
IBM DB2 Alphablox

DB2 Alphablox Developer’s Guide

Version 8.4

SC18-9434-03

���

IBM DB2 Alphablox

DB2 Alphablox Developer’s Guide

Version 8.4

SC18-9434-03

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page 277.

Fourth Edition (September 2006)

This edition applies to version 8, release 4, of IBM DB2 Alphablox for Linux, UNIX and Windows (product number

5724-L14) and to all subsequent releases and modifications until otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Copyright © 1996 - 2006 Alphablox Corporation. All rights reserved.

© Copyright International Business Machines Corporation 1996, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. DB2 Alphablox applications

and the underlying Blox 1

Key characteristics of DB2 Alphablox applications . . 1

Real-time data access and analysis 1

Interactive user interface 2

Personalization 3

Sharing and collaboration 3

Real-time planning 4

Underlying Blox components 4

DataBlox 6

GridBlox 7

ChartBlox 7

DataLayoutBlox 7

PageBlox 7

ToolbarBlox 7

PresentBlox 7

DB2 Alphablox FastForward 8

Chapter 2. DB2 Alphablox application

program flow 9

Application file structure 9

Application context 9

DB2 Alphablox Repository 9

Working with Blox in JavaServer Pages 10

Request processing 10

User Request 1 (http://myAppServer/MyApp1/
welcome.html) 10

User Request 2 (http://myAppServer/MyApp1/
intro.jsp) 10

User Request 3 (http://myAppServer/MyApp1/
firstGrid.jsp) 11

The role of the application server 11

DB2 Alphablox program flow 12

Bookmarking, application states, and the DB2

Alphablox Repository 13

Application development and programming model 14

Blox components 14

Server-side API versus client-side API 14

Chapter 3. Your development

environment 17

Choosing application development tools 17

Web browsers 17

General considerations 17

Working with DHTML mode 18

Configuring and developing with Microsoft

Internet Explorer 18

Web browsers - known Mozilla issues 19

Application Studio 20

Chapter 4. Design considerations . . . 21

Defining application requirements 21

Data requirements 21

User interface requirements 22

User groups 22

Content presentation 23

User instructions 23

User navigation 23

Data manipulation 23

Saving and restoring work 23

Application logic requirements 24

Custom properties 24

Planning for portlet development 24

Designing an accessible application 25

Designing for multiple locales 26

Designing for bidirectional languages 28

Chapter 5. Using JavaServer Pages and

the Blox Tag Library 31

JavaServer Pages Technology 31

Book recommendations 31

Web sites 32

Using JavaServer Pages with DB2 Alphablox . . . 33

Server-side programming with DB2 Alphablox . . 33

Using the Alphablox Tag Libraries 33

Accessing the Blox Tag Library 35

Using the Blox header tag 36

Defining Blox 36

Setting Blox properties using tag attributes 38

Setting Blox properties using style property tags . . 39

Setting indexed Blox properties using property tags 40

Controlling the visibility of Blox components . . . 42

Processing logic before rendering 42

Rendering Blox on multiple pages 43

Blox utility tags 43

Blox header tag 43

Blox context tag 43

Blox debug tag 43

Blox display tag 43

Resource bundle tags 44

Using standard JSP syntax 44

Next steps 44

Chapter 6. Blox Form Tag Library . . . 45

Using the Blox Form Tag Library 45

Overview of FormBlox components 45

FormBlox component categories 45

Getting and setting Blox and JavaBeans

component properties 47

FormBlox event model 48

Examples using FormBlox tags 48

Chapter 7. Blox Logic Tag Library . . . 51

Using the Blox Logic Tag Library 51

Blox Logic Tag Library components 51

Using MDBQueryBlox components to select

products 52

Listing cube members using MemberSecurityBlox 54

TimeSchemaBlox component 55

© Copyright IBM Corp. 1996, 2006 iii

Chapter 8. Blox Portlet Tag Library . . 57

Overview of Blox Portlet tags 57

Using the Blox Portlet Tag Library 58

Blox Portlet Tag Library examples 59

Adding links to buttons 59

Adding links to ReportBlox components 60

Chapter 9. Blox UI Tag Library 63

Blox UI Tag Library categories 63

Blox UI tag examples 63

Blox UI component customization 63

Custom layout tags 64

Analysis tags 64

Utility Tags 65

More Examples 65

Chapter 10. DHTML Client UI

Extensibility 67

The Blox UI Model 67

Purpose of the Blox UI Model 68

Blox UI components overview 69

Components 70

Containers 72

Layout 72

Compound components 72

Using ContainerBlox 73

Controllers 73

The Controller base class 74

Implied controllers 74

Blox UI Model events 75

Adding dedicated controllers to components . . 75

Adding listeners to preexisting controllers . . . 76

Model Dispatcher 76

Dialogs 77

Creating simple dialogs 77

MessageBox 80

DHTML client application logic and flow 80

DHTML client is theme-based 81

Styles 82

Setting multiple theme classes 83

Charting 83

The Chart component 84

Controlling chart settings 84

NumericAxis 84

OrdinalAxis 85

DataSeries 85

Legend 85

ChartTitle, Footnote, AxisTitle 85

Chart event handling 85

Custom context (right-click) menus for charts . . 86

Blox UI Model examples 87

Single toolbar 87

Disabling context (right-click) menus 88

Customized context (right-click) menu 89

Custom grid layout 90

Mapping grid cells to underlying result sets . . 92

Javadoc documentation 93

Chapter 11. DHTML Client API 95

DHTML Client API overview 95

Using the DHTML Client API 95

The DHTML Client API framework 96

BloxAPI Object 96

Blox Object 96

Utility objects 96

Sending events 97

Initiating Blox UI Model events from JavaScript 97

Intercepting events 97

Intercepting client-side events 98

Invoking JavaScript directly from the user interface 98

Exception handling 99

Invoking server-side logic using the DHTML Client

API 99

BloxAPI.call() and Blox.call() methods 99

BloxAPI.callBean() method 100

The clientBean (<blox:clientBean>) tag 100

Using <blox:clientBean> with server-side Blox

components 101

The DHTML Client DOM API 102

Using multiple frames 102

Refreshing pages 103

Chapter 12. Capturing events using

server-side event filters and listeners . 105

Event filter objects 105

Event listener objects 106

Using event filters and event listeners 106

Place add and remove methods inside Blox

custom tags 107

A complete drillDownEventFilter example . . . 108

A complete drillDownEventListener example 109

Event listeners compared to event filters 110

Methods to implement for event filters 111

Methods to implement for event listener objects 112

Chapter 13. Connecting to data 113

Creating data sources 113

Defining data sources 113

Defining the DataBlox dataSourceName property 114

Setting the dataSourceName attribute 114

Using the setDataSourceName() JavaScript

method 114

Setting different data sources using

DataSourceSelectFormBlox 114

Connecting to and disconnecting from data sources 116

Auto-connecting and auto-disconnecting . . . 118

Single sign-on for Essbase and DB2 OLAP Server 119

Passing user credentials using the DataBlox

credential attribute 119

Passing user credentials using the Blox API . . 121

Limitations of single sign-on 121

Chapter 14. Retrieving data 123

Setting the DataBlox query property 124

Setting and executing queries using JSP

scriptlets 124

Multidimensional data sources 125

IBM DB2 OLAP Server and Hyperion Essbase 126

Creating Essbase report scripts 126

iv IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Essbase report script commands supported by

