 1

You can then use the screen size to calculate where to position a dialog. For example, these statements will

center a dialog:

 SCREEN←'SIZE' GET_PROPERTY 1
 SIZE←'SIZE' GET_PROPERTY DIALOG
 POSITION←⌊(SCREEN-SIZE)÷2
 'POSITION' SET_PROPERTY DIALOG POSITION

Notice that floor is used because the POSITION property requires integer values.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

28

Focus, Dialog Navigation, Groups, and Tab Stops

One control at a time receives keyboard input. The control receiving keyboard input is said to have the focus.

Only controls that accept input can have the focus.

The user can move focus between a dialog’s controls using either the mouse or the keyboard. A well-designed

dialog should make it easy for the user to navigate the dialog’s controls using the keyboard.

By default, the Tab key moves focus between a dialog’s controls in the order they were created. Therefore,

create controls in an order so that pressing the Tab key moves the focus between the controls from top to bottom

and left to right. Use the NOTABSTOP style to prevent the Tab key from moving focus to a control.

You can group controls so that the Arrow keys move focus between the controls in the group. By default, all

controls begin a new group. To create a group with multiple controls, create the first control in the group

normally. Then, create all the other controls in the group with the NOGROUP style. Also, use the

NOTABSTOP style. With these settings, the user can tab between the groups and use the Arrow keys to move

focus between the controls within the groups.

For example, adding the NOGROUP and NOTABSTOP styles to the Cancel button in the example would make

the Arrow keys move the focus between the two buttons and the Tab key move between the MLE and the Ok

button.

 CANCEL←CREATECTL DIALOG 'PUSH BUTTON' 'NOGROUP NOTABSTOP' 2

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

29

Mnemonics

In addition to the Tab and Arrow keys, Mnemonics also aid dialog navigation. A mnemonic is a character in a

button or static control’s data. When the user presses the character, or Alt and the character, the dialog moves

the focus to the control associated with the mnemonic.

Create a mnemonic by inserting an ampersand (&) immediately before the selected character in the text of the

control. For example, here is a dialog that uses mnemonics:

The mnemonics were set like this:

 SET_PROPERTY LNAME '&Name'
 SET_PROPERTY LADDR '&Address'
 SET_PROPERTY OK '&Ok'
 SET_PROPERTY CANCEL '&Cancel'

When the user presses Alt+N, focus moves to the Name entry field. When the user presses Alt+A, focus moves

to the Address entry field. When the user presses Alt+O, the Ok button is pushed. When the user presses

Alt+C, the Cancel button is pushed.

When the user presses a key, if the control that has focus can process the key, the dialog simply sends the

keystroke to the control. In the example above, if an entry field has focus and the user simply presses a

character, the dialog sends the character to the entry field.

If the control that has the focus cannot process the keystroke, the dialog processes it as a mnemonic. In the

example above, if an entry field has focus and the user presses Alt and a character, the entry field cannot

process the keystroke combination and the dialog processes it as a mnemonic. If a button has focus,

both a character and Alt plus a character are processed as mnemonics since buttons do not accept character

input.

Dialogs process mnemonics as follows:

1. The dialog locates the control containing the mnemonic.

2. If the control is a push button, the button issues a Command event.

3. If the control with the mnemonic does not accept input, the dialog moves the focus to the next visible

enabled control that does not have the NOTABSTOP style.

Mnemonics also aid menu navigation. Create a menu mnemonic by inserting an ampersand (&) immediately

before the selected character in the text of a menu item. When the user presses Alt, the focus moves to the

menu. The user can then press a mnemonic character to select a menu choice. Mnemonic characters on menus

may not appear until the user presses Alt. Users can control when mnemonic characters appear by setting the

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

30

Hide keyboard navigation indicators until I use the Alt key checkbox on the Effects page of the Windows

Display Properties notebook.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

31

Making Dialogs Resizable

APL2 provides several facilities for building resizable dialogs.

The SIZEBORDER dialog style enables a dialog to be resized. The MIN and MAX dialog styles add minimize

and maximize buttons to the dialog’s titlebar.

The MINIMUM SIZE and MAXIMUM SIZE properties are used to specify the limits to which a dialog can be

resized. Typically, the MINIMUM SIZE property is set to the minimum size that displays the critical features

of a dialog. The MAXIMUM SIZE property is set to the screen size. For example:

 'MINIMUM SIZE' SET_PROPERTY DIALOG (400 200)
 'MAXIMUM SIZE' SET_PROPERTY DIALOG SCREEN

The STATE MINMAX property can be used to set or determine whether a dialog has a normal size or is

maximized or minimized.

 'STATE MINMAX' SET_PROPERTY DIALOG 0 ⍝ Normal
 'STATE MINMAX' SET_PROPERTY DIALOG 1 ⍝ Maximized
 'STATE MINMAX' SET_PROPERTY DIALOG 2 ⍝ Minimized

When a dialog is resized, the controls within it usually need to be repositioned and resized so they maintain

their relative positions within the dialog. For a dialog with a single control, the control can be given the

identifier of 32776 and it is automatically resized to fit the dialog’s client area. For dialogs with multiple

controls, the OFFSET property is used.

The OFFSET property is set for each control within a resizable dialog. Its value is four integers that specify the

percentage of the change in the dialog’s size that is added to the position of the control’s edges.

For example, examine the two images below. They are both pictures of the same dialog. In the right image, the

dialog has simply been enlarged by dragging the right edge of the dialog to the right.

Notice that the dialog contains two controls. As the dialog is resized, the push button remains the same size and

at the same position in the lower left hand corner of the dialog. However, the MLE’s width has changed so that

its right edge remains the same distance from the dialog’s right edge.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

32

Consider what happened when the right edge of the dialog was dragged to the right. The dialog’s width was

increased by a specific amount. In order for the MLE’s right edge to remain the same distance from the

dialog’s right edge, the width of the MLE had to change by the same amount that the dialog’s width changed.

The following statements specified this behavior:

 'OFFSET' SET_PROPERTY BUTTON (0 0 0 0)
 'OFFSET' SET_PROPERTY MLE (0 100 100 0)

The OFFSET property specifies the percentage of the change in the dialog’s size that is added to the position of

each of a control’s left, top, right, and bottom edges. In the example above:

 The button’s position and size remain the same as the dialog is resized so 0% of the change was added to

the position of the button’s edges.

 The MLE’s edges all stay the same distance from the edges of the dialog. So 100% of the change in the

dialog’s height is added to the MLE’s top edge and 100% of the change in the dialog’s width is added to

the MLE’s right edge.

Consider another two images:

This is the same dialog with the position of the two controls reversed. Consider what happened when this

dialog was resized

The MLE’s behavior remains the same. The right edge still maintains the same distance from the dialog’s right

edge.

The button’s behavior is quite different though.

The right edge of the button now behaves like the right edge of the MLE. It maintains the same distance from

the right edge of the dialog.

And, the left edge of the button also maintains the same distance from the right edge. In other words, when the

dialog was resized, the amount of the change was added to the position of both the button’s left and right edges.

The following statements specified the new behavior:

 'OFFSET' SET_PROPERTY MLE (0 100 100 0)

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

33

 'OFFSET' SET_PROPERTY BUTTON (100 100 100 100)

The OFFSET property still specifies the percentage of the change in the dialog’s size that is added to the

position of each of the controls' left, top, right, and bottom edges. In this example:

 The MLE’s edges all stay the same distance from the edges of the dialog. So again, 100% of the change

in the dialog’s height is added to the MLE’s top edge and 100% of the change in the dialog’s width is

added to the MLE’s right edge.

 The button’s position and size remain the same relative to the dialog’s upper right hand corner. Both the

left and right edges of the button remained the same distance from the dialog’s right edge and both the

top and bottom edges remained the same distance from the dialog’s top edge. As the dialog was resized,

100% of the change was added to the position of the button’s four edges.

Consider these two images:

The dialog was created with these statements:

 DIALOG←CREATEDLG 'SIZEBORDER MIN MAX'
 BUTTON←CREATECTL DIALOG 'PUSH BUTTON' ''
 CENTER_CHILD BUTTON
 'OFFSET' SET_PROPERTY BUTTON (50 50 50 50)

The CENTER_CHILD function was used to center the button in the dialog’s client area. The OFFSET property

was used to maintain the button’s position in the center of the dialog.

The OFFSET property is very powerful. It can be used to maintain controls' positions relative to any of the

edges of a dialog. For further information about using the OFFSET property, examine the DEMO_RESIZE

function in the DEMO145 workspace.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

34

Providing Online Help

You should strive to design dialogs that are easy to understand and use. To help your users understand your

application, you can provide online help through the TOOL TIP and CONTEXT HELP properties.

The TOOL TIP property is a character vector that contains a one-line description of the purpose of a control.

The tip is displayed when the user moves the mouse pointer over the control and leaves it there for a moment.

 'TOOL TIP' SET_PROPERTY CONTROL 'Tool tip text'

The CONTEXT HELP property is a vector of character vectors and provides several lines of descriptive text

about the purpose of a control or group of controls.

 'CONTEXT HELP' SET_PROPERTY CONTROL ('Context' 'Help')

Setting the CONTEXT HELP property adds a question mark button to the dialog’s titlebar. The user requests

context help by using any of the following methods:

 Pressing the question mark button and then clicking on a control

 Right clicking on a control and selecting What's This? from the popup menu

 Giving focus to an input control and then pressing F1

Note: The question mark button is not added to the titlebar if the dialog contains a maximize button and it does

not work if the dialog has either a maximize or minimize button. Do not use the Min and Max styles with

dialogs that provide context help.

The system automatically displays the appropriate contextual help when the user performs any of these actions.

Use the CONTEXTHELP function to display contextual help in response to other events.

To display the same contextual help text for all the controls in a group, the CONTEXT HELP property can be

set for only the first control in the group. For example, this statement could be added to the example at the end

of the Arranging Controls section:

 'CONTEXT HELP' SET_PROPERTY OK ('CONTEXT' 'HELP')

When the user requests help for a control, if the control does not have context help and has the NOGROUP

style, the system displays the context help for the first control in the group.

Users can control the font used for tool tips and context help by setting the ToolTip item on the Appearance

page of the Windows Display Properties notebook.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

35

Fonts

Use the FONT property to change how a control’s data is displayed. The FONT property is a character vector

containing the font’s size and face name. The size and face name are separated by a period. The size is

expressed in points. A point is 1/72 inch.

 DIALOG←CREATEDLG 'SIZEBORDER'
 BUTTON←CREATECTL DIALOG 'PUSH BUTTON' ''
 SET_PROPERTY DIALOG 'Font Sample'
 SET_PROPERTY BUTTON 'Sample Text'
 'FONT' SET_PROPERTY BUTTON '16.Cooper Black'
 SIZETOTEXT BUTTON

Notice that the SIZETOTEXT function uses the control’s current font.

If no font is explicitly set for a control, it will use the same font as its parent. To set the font for all the controls

in a dialog, set the dialog’s FONT property before creating the controls.

For portability with older systems, AP 145 uses a default font that is different than the Windows default. To use

the Windows default, use MS Shell Dlg as the face name.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

36

Building Dialogs using the Dialog Editor

The Dialog Editor is a graphical tool for designing dialogs. Here is a picture of a dialog editor window:

To open the Dialog Editor, select the Open Object option in the Edit pull-down menu. Select the Type of

Objects choice Variables, check the Dialog Template option, type the template’s name, and push Ok. You

can also open an existing dialog template in any Session Manager or Object Editor window by double-clicking

on the template’s name.

The Dialog Editor includes extensive online help. Access the online help by selecting a choice from the Help

menu or by pressing F1.

The Dialog Editor saves dialog designs in arrays called dialog templates. A dialog template can be used as the

right argument of CREATEDLG to create a dialog and all its child controls. Dialog templates are saved in the

workspace as character vectors.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

37

Starting a New Dialog

When you open a new dialog template, the Dialog Editor window appears and an empty dialog appears in the

lower-left corner of the screen. A dotted border encloses the dialog. The dotted border indicates the dialog is

selected for editing. Information about the selected dialog or control is displayed in the dialog editor’s status

area.

Change the dialog’s title by typing in the Text entry field in the editor’s status area.

The dotted border of the selected dialog or control includes drag handles at the corners and middles of the

edges. Resize the dialog by dragging the drag handles. Move the dialog by dragging the titlebar or pressing the

Arrow keys. Notice that as you resize and move the dialog, the values in the dialog editor’s status area change.

These values indicate the dialog’s position and size.

Set the dialog’s styles by double clicking on the dialog or selecting Styles from the Edit menu. This opens the

Dialog box styles window. Press Help to learn about the different styles. Style changes will be visible when

you finish and press OK.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

38

Adding and Deleting Controls

The Control menu lists all the classes of controls that you can put in a dialog. Many of the classes of controls

are also represented in the control palette on the right hand side of the dialog editor’s window.

Add a control by selecting a control, either from the Control menu or the control palette. When you select a

control, the mouse pointer becomes a small plus sign (+). Position the pointer where you want the control and

press mouse button 1. Release the button immediately to create a control with a default size. Drag the mouse

before releasing the button to set the size as you create the control.

For grid and slider controls, a dialog will appear in which you must enter initialization data for the control.

Complete this dialog and press Ok.

Select a control by clicking on it. The selected control, or the dialog if no control is selected, is enclosed in a

dotted border. The dotted border indicates the window is selected. The Dialog Editor’s status area displays

information about the currently selected window. The choices on the menus affect the currently selected

window.

Some types of controls support initial data. Type in the status area’s Text entry field to set these controls' initial

data.

Resize the selected control by dragging the corners and edges of the dotted border. Move the control by

dragging the control or pressing the Arrow keys. Notice that as you resize and move the control, the values in

the dialog editor’s status area change.

The Dialog Editor automatically assigns identifiers to controls as they are created. The first control has

identifier 101, the second has 102, and so on. Identifiers are used with the dialog’s handle to refer to the control

when using functions from GUITOOLS.

The selected control’s identifier is displayed in the status area. Change a control’s identifier by typing an

integer in the Id entry field. Each non-zero identifier must be unique.

Several common identifiers can be accessed using the Id combo box. Click in the combo box and press the up

and down arrow keys to view the common identifiers. DID_OK and DID_CANCEL are usually used for push

buttons, (Unused) is used for non-input controls, and FID_CLIENT is used to make a control fill the dialog’s

client area.

See Adding Controls in the previous chapter for more information about control identifiers.

For detailed descriptions of individual controls and how they work, see the individual controls in the Class

Reference or in the Dialog Editor’s online help.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

39

Selecting and Arranging Controls

Select multiple controls by clicking on the dialog background and dragging the selection rectangle to enclose

the desired controls. The selected controls are enclosed in dotted borders.

To move the selected control(s), use the arrow keys or click and drag any the control(s).

The Arrange menu allows you to arrange and align controls.

Align Allows you to align controls along an edge

Even spacing Allows you to evenly space controls

Same size Allows you to set controls to the same size

Push buttons Allows you to arrange push buttons

Order groups Allows you to change the order of controls and groups.

Settings Displays the Arrange Settings dialog, which allows the grid and spacing

constants to be changed.

Notice that when multiple controls are selected, one of the controls has filled drag handles; this is the anchor

control. The anchor control’s information is displayed in the status area. The Align, Even spacing, and Same

Size options arrange controls relative to the anchor control. Select which control is the anchor control by

holding down Shift and clicking on a control.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

40

Controlling the Arrange Settings

Use the Arrange Settings dialog to specify how the dialog editor adjusts positions of dialog boxes and controls

as you move them.

When you move dialog boxes and controls, the dialog editor adjusts the objects' positions so they are exact

multiples of the Grid settings. Large grid settings make it easier to align controls, while small grid settings

allow you to position controls more precisely.

When you use the choices on the Even Spacing menu, the dialog editor uses the Control Spacing settings.

When you use the choices on the Push Button menu, the dialog editor uses the Margins and Push Button

Spacing settings.

Dialog and control positions and sizes and the Arrange Settings values are specified in dialog units. These

units are device independent so that dialog boxes will have the same proportions and appearances on all

displays despite different resolutions and aspect ratios.

Dialog units are fractions of the average size of the characters in the dialog's font. To specify the dialog's font,

select the dialog and open the Presentation Parameters dialog. If no font is specified, the dialog editor uses

the average size of the characters in the default font.

A horizontal dialog unit is one quarter of the average character width. A vertical dialog unit is one eighth of the

average character height. For example, if you move a control to the left or the right (using the mouse or

keyboard arrow keys) with the Grid horizontal value set at 20, it moves in steps of twenty dialog units or the

width of 5 characters.

To avoid rounding errors and receive the most accurate results, specify settings that are whole multiples of a

character. For example, using a horizontal value of 4 and a vertical value of 8 would produce a grid with cells

the size of one character.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

41

Using Menus and the Status Area with Dialog Templates

The dialog editor does not provide built-in support for adding menu bars or displaying dialogs' status areas.

When you position controls in the dialog editor, you should leave room at the top and bottom of the dialog if

you intend to add a menu or use the status area in your dialog.

See Using the Status Area and Adding a Menu Bar for information about using these features.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

42

Ordering Controls

By default, the order in which you added the controls to the dialog determines the order in which focus moves

between the controls when the user presses Tab. The Order groups option on the Arrange menu allows you to

change the order in which the Tab and Arrow keys move focus between the controls.

Notes:

 The position of controls in a dialog box does not affect the selection order.

 When you use group boxes to group controls, always create the group box before the controls that are to

go inside it.

Selecting Order groups numbers the dialog’s controls. The numbers indicate the order in which focus moves

between the controls. Initially, the controls are numbered in the order in which they were created. To change the

order, click on the controls in the order the cursor should move between them. To stop ordering the groups,

click on the dialog’s background area.

See Focus, Dialog Navigation, Groups, and Tab Stops for additional information.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

43

Event Handlers

The Event Handlers dialog allows you to associate an APL event handler expression with an event generated by

the selected control or dialog.

The events for which you can specify event handlers are shown in the Posted event drop down combo box. The

expression associated with the currently selected event is displayed in the Handler entry field.

To set up an APL event handler for an event, follow these steps:

1. Select a control or the dialog box.

2. Select Event Handlers on the Edit menu.

3. Select the event for which you would like to set up an event handler.

4. Type the APL expression that should be executed when the event occurs.

Note: Event handlers are usually character vectors. However, when the EVENTS property is set dynamically,

event handlers can also be arbitrary arrays. The Event Handlers dialog can not be used to set arbitrary array

event handlers. For more information, see Using Arbitrary Arrays as Event Handlers.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

44

Changing a Dialog or Control

To change the properties of a dialog box or a single control, use the functions of the Edit menu.

The Edit functions require that you first select a control to edit. Once you select a control,

 Select Cut to copy the control to the clipboard and remove it from the dialog.

 Select Copy to copy the control to the clipboard.

 Select Paste to place a control you have copied to the clipboard with Cut or Copy.

 Select Clear to delete a control.

 Select Duplicate to create another control in the dialog identical with the selected control.

 Select Styles to define the style of the dialog or the selected control.

 Select Presentation parameters to select color and font.

 Select Size to text to adjust a control’s size to fit its text.

 Select Context help or Tool tip to type contextual help and tool tips.

 Select Event Handlers to associate APL expressions with events generated by the dialog or control.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

45

Providing help to your users

While running your application, the user sometimes needs help. For example, the user may need assistance in

recalling the use of a push button, making a choice among the items in a list box, or understanding what data is

valid for an edit field.

Using the Context help and Tool tip functions of the Edit menu, you can provide your users with tool tips and

contextual help for your dialogs' controls.

A tool tip is a single line of descriptive text that appears in a small popup window when the mouse pointer

pauses over a control. To set a tool tip for a control, follow these steps:

1. Select a control.

2. Select Tool tip on the Edit menu.

3. Type the tool tip you want displayed.

Contextual help is descriptive text that appears in a popup window when the user requests help. Contextual help

can be several paragraphs long and displays in a window roughly 40 characters wide.

To set the contextual help for a control, follow these steps:

1. Select a control.

2. Select Context help on the Edit menu.

3. Type the contextual help you want displayed.

Setting the context help for a control adds a question mark button to the dialog’s titlebar.

The user can request contextual help in three ways:

1. Clicking first on the question mark button and then on a control.

2. Clicking first on a control with the right mouse button and then selecting What’s this?

3. Tabbing to a control and pushing F1.

Note: The question mark button is not added to the titlebar if the dialog contains a maximize button and it does

not work if the dialog has either a maximize or minimize button. Do not use the Min Button and Max Button

dialog styles in dialogs that provide context help.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

46

Testing the Dialog

A good way to learn about the different types of windows and the effect of style settings on their appearance

and behavior is to test them.

To test the dialog box, select Test Mode from the Options menu. The dialog box is displayed as it appears to

the user from a program. In test mode, you can select and tab between controls, and their appearance changes in

the same way as they do in an application. To return to work mode, click on Test Mode again to de-select it.

Note: The Dialog Editor’s Test option does not execute APL event handlers. It merely displays the dialog as it

would appear when run as part of an application.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

47

Using Dialog Templates

Use the Save or Save and Close choice on the Object menu to save the design into a dialog template.

Use the CREATEDLG function to create a dialog from a dialog template:

 DIALOG←CREATEDLG DLGTMP

Use the dialog handle just as you would the handle of a dynamically created dialog.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

48

Dialog Box Design Guidelines

The following are a few guidelines for designing dialog boxes:

 Clearly identify the information that the user is required to complete.

 Make dialogs initially invisible so initialization is not visible.

 Arrange the controls in the sequence in which the user would complete them.

 Arrange the controls in columns, starting at the upper-left corner, for left-to-right and top-to-bottom

scanning.

 Align input controls horizontally and vertically so that the cursor moves in a straight line.

 If there are only a few entry fields, locate them at the top of the dialog box.

 Do not use the Max dialog style unless you also have a sizing border. The maximize button only positions

the dialog, it does not size it unless you have a sizing border.

 Do not use the Max and Min dialog styles if you provide context help.

 Make groups of controls obvious by use of group boxes and white space.

 Align group boxes, where possible.

 Use the Tabstop and Group styles so that the Tab key moves focus between groups of controls and the

Arrow keys move focus between controls within groups.

 Include a Cancel button with identifier of DID_CANCEL in every dialog. Make the Cancel button have

the same event handler as the dialog’s Close event. This is because by default, when the user presses

Escape, Windows issues a Command event with an identifier of DID_CANCEL (2). The button enables

you to respond to this event.

 If you have visible buttons, one of them should have the Default style. The default button will be pushed

when the user hits Enter. This button should have an identifier of DID_OK (1).

 Set the initial focus. To set the initial focus in the dialog editor, double click with mouse button 2 on the

appropriate control. The Focus field of the status area displays the identifier of the control with the initial

focus. Use the STATE FOCUS property to set the focus dynamically.

 Test all dialogs designed with the Dialog Editor on VGA displays. Dialogs templates use a coordinate

system based on dialog units. Different operating systems use different fonts to define the sizes of dialog

units. If you design dialogs on VGA displays, they will work on all other resolution displays.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

49

Executing Dialogs

Once you have created an application window, the EXECUTEDLG operator is used to wait for events and

execute event handlers:

 DEFAULTPROC EXECUTEDLG DIALOG

The EXECUTEDLG operator’s right operand is the handle of a dialog. EXECUTEDLG will make the dialog

visible, activate it, and wait for events. When an event occurs for which an event handler has been defined,

EXECUTEDLG executes the event handler. If the event handler branches to zero, EXECUTEDLG will return.

Otherwise, EXECUTEDLG will continue to wait for more events.

The EXECUTEDLG left operand is a function to process registered messages. Messages were registered on

older systems. Registered messages are no longer used. Always code DEFAULTPROC or zero as the left

operand.

EXECUTEDLG is defined so that it can return an explicit result named RESULT. However, EXECUTEDLG does

not set RESULT. Event handlers can set the variable RESULT to cause EXECUTEDLG to return a value. For

example:

 D←CREATEDLG ''
 B←CREATECTL D 'PUSH BUTTON' ''
 'EVENTS' SET_PROPERTY D (1 2⍴'CLOSE' 'RESULT←0 ⋄ →0')
 'EVENTS' SET_PROPERTY B (1 2⍴'COMMAND' 'RESULT←1 ⋄ →0')
 RESULT←0 EXECUTEDLG D

If no event handler sets RESULT, EXECUTEDLG does not return an explicit result.

Note that referencing the result of EXECUTEDLG will yield VALUE ERROR if RESULT has not been set.

Whenever writing code to use the result of EXECUTEDLG, care should be taken to ensure that RESULT is

always set by the time EXECUTEDLG returns.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

50

Getting User Input

Event handlers are executed in response to user actions. An event handler typically retrieves some user input

and processes that input. Use the GET_PROPERTY function to retrieve user input. For example, in the

following dialog,

The event handler for the Ok button would probably need to retrieve the contents of the entry field:

 GET_PROPERTY ENTRY
John Doe

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

51

Supporting APL Input

Use an APL font and the STATE APL property to enable APL characters in keyboard input.

 ENTRY←CREATECTL DIALOG 'ENTRY FIELD' ''
 'STATE APL' SET_PROPERTY ENTRY 1
 'FONT' SET_PROPERTY ENTRY '10.APL2 Image'

Display the APL2 Keyboard Properties dialog by posting an APLKEY_MSG_MODIFY message to any window

for which the STATE APL property has been set.

Use the GUITOOLS function POSTMSG and the APLKEY_MSG_MODIFY variable from the GUIVARS

workspace:

 POSTMSG ENTRY APLKEY_MSG_MODIFY 0 0

Provide a menu item to display the Keyboard Properties notebook if you want your users to be able to modify

the APL2 keyboard layouts. For example, the APL2 Session Manager's Keyboard Properties system option

displays the notebook.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

52

Sharing Variables with Window Properties

The SET_PROPERTY and GET_PROPERTY functions are usually used to set and get window properties. It is

also possible to share a variable directly with a window property. Once a variable is shared with a property,

setting the variable changes the property and referencing the variable retrieves the property’s value. This can

make it easier to write APL2 code when the application needs to set or get a property’s value very often. Use

SHAREWINDOW to share a variable with a window’s property:

 'DATA' SHAREWINDOW DIALOG 'TITLE'
 TITLE←'Sample Title'

The left argument of SHAREWINDOW is a property name. It defaults to DATA.

The right argument of SHAREWINDOW has 2 or 3 elements. The first element is a window handle and the

second element is the name of the variable to share with the property. The optional third argument is the

identifier of the child window with whose property the variable is to be shared.

Notes on using SHAREWINDOW:

Variables shared with properties are not automatically retracted when the window is destroyed. These variables

should be localized or explicitly retracted when the application terminates. Use of SHAREWINDOW with a

variable name that is already shared (for example from a previous execution of the application) will fail.

GET_PROPERTY and SET_PROPERTY provide significantly better performance than SHAREWINDOW when

accessing a property just a few times. SHAREWINDOW should only be used when a property will be referenced

or specified many times.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

53

Building More Complex Applications

Most applications use several dialogs in addition to the main dialog. Use additional dialogs to display a

message or to obtain a specific piece of information such as the name of a file to open. You can also imbed

dialogs in dialogs to more easily arrange information. This section discusses the procedures for creating and

managing multiple dialogs.

The simplest way to display another dialog is to use the MSGBOX function:

 RC←DIALOG MSGBOX 'TITLE' 'MESSAGE'

The MSGBOX function creates and displays a message box. A message box is a simple dialog with a titlebar,

some text, buttons, and optionally an icon. By default MSGBOX creates a message box with Ok and Cancel

buttons. It automatically resizes the dialog to fit the message. It returns 1 if the box was closed with the Ok

button and 2 if it was closed with the Cancel button (or the box’s Close button.)

The right argument to MSGBOX contains two character vector elements: a title for the message box, and the text

of the message. The text may contain linefeed characters to begin new paragraphs.

The left argument of MSGBOX is the handle of the message box’s owner. If MSGBOX is used in an application

with other windows, a dialog handle should always be supplied. Otherwise, the application may be closed

while the message box is still on the screen. To understand why, read the next section about Owned, Modal,

and Modeless Windows.

For information about more sophisticated uses of the MSGBOX function see Message Boxes.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

54

Owned, Modal, and Modeless Windows

A dialog may own another dialog. A dialog that is owned has several special properties:

 An owned dialog is always displayed on top of its owner.

 An owned dialog is hidden when its owner is minimized.

 An owned dialog is automatically destroyed when its owner is destroyed.

As an example, the APL2 Session Manager’s Find dialog is an owned window. The Session Manager or an

Object Editor window owns the Find dialog. Owned dialogs are used when there is a logical connection with

the owner window.

MSGBOX displays an owned dialog that also is modal. When a modal dialog is displayed, its owner is disabled.

When the modal dialog is closed, the owner is enabled. For example, the APL2 Session Manager’s Log Size

dialog is a modal dialog.

Modal dialogs force the user to stop using the owner window until the modal dialog is closed. Modal dialogs

are used for messages and to prompt for information the application needs in order to continue. The MSGBOX

function should always be passed a dialog handle so that it can disable the dialog and prevent the application

from being closed until the message box is closed.

Windows that are not modal are called modeless. Modeless windows do not disable other windows. The

Session Manager's Find dialog is a modeless owned window.

Finally, windows can be modeless and also not owned. Modeless windows that are not owned operate

completely independently. The APL2 Window List dialog is such a window. It operates independently of the

Session Manager and Object Editor windows.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

55

Creating Owned Dialogs

Creating an owned dialog is easy. Simply use the handle of the owner as the left argument of CREATEDLG:

 OWNED_DIALOG←OWNER_DIALOG CREATEDLG ''

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

56

Executing Modal and Modeless Dialogs

To make an owned dialog modal, pass the owner’s handle as the left argument of EXECUTEDLG. For example,

here is a function that displays a modal dialog:

[0] MODAL OWNER;DLG;TEXT
[1] DLG←OWNER CREATEDLG ''
[2] 'EVENTS' SET_PROPERTY DLG(1 2⍴'Close' '→0')
[3] SET_PROPERTY DLG 'Modal Dialog'
[4] TEXT←CREATECTL DLG 'TEXT' '' 32776
[5] SET_PROPERTY TEXT 'This dialog is modal'
[6] OWNER(0 EXECUTEDLG)DLG
[7] DESTROYDLG DLG

Notice several things:

 The dialog handle OWNER is used to create an owned dialog.