DB2 Alphablox 126

Unsupported report script commands with DB2

Alphablox equivalents 130

Unsupported report script commands without

DB2 Alphablox equivalents 131

Calc Scripts 131

Substitution variables 131

Using DB2 OLAP Server or Essbase aliases . . 132

Working with decimals 132

Microsoft Analysis Services 132

DB2 Alphablox Cube Server 134

Using SAP Business Information Warehouse

(SAP BW) with DB2 Alphablox 134

Drillthrough support for DB2 OLAP Server and

Hyperion Essbase (using EIS) 136

Out-of-the-box Integration Services drillthrough

support 136

Controlling EIS drillthrough window styles . . 137

Custom EIS drillthrough support using DB2

Alphablox Relational Reporting 138

Other custom EIS drillthrough support 139

Drillthrough support for Microsoft Analysis

Services 139

Out-of-the-box Microsoft Analysis Services

Drillthrough support 140

Controlling drillthrough window styles 141

Custom Drillthrough Support Using DB2

Alphablox Relational Reporting 141

Other custom drillthrough support 143

Relational data sources 144

Creating SQL Statements 144

Query Builder 145

Using Query Builder 145

Working with JDBC data sources 146

Using the JDBCConnection Bean 146

Using StoredProceduresBlox 147

StoredProceduresBlox examples 149

Chapter 15. Presenting data 153

Choosing Blox for presenting data 153

Choosing data presentation Blox components 153

Render formats available to the DHTML client . . 154

DHTML format (render=dhtml) 154

Printer format (render=printer) 155

PDF format (render=pdf) 155

Export To Excel format (render=xls) 155

XML format 156

Specifying delivery formats 156

Printing Blox output 156

Printing with HTML-based printing 157

Creating printable pages using the

render=printer URL attribute 157

Creating custom print pages using the

<blox:display> tag 158

CSS themes 158

Specifying themes 158

CSS theme files 159

CSS theme properties defined in

themeName.properties files 159

CSS classes defined in the .css file 160

Overriding defined styles 162

Applying styles to cell alerts 162

User interface appearance 162

Grid Appearance 163

Row banding 164

Cell appearance 164

Chart Appearance 164

Chart Types 164

Adding 3D appearance to charts 164

Chart colors 165

PresentBlox appearance 165

Split panes 165

Modifying DataLayout properties 166

Modifying menu bar properties 166

Modifying toolbar properties 166

Data appearance 167

GridBlox properties 167

Formatting values in thousands and billions . . 167

Displaying percentages for specific members 168

Controlling decimal appearances 168

Chapter 16. Highlighting and

commenting on information 171

Overview 171

Using format masks to highlight data 171

Highlighting negative values in red 171

Highlighting negative values with parentheses 172

Using cell alerts to highlight data 172

Cell formats 173

A simple traffic lighting reporting system . . . 173

Cell alert links 174

Creating alert messages for cell alerts 175

Using chart series colors to highlight data 175

A traffic lighting chart example 176

Information links 179

Using header links 180

Using cell links 180

Using cell alert links 181

Comments in grid data cells 181

Elements of a comment 182

Defining comments collections 183

Enabling cell comments 183

Adding custom comments support 184

Chapter 17. Interacting with data . . . 185

Interactivity considerations 185

Allowing limited or no interactivity 185

Disabling pivoting and drilling on columns . . 185

Modifying interactivity using Blox properties 186

Grids 188

Charts 188

Allowing user control of generations displayed 189

DataLayout interface 189

Interactions between grids and charts 190

Setting the “No data available” message in grids

and charts 190

HTML form elements and FormBlox components 191

Selection lists 191

Check boxes and radio buttons 192

Standard HTML buttons 192

Contents v

Text fields 193

Using Toolbar buttons 193

Events 193

Chapter 18. Inputting and modifying

data 195

Writing back to multidimensional data sources . . 195

GridBlox properties and associated writeback

methods 195

GridBlox Java writeback methods 195

Enabling GridBlox components for data

writeback 196

DataBlox writeback-related methods 196

Enabling the writeback feature to

multidimensional databases 197

Writing data back to Microsoft Analysis Services 198

Updating relational data sources 198

Updating relational data sources using the

writeback feature 198

Creating a calendar control 199

Creating a Gregorian calendar 200

Creating a Gregorian calendar using ICU for

multi-locale support 202

Specifying a selected date when the calendar is

launched 203

Creating a non-Gregorian calendar 204

Fonts for calendar controls 206

Calculated members 206

Creating calculated members in DB2 Alphablox 206

Custom calculation guidelines 207

Conditions preventing proper data display . . 208

Calculated member property syntax 208

Functions available for calculated members . . 209

Calculated member examples 210

Calculated members using Essbase report script

commands 211

Chapter 19. Filtering data 213

Hiding dimensions and members 213

Using the dimensionRoot property 214

Setting virtual roots for users 214

Fixed choice lists 215

Using the fixedChoiceLists property 215

Using the moreChoicesEnabledDefault and

moreChoicesEnabled properties 216

Using MemberSecurityBlox to filter members 216

Using HTML form elements and FormBlox

components 216

Using queries 217

Data suppression using Blox properties 217

Using the suppressMissingOnRows and

suppressMissingOnColumns properties 218

Using the suppressZeros property 218

Using the suppressDuplicates property 219

Chapter 20. Persisting and

bookmarking data 221

Data persistence in DB2 Alphablox 221

Application states 221

Custom properties in the DB2 Alphablox

Repository 222

Creating custom user properties 222

JavaServer Pages technology and data persistence 223

Using request parameters to retrieve a URL

attribute values 223

Bookmarks - developer details 224

Getting a count of all bookmarks 225

Getting the properties set for a bookmark . . . 225

Using server-side bookmarkLoad event filter 227

Customizing applications using the BookmarksBlox

API 228

Using bookmark events 228

Using registered events 228

Using dynamic queries with bookmarks 229

Getting a list of bookmarks that match the

specified criteria 230

Getting DB2 OLAP Server or Essbase serialized

queries in text form when a bookmark is loaded . 231

Using custom properties to restrict access 232

Chapter 21. Distributing views 233

Creating mail links using an e-mail bean 233

Bookmarks 235

Printing 235

Chapter 22. Exporting data 237

Exporting data to Excel 237

Default templates for Excel 237

Creating custom Excel templates 238

Setting the default template for exporting to

Excel 239

Properties for Excel templates 239

Chart type mapping from DB2 Alphablox to

Excel 240

Exporting to PDF 241

Default user interface options for PDF reports 241

Creating global default PDF report properties 242

Using JSP tags to customize PDF reports . . . 244

Creating a PDF file for multiple Blox

components 247

Specifying PDF storage locations and file names 248

Using a remote PDF processor 249

Exporting to XML 249

Rendering result sets into XML format 249

Rendering result sets into XML Format: Sample

DB2 Alphablox XML document 250

Chapter 23. Error handling 253

Exceptions 253

Custom Error Pages 253

errorPage Attribute 253

isErrorPage Attribute 254

Creating simple custom error pages 254

Blox properties and error handling methods . . . 255

noDataMessage 255

onErrorClearResultset 255

Chapter 24. Adding user help 257

Using existing DB2 Alphablox user help 257

vi IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Creating custom user help 257

Using information links for help 258

Chapter 25. Working with DB2

Alphablox FastForward 259

DB2 Alphablox FastForward overview 259

Roles of FastForward users 259

Customizing Alphablox FastForward 260

FastForward application architecture 261

Report templates 262

Sample report templates 264

Creating custom report templates 264

Creating or modifying the report page

(report.jsp) 264

Creating or modifying the template parameters

file (template.xml) 267

Creating or modifying the edit page (edit.jsp) 269

Creating optional template pages 271

Localizing FastForward applications 272

Testing report templates 272

Saving report templates 272

Sharing report templates 272

Saving state using the savedState Object . . . 273

Next steps 274

Chapter 26. DHTML client DOM API 275

GridBlox Client API 275

Blox definition 275

Grids 275

Selection 276

Notices 277

Trademarks 278

Index 281

Contents vii

viii IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 1. DB2 Alphablox applications and the underlying

Blox

DB2® Alphablox enables you to create custom business analytic

applications—applications that help your end users visualize and analyze live

business data and transactions from various data sources. Rather than just

providing data in the manner of query and reporting tools, a DB2 Alphablox

application typically incorporates business logic and offers guided analysis via an

easy-to-use interface.

A DB2 Alphablox application can be any J2EE application containing DB2

Alphablox building blocks known as Blox. The application can be as simple as one

JSP page, or as complex as a whole collection of web pages that communicate with

various application servers and data sources.

Blox are reusable software components that you can add to your JSP pages using

JSP tags or Java™ code to connect to data sources, perform data transformation and

calculations, and provide interactive, data analysis functionality.

The focus of this section is to highlight the key characteristics that are common to

DB2 Alphablox applications. With graphical representation and sample scenarios,

this section demonstrates how the features and components in DB2 Alphablox

make these characteristics possible.

For details on DB2 Alphablox application program flow and development

approaches, see Chapter 2, “DB2 Alphablox application program flow,” on page 9.

Key characteristics of DB2 Alphablox applications

A DB2 Alphablox application typically has the following characteristics. Each

characteristic may be implemented using various combinations of features in DB2

Alphablox:

v “Real-time data access and analysis”

v “Interactive user interface” on page 2

v “Personalization” on page 3

v “Sharing and collaboration” on page 3

v “Real-time planning” on page 4

Real-time data access and analysis

A DB2 Alphablox application can drive analysis of data from multiple data

sources, both relational and multidimensional. Through native access to the

database (MDX for Microsoft® Analysis Services, Report Script for DB2 OLAP

Server™ and Essbase, and JDBC for relational databases), DB2 Alphablox exposes

the analytic functionality in the database engine, such as ranking, derived

calculations, ordering, filtering, percentiles, variances, standard deviations,

correlations, trending, statistical functions, and other sophisticated calculations.

There are different ways live data can be presented to your users. If your users

need data presented in grids and charts, first you add a DataBlox to your

application and specify the data source to use for that instance of DataBlox. You

immediately have access to all the analytic functionality inherent in the database

© Copyright IBM Corp. 1996, 2006 1

engine. Then add a PresentBlox, which embeds a GridBlox and a ChartBlox, to use

the data from that DataBlox. Now your users can interact with up-to-date data

through the Blox user interface to meet their data analysis needs.

For example, for the CFO, the first screen she sees when she logs in may be an

executive dashboard that contains a monthly income statement and a summary on

market profit ranking. The data is live, and the CFO can choose to drill down on

the data if she wants to find out which customer is buying which product.

For creating reports from a relational database, you can use Relational Reporting.

At the core of Relational Reporting is the ReportBlox component, which renders a

relational result set to a DHTML-based report. Other supporting Blox components

provide data access, data transformation, calculation, and formatting functionality

in Relational Reporting. Each of these Blox performs the specific task that its name

suggests.

An relational report can be static or interactive. If you offer to render the report in

interactive mode, your users can sort, filter, or reorder data on the fly using

Relational Reporting’s Report Editor user interface to design their own relational

reports.

Interactive user interface

A DB2 Alphablox application typically has grids and charts that can be served in a

DHTML rendering, accessible using supported web browsers.

The grids and charts rendered in the DHTML client have an easy-to-use user

interface that shields the users from the complexity of analyzing data. When you

add a PresentBlox, it can nest a GridBlox, a ChartBlox, a ToolbarBlox, a PageBlox,

and a DataLayoutBlox to offer users interactive data analysis, bookmarking, data

exporting, and view customization capability. As a developer you can customize

and personalize various components in the interface to meet your design needs.

The DataLayoutBlox appears as a data layout panel, enabling users to interactively

move and view dimensions among axes. The ToolbarBlox appears as a toolbar,

providing quick access to commonly performed data analysis tasks with a click of

the mouse. The menu bar offers all the options and actions available to the users.

Users can bookmark a view, hide and show the grid or chart, sort data, export the

data to PDF or Excel, and navigate the data. The PageBlox appears as a page filter,

allowing users to filter data to appear in the GridBlox and ChartBlox. All these

Blox are nested inside a PresentBlox to simplify application development and

conserve screen real estate.

The components in the user interface can be customized using JSP tags provided in

the DB2 Alphablox Tag Libraries. For example, you can specify the colors to use,

add or remove buttons in the toolbar, add or remove menus from the menu bar, or

add or remove data navigation options. You can also specify a set of criteria for

highlighting cells, a feature called Cell Alerts (such as displaying cells in red if

they have a value lower than the minimum specified).

A key strength of this user interface is that it does not involve page refreshes every

time a user interacts with the data. The user does not have to wait for the entire

page to be downloaded, which means longer wait and the likelihood to lose track

of the original context. In a portal environment, this is a huge benefit since

refreshing the whole portal page involves reloading all the portlets on the page

and can take up significantly more time.

2 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

DB2 Alphablox themes

DB2 Alphablox offers several themes out of the box for the DHTML client with

different associated style sheets and GIF images that you can use immediately. You

can also create your own theme by copying an existing DB2 Alphablox theme, then

modifying the style sheet and images used in that theme.

Member Filter

Sometimes users want to see more specific data rather than drill up and down one

level at a time. They may want to see data for specific members from different

parents in the dimension hierarchy. For example, a user may just want to compare

data from a representative state within each region.

The Member Filter interface allows them to navigate the Market dimension and

select New York from the East region, California from the West region, Illinois

from the Central region, and Texas from the South region.

Member Filter is available from right-click and pop-up menus in GridBlox,

DataLayoutBlox, and PageBlox when data navigation options are offered. The

dimension listed in Member Filter dialog window depends on where the user

right-clicks to bring up the menu.

Relational Reporting user interface

When you use ReportBlox and its supporting Blox to create an interactive report,

your users can sort, hide, or reorder columns, create break groups, and add

summary data for each break group via the Report Editor user interface.

Report Editor consists of three context-sensitive pop-up menus. All these are

supported with DHTML. The reports and the interactive menus are rendered with

specific CSS style classes. You can customize the colors and fonts by specifying

your styles to use.

Personalization

As each user has different data and business needs, a DB2 Alphablox application

often needs to be personalized. For example, depending on the users, the first

screen they see when they log in may be different. You may want to control data

navigation so users in the West region will not see data in the East region. Or, you

may want to let your users specify their preference for chart types, or what the

threshold numbers they want for highlighting data in the grids.

Custom properties

DB2 Alphablox supports personalization through custom properties. You can

define your custom user properties and specify the valid values for each property.

Then for each user, you can assign a value for each of the defined properties.

Based on the user logged in and the property values associated with the user, you

can dynamically specify what to display, how the data should be displayed, or

what data navigation functions should be enabled or disabled.

Sharing and collaboration

Some of the common features of DB2 Alphablox that are used to support sharing

and collaboration are bookmarking, commenting on data, and PDF conversion.

Bookmarking

A key feature of DB2 Alphablox is its Bookmarks functionality. Through the user

interface, users can bookmark a data view and later retrieve the same view with

Chapter 1. DB2 Alphablox applications and the underlying Blox 3

up-to-date data. Bookmarks can be private, available to users in a specific group,

or public to all users that have access to the server.

BookmarksBlox provides an extensive API for managing and manipulating

bookmarks. For example, you can programmatically update all bookmarks to

reflect changes in the data outline.

Commenting on data

To support collaborative analysis, you can utilize CommentsBlox to support

cell-level, page-level, or application-level annotations. Users can add comments to

data cell in a GridBlox by right-clicking the cell and select Add Comments. Cells

with comments have a comment indicator on the corner so users can quickly spot

them and choose to view them.

Exporting to PDF

Users often want to save their work or share their view of the data. DB2 Alphablox

has an Export to PDF option that enables you to offer the capability to save the

data in Blox to PDF format. This solves a host of problems common to printing or

saving web pages using the browser, such as improper page breaks, inappropriate

page width to display charts, cross-browser printing differences, and having to

e-mail all HTML and images used in the report.

The Export to PDF option gives your users control of the page layout, page

orientation, page break, header and footer text, and size of the chart. If you choose

to, you can also customize the dialog to allow users to control font sizes, colors,

and where the header and footer should be positioned.

Real-time planning

An analytic application may extend from historical analysis to forward looking

forecasting and proactive resource allocation. You can build real-time planning

applications such as budgeting, sales forecasting, and collaborative demand

planning through use of the DB2 Alphablox data writeback capability.

For example, you can extract the data from the data source into a GridBlox, allow

regional managers to enter sales forecast numbers within the GridBlox, and upon

submitting the data, write the data back to the data source. Together with custom

properties, the application can dynamically create the sales forecast worksheet

based on the region to which a user belongs.

Underlying Blox components

The key components underlying a DB2 Alphablox application are Blox

components. Blox are reusable software components that enable you to connect to

data sources, perform various data manipulation and presentation tasks, and build

dynamic, personalized data analytic applications.

One Blox may provide several of the above functionality through its properties and

associated methods. These properties and methods enable you to specify and

control Blox appearance and behavior. There are also event filters for handling user

events such as drilling up/down, pivoting, changing the page filter, or loading a

bookmark.

The following table provides a brief description of each of the Blox.

4 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Blox Description

DataBlox

v “DataBlox” on page 6: the key Blox that provides data access, retrieval, and manipulation

functionality for all data presentation Blox.

v StoredProceduresBlox: allows you to create a connection to a relational database and

prepare a stored procedure statement for use.

User Interface Blox There are six Blox that enable you to present data in a grid or chart format with interactive

user interfaces with which your users can analyze data, change page filters, add or load a

bookmark, specify grid or chart layout, and more. These Blox are:

v “GridBlox” on page 7

v “ChartBlox” on page 7

v “DataLayoutBlox” on page 7

v “PageBlox” on page 7

v “ToolbarBlox” on page 7

v “PresentBlox” on page 7

Each of these Blox has a user interface component and an application programming

interface (API) that gives you control over their presentation and actions allowed. Many

return a result set that you can get meta information from.

Analytic Infrastructure

Blox

These Blox provide means to building analytic infrastructure.

v RepositoryBlox: provides a means for developers to save and retrieve application

properties in the DB2 Alphablox Repository.

v BookmarksBlox: allows you to programmatically create and manage bookmarks and

dynamically set the bookmark properties.

v CommentsBlox: provides cell commenting (also known as cell annotations) as well as

general page/application commenting functionality to your application.

v AdminBlox: provides programmatic access to information on the server, users, groups,

roles, data sources, and applications set through the Administration pages in the DB2

Alphablox home page.

Business Logic Blox These Blox components let you add business logic to your application:

v MDBQueryBlox: enables OLAP queries to be built with one language regardless of the

underlying server’s query language.

v MemberSecurityBlox: gives you the ability to hide members from unauthorized users.

v TimeSchemaBlox: supports dynamic time series, such as showing data from the “last 3

months.”

FormBlox A series of FormBlox are available to provide a familiar HTML form interface and handle

state management for you. These FormBlox are data-aware and allow users to select a data

source, dimensions, members, or other options you offer to create personalized queries.

ContainerBlox The ContainerBlox can be used to create custom Blox components and manages persistence

during your user sessions.

ReportBlox ReportBlox, rendered in an interactive HTML format, is the core Blox for building reports

from relational data sources. Details on ReportBlox and its supporting Blox are in the

Relational Reporting Developer’s Guide.

The focus of following sections is on what DataBlox and each of the user interface

Blox enables and how they work together to provide the following:

v programmatic control to developers

v the visual data analysis experience to users

Chapter 1. DB2 Alphablox applications and the underlying Blox 5

DataBlox

DataBlox is the Blox that specifically offers the needed functionality for data access.

It has no graphical user interface. Instead, it is at the heart of all the Blox that

provide a graphical user interface for users to interact with the data. It has an

extensive application programming interface (API). For example, you can detect if

the data source needed has been successfully connected to or whether the current

database operation is complete, etc. You can prevent a user from performing

certain data navigation actions or seeing certain data in the result set based on

who the user is. The following table shows some of properties and methods

associated with DataBlox to demonstrate the extensiveness of its API.

 Categories of DataBlox

Properties/Methods Description Examples

Data sources Properties related to the data

source

aliasTable, catalog, query, schema,

connectOnStartup, userName, password,

dataSourceName

Data manipulation Properties related to data

manipulation such as calculated

members, sorting, and drilling

calculatedMembers, columnSort, rowsort,

hiddenMembers, keepOnly, parentFirst

Data appearance Related to data appearances such

as whether or how duplicate,

missing, zero data or prefix in

member names should be

displayed

memberNameRemovePrefix, memberNameRemoveSuffix,

suppressDuplicates, suppressMissing,

suppressNoAccess, suppressZeros

Write back Related to data update commitData()

Result set Related to the result set containing

the data

clearResultSet(), getResultSet()

MetaData Related to the MetaData object of

the underlying data source for the

current DataBlox

dimensionRoot, getMetaData()

MDB result set Related to the axes, dimensions,

tuples, and cells in the

multidimensional data result set

((MDBResultSet) getResultSet())

RDB result set Related to the columns and rows

in the relational data result set

((RDBResultSet) getResultSet())

MDB metadata Related to the multidimensional

metadata for the result set

((MDBMetaData) getMetaData())

RDB metadata Related to the relational metadata

for the result set

((RDBMetaData) getMetaData())

Event filters Related to the server-side event

filters

addFilter(), removeColumnSort()

6 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

GridBlox

A GridBlox displays relational or multidimensional data in an advanced grid

format, enabling users to drill, pivot, sort, and explore the data. It has an extensive

set of properties and associated methods to let you control its appearances,

numeric formatting, and others. By default, a standalone GridBlox has:

v a menu bar that offers all options and functionality available to the GridBlox

and the underlying DataBlox

v a ToolbarBlox that offers users quick access to common functionality by clicking

a button

ChartBlox

ChartBlox displays relational or multidimensional data in a variety of chart

formats, enabling users to change chart appearances and explore the data.

ChartBlox needs a DataBlox to provide data access and data manipulation

functions. By default, a standalone ChartBlox has:

v a menu bar that offers all options and functionality available to the ChartBlox

and the underlying DataBlox

v a ToolbarBlox that offers users quick access to common functionality by clicking

a button

DataLayoutBlox

DataLayoutBlox displays available data dimensions and the axes on which they

currently reside, enabling users to move dimensions between axes. DataLayoutBlox

nests within a PresentBlox. It cannot nest within a standalone GridBlox or a

standalone ChartBlox.

When users move a dimension from one axis to another, data in both GridBlox and

ChartBlox within the same nesting PresentBlox will automatically reflect the

changes.