 The function calls EXECUTEDLG. This means that all the modal dialog’s events will be processed while

this function is running.

 The owned dialog is made modal by passing the owner’s handle, OWNER, as the left argument of

EXECUTEDLG. EXECUTEDLG will disable the owner while executing the owned dialog’s events.

 The modal dialog is destroyed before the function returns.

Consider the environment in which this function would be called.

Modal dialogs are usually displayed in response to a user action. For example, the user selects a menu choice

and a modal dialog is displayed to prompt for some information. This means that modal dialogs are usually run

inside event handlers. This further means that modal dialogs are created, executed, and destroyed all within the

execution of an event handler by EXECUTEDLG. And, EXECUTEDLG was called by a function higher on the

execution stack.

Applications usually call EXECUTEDLG once to execute the main window. This call to EXECUTEDLG

typically does not return until the user closes the main window. When a modal dialog is needed, one of the

application’s event handlers calls EXECUTEDLG again to process the modal dialog. Because the owner window

is disabled and the modal dialog ends before the event handler returns control to the main application’s call to

EXECUTEDLG, there is no interference between the main dialog’s event handlers and the modal dialog’s event

handlers. Effectively, there is one call to EXECUTEDLG for the main dialog and one call for each modal dialog.

This is not true for modeless dialogs. Modeless dialogs are executed by the same instance of EXECUTEDLG

that executes the application’s main dialog.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

57

Here is a function that creates a modeless dialog:

[0] MODELESS OWNER;TEXT
[1] DLG←OWNER CREATEDLG ''
[2] SET_PROPERTY DLG 'Modeless Dialog'
[3] TEXT←CREATECTL DLG 'TEXT' '' 32776
[4] SET_PROPERTY TEXT 'This dialog is modeless'
[5] 'EVENTS' SET_PROPERTY DLG(1 2⍴'Close' 'DESTROYDLG DLG')
[6] 'STATE ACTIVE' SET_PROPERTY DLG 1

Notice several things:

 The dialog handle OWNER is again used to create an owned dialog.

 The function does not call EXECUTEDLG. The function simply creates the modeless dialog. The

application’s main call to EXECUTEDLG will execute the modeless dialog's events.

 The Close event handler is not →0. Rather, the event handler simply destroys the owned dialog. Only the

main application window’s event handlers should branch to zero and cause the main application’s call to

EXECUTEDLG to stop waiting for events.

 Setting the STATE ACTIVE property activates the dialog. EXECUTEDLG automatically activates dialogs,

but since functions that create modeless dialogs do not call EXECUTEDLG, the functions must explicitly

activate them.

The DEMO_MODE function in the DEMO145 workspace demonstrates message boxes, owned, modal, and

modeless dialogs.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

58

Using Arbitrary Arrays as Event Handlers

Most of the examples in this book have used character vectors as event handlers. Applications that use

EXECUTEDLG, EXECUTEDLGX, STARTWAIT, and CHECK_EVENTS to process events must use character

vectors as event handlers. However, you may decide that in your application it is more convenient to use some

other type of array as event handlers. The WAIT_EVENT function supports using arbitrary arrays as event

handlers.

The WAIT_EVENT function waits for a specified number of seconds for an event. If an event does not happen

during that time, it returns ''. If an event does happen, it returns a five element array containing the handle of

the window or object that signaled the event, the message identifier, message parameters 1 and 2, and the event

handler.

Here is an example of a simple function that uses labels, which are integer scalars, as event handlers:

 DEMO_ARBITRARY;SV145;DIALOG;OK;EVENT;HANDLE;MSG;MP1;MP2;LABEL

 DIALOG←CREATEDLG ''
 OK←CREATECTL DIALOG 'Push button' '' 1

 SET_PROPERTY DIALOG 'Hello World'
 'CLIENT POSITION' SET_PROPERTY OK (5 5)

 'EVENTS' SET_PROPERTY DIALOG (1 2⍴'Close' LABEL_CLOSE)
 'EVENTS' SET_PROPERTY OK (1 2⍴'Command' LABEL_OK)

 'STATE ACTIVE' SET_PROPERTY DIALOG 1

 WAIT:
 EVENT←WAIT_EVENT 1
 →(0=⍴EVENT)/WAIT
 (HANDLE MSG MP1 MP2 LABEL)←EVENT
 →LABEL

 LABEL_OK:
 SET_PROPERTY DIALOG 'You pushed the Ok button'
 →WAIT

 LABEL_CLOSE:
 DESTROYDLG DIALOG

Notice that the function explicitly sets the STATE ACTIVE property. This is because unlike the other event

processing functions, WAIT_EVENT does not activate the dialog.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

59

Message Boxes

The MSGBOX function displays a simple dialog called a message box. A message box includes a titlebar, a text

message, one or more buttons, and optionally an icon. The function returns when the user presses a button or

closes the message box.

Use either of the following two types of syntax to call the MSGBOX function:

 CODE←[OWNER] MSGBOX TEXT
 CODE←[OWNER] MSGBOX TITLE TEXT [STYLE]

Parameter Definition

OWNER Integer scalar - Handle of the message box’s owner.

TITLE Character vector - Text to display in the titlebar.

Default: 'APL2 Message'

TEXT Character vector - Text of the message. Linefeed characters can be used as

paragraph breaks.

STYLE Integer scalar - Specifies the message box’s contents and behavior.

STYLE can be any BITWISE combination of Message Box Style Flags.

Default: MB_OKCANCEL, MB_ICONEXCLAMATION, and
MB_MOVEABLE

The MSGBOX function returns a code indicating which button the user pressed to close the message box. See

Message Box Result Codes for the valid codes.

Example:

 TITLE←'Sample Message Box'
 MESSAGE←'Do you like this message?'
 STYLE←∨BITWISE/MB_YESNO MB_ICONQUESTION
 MDID_YES=DIALOG MSGBOX TITLE MESSAGE STYLE
1

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

60

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

61

Popup Menus

The POPUPMENU function displays a floating pop-up menu at a specified position and returns the index of the

selected item.

Use the following syntax to call the POPUPMENU function:

 INDEX←POPUPMENU HANDLE X Y ITEMS

Parameters Definition

HANDLE Integer scalar - Handle of the window relative to which the menu is positioned.

X Integer scalar - horizontal position of the menu

Y Integer scalar - vertical position of the menu

ITEMS Vector of character vectors - Vector of menu choices. Use a zero length vector to display a

separator.

POPUPMENU returns the index of the user’s selection. The index is index origin zero. If the user dismisses the

menu without making a selection, -1 is returned. Separators do not affect selection indices.

Example:

 ITEMS←'Open' '' 'Cut' 'Copy'
 INDEX←POPUPMENU DIALOG 25 150 ITEMS
 →(INDEX=¯1)/0
 →(INDEX+⎕IO)⊃OPEN CUT COPY

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

62

Font Dialogs

The FONTDLG function displays a modal dialog that prompts the user to select a font. If the user presses Ok or

Apply, the function applies the font to the window specified in the argument.

Use the following syntax to call the FONTDLG function:

 FONTDLG HANDLE

Parameter Definition

HANDLE Integer scalar - Handle of the window whose font should be set. The parent of this window

is the font dialog’s owner and is disabled while the dialog is visible.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

63

File Dialogs

The FILEDLG function displays a modal dialog that prompts the user to enter a filename.

Use the following syntax to call the FILEDLG function:

 FILENAME ← [LIST INDEX [TITLE]] FILEDLG STYLE OWNER FILTER

Parameter Definition

STYLE Boolean scalar - 0 for Open dialog, 1 for Save As dialog.

OWNER Integer scalar - Handle of the dialog’s owner.

FILTER Character vector - Filter to initialize the dialog. For example, 'c:*.*'.

LIST 2 column matrix - Specifies types to be listed in the dialog’s Files of type window. Columns

are:

[;1] Character vector - File type description. Example: 'All Files'.

[;2] Character vector - File filter. Example: '*.*'.

If LIST is supplied, INDEX must also be supplied.

INDEX Integer scalar - Specifies the index of the LIST element to be initially displayed.

TITLE Character vector – Dialog box title

FILENAME Character vector - The selected filename if the user pressed Open or Save. '' otherwise.

The EDIT, EDIT_OPEN, and EDIT_SAVEAS functions in the GUITOOLS workspace demonstrate using the

FILEDLG function.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

64

Displaying File Information in Dialogs

Use the PATH, PATH SELECTION, and PATH STYLE properties to display file information in your dialogs.

The DEMO_PATH function in the DEMO145 workspace demonstrates using the PATH, PATH SELECTION,

and PATH STYLE properties to display file information. DEMO_PATH produced the following dialog showing

the readmec.txt file in the APL2 product's ibmapl2w folder:

The dialog uses a combo box to display file names, list boxes to display folders and drives, an MLE to display

file contents, and the status area to display a fully qualified path and filename.

Combo boxes and list boxes support the PATH, PATH SELECTION, and PATH STYLE properties.

The PATH STYLE property controls the types of files that the window displays. The PATH STYLE property

is a list of path styles. For example, DEMO_PATH sets the Drives list box's PATH STYLE property to

'DRIVES'. See Combo box or List box for the list of supported path styles.

Use the PATH property to further restrict the displayed list of files. The PATH property is a character vector

containing wildcard characters and optionally a drive and path. For example, the PATH property could be set to

'\WINNT*.exe' to display all the programs in the root WINNT directory on the current drive. When the

PATH property is set or the user selects a drive or a directory, the AP 145 current drive and directory are

changed.

Use the PATH SELECTION property to reference the user's selection. The value is a character vector. The

value is dependent on the window's PATH STYLE setting. For example, referencing the PATH SELECTION

property of the controls in the DEMO_PATH example above returned the following values:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

65

 Drives list box 'c:'

 Folders list box 'ibmapl2w\'

 File names combo box 'readmec.txt'

The desktop supports the PATH property. Use the desktop's PATH property to reference and specify the

current AP 145 directory. For example, referencing the PATH property of the desktop in the DEMO_PATH

example above returned the following value:

 'C:\PROGRAM FILES\IBMAPL2W'

Combine the value of the desktop's PATH property with the PATH SELECTION property of a combo box or

list box to obtain a full path and file name. For example, DEMO_PATH combines the value of the current

directory and the value of the File names list box's PATH SELECTION property to produce the value shown in

the dialog's status area.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

66

Tab Controls

The Tab control displays multiple dialogs on the same area of the screen. Each dialog is displayed on a page

with a tab or a button.

To use a Tab control, follow these steps:

1. Create a main dialog

2. Create the main dialog’s controls including a Tab control

3. Create a separate dialog for each page of the Tab control. For each page’s dialog:

 Use the main dialog’s handle as the owner.

 Use the Tab control’s handle as the parent.

 Create and arrange the page dialogs' controls.

 Set the page dialog’s CLIENT SIZE to fit the controls.

4. Set the Tab control’s CLIENT SIZE property to fit the largest page dialog

5. Arrange the main dialog’s controls.

6. Set the client size of the main dialog to surround its controls.

7. Set the Tab control’s DATA property.

Use the main dialog’s handle and the Tab control’s handle in the left argument of CREATEDLG to create the

page dialogs. The first element of the left argument specifies the dialog’s owner. The second element specifies

the parent. Also, create the page dialogs with the NoBorder, NoSysMenu, and NoTitlebar styles:

 DIALOG←CREATEDLG ''
 TAB←CREATECTL DIALOG 'TAB' ''
 PAGE1←DIALOG TAB CREATEDLG 'NOBORDER NOSYSMENU NOTITLEBAR'
 PAGE2←DIALOG TAB CREATEDLG 'NOBORDER NOSYSMENU NOTITLEBAR'

The Tab control’s client area contains both the page tabs and dialogs. If the default size of the Tab control is

not appropriate, use the following procedure to set the size of the Tab control:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

67

1. Set the CLIENT SIZE property for each page dialog to fit its controls.

2. Set the OFFSET property for the page dialogs' controls to preserve their arrangement.

3. Use the SIZE property to calculate the size of the largest page dialog.

4. Increase the calculated height by the height of at least one row of tabs. To estimate the height of a row of

tabs create a push button and query its default height.

5. Set the Tab control’s CLIENT SIZE property to the calculated size.

After arranging the page and main dialogs' controls and setting their initial size, set the Tab control’s DATA

property:

 DATA←0 3⍴''
 DATA←DATA,[1]PAGE1 'Page 1 Tab Text' 'Page1Icon.ico'
 DATA←DATA,[1]PAGE2 'Page 2 Tab Text' 'Page2Icon.ico'
 'DATA' SET_PROPERTY TAB DATA

The Tab control’s DATA property is a 3-column matrix. There is one row for each page. The columns are:

[;1] Integer scalar - Handle of dialog to display on the page

[;2] Character vector - Text to display on the page’s tab. '' if none.

[;3] Character vector - Name of bitmap or icon file to display on the page’s tab. '' if none. If a full path is not

supplied, files are searched for using the following sequence:

1. The directory from which AP 145 was loaded

2. The current directory

3. The Windows system directory

4. The directories listed in the PATH environment variable.

The DEMO_PROPERTIES in the DEMO145 workspace demonstrates dynamically creating a dialog containing

a Tab control. The DEMO_TAB function demonstrates using dialog templates with a Tab control.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

68

Split Dialogs

The Split and SplitH dialog styles are used to create a dialog with two panes. The Split style separates the panes

with a vertical split bar; the SplitH style separates the panes with a horizontal split bar. The first two visible

children of the dialog automatically fill the panes. The children can be controls or dialogs. When the user

moves the split bar, the dialog automatically resizes the two children to fill the panes.

When creating controls to fill the panes, simply use the split dialog's handle as the parent parameter of

CREATECTL. The controls are resized to fill the panes.

 DIALOG←CREATEDLG 'SIZEBORDER SPLIT'
 LB←CREATECTL DIALOG 'LISTBOX' ''
 MLE←CREATECTL DIALOG 'MLE' ''

When creating dialogs to fill the panes, use the split dialog’s handle as owner and parent in the left argument of

CREATEDLG. The first element of the left argument specifies the dialog’s owner. The second element

specifies the parent. Also, create the panes' dialogs with the NoBorder, NoSysMenu, and NoTitlebar styles:

 DIALOG←CREATEDLG 'SIZEBORDER SPLIT'
 LEFT←DIALOG DIALOG CREATEDLG 'NOBORDER NOSYSMENU NOTITLEBAR'
 RIGHT←DIALOG DIALOG CREATEDLG 'NOBORDER NOSYSMENU NOTITLEBAR'

When a split dialog's split bar is moved, or when the dialog is resized, the dialog automatically resizes the

children to fill the panes. Set the OFFSET property for the panes' dialogs' controls so all the controls maintain

their relative positions.

For an example of using dialogs in the panes of a split dialog, see the DEMO_EXPLORE function in the

DEMO145 workspace.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

69

Displaying Graphics in a Dialog

An AP 207 graphics window can be used in an AP 145 dialog.

 SV207←'OPEN' (HANDLE [ID [WIDTH HEIGHT [X Y]]])
 RC←SV207

Parameter Definition

HANDLE Integer scalar - A window handle

ID Integer scalar - A control window identifier. If ID is omitted or is zero, the graphics

window is opened within the client area window identified by HANDLE. If ID is

non-zero, the graphics window is opened within the client area of the child window

whose parent is HANDLE and whose identifier is ID.

WIDTH HEIGHT Integer scalars - The width and height of the graphic window in pixels. The default

size fills the client area.

X Y Integer scalar - The position of the graphic window within the client area relative to

the origin at the lower left hand corner. The default position is the origin.

When a graphic window is opened in a dialog the AP 207 WAIT and POINT commands do not return Tab and

Shift+Tab keystrokes. Dialog Tab key processing is performed instead.

The graphic window is opened as a child of the specified window. The graphic window has identifier 32776.

Graphic windows support the CONTEXT HELP property. If a graphic window is opened within a control

window, the control window’s contextual help text will be displayed if no contextual help has been supplied for

the graphic window.

The AP 207 CLOSE command must be issued before destroying a dialog containing a graphic window.

The following example creates a dialog with a child rectangle control that uses the identifier of 32776 so that it

fills the dialog's client area. An AP 207 graphic window is then opened within the rectangle.

 DIALOG←CREATEDLG ''
 RECT←CREATECTL DIALOG 'RECTANGLE' 'BORDER' 32776
 ⎕ES(2≠207 SVOFFER 'SV207')/'AP 207 share failed'
 SV207←'OPEN' RECT
 RC←SV207
 SV207←'DRAW'(?10 2⍴'CLIENT SIZE' GET_PROPERTY RECT)
 RC←SV207

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

70

For an example of using AP 207 in a dialog, see the DEMO_AP207 function in the DEMO145 workspace.

Using AP 145 with other Auxiliary Processors

EXECUTEDLGX is used when an application needs to wait for events from both AP 145 and other processors.

For example, use EXECUTEDLGX to handle user input through both AP 145 and AP 207, or to wait for user

input through AP 145 and TCP/IP events through AP 119.

The EXECUTEDLGX operator has the following syntax:

 [RESULT←][OWNER] (SVPROC EXECUTEDLGX SVARS) HANDLE

HANDLE A dialog handle.

OWNER The handle of the dialog's owner. If OWNER is supplied, the dialog is modal.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

71

SVARS A list of one or more shared variable names to monitor.

SVARS can be a character vector containing one shared variable name or a matrix containing

one shared variable name per row.

SVPROC An application supplied function for processing shared variable events.

When a partner specifies any of the variables named in SVVARS, SVPROC is called. The list

of variables currently being monitored is passed to SVPROC as a right argument. SVPROC

should use ⎕SVS to determine which variables have had events and process them. SVPROC

must return a list of variables for EXECUTEDLGX to continue to monitor.

RESULT An explicit result. RESULT is not set by EXECUTEDLGX, but can be set by event handlers.

For an example of processing AP 145 and 207 events, see the DEMO_EXECUTEDLGX function in the

DEMO145 workspace.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

72

Remaining Responsive During Long Operations

GUI applications should process events in less than a tenth of a second. Otherwise, the user may think the

application has stopped responding and has failed. Some applications include operations that take longer than a

tenth of a second to complete. In order to remain responsive to user actions, applications that include long

running operations should not use EXECUTEDLG. There are two techniques available to these applications:

using START_WAIT and CHECK_EVENTS or using WAIT_EVENT.

Using START_WAIT and CHECK_EVENTS

The EXECUTEDLG operator uses the AP 145 AplWaitMsg service. This service tells AP 145 to start waiting

for an event to occur. When an event occurs, the service completes.

EXECUTEDLG works by specifying the shared variable named SV145 with a call to AplWaitMsg and

immediately referencing the variable. Because AplWaitMsg does not complete until an event has occurred, if

no event has occurred, the reference hangs until one occurs. When an event does occur, AP 145 specifies the

variable, the reference completes, and EXECUTEDLG executes the event handler.

During EXECUTEDLG's shared variable reference hang, your application is unable to perform any other work.

START_WAIT, CHECK_EVENTS, and WAIT_EVENT can be used to process events without hanging.

START_WAIT specifies SV145 with a call to AplWaitMsg and immediately returns; it does not wait for the

service to complete.

CHECK_EVENTS checks whether SV145 has been specified, indicating an event has occurred. If SV145 has

been specified, CHECK_EVENTS references the variable, executes the event handler, and returns. If SV145

has not been specified, indicating no event has occurred, CHECK_EVENTS simply returns.

Since CHECK_EVENTS does not hang, it can be used to poll for events during a long running calculation.

The following example illustrates how to use START_WAIT and CHECK_EVENTS to perform a long running

calculation while remaining responsive to user actions:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

73

 START_WAIT
 LOOP:
 ⍝ Process any events that may have occurred.
 ⍝ CHECK_EVENTS returns 1 if an →0 event occurs, 0 otherwise.
 →CHECK_EVENTS/END
 ⍝ Perform part of the long running calculation here
 →LOOP
 END:

When START_WAIT is called, AP 145 starts waiting for events. As they occur, they are saved for retrieval one

by one using CHECK_EVENTS. If the SV145 shared variable is used for any other purpose, any saved events

are discarded. To avoid this loss of events caused by user interactions, the long running calculation must not

use SV145. If the calculation must use AP 145 facilities, such as setting and getting properties, it should share

another variable and use the AP 145 services directly rather than using the GUITOOLS cover functions.

For examples of using START_WAIT and CHECK_EVENTS, see the DEMO_POLLING and DEMO_GDI

functions in the DEMO145 workspace.

Using WAIT_EVENT

The WAIT_EVENT function’s right argument is the number of seconds to wait for an event. Use zero to query

whether an event has been queued. If no event has been saved, WAIT_EVENT returns ''. Otherwise, it returns

a 5 element array containing the following items:

1. The handle of the window or object that signaled the event

2. The message identifier

3. Message parameter 1

4. Message parameter 2

5. The event handler

Unlike CHECK_EVENTS, WAIT_EVENT does not execute the event handler. Your application must process

the event handler itself. WAIT_EVENT always references SV145. So, you can freely use SV145 and other

GUITOOLS functions with WAIT_EVENT.

The following example illustrates how to use WAIT_EVENT to perform a long running calculation while

remaining responsive to user actions:

 DIALOG←CREATEDLG ''
 'EVENTS' SET_PROPERTY DIALOG(1 2⍴'CLOSE' CLOSE)
 'STATE ACTIVE' SET_PROPERTY DIALOG 1
LOOP:
⍝ Perform part of the long running calculation here
⍝ Check if there is an event to process
 EVENT←WAIT_EVENT 0
 →(0=⍴EVENT)/LOOP
⍝ Process events
 (HANDLE MSG MP1 MP2 HANDLER)←EVENT
 →HANDLER
CLOSE:
 DESTROYDLG DIALOG

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

74

Using AP 145 Services

The functions in the GUITOOLS workspace use Auxiliary Processor 145 to create and manage windows. The

CREATEDLG function shares a variable named SV145 with AP 145. The rest of the workspace’s functions use

this shared variable. Cover functions are provided for many, but not all, of AP 145’s services. To use the

facilities discussed in the next few sections, you must use AP 145 directly. This section explains the process of

calling AP 145 services.

To call an AP 145 service, assign a nested vector to the shared variable. The first element of the vector is a

character vector containing the service name. The rest of the elements of the array are the service’s parameters.

For example, the following statements call the AplSizeToText service and reference the return codes:

 SV145←'AplSizeToText' DIALOG ID
 (APRC OSRC CMD)←SV145

Where DIALOG is the handle of a dialog and ID is a control’s identifier.

Each result returned by AP 145 is a three element nested array. The first element is a scalar integer that is an

auxiliary processor return code; it indicates whether the service was called successfully. The second element is

a scalar integer and is the service’s return code or result. The third element is the array specified to the shared

variable; some elements of the array may have been updated by the service.

Here is an example that calls a service that returns a value:

 SV145←'WinWindowFromID' DIALOG ID
 (APRC OSRC CMD)←SV145

This service is used by the WINDOWFROMID function. OSRC is the child window’s handle.

AP 145 uses a general purpose parameter conversion service which is used both for built-in services and

services in other libraries.

Each service parameter must be a numeric scalar, a one item numeric vector, a character scalar, or a character

vector. Numeric parameters for built-in services must be either Boolean or integer.

AP 145 passes numeric items to services as four byte unsigned integers. Character vectors are padded with the

string termination character, ⎕AF 0. The address of the terminated vector is passed to the service. AP 145

automatically supplies indirection required by services that update their parameters.

Here is an example that calls a service that updates a parameter:

 SV145←'AplGetProperty' HANDLE PROPERTY_NAME 0 ID
 (APRC OSRC CMD)←SV145
 (API HANDLE PROPERTY VALUE ID)←CMD

Notice the service’s third parameter is coded as a zero. If successful, the service replaces this parameter with

the property’s value.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

75

The CALLAPI function simplifies calling services. Consider the following group of statements:

 SV145←'AplSizeToText' DIALOG ID
 (APRC OSRC CMD)←SV145
 ⎕ES(APRC≠0)/'AP 145 FAILED'

They can be replaced with the following single statement:

 (OSRC CMD)←CALLAPI 'AplSizeToText' DIALOG ID

CALLAPI checks the AP 145 return code and if it is zero, returns the second and third elements of the result

returned by AP 145.

AP 145 issues the following return codes:

0 Success

1 Invalid array

2 Unsupported service name

3 Incorrect number of parameters

4 Invalid parameter

5 System error

-1 Insufficient space

For information about the services supported by AP 145, consult Appendix A: AP 145 Services.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

76

Using System Services

AP 145 maintains a table of named services for each shared variable. Each table is initially empty. When a

service name is called, AP 145 searches the variable's named services table before searching for a built-in

service.

Use LOADAPI to add services to a variable's table of named services. Use a library name and a service name to

add a service from a dynamic link library. Use an address and a service name to add a service located using

non-APL facilities. Supply a description of the service's parameters to indicate AP 145 should perform

parameter type checking and conversion. Supply a description of the service's result to indicate AP 145 should

perform result type conversion.

Use CALLAPI to call services. Use a service name to call a service in the variable's table of named services or

use an address to directly call a service located using non-APL facilities using default parameter conversion.

Use FREEAPI to remove services from the variable's table of named services. All services are automatically

removed when the shared variable is retracted.

AP 145 supports 32 bit services that use the Microsoft Visual Studio compilers' __stdcall calling convention.

No checking of linkage convention is performed. Attempts to call services that use other linkage conventions

can yield unpredictable results.

 LOADAPI [LIBRARY | ADDRESS] SERVICE [DESCRIPTION [RESULT]]
 (OSRC CMD)←CALLAPI [SERVICE | ADDRESS] parm1 parm2 ...
 FREEAPI SERVICE

LIBRARY - Character vector - Filename of the DLL containing the routines

If a path is supplied but the file does not exist in the specified directory, the service fails. If a path is not

supplied and the filename extension is omitted, the default library extension .DLL is appended.

However, the library vector can include a trailing period (.) to indicate that the filename has no

extension. When no path is specified, the following sequence is used:

1 The directory from which AP 145 was loaded.

2 The current directory.

3 The 32-bit Windows system directory. Use the GetSystemDirectory routine to get the path of this

directory. The name of this directory is SYSTEM32.

4 The 16-bit Windows system directory. There is no Win32 function that obtains the path of this

directory, but it is searched. The name of this directory is SYSTEM.

5 The Windows directory. Use the GetWindowsDirectory routine to get the path of this directory.

6 The directories that are listed in the PATH environment variable.

ADDRESS - Integer scalar - Address of a routine located using non-APL facilities

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

77

SERVICE - Character vector or vector of character vectors - Case sensitive names of one or more routines

For LOADAPI:

If LIBRARY is supplied, SERVICE may be either a character vector containing a routine name

or vector of character vectors each containing a routine name.

If ADDRESS is supplied, SERVICE must be a character vector containing a routine name.

If SERVICE is a character vector, then a DESCRIPTION argument may be supplied.

If the DESCRIPTION argument is omitted or if SERVICE is a vector of character vectors, then

AP 145 will pass all the routines' parameters by value and as 4 byte signed integers or single byte

character strings.

For CALLAPI:

SERVICE must be a character vector containing a routine name.

For FREEAPI:

SERVICE may be either a character vector or a vector of character vectors.

DESCRIPTION - Integer vector - Description of an routine’s parameters - Optional

The length of the description corresponds to the number of parameters required by the routine. When

the routine is called, AP 145 will validate that this number of parameters are passed. Each item

corresponds to a parameter and describes that parameter. Descriptions may not contain more than 32

items. Pass a null vector to indicate that the service has no parameters.

Each item of the description specifies the type of the parameter and the amount of indirection that is

used to pass the parameter to the routine.

Use values of 0 and 1 for automatic type handling. Numbers are passed as 4 byte signed integers.

Character scalars and vectors are passed as null terminated single byte character strings. Data that

cannot be converted to one of these representations is not supported. Code a 0 for parameters which will

not be updated by the service. Code a 1 for parameters which will be updated; the address of the

parameter will be passed.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

78

Use other description values to specify the type of the parameter. Code a positive value for parameters

which will not be updated by the service. Code a negative value for parameters which will be updated;

the address of the parameter will be passed. The following absolute values are used to indicate

parameter types:

0 - Automatic type handling. Parameter is passed by value

1 - Automatic type handling. Parameter is passed by reference

2 - Parameter is 1 byte signed integer

3 - Parameter is 2 byte signed integer

4 - Parameter is 4 byte signed integer

5 - Parameter is 4 byte floating point number

6 - Parameter is 8 byte floating point number

7 - Parameter is string of single bye characters, AP 145 null terminates the string.

8 - Parameter is string of 2 byte characters, AP 145 null terminates the string.

RESULT - Integer scalar – Description of single API’s result - Optional

The value of result is interpreted as follows:

2 - Result is 1 byte signed integer

3 - Result is 2 byte signed integer

4 - Result is 4 byte signed integer (the default)

5 - Result is 4 byte floating point number

6 - Result is 8 byte floating point number

7 - Result is string of single byte characters

8 - Result is string of 2 byte Unicode characters

The following pages demonstrate using several types of services. For more demonstrations using routine

addresses, consult the DEMO_API function in the DEMO145 workspace.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

79

Example using a service that updates an integer parameter:

Assume the following service is available in MYLIB.DLL, which resides in the current directory.