PageBlox

PageBlox displays dimensions residing on the page axis, effectively filtering data in

the chart or grid, enabling users to change data filters. PageBlox nests within a

PresentBlox. It cannot nest within a standalone GridBlox or a standalone

ChartBlox. When the user makes a selection from the dimension in the PageBlox,

the data in the GridBlox and ChartBlox within the same nesting PresentBlox will

reflect the filter selected.

ToolbarBlox

ToolbarBlox displays buttons, enabling user access to various Blox functionality.

ToolbarBlox needs to nest within a PresentBlox or a standalone GridBlox or

ChartBlox. By default, ToolbarBlox is turned on in these user interface Blox and

appears as two toolbars. These toolbars are customizable. You can add or remove

buttons in the existing toolbars. You can even add or remove a toolbar.

PresentBlox

PresentBlox combines all the above Blox into a single Blox to simplify application

development and conserve screen real estate. All Blox nested within PresentBlox

interact with each other. They use the same data source, and data navigation

actions done in PageBlox, for instance, affect the data displayed in both the nested

GridBlox and ChartBlox. Data options specified are reflected in all its nested Blox

Chapter 1. DB2 Alphablox applications and the underlying Blox 7

when applicable. For example, if you specify to use aliases for member names,

aliases will be used in GridBlox, ChartBlox, and PageBlox.

DB2 Alphablox FastForward

DB2 Alphablox FastForward is a sample application framework for quickly

developing, deploying, and sharing custom analytic views. Out-of-the-box, the

FastForward framework delivers common application services, including security,

collaboration, customization, and personalization. Application administrators,

typically OLAP administrators, can create new versions of an FastForward

application, publish reports by selecting report templates and configuring report

parameters, and then deploy the new application without ever looking at code. JSP

developers can further modify or extend the application framework and add new

custom report templates for application administrators to configure and deploy.

See the Working with DB2 Alphablox FastForward topic in the Developer’s Guide for

more information.

8 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 2. DB2 Alphablox application program flow

This section describes the file structure of a DB2 Alphablox application, how an

application is processed by the DB2 Alphablox and the application server, and how

an application developer develops an application using standard web technologies

to achieve the desired end-user interaction and program control.

Application file structure

Since DB2 Alphablox runs in a Java 2 Enterprise Edition (J2EE) web application

server environment, this section describes the file structure in the underlying

application server when you create a DB2 Alphablox application.

Application context

When you create an application from the DB2 Alphablox home page, you are

asked to specify information such as application context, display name, Home

URL, default saved state, and write privileges security role. Based on this set of

information, DB2 Alphablox creates the application definition in the DB2

Alphablox repository as well as the application directory structure. A directory

with the name of the application context that you specified is created, and is

usually referred to as the application “docroot,” application context, or application

directory.

Where this application directory physically resides depends on the application

server. When DB2 Alphablox is installed using WebSphere®, the application

directory is in WebSphere’s installedApps directory. For more information, refer to

the Administrator’s Guide.

All files for the application that you create must reside within this application

directory structure. Typically, these are a combination of JSP, HTML, CSS,

JavaScript™, and image files. Also, Java classes or other Java Archive files that

contain servlets, beans, or other utility classes are typically placed in subdirectories

in the WEB-INF directory, in classes andlib directories as suggested for J2EE

specification.

DB2 Alphablox Repository

The DB2 Alphablox Repository is a store of objects that DB2 Alphablox uses to

keep track of applications, users, groups, bookmarks, and other such information.

Physical files associated with the DB2 Alphablox Repository reside in the

<db2alphablox_dir>/repository directory (when you use the DB2 Alphablox

filesystem repository), where <db2alphablox_dir> is where DB2 Alphablox is

installed.

For example, when you create an application called “MyApp1” from the DB2

Alphablox home page, a folder named “MyApp1” for that application is created

under the <db2alphablox_dir>/repository/applications/ directory. When you

define a custom application property, the application properties descriptor file

appprodesc.properties is updated to store the information.

Likewise, when you add a user, a folder with that username is created under the

<db2alphablox_dir>/repository/users/ directory. Each user has an associated user

© Copyright IBM Corp. 1996, 2006 9

property file that stores information such as password, email address, and group

association, as defined through the DB2 Alphablox home page.

By using the RepositoryBlox API, you can get, set, save, or delete an application

state, or get the user name and groups to which the user belongs.

Working with Blox in JavaServer Pages

In a J2EE environment, to serve dynamic content, the key technology to use is

JavaServer Pages (JSP). The JSP technologies allow for the combination of HTML,

JavaScript, and Java code in one physical file.

Since Blox are typically Java beans, to add a Blox, you use a JSP tag to include the

bean as you normally would with any Java bean, by using the <jsp:useBean> tag.

You can also take advantage of DB2 Alphablox custom JSP tags to add Blox using

XML-like syntax.

Request processing

This section describes how an HTTP request for a DB2 Alphablox application is

processed by the underlying application server and DB2 Alphablox. The following

sections provide a high-level, simplified view of the process. For a more complete

picture, see a book on JavaServer Pages technology.

The description is based on an application with an application context of MyApp1

with the following files:

v welcome.html: the application entry page. This page has a link that points to

intro.jsp and firstGrid.jsp.

v intro.jsp: a JSP file with some general Java and JavaScript code.

v firstGrid.jsp: a JSP file with a GridBlox in it, similar to the one shown earlier

in the section “Working with Blox in JavaServer Pages.”

The description also assumes that the application server is responsible for serving

web pages without a separate web server.

User Request 1 (http://myAppServer/MyApp1/welcome.html)

1. User “dave” accesses http://myAppServer/MyApp1/welcome.html through his

browser.

2. The application server goes to MyApp1/ and looks at the security information

defined in the application deployment descriptor file web.xml in the WEB-INF/

directory.

3. Based on the security constraints defined, the application server challenges the

request for username and password.

4. A J2EE session is started upon authentication. The application server sends a

cookie in the response back to the browser. The cookie that is sent contains a

session ID.

5. The application server parses through welcome.html and sends it back to the

browser.

User Request 2 (http://myAppServer/MyApp1/intro.jsp)

1. Dave clicks on the link that points to intro.jsp. An HTTP request for

http://myAppServer/MyApp1/intro.jsp is sent.

10 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

2. The application server accesses the cookie and header information to look up

the J2EE session ID and verify the security.

3. The application server has a JSP engine that compiles and executes the JSP file.

The application server first checks to see if this file has been compiled or has

changed since it was last compiled.

If compilation is needed, the engine processes and compiles the file into a Java

class file. It checks whether or not the classes and package referenced in the JSP

file exist, and whether or not the syntax is correct.

4. The application server executes the complied file and issues a response back to

the browser.

User Request 3 (http://myAppServer/MyApp1/firstGrid.jsp)

 1. Dave goes back to welcome.html and clicks a link that points to

firstGrid.jsp. An HTTP request for http://myAppServer/MyApp1/
firstGrid.jsp is sent.

 2. The application server accesses the cookie and header information to look up

the J2EE session ID and verify the security.

 3. The application server first checks to see if this file has been compiled or has

changed since it was last compiled.

 4. If compilation is needed, its JSP engine processes and compiles the file into a

Java class file. The application server checks whether the classes, packages,

and tag library descriptor (TLD) files as referenced in the <%@ ...%> directive

exist, whether the Java methods and custom tags used are valid, and whether

the syntax is correct. The application server then execute through

firstGrid.jsp.

 5. It encounters the following scriptlet and processes it. The variable banding

gets a value of true or false:

 <% String banding =

 (Math.random() >= 0.5) ? "true" : "false"; %>

 6. Then it encounters a tag it is unfamiliar with—<blox:grid...>. The prefix

blox matches what is specified in the taglib directive <%@ taglib

uri="bloxtld" prefix="blox" %>.

 7. The application server goes to the tag library as defined in the taglib directive.

Tags are “macros” that are replaced by actual Java code that creates and

initializes beans.

 8. DB2 Alphablox is now called into duty. DB2 Alphablox initializes the bean,

user session, application instance, and peers, and sends the results back to the

application server. The details on how Blox are processed and served are

discussed in the next section, “DB2 Alphablox program flow” on page 12.

 9. The application server continues to process the lines in firstGrid.jsp until it

reaches the end.

10. The application server sends the result back to the browser.

The role of the application server

In summary, the application server is responsible for the following tasks:

v user authentication and security

v processing and serving HTML files

v processing and compiling JSP files with help from its servlet/JSP engine, then

serving the entire response generated back to the browser

Chapter 2. DB2 Alphablox application program flow 11

DB2 Alphablox program flow

When the application server encounters custom tags such as <blox:grid>, it calls

upon the tag library specified. Based on specifications in the application’s web.xml

file, the application server knows which Java package to use to replace the tags

into Java code:

At this point, DB2 Alphablox performs the following tasks:

1. DB2 Alphablox gets the user from the request object (an API in J2EE) and

checks to see if a user object for Dave has already been created. If this is the

first request from the user, DB2 Alphablox creates the DB2 Alphablox user.

2. DB2 Alphablox loads the user profile from the DB2 Alphablox Repository and

creates a user instance.

3. DB2 Alphablox next creates a session instance, assigning a new session ID that

is included in the response header. An instance of the user object is added to

the session.

4. DB2 Alphablox then creates the application instance.

5. Next, DB2 Alphablox retrieves the application name from the request object

and checks to see if an application object that matches the application name

already exists. If not, DB2 Alphablox creates the application object and an

instance of that application is added to the session instance.

6. Now that instances for the user, the session, and the application have been

created, DB2 Alphablox creates peers.

a. firstGrid.jsp has a GridBlox with an ID of MyGridBlox. DB2 Alphablox

checks to see if a grid peer for MyGridBlox already exists. If it doesn’t exist,

DB2 Alphablox creates one.

b. The grid peer looks for an associated data peer. If it doesn’t exist yet, DB2

Alphablox creates one.
7. DB2 Alphablox sends the rendered result back to the application server. The

application server takes the output sent by DB2 Alphablox, merges it into the

rest of the file before it sends the result back to the browser.

12 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

If another request comes from the same user for the same application in the same

session, the existing peers are reused.

The role of DB2 Alphablox

In summary, DB2 Alphablox is responsible for the following tasks:

v data access and manipulation

v building and deploying interactive analytic applications

v personalization of data views (more detail in the following sections)

Bookmarking, application states, and the DB2 Alphablox

Repository

When user “dave” bookmarks a data view, depending on whether the bookmark is

saved as private, public, or visible to a named group, a folder with the name of

that instance of the presentation Blox (usually a PresentBlox, GridBlox, or

ChartBlox) will be created under either the user’s, the application’s, or the group’s

folder in the repository.

Information pertaining to each bookmark stored in the repository includes its

visibility (private, public, or a specified group), the application name, width, and

height of the presentation Blox, data source and data query for that view,

description of the bookmark, as well as the color schemes and other data display

options associated with that view.

Through the APIs provided, you can programmatically get names of bookmarks

with a specified visibility. You can save, delete, rename or restore bookmarks, and

detect bookmark saving and loading events. You can also programmatically create

bookmarks or change all data queries saved with bookmarks to reflect changes in

the data outline.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
.. . .

Dave (instance of a user
object)
Dave properties

J EE Application Server2

<alphablox_dir>/ DB2 Alphablox

Session ID: 12345

User: Dave
Instance of MyApp1
MyGridBlox MyDataBlox

peer peer

.
.
.
.. . .

MyApp1

Dave properties

user

dave

dave.properties

MyApp1

mygridblox

bookmark

groups

administrators

applications

MyApp1

Chapter 2. DB2 Alphablox application program flow 13

The repository also stores the state of an application if you specify to automatically

save an application’s state through the application definition page on DB2

Alphablox Administration pages. DB2 Alphablox will save the information on all

Blox (if you have multiple PresentBlox or multiple independent Blox) in the

application, including the query result sets, grid and chart appearance, and other

changes made by the user.

Application development and programming model

The Developer’s Guide covers the setup of your application development

environment, JavaServer Pages, the Blox Tag Library, and task-based

implementation steps and details. Before delving into those details, it will be

helpful to understand the following concepts.

Blox components

Blox components are built on Java beans. An extensive API is available for you to

access and control Blox and Java objects on the server using Java, scriptlet, or Blox

custom JSP tags. The server-side API gives you control over Blox presentation and

behavior, prevents your business logic from being exposed to users (through

source viewing or file saving options from the browser), and shields the

programming complexity from page designers on your development team.

JSP and custom tags

JSP is the key technology in J2EE that enables the combination of static and

dynamic content in one file. By default, the application server will only invoke its

JSP engine to process a request and generate dynamic content if the file has the

.jsp extension. An HTML page will not go through the servlet compilation and

request generation process. The application server will serve the page as a static

HTML page, and browsers will ignore the JSP code and Java scriptlet. Therefore, in

order to use the functionality offered by DB2 Alphablox, Blox should be added to

JSP pages.

Since Blox are built on Java beans, you can expect them to have the same attributes

Java beans have. For example, they have properties, and setter and getter methods

for the properties. You can use the standard <jsp:useBean> tag to add a Blox, and

then use the <jsp:getProperty> and <jsp:setProperty> tags to get/set a Blox

property. However, you should use the DB2 Alphablox Tag Libraries whenever

possible. When you use the custom Blox tags, the scope is automatically set to

“session” and DB2 Alphablox takes care of the session management and

automatically cleans up unused/expired resources for you.

For information on both approaches, and on the Blox Tag Library, see “Blox

display tag” on page 43.

Server-side API versus client-side API

Since Blox are Java beans, you can access Blox and their peers on the server to get

information and control Blox behavior and appearances. The processing is done on

the server before the output is sent to the client. This allows you to use other

resources on the server, reuse components, and reduce the discrepancies and

inconsistencies often found among different browsers or browser versions.

Typically, on the server side you can do the following using JSP, Java scriptlets, or

custom tags:

v create an instance of a Blox

v set the properties of the Blox dynamically

14 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

v get the properties of the Blox

In some case where you want users to be able to make a selection such as choosing

the region for which they want to see the data or specifying some parameters for

displaying a grid, you will need to call some JavaScript functions that

communicate the choices to the server. The DHTML client has a straightforward

client-side API that allows you to call a JSP page on the server or a server-side

bean and set its property. The client-side API is detailed later in this book.

Chapter 2. DB2 Alphablox application program flow 15

16 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 3. Your development environment

DB2 Alphablox solutions are based on the open standards of the World Wide Web,

enabling you to have many options for development tools which you can use to

build analytic applications using DB2 Alphablox components.

If you already have web development tools that you are comfortable with, you can

most likely continue to use them to develop analytic applications using DB2

Alphablox. In this section, some important developer issues are discussed in hopes

of maximizing your success.

Choosing application development tools

The DB2 Alphablox solution was intentionally designed to support the open

standards technologies of the Internet, including HTML, CSS, JavaScript, and

others. By not requiring a proprietary development environment, DB2 Alphablox

allows you to choose the tools with which you are most familiar or comfortable.

Experienced Java developers may already be comfortable using IBM® Rational®

Application Developer, Rational Web Developer, Eclipse with the Web Tools

Platform plug-ins, or other IDEs. If you’re not familiar with Java, or frequently

author web pages, you may be familiar with your favorite HTML editor. Some of

you will be more comfortable using powerful text editors, such as Visual SlickEdit

or jEdit. If you haven’t already found your ideal development environment yet,

you can explore the many choices available, and know that the one you choose can

likely be used to develop analytic applications based on DB2 Alphablox.

Web browsers

DB2 Alphablox applications are supported using Microsoft Internet Explorer only

(see the Installation Guide for specific requirements).

As a developer, you will be working back and forth between coding in your

development environment and testing your code in a web browser and should be

aware of some commonly encountered issues that may affect your work. First,

there are some general browser considerations and issues to be aware of during

development. Second, to enhance your development experience, you will want to

optimally configure your testing browsers for use during your development. These

issues are covered in the following sections.

General considerations

During application development, you may find it advantageous to configure your

browsers for what could be considered “development mode.” In the tasks below,

steps are given for configuring Microsoft Internet Explorer to be optimized for

developer efficiency. Keep in mind that you should always test your final

applications and their behavior using web browsers and configurations that the

users will be using. Most likely, the differences in configurations between

development mode and end user modes will not affect the end result, but it is

always a best practice to test your applications using the full range of possible

browsers and configurations that are likely to be encountered by end users.

© Copyright IBM Corp. 1996, 2006 17

Working with DHTML mode

There are a couple of important points that you should be aware of when you are

working with the DHTML client during application development. It is not the

intent here to completely discuss how to code using DHTML technologies, but to

explain a few of the frequently encountered behaviors that you should understand

when working with DB2 Alphablox applications.

Modifying Blox tags

One of the first lessons you’ll learn when working with the DHTML client is that

modifications to Blox tags will not take effect during your current browsing

session. Instead, in order to see the changes made after modifying Blox tags, the

browser must be closed, and a new browsing session started. This is expected

behavior that results from how the DHTML client works with the server-side code.

Another frequent error that you might make when developing applications is to

inadvertently create multiple Blox components with the same id attribute.

Typically, this will happen when you copy and paste code, including a Blox

definition tag to create another Blox on the same or a different page, but forget to

change the id attribute of the new Blox. If two Blox have the same id, then the

first one loaded into the browser memory will determine what the second Blox

will look like -- the property settings on the second Blox are ignored.

Configuring and developing with Microsoft Internet Explorer

The following steps apply to Microsoft Internet Explorer version 5 or later.

1. Open your Microsoft Internet Explorer browser.

2. Click on the Tools menu and select Internet Options on the submenu to open

the Internet Options window.

3. In the Temporary Internet Files section, click on the Settings button.

4. The default setting for “Check for newer versions of stored pages” is

“Automatically.” Change this setting to “Every visit to the page.” This selection

will make it more likely that the web page you open will be the newest version

of a page you are working on.

5. Close this dialog by clicking on the OK button, but do not close the Internet

Options dialog window.

6. Now select the Advanced tab in the Internet Options. A long, scrollable list of

check boxes should be visible. The following sections cover different portions of

this long options window. The settings below are optional, but are

recommended for enhancing your troubleshooting web pages.

JavaScript Error Notification

7. [Optional] To help you recognize JavaScript errors, it is recommended that you

check the “Display a notification about every script error” in the Browsing

section of the Advanced options. What this does is to pop up a dialog box that

you cannot miss stating that a JavaScript error has occurred. If you do not

enable this, you will be have to pay attention and notice any JavaScript alert

message that appears in the lower left corner status window.

Tip: When viewing DB2 Alphablox application pages within Microsoft Internet

Explorer, the browser may not process the page you are attempting to display

in a way you expect. Sometimes the browser may re-display a cached page

instead of the new updated page. The setting above is supposed to help

prevent this, but can be unreliable. Even when you click on the browser’s

Reload button, the page displayed may continue to be a cached page. When

18 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

you think this might be the problem, you have a couple of other options.

First, you can force a hard refresh the page (getting a fresh copy from the

server instead of a cached copy) by using the Control-Refresh technique: hold

down the Control key while clicking on the Refresh button. The second

option is to close and reopen the browser. This results in a new browser

session, and is the most certain way to guarantee that the page being

displayed is the newest page.

Web browsers - known Mozilla issues

Known Mozilla issues that differ from Microsoft Internet Explorer are highlighted.

It is a best practice to test your applications using web browsers supported by

your organization. The table below highlights known Mozilla and Mozilla Firefox

web browser behaviors for Blox UI components that differ from supported

Microsoft Internet Explorer browsers.

 Table 1. Notable Mozilla issues

Issue Notable Mozilla issues

Chart resizing in splitter container Chart stays the same size, then repaints.

Firefox maintains the aspect ratio of the chart,

which alters the container size.

Edit Copy (Blox Model API and UI feature) Not supported. There are no methods

available for copying to the clipboard in the

Gecko engine.

Edit field selection and caret position Not supported. The window.getSelection()

method used in the Gecko engine does not

return text in an edit field. This is a known

limitation and may be fixed in a future

release.

ComboBox auto-complete highlighting Not supported. There are no methods

available for highlighting the completed text,

although the completion works.