ULONG _System Sample(char * P1,unsigned long P2,unsigned long * P3) ;

The service expects the following parameters:

1. A null terminated character string

2. An integer

3. A pointer to an integer

The following code shows how to load and use the Sample service. Notice the description parameter passed to

LOADAPI has 3 elements corresponding to the Sample service’s 3 parameters. The last element is 1 indicating

a pointer to this item should be passed.

 LOADAPI 'MYLIB' 'Sample' (0 0 1)
 (OSRC CMD)←CALLAPI 'Sample' 'String' 47 0
 CMD
Sample String 47 123456
 FREEAPI 'Sample'

Notice that the Sample service has updated the last parameter.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

80

Example using a Microsoft Windows service:

The following example demonstrates using the CharUpperBuff service that is included in Microsoft Windows.

The Microsoft Platform SDK documentation defines the service like this:

Notice that the requirements state that the API is implemented as both Unicode and ANSI versions. This means

that the Windows DLL actually contains two different APIs with different names. These versions are

distinguished by the addition of the letter A or W at the end of the documented name. A is used for ANSI APIs;

W is used for Unicode APIs. In this case, the actual names of the APIs in the Windows DLL are

CharUpperBuffA and CharUpperBuffW.

Notice the SDK documentation also lists User32.lib as the Library. This file is used when linking compiled

programs that use the API. It tells the linker how to find the API. It points to entries in the corresponding DLL.

So, the actual DLL is named User32.Dll.

The following example loads the ANSI version of the API.

Syntax

 DWORD CharUpperBuff(

 LPTSTR lpsz,

 DWORD cchLength

);

Parameters

lpsz [in] Pointer to a buffer containing one or more characters to process.

cchLength [in] Specifies the size, in TCHARs, of the buffer pointed to by lpsz. This refers to

bytes for ANSI versions of the function or WCHARs for Unicode versions.

The function examines each character, and converts lowercase characters to

uppercase characters. The function examines the number of characters indicated by

cchLength, even if one or more characters are null characters.

Return Value

 The return value is the number of TCHARs processed.

Function Information

Header Declared in Winuser.h, include Windows.h

Import library User32.lib

Minimum operating

systems

Windows 95, Windows NT 3.1

Unicode Implemented as Unicode and ANSI versions on Windows NT, Windows

2000, Windows XP

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

81

 LOADAPI 'user32' 'CharUpperBuffA'
 VECTOR←'This is a test.'
 (OSRC CMD)←CALLAPI 'CharUpperBuffA' VECTOR (⍴VECTOR)
 OSRC
15
 (API UPPER LENGTH)←CMD
 UPPER
THIS IS A TEST.
 FREEAPI 'CharUpperBuffA'

Notice that the example does not pass a service description to LOADAPI. No description is necessary because

the service requires only integer and single byte character string arguments that are not updated.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

82

Example using a service with a parameter that is a structure:

The following example demonstrates using the GetWindowRect service that is included in Microsoft Windows.

The Microsoft Platform SDK documentation defines the service like this:

Notice that the second parameter is a pointer to a RECT structure. The Microsoft Platform SDK defines the

RECT structure like this:

 typedef struct _RECT {

 LONG left;

 LONG top;

 LONG right;

 LONG bottom;

 } RECT, *PRECT;

Members

left Specifies the x-coordinate of the upper-left corner of the rectangle.

top Specifies the y-coordinate of the upper-left corner of the rectangle.

right Specifies the x-coordinate of the lower-right corner of the rectangle.

bottom Specifies the y-coordinate of the lower-right corner of the rectangle.

Syntax

 BOOL GetWindowRect(

 HWND hWnd,

 LPRECT lpRect

);

Parameters

hWnd [in] Handle to the window.

lpRect [out] Pointer to a structure that receives the screen coordinates of the upper-left and

lower-right corners of the window.

Return Value

 If the function succeeds, the return value is nonzero.

 If the function fails, the return value is zero. To get extended error information, call GetLastError.

Function Information

Header Declared in Winuser.h, include Windows.h

Import library User32.lib

Minimum operating

systems

Windows 95, Windows NT 3.1

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

83

Structures are used in the C language like nested and non-homogeneous arrays in APL2. You can define

patterns to be used with the external functions ATR, RTA, and SIZEOF to convert APL2 arrays to character

vectors that can be passed to C.

The following example uses the GetWindowRect API to get a window’s rectangle:

 3 11 ⎕NA⊃'ATR' 'RTA' 'SIZEOF'
1 1 1
 LONG←'(I4 0)'
 RECT←'(G0 1 4)',LONG,LONG,LONG,LONG

 LOADAPI 'user32' 'GetWindowRect' (0 0)
 (OSRC CMD)←CALLAPI 'GetWindowRect' HANDLE ((SIZEOF RECT)⍴⎕AF 0)
 OSRC
1
 (API HANDLE DATA)←CMD
 RECT RTA DATA
200 624 606 854

 FREEAPI 'GetWindowRect'

This example shows using an API that only requires a pointer to an empty structure. Therefore, SIZEOF is

used to create the correct size vector of bytes containing zero. ATR can also be used to convert an APL2 array

to a structure:

 STRUCTURE←RECT ATR 0 0 0 0

Notice that although the example passes a service description to LOADAPI, no description is necessary because

the service requires only integer and address arguments that are not updated.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

84

Example using a service that has no parameters:

The following example demonstrates using the GetLastError service to get the last error code set by Windows.

The Microsoft Platform SDK documentation defines the service like this:

The following example uses the GetLastError API to get the last error code:

 LOADAPI 'kernel32' 'GetLastError' (⍳0)
 (OSRC CMD)←CALLAPI 'GetLastError'
 OSRC
1
 FREEAPI 'GetLastError'

Notice the LOADAPI service description is zero length to indicate the GetLastError API has no parameters.

This causes AP 145 to verify the number of parameters passed to GetLastError. If the service description was

omitted, GetLastError could still be called, but AP 145 would not perform this verification.

 DWORD GetLastError(void);

Parameters

 This function has no parameters.

Return Values

 The return value is the calling thread's last-error code value.

Requirements

Client Included in Windows XP, Windows 2000 Professional, Windows NT Workstation,

Windows Me, Windows 98, Windows 95.

Server Included in Windows .NET Server 2003, Windows 2000 Server, Windows NT Server.

Header Declared in Winbase.h; include Windows.h.

Library Use Kernel32.lib.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

85

Example using a service that has floating point parameters:

The following example demonstrates using the OpenGL glRectd service to draw a rectangle. The Microsoft

Platform SDK documentation defines the service like this:

The following example uses the OpenGL glRectD service to draw a rectangle:

 LOADAPI 'OPENGL32' 'glRectd' (6 6 6 6)
 (OSRC CMD)←CALLAPI 'glRectd' 12.34 56.78 101 34
 FREEAPI 'glRectd'

Notice the LOADAPI service description specifies that glRectD requires four 8 byte floating point parameters.

Note: glRectd requires a valid OpenGL rendering context.

 Void glRectd(

 GLdouble x1,

 GLdouble y1,

 GLdouble x2,

 GLdouble y2

);

Parameters

 x1, y1

One vertex of a rectangle.

x2, y2

The opposite vertex of the rectangle.

Requirements

 Windows NT/2000: Requires Windows NT 3.5 or later.

 Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.

 Header: Declared in Gl.h

 Library: Use Opengl32.lib

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

86

Example using a Unicode service:

The following example demonstrates passing a string of 2 byte Unicode characters to the CharUpperBuffW

service:

 LOADAPI 'user32' 'CharUpperBuffW' (8 3)
 VECTOR←'This is a test.'
 (OSRC CMD)←CALLAPI 'CharUpperBuffW' VECTOR (⍴VECTOR)
 OSRC
15
 (API UPPER LENGTH)←CMD
 UPPER
THIS IS A TEST.
 FREEAPI 'CharUpperBuffW'

Notice the LOADAPI service description specifies that CharUpperBuffW requires two parameters: a null

terminated string of 2 byte Unicode characters and an integer.

AP 145 automatically adds a 2 byte null character to the end of character vectors passed as 2 byte character

string parameters.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

87

Examples using routines located using non-APL facilities:

The following examples demonstrate using non-APL facilities to locate services.

OpenGL extension functions are not exported by name from the OpenGL libraries and so LOADAPI can not be

used to load them by name. Instead, to use OpenGL extension functions, use the wglGetProcAddress service

which returns the address of an OpenGL extension function.

The following example demonstrates loading and using wglGetProcAddress to get the address of the

glDrawBuffer extension function. LOADAPI is then used to add the address and a description of the extension

function's parameters to the shared variable's table of services. The description indicates the function has

a single integer parameter. Next, CALLAPI is used to call the extension function. Finally, FREEAPI is used to

remove the two services from variable's table of services.

 LOADAPI 'OPENGL32' 'wglGetProcAddress'
 ADDRESS←1⊃CALLAPI 'wglGetProcAddress' 'glDrawBuffer'
 LOADAPI ADDRESS 'glDrawBuffer' (,4)
 0 0⍴CALLAPI 'glDrawBuffer' GL_NONE
 FREEAPI 'glDrawBuffer' 'wglGetProcAddress'

If AP 145's default parameter handling suffices for a routine, a description is not required. Furthermore, the

routine does not need to be added to the variable's table of services. The service can be called directly using

only the address. For example:

 LOADAPI 'OPENGL32' 'wglGetProcAddress'
 ADDRESS←1⊃CALLAPI 'wglGetProcAddress' 'glDrawBuffer'
 0 0⍴CALLAPI ADDRESS GL_NONE
 FREEAPI 'wglGetProcAddress'

The following example demonstrates how to locate and call the wglGetExtensionsStringARB OpenGL

extension function.

 ⍝ Get pointer to list of WGL extensions
 LOADAPI 'OPENGL32' 'wglGetProcAddress'
 ADDRESS←1⊃CALLAPI 'wglGetProcAddress' 'wglGetExtensionsStringARB'
 LISTADDR←1⊃CALLAPI ADDRESS DC
 FREEAPI 'wglGetProcAddress'

wglGetExtensionsStringARB returns the address of a list of the OpenGL extension functions supported by the

current OpenGL rendering context (a handle to which is in the variable in the previous example.) The list is

a null terminated character string. The following example demonstrates how to copy the list into the

workspace:

 ⍝ Extract list from memory
 LOADAPI 'KERNEL32'('RtlMoveMemory' 'lstrlenA')
 LENGTH←1⊃CALLAPI 'lstrlenA' LISTADDR
 LIST←2 2⊃CALLAPI 'RtlMoveMemory' (LENGTH⍴⎕AF 0) LISTADDR LENGTH
 FREEAPI 'RtlMoveMemory' 'lstrlenA'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

88

Objects: Timers and DDE

Dialogs and control windows manage communication between your application and users. AP 145 objects

manage communication between your application and system facilities. Objects support use of the system clock

to signal events at specified intervals and communication with other applications using Dynamic Data Exchange

(DDE).

Use the CREATEOBJ function to create objects. For detailed information about creating objects, see

CREATEOBJ and Object Reference.

Note:

The DDE technology uses 16 bit integers to store data lengths. Therefore, data passed through DDE is limited

in size. Use the COM external function or the GUITOOLS function CALLCOM to pass larger arrays.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

89

Timers

Timers are the simplest objects. They are used to signal events at specified intervals. For example,

 TIMER←CREATEOBJ 'TIMER' .5 '⎕TS'
 DEFAULTPROC EXECUTEDLG TIMER
2003 12 6 15 40 52 590
2003 12 6 15 40 53 60
2003 12 6 15 40 53 560

The first argument of CREATEOBJ is a character vector that contains the class of object to create. Subsequent

arguments are class-specific initialization data. Timer objects require two initialization data items: an interval

in seconds, and an event handler expression. When the interval has elapsed, the AplWaitMsg service returns

the event handler expression.

CREATEOBJ returns a handle that uniquely identifies the object. Like window handles, object handles are

integer scalars and are used to refer to objects in calls to other functions. For example, the SET_PROPERTY

function can be used to set timer object properties:

 'INTERVAL' SET_PROPERTY TIMER .75
 'EVENTS' SET_PROPERTY TIMER (1 2⍴'Timer' '3↓⎕TS')

For more information about creating timers, consult Timer. The DEMO_TIMER function in the DEMO145

workspace demonstrates using a timer.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

90

Dynamic Data Exchange

Use DDE objects to manage communication between APL2 and other DDE-enabled applications. You can use

DDE objects to communicate with spread-sheets, databases, and even Windows itself. This chapter provides a

very brief introduction to using APL2 DDE objects. The DDESHARE workspace in library 2 contains a variety

of utility and demonstration functions. For more detailed information consult the chapter on the DDESHARE

workspace in the User's Guide.

There are two types of DDE applications: servers and clients. DDE server applications manage repositories of

information. Client applications can make requests to reference and update items in the repositories. Client

applications can also request that servers execute commands.

For example, Microsoft Excel can operate as a DDE server and APL2 can access spreadsheet data as a DDE

client. The following statements demonstrate how a DDE connection can be established between APL2 and

Excel:

 APPNAME←'Excel'
 TOPIC←'[Book1]Sheet1'
 ITEM←'R1C1:R3C2'
 HDATA←CREATEOBJ 'DDE DATA' APPNAME TOPIC ITEM

DDE DATA objects manage the communications between APL2 and DDE servers. Three initialization data

items are required: the name of the DDE server application, the name of a topic, and the name of an item. In the

case of Excel, the topic is a spreadsheet name and the item name is a range of cells. You can either refer to a

range of cells explicitly as shown above or use cell range names defined in Excel.

Once a DDE DATA object is created, APL2 can make requests of the Excel DDE server. For example, use

GET_PROPERTY to reference the value of the item:

 VALUE←'XLTABLE DATA' GET_PROPERTY HDATA
 DISPLAY VALUE
┌→────────┐
↓ 5.2 8.31│
│0.35 0.54│
│ 5.3 6.72│
└~────────┘

Use SET_PROPERTY to specify new values:

 'XLTABLE DATA' SET_PROPERTY HDATA (3 2⍴⍳6)

Use DDE COMMAND objects to request that DDE server applications execute commands. For example:

 HCMD←CREATEOBJ 'DDE COMMAND' 'Excel' 'Sheet1'
 SET_PROPERTY HCMD '[RUN("MACRO")]'

DDE COMMAND objects require two initialization items: the name of a DDE server application and a topic

name. Commands apply to the topic with which the DDE COMMAND object is communicating.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

91

Further examples of using DDE DATA and DDE COMMAND objects can be found in Appendix C: Using

APL2, DDE and Microsoft Excel and Appendix D: Using APL2, DDE and Microsoft Access.

DDE Servers

Most APL2 applications that use DDE are clients and only use DDE DATA and DDE COMMAND objects.

However, it is also possible to build DDE sever applications in APL2.

DDE server applications manage repositories of information that are arranged in a hierarchical structure:

DDE SERVER object

DDE TOPIC objects

DDE ITEM objects

DDE server, topic, and item objects all have names.

Each DDE SERVER object has an application name.

Each DDE TOPIC object has a topic name.

Each DDE ITEM object has an item name.

Each APL2 DDE server application has a DDE SERVER object. AP 145 uses the server object's name to

identify the server in connection requests from other applications.

Each DDE SERVER object contains one or more DDE TOPIC objects. Topic names identify sections of the

repository. For example, Excel uses spreadsheet names as topic names.

Each DDE TOPIC object contains one or more DDE ITEM objects. Each DDE ITEM object has a value.

Clients use the application, topic, and item names to locate an item's value and the application and topic names

to locate a topic for executing commands.

AP 145 automatically fulfills client requests to reference server applications' DDE ITEM object values. Server

applications use DDE TOPIC objects to respond to client requests to update DDE ITEM object values and

execute commands.

Here is an example that creates the basic components of a DDE server application:

[0] SERVER;SV145;HSERVER;HTOPIC;HITEM
[1] HSERVER←CREATEOBJ 'DDE SERVER' 'App Name'
[2] HTOPIC←CREATEOBJ 'DDE TOPIC' HSERVER 'Topic Name'
[3] HITEM←CREATEOBJ 'DDE ITEM' HTOPIC 'Item Name'
[4] EVENTS←⊃('Write value' 'WRITE')('Execute value' 'EXECUTE')
[5] SET_PROPERTY HITEM 'Initial value'
[6] 'EVENTS' SET_PROPERTY HTOPIC EVENTS
[7] 0 EXECUTEDLG HSERVER
[8] DESTROYOBJ HSERVER

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

92

The example first creates a hierarchy of server, topic, and item objects. The server object's initialization data is

the application's name. The topic object's initialization data is the server's handle and the topic's name. The

item object's initialization data is the topic's handle and the item's name.

After creating the object hierarchy, the function specifies event handlers for the topic object's Write value and

Execute value events. It then specifies an initial value for the item and waits for events.

When a client requests to specify a new value for an item, AP 145 sets the topic object's DDE WRITE property

with the name and new value of the item. The Write value event is then signaled. Here is the WRITE function

that handles the Write value event:

[0] WRITE;ITEM;VALUE
[1] (ITEM VALUE)←'DDE WRITE' GET_PROPERTY HTOPIC
[2] SET_PROPERTY HITEM VALUE
[3] 'DDE WRITE' SET_PROPERTY HTOPIC 0

The WRITE function retrieves the name and new value of the item from the DDE WRITE property and sets the

new value for the item. It then sets the DDE WRITE property with a 0 return code to indicate the request was

processed successfully. Note this example does not validate the item name.

When a client requests that a command be executed, AP 145 sets the topic object's DDE EXECUTE property

with the command to be executed. The Execute value event is signaled. Here is the EXECUTE function that

handles the Execute value event:

[0] EXECUTE;COMMAND
[1] COMMAND←'DDE EXECUTE' GET_PROPERTY HTOPIC
[2] ⍎COMMAND
[3] 'DDE EXECUTE' SET_PROPERTY HTOPIC (0 0)

The EXECUTE function retrieves and executes the command. It then sets the DDE EXECUTE property with a

2 element integer return code. The first element is 0 or 1. 0 indicates the command was executed successfully.

1 indicates the command was not executed. If the command was executed successfully, the second element is a

return code from 0 to 255. Otherwise, the second element is ignored.

More information about DDE is available in the following locations:

 The chapter on DDESHARE in the User's Guide

 The DDESHARE workspace in public library 2

 The DDESHARE section of Appendix B

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

93

Class Reference

Use the GUITOOLS workspace functions CREATEDLG and CREATECTL to create dialogs and controls.

AP 145 supports the following classes:

 Dialog

 ActiveX

 Check box

 Combo box

 Custom

 Date

 Entry field

 Frame

 Graphic Windows (AP 207)

 Grid

 Group box

 List box

 Listview

 Menus and Menu Items

 MLE

 Month

 Progress bar

 Push button

 Radio button

 Rectangle

 Scroll bar

 Slider

 Spin button

 Tab

 Time

 Treeview

AP 145 also provides support for the following system window:

 Desktop

The following sections list the styles, properties, and events supported for dialogs and each control class. Style,

property, and event names are case insensitive. Mutually exclusive styles are listed together; the defaults are

shown in bold.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

94

Dialog

Dialogs are top-level windows that provide a consistent user interface for application management. Dialog

windows typically include a border, a titlebar, and a system menu containing Move, Size, and Close. Dialogs

are created with the CREATEDLG function.

Styles:

Styles Definitions

NoBorder

Border

DlgBorder
SizeBorder

Has no border

Has a thin border

Has a 3 dimensional dialog border

Has a sizing border

Note: The NoBorder and Border styles only have an effect when the NoSysMenu and

NoTitlebar styles are used.

HScroll Has a horizontal scroll bar

Max Has a maximize button on titlebar

Min Has a minimize button on titlebar

Modal Is application modal; all other application windows are disabled

NoIcon Dialog with system menu does not have an icon

NoIgnore Do not ignore titlebar styles if the dialog is a child

NoSysMenu Does not have a system menu on titlebar

NoTitleBar Does not have a title bar

Shell System supplies default size and position

Split The dialog contains two panes arranged side by side that display the first two visible

children.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

95

SplitH The dialog contains two panes arranged one above the other that display the first two

visible children.

VScroll Has a vertical scroll bar

Visible Initially visible

Class specific properties:

Property Description

'ACCELERATOR' 4 column matrix - Defines keyboard accelerators. Accelerators provide a shortcut

method for users to issue application commands.

[;1] Integer scalar - BITWISE combination of Accelerator Flags that indicate the

required shift state and whether the code in the second column is a character,

an integer, or a virtual key code.

[;2] A character scalar, an integer scalar, or one of the Accelerator Virtual Key

Codes - An integer scalar is simply the ⎕AF value of a character. Virtual key

codes are used for keys such as F3 and Home.

[;3] Integer scalar - Identifier of the accelerator. Each identifier must be unique.

[;4] Arbitrary array - Event handler expression

For further information about using accelerators, see the DEMO_ACCEL function.

'DATA' Character vector - Dialog title

'MAXIMUM SIZE' 2 integers - Maximum dialog width and height

'MINIMUM SIZE' 2 integers - Minimum dialog width and height

'SPLIT' Integer scalar - Position of bar between split style dialog’s panes. Expressed as a

percentage between 0 and 100 of the width or height of the dialog.

'STATE ACTIVE' Boolean scalar - 0 inactive, 1 active

'STATE MINMAX' Integer scalar - 0 normal size, 1 maximized, 2 minimized

'STATE RESIZING' Read-only Boolean scalar - 1 user is resizing the dialog, 0 otherwise

'STATUS DATA' Character vector - single status bar message

Vector of character vectors - multiple status bar messages. Must have same

number of elements as STATUS PARTS property.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

96

'STATUS PARTS' 2 row matrix - Defines number of parts of status area and how they are drawn.

The number of columns defines the number of parts.

[1;] Integer scalar - Specifies part width. Expressed as position of the right edge

of the corresponding part in pixels. If -1, the right edge extends to the border

of the window.

[2;] Integer scalar - Specifies whether the part is drawn:

-1 Drawn below the plane of the window

0 Drawn without borders

1 Drawn above the plane of the window

'STATUS VISIBLE' Boolean scalar - 0 invisible, 1 visible

'TEMPLATE' Character vector – Dialog template

A template returned by the TEMPLATE property includes the child controls,

presentation properties, and event handlers included in the dialog. It can be used

to recreate the dialog just as if the template were created with the dialog editor.

The template does not include child dialogs, graphic windows, or the dialog’s

menu or status area. The template property can only be referenced.

'UNICODE DATA' See Data

'UNICODE STATUS

DATA'

See Status Data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CURSOR'

 'CURSOR POSITION'

 'DROPPED FILES'

 'EVENTS'

 'FONT'

 'HORIZONTAL LIMITS'

 'HORIZONTAL SELECTION'

 'OFFSET'

 'PICTURE'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE ENABLE DRAGDROP'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

97

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'UNICODE FONT'

 'USER DATA'

 'VERTICAL LIMITS'

 'VERTICAL SELECTION'

Events:

Event Description

'Activate' The dialog is being activated or deactivated.

'Close' The user is closing the window.

'Context menu' The user has clicked the right mouse button in the window.

'Files dropped' The user has dropped one or more files on the window

'Horizontal slider position' The user has stopped dragging the horizontal scroll bar slider.

'Horizontal slider track' User moves the horizontal scroll bar slider with the pointer device.

'Line down' User clicks on the down arrow of the vertical scroll bar.

'Line left' User clicks on the left arrow of the horizontal scroll bar.

'Line right' User clicks on the right arrow of the horizontal scroll bar.

'Line up' User clicks on the up arrow of the vertical scroll bar.

'Maximize' The dialog is being maximized.

'Minimize' The dialog is being minimized.

'Move' The dialog is being moved.

'Mouse wheel' The user has rotated the mouse wheel.

'Open' Undocumented

'Page down' User clicks on the area below slider in the vertical scroll bar.

'Page left' User clicks on the area to the left of the slider in the horizontal scroll bar.

'Page right' User clicks on the area to the right of the slider in the horizontal scroll bar.

'Page up' User clicks on the area above slider in the vertical scroll bar.

'Paint' The window needs to be painted.

'Restore' The window is being restored.

'Size' The dialog is being resized.

'Start menu' The user has pulled down an application menu

'Start system menu' The user is starting to use the system menu.

'Vertical slider position' The user has stopped dragging the vertical scroll bar slider.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

98

'Vertical slider track' User moves the vertical scroll bar slider with the pointer device.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

99

ActiveX

An ActiveX control is a reusable software component based on the Component Object Model (COM). Many

ActiveX controls are available, both as part of Windows and as products from other vendors.

ActiveX controls only operate in a special environment called a container. The container is a COM object that

manages the interface between the ActiveX control and the rest of the application. AP 145 uses Microsoft

Active Template Library (ATL) host windows as containers for ActiveX controls. When using an ActiveX

control in AP 145, an ATL host window is a child of the dialog and the ActiveX control is within the ATL host

container.

Use CREATECTL to add an ActiveX control to a dialog. Specify ACTIVEX as the control class and supply the

ActiveX class name as the control data. CREATECTL will create an ATL host window and the ATL host

window will in turn create the ActiveX control. CREATECTL will then return the handle of ATL window.

The ATL host window manages the interface between the dialog and the ActiveX control. For example, the

host manages the ActiveX control's size and position. Use the GET_PROPERTY and SET_PROPERTY

functions to access the host's properties. The host automatically propagates AP 145 property specifications to

the ActiveX control.

To access the ActiveX control's events, methods, and properties directly, you need the ActiveX control's COM

handle. Reference the host's 'COM OBJECT' property to retrieve the ActiveX control's COM handle. Use the

COM handle with the CALLCOM function in the GUITOOLS workspace to access the ActiveX controls' COM

methods, properties and event handlers. For more information on using COM components, see the APL2 User's

Guide section on COM under Supplied External Routines.

Styles:

Styles Definitions

Border The control is drawn with a border

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Notes:

 When creating an ActiveX grid control, control data must be supplied. The control data is one or two

character vectors. An ActiveX class name and an optional class license.

Class specific properties:

Property Description

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

100

'COM OBJECT' Integer scalar - COM handle of ActiveX control. Use the value of this property

with the CALLCOM function to access the ActiveX objects events, methods,

and properties. When you reference the COM OBJECT property, the object's

reference count will be incremented. Use the CALLCOM function's RELEASE

command to decrement the reference count. The COM OBJECT property is

read-only.

'CONTROL DATA' One or two character vectors: the ActiveX class name and an optional class

license key. The CONTROL DATA property is read-only.

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'SIZE'

 'STATE ENABLE'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Two types of events are supported for ActiveX controls: AP 145 events and COM events.

Use GET_PROPERTY and SET_PROPERTY to reference and specify AP 145 events. Use the CALLCOM

function's QUERY EVENTS and HANDLERS commands to reference and specify COM events.

Use WAIT_EVENT to wait for events in applications that use ActiveX controls. The EXECUTEDLG and

EXECUTEDLGX operators and the CHECK_EVENTS function do not support COM events and the CALLCOM

function does not support the WAIT command.

The following table lists the AP 145 events supported for ActiveX controls:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

101

Event Description

'Hover' The mouse pointer paused over the control

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

102

Check box

A check box control is a small square with a text label to the right. It is normally used in groups that allow

many items (or none) to be selected. Clicking on the square or the text checks or unchecks the control.

Styles:

Styles Definitions

3State Has checked, unchecked, and indeterminate state

NoAuto STATE CHECKED property is not automatically changed when user clicks

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' Character vector - Control text

'STATE CHECKED' Boolean scalar - 0 not checked, 1 checked

'UNICODE DATA' See Data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'PICTURE'

 'POSITION'

 'RGB COLOR BACKGROUND'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

103

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE DATA'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Button clicked' User clicks the button.

'Button double clicked' User double clicks the button.

'Button down' User presses a key or mouse button.

'Button up' User releases the key or mouse button.

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

104

Combo box

A combo box control is a combination of an entry field and list box, allowing the user to select an item from a

list, placing the text of that item into the entry field. The list may be hidden, saving room in the dialog.

Styles:

Styles Definitions

Simple
Dropdown

Dropdownlist

The list box is always visible

The list box is initially collapsed

The list box is initially collapsed and the user cannot type a new entry in the entry field.

Sort The list items are sorted alphabetically

HScroll Has a horizontal scroll bar

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'COLLAPSED CLIENT

POSITION'
2 integers - Position of window relative to lower left corner of parent’s client

area. Same as CLIENT POSITION, but based on collapsed state of drop down

combo boxes.

'COLLAPSED POSITION' 2 integers - Position of window relative to lower left hand corner of parent.

Same as POSITION, but based on collapsed state of drop down combo boxes.

'COLLAPSED SIZE' 2 integers - Width and height of window in pixels.

Same as SIZE, but based on collapsed state of drop down combo boxes.

Note: It is not possible to alter the height of drop down combo boxes. When

using the COLLAPSED SIZE or SIZE properties to alter the width,

specification of any height other than the existing height of the window will

result in repositioning of the window without the corresponding height change.

'DATA' Character vector - Entry field text

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

105

'DATA LIST' Vector of character vectors - List box items

'LIMITS' Integer scalar - Number of characters allowed in entry field

'PATH' Character vector - Path. The control displays the files in the path that match

the styles specified in the path style property. For example,

'c:\temp*.txt'.

If a drive is not supplied, the current drive is used

If a path is not supplied, the current directory of AP 145 is used

If a drive or path is supplied, the current directory of AP 145 is changed.

If a filename is supplied, it must contain at least one wildcard character, ? or

*. If no filename is supplied, *.* is used.

Combo boxes must have a non-zero identifier to use the path style property.

'PATH SELECTION' Character vector - Contains the selected item. The path selection property may

be referenced but not specified. The property has a null value if no item is

selected.

'PATH STYLE' Character vector - Specifies the attributes of the filenames to be displayed.

Path style can contain one or more of the following words:

ARCHIVE Include archived files.

DIRECTORY Include subdirectories. Subdirectory

names are enclosed in square brackets

([]).