Line breaks in tool tips Not supported. There are no methods for

adding line breaks to tool tips. Line break

characters display unique characters. DHTML

view code will instead replace these with

spaces in Firefox.

Pop-up menus, pull right menus, toolbar

drop downs

Restricted to the frame. Pop-up menus and

pull right menus must stay inside of the

frame in Firefox and automatically adjust to

allow as much of the menus to fit as possible.

Drag and drop differences In Firefox, no changed cursors appear for

dragging and cannot drop. Select fields can

not be dragged. Users cannot select text using

the cursor in edit fields that are draggable.

Resizeable dialogs No border. Removed border from resizable

dialogs in Firefox. The main problem stems

from the use of margins with percentage

sized dialog contents which is not usable in

Firefox - the contents always is too large.

Sizing static text component Sizes set on static components are ignored. To

work around this, you can set the size on the

component’s parent for compatibility in both

browsers.

Chapter 3. Your development environment 19

Table 1. Notable Mozilla issues (continued)

Keyboard support (accelerators) Not supported. Not supported in Firefox as

tabindex cannot be set on div elements. This

will be supported in Mozilla Firefox 1.8.

Accessibility Not supported

Right-to-left (RTL) grid display Not supported

Grid.setFixedScrollbarPosition(boolean) and

Grid.isFixedScrollbarPosition()

Not supported

Application Studio

Application Studio has examples and other tools that can be useful for learning

and development purposes. The Application Studio can be accessed through the

Assembly tab on the DB2 Alphablox home page. To examine and reuse the sample

code for your application, the files are located under the Application Studio

directory at:

<db2alphablox_dir>\system\ApplicationStudio\Examples

The Blox Sampler example set, referenced throughout this Guide, demonstrates

many of the techniques discussed and resides in the Examples directory.

20 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 4. Design considerations

As with any application development, you need to clearly identify the

requirements before you can proceed with the design and development, and

subsequently evaluate the success of your application. This topic includes some

general requirement gathering guidelines that will help you identify the needs of

your users and other issues you will want to take into consideration before you

begin.

Defining application requirements

The goal of application design is to ensure the application provides appropriate

information and functionality to meet the particular needs of a specific user

audience. As you gather the requirements, you need to look into three areas: data,

user interface, and application logic.

v “Data requirements”

v “User interface requirements” on page 22

v “Application logic requirements” on page 24

Data requirements

The specific class of application that DB2 Alphablox supports is online analytical

processing (OLAP). In contrast to online transactional processing (OLTP)

applications that generate and access data in transactional data sources, OLAP

applications access data in data sources. These data sources usually contain data

consolidated from transactional detail and stored in a multidimensional

architecture.

Part of the application design process is identifying required data, as well as any

security issues surrounding access to that data. Answering the following questions

can help define application data requirements.

1. What information do the users want or need?

Answering this question as precisely as possible is the first step toward locating

the information and defining efficient queries against it. It is important to

determine if users already have access to the required information, if there are

security issues involved in enabling access, and so forth. For example, regional

sales managers may be able to view data for all regions, while regional sales

representatives may be able to view data for only their region.

2. Where does the information reside?

DB2 Alphablox applications can access data from a wide variety of

multidimensional and relational databases. Before beginning to develop

applications, make sure you consider which data sources you will need to

access and verify that DB2 Alphablox supports your requirements. (For details

on support for specific data sources, see the Installation Guide) Many analytic

applications rely on multidimensional data sources that organize information

into a hierarchy of dimensions and members. Blox are specifically designed to

exploit this data hierarchy; their user interfaces enable drilling up and down

through the hierarchy, filtering data based on dimensions and members,

moving one or more dimensions to a different axis, and so forth.

© Copyright IBM Corp. 1996, 2006 21

DB2 Alphablox also supports relational data sources that organize information into

a row-and-column format. One use for relational data is “drill to detail,” enabling

users to move from a multidimensional data source of consolidated information

into its underlying detail in a relational data source.

The DB2 Alphablox Cube Server component of DB2 Alphablox enables

administrators to create multidimensional data cubes from information residing in

relational data sources. The DB2 Alphablox Cube Server is useful for applications

that do not require the scalability and overhead of full-featured OLAP data

sources. The DB2 Alphablox Cube Server contains dimensional metadata so that

users can perform such operations as drilling, pivoting, and filtering. For

information on how to transform relational data into multidimensional data, see

the DB2 Alphablox Cube Server Administrator’s Guide.

Note that when data appears in a DB2 Alphablox application, the underlying data

format is not apparent to the user. However, user actions that require

multidimensional format (such as drilling) are disabled if the data is in relational

format.

Beginning with DB2 Alphablox, you can use ReportBlox to develop interactive

reports from relational data sources, allowing your users to add break groups,

reorder columns, sort data, rename columns, and edit cell and header styles

through the built-in Report Editor user interface. For information on ReportBlox

and its support Blox, see the Relational Reporting Developer’s Guide.

User interface requirements

The user interface is key to application usability. The application should include

content presentation, application navigation, and user assistance. While a

comprehensive discussion of effective user interface and web page design is

beyond the scope of this document, this section provides some guidelines in the

following areas:

v “User groups”

v “Content presentation” on page 23

v “User instructions” on page 23

v “User navigation” on page 23

v “Data manipulation” on page 23

v “Saving and restoring work” on page 23

User groups

When defining the requirements for user groups, keep the following considerations

in mind:

v Users often have different usability requirements. One way to address these

differences is to place users within small groups within a larger group. For

example, the Financial user group might contain an Analyst group and an

Administrative group. An application’s interface can change dynamically based

on the group to which the user belongs.

v Users also have different data access requirements. Typically, the security

facilities of the data sources themselves support user- and group-level access

restrictions. To ensure easy user access to data, DB2 Alphablox user groups

should parallel those implemented on the data source.

22 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Content presentation

DB2 Alphablox enables you and, to a lesser degree, your users to control content

presentation. You have considerable latitude in organizing and presenting

information. The look and feel of an application page might be an executive

dashboard, an intranet portal, or a printable report.

You also have choices in data presentation. By selecting appropriate Blox and

setting property values on those Blox, you can choose whether data appears in a

grid, a chart, or a grid/chart combination. Because DB2 Alphablox provides many

different chart types, you can experiment with the most effective data presentation.

Where appropriate, you can permit users to change chart types, toggle between

grid and chart presentations, and so forth. For example, some users may prefer a

pie chart that quickly conveys percentages and trends, while others may prefer a

grid that supplies numeric values and supports complex analyses. You should

clearly understand an application’s target audience to facilitate the design of

appropriate and effective content presentations.

User instructions

DB2 Alphablox provides online help that includes comprehensive instructions on

using each Blox. The default mechanism for accessing DB2 Alphablox help pages is

clicking the question mark on the toolbar or the Help > Help... menu option in the

menu bar. However, to reduce the users’ learning curve, you may find it helpful to

provide application-level user instructions right on each application page.

If this approach is not appropriate, or if the user instructions are quite extensive,

you can edit and expand on the DB2 Alphablox online help. For more information,

see Chapter 24, “Adding user help,” on page 257.

User navigation

The simplest application is a single JSP page with one or more Blox. However, if

an application calls for several Blox with which the user interacts, two situations

may occur. If multiple Blox reside on a single page, some Blox may scroll out of

the browser window when others appear. Therefore, consider providing links

within the page that move quickly from area to area.

More typically, several JSP pages comprise an application. This application design

should include backward and forward links between pages. An application “home

page” might link to all other pages in the application and provides an appropriate

place for notifying users of application features and enhancements.

Data manipulation

You can produce applications that range from fully interactive analytic and what-if

scenarios to static presentations for quick management snapshots. In fact, simply

by enabling or disabling Blox interactivity and toolbars, you may be able to

develop a single application that serves multiple user needs. Successful application

design requires knowledge of how the target audience will interact with the data.

Saving and restoring work

Users performing complex analyses often want to save their work at a certain

point, or make a particular view of the data available to other users. DB2

Alphablox supports these requirements through toolbar buttons.

Chapter 4. Design considerations 23

Application logic requirements

Another major design area is application logic. While Blox provide for data access,

presentation, and manipulation, most DB2 Alphablox applications provide logic to

meet specific user needs, such as:

v offering a list of predefined queries from which users make a selection

v enabling users to construct queries dynamically through a series of related

selections

v setting the initial query, delivery format, and application appearance based on

user login

v highlighting exception data based on user-entered values

v toggling content presentation based on user actions

v performing “what-if” scenarios and optionally writing the results back to the

data source

You can use a combination of JSP, HTML forms, JavaScript functions, Java and DB2

Alphablox custom properties to implement application logic.

Custom properties

Through the DB2 Alphablox administration pages, you can define custom

properties that are available on applications, data sources, and users. After defining

a custom property, you can use it via RepositoryBlox server-side Java code. For

more information, see “Creating custom user properties” on page 222.

Note: Portlets rely on the portal infrastructure to access user profile information.

Keep in mind that portal user profile and DB2 Alphablox user information

are maintained separately.

Planning for portlet development

When using Blox components in a portal application, you need to consider the

following design requirements during the planning phase. Because Blox-enabled

portlets need to be on the same page with other portlets, there are things you need

to be aware of in order for all the portlets on a page to work properly together.

v Blox components requires Internet Explorer v5.5 and above. Make sure this

requirement is consistent with other portlets served by your portal server. Check

the specific browser requirements in the Installation Guide.

v Caching should be turned off for applications that have Blox components. Blox

components’ powerful interactive user interface and support for live data require

communications to the server. These abilities do not work if caching is turned

on. Because of this, all portlets on the same page need to work in a non-cached

environment.

v For the same reason as described above, Blox-enabled portlets do not work in

offline mode.

v Data sources used by Blox components need to be defined to DB2 Alphablox

through the DB2 Alphablox administration pages. Users with DB2 Alphablox

administrative rights need to be set up separately from your portal

administration. You may need to work with your DB2 Alphablox administrator

and database administrator to get your data sources ready.