DRIVES Include drives. Drives are listed in the

form [-x-], where x is the drive letter.

EXCLUSIVE Include only files with the specified

attributes. By default, read-write files

are listed even if READWRITE is not

specified.

HIDDEN Include hidden files.

READWRITE Include read-write files with no

additional attributes.

SYSTEM Include system files.

Combo boxes must have a non-zero identifier to use the path style property.

'SELECTION' Integer vector - Indices of the selected items in origin 0

'STATE LIST VISIBLE' Boolean scalar - 0 drop down list is invisible, 1 visible.

Note: This property has no effect on simple combo boxes.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

106

'UNICODE DATA' See Data

'UNICODE DATA LIST' See Data list

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE APL'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Context menu' The user has clicked the right mouse button in the window.

'Enter or double click' The user has depressed the Enter key or double clicked (single clicked in the

case of a drop-down list) on an item in the list box control.

'Entry field change' The content of the entry field control has changed, and the change has been

displayed on the screen.

'Hover' The mouse pointer paused over the control

'List box select' An item in the list box control has been selected.

‘Memory error’ The control encountered an error allocating memory.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

107

'Show list box' The list box is about to be displayed.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

108

Custom

A Custom control is a window whose processing is performed entirely by the APL2 application. The

application draws the contents of the window and handles all mouse and keyboard interactions. Custom controls

can be written to fulfill specialized input or display requirements.

Notes:

Writing custom controls requires detailed knowledge of Microsoft Windows programming using

messages and the Graphics Device Interface (GDI). Information about these topics can be found in the

Platform SDK documentation available at the Microsoft web site.

AP 145 automatically calls BeginPaint and EndPaint when Windows sends WM_PAINT messages to

custom controls. Therefore, when an APL2 application receives the Paint event for a custom control,

the control's invalid region has already been validated and BeginPaint will return a device context

containing an empty invalid region. APL2 applications should use GetDC and ReleaseDC rather than

BeginPaint and EndPaint.

Styles:

Styles Definitions

Border The control is drawn with a border

HScroll Has a horizontal scroll bar

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

VScroll Has a vertical scroll bar

Class specific properties: None

Common properties:

Custom controls provide normal support for most common properties. Custom controls provide special

behavior for the color and font properties as described below.

If the color background or RGB color background property is set to a non-null value, the custom control

provides normal support and fills the background with the specified color. If either property is set to null, the

custom control does not fill the background; the application should fill the client area.

Custom controls do not use the color foreground, RGB color foreground, font, and Unicode font properties.

Specifications to these properties have no automatic effect. Applications can use these properties during

message processing to store color and font information.

Custom controls support the following common properties:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

109

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'DROPPED FILES'

 'EVENTS'

 'FONT'

 'HORIZONTAL LIMITS'

 'HORIZONTAL SELECTION'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE APL'

 'STATE ENABLE'

 'STATE ENABLE DRAGDROP'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

 'VERTICAL LIMITS'

 'VERTICAL SELECTION'

Events:

Custom controls’ events provide applications with general classifications of Windows messages. By specifying

handlers for an event, your application will be passed all the Windows messages related to that event

classification. When the AP 145 AplWaitMsg service returns an event, the EXECUTEDLG operator assigns

the control handle, the message identifier, and the message parameters to the HANDLE, MSG, MP1, and MP2

variables before executing the event handler. The event handler can then examine these variables to determine

the exact cause of the event.

The following table lists the custom control events, descriptions, and the identifiers of the Windows messages

that can be returned for each type of event.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

110

Event Description Messages

'Files dropped' The user has dropped one or more files on the window No message data

'Hover' The mouse pointer paused over the control No message data

'Horizontal slider

position'

The user has stopped dragging the horizontal scroll bar

slider.

WM_HSCROLL

'Horizontal slider

track'
User moves the horizontal scroll bar slider with the

pointer device.

WM_HSCROLL

'Keystroke' The user has pressed a key. WM_KEYDOWN

WM_KEYUP

WM_SYSKEYDOWN

WM_SYSKEYUP

WM_CHAR

WM_SYSCHAR

WM_DEADCHAR

WM_SYSDEADCHAR

WM_IME_CHAR

'Kill focus' The control is losing the focus. WM_KILLFOCUS

'Line down' User clicks on the down arrow of the vertical scroll bar. WM_VSCROLL

'Line left' User clicks on the left arrow of the horizontal scroll bar. WM_HSCROLL

'Line right' User clicks on the right arrow of the horizontal scroll bar. WM_HSCROLL

'Line up' User clicks on the up arrow of the vertical scroll bar. WM_VSCROLL

'Mouse click' The user has pressed a mouse button. WM_LBUTTONDOWN

WM_MBUTTONDOWN

WM_RBUTTONDOWN

WM_LBUTTONUP

WM_MBUTTONUP

WM_RBUTTONUP

WM_LBUTTONDBLCLK

WM_MBUTTONDBLCLK

WM_RBUTTONDBLCLK

'Mouse movement' The user has moved the mouse over the control. WM_MOUSEMOVE

'Mouse wheel' The user has rotated the mouse wheel. WM_MOUSEWHEEL

'Page down' User clicks on the area below slider in the vertical scroll

bar.

WM_VSCROLL

'Page left' User clicks on the area to the left of the slider in the

horizontal scroll bar.

WM_HSCROLL

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

111

'Page right' User clicks on the area to the right of the slider in the

horizontal scroll bar.

WM_HSCROLL

'Page up' User clicks on the area above slider in the vertical scroll

bar.

WM_VSCROLL

'Paint' The control needs to be repainted. WM_PAINT

'Set focus' The control receives the focus. WM_SETFOCUS

'Size' The control has been resized. WM_SIZE

'System color change' The definition of one or more system colors has changed. WM_SYSCOLORCHANGE

'Vertical slider

position'

The user has stopped dragging the vertical scroll bar

slider.

WM_VSCROLL

'Vertical slider track' User moves the vertical scroll bar slider with the pointer

device.

WM_VSCROLL

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

112

Date

A Date control provides an interface through which to exchange date information with a user.

Styles:

Styles Definitions

ShortDate
ShortDateCentury

LongDate

Displays the date in short,

short century,

or long format

Checkbox Checkbox included which grays date

Right Drop down month control is right aligned

UpDown Spin button style rather than drop down month

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' 3 Integers - Year, Month, and Day

'STATE CHECKED' Boolean scalar - 0 not checked, 1 checked

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

113

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Change' The user has changed the date.

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

'Kill focus' The control is losing the focus.

'Set focus' The control receives the focus.

The Date control class is a member of the Microsoft Windows Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

114

Entry field

An entry field control is a rectangle in which a user can enter text.

Styles:

Styles Definitions

Left
Center

Right

The data is left justified,

centered,

or right justified

NoAutoscroll Does not automatically scroll text horizontally

NoMargin Does not have a margin

Readonly The user can not modify the data

Unreadable Displays each character as an asterisk

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' Character vector - Control text

'LIMITS' Integer scalar - Number of characters allowed in entry field

'SELECTION' 2 integers - 0-origin indices of the first and last characters of the selection

range. If they are equal, they describe the cursor position.

'UNICODE DATA' See Data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

115

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE APL'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE READONLY'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 UNICODE CONTEXT HELP

 UNICODE FONT

 UNICODE TOOL TIP

 USER DATA

Events:

Event Description

'Change' The content of the entry field control has changed, and the change has been

displayed on the screen.

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

'Kill focus' The entry field control is losing the focus.

‘Memory error’ The control encountered an error allocating memory.

'Overflow' The entry field control cannot insert more text than the current text limit.

'Scroll' The entry field control is about to scroll horizontally.

'Set focus' The entry field control is receiving the focus.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

116

Frame

A frame control is a rectangular frame, used in simple graphics.

Styles:

Styles Definitions

Foreground
Background

Halftone

The frame is drawn using the background,

the foreground,

or the halftone color.

Invisible Is initially invisible

Border Draws a 3 dimensional border around the frame

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'ID'

 'NAME'

 'OFFSET'

 PICTURE

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE TOOL TIP'

 'USER DATA'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

117

Graphic Windows (AP 207)

The AP 207 OPEN command can be used to create a graphic window in an AP 145 dialog.

Graphic windows support the following common properties:

 'CONTEXT HELP'

 ‘STATE FOCUS’

 'UNICODE CONTEXT HELP'

See Displaying Graphics in a Dialog for more information.

Events:

Event Description

'Kill focus' The graphic window is losing the focus.

'Set focus' The graphic window is receiving the focus.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

118

Grid

A grid is a rectangular arrangement of cells.

Styles:

Styles Definitions

NoMixed Does not support numeric or non-homogeneous data

NoHScroll Does not have a horizontal scroll bar

NoVScroll Does not have a vertical scroll bar

NoColHead Does not have column heading buttons

NoColSelect Column heading buttons do not select columns

NoColResize User can not resize columns

NoRowHead Does not have row heading buttons

NoRowSelect Row heading buttons do not select rows

NoRowResize User can not resize rows

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

119

Resizable The user can add and delete cells using the keyboard. This style enables the following

key combinations:

Alt+Left Insert a column before the cell that has focus.

Alt+Right Insert a column after the cell that has focus.

Alt+Up Insert a row before the cell that has focus.

Alt+Down Insert a row after the cell that has focus.

Ctrl+Alt+Left Delete the current column and move the focus left

Ctrl+Alt+Right Delete the current column and move the focus right

Ctrl+Alt+Up Delete the current row and move the focus up

Ctrl+Alt+Down Delete the current row and move the focus down

 Note: These keystrokes are not supported if the AplSetCellSize service has been used to

resize cells.

Notes:

 When creating a grid control, control data can be supplied. The control data is 2 integers specifying the

number of rows and columns. The default is 100 rows and columns.

 If NoRowHead is specified, NoRowSelect and NoRowResize are assumed.

 If NoColHead is specified, NoColSelect and NoColResize are assumed.

 If the CREATECTL control data argument is supplied, it is two positive integers that specify the number of

rows and columns. If control data is omitted, there are 100 rows and columns.

Class specific properties:

Property Description

'COLUMN HEADINGS' Vector of character vectors - Text of the column heading

buttons. Vector must have the same number of elements as

the grid has columns.

'COLUMN WIDTHS' Integer vector - Widths of the columns in pixels. Vector must

have the same number of elements as the grid has columns.

'CONTROL DATA' 2 integers - Number of rows and columns

'FOCUS CELL' 2 integers - Row and column 0 origin index of the cell that

has focus.

'HEIGHT COLUMN HEADINGS' Integer scalar - Height of column heading buttons in pixels

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

120

'HORIZONTAL SLAVE' Integer scalar - Handle of a grid control whose horizontal

scrolling should be controlled.

The horizontal slave property can only be set once.

The master and slave grid controls must have the same

number of columns.

When the horizontal slave property is set, the slave control’s

width is set to the same as the master control’s width.

'ROW HEADINGS' Vector of character vectors - Text of the row heading buttons.

Vector must have the same number of elements as the grid

has rows.

'ROW HEIGHTS' Integer vector - Heights of the rows in pixels. Vector must

have the same number of elements as the grid has rows.

'SELECTION' 4 integers - Selection range. The first two integers are the

index of the beginning of the range. The second two integers

are the number of selected rows and columns.

'UNICODE COLUMN HEADINGS' See column headings

'UNICODE ROW HEADINGS' See row headings

'VERTICAL SLAVE' Integer scalar - handle of a grid control whose vertical

scrolling should be controlled.

The vertical slave property can only be set once.

The master and slave grid controls must have the same

number of rows.

When the vertical slave property is set, the slave control’s

height is set to the same as the master control’s height.

'WIDTH ROW HEADINGS' Integer scalar - width of the row heading buttons in pixels

When setting the size of a grid control, use the sum of the COLUMN WIDTHS and WIDTH ROW

HEADINGS properties to determine the width and the sum of the ROW HEIGHTS and HEIGHT COLUMN

HEADINGS to determine the height. If the grid has scroll bars, create horizontal and vertical style scroll bars

and query their default sizes to determine the width and height of the grid control’s scroll bars. To set a

column’s width accurately, create a push button, set the button’s text to the longest string in a column,

SIZETOTEXT the button, and query the button’s size.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

121

Range properties:

Range Property Description

'CELL BACKGROUND COLOR'

'CELL FOREGROUND COLOR'

Integer scalar - Background color code:

0 Default entry field color

1 Default button color

2 Default read-only entry field color

3 Black

4 Blue

5 Brown

6 Cyan

7 Dark blue

8 Dark cyan

9 Dark grey

10 Dark green

11 Dark green

12 Dark red

13 Green

14 Grey

15 Pink

16 Red

17 White

18 Yellow

'CELL DATA' Numeric scalar, a character vector, or a matrix of numeric

scalars and character vectors. If the grid has the NoMixed style,

only character vectors are supported.

'CELL EDGE' Integer scalar - Specifies which edges of cell are drawn.

BITWISE combination of following values:

1 Left

2 Top

4 Right

8 Bottom

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

122

'CELL FORMAT' Integer scalar – Specifies whether cell’s data is character or

numeric.

-1 Cell is being edited (not valid with SET_RANGE)

 0 Character

 1 Numeric

'CELL JUSTIFICATION' Integer scalar - Specifies how data is justified in the cell. One

of the following values:

1 Left

2 Centered

3 Right

'CELL STATE PUSHED' Boolean scalar - Push Button cell state.

0 not pushed, 1 pushed

'CELL STATE READONLY' Boolean scalar - Entry field and button enable state. 0 input

allowed, 1 read-only

'CELL STATE WORDWRAP' Boolean scalar - 0 text drawn in single line, 1 text wrapped onto

multiple lines

'CELL TYPE' Integer scalar - One of the following values:

0 Static text

1 Entry field

2 Push button

'UNICODE CELL DATA' See cell data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 ‘COLOR BACKGROUND’

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

123

 'SIZE'

 'STATE APL'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Begin edit' The user has started editing a cell. The cell has been replaced with an MLE.

The handle of the MLE may be retrieved using WINDOWFROMID; the grid is

the MLE’s parent and the MLE’s id is zero.

'Button' A button cell has been pushed.

'Change' The user has changed a cell’s value. Query the MLE’s DATA property to

retrieve the changed value.

Note: This event is signaled before the End Edit event.

'Column button' The user has pushed a column heading button. This event is only signaled if

the NoColSelect style is used.

'Context menu' The user has clicked the right mouse button in the window.

'End edit' The user has finished editing a cell and saved any changes made.

Note: To determine the index of the edited cell, do not query the focus cell

property in response to the end edit event, because the focus may move before

the end edit event is received. To determine the index of the edited cell, use the

MP1 and MP2 message parameters or query the focus cell property in response

to the begin edit event.

'Focus move' The user has moved the focus to another cell.

'Format change' The user has hit enter to end editing a cell with the numeric CELL FORMAT

property and the new value can not be converted to a number. The cell’s

format has been changed to character.

Note: This event is signaled before the End Edit event.

'Hover' The mouse pointer paused over the control

'Row button' The user has pushed a row heading button. This event is only signaled if the

NoRowSelect style is used.

When a cell event occurs and an event handler is supplied, EXECUTEDLG sets MP1 and MP2 to the row and

column index of the focus cell.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

124

Normally Grid controls handle heading button presses. However, when the no row selection or no column

selection styles are used, and a heading button event occurs, EXECUTEDLG sets the variable MP1 to the index

of the heading button.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

125

Group box

A group box is a frame used for grouping controls together. It has a text label in its top edge.

Styles:

Styles Definitions

Invisible Is initially invisible

Class specific properties:

Property Description

'DATA' Character vector - Control text

'CLIENT ORIGIN' 2 integers - Position of the lower left hand corner of the group box's client area

relative to the lower left hand corner of parent dialog's client area. Reference

the CLIENT ORIGIN property to determine where to position controls within

the group box. Specify the CLIENT ORIGIN to position the group box over

other controls. The DEMO_GROUP function demonstrates using the CLIENT

ORIGIN property.

'UNICODE DATA' See data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

126

 'STATE ENABLE'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

127

List box

A list box control is a rectangle with a vertical scroll bar on its right side. It is used to display a list of character

vectors, such as file names.

Styles:

Styles Definitions

MultipleSel The user can select multiple items

ExtendedSel The user can select multiple ranges of items

Sort The list items are sort alphabetically

HScroll Has a horizontal scroll bar

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' Vector of character vectors - List box items

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

128

'PATH' Character vector - Path. The control displays the files in the path that match the

styles specified in the path style property. For example, 'c:\temp*.txt'.

If a drive is not supplied, the current drive is used

If a path is not supplied, the current directory of AP 145 is used

If a drive or path is supplied, the current directory of AP 145 is changed.

If a filename is supplied, it must contain at least one wildcard character, ? or *.

If no filename is supplied, *.* is used.

List boxes must have a non-zero identifier to use the path style property.

'PATH SELECTION' Character vector - Contains the selected item. The path selection property may

be referenced but not specified. The property has a null value if no item is

selected.

'PATH STYLE' Character vector - Specifies the attributes of the filenames to be displayed. Path

style can contain one or more of the following words:

ARCHIVE Include archived files.

DIRECTORY Include subdirectories. Subdirectory

names are enclosed in square brackets

([]).

DRIVES Include drives. Drives are listed in the

form [-x-], where x is the drive letter.

EXCLUSIVE Include only files with the specified

attributes. By default, read-write files

are listed even if READWRITE is not

specified.

HIDDEN Include hidden files.

READWRITE Include read-write files with no

additional attributes.

SYSTEM Include system files.

List boxes must have a non-zero identifier to use the path style property.

'SELECTION' Integer vector - 0 origin indices of selected items

'TOP INDEX' Integer scalar - 0 origin index of item displayed at top of control

'UNICODE DATA' See Data

Common properties:

 'APPLICATION DATA'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

129

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Context menu' The user has clicked the right mouse button in the window.

'Enter or double click' The user has depressed the Enter key or double clicked on an item in the list

box control.

'Hover' The mouse pointer paused over the control

'Kill focus' The list box control is losing the focus.

'Select' An item is being selected or deselected.

'Set focus' The list box control is gaining the focus.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

130

Listview

A Listview control is a window that displays a collection of items; each item consists of an icon and a label.

Listview controls provide several ways to arrange and display items. For example, additional information about

each item can be displayed in columns to the right of the icon and label.

Styles:

Styles Definitions

NoHeadings Does not have column headings

StaticHeadings Column headings are drawn as static text

DragHeadings The user can rearrange the order of the columns

Editlabels Allows the user to edit item labels

Left Align items along the left in icon view

NoWrap Icon text does not wrap into multiple lines

SingleSel Prevents selection of multiple items

FullRowSel Highlight entire rows in details view

GridLines Display grid lines in details view

CheckBoxes Display check boxes next to items

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Notes:

 If NoHeadings is specified, StaticHeadings and DragHeadings cannot be used.

Class specific properties:

Property Description

'DATA' Matrix of character vectors - Displayed data

'FOCUS' Integer scalar or empty vector - 0 origin index of item with focus

'HEADING SELECTION' Integer scalar - 0 origin index of the last selected listview column heading.

Specifications are discarded.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

131

Property Description

'HEADINGS' Vector of character vectors - Column headings

'JUSTIFY' Integer vector - Specifies the justification of column headings and data.

Must have the same number of elements as the headings property. Use the

following justification values:

-1 Left justified

0 Centered

1 Right justified

'PICTURE INDEXES' Integer vector - 0 origin indices, into the listview control’s picture list, of

the pictures to be displayed next to each item. Must have the same number

of elements as the number of rows in the listview control’s data property.

Use -1 for no picture.

'PICTURE LIST' Array of pictures used in a listview control. Each element can be any of 4

types of arrays: character vectors containing names of image files, enclosed

character vectors containing the contents of image files, 3 element arrays

containing image resource information, or integer scalars that are built-in

picture codes.

Character vector - Name of image file. The following image file types are

supported:

Bitmap BMP

Enhanced Metafile EMF

Exchangeable Image File Exif

Graphics Interchange Format GIF

Icon ICO

Joint Photographic Experts Group JPG or JPEG

Portable Network Graphics PNG

Tag Image File Format TIF or TIFF

Windows Metafile WMF

GDI+ is required for file types other than bitmap and icon.

If a full path is not supplied, files are searched for using the following

sequence:

1. The directory from which AP 145 was loaded

2. The current directory

3. The Windows system directory

4. The directories listed in the PATH environment variable

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

132

Property Description

Enclosed character vector - Contents of image file. Icon file images are

not supported. GDI+ is required for this type of array.

Three element array - Image resource

[1] Character vector - Resource type: 'BITMAP' or 'ICON'

[2] Character vector – Name of executable containing resource.

 For example: 'SHELL32.DLL'

[3] Integer scalar - Resource identifier

Integer scalar – Built-in picture code:

0 Closed folder

1 Open folder

2 Closed book

3 Open book

4 Page

Note: The listview picture list property does not respect transparent

backgrounds in pictures. For best results, use bitmaps and icons with white

backgrounds.

'SELECTION' Integer vector - 0 origin indices of selected items

'STATE CHECKED' Integer vector - Specifies whether a check box appears next to an item and

whether it is checked or unchecked. The state checked property is only

used with listview controls with the CheckBoxes style. The state checked

property must have the same number of elements as the number of rows in

the listview’s data property. Its values mean:

0 No check box

1 Empty check box

2 Checked check box

'TOP INDEX' Integer scalar - 0 origin index of item displayed at top of control

'UNICODE DATA'

'UNICODE HEADINGS'

See Data and Headings

APL characters can not be displayed in listview controls in dialogs created

by the CREATEDLG function.

Listview controls always store data in Unicode. When a listview’s DATA

or HEADINGS property is specified, the control uses Windows’ facilities

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

133

Property Description

to convert the data to Unicode. Windows uses the current input locale to

interpret the data. Since Windows locales do not include APL characters,

characters at those ⎕AV positions are converted to Unicode national

language characters.

To display APL characters in listview controls, use the UNICREATEDLG

function to create a Unicode dialog and set the UNICODE DATA and

UNICODE HEADINGS properties. AP 145 will convert the APL data to

Unicode.

For more information about using Unicode, see the Double Byte Character

Set Support appendix in the APL2 User’s Guide.

'VIEW' Integer scalar - Current view. Use one of the following values:

0 Icons view

1 Small icons view

2 List view

3 Details view

'WIDTHS' Integer vector - Widths of column headings in pixels. Must have the same

number of elements as the headings property.

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR POSITION'

 'CURSOR'

 'DROPPED FILES'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE APL'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

134

 'STATE ENABLE'

 'STATE ENABLE DRAGDROP'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE DATA'

 'UNICODE FONT'

 'UNICODE TOOL TOP'

Events:

Event Description

'Check state change' The user checked or cleared an item’s checkbox

'Column click' The user has clicked on a column heading.

'Files dropped' The user has dropped one or more files on the window

'Hover' The mouse pointer paused over the control

'Kill focus' The listview control is losing the focus.

'Enter or double click' The user has pressed Enter or double clicked.

'Label changed’ The user has edited an item’s label. Reference the control’s DATA property to

retrieve the item’s modified label.

'Right click' The user has right clicked on an item.

'Select' One or more items has been selected or deselected.

'Set focus' The listview control is gaining the focus.

The Listview control class is a member of the Microsoft Windows Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

135

Menus and Menu Items

Menus are created with the CREATEMENU function. CREATEMENU returns a menu handle.

Menus support the following properties.

 'APPLICATION DATA'

 'EVENTS'

 'USER DATA'

Menu items support the following properties:

 'CONTEXT HELP'

 'DATA'

 'STATE CHECKED'

 'STATE ENABLE'

 'UNICODE CONTEXT HELP'

 'UNICODE DATA'

Set a menu item’s property using the menu’s handle and the menu item’s identifier. For example, the following

statements create a menu and disable the Quit menu item:

 MENU←CREATEMENU DIALOG(,⊂((100 'File')(120 'Quit')))
 'STATE ENABLE' SET_PROPERTY MENU 0 120

See the DEMO_MENU function and Adding a Menu Bar for further information about using menus.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

136

MLE

An MLE control is an entry field that allows the text to be entered on multiple lines.

Styles:

Styles Definitions

NoBorder Does not have a border

Readonly The user can not modify the data

WordWrap Wraps data onto multiple lines

Hscroll Has a horizontal scroll bar

Vscroll Has a vertical scroll bar

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' Vector of character vectors - Control text

'LIMITS' Integer scalar - Number of characters allowed in control

'SELECTION' Pair of integer pairs - Defines the first and last characters of the selection range.

The first number in each pair is a record index. The second number in each pair

is an index of a character within the record. Indices are in index origin zero. If

the pairs are the same, they describe the cursor position.

'TOP INDEX' Integer scalar - 0 origin index of item displayed at top of control

'UNICODE DATA' See Data

Common properties:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

137

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'DROPPED FILES'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE APL'

 'STATE ENABLE'

 'STATE ENABLE DRAGDROP'

 'STATE FOCUS'

 'STATE READONLY'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Change' The content of the MLE has changed, and the change has been displayed on

the screen.

'Context menu' The user has clicked the right mouse button in the window.

'Files dropped' The user has dropped one or more files on the window

'Horizontal scroll' The MLE has completed a scrolling calculation and is about to update the

display accordingly. All queries return values as if the scrolling were complete.

However, no scrolling action is visible on the user interface.

'Hover' The mouse pointer paused over the control

'Kill focus' The MLE is losing the focus.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

138

‘Memory error’ The control encountered an error allocating memory.

'Set focus' The MLE is receiving the focus.

'Vertical scroll' The MLE has completed a scrolling calculation and is about to update the

display accordingly. All queries return values as if the scrolling were complete.

However, no scrolling action is visible on the user interface.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

139

Month

A Month control implements a calendar-like interface. This provides the user with a way to select a date or a

range of dates.

Styles:

Styles Definitions

MultipleSel User can select range of dates

NoToday Do not display today’s date at bottom

NoTodayCircle Do not circle today’s date in calendar

WeekNumbers Display week numbers

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' For single selection month controls, the data property is a 3-

element vector containing the year, month, and day.

For multiple selection month controls, the data property is a 2

by 3 matrix containing the beginning and ending years,

months, and days.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

140

Property Description

'FIRST DAY OF WEEK' Integer scalar - Specifies which day is the first day of the

week. One of the following values:

0 Monday

1 Tuesday

2 Wednesday

3 Thursday

4 Friday

5 Saturday

6 Sunday

'HIGHLIGHTED DAYS' Integer matrix, 3 columns - Specifies days that should be

highlighted. The columns are:

[;1] Year

[;2] Month

[;3] Day

'MAXIMUM SELECTION COUNT' Integer scalar - Maximum number of days that may be

selected

'MONTH DELTA' Integer scalar - Specifies how many months the control

should scroll when the user presses a scroll button.

'RANGE' Integer matrix, 2 rows, 3 columns - Specifies minimum and

maximum allowable dates in control. The first row is the

minimum date. The second row is the maximum date. The

columns are:

[;1] Year

[;2] Month

[;3] Day

'TODAY' Integer vector - Year, month, and day that should be

specified as today.

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

141

 'CURSOR POSITION'

 'CURSOR'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

'Selection change' The selected date or range of dates has changed.

'Select' The user has selected a date.

The Month control class is a member of the Microsoft Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

142

Progress Bar

A Progress Bar control displays the progress of a lengthy operation.

Styles:

Styles Definitions

Marquee The progress bar moves like a marquee.

Smooth Displays progress status in a smooth scrolling bar rather than the default segmented bar.

Vertical Displays progress status vertically, from bottom to top.

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'LIMITS' 2 integers - Specifies range of progress bar

'SELECTION' Integer scalar - Value of progress bar

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'ID'

 'NAME'

 'OFFSET'

 'PICTURE'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

143

 'STATE ENABLE'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE TOOL TIP'

 'USER DATA'

The Progress Bar control class is a member of the Microsoft Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

144

Push button

A push button control is a rectangle with rounded corners, containing a text label or picture. Clicking on it with

the mouse or pressing Enter or the Space bar while it has focus signals an event.

Styles:

Styles Definitions

Default Button is pressed when Enter is hit. This style requires a non-zero id.

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Notes:

 If CREATECTL Id parameter is 1, button text is set to Ok

 If CREATECTL Id parameter is 2, button text is set to Cancel

 Windows issues an id 1 button push if the user presses Enter

 Windows issues an id 2 button push if the user presses Escape

Class specific properties:

Property Description

'DATA' Character vector - Control text

'UNICODE DATA' See data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

145

 'NAME'

 'OFFSET'

 'PICTURE'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Command' User presses the button.

'Context menu' The user has clicked the right mouse button in the window.

'Button down' User presses a key or mouse button.

'Button up' User releases the key or mouse button.

'Hover' The mouse pointer paused over the control

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

146

Radio button

A radio button control is a small circle with a text label to the right. It is normally used in groups that allow

only one item at a time to be selected. Clicking on the circle or the text chooses that option instead of any other

one in the group.

Styles:

Styles Definitions

NoAuto STATE CHECKED property is not automatically changed when user clicks

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' Character vector - Control text

'STATE CHECKED' Boolean scalar - 0 not checked, 1 checked

'UNICODE DATA' See Data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'PICTURE'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

147

 'SIZE'

 'STATE CHECKED'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Button clicked' User clicks the button.

'Button double clicked' User double clicks the button.

'Button down' User presses a key or mouse button.

'Button up' User releases the key or mouse button.

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

148

Rectangle

A rectangle control is a colored rectangle, typically used in simple graphics. By flattening the rectangle to a

line, it is also useful for making a separating line or bar between controls.

Styles:

Styles Definitions

Foreground
Background

Halftone

The frame is drawn using the Foreground,

the background,

or the halftone color.

Invisible Is initially invisible

Border Draws a 3 dimensional border around the rectangle

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'ID'

 'NAME'

 'OFFSET'

 'PICTURE'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE TOOL TIP'

 'USER DATA'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

149

Scroll bar

A scroll bar lets the user scroll the contents of a window. Scroll bars have a scrolling arrow at each end, and a

slider that can be set at any point in the bar.

Styles:

Styles Definitions

Horizontal
Vertical

The scroll bar is drawn horizontally

or vertically

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'LIMITS' 2 integers - Specifies range of scroll bar’s value

'SELECTION' Integer scalar - Value of scroll bar

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

150

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

'Line left' User clicks on the left arrow of the scroll bar, or depresses the left arrow key.

'Line right' User clicks on the right arrow of the scroll bar, or depresses the right arrow

key.

'Page left' User clicks on the area to the left of the slider, or depresses the page up key.

'Page right' User clicks on the area to the right of the slider, or depresses the page right

key.

'Line up' User clicks on the up arrow of the scroll bar, or depresses the up arrow key.

'Line down' User clicks on the down arrow of the scroll bar, or depresses the down arrow

key.

'Page up' User clicks on the area above the slider, or depresses the page up key.

'Page down' User clicks on the area below the slider, or depresses the page down key.

'Slider track' User moves the slider with the pointer device.

'End scroll' User has finished scrolling, but only if the user has not been doing any absolute

slider positioning.

'Slider position' Indicates the final position of the slider.

'Mouse wheel' The user has rotated the mouse wheel.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

151

Slider

A slider control is a window that allows selection of a value from a range.

Styles:

Styles Definitions

Horizontal
Vertical

The scroll bar is drawn horizontally

or vertically

Top

Bottom

For horizontal sliders, the tick marks are drawn above

or below the slider

Left

Right
For vertical sliders, the tick marks are drawn on the left

or right side of the slider

Ruler1
Ruler2

The first

or second set of increments is used.

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Notes:

 If the CREATECTL CtlData argument is supplied, it is two positive integers that specify the number of

increments in scales 1 and 2. If CtlData is omitted, both scales 1 and 2 have 100 increments.

Class specific properties:

Property Description

'CONTROL DATA' Integer vector - 4 elements:

[1] Scale 1 number of increments

[2] Scale 1 spacing

[3] Scale 2 number of increments

[4] Scale 2 spacing

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

152

Property Description

'DIMENSIONS' Integer vector - 3 elements

[1] Shaft breadth

[2] Arm breadth

[3] Arm length

Ignored on Windows

'SCALE' Integer scalar - Active scale. Value is 1 or 2

'SCALE 1 TICKMARK SIZES' Integer vector - Scale 1 tick mark sizes in pixels. 0 indicates no tick

mark. Length must equal number of increments specified in Control

Data.

Tick marks are fixed size on Windows.

'SCALE 1 TICKMARK TEXT' Vector of character vectors - Scale 1 tick mark labels. Zero length

character vectors indicate no label. Length must equal number of

increments specified in Control Data.

Tick mark text properties are ignored on Windows.

'SCALE 2 TICKMARK SIZES' Integer vector - Scale 2 tick mark sizes in pixels. 0 indicates no tick

mark. Length must equal number of increments specified in Control

Data.

Tick marks are fixed size on Windows.

'SCALE 2 TICKMARK TEXT' Vector of character vectors - Scale 1 tick mark labels. Zero length

character vectors indicate no label. Length must equal number of

increments specified in Control Data.

Tick mark text properties are ignored on Windows.

'SELECTION' Integer scalar - Value of slider

'SHAFT POSITION' Two Integers - Specifies position of the lower left corner of the shaft

relative to the slider window in pixels.

Shaft position property is ignored on Windows.

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

153

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE READONLY'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Change' The slider arm position has changed.

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

'Kill focus' The slider control is losing the focus.

'Set focus' The slider control is receiving the focus.

'Slider track' The slider arm is being dragged, but has not been released.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

154

Spin button

A spin button control is a window which allows access to a list of data values, but which occupies less space in

the dialog than a list box.

Styles:

Styles Definitions

All
Numeric

ReadOnly

The spin button accepts all characters,

only digits 0-9,

or no characters at all.

Left
Center

Right

The data is left justified,

centered,

or right justified

NoBorder Does not have a border

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' The value current selected item.

For character spin buttons, a character vector.

For numeric spin buttons, an integer scalar.

Specifications of the Data property are ignored.

'DATA LIST' For character spin buttons, a vector of character vectors.

Not used for numeric spin buttons.

'LIMITS' For numeric spin buttons, 2 integers: the lower and upper limits of the

range to display.

Not used for character spin buttons.

'SELECTION' Integer scalar - 0 origin index of selected item or ¯1 if the value typed in

by the user is not in the spin button’s list of items.

'UNICODE DATA' See Data

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

155

Property Description

'UNICODE DATA LIST' See Data List

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE APL'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Changed' Tells the application that the contents of the spin field changed.

'Context menu' The user has clicked the right mouse button in the window.

'End spin' Tells the application that the user released the select button or one of the arrow

keys while spinning a button.

'Hover' The mouse pointer paused over the control

'Kill focus' Tells the application that the spin field lost focus.

'Set focus' Tells the application that the spin button gained focus.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

156

The Spin button control class uses a member of the Microsoft Windows Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

157

Tab

A Tab control is analogous to the dividers in a notebook or the labels in a file cabinet. By using a tab control,

an application can define multiple pages for the same area of a window. Each page consists of a dialog that the

application displays when the user selects the corresponding tab.

Styles:

Styles Definitions

MultipleLines Displays tabs in multiple lines

FixedWidthTabs All tabs are the same width

Buttons Tabs are drawn as buttons

FlatButtons Selected tab appears indented

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Notes:

 FlatButtons implies Buttons.

Class specific properties:

Property Description

'DATA' Three-column matrix - Page dialog information:

[;1] Dialog handle

[;2] Tab text

[;3] Picture information

The picture information can be any of 3 types of arrays: a character vector

containing the name of an image file, an enclosed character vector containing

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

158

Property Description

the content of an image file, or a 3 element array containing image resource

information. Use '' for no picture.

Character vector - Name of image file. The following image file types are

supported:

Bitmap BMP

Enhanced Metafile EMF

Exchangeable Image File Exif

Graphics Interchange Format GIF

Icon ICO

Joint Photographic Experts Group JPG or JPEG

Portable Network Graphics PNG

Tag Image File Format TIF or TIFF

Windows Metafile WMF

GDI+ is required for file types other than bitmap and icon.

If a full path is not supplied, files are searched for using the following

sequence:

1. The directory from which AP 145 was loaded

2. The current directory

3. The Windows system directory

4. The directories listed in the PATH environment variable

Enclosed character vector - Contents of image file. Icon file images are not

supported. GDI+ is required for this type of array.

Three element array - Image resource

[1] Character vector - Resource type: 'BITMAP' or 'ICON'

[2] Character vector – Name of executable containing resource.

 For example: 'SHELL32.DLL'

[3] Integer scalar - Resource identifier

See Tab Controls - Property Windows for more information.

'SELECTION' Integer scalar - 0 origin index of selected page

'UNICODE DATA' See Data

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

159

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 OFFSET

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

'Select' A tab has been selected.

The Tab control class is a member of the Microsoft Windows Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

160

Text

A text control is used to display a text label within a dialog.

Styles:

Styles Definitions

Left
Center

Right

The data is left justified,

centered,

or right justified

Border Draws a 3 dimensional border around the text

Wordbreak Wraps data onto multiple lines

Invisible Is initially invisible

NoGroup Does not begin a group

Class specific properties:

Property Description

'DATA' Character vector - Control text

'UNICODE DATA' See Data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

161

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

162

Time

A Time control provides an interface through which to exchange time information with a user.

Styles:

Styles Definitions

Checkbox Checkbox included which grays time

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

Class specific properties:

Property Description

'DATA' Four integers - Time of data

Hour

Minute

Second

Millisecond

'STATE CHECKED' Boolean scalar - 0 not checked, 1 checked

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

163

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE ENABLE'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Change' The user has changed the time.

'Context menu' The user has clicked the right mouse button in the window.

'Hover' The mouse pointer paused over the control

'Kill focus' The control is losing the focus.

'Set focus' The control receives the focus.

The Time control class is a member of the Microsoft Windows Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

164

Treeview

A Treeview control is a window that displays a hierarchical list of items, such as the headings in

a document, the entries in an index, or the files and directories on a disk. Each item consists of a label and an

optional image, and each item can have a list of subitems associated with it. By clicking an item, the user can

expand or collapse the associated list of subitems.

Styles:

Styles Definitions

Border The control is drawn with a border

Checkboxes Displays checkboxes next to the items

Editlabels Allows the user to edit item labels

Fullrowselect Enables clicking anywhere on an item’s row to select the item

Hasbuttons Displays plus (+) and minus (-) buttons next to parent items

Haslines Uses lines to show the hierarchy of items

Lineatroot Uses lines to link items at the root of the tree-view control.

This value is ignored if Haslines is not also specified

Singleexpand Causes the item being selected to expand and the item being unselected to collapse upon

selection in the tree view. If the user holds down the CTRL key while selecting an item,

the item being unselected will not be collapsed.

Invisible Is initially invisible

NoGroup Does not begin a group

NoTabstop Tab does not move focus to the control

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

165

Class specific properties:

Property Description

'DATA' 4 column matrix - Defines data to display in control.

[;1] Nonnegative integer scalar – Depth of the item. The first item must be 0.

[;2] Character vector – The item label

[;3] Integer scalar – Index of the control’s picture list image to display when the

item is not selected. Use -1 for no picture.

[;4] Integer scalar – Index of the control’s picture list image to display when the

item is selected. Use -1 for no picture.

'PICTURE LIST' Array of pictures used in a treeview control. Each element can be any of 4

types of arrays: character vectors containing names of image files, enclosed

character vectors containing the contents of image files, 3 element arrays

containing image resource information, or integer scalars that are built-in

picture codes.

Character vector - Name of image file. The following image file types are

supported:

Bitmap BMP

Enhanced Metafile EMF

Exchangeable Image File Exif

Graphics Interchange Format GIF

Icon ICO

Joint Photographic Experts Group JPG or JPEG

Portable Network Graphics PNG

Tag Image File Format TIF or TIFF

Windows Metafile WMF

GDI+ is required for file types other than bitmap and icon.

If a full path is not supplied, files are searched for using the following sequence:

1. The directory from which AP 145 was loaded

2. The current directory

3. The Windows system directory

4. The directories listed in the PATH environment variable

Enclosed character vector - Contents of image file. Icon file images are not

supported. GDI+ is required for this type of array.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

166

Three element array - Image resource

[1] Character vector - Resource type: 'BITMAP' or 'ICON'

[2] Character vector – Name of executable containing resource.

 For example: 'SHELL32.DLL'

[3] Integer scalar - Resource identifier

Integer scalar - Built-in picture code:

0 Closed folder

1 Open folder

2 Closed book

3 Open book

4 Page

‘SELECTION’ Integer scalar- Index of selected item

'STATE CHECKED' Integer vector - Specifies whether a check box appears next to an item and

whether it is checked or unchecked. The state checked property is only used

with treeview controls with the CheckBoxes style. The state checked property

must have the same number of elements as the number of rows in the treeview’s

data property. Its values mean:

0 No check box

1 Empty check box

2 Checked check box

'STATE EXPANDED' Boolean vector – Length equals number of items. 0 collapsed, 1 expanded

'TOP INDEX' Integer scalar - 0 origin index of item displayed at top of control

'UNICODE DATA' See Data

Common properties:

 'APPLICATION DATA'

 'CLASS'

 'CLIENT POSITION'

 'CLIENT SIZE'

 'COLOR BACKGROUND'

 'COLOR FOREGROUND'

 'CONTEXT HELP'

 'CURSOR'

 'CURSOR POSITION'

 'DROPPED FILES'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

167

 'EVENTS'

 'FONT'

 'ID'

 'NAME'

 'OFFSET'

 'POSITION'

 'RGB COLOR BACKGROUND'

 'RGB COLOR FOREGROUND'

 'SIZE'

 'STATE APL'

 'STATE ENABLE'

 'STATE ENABLE DRAGDROP'

 'STATE FOCUS'

 'STATE VISIBLE'

 'STYLE'

 'TOOL TIP'

 'UNICODE CONTEXT HELP'

 'UNICODE FONT'

 'UNICODE TOOL TIP'

 'USER DATA'

Events:

Event Description

'Check state change' The user checked or cleared an item’s checkbox

'Context menu' The user has clicked the right mouse button in the window.

'Enter or double click' The user has pressed Enter or double clicked.

'Files dropped' The user has dropped one or more files on the window

'Hover' The mouse pointer paused over the control

'Label changed’ The user has edited an item’s label. Reference the control’s DATA property to

retrieve the item’s modified label.

'Select' The user has selected an item.

The Treeview control class is a member of the Microsoft Windows Common Control Library.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

168

Desktop

The desktop supports the following properties. Use a handle of 1 or the HWND_DESKTOP constant from

GUIVARS to refer to the desktop. The HANDLE_DESKTOP function returns the actual handle of the desktop

window.

Property Description

'CLIENT SIZE' Two integers - Size of the desktop’s client area in pixels

The desktop’s Client Size property can only be referenced.

'CLIPBOARD DATA' Use the Clipboard Data property to move data between APL2

and the clipboard. Any arbitrary APL2 array can be set on

the clipboard and pasted into APL2. Only the following type

arrays can be pasted into other applications:

 Character scalar

 Character vector

 Character matrix

 Vector of character vectors

Use a Tab character to delimit columns for other

applications.

'CLIPBOARD LINK' Vector of 3 character vectors - Identifies DDE server that

placed data on the clipboard.

Application name

Topic name

Item name

The clipboard link property can only be referenced.

'CLIPBOARD TEXT' Character vector - APL2 does not parse Clipboard Text

property values. They may contain Tabs, Carriage Returns,

and Line Feeds to delimit data.

'CLIPBOARD UNICODE DATA' See Clipboard Data

'PATH' Character vector - Current path. i.e. 'c:\dir'

'POSITION' The desktop’s Position property can only be referenced.

'SIZE' Two integers - Size of the desktop in pixels

The desktop’s Size property can only be referenced.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

169

Property Description

'STATE ENABLE' Boolean scalar - 0 disabled, 1 enabled

Specifications of the desktop’s State Enable property are

ignored.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

170

Common Property Reference

The following table defines properties used with multiple classes of windows:

Property Description

'APPLICATION DATA' Arbitrary APL2 array - Use the application data property to store an

APL2 array within a window.

No more than 500,000 bytes can be stored in a window's application

data property.

Menus do not support the application data property.

DDE DATA, DDE COMMAND, DDE SERVER, DDE TOPIC,

DDE ITEM objects do not support the application data property.

'CLASS' Character vector - Class of window.

Specifications of the CLASS property are ignored.

'CLIENT POSITION' 2 integers - Position of window relative to lower left corner of

parent’s client area

'CLIENT SIZE' 2 integers - Sets size of window to yield specified size client area

'COLOR BACKGROUND'

'COLOR FOREGROUND'

Character vector - Any of the following colors:

'NEUTRAL' Color not BACKGROUND

'DEFAULT' Color not BACKGROUND

'FALSE' All bits are set to 0.

'TRUE' All bits are set to 1.

'BLACK' Black

'BLUE' Blue

'BROWN' Brown

'CYAN' Cyan

'DARKBLUE' Dark blue

'DARKCYAN

'

 Dark cyan

'DARKGRAY

'

 Dark gray

'DARKGREE

N'

 Dark green

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

171

Property Description

'DARKPINK' Dark pink

'DARKRED' Dark red

'GREEN' Green

'PALEGRAY' Pale gray

'PINK' Pink

'RED' Red

'WHITE' White

'YELLOW' Yellow

A null length vector resets the window’s color to its default.

Setting a window’s named color property resets the corresponding

RGB color property to null.

'CONTEXT HELP' Vector of character vectors - Descriptive text that is displayed when

control has focus and user presses F1 or clicks on question mark

button and then clicks on control.

'CURSOR' Specifies the mouse pointer to be used when the pointer is over the

window.

Character vector - Name of a cursor (.CUR or .ANI) file. If a full

path is not supplied, files are searched for using the following

sequence:

1. The directory from which AP 145 was loaded

2. The current directory

3. The Windows system directory

4. The directories listed in the PATH environment variable.

Scalar integer - A built-in cursor code:

1 Small arrow and hour glass

2 Arrow

3 Cross hairs

4 Text input I-beam

5 Prohibited

6 Four pointed arrow

7 Upper right sizing arrow

8 Top sizing arrow

9 Upper left sizing arrow

10 Left sizing arrow

11 Up arrow

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

172

Property Description

12 Hour glass

13 Hand

14 Arrow and question mark

'CURSOR POSITION' Two integers - Position of mouse pointer relative to lower left corner

of window.

'DROPPED FILES' Vector of character vectors - List of names of files user dropped on

window

'EVENTS' 2 column matrix - Event handler array

For windows,

[;1] Character vector - Event name

[;2] Arbitrary array - Event handler

For menus,

[;1] Integer scalar - Menu item identifier

[;2] Arbitrary array - Event handler

Specifying a zero element array removes all event handlers.

'FONT' Character vector - Font size and name separated by period. Size

expressed in points (1/72 inch)

'HORIZONTAL LIMITS' 2 integers - Range of horizontal scrollbar

' HORIZONTAL SELECTION' Integer scalar - Horizontal scrollbar position

'ID' Integer scalar - Identifier of control

'NAME' Character vector - Name of control

'OFFSET' 4 integers - Percentage of parent size change added to position of left,

top, right, and bottom edges of window

'PICTURE' The PICTURE property can be any of 4 types of arrays: character

vectors containing names of image files, enclosed character vectors

containing the contents of image files, 3 element arrays containing

image resource information, or integer scalars that are built-in picture

codes.

Character vector - Name of image file. The following image file

types are supported:

Bitmap BMP

Enhanced Metafile EMF

Exchangeable Image File Exif

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

173

Property Description

Graphics Interchange Format GIF

Icon ICO

Joint Photographic Experts Group JPG or JPEG

Portable Network Graphics PNG

Tag Image File Format TIF or TIFF

Windows Metafile WMF

GDI+ is required for file types other than bitmap and icon.

If a full path is not supplied, files are searched for using the following

sequence:

1. The directory from which AP 145 was loaded

2. The current directory

3. The Windows system directory

4. The directories listed in the PATH environment variable

Enclosed character vector - Contents of image file. Icon file images

are not supported. GDI+ is required for this type of array.

Three element array - Image resource

[1] Character vector - Resource type: 'BITMAP' or 'ICON'

[2] Character vector – Name of executable containing resource.

 For example: 'SHELL32.DLL'

[3] Integer scalar - Resource identifier

Integer scalar - Built-in picture code:

1 Application

2 Information

3 Warning

4 Error

5 Question

6 Windows Logo

7 Cut

8 Copy

9 Paste

10 Undo

11 Redo

12 Delete

13 New

14 Open

15 Save

16 Print Preview

17 Properties

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

174

Property Description

18 Help

19 Find

20 Replace

21 Print

22 Large Icons View

23 Small Icons View

24 List View

25 Details view

26 Sort by name

27 Sort by size

28 Sort by date

29 Sort by type

30 Parent folder

31 Net connect

32 Net disconnect

33 New folder

34 Backward

35 Forward

36 Favorites

37 Add to favorites

38 View tree

'POSITION' 2 integers - Position of window relative to lower left hand corner of

parent

'RGB COLOR BACKGROUND'

'RGB COLOR FOREGROUND'

3 integers from 0 to 255 - Red, Green, and Blue intensity. Setting a

null vector resets the window’s color to its default.

Setting a window’s RGB color property resets the corresponding

named color property.

'SIZE' 2 integers - Width and height of window in pixels

'STATE APL' Boolean scalar - 0 normal keyboard, 1 APL keyboard enabled

'STATE CHECKED' Boolean scalar - 0 unchecked, 1 checked

'STATE ENABLE' Boolean scalar - 0 disabled, 1 enabled

'STATE ENABLE DRAGDROP' Boolean scalar - 0 disabled, 1 enabled

'STATE FOCUS' Boolean scalar - 0 not focus, 1 has focus

'STATE READONLY' Boolean scalar - 0 input enabled, 1 Read only

'STATE VISIBLE' Boolean scalar - 0 invisible, 1 visible

'STYLE' Character vector - Styles used to create window.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

175

Property Description

Specifications of the STYLE property are ignored.

'TOOL TIP' Character vector - Text that is displayed when mouse pointer pauses

over control.

'UNICODE CONTEXT HELP' See Context help

'UNICODE FONT' See Font

'UNICODE TOOL TIP' See Tool tip

'USER DATA' Integer scalar - Arbitrary value

'VERTICAL LIMITS' 2 integers - Range of vertical scrollbar

' VERTICAL SELECTION' Integer scalar - Horizontal vertical position

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

176

Object Reference

The GUITOOLS workspace function CREATEOBJ is used to create objects.

AP 145 supports the following object classes:

 'DDE DATA'

 'DDE COMMAND'

 'DDE SERVER'

 'DDE TOPIC'

 'DDE ITEM'

 'TIMER'

The following sections list the initialization data, properties, and events supported for each object class.

Property and event names are case insensitive.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

177

DDE DATA

DDE DATA objects are used by DDE client applications to retrieve and set values of items in DDE server

applications.

Class name: DDE DATA

Syntax: HDATA←CREATEOBJ 'DDE DATA' application topic item

Initialization data:

Data Description

application Character vector - Name of a running DDE server application

topic Character vector - Name of a topic supported by the server

item Character vector - Name of an item within the topic

Properties:

Property Description

'DATA' When connected to an APL2 server - Any arbitrary APL2 array

When connected to non-APL servers - Line feed delimited character vectors.

'EVENTS' See the events table

'XLTABLE DATA' Used when connected to Excel - Matrix of character scalars, character vectors, numeric

scalars, and 1 element integer vectors. 1 element integer vectors are Excel error codes.

Events:

Event Description

'New value' A new value is available at the server.

'Server close' The server has closed.

The following Excel error code variables are available in the DDESHARE workspace:

 XLERROR_DIVZERO←7
 XLERROR_NA ←42
 XLERROR_NAME ←29
 XLERROR_NULL ←0
 XLERROR_NUM ←36
 XLERROR_REF ←23
 XLERROR_VALUE ←15

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

178

DDE COMMAND

DDE COMMAND objects are used by DDE client applications to send commands to DDE server applications.

Class name: DDE COMMAND

Syntax: HCMD←CREATEOBJ 'DDE COMMAND' application topic

Initialization data:

Data Description

application Character vector - Name of a running DDE server application

topic Character vector - Name of a topic supported by the server

Properties:

Property Description

'DATA' Specification: Character vector - Command to execute

Reference: Integer scalar - Return code from last command

'EVENTS' See the events table

Events:

Event Description

'Server close' The server has closed.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

179

DDE SERVER

DDE SERVER objects are used to manage topics in DDE server applications.

Class name: DDE SERVER

Syntax: HSERVER←CREATEOBJ 'DDE SERVER' application

Initialization data:

Data Description

application Character vector - The name by which the server should be known

Properties: None

Events: None

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

180

DDE TOPIC

DDE TOPIC objects are used in DDE server applications to handle requests from DDE clients to execute

commands and replace values of DDE ITEM objects.

Class name: DDE TOPIC

Syntax: HTOPIC←CREATEOBJ 'DDE TOPIC' hserver topic

Initialization data:

Data Description

hserver Integer scalar - Handle of a DDE SERVER object

topic Character vector - Name of a topic to be supported by the server

Properties:

Property Description

'DDE EXECUTE' Reference: Character vector - Command to be executed

Specification: Integer scalar - Return code from executing command

'EVENTS' See the events table

'DDE WRITE' Reference: 2 element array - Data sent by client

[1] Character vector - Name of DDE ITEM object to replace

[2] Arbitrary array - Value with which to replace DDE ITEM object's value

Specification: 2 element integer vector - Return code

[1] Boolean: 0, Success 1, Command not executed

[2] Integer 0-255: Return code if [1] is 0, ignored otherwise

Events:

Event Description

'Execute value' Client has sent command to be executed

'Write value' Client has sent array to replace DDE ITEM object's value

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

181

DDE ITEM

DDE ITEM objects are used in DDE server applications to specify named values the servers should support.

Class name: DDE ITEM

Syntax: HITEM←CREATEOBJ 'DDE ITEM' hserver htopic item

Initialization data:

Data Description

hserver Integer scalar - Handle of a DDE SERVER object

htopic Integer scalar - Handle of a DDE TOPIC object

item Character vector - Name of an item to be supported by the server

Properties:

Property Description

'DATA' Arbitrary array - Value of item

'EVENTS' See the events table

'STATE LINK' Boolean scalar - 1 indicates AP 145 should copy new values to the clipboard and set the

Link clipboard format data. 0 indicates new values are not copied.

Events: None

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

182

TIMER

TIMER objects signal events at a set interval.

Class name: TIMER

Syntax: HTIMER←CREATEOBJ 'TIMER' interval expression

Initialization data:

Data Description

interval Integer scalar - The number of seconds the timer should pause between ticks. This value

must not be less than zero.

expression Arbitrary array – Event handler

Properties:

Property Description

'DATA' Arbitrary character vector - Use the data property to store a character vector within a

timer object.

'EVENTS' 2 column matrix - Event handler array

[;1] Character vector - Event name

[;2] Character vector - Event handler expression

'INTERVAL' Integer scalar - The number of seconds the timer should pause between signaling events.

This value must not be less than zero

‘UNICODE DATA’ See Data.

Common properties:

 'APPLICATION DATA'

 'USER DATA'

Events:

Event Description

'Timer' Client has sent command to be executed

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

183

GUITOOLS Function Reference

The GUITOOLS workspace contains the following groups of tools.

GPDLGPROCESS Dialog Processing Tools

GPUTILITY Utilities

GPPRINT Printing Tools and Constants

The following pages describe the tools in these groups.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

184

GPDLGPROCESS - Dialog Processing Tools

The dialog processing tools support processing dialogs in applications. For further information, consult the

HOW_DLGPROCESS variable in the GUITOOLS workspace.

ALIGN Align two or more windows

BITWISE Apply a function between the bit representations of integers

CALLAPI Call an API

CALLCOM Call Component Object Model interface

CENTER_CHILD Center a window within its parent

CENTER_WINDOW Center one window within another

CHECK_EVENTS Process a pending event

COLORDLG Display a Colors dialog

CONTEXTHELP Show contextual help

CREATECTL Create a control

CREATEDLG Create a dialog

CREATEMENU Create a menu

CREATEOBJ Create an object

DEFAULTPROC Default message process

DESTROYDLG Destroy a window

DESTROYOBJ Destroy an object
EXECUTEDLG Wait for events and execute event handlers

EXECUTEDLGX Wait for events from multiple processors

FILEDLG Display an Open or Save As file dialog

FOLDERDLG Display a Browse for Folder dialog

FONTDLG Display a Font dialog

FREEAPI Free an API

GETCHILDREN Get the handles of a window's children

GETPARENT Get the handle of a window's parent

GET_CELLSIZE Get the size of a grid control cell

GET_PROFILE Get and list profile values from the registry or an INI file

GET_PROPERTY Get window properties

GET_RANGE Get the value of a range property

GUIRETRACT Retract SV145

GUISHARE Share SV145

HANDLE_DESKTOP Return the handle of the desktop window

IDFROMWINDOW Get a window's identifier

ISWINDOW Query whether a number is a valid window handle

LOADAPI Load an API

MOVEWINDOW Move a window

MSGBOX Display a message box

POPUPMENU Display a popup a menu

POSTMSG Post a message

RESIZE Resize windows

SENDMSG Send a message

SET_CELLSIZE Set the size of a grid control cell

SET_PROFILE Set and delete profile values in the registry or an INI file

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

185

SET_PROPERTY Set window properties
SET_RANGE Set the value of a range property
SHAREWINDOW Share a variable with a window property

SHOW Show or hide a window

SIZETOTEXT Resize a window to fit its text

SPACE Space controls equally

STARTWAIT Make AP 145 start saving events until processed

UNICREATEDLG Create a Unicode dialog

UNICREATEMENU Create a menu using Unicode data

UNIFILEDLG Display a Unicode Open or Save As file dialog

UNIFOLDERDLG Display a Unicode Browse for Folder dialog

UNIMSGBOX Display a Unicode message box

UNIPOPUPMENU Display a Unicode popup a menu

WAIT_EVENT Wait for an event

WINDOWFROMID Retrieve the handle of a child from a parent handle and an identifier

ALIGN

Purpose: Align two or more windows

Syntax: boolean ALIGN handles

Arguments: boolean 4 element Boolean vector - Edges to align: left, top, right, and bottom. 1 to align.

 handles Integer vector - Handles of windows to be aligned

Result: None

BITWISE

Purpose: Apply a function between the bit representations of integers

Syntax: result←la lo BITWISE ra

Arguments: la Integer array

 ra Integer array

 lo Function to apply between the integer arrays

Result: result Result of function application

CALLAPI

Purpose: Call an API

Syntax: result←CALLAPI api parms
Arguments: api Vector - The vector's first element identifies the API to be called. It is either:

o A character vector containing the name of the API

o An integer scalar containing the address of the API

The vector's subsequent elements are the API's parameters.

 parms Vector of integer scalars and character vectors

API parameters

Result: result 2 element vector

[1] API return code

[2] Returned API name and parameters (elements may be updated)

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

186

CALLCOM

Purpose: Call the APL2 Component Object Model interface

Syntax: result←[control] CALLCOM 'COMMAND' [arguments]
Arguments: control Boolean scalar - Default 0

0: Check event type and return result

1: Return event type, error message, and result

The CALLCOM right arguments are identical to the COM external function's right argument except

that the WAIT command is not supported. Use WAIT_EVENT to wait for both AP 145 and

COM events. Use the 'COM OBJECT' property to retrieve the COM object handles of

ActiveX controls.