24 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Designing an accessible application

For users with disability, it is crucial to provide keyboard equivalents for all

actions. For users with limited vision, you also need to take into consideration the

limitation of text browsers and screen readers. The UI components in DB2

Alphablox support accessibility for Internet Explorer, with built-in keyboard

shortcuts and accelerators.

As you develop and customize your analytic applications, here are some things

you need to keep in mind to support accessibility:

v Create accelerator keys for your custom menu options. For custom menu items

that appear on the menu bar, you should specify your own accelerator access

key. This can be achieved by setting the accesskey tag attribute for the

<bloxui:menu> and <bloxui:menuItem> tags. See the Blox UI Tag Reference in the

Developer’s Reference for details.

v Disable or limit the use of the chart component. Non-graphical browsers and

screen readers cannot reveal images to visually impaired users. The chart

component, given its graphical nature, is not accessible using the keyboard. It is

recommended that you remove the chart component from a PresentBlox

(chartAvailable="false") or use only the grid component for users with limited

vision.

v Render Blox in the provided high contrast theme. Blox user interface rendered

using the high contrast theme not only reduces the use of colors to shades of

gray, but also honors the font size display preference set in the browser. To use

the high contrast theme, set the theme URL attribute to highcontrast. For

example: http://server/application/file.jsp?theme=highcontrast.

v Make it easy for visually impaired users to get to the data contents without

having to tab through the menu bar or toolbars. The <bloxui:accessibility>

tag is designed to enhance the user experience for users with disabilities. It

provides a tag attribute to allow users to skip the menu bar or toolbars and get

right to the data. It also lets you provide keyboard access to open dialogs that

have lost focus. See the Blox UI Tag Reference in the Developer’s Reference for

details.

Designing an accessible application usually involves personalization via a user

profile. One way to achieve this is through a custom user property in DB2

Alphablox. For example, you can specify a custom user property called accessible

through the DB2 Alphablox Admin Pages. For visually impaired users, this

property will be assigned a specific value such as ″Yes.″ You can then access the

value using the RepositoryBlox getUserProperty() method, and programmatically

hide the chart component in a PresentBlox.

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

 <blox:header/>

</head>

<body>

<blox:data id="myData" dataSourceName="QCC-Essbase"

 query="!" />

<blox:repository id="myRepository" />

<blox:present id="myPresent" visible="false">

 <blox:data bloxRef="myData" />

</blox:present>

<%

 String accessible = myRepository.getUserProperty("accessible");

 if (accessible.equals("Yes")) {

Chapter 4. Design considerations 25

myPresent.setChartAvailable(false);

 } else {

 myPresent.setChartAvailable(true);

 }

%>

<blox:display bloxRef="myPresent"/>

</body>

</html>

For more information about general application accessibility issues, visit the IBM

Accessibility Center. This site provides many developer resources and guidelines

that help you learn and develop accessible applications.

Designing for multiple locales

The language in which the Blox user interface and the online help are displayed

depends on the language setting in the browser. When a request comes in, DB2

Alphablox determines the client locale based on the Accept-Language header in the

request. A locale is a two-letter language code, and optionally, followed by a

two-letter country code, separated by an underscore (″_″). DB2 Alphablox examines

the list of languages set in the browser, and if the first one is not an exact match of

what is supported, it continues down the list until a supported locale is found. If

none is supported, DB2 Alphablox uses the first language in the list and looks at

the related language. If the related language is not supported, or for some reason

no language is set on the browser, DB2 Alphablox will determine the locale based

on the server’s locale. If all fails, DB2 Alphablox defaults to English.

For example, if the browser’s language setting has fr_CA as the first language and

en as the second, because fr_CA is not an exact match of a supported locale, and

the second one on the list is examined. en is a supported locale, so Blox user

interface will display in English. If fr_CA is the only language in the list, DB2

Alphablox then looks for the related language, which is fr. Because fr is

supported, Blox user interface will display in French.

Language settings in the browsers

To specify the language preferences:

v In Internet Explorer, select Tools → Internet Options... and click the Languages...

button.

v In Firefox browsers, select Tools → Options.... For Firefox V1.5 or later click

Advanced and then Edit Languages.... In older version, click the Languages...

button.

v In Mozilla browsers, choose Edit → Preferences. Under the Navigator category,

click Languages.

In the window that opens, users can add languages or change the language

priorities.

If an Internet Explorer user accidentally deletes all languages from the list, because

of a known XMLHTTP issue in the browser, the user can run into issues.

Locale for Blox UI versus locale for formatting

As described earlier, DB2 Alphablox determines the language for the Blox user

interface by examining the list of locales that is set in the browser. However,

because data formatting is based on Java formats, it is not restricted to the locales

26 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

http://www.ibm.com/able/index.html
http://www.ibm.com/able/index.html

supported by DB2 Alphablox. When determining the settings a user wants for

formatting for numbers, DB2 Alphablox always uses the first language in the locale

list. As a result, it is possible that the locale the Blox user interface is displayed in

is different from the locale of formatting.

Font mapping for chart labels

While the chart user interface supports multiple locales, when the server’s locale is

different from the client’s, the server might have trouble displaying glyphs in the

client’s locale. If this is a potential issue for your users, you can specify what

system fonts to mapped to for chart axis labels and legend. The chartfonts.xml file

under the <alphablox_dir>/repository/servers directory allows you to map the

five logical font names Java recognizes (Serif, SansSerif, Dialog, DialogInput and

Monospaced) to physical font names, such as Courier, Arial, and Times New

Romans.

For each locale, specify the language and the font names for each of the system

fonts. The following example specifies the font mapping for the Chinese language:

<locale language="ZH">

 <Serif>MingLiu</Serif>

 <SansSerif>SimHei</SansSerif>

 <Monospaced>SimHei</Monospaced>

 <Dialog>SimHei</Dialog>

 <DialogInput>SimHei</DialogInput>

</locale>

For each locale, you can also specify the country and the variant if necessary. For

example, for Brazilian Portuguese:

<locale language="PT" country="BR">

 ...

</locale>

For each logical font, you can also specify the style using the style attribute. Valid

values are plain, bold, bolditalic, and italic. The Data Type Definition (DTD)

file, chartfonts.dtd, is provided in the <alphablox_dir>/xml directory.

The font names are case-sensitive. If a font specified in chartfont.xml is not found

on the client, the chart is rendered using the basic JVM font-mapping.

Fonts for data formatting in Arabic

For Arabic, the code points returned for monetary delimiters used in cell

formatting, such as separators for thousands and decimals, are outside of the fonts

specified in the DHTML client’s theme files. Therefore, these delimiters will not

display correctly. This issue has been observed in Internet Explorer, and it might

also occur in other browsers. If you have Arabic users, you should add one or

more of the following languages to the list of font-family names specified in the

csGrdFnt class definition in your <theme>_dhtml.css file:

v ″Arial Unicode MS″ (including the quotes because of the spaces in the font

name)

v Latha

v Any of the Arabic system fonts with ″UPC″ in the name, such as IrisUPC,

JasmineUPC, BrowaliaUPC, CordiaUPC, DilleniaUPC, EucrosiaUPC, and

FreesiaUPC.

Chapter 4. Design considerations 27

Design issues and development tips

Below are some general Blox behaviors, server behaviors, and application

development tips that you should be aware of:

v BloxContext has a getLocales() method to find the requested locale setting from

the browser.

v Because Blox has a session scope, changing the language setting after a session

has been established will not take effect until after a new session is started.

Users must open a new browser window in order to see the new locale reflected

in the Blox user interface.

v DB2 Alphablox provides a set of wrapper tags for the Java ResourceBundle

class. These tags allow you to access locale-specific resource for your custom

code. These tags are discussed in Resource Bundle Related Tags. For a working

example, see the FastForward application. This sample application uses these

wrapper tags to access the resource bundles in its WEB-INF/classes/
fastforward/FastForwardBundle.properties file.

v When specifying the chart type in your JSP code, always use the English string

or the chart type’s numeric value.

v Bookmark names and descriptions are always displayed in the language they are

saved in. Bookmark names and descriptions saved in French will always be

displayed in French regardless of the browsers’ language setting when the

bookmarks are loaded.

v While error messages generated by DB2 Alphablox are displayed based on client

locale, exceptions and error messages from the database will be in the same

locale as the database server. DB2 Alphablox is only passing that information

from the database.

v Server log is always based on server locale. If DB2 Alphablox is installed on a

German machine, the server log will be in German.

v The DB2 Alphablox Cube Server operates in the server locale, and all error

messages and log messages are based on the server locale. If the server and the

relational data source for a cube are running different locales, then it is possible

for queries to contain inconsistent results with respect to sorting. This is because

sorting might be performed partially in the DB2 Alphablox Cube Server and

partially in the relational data source during the processing of an MDX query.

Designing for bidirectional languages

Bidirectional (also known as BiDi) languages are languages that are read from right

to left, and still have numbers read from left to right. By default, Web browsers

interpret the code in an HTML page and display the visual components from left

to right. For bidirectional languages such as Arabic and Hebrew, depending on the

settings in the browsers or on the users’ Windows® systems, visual components

might not display automatically from right to left. Internet Explorer users can set

the viewing direction through the View > Encoding menu option, but not all

browser versions provide that option. Web page designers can also specify the

direction by adding the dir attribute to the <body> tag and setting its value to rtl.

The language and direction in which Blox components are displayed are

determined by the browser’s locale setting. In a ChartBlox, a left-to-right direction

means the X axis labels are displayed on the left hand side of the chart. A

right-to-left direction will put the X axis labels to the right. In a GridBlox, a

left-to-right direction means the row headers are displayed to the left hand side of

data cells. A right-to-left direction will put the row headers to the right.

28 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

No additional code is necessary for your application to support bidirectional

languages. Depending on your design goal, if you need to ensure that Blox

components are displayed from right to left, there are the following techniques to

make that happens.

Setting the dir attribute in HTML code

Because the Blox user interface is rendered in dynamic HTML, you can utilize the

browsers’ ability to interpret the directional instruction specified in the HTML

code. This dir attribute can be set in the <body> tag (<body dir="rtl">) or an

inner <div> tag (<div dir="rtl">). This approach instructs the browsers to display

the Blox components from right to left, and yet still allows the users to change the

display direction through the provided Grid Options and Chart Options dialogs.