Result: result COM result or event type, error message and COM result

CENTER_CHILD

Purpose: Center a window within its parent

Syntax: [index] CENTER_CHILD handle [id]

Arguments: index Boolean scalar or vector - Centering option:

 0 Center horizontally

 1 Center vertically

 0 1 Center both horizontally and vertically (default)

 handle Integer scalar - Handle of window to center within its parent

Id Integer scalar - Control identifier

or Character vector - Control name

Result: None

CENTER_WINDOW

Purpose: Center one window within another

Syntax: [outer] CENTER_WINDOW inner

Arguments: outer Integer scalar - Handle of window to be centered

 inner Integer scalar - Handle of window within which to center inner

Result: None

CHECK_EVENTS

Purpose: Process a pending event

Syntax: tozero←CHECK_EVENTS

Arguments: None

Result: tozero Boolean scalar - 1 if event handler branched to 0. 0 otherwise.

COLORDLG

Purpose: Display a Colors dialog

Syntax: COLORDLG handle [handle…]

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

187

Arguments: handle Integer scalars - Handles of window whose colors are to be set.

Result: None

CONTEXTHELP

Purpose: Show contextual help

Syntax: CONTEXTHELP handle [id]

Arguments: handle Integer scalar – Control, dialog, or menu handle

Id Integer scalar – Control identifier or menu item identifier

 Or Character vector – Control name

Result: None

CREATECTL

Purpose: Create a control

Syntax: handle←CREATECTL parent class style [id [ctldata]]

Arguments: parent Integer scalar - Handle of controls parent

 class Character vector - Class of control to create

 style Character vector - List of control styles

 id Integer scalar - Control identifier. Defaults to 0

 or Character vector – Control name. Defaults to null.

 ctldata Integer vector - Control creation data. Use depends on class

Result: handle Integer scalar - Handle of control

If parent is a Unicode window, CREATECTL creates a Unicode control.

See Class Reference for supported classes, styles, and control data requirements

CREATEDLG

Purpose: Create a dialog

Syntax: handle←[owner parent] CREATEDLG template
Arguments: owner Integer scalar - Handle of owner window

 parent Integer scalar - Handle of parent window

 template Character vector - Contains a dialog template or a list of dialog styles.

 See Class Reference for a list of supported styles.

Result: handle Integer scalar - Handle to the dialog window. Zero if an error occurs.

CREATEMENU

Purpose: Create a menu bar using Multibyte data

Syntax: menu←CREATEMENU dialog array

Arguments: dialog Integer scalar - Handle of dialog

 array Vector of menu items

Result: menu Integer scalar - Handle of menu

Menu items have 2, 3 or 4 elements:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

188

[1] Integer scalar - A unique value that is used to identify the choice in the menu’s EVENTS property.

[2] Array - Menu item data

[3] Integer scalar - Zero or BITWISE combination of Menu Style Flags. MIS_BITMAP and MIS_TEXT

are ignored.

[4] Integer scalar - Zero or BITWISE combination of Menu Attribute Constants.

The menu item data may be a character vector or a character vector and a picture array. The character array is

the menu item text. The picture array may be:

 An integer scalar that is the handle of a previously loaded bitmap or one of the following built-in picture

values:

1 Cut

2 Copy

3 Paste

4 Undo

5 Redo

6 Delete

7 New

8 Open

9 Save

10 Print Preview

11 Properties

12 Help

13 Find

14 Replace

15 Print

16 Large Icons View

 A character vector containing a BMP, EMF, Exif, GIF, ICO, JPEG, PNG, TIFF, or WMF file name

 An enclosed character vector containing the contents of an image file

 A 3 element array:

[1] 'ICON' or 'BITMAP'

[2] Character vector containing name of executable

[3] Integer resource identifier

GDI+ is required for file types other than bitmap and icon.

A menu array can also contain nested vectors of menu items. A nested vector of menu items defines a pull-

down menu. The first element of a nested vector of menu items defines the pull-down menu item. The

subsequent items define the pull-down menu's items.

See Adding a Menu Bar for more information about using CREATEMENU.

CREATEOBJ

Purpose: Create an object

Syntax: object←CREATEOBJ class [classdata...]

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

189

Arguments: class Character vector - Class name

 classdata Class specific initialization data. See Object Reference.

Result: object Integer scalar - Handle of object

DEFAULTPROC

Purpose: Default message process

Syntax: result←DEFAULTPROC handle msg mp1 mp2

Arguments: handle Integer scalar - Handle of message recipient

 msg Integer scalar - Message identifier

 mp1 Integer scalar - Message parameter 1

 mp2 Integer scalar - Message parameter 2

Result: result Integer scalar - Result returned from sending message

Note: This function is only used as an operand for the EXECUTEDLG operator which supplies the arguments.

DESTROYDLG

Purpose: Destroy a window

Syntax: DESTROYDLG handle

Arguments: handle Integer scalar - Handle of window to be destroyed

Result: None

DESTROYOBJ

Purpose: Destroy an object

Syntax: DESTROYOBJ handle

Arguments: handle Integer scalar - Handle of object to be destroyed

Result: None

EXECUTEDLG

Purpose: Wait for events and execute event handlers

Syntax: result←[owner] (msgproc EXECUTEDLG) handle

Arguments: owner Integer scalar - Handle of owner window to be disabled

 msgproc Function to handle unregistered messages. DEFAULTPROC or 0.

 handle Integer scalar - Handle of window to activate

Result: result Arbitrary array - Last value of RESULT set by event handlers

EXECUTEDLGX

Purpose: Wait for events from multiple processors

Syntax: result←[owner] (svproc EXECUTEDLGX svars)handle

Arguments: owner Integer scalar - Handle of owner window to be disabled

 svproc Function to process shared variable events

 svars Character matrix - List of shared variables to monitor

 handle Integer scalar - Handle of window to activate

Result: result Arbitrary array - Last value of RESULT set by event handlers

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

190

FILEDLG, FILEDLGM

Purpose: Display an Open or Save As file dialog

 FILEDLG displays a single-selection dialog.

 FILEDLGM displays a multiple-selection dialog.

Syntax: filename←[typelist typeindex [title]] FILEDLG style owner filter

Arguments: typelist 2 column matrix - Type names and patterns

 [;1] - Type names i.e. 'All Files'.

 [;2] - Type pattern, i.e. '*.*'.

 typeindex Integer scalar - Index origin 0 index of type name to initially display

 style Boolean scalar - Dialog style. 0 for Open, 1 for Save As

 owner Integer scalar - Handle of owner window

 filter Character vector - File filter. For example, 'c:\temp*.txt'.

 title Character vector - Dialog box title

Result: filename Character vector - Selected filename, if single file selected.

 Vector of character vectors – Selected filenames, if multiple files selected.

'' if Open or Save not pressed.

FOLDERDLG

Purpose: Display a Browse for Folder dialog

Syntax: folder←FOLDERDLG owner path

Arguments: owner Integer scalar - Handle of owner window

 path Character vector – Initial path. '' for current directory

Result: folder Character vector - Selected folder. '' if Ok not pressed.

FONTDLG

Purpose: Display a Font dialog

Syntax: FONTDLG handle

Arguments: handle Integer scalar - Handle of window whose font is to be set.

Result: None

FREEAPI

Purpose: Free one or more APIs loaded by LOADAPI

Syntax: FREEAPI api
Arguments: api Character vector or vector of character vectors - Names of API to free

Result: None

GETCHILDREN

Purpose: Get the handles of a window's children

Syntax: children←GETCHILDREN parent

Arguments: parent Integer scalar - Handle of parent window

Result: children Integer vector - Handles of parent's child windows, ⍳0 is none.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

191

GETPARENT

Purpose: Get the handle of a window's parent

Syntax: parent←GETCHILDREN child

Arguments: child Integer scalar - Handle of child window

Result: parent Integer scalar - Handle of parent window

GET_CELLSIZE

Purpose: Get the size of a grid control cell

Syntax: size←GET_CELLSIZE handle index [id]

Arguments: handle Integer scalar - Handle of grid control (or grid's parent if id is supplied)

 index 2 element integer vector - Row and column index of cell

 id Integer scalar - Identifier of child grid control

 or Character vector - Name of child grid control

Result: size 2 element integer vector - Number of rows and columns the cell covers

GET_PROFILE

Purpose: Get a profile value from the registry

Syntax: value←GET_PROFILE com app ver fld key val

Arguments: com Character vector - Company name

 app Character vector - Application name

ver Character vector - Version

fld Character vector - Folder, '' if none

key Character vector - Key

val Character vector - Default value

Result: value Profile value

Purpose: Get a profile value from an INI file

Syntax: value←GET_PROFILE fil app key val

Arguments: com Character vector - INI file name

 app Character vector - Application name

key Character vector - Key

val Character vector - Default value

Result: value Profile value

To query the applications, versions, folders, or keys within the registry, or the applications or keys within an INI

file, set the application name, version, folder, or key name to ''.

GET_PROPERTY

Purpose: Get the value of a window property

Syntax: valuearray←[propertyarray] GET_PROPERTY handlearray [idarray]

Arguments: propertyarray Character vector or vector of character vectors - Property names

Defaults to 'DATA'.

 handlearray Integer scalar or vector - Window handles

(or parents if idarray is supplied)

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

192

 idarray Integer scalar or vector - Identifiers of child windows

 Character vector or vector of character vectors - Names of child windows

Result: valuearray Property value(s)

Conformability of window handles and child window identifier arrays

If either the window handles array or the child window identifiers array has multiple elements and the other

array has a single element, the single element is combined with each of the multiple elements. The resulting

pairs identify target windows.

If both the window handles array and the child window identifiers array have more than one element, then both

must have the same number of elements. The corresponding elements identify target windows.

Conformability of left and right arguments

If the left argument specifies a single property name, and the right argument identifies a single target window,

then GET_PROPERTY returns a single property value.

For example, these are valid expressions:

VALUE←'PROPERTY' GET_PROPERTY HANDLE
VALUE←'PROPERTY' GET_PROPERTY HANDLE ID

If the left argument specifies a single property name, and the right argument identifies multiple target windows,

then GET_PROPERTY returns a vector of property values.

For example, these are valid expressions:

(VALUE1 VALUE2)←'PROPERTY' GET_PROPERTY HANDLE1 HANDLE2
(VALUE1 VALUE2)←'PROPERTY' GET_PROPERTY HANDLE (ID1 ID2)
(VALUE1 VALUE2)←'PROPERTY' GET_PROPERTY (HANDLE1 HANDLE2) (ID1 ID2)

If the left argument specifies multiple property names, and the right argument identifies a single target window,

then GET_PROPERTY returns a vector of property values.

For example, this is a valid expression:

(VALUE1 VALUE2)←'PROPERTY1' 'PROPERTY2' GET_PROPERTY HANDLE

If the left argument specifies multiple property names, and the right argument identifies multiple target

windows, then GET_PROPERTY returns a vector containing one element for each property name. Each vector

contains the property's values for each target window.

For example, these are valid expressions:

RESULT←'PROPERTY1' 'PROPERTY2' GET_PROPERTY HANDLE (ID1 ID2)
(PROPERTY1_VALUES PROPERTY2 VALUES)←RESULT

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

193

(PROPERTY1_VALUE1 PROPERTY1_VALUE2)←PROPERTY1_VALUES
(PROPERTY2_VALUE1 PROPERTY2_VALUE2)←PROPERTY2_VALUES

Note: See Class Reference for supported properties and values

GET_RANGE

Purpose: Get the value of a range property

Syntax: value←[property] GET_RANGE handle range [id]

Arguments: property Character vector - Range property name. Defaults to 'CELL DATA'.

 handle Integer scalar - Window handle (or parent if id is supplied)

 range 4 element integer vector - Cell range

 [1] - Row index of first cell in range

 [2] - Column index of first cell in range

 [3] - Number of rows in range

 [4] - Number of columns in range

 id Integer scalar - Identifier of child window

 or Character vector - Name of child window

Result: value Matrix of range property values

Note: See Grid for supported range properties and values

GUIRETRACT

Purpose: Retract SV145

Syntax: GUIRETRACT

Arguments: None

Result: None

GUISHARE

Purpose: Share SV145

Syntax: GUISHARE

Arguments: None

Result: None

HANDLE_DESKTOP

Purpose: Return the handle of the desktop window

Syntax: handle←HANDLE_DESKTOP

Arguments: None

Result: handle Integer scalar - Handle of the desktop

IDFROMWINDOW

Purpose: Get a window's identifier

Syntax: id←IDFROMWINDOW handle

Arguments: handle Integer scalar - Window handle

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

194

Result: id Integer scalar - Identifier of window

ISWINDOW

Purpose: Query whether an integer is a valid window handle

Syntax: bool←ISWINDOW handle

Arguments: handle Integer scalar

Result: bool Boolean scalar - 1 if window handle, 0 otherwise

LOADAPI

Purpose: Load one or more APIs from a dynamic link library (DLL)

Syntax: LOADAPI library api [descrip [result]]

Arguments: library Library - Identifies the location of the API. It can be either:

o Character vector - Filename of the DLL containing the APIs

o Integer scalar - Address of the API

api Character vector or vector of character vectors - Names of API to load from the

dynamic link library. One name per character vector. The names are case

sensitive.

If the api argument is a character vector containing a single API name, then

descrip and result arguments may be supplied.

If the api argument contains more than one API name or if the descrip

argument is omitted, then AP 145 will pass all the APIs' parameters by value and

as 4 byte signed integers or single byte character strings.

descrip Integer vector – Description of single API’s parameters.

The length of the description corresponds to the number of parameters required by

the API. Each item corresponds to a parameter and describes that parameter.

Descriptions may not contain more than 32 items. Pass a null vector to indicate

that the service has no parameters.

The absolute values of the items are interpreted as follows:

0 - Automatic type handling. Parameter is passed by value

1 - Automatic type handling. Parameter is passed by reference

2 - Parameter is 1 byte signed integer

3 - Parameter is 2 byte signed integer

4 - Parameter is 4 byte signed integer

5 - Parameter is 4 byte floating point number

6 - Parameter is 8 byte floating point number

7 - Parameter is string of single byte characters

8 - Parameter is string of 2 byte Unicode characters

For types 2 through 8, a positive number indicates the parameter should be passed

by value and a negative number indicates it should be passed by reference.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

195

result Integer scalar – Description of single API’s result.

The value of result is interpreted as follows:

2 - Result is 1 byte signed integer

3 - Result is 2 byte signed integer

4 - Result is 4 byte signed integer

5 - Result is 4 byte floating point number

6 - Result is 8 byte floating point number

7 - Result is string of single byte characters

8 - Result is string of 2 byte Unicode characters

Result: None

MOVEWINDOW

Purpose: Move a window

Syntax: handle MOVEWINDOW x y

Arguments: handle Integer scalar - Handle of window to move

 x Integer scalar - Distance in pixels from the left edge of the parent

 y Integer scalar - Distance in pixels from the bottom edge of the parent

Result: None

MSGBOX

Purpose: Display a message in a box

Syntax: result←[owner] MSGBOX text
 result←[owner] MSGBOX title text [style]
Arguments: owner Integer scalar - Handle of message box owner

 title Character vector - Message box title. Default: 'APL2 Message'

 text Character vector - Line feed delimited message text

 style Integer scalar - BITWISE combination of Message Box Style Flags

 Default: MB_OKCANCEL MB_ICONEXCLAMATION MB_MOVEABLE

Result: result Integer scalar - See Message Box Result Codes for the valid codes.

POPUPMENU

Purpose: Prompt the user with a popup menu

Syntax: index←POPUPMENU handle x y items

Arguments: handle Integer scalar - Handle of the window relative to which the menu is positioned

 x Integer scalar - Horizontal distance from window origin

 y Integer scalar - Vertical distance from window origin

 items Array of popup menu items. Each menu item is a character vector or a vector of

character vectors. A character vector defines one menu item. A vector of

character vectors defines a submenu. The first character vector defines the

submenu title. Subsequent character vectors define submenu items. Use a null

character vector, '', to display a separator.

Result: Index origin zero index of the user's selection. If the user dismisses the menu without making a

 selection, -1 is returned. Separators and submenu titles do not affect selection indices.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

196

POSTMSG

Purpose: Post a message

Syntax: POSTMSG handle msg mp1 mp2

Arguments: handle Integer scalar - Handle of message recipient

 msg Integer scalar - Message identifier

 mp1 Integer scalar - Message parameter 1

 mp2 Integer scalar - Message parameter 2

Result: None

RESIZE

Purpose: Resize windows

Syntax: direction RESIZE handles

Arguments: direction Boolean scalar - 0 resize horizontally, 1 resize vertically

 handles Integer vector - Handles of windows to resize

Result: None

SENDMSG

Purpose: Send a message

Syntax: result←SENDMSG handle msg mp1 mp2

Arguments: handle Integer scalar - Handle of message recipient

 msg Integer scalar - Message identifier

 mp1 Integer scalar - Message parameter 1

 mp2 Integer scalar - Message parameter 2

Result: result 5 element integer array

 [1] - Message result

 [2] - handle

 [3] - msg

 [4] - mp1

 [5] - mp2

SET_CELLSIZE

Purpose: Set the size of a grid control cell

Syntax: SET_CELLSIZE handle index size [id]

Arguments: handle Integer scalar - Handle of grid control (or grid's parent if id is supplied)

 index 2 element integer vector - Row and column index of cell

 size 2 element integer vector - Number of rows and columns the cell covers

 id Integer scalar - Identifier of child grid control

 or Character vector - Name of child control

Result: None

SET_PROFILE

Purpose: Set a profile value in the registry

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

197

Syntax: SET_PROFILE com app ver fld key val

Arguments: com Character vector - Company name

 app Character vector - Application name

ver Character vector - Version

fld Character vector - Folder, '' if none

key Character vector - Key

val Character vector - Profile value

Result: None

Purpose: Set a profile value in an INI file

Syntax: SET_PROFILE fil app key val

Arguments: fil Character vector - INI file name

 app Character vector - Application name

key Character vector - Key

val Character vector - Profile value

Result: None

To delete companies, applications, versions, folders, or keys within the registry, or applications or keys within

an INI file, set the contained application, version, folder, key name, or value to ⍳0. Arguments after a null

application name, version, folder, or key name are ignored. AP 145 prompts the user for delete confirmation.

SET_PROPERTY

Purpose: Set the value of a window property

Syntax: [propertyarray] SET_PROPERTY handlearray valuearray [idarray]

Arguments: propertyarray Character vector or vector of character vectors - Property names.

Defaults to 'DATA'.

 handlearray Integer scalar or vector - Window handles

(or parents if idarray is supplied)

 valuearray Property value(s)

 idarray Integer scalar or vector - Identifiers of child windows

 Character vector or vector of character vectors - Names of child windows

Result: None

Conformability of window handles and child window identifier arrays

If either the window handles array or the child window identifiers array has multiple elements and the other

array has a single element, the single element is combined with each of the multiple elements. The resulting

pairs identify target windows.

If both the window handles array and the child window identifiers array have more than one element, then both

must have the same number of elements. The corresponding elements identify target windows.

Conformability of left and right arguments

If the left argument specifies a single property name, and the right argument identifies a single target window,

then the property is set with the values array.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

198

For example, these are valid expressions:

'PROPERTY' SET_PROPERTY HANDLE VALUE
'PROPERTY' SET_PROPERTY HANDLE VALUE ID

If the left argument specifies a single property name, and the right argument identifies multiple target windows,

then the values array must contain either one item or the same number as elements as target windows.

For example, these are valid expressions:

'PROPERTY' SET_PROPERTY (HANDLE1 HANDLE2) (VALUE1 VALUE2)
'PROPERTY' SET_PROPERTY HANDLE (VALUE1 VALUE2) (ID1 ID2)
'PROPERTY' SET_PROPERTY (HANDLE1 HANDLE2) (VALUE1 VALUE2) (ID1 ID2)

If the left argument specifies multiple property names, and the right argument identifies a single target window,

then the values array must contain either one item or the same number as elements as the number of property

names.

For example, this is a valid expression:

'PROPERTY1' 'PROPERTY2' GET_PROPERTY HANDLE (VALUE1 VALUE2)

If the left argument specifies multiple property names, and the right argument identifies multiple target

windows, then the values array must contain a vector with the same number of elements as the number of

property names. Each element of the vector must contain a vector of values with the same number

of elements as the number of target windows.

For example, this is a valid use of SET_PROPERTY:

PROPERTY1_VALUES←PROPERTY1_VALUE1 PROPERTY1_VALUE2
PROPERTY2_VALUES←PROPERTY2_VALUE1 PROPERTY2_VALUE2
VALUES←PROPERTY1_VALUES PROPERTY2_VALUES
'PROPERTY1' 'PROPERTY2' SET_PROPERTY HANDLE VALUES (ID1 ID2)

Note: See Class Reference for supported properties and values

SET_RANGE

Purpose: Set the value of a range property

Syntax: [property] SET_RANGE handle range value [id]

Arguments: property Character vector - Range property name. Defaults to 'CELL DATA'.

 handle Integer scalar - Window handle (or parent if id is supplied)

 range 4 element integer vector - Cell range

 [1] - Row index of first cell in range

 [2] - Column index of first cell in range

 [3] - Number of rows in range

 [4] - Number of columns in range

 value Matrix of range property values

 id Integer scalar - Identifier of child window

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

199

 or Character vector - Name of child window

Result: None

Note: See Grid for supported range properties and values

SHAREWINDOW

Purpose: Share a variable with a window property

Syntax: [property] SHAREWINDOW handle varname [id]

Arguments: property Character vector - Property name. Defaults to 'DATA'.

 handle Integer scalar - Window handle (or parent if id is supplied)

 varname Name of variable to share with property

 id Integer scalar - Identifier of child window

 or Character vector - Name of child window

Result: None

SHOW

Purpose: Show or hide a window

Syntax: [bool] SHOW handle

Arguments: bool Boolean scalar - 1 to show, 0 to hide

 handle Integer scalar - Window handle

Result: None

SIZETOTEXT

Purpose: Resize a window to fit its text

Syntax: SIZETOTEXT handle [id]

Arguments: handle Integer scalar - Window handle (or parent if id is supplied)

 id Integer scalar - Identifier of child window

 or Character vector - Name of child window

Result: None

Note: SIZETOTEXT does not support listview, slider, tab, and treeview controls.

SPACE

Purpose: Space controls equally

Syntax: direction pixels SPACE handles

Arguments: direction Boolean scalar - 0 resize horizontally, 1 resize vertically

 pixels Integer scalar - Number of pixels between controls

 handles Integer vector - Handles of windows to resize

Result: None

STARTWAIT

Purpose: Make AP 145 start saving events until processed

Syntax: STARTWAIT

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

200

Arguments: None

Result: None

UNICREATEDLG

Purpose: Create a Unicode dialog

Syntax: handle←[owner parent] UNICREATEDLG template
Arguments: owner Integer scalar - Handle of owner window

 parent Integer scalar - Handle of parent window

 template Character vector - Contains a dialog template or a list of dialog styles.

 See Class Reference for a list of supported styles.

Result: handle Integer scalar - Handle to the dialog window. Zero if an error occurs.

UNICREATEMENU

Purpose: Create a menu bar using Unicode data

Syntax: menu←UNICREATEMENU dialog array

Arguments: dialog Integer scalar - Handle of dialog

 array Vector of menu items

Result: menu Integer scalar - Handle of menu

Menu items have 2, 3 or 4 elements:

[5] Integer scalar - A unique value that is used to identify the choice in the menu’s EVENTS property.

[6] Array - Menu item data

[7] Integer scalar - Zero or BITWISE combination of Menu Style Flags. MIS_BITMAP and MIS_TEXT

are ignored.

[8] Integer scalar - Zero or BITWISE combination of Menu Attribute Constants.

The menu item data may be a character vector or a character vector and a picture array. The character array is

the menu item text. The picture array may be:

 An integer scalar that is the handle of a previously loaded bitmap

 A character vector containing a BMP, EMF, Exif, GIF, ICO, JPEG, PNG, TIFF, or WMF file name

 An enclosed character vector containing the contents of an image file

 A 3 element array:

[1] 'ICON' or 'BITMAP'

[2] Character vector containing name of executable

[3] Integer resource identifier

GDI+ is required for file types other than bitmap and icon.

A menu array can also contain nested vectors of menu items. A nested vector of menu items defines a pull-

down menu. The first element of a nested vector of menu items defines the pull-down menu item. The

subsequent items define the pull-down menu's items.

See Adding a Menu Bar for more information about using CREATEMENU.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

201

UNIFILEDLG, UNIFILEDLGM

Purpose: Display a Unicode Open or Save As file dialog

UNIFILEDLG displays a single-selection dialog.

UNIFILEDLGM displays a multiple-selection dialog.

Syntax: filename←[typelist index [title]] UNIFILEDLG style owner filter

Arguments: typelist 2 column matrix - Type names and patterns

 [;1] - Type names i.e. 'All Files'.

 [;2] - Type pattern, i.e. '*.*'.

 index Integer scalar - Index origin 0 index of type name to initially display

 style Boolean scalar - Dialog style. 0 for Open, 1 for Save As

 owner Integer scalar - Handle of owner window

 filter Character vector - File filter. For example, 'c:\temp*.txt'.

 title Character vector - Dialog box title

Result: filename Character vector - Selected filename, if single file selected.

 Vector of character vectors - Selected filenames, if multiple files selected.

 '' if Open or Save not pressed.

UNIFOLDERDLG

Purpose: Display a Unicode Browse for Folder dialog

Syntax: folder←UNIFOLDERDLG owner path

Arguments: owner Integer scalar - Handle of owner window

 path Character vector – Initial path. '' for current directory

Result: folder Character vector - Selected folder. '' if Ok not pressed.

UNIMSGBOX

Purpose: Display a message in a Unicode box

Syntax: result←[owner] MSGBOX text
 result←[owner] MSGBOX title text [style]
Arguments: owner Integer scalar - Handle of message box owner

 title Character vector - Message box title. Default: 'APL2 Message'

 text Character vector - Line feed delimited message text

 style Integer scalar - BITWISE combination of Message Box Style Flags

 Default: MB_OKCANCEL MB_ICONEXCLAMATION MB_MOVEABLE

Result: result Integer scalar - See Message Box Result Codes for the valid codes.

UNIPOPUPMENU

Purpose: Prompt the user with a Unicode popup menu

Syntax: index←UNIPOPUPMENU handle x y items

Arguments: handle Integer scalar - Handle of the window relative to which the menu is positioned

 x Integer scalar - Horizontal distance from window origin

 y Integer scalar - Vertical distance from window origin

 items Array of popup menu items. Each menu item is a character vector or a vector of

character vectors. A character vector defines one menu item. A vector of

character vectors defines a submenu. The first character vector defines the

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

202

submenu title. Subsequent character vectors define submenu items. Use a null

character vector, '', to display a separator.

Result: Index origin zero index of the user's selection. If the user dismisses the menu without making a

 selection, -1 is returned. Separators and submenu titles do not affect selection indices.

WAIT_EVENT

Purpose: Wait for an event

Syntax: event←WAIT_EVENT timeout
Arguments: timeout Real numeric scalar - Number of seconds to wait

0 to check if an event has happened

Result: event '' if no event occurred

If an AP 145 event, a 5 element vector:

[1] - HANDLE - Integer handle of window or object

[2] - MSG - Integer message identifier

[3] - MP1 - Integer message parameter 1

[4] - MP2 - Integer message parameter 2

[5] - EXP - Arbitrary array, Event handler

If a COM event, a 6 or 7 element vector:

[1] - OBJECT - Integer, Handle of the object that signaled the event

[2] - NAME - Character vector, Event name

[3] - EXP - Arbitrary array, Event handler

[4] - CURSOR - 2 Integers, Position of the mouse pointer

[5] - TIME - Integer, Time the event occurred

[6] - NAMED - 2 column array, Named parameters. Columns are:

[;1] Character vector - Parameter name

[;2] Array - Parameter value

[7] - POSITIONAL - Vector of arrays, Positional arguments

Notes:

You can distinguish between AP 145 and COM events by examining the second element of the result. In AP

145 events, the second element is an integer scalar message identifier; in COM events it is a character vector

event name.

Some messages occur during application initialization before the application is ready to process messages. To

cause AP145 to queue these messages for later processing when the application is ready, call START_WAIT

which will return immediately but start to queue messages.

For COM events, the APL2 application must release the handle of the object that signaled the event and any

handles passed in named or positional parameters.

WINDOWFROMID

Purpose: Retrieve the handle of a child from a parent handle and an identifier

Syntax: child←WINDOWFROMID parent id

Arguments: parent Integer scalar - Handle of parent window

 id Integer scalar - Identifier of child window

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

203

 or Character vector – Name of child window

Result: child Integer scalar - Handle of child window (0 if none.)

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

204

GPUTILITY - Utilities

The utility functions may be used to perform common operations with AP 145.

The following functions are tools for performing common high-level user interface operations. For detailed

information, consult the HOW_UTILITY variable in the GUITOOLS workspace.

APLEDIT Edit a function using the APL2 file editor

APLEXECPGM Execute an operating system command
EDIT Edit an array

HELP145 Display the AP 145 online help

PROMPT Display a message and prompt for input

QUERYSYSCOLOR Query the RGB color of a system component

SELECT_1 Display a character matrix and prompt the user to select 1 row

SELECT_SOME Display a character matrix and prompt the user to some rows

UNIEDIT Edit an array containing Unicode characters

UNIFILE Access a Unicode file with a Multibyte name

UNI∆FM Access a Unicode file with a Multibyte name as a character matrix

UNI∆FV Access a Unicode file with a Multibyte name as a vector of character vectors

APLEDIT

Purpose: Edit a function using the APL2 file editor

Syntax: result←APLEDIT name

Arguments: name Character vector - Function or operator name

Result: result Character vector - ⎕FX result

APLEXECPGM

Purpose: Execute an operating system command

Syntax: result←APLEXECPGM command

Arguments: command Character vector - Command to execute

Result: result Integer scalar - Command return code

EDIT

Purpose: Edit an array

Syntax: result←[title] EDIT array

Arguments: title Character vector - Title of edit window

array Array - Data to edit. Can be character scalar, vector, or matrix, or vector of

character vectors, or mixed matrix.

Result: result Edited data - If input is a matrix, then the output is a matrix.

Otherwise, the output is a vector of character vectors.

HELP145

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

205

Purpose: Display the AP 145 online help

Syntax: HELP145

Arguments: None

Result: None

PROMPT

Purpose: Display a message and prompt for input

Syntax: response←PROMPT text

Arguments: text Character vector - Prompt message

Result: response 2 element vector

 [1] Boolean scalar - 0 Okay [2] is input, 1 Cancel [2] is null

 [2] Character vector - Input text or null

QUERYSYSCOLOR

Purpose: Query the RGB color of a system component

Syntax: rgb←QUERYSYSCOLOR index

Arguments: index Integer scalar - Color index. See function comments for valid indices

Result: rgb 3 Integers 0-255 - Red, green, and blue components of system color

SELECT_1

Purpose: Display a character matrix and prompt the user to select 1 row

Syntax: index←SELECT_1 matrix

Arguments: matrix Character matrix - Items for user to select from

Result: index Integer scalar - Index of selected item or ⎕IO-1 if Cancel selected.

SELECT_SOME

Purpose: Display a character matrix and prompt the user to some rows

Syntax: indices←SELECT_SOME matrix

Arguments: matrix Character matrix - Items for user to select from

Result: indices Integer vector - Index of selected items or ⎕IO-1 if Cancel selected.

UNIEDIT

Purpose: Edit a Unicode character array

Syntax: result←[title] UNIEDIT array

Arguments: title Character vector - Title of edit window

 array Array - Data to edit. Can be character scalar, vector, or matrix, or vector of

 character vectors, or mixed matrix. Can contain Unicode characters.

Result: result Edited data - If input is a matrix, then the output is a matrix.

Otherwise, the output is a vector of character vectors.

UNIFILE

Purpose: Read and write files.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

206

The monadic forms read either Multibyte or Unicode data.

The dyadic forms write Unicode data.

Syntax: rdata ← UNIFILE filename
rc ← wdata UNIFILE filename

Arguments: filename Character vector - File name. May include a path.

wdata Character array or zero length numeric vector

If wdata is a character array, it contains the data to write to the file. The data is

raveled, converted to Unicode, and prefixed with a byte order mark which

identifies the file contents as Unicode, and written to the file. If the file already

exists, the old contents are replaced by the new data. If the character array is

empty, a 0-length file will be written.

 If wdata is a numeric null, the file will be erased.

Result: rdata Character vector - The contents of the file.

Any line or record separators are retained as they existed in the file.

Any error conditions encountered while reading a file are reported by returning a

numeric result in place of the data.

rc Integer scalar - The return code from writing a file; zero for success. When an

error occurs, the return code of the failing API is returned. The CHECK_ERROR

function can be used to obtain more information.

UNI∆FM

Purpose: Read and write a file as a matrix

The monadic forms read either Multibyte or Unicode data.

The dyadic forms write Unicode data.

Syntax: rdata ← UNI∆FM filename
rc ← wdata UNI∆FM filename

Arguments: filename Character vector - File name. May include a path.

wdata Character matrix. The data to write to the file.

Trailing blanks are removed, the data is converted to Unicode, prefixed with a

byte order mark which identifies the file contents as Unicode, and written to the

file. If the file already exists, the old contents are replaced by the new data.

If wdata is empty, the file will be erased.

Result: rdata Character matrix - The contents of the file.

Records are delimited by line feeds or carriage returns and line feeds. Trailing

blanks and end-of-file characters are removed. Any error conditions encountered

while reading a file are reported by returning a numeric result in place of the data.

rc Integer scalar - The return code from writing a file; zero for success. When an

error occurs, the return code of the failing API is returned. The CHECK_ERROR

function can be used to obtain more information.

UNI∆FV

Purpose: Read and write a file as a vector of character vectors

The monadic forms read either Multibyte or Unicode data.

The dyadic forms write Unicode data.

Syntax: rdata ← UNI∆FV filename
rc ← wdata UNI∆FV filename

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

207

Arguments: filename Character vector - File name. May include a path.

wdata Vector of character vectors. The data to write to the file.

Trailing blanks are removed, the data is converted to Unicode, prefixed with a

byte order mark which identifies the file contents as Unicode, and written to the

file. If the file already exists, the old contents are replaced by the new data.

f wdata is empty, the file will be erased.

Result: rdata Vector of character vectors - The contents of the file.

Records are delimited by line feeds or carriage returns and line feeds. Trailing

blanks and end-of-file characters are removed. Any error conditions encountered

while reading a file are reported by returning a numeric result in place of the data.

rc Integer scalar - The return code from writing a file; zero for success. When an

error occurs, the return code of the failing API is returned. The CHECK_ERROR

function can be used to obtain more information.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

208

GPPRINT - Printing Tools and Constants

The tools in GPPRINT allow applications to produce printed documents.

To create a typical document, the tools are used as follows:

1. Create a logical printer with CREATE_PRINTER.

2. Select a printer by using PRINT_PROPERTY to set the PRINTER property to the name of the desired

printer. Use the PRINTERS property to retrieve the names of the available printers. Alternatively, display

a printer selection dialog with SELECT_PRINTER.

3. Set other printer properties such as orientation and margins with PRINT_PROPERTY. Alternatively,

display a page customization dialog with PAGE_SETUP.

4. Start the document with OPEN_DOCUMENT.

5. Set desired attributes for the document with PRINT_PROPERTY and the SET_ functions.

6. Add text to the document with PRINT_SENTENCE.

7. Begin new lines and pages with NEWLINE and NEWPAGE.

8. Repeat steps 5, 6, and 7 as needed to create the entire document.

9. Close and send the document to the printer with CLOSE_DOCUMENT.

10. Destroy the logical printer with DESTROY_PRINTER.

For detailed information, consult the HOW_PRINT variable in the GUITOOLS workspace.

CANCEL_DOCUMENT Aborts a document

CLOSE_DOCUMENT Ends a document

CREATE_PRINTER Creates a printer object

CREATE_UNICODE_PRINTER Creates a Unicode printer object
DESTROY_PRINTER Destroys a printer object
NEWLINE Starts a new line in a document

NEWPAGE Starts a new page in a document
OPEN_DOCUMENT Starts a print document

PAGE_SETUP Displays the page customization dialog

PRINTER_PROPERTIES Displays the current printer’s Properties dialog
PRINT_PROPERTY Sets a print document property
PRINT_SENTENCE Adds a sentence to a print document
QUERY_LENGTH Queries the length of a sentence
QUERY_PAGENUMBER Queries the current page number
SELECT_PRINTER Displays a printer selection dialog
SET_COLOR Sets the color used in the body of a document
SET_FONT Sets the fonts used in a document
SET_FOOTING Sets the running footing text
SET_HEADING Sets the running heading text
SET_INDENT Sets the indentation
SET_LINESPACE Sets the line spacing
SET_MARGIN Sets the inside margin when duplex printing
SET_PAGENUMBERS Enables or disables page numbers
SET_WORDBREAK Enables or disables word break

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

209

GUIVARS Constants Reference

The following groups of constants can be found in the GUIVARS workspace.

 Accelerator Flags

 Accelerator Virtual Key Codes

 Menu Style Flags

 Menu Attribute constants

 Menu Box Style Flags

 Manu Box Result Codes

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

210

Accelerator Flags

Accelerator flags indicate whether accelerator’s key entry is a:

AF_CHAR The accelerator entry is a character

AF_SCANCODE The accelerator entry is a keyboard scan code

AF_VIRTUALKEY The accelerator entry is a virtual key code

AF_SHIFT The keystroke combination includes the Shift key

AF_CONTROL The keystroke combination includes the Ctrl key

AF_ALT The keystroke combination includes the Alt key

AF_LONEKEY The keystroke combination does not include any other keys

The following accelerator flags are defined in GUIVARS but are obsolete and do not work on Windows:

AF_HELP AF_SYSCOMMAND

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

211

Accelerator Virtual Key Codes

Virtual key codes are used to define accelerators for non-alphanumeric keys:

VK_ALT VK_F1
VK_ALTGRAF VK_F2
VK_BACKSPACE VK_F3
VK_BACKTAB VK_F4
VK_BREAK VK_F5
VK_BUTTON1 VK_F6
VK_BUTTON2 VK_F7
VK_CAPSLOCK VK_F8
VK_CTRL VK_F9
VK_DELETE VK_F10
VK_DOWN VK_F11
VK_END VK_F12
VK_ENTER VK_F13
VK_ESC VK_F14
VK_HOME VK_F15
VK_INSERT VK_F16
VK_LEFT VK_F17
VK_NEWLINE VK_F18
VK_NUMLOCK VK_F19
VK_PAGEDOWN VK_F20
VK_PAGEUP VK_F21
VK_PAUSE VK_F22
VK_PRINTSCRN VK_F23
VK_RIGHT VK_F24
VK_SCRLLOCK
VK_SHIFT
VK_SPACE
VK_TAB
VK_UP

Other virtual key codes defined in GUIVARS are obsolete and do not work on Windows.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

212

Menu Style Flags

Use menu style flags to specify how menu items should be drawn.

MIS_BITMAP Displays a picture

MIS_BREAK Starts a new column

MIS_BREAKSEPARATOR Starts a new column and draws a vertical line

MIS_SEPARATOR Draws a horizontal line

MIS_STATIC Menu item is not selectable

MIS_TEXT Displays text (default)

The following menu style flags are defined in GUIVARS but are not used on Windows:

MIS_BUTTONSEPARATOR
MIS_GROUP
MIS_HELP
MIS_MULTMENU
MIS_OWNERDRAW
MIS_SINGLE
MIS_SUBMENU
MIS_SYSCOMMAND

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

213

Menu Attribute Constants

Use menu style flags to specify the initial state of menu items.

MIA_CHECKED Draws a check mark to the left of the menu item

MIA_DISABLED Disable and grey menu item

The STATE CHECKED and STATE ENABLE properties can be used to change the state of menu items:

 'STATE CHECKED' SET_PROPERTY menu boolean id
 'STATE ENABLE' SET_PROPERTY menu boolean id

The following menu attribute constants are defined in GUIVARS but are not used on Windows:

MIA_FRAMED
MIA_HILITED
MIA_NODISMISS

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

214

Message Box Style Flags

One or more of the following flags can be used in the WinMessageBox service’s Style parameter.

MB_OK Contains an Ok button

MB_OKCANCEL Contains Ok and Cancel buttons

MB_RETRYCANCEL Contains Retry and Cancel buttons

MB_ABORTRETRYIGNORE Contains Abort, Retry, and Ignore buttons

MB_YESNO Contains Yes and No buttons

MB_YESNOCANCEL Contains Yes, No, and Cancel buttons

MB_ENTER Contains an Ok button

MB_ENTERCANCEL Contains Ok and Cancel buttons

MB_APPLMODAL Disables the rest of the application

MB_CANCEL Contains a Cancel button

MB_CUACRITICAL Contains a Stop sign icon

MB_CUANOTIFICATION Contains an Ok button

MB_CUAWARNING Contains an exclamation point icon

MB_DEFBUTTON1 The first button is the default

MB_DEFBUTTON2 The second button is the default

MB_DEFBUTTON3 The third button is the default

MB_HELP Contains a Help button

MB_ICONASTERISK Contains an information symbol icon

MB_ICONEXCLAMATION Contains an exclamation point icon

MB_ICONHAND Contains a Stop sign icon

MB_ICONQUESTION Contains a question mark icon

MB_SYSTEMMODAL Disables all other windows

Other message box style flags defined in GUIVARS are obsolete and do not work on Windows.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

215

Message Box Result Codes

The WinMessageBox service returns one of the following codes indicating which button the user pressed to

close the message box:

MBID_ABORT
MBID_CANCEL
MBID_ENTER
MBID_ERROR
MBID_IGNORE
MBID_NO
MBID_OK
MBID_RETRY
MBID_YES

The following message box return code is defined in GUIVARS but is never returned on Windows.

MBID_HELP

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

216

DEMO145 Function Reference

GUI demonstration programs are found in the DEMO145 workspace in public library 2. The following

programs are supplied:

DEMO Interactive tool to invoke other demonstration programs

DEMO_ACCEL Keyboard accelerators

DEMO_ACTIVEX_IE ActiveX interface to Internet Explorer

DEMO_ACTIVEX_IMAGECOMBO ActiveX ImageCombo controls

DEMO_ACTIVEX_MONTH ActiveX Month controls

DEMO_AP207 Using AP 207 graphics are in AP 145 dialog

DEMO_APLHELP Contextual help

DEMO_CHECKS STATE CHECK property

DEMO_COLOR Color properties

DEMO_COMBOBOX Combo box controls

DEMO_CREATECTL Dynamic control creation

DEMO_CUSTOM Programming a custom control

DEMO_DATETIME Date and Time controls

DEMO_DRAGDROP Handling file drag and drop

DEMO_EVENTS Event handling

DEMO_EXECUTEDLGX Handling both AP 145 and another shared variable events

DEMO_EXPLORE Using dialogs in a Split style dialog

DEMO_GDI Using Windows Graphics Device Interface (GDI) APIs

DEMO_GRAPHPAK Using GRAPHPAK in an AP 145 dialog

DEMO_GRID Grid controls

DEMO_GRID_SCROLL Scrolling multiple grid controls together

DEMO_GROUP Position controls within group boxes

DEMO_GUISPACE Using the GUITOOLS namespace

DEMO_HOVER Using the Hover event

DEMO_LIMITS Limiting the amount of data that can be entered

DEMO_LISTVIEW Listview controls

DEMO_MENU Menu bars

DEMO_MDI Using the NoIcon and NoIgnore styles to build MDI style applications

DEMO_MODE Message boxes and modal and modeless dialogs

DEMO_MONTH Month controls

DEMO_MOVIE Multimedia services

DEMO_OPENGL_GLRECT OpenGL Superbible's GLRECT example

DEMO_OPENGL_GLSAMPLE Blaine Hodge's GlSample

DEMO_PATH Using the PATH, PATH SELECTION, and PATH STYLE properties

DEMO_PICTURE Picture and cursor properties

DEMO_POLLING Polling for AP 145 events during long running operations

DEMO_PRINT Printing

DEMO_PRINT_POSITION Positioning output in print jobs

DEMO_PROGRESS Progress bars

DEMO_PROPERTIES Using a Tab control in a Properties window

DEMO_RESIZE Dialogs that can be resized

DEMO_SCROLLBARS Scroll bars

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

217

DEMO_SHARE Sharing variables with window properties

DEMO_SHEET Using entry field and grid control as spread sheet style input device

DEMO_SLIDER Slider controls

DEMO_SPINBUTTONS Spin button controls

DEMO_SPLIT Dialogs with multiple panes

DEMO_STATES State properties

DEMO_STATUS Dialog status bars

DEMO_TAB Tab controls

DEMO_TIMER Timer objects

DEMO_TOOLBAR Tool bars

DEMO_TREEVIEW Treeview controls

PRINT_DEMO Using the GUITOOLS print functions

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

218

Appendix A: AP 145 Services

The following sections describe the services provided by AP 145. Cover functions are provided for most

services. Where available, cover functions should be used.

The following APL services are provided:

 AplCallCOM

 AplColorDlg

 AplCopyMem

 AplCreateControl

 AplCreateMenu

 AplCreateObject

 AplEnableAplInput

 AplExecPgm

 AplFileDlg

 AplFolderDlg

 AplFontDlg

 AplFreeService

 AplGetCellSize

 AplGetChildren

 AplGetParent

 AplGetProfile

 AplGetProperty

 AplGetRange

 AplHelp

 AplLoadPicture

 AplLoadService

 AplPopupMenu

 AplPrinterProperties

 AplQueryDdeServers

 AplReturn

 AplSetCellSize

 AplSetFont

 AplSetProfile

 AplSetProperty

 AplSetRange

 AplShareWindow

 AplShowContextHelp

 AplSizeToText

 AplStrLen

 AplVersion

 AplWaitMsg

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

219

AP 145 emulates some OS/2 DOS services. These services are only provided for use by cover functions in the

GUITOOLS workspace. These services do not provide all the functionality of the OS/2 services and should not

be used except by the cover functions. The following OS/2 DOS services are supported:

 DosFreeModule

 DosLoadModule

 DosQueryProcAddr

AP 145 emulates some OS/2 Presentation Manager services. These services are only provided for use by cover

functions in the GUITOOLS workspace. These services do not provide all the functionality of the OS/2

services and should not be used except by the cover functions. The following OS/2 Presentation Manager

Window services are supported:

 WinCreateDlg

 WinCreateHelpInstance

 WinCreateMenu

 WinCreateSecondaryWindow

 WinCreateWindow

 WinDestroyWindow

 WinEnableWindow

 WinIsWindow

 WinMessageBox

 WinPostMsg

 WinQueryCp

 WinQueryDesktopWindow

 WinQuerySysColor

 WinQueryWindowULong

 WinQueryWindowUShort

 WinRegisterClass

 WinSendMsg

 WinSetWindowPos

 WinWindowFromID

AP 145 provides a set of Unicode services. These services provide the same function as the corresponding Apl

and Win services with the enhanced behavior of supporting Unicode. The following Unicode services are

supported:

 UniCreateDlg

 UniCreateMenu

 UniFileDlg

 UniFolderDlg

 UniMessageBox

 UniPopupMenu

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

220

Apl Services

AplCallCOM

Purpose: Call the APL2 Component Object Model interface

Syntax: SV145←'AplCallCOM' 'COMMAND' [arguments] comresult
Parameters: The AplCallCOM service's parameters are identical to the COM external function's right

argument with the addition of the comresult parameter.

Note: The AP 145 COM service does not support the WAIT command.

comresult Input: Scalar zero

 Output: Event type, error message, and COM result

Result: 0 Success

AplColorDlg

Purpose: Display a color dialog with which the user can set a window's colors

Syntax: SV145←'AplColorDlg' handle [handle…]

Parameters: handle Integer scalars - Handles of windows whose colors can be changed.

The first window handle supplied is used as the owner of the colors dialog.

Results: 0 Success

AplCopyMem

Purpose: Copy data from one storage location to another

Syntax: SV145←'AplCopyMem' target source length
Parameters: target Pointer - Storage into which the data will be copied.

 source Pointer - Storage from which data will be copied

 length Integer scalar - Number of bytes to copy

Result: 0 Success

 1 Access violation

AplCreateControl

Purpose: Create a control window.

Syntax: SV145←'AplCreateControl' parent class styles [id [ctldata]]

Parameters: parent Integer scalar - Handle of parent window

 class Character vector - Control class to create

 styles Character vector - List of control styles

 id Integer scalar - Control identifier

 ctldata Control class specific creation data

Result: Handle of control window. Zero if error.

AplCreateMenu

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

221

Purpose: Create a menu bar using Multibyte data

Syntax: SV145←AplCreateMenu dialog array

Parameters: dialog Integer scalar - Handle of dialog

 array Vector of menu items

Result: menu Integer scalar - Handle of menu

Menu items have 2, 3 or 4 elements:

[1] Integer scalar - A unique value that is used to identify the choice in the menu’s EVENTS property.

[2] Array – Menu item data

[3] Integer scalar - Zero or BITWISE combination of Menu Style Flags. MIS_BITMAP and MIS_TEXT

are ignored.

[4] Integer scalar - Zero or BITWISE combination of Menu Attribute Constants.

The menu item data may be a character vector or a character vector and a picture array. The character array is

the menu item text. The picture array may be:

 An integer scalar that is the handle of a previously loaded bitmap or one of the following built-in picture

values:

1 Cut

2 Copy

3 Paste

4 Undo

5 Redo

6 Delete

7 New

8 Open

9 Save

10 Print Preview

11 Properties

12 Help

13 Find

14 Replace

15 Print

16 Large Icons View

 A character vector containing a BMP, EMF, Exif, GIF, ICO, JPEG, PNG, TIFF, or WMF file name

 An enclosed character vector containing the contents of an image file

 A 3 element array:

[1] 'ICON' or 'BITMAP'

[2] Character vector containing name of executable

[3] Integer resource identifier

GDI+ is required for file types other than bitmap and icon.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

222

A menu array can also contain nested vectors of menu items. A nested vector of menu items defines a pull-

down menu. The first element of a nested vector of menu items defines the pull-down menu item. The

subsequent items define the pull-down menu's items.

See Adding a Menu Bar for more information about using CREATEMENU.

AplCreateObject

Purpose: Create an object

Syntax: SV145←'AplCreateObject' class [classdata]

Parameters: class Character vector - Object class to create

 classdata Class specific creation data

Result: Handle of object. Zero if error.

See Objects: DDE and Timers for information about object classes.

AplEnableAplInput

Purpose: Enable or disable APL keyboard input for a window

Syntax: SV145←'AplEnableAplInput' handle state

Parameters: handle Integer scalar - Window handle

 state Boolean scalar - 1 APL input enabled, 0 disabled

Results: 0 Success

 1 APL input already enabled or disabled

 2 Windows service error

To display the keyboard modification dialog, either enable or disable APL input and post an

APLKEY_MSG_MODIFY message to the window

AplExecPgm

Purpose: Execute an operating system command

Syntax: SV145←'AplExecPgm' command cmdrc visible leave

Parameters: command Character vector - Command to execute. Must be a name of an executable file.

 rc Input: Integer scalar - value ignored

 Output: Integer scalar - Command's return code

 visible Boolean scalar - 0 command is executed in an invisible window, 1 a visible one.

 leave Boolean scalar - 0 window is closed when command completes, 1 window is left

 open.

Results: 0 Success

 1 Command cancelled

 2 Windows service error

 3 Invalid command

Note: Leave is ignored. Command windows are always closed automatically.

AplFileDlg

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

223

Purpose: Display a modal file dialog

Syntax: SV145←'AplFileDlg' owner style name id rc [types index [title]]
Parameters: owner Integer scalar - Handle of the dialog's owner

 style Integer scalar FDS_OPEN_DIALOG for an Open dialog;

 FDS_SAVEAS_DIALOG for a Save As dialog.

 name Input – Character vector filename filter, for example, c:\temp*.txt

 Output – Filename(s)

Character vector if single file selected

Vector of character vectors if multiple files selected

Null if the user did not press Ok

 id Integer scalar - 0 for single-selection dialog, 1 for multiple-selection dialog.

 rc Integer scalar - Updated with dialogs return code. 0 if the user pressed Open or

 Save, 1 otherwise

 types Matrix of character vectors

 [;1] Type name, i.e. 'All Files'

 [;2] Type pattern, i.e. '*.*'

 index Integer scalar - Zero origin index of row of types

 Input - Index of file type to display

 Output - Index of user's selected type

 title Character vector - Title of dialog box

Results: 0 Success

 1 Windows service error or invalid argument

AplFolderDlg

Purpose: Display a browse for folder dialog

Syntax: SV145←'AplFolderDlg' owner path
Parameters: owner Integer scalar - Handle of the dialog's owner

 path Character vector

 Input - Initial path. '' for current directory

 Output – Selected folder if the user presses Ok, null otherwise.

Results: 0 Success

 1 Windows service error or user pressed Cancel

AplFontDlg

Purpose: Display a font dialog with which the user can set a window's font

Syntax: SV145←'AplFontDlg' handle id

Parameters: handle Integer scalar - Handle of window whose font can be changed

 id Integer scalar - Identifier for the dialog, unused

Results: 0 Success

 1 Windows service error

AplFreeService

Purpose: Unload one or more services previously loaded with the AplLoadService service.

Syntax: SV145←'AplFreeService' service

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

224

Parameters: service Character vector or vector of character vectors - Names of services to free

Results: 0 Success

 1 Service not loaded

 2 Unload failed

AplGetCellSize

Purpose: Get the size of a grid control cell

Syntax: SV145←'AplGetCellSize' handle cell size [id]

Parameters: handle Integer scalar – Grid control handle

 cell 2 element integer vector - Row and column index of the cell

 size Input: Integer scalar, value ignored

 Output: Updated with 2 element integer vector - Number of rows and columns the

 cell spans.

 id Integer scalar - Identifier of child grid window

 or Character vector – Name of child grid window

Results: 0 Success

 1 Invalid window handle or id

 2 Invalid range property name for class of window

 3 System error (out of storage, threads, or SVP error)

AplGetChildren

Purpose: Get the handles of a parent's child windows

Syntax: SV145←'AplGetChildren' parent children

Parameters: parent Integer scalar - Handle of a parent window.

 children Input: Integer scalar, value ignored

 Output: Integer vector, child window handles, null if none

Results: 0 Success

AplGetParent

Purpose: Get the handle of a child window's parent

Syntax: SV145←'AplGetParent' handle

Parameters: handle Integer scalar - Window handle

Results: 0 Window does not have a parent

 Other Handle of parent window

AplGetProfile

Purpose: Get a profile value from the registry

Syntax: SV145←'AplGetProfile' com app ver fld key val

Parameters: com Character vector - Company name

 app Character vector - Application name

 ver Character vector - Version

 fld Character vector - Folder, '' if none

 key Character vector - Key

 val Character vector - Default value (updated with profile value)

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

225

Results: 0 Success

Purpose: Get a profile value from an INI file

Syntax: SV145←'AplGetProfile' fil app key val

Parameters: fil Character vector - INI file name

 app Character vector - Application name

 key Character vector - Key

 val Character vector - Default value (updated with profile value)

Results: 0 Success

To query the applications, versions, folders, or keys within the registry, or the applications or keys within an INI

file, set the application name, version, folder, or key name to ''.

AplGetProperty

Purpose: Get the value of a window property.

Syntax: SV145←'AplGetProperty' handles properties values [ids]

Parameters: handles Integer scalar or vector - Window handles

 properties Character vector or vector of character vectors - Property names

 values Input: Integer scalar, value ignored

 Output: Values of properties

 ids Integer scalar or vector – Child window identifiers

 Character vector or vector of character vectors - Names of child windows

If ids are supplied, the child windows’ properties are retrieved.

Results: 0 Success

 1 Invalid window handle or id

 2 Invalid property name for class of window

 3 System error (out of storage, threads, or SVP error)

See GET_PROPERTY for more information.

AplGetRange

Purpose: Get the value of a window range property.

Syntax: SV145←'AplGetRange' handle property range value [id]

Parameters: handle Integer scalar - Window handle

 property Character vector - Range property name

 range 4 element integer vector - Range

 [1 2] - Row and column index of first cell in range

 [3 4] - Number of rows and columns in range

 value Input: Integer scalar, value ignored

 Output: Value of range property

 id Integer scalar: Identifier of window that is a child of handle

or Character vector - Name of child window

If id is supplied, the child window's range property is retrieved.

Results: 0 Success

 1 Invalid window handle or id

 2 Invalid range property name for class of window

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

226

 3 System error (out of storage, threads, or SVP error)

AplHelp

Purpose: Display the AP 145 online help.

Syntax: SV145←'AplHelp' topic

Parameters: topic Character vector - Topic name. No longer supported. Use ''.

Results: 0 Success

 1 Invalid topic

AplLoadPicture

Purpose: Load a picture for use in ActiveX objects.

Syntax: SV145←'AplLoadPicture' picture

Parameters: picture Character vector - Name and path of BMP, JPG, GIF, and PNG files

Enclosed character vector - contents of BMP, ICO, or WMF file.

Results: result Integer scalar - Handle of picture object, 0 if error

The handle is an IDispatch interface and is useable with the ListImages

 class's Add method.

AplLoadService

Purpose: Load one or more APIs from a dynamic link library (DLL)

Syntax: SV145←'AplLoadService' service library [descrip [result]]

Parameters: service Character vector or vector of character vectors - Names of API to load from the

dynamic link library. One name per character vector. The names are case

sensitive.

If the service argument is a character vector containing a single API name,

then descrip and result arguments may be supplied.

If the service argument contains more than one API name or if the descrip

argument is omitted, then AP 145 will pass all the APIs' parameters by value and

as 4 byte signed integers or single byte character strings.

library Identifies the location of the API. It can be either:

 Character vector - Filename of the DLL containing the APIs

 Integer scalar - Address of the API

descrip Integer vector – Description of single API’s parameters.

The length of the description corresponds to the number of parameters required by

the API. Each item corresponds to a parameter and describes that parameter.

Descriptions may not contain more than 32 items. Pass a null vector to indicate

that the service has no parameters.

The absolute values of the items are interpreted as follows:

0 - Automatic type handling. Parameter is passed by value

1 - Automatic type handling. Parameter is passed by reference

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

227

2 - Parameter is 1 byte signed integer

3 - Parameter is 2 byte signed integer

4 - Parameter is 4 byte signed integer

5 - Parameter is 4 byte floating point number

6 - Parameter is 8 byte floating point number

7 - Parameter is string of single byte characters

8 - Parameter is string of 2 byte Unicode characters

For types 2 through 8, a positive number indicates the parameter should be passed

by value and a negative number indicates it should be passed by reference.

result Integer scalar – Description of single API’s result.

The value of result is interpreted as follows:

2 - Result is 1 byte signed integer

3 - Result is 2 byte signed integer

4 - Result is 4 byte signed integer

5 - Result is 4 byte floating point number

6 - Result is 8 byte floating point number

7 - Result is string of single byte characters

8 - Result is string of 2 byte Unicode characters

Results: 0 Success

 1 Service name already in use.

 2 Load failed

 -1 Insufficient space

AplPopupMenu

Purpose: Prompt the user with a popup menu

Syntax: SV145←'AplPopupMenu' owner x y items

Parameters: owner Integer scalar - Handle of the window relative to which the menu should be

 positioned

 x and y Coordinates of the popup menu position relative to the owner's origin

 items Array of popup menu items. Each menu item is a character vector or a vector of

character vectors. A character vector defines one menu item. A vector of

character vectors defines a submenu. The first character vector defines the

submenu title. Subsequent character vectors define submenu items. Use a null

character vector, '', to display a separator.

Results: Index origin zero index of the user's selection. If the user dismisses the menu without making a

 selection, -1 is returned. Separators and submenu titles do not affect selection indices.

AplPrinterProperties

Purpose: Display the current printer’s Properties dialog

Syntax: SV145←'AplPrinterProperties' printer

Parameters: printer Integer scalar - Handle of a printer created by CREATE_PRINTER or
CREATE_UNICODE_PRINTER

Results: Scalar integer - 0 if the user presses Ok. 1 if the user presses Cancel.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

228

AplQueryDdeServers

Purpose: Retrieve the names of the active DDE servers and the topics they support

Syntax: SV145←'AplQueryDdeServers' list

Parameters: list Input: Integer scalar - value ignored

 Output: 2 column matrix of character vectors

 [;1] Server name

 [;2] Topic name

Results: 0 Success

 1 Unable to create query object

 2 Out of memory

Note: Only names of servers that support topics are returned.

AplReturn

Purpose: Return a message result

Syntax: SV145←'AplReturn' mresult

Parameters: mresult Integer scalar - Message result

Results: 0 Success

 1 No message is waiting for a result from this variable.

AplSetCellSize

Purpose: Enlarge a cell so that it covers adjacent cells

Syntax: SV145←'AplSetCellSize' handle cell size [id]

Parameters: handle Integer scalar - Window handle

 cell 2 element integer vector - Row and column index of the cell

 size 2 element integer vector - Number of rows and columns the cell should span

 id Integer scalar - Identifier of a child window whose parent is handle

 or Character vector - Name of child window

Results: 0 Success

 1 Invalid window handle or id

 2 Invalid cell index or size or system error

AplSetFont

Purpose: Set a window's font

Syntax: SV145←'AplSetFont' handle font

Parameters: handle Handle of the window whose font is to be set

 font Character vector - Point size and face name. i.e. '10.Times New Roman'

Results: 0 Success

 1 Windows Service Error

 2 Face name not available

 3 Point size not available

 4 Invalid font name

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

229

AplSetProfile

Purpose: Set a profile value in the registry

Syntax: SV145←'AplSetProfile' com app ver fld key val

Parameters: com Character vector - Company name

 app Character vector - Application name

 ver Character vector - Version

 fld Character vector - Folder, '' if none

 key Character vector - Key

 val Character vector - Profile value

Results: 0 Success

Purpose: Set a profile value in an INI file

Syntax: SV145←'AplSetProfile' fil app key val

Parameters: fil Character vector - INI file name

 app Character vector - Application name

 key Character vector - Key

 val Character vector - Profile value

Results: 0 Success

To delete companies, applications, versions, folders, or keys within the registry, or applications or keys within

an INI file, set the contained application, version, folder, key name, or value to ⍳0. Arguments after a null

application name, version, folder, or key name are ignored. AP 145 prompts the user for delete confirmation.

AplSetProperty

Purpose: Set a window property

Syntax: SV145←'AplSetProperty' handles properties values [ids]

Parameters: handles Integer scalar or vector - Window handles

 Properties Character vector - Property names

 values Values of properties

 ids Integer scalar or vector – Child window identifiers

 Character vector or vector of character vectors - Names of child windows

If ids are supplied, the child windows’ properties are set.

Results: 0 Success

 1 Invalid window handle or id

 2 Invalid property name for class of window

 3 System error (out of storage, threads, or SVP error)

 4 Invalid property value

See SET_PROPERTY for more information.

AplSetRange

Purpose: Set a range property

Syntax: SV145←'AplSetRange' handle property range value [id]

Parameters: handle Integer scalar - Window handle

 property Character vector - Range property name

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

230

 range 4 element integer vector - Range

 [1 2] - Row and column index of first cell in range

 [3 4] - Number of rows and columns in range

 value Value of range property

 id Integer scalar - Identifier of window that is a child of handle.

 Or Character vector - Name of child window

If id is supplied, the child window's property is set.

Results: 0 Success

 1 Invalid window handle or id

 2 Invalid range property name for class of window

 3 System error (out of storage, threads, or SVP error)

 4 Invalid range property value

AplShareWindow

Purpose: Share a variable with a window property

Syntax: SV145←'AplShareWindow' handle svname property [id]

Parameters: handle Integer scalar - Window handle

 svname Character vector - Variable name to share

 property Character vector - Property name

 id Integer scalar - Identifier of window that is a child of handle.

 Or character vector -Name of child window

If id is supplied, the variable is shared with the child window's property.

Results: 0 Success - Variable offered by AP 145

 1 Invalid window handle or id

 2 Invalid property name for class of window

 3 System error (out of storage, threads, or SVP error)

Important Usage Notes:

The AplShareWindow service does not share a variable with a window. Rather, AplShareWindow causes AP

145 to offer a variable to the processor that called the service. It is the responsibility of the application to match

the share offer before making use of the variable. The function SHAREWINDOW calls AplShareWindow and

matches AP 145's subsequent offer. Use of SHAREWINDOW rather than calling AplShareWindow directly is

strongly advised. SHAREWINDOW does not support variable names that begin with the letters ⍙_.

AP 145 does not retract a variable shared with a window property when the window is destroyed or when the

variable that created the window is retracted. AP 145 only retracts a variable after its offer has been accepted

and the variable has been retracted. Therefore, you should always accept variables offered by AP 145 when

using AplShareWindow. It is strongly suggested that variables shared with window properties be localized so

they are automatically retracted upon application termination.

AP 145 does not specify variables shared with window properties every time the window properties change.

AP 145 detects when the variable is referenced and immediately specifies the variable with the current value of

the property. Therefore, you cannot use ⎕SVE to wait for a property to change. If you need to respond to a

window event, set the EVENTS property for the appropriate event name.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

231

AplShowContextText

Purpose: Show context help

Syntax: SV145←'AplShowContextHelp' handle [id]
Parameters: handle Integer scalar - Control, dialog, or menu handle

 id Integer scalar - Control identifier or menu item identifier

 or Character vector - Control name

Results: 0 Success

AplSizeToText

Purpose: Set the size of a control so that it just fits the control's text

Syntax: SV145←'AplSizeToText' handle [id]
Parameters: handle Integer scalar - Window handle

 id Integer scalar - Child window identifier

 or Character vector - Name of child window

Results: 0 Success

Note: AplSizeToText does not support listview, slider, tab, and treeview controls.

AplStrLen

Purpose: Get the length of a null terminated string

Syntax: SV145←'AplStrLen' address

Parameters: address Integer scalar - Address of string

Result: Integer scalar - Number of characters in the string excluding the null

AplVersion

Purpose: Query the current service level

Syntax: SV145←,⊂'AplVersion'

Parameters: None

Result: Integer scalar - Service level

AplWaitMsg

Purpose: Wait for messages and optionally provide a message result

Syntax: SV145←'AplWaitMsg' handle msg mp1 mp2 [handler] [timeout]

Parameters: handle Input: Integer scalar - Message result (optional)

 Output: Integer scalar - Window handle

 msg Input: Integer scalar, value ignored

 Output: Integer scalar - Message identifier

 mp1 Input: Integer scalar, value ignored

 Output: Integer scalar - Message parameter 1

 mp2 Input: Integer scalar, value ignored

 Output: Integer scalar - Message parameter 2

 handler Input: Boolean scalar - 0 Wait for messages, 1 Start queuing messages

 Output: Arbitrary array - Event handler

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

232

timeout Input: Real numeric scalar – Number of seconds to wait for an event.

0 to check if an event has happened.

If a timeout is not provided, AplWaitMsg waits forever.

 Output: Reserved

Result: 0 Success

1 No event occurred in timeout seconds

Notes:

Messages which do not have event handler expressions receive default processing.

While AplWaitMsg is not waiting, all messages are dispatched to the appropriate window procedure. After a

message result is returned with AplReturn and until AplWaitMsg is called to wait again, all messages are

dispatched normally. To avoid messages with event handler expressions being dispatched, do not use

AplReturn. Use AplWaitMsg to supply message results and continue to wait for messages.

Some messages occur during application initialization before the application is ready to wait for messages. To

cause AP145 to queue these messages for later processing when the application is ready, call AplWaitMsg with

the fifth parameter set to 1. AplWaitMsg will return immediately but start to queue messages.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

233

Appendix B: Where to find Tools, Samples, and Other Information

To make effective use of APL2’s GUI application programming tools, it is important that you know where to

find APL2's GUI application development tools and information about how to use them.

The document you are reading, APL2 Programming: Developing GUI Applications, is the primary source of

information. The GUI Applications choice on the session manager's Help menu opens this book. The

HELP145 function in the GUITOOLS and DEMO145 workspaces also opens it.

GUITOOLS

The GUI programming tools are found in the GUITOOLS workspace in public library 2.

The GUITOOLS workspace contains four groups:

 GPDESC Documentation variables

 GPDLGPROCESS Tools for creating and processing dialogs

 GPPRINT Tools for printing

 GPUTILITY Miscellaneous utility tools

The GUITOOLS workspace has several variables that contain reference information:

 ABSTRACT Workspace overview

 DESCRIBE Description of workspace’s groups

 HOW Instructions for using workspace’s groups

The DESCRIBE_ variables contain brief descriptions of the available tools:

 DESCRIBE_DLGPROCESS Tools for creating and processing dialogs

 DESCRIBE_PRINT Tools for printing

 DESCRIBE_UTILITY Tools that provide common interface features

The HOW_ variables contain detailed syntax, argument, and usage information:

 HOW_CONTROL Class and style information for controls and dialogs

 HOW_DLGPROCESS Tools for creating and processing dialogs

 HOW_EVENTS Events supported by controls and dialogs

 HOW_EVENTS_CODE Sample code for setting event handlers

 HOW_PRINT Print utilities

 HOW_PROPERTY Properties supported by controls and dialogs

 HOW_PROPERTY_CODE Sample code for setting properties

 HOW_RANGE Range properties support by grid controls

 HOW_RANGE_CODE Sample code for setting range properties

 HOW_UTILITY Tools that provide common interface features

In addition, each function contains comments describing its usage, syntax, arguments, and results.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

234

DEMO145

GUI demonstration programs are found in the DEMO145 workspace in public library 2. There are functions to

demonstrate how to use most kinds of controls and properties. For example, the DEMO_GRID function

demonstrates how to use grid controls. The top level DEMO function lists the available demonstration functions.

GUIVARS

GUI constants are found in the GUIVARS workspace in public library 2. These constants are used with several

of the tools in GUITOOLS.

DDESHARE

The DDESHARE workspace in public library 2 contains tools for communicating with other applications using

Dynamic Data Exchange.

The DDESHARE workspace contains two groups:

 GPDEMO Demonstration DDE server and clients

 GPUTILITY Functions for creating and using DDE connections

The DDESHARE workspace has three variables that contain reference information:

 ABSTRACT Workspace overview

 DESCRIBE Brief description of workspace's groups

 HOW Detailed instructions for using workspace's tools

Unicode

Documentation about APL2's Unicode support is provided in the Double Byte Character Set Support appendix

of the APL2 User's Guide.

Dialog Editor

The dialog editor is a graphical window design tool that can be used to create dialog templates. A dialog

template is an array that defines a dialog and its controls.

The dialog editor is part of the APL2 Session Manager. Invoke the dialog editor from either the Open Object

dialog on the Edit pull down menu or by double clicking on an existing dialog template name.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

235

Appendix C: Using APL2, DDE and Microsoft Excel

This appendix demonstrates how to use DDE to send commands to Microsoft Excel.

First, you need to make sure Excel is running. Try to create a DDE COMMAND object. If it succeeds, Excel is

running. If it fails, Excel is not running. Here's how to do it:

 HCMD←CREATEOBJ 'DDE COMMAND' 'Excel' 'System'
 HCMD ⍝ HCMD is zero if Excel is not running
0

To start Excel, you could use AP 100:

)COPY 2 WINDOWS HOST
SAVED 1999-02-03 10.53.26 (GMT-7)
 HOST 'START EXCEL /e'
0

Or, use the Windows ShellExecute API:

 SV145←'AplLoadService' 'ShellExecuteA' 'SHELL32'(0 0 0 0 0 0)
 (APRC OSRC CMD)←SV145
 ⎕ES(APRC≠0)/'AP 145 failed'
 ⎕ES(OSRC≠0)/'AplLoadService failed'

 SHOWCMD←10 ⍝ SW_SHOWDEFAULT
 SV145←'ShellExecuteA' 1 'open' 'excel.exe' 0 '' SHOWCMD
 (APRC OSRC CMD)←SV145
 ⎕ES(APRC≠0)/'AP 145 failed'

Once Excel is running (and you have successfully created a DDE COMMAND object), you can send

commands to Excel:

 SET_PROPERTY HCMD command

Or, you can share a variable with the object for easier programming:

 SHAREWINDOW HCMD 'EXCEL'

Note: Word uses WordBasic rather than Visual Basic for commands sent through DDE connections. So, Visual

Basic commands like this:

 Workbooks.Open FileName:="C:\TEMP\test.xls"

Will not work through DDE. You must use WordBasic commands like these:

 EXCEL←'[Open("d:\text.xls")]' ⍝ To open a workbook
 EXCEL←'[Close("d:\text.xls")]' ⍝ To close a workbook
 EXCEL←'[Quit()]' ⍝ To shutdown Excel

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

236

Appendix D: Using APL2, DDE and Microsoft Access

This appendix demonstrates how to use DDE to work with Microsoft Access from APL2.

Like Excel, you must first make sure Access is running. You can try to create a DDE COMMAND object. If it

fails, Access needs to be started.

 APPNAME←'MSAccess'
 HCMD←CREATEOBJ 'DDE COMMAND' APPNAME 'System'
 HCMD
0

Start Access like this:

 SHOWCMD←10 ⍝ SW_SHOWDEFAULT
 SV145←'ShellExecuteA' 1 'open' 'msaccess.exe' 0 '' SHOWCMD
 (APRC OSRC CMD)←SV145
 ⎕ES(APRC≠0)/'AP 145 failed'

Once Access is running (and you have successfully created a DDE COMMAND object), you can send

commands to Access. For example, you can open a database:

 DB←'D:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\SAMPLES\NORTHWIND.MDB'
 SET_PROPERTY HCMD '[OpenDatabase ',DB,']'
 GET_PROPERTY HCMD
0

Here is a function that is useful for retrieving lists of things:

 ∇R←GET_ACCESS_LIST ARG;APPNAME;TOPIC;TYPE;HDATA;DATA
[1] (APPNAME TOPIC TYPE)←ARG
[2] HDATA←CREATEOBJ 'DDE DATA' APPNAME TOPIC TYPE
[3] DATA←'XLTABLE DATA' GET_PROPERTY HDATA
[4] R←⎕IO⊃DATA
[5] R←(R≠⎕AF 9)⊂R
[6] ∇

Retrieve the list of available tables:

 ⊃GET_ACCESS_LIST APPNAME DB 'TableList'
Categories
Customers
Employees
Order Details
Orders
Products
Shippers
Suppliers

Retrieve the list of available queries:

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

237

 ⊃GET_ACCESS_LIST APPNAME DB 'QueryList'
Category Sales for 1995
Current Product List
Customers and Suppliers by City
Employee Sales by Country
Invoices
Invoices Filter
Order Details Extended
Order Subtotals
Product Sales for 1995
Products Above Average Price
Quarterly Orders
Quarterly Orders by Product
Sales by Category
Sales by Year
Ten Most Expensive Products

Retrieve the list of available forms:

 ⊃GET_ACCESS_LIST APPNAME DB 'FormList'
Categories
Customer Labels Dialog
Customer Orders
Customer Orders Subform1
Customer Orders Subform2
Customer Phone List
Customers
Employees
Employees (page break)
Main Switchboard
Orders
Orders Subform
Product List
Products
Quarterly Orders
Quarterly Orders Subform
Sales Analysis
Sales by Year Dialog
Sales Reports Dialog
Startup
Suppliers

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

238

Retrieve the list of available reports:

 ⊃GET_ACCESS_LIST APPNAME DB 'ReportList'
Alphabetical List of Products
Catalog
Customer Labels
Employee Sales by Country
Invoice
Products by Category
Sales by Category
Sales by Category Subreport
Sales by Year
Sales by Year Subreport
Sales Totals by Amount
Summary of Sales by Quarter
Summary of Sales by Year

Retrieve the list of available macros:

 ⊃GET_ACCESS_LIST APPNAME DB 'MacroList'
Customer Labels Dialog
Customer Phone List
Customers
Employees (page break)
Sales Totals by Amount
Sample Autokeys
Suppliers

Retrieve the list of available modules:

 ⊃GET_ACCESS_LIST APPNAME DB 'ModuleList'
Startup
Utility Functions

Open a form (forms are dialogs in APL2 terms):

 SET_PROPERTY HCMD '[OpenForm Employees,0,,,1,0]'
 GET_PROPERTY HDMC
0

Get all the field names and data from a table:

 TABLE←';TABLE Shippers'
 HDATA←CREATEOBJ 'DDE DATA' APPNAME (DB,TABLE) 'All'
 'XLTABLE DATA' GET_PROPERTY HDATA
 ShipperID CompanyName Phone
 1 Speedy Express (503) 555-9831
 2 United Package (503) 555-3199
 3 Federal Shipping (503) 555-9931
 DESTROYOBJ HDATA

Get the field names and types returned by a predefined query:

 QUERY←';QUERY Catalog'

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

239

 HDATA←CREATEOBJ 'DDE DATA' APPNAME (DB,QUERY) 'FieldNames;T'
 DISPLAY 'XLTABLE DATA' GET_PROPERTY HDATA
┌→───
↓ ┌→───────────┐ ┌→──────────┐ ┌→──────┐ ┌→────────┐ ┌→──────────┐ ┌→──────
│ │CategoryName│ │Description│ │Picture│ │ProductID│ │ProductName│ │Quantit
│ └────────────┘ └───────────┘ └───────┘ └─────────┘ └───────────┘ └───────
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→┐ ┌→─┐ ┌→─┐
│ │10│ │12│ │11│ │4│ │10│ │10│
│ └──┘ └──┘ └──┘ └─┘ └──┘ └──┘
└∊───
──────────────────────┐
────────┐ ┌→────────┐ │
yPerUnit│ │UnitPrice│ │
────────┘ └─────────┘ │
 ┌→┐ │
 │5│ │
 └─┘ │
──────────────────────┘
 DESTROYOBJ HDATA

Use a predefined query to get some data:

 QUERY←';QUERY Ten Most Expensive Products'
 HDATA←CREATEOBJ 'DDE DATA' APPNAME (DB,QUERY) 'All'
 'XLTABLE DATA' GET_PROPERTY HDATA
 TenMostExpensiveProducts UnitPrice
 C≠te de Blaye 263.5
 Th⍒ringer Rostbratwurst 123.79
 Mishi Kobe Niku 97
 Sir Rodney's Marmalade 81
 Carnarvon Tigers 62.5
 Raclette Courdavault 55
 Manjimup Dried Apples 53
 Tarte au sucre 49.3
 Ipoh Coffee 46
 R÷ssle Sauerkraut 45.6
 DESTROYOBJ HDATA

Retrieve the SQL statement representing a table:

 TABLENAME←';TABLE Shippers'
 HDATA←CREATEOBJ 'DDE DATA' APPNAME (DB,TABLENAME) 'SQLText'
 GET_PROPERTY HDATA
 SELECT * FROM Shippers WITH OWNERACCESS OPTION;
 DESTROYOBJ HDATA

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

240

Perform a SQL statement:

 SQL←';SQL SELECT * FROM Orders WHERE OrderID > 10050;'
 HDATA←CREATEOBJ 'DDE DATA' APPNAME (DB,SQL) 'FieldNames;T'
 DISPLAY 'XLTABLE DATA' GET_PROPERTY HDATA
┌→───
↓ ┌→──────┐ ┌→─────────┐ ┌→─────────┐ ┌→────────┐ ┌→───────────┐ ┌→────────
│ │OrderID│ │CustomerID│ │EmployeeID│ │OrderDate│ │RequiredDate│ │ShippedDa
│ └───────┘ └──────────┘ └──────────┘ └─────────┘ └────────────┘ └─────────
│ ┌→┐ ┌→─┐ ┌→┐ ┌→┐ ┌→┐ ┌→┐
│ │4│ │10│ │4│ │8│ │8│ │8│
│ └─┘ └──┘ └─┘ └─┘ └─┘ └─┘
└∊───
───
──┐ ┌→──────┐ ┌→──────┐ ┌→───────┐ ┌→──────────┐ ┌→───────┐ ┌→─────────┐ ┌→
te│ │ShipVia│ │Freight│ │ShipName│ │ShipAddress│ │ShipCity│ │ShipRegion│ │S
──┘ └───────┘ └───────┘ └────────┘ └───────────┘ └────────┘ └──────────┘ └─
 ┌→┐ ┌→┐ ┌→─┐ ┌→─┐ ┌→─┐ ┌→─┐ ┌→
 │4│ │5│ │10│ │10│ │10│ │10│ │1
 └─┘ └─┘ └──┘ └──┘ └──┘ └──┘ └─
───
─────────────────────────────┐
─────────────┐ ┌→──────────┐ │
hipPostalCode│ │ShipCountry│ │
─────────────┘ └───────────┘ │
─┐ ┌→─┐ │
0│ │10│ │
─┘ └──┘ │
─────────────────────────────┘
 DESTROYOBJ HDATA

Perform another SQL statement:

 SQL←';SQL SELECT OrderID,CustomerID FROM Orders'
 SQL←SQL,' WHERE OrderID > 11050;'
 HDATA←CREATEOBJ 'DDE DATA' APPNAME (DB,SQL) 'Data'
 'XLTABLE DATA' GET_PROPERTY HDATA
 11051 LAMAI
 11052 HANAR
 11053 PICCO
 11054 CACTU
 11055 HILAA
 11056 EASTC
 11057 NORTS
 11058 BLAUS
 11059 RICAR
 11060 FRANS
 11061 GREAL
 11062 REGGC
 11063 HUNGO
 11064 SAVEA
 11065 LILAS
 11066 WHITC
 11067 DRACD
 11068 QUEEN
 11069 TORTU

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

241

 11070 LEHMS
 11071 LILAS
 11072 ERNSH
 11073 PERIC
 11074 SIMOB
 11075 RICSU
 11076 BONAP
 11077 RATTC
 DESTROYOBJ HDATA

And finally, to shut down Access:

 SET_PROPERTY HCMD '[Quit]'
 DESTROYOBJ HCMD

For further information about using Access through DDE, consult the Microsoft Access online help.

1. Select Contents and Index from the Help pull down menu.

2. In the Help Topics window, select the Index tab.

3. Type the topic: Servers, DDE

4. Hit Enter to display "Use Microsoft Access as a DDE Server"

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

242

Appendix E: Microsoft Windows Common Control Library

The common controls are a set of window classes that are implemented by updates to the common control

library, which is a dynamic-link library (DLL) included with the Microsoft Windows operating system.

The following common control classes are supported by APL2:

 Date

 Listview

 Month

 Progress bar

 Tab

 Time

 Up-Down (used in Spin buttons)

 Treeview

The common control library has been updated several times since it was first introduced. Updates for the

common control library in older Windows operating systems are distributed with Internet Explorer. Updates for

newer operating systems are distributed with service packs. If you are unable to create a common control on a

particular system, the common control library may need to be updated; install the latest version of Internet

Explorer or operating system service pack.

 APL2 Programming: Developing GUI Applications SC18-7383-17

© Copyright IBM Corporation 2003, 2017

243

Appendix F: GDI+ Graphics Device Interface Plus

GDI+ is a library of graphics routines that is included in all current versions of Windows. Although GDI+ is

not included in older versions of Windows, it is available for free from Microsoft.

Several AP 145 properties use GDI+ to display images. If you are unable to set an image property for a control,

you may need to install GDI+. To install GDI+, go to www.microsoft.com, search for GDI+, and follow the

download and installation instructions.

	Contents
	Notices
	Programming Interface Information
	Trademarks
	IBM Trademarks
	Other Trademarks

	We Would Like to Hear from You
	Overview
	A Quick Example
	GUI Fundamentals
	Building Dialogs Dynamically
	Creating a Dialog
	Setting the Dialog’s Title
	Using the Status area
	Setting the Dialog’s Event Handlers
	Adding a Menu Bar
	Setting the Menu’s Event Handlers

	Adding Controls
	Size, Position, and Client Area Properties
	Arranging Controls
	The Desktop

	Focus, Dialog Navigation, Groups, and Tab Stops
	Mnemonics
	Making Dialogs Resizable
	Providing Online Help
	Fonts

	Building Dialogs using the Dialog Editor
	Starting a New Dialog
	Adding and Deleting Controls
	Selecting and Arranging Controls
	Controlling the Arrange Settings
	Using Menus and the Status Area with Dialog Templates
	Ordering Controls
	Event Handlers
	Changing a Dialog or Control
	Providing help to your users
	Testing the Dialog
	Using Dialog Templates

	Dialog Box Design Guidelines
	Executing Dialogs
	Getting User Input
	Supporting APL Input
	Sharing Variables with Window Properties

	Building More Complex Applications
	Owned, Modal, and Modeless Windows
	Creating Owned Dialogs
	Executing Modal and Modeless Dialogs
	Using Arbitrary Arrays as Event Handlers
	Message Boxes
	Popup Menus
	Font Dialogs
	File Dialogs
	Displaying File Information in Dialogs
	Tab Controls
	Split Dialogs
	Displaying Graphics in a Dialog
	Remaining Responsive During Long Operations
	Using AP 145 Services
	Using System Services
	Example using a service that updates an integer parameter:
	Example using a Microsoft Windows service:
	Example using a service with a parameter that is a structure:
	Example using a service that has no parameters:
	Example using a service that has floating point parameters:
	Example using a Unicode service:
	Examples using routines located using non-APL facilities:

	Objects: Timers and DDE
	Timers
	Dynamic Data Exchange
	DDE Servers

	Class Reference
	Dialog
	ActiveX
	Check box
	Combo box
	Custom
	Date
	Entry field
	Frame
	Graphic Windows (AP 207)
	Grid
	Group box
	List box
	Listview
	Menus and Menu Items
	MLE
	Month
	Progress Bar
	Push button
	Radio button
	Rectangle
	Scroll bar
	Slider
	Spin button
	Tab
	Text
	Time
	Treeview
	Desktop

	Common Property Reference
	Object Reference
	DDE DATA
	DDE COMMAND
	DDE SERVER
	DDE TOPIC
	DDE ITEM
	TIMER

	GUITOOLS Function Reference
	GPDLGPROCESS - Dialog Processing Tools
	ALIGN
	BITWISE
	CALLAPI
	CALLCOM
	CENTER_CHILD
	CENTER_WINDOW
	CHECK_EVENTS
	COLORDLG
	CONTEXTHELP
	CREATECTL
	CREATEDLG
	CREATEMENU
	CREATEOBJ
	DEFAULTPROC
	DESTROYDLG
	DESTROYOBJ
	EXECUTEDLG
	EXECUTEDLGX
	FILEDLG, FILEDLGM
	FOLDERDLG
	FONTDLG
	FREEAPI
	GETCHILDREN
	GETPARENT
	GET_CELLSIZE
	GET_PROFILE
	GET_PROPERTY
	GET_RANGE
	GUIRETRACT
	GUISHARE
	HANDLE_DESKTOP
	IDFROMWINDOW
	ISWINDOW
	LOADAPI
	MOVEWINDOW
	MSGBOX
	POPUPMENU
	POSTMSG
	RESIZE
	SENDMSG
	SET_CELLSIZE
	SET_PROFILE
	SET_PROPERTY
	SET_RANGE
	SHAREWINDOW
	SHOW
	SIZETOTEXT
	SPACE
	STARTWAIT
	UNICREATEDLG
	UNICREATEMENU
	UNIFILEDLG, UNIFILEDLGM
	UNIFOLDERDLG
	UNIMSGBOX
	UNIPOPUPMENU
	WAIT_EVENT
	WINDOWFROMID

	GPUTILITY - Utilities
	APLEDIT
	APLEXECPGM
	EDIT
	HELP145
	PROMPT
	QUERYSYSCOLOR
	SELECT_1
	SELECT_SOME
	UNIEDIT
	UNIFILE
	UNI∆FM
	UNI∆FV

	GPPRINT - Printing Tools and Constants

	GUIVARS Constants Reference
	Accelerator Flags
	Accelerator Virtual Key Codes
	Menu Style Flags
	Menu Attribute Constants
	Message Box Style Flags
	Message Box Result Codes

	DEMO145 Function Reference
	Appendix A: AP 145 Services
	Apl Services
	AplCallCOM
	AplColorDlg
	AplCopyMem
	AplCreateControl
	AplCreateMenu
	AplCreateObject
	AplEnableAplInput
	AplExecPgm
	AplFileDlg
	AplFolderDlg
	AplFontDlg
	AplFreeService
	AplGetCellSize
	AplGetChildren
	AplGetParent
	AplGetProfile
	AplGetProperty
	AplGetRange
	AplHelp
	AplLoadPicture
	AplLoadService
	AplPopupMenu
	AplPrinterProperties
	AplQueryDdeServers
	AplReturn
	AplSetCellSize
	AplSetFont
	AplSetProfile
	AplSetProperty
	AplSetRange
	AplShareWindow
	AplShowContextText
	AplSizeToText
	AplStrLen
	AplVersion
	AplWaitMsg

	Appendix B: Where to find Tools, Samples, and Other Information
	Appendix C: Using APL2, DDE and Microsoft Excel
	Appendix D: Using APL2, DDE and Microsoft Access
	Appendix E: Microsoft Windows Common Control Library
	Appendix F: GDI+ Graphics Device Interface Plus