In these two dialogs, users of your application can still set the display back to

left-to-right.

If you need to dynamically change the direction, one way to do so is by passing

your JSP with a parameter. You then set the direction for the output based on the

value passed in for that parameter. For example, if you have a test.jsp file, you

can call it with a parameter as follows:

http://myServer/myApp/test.jsp?dir=rtl

The test.jsp file gets the parameter value and sets the direction in the <body> tag:

<!--test.jsp-->

<% taglib uri="bloxtld" prefix="blox"%>

<%@ page contentType="text/html;charset=utf-8" %>

<blox:data id="dataBlox"

 dataSourceName="QCC-Essbase"

 useAliases="true"

 visible="false"

 query="!" />

<html>

<head>

<blox:header/>

</head>

<body dir="<%= request.getParameter("dir") %>">

<blox:present id="myPresent" width="700" height="500" menubarVisible="true">

 <blox:data bloxRef="dataBlox" />

</blox:present>

</body>

</html>

Setting the direction in the UI component

The Component base class for all visual components in the Blox UI model has a

setDirection() method. The default is DIRECTION_DEFAULT, which means to respect

the direction setting in the HTML code or the browser. If you set a component’s

direction to DIRECTION_RTL, its subcomponents will always be written from right to

left, regardless of languages, browser settings, or the direction specified in the

HTML code. Your users can still change the display direction through the provided

Grid Options and Chart Options dialogs.

Chapter 4. Design considerations 29

30 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 5. Using JavaServer Pages and the Blox Tag Library

The use of JavaServer Pages technology in DB2 Alphablox applications enables

developers to rapidly create and easily maintain web-based analytic applications.

In addition to developing with DHTML technologies (including HTML, JavaScript,

and CSS), JSP technologies add dynamic scripting elements that let you tap into

the power of Java without having to master Java. This topic explains how

JavaServer Pages technology are used within DB2 Alphablox applications.

JavaServer Pages Technology

JavaServer Pages (JSP) technology allows developers to rapidly create and easily

maintain web-based analytic applications using familiar DHTML technologies,

including HTML, CSS, and JavaScript, along with dynamic scripting elements that

enable developers to use Java and server-side processing. This technology also

helps developers create applications that are less prone to the vulnerabilities of

cross-browser idiosyncrasies. In a nutshell, the primary advantages of JSP

technology are:

v Separating content generation from presentation

Using JSP technology, web page developers can use HTML or XML tags to

design and format web application pages. JSP tags and scriptlets allow web page

developers to use familiar tag syntax and scripting capabilities to generate

pages, with the core program logic being hidden within custom tag libraries and

Java beans. Advanced Java developers can use Java to create these reusable

components that can be used by web page designers and application developers.

v Emphasis on reusable components

Most JSP pages rely on the use of cross-platform, reusable components, such as

Java beans and servlets. Using JSP makes it easier for web page designers and

developers to generate content using Java beans and servlet components. For

example, Blox are Java beans that interact with server peers, but developers can

use simple tags to define these beans.

v Simplification of web development with tags

JSP technology enables dynamic content generation by encapsulating much of

the functionality in easy-to-use, JSP-specific XML tags. These standard JSP tags

are used to interact with JavaBeans™ components, set and get bean attributes,

and perform other functions that would otherwise be more difficult and

time-consuming to code. The use of JSP custom tag libraries allow DB2

Alphablox and others to create easy-to-use tags that can be used by web page

designers and developers, while hiding the complexity that they don’t need to

be concerned with.

The Developer’s Guide assumes basic familiarity with JavaServer Pages technology,

but even without this knowledge, you can still create some basic DB2 Alphablox

applications. The remainder of this topic focuses on explaining how to use JSP

with DB2 Alphablox.

To learn more about the JavaServer Pages technology, the following books and web

sites are recommended by Alphablox:

Book recommendations

Bergsten, Hans. 2004. JavaServer Pages. Sebastapol, CA: O’Reilly & Associates.

© Copyright IBM Corp. 1996, 2006 31

An excellent guide to JavaServer Pages and application development without

having to be a hard-core developer. The first part, targeted for web page designers

and developers, discusses JSP concepts and how JSP fits into web application

development. The later programming-oriented parts discuss how to create JSP

components and custom JSP tags.

Fields, Duane K.; Kolb, Mark A.; and Bayern, Shawn. 2001. Web Development with

JavaServer Pages (2nd edition). Greenwich, CT: Manning Publications.

Another excellent guide to JavaServer Pages, intended for both web page designers

and Java developers. Includes discussions on using the JSP 1.2 and Servlet 2.3

specifications and examples for common web application tasks.

Falkner, Jason (editor). 2001. Beginning JSP Web Development. Birmingham, UK:

Wrox Press.

This introduction to JavaServer Pages assumes no previous programming

experience and only prior HTML experience. While introducing how to build

web-based applications, it explains the relevant JSP and Java concepts. By the third

chapter, you are creating simple Java beans.

Web sites

JavaServer Pages (Sun) - http://java.sun.com/products/jsp/

Sun invented the JavaServer Pages technology and this is the place for the latest

information, including news, specifications, software, and tutorials. In the Technical

Resources section, you can get PDF versions of quick syntax reference cards and

guides.

JavaBeans (Sun) - http://java.sun.com/products/javabeans/

Includes the JavaBeans specifications, tutorials, and the latest news about

JavaBeans technology.

Servlets (Sun) - http://java.sun.com/products/servlets/

Sun’s site for the latest in servlet technology, including news, specifications, and

tutorials.

JSP Insider - http://www.jspinsider.com/

An excellent source for JSP articles, reference guides, and links to other JSP

resources. The JSP Buzz newsletter offers news and articles, and is a good way to

stay current on JSP products and features.

JGuru - http://www.jguru.com/

This site has many articles on topics relevant to JSP web application development.

There are also useful FAQs about JSP and servlets.

32 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

http://java.sun.com/products/jsp/
http://java.sun.com/products/javabeans/
http://java.sun.com/products/servlets/
http://www.jspinsider.com/
http://www.jguru.com/

Using JavaServer Pages with DB2 Alphablox

With JavaServer Pages technology and DB2 Alphablox, you can rapidly create and

more easily maintain sophisticated analytic applications. Although JSP is a

server-based technology, it allows you to incorporate standard client-side

technologies, including HTML, JavaScript, and Cascading Style Sheets. This allows

you, as a DB2 Alphablox developer, to use these technologies to build flexible and

extensible applications.

Analytic applications typically employ both client-side and server-side techniques,

using the best of both technologies to deliver your applications. The entire Blox

API, including the Blox Client API and the server-side Java API, are detailed in the

Developer’s Reference.

Most often Blox, including the presentation Blox, will be defined in JSP files using

the Blox tag library. The Blox tag library, developed using JavaServer Pages

technology, includes easy-to-use tags for specifying Blox and their properties. Other

Blox tags can be used to handle common developer tasks, including application

and business logic debugging. Although you could use standard JSP actions

(including the jsp:useBean, jsp:setProperty, and jsp:getProperty tags) to

develop JSP applications with DB2 Alphablox, the Blox tag library offers almost

identical functionality with less effort. The remainder of this topic focuses on the

use of the core Blox tags in the Blox Tag Library to define Blox. Other Blox tag

libraries, including the Blox Form Tag Library, the Blox Logic Tag Library, and the

Blox UI Tag Library are discussed later in this guide.

Server-side programming with DB2 Alphablox

The DB2 Alphablox server-side programming model (SSPM) emphasizes

processing application and business logic, whenever possible, on web application

servers. DB2 Alphablox offers a rich set of server-side functionality with its

support for JavaServer Pages and the Java programming language. In conjunction

with powerful application servers, like BEA WebLogic and IBM WebSphere,

Alphablox is able to offer a powerful J2EE-compliant environment for developers.

DB2 Alphablox offers a Blox Java API that gives developers the full power of Java,

JavaServer Pages, JavaBeans components, and Java Servlets technologies.

This guide focuses on teaching you (even if you have limited or no Java

experience) how you can tap into the power of Java server-side programming

models to rapidly deliver analytic applications. By being task-focused, this guide

will help you quickly learn to use the power of DB2 Alphablox for solving

immediate business needs.

Using the Alphablox Tag Libraries

Developed with JavaServer Pages technology supporting JSP custom tags, the DB2

Alphablox Tag Libraries include easy-to-use tags that can be used by web page

authors and Java developers.

The core Blox tags are used to define the common user interface Blox, including

ChartBlox, DataBlox, DataLayoutBlox, GridBlox, PageBlox, PresentBlox, and

ToolbarBlox. Blox tags are also available for defining Blox used specifically in

building relational reporting applications. Other Blox tag libraries are useful for

creating powerful form elements (Blox Form Tag Library), extending the Blox UI

(Blox UI Tag Library), handling complex business logic (Blox Logic Tag Library),

and supporting URL-based client-side links in a portal application (Blox Portlet Tag

Chapter 5. Using JavaServer Pages and the Blox Tag Library 33

Library). For relational reporting requirements, the Blox Report Tag Library,

including the ReportBlox and other associated Blox, is discussed in the Relational

Reporting Developer’s Guide.

Before describing the advantages of using the DB2 Alphablox Tag Libraries, take a

look at the following code examples and you should be able to see for yourself

advantages in using Blox tags. Don’t worry right now about understanding the

details of how the Blox tags work — that will be explained shortly. Instead, focus

on the layout and readability of the code examples.

If you already know how to use standard JSP syntax to define Java beans, you

should be able to understand the following code example without difficulty. If this

syntax is new to you, however, you may have lots of questions and be concerned

that you have lots to learn before you can begin making any progress. Keep in

mind that this example highlights the more difficult way to code Blox, using

standard JSP syntax to define a PresentBlox:

<jsp:useBean id="myPresentBlox"

 scope="session"

 class="com.alphablox.blox.PresentBlox">

<%

 BloxContext context = BloxContextFactory.getBloxContext(request, response);

 myPresentBlox.init(context,"myPresentBlox");

 myPresentBlox.setProperty("width","540");

 myPresentBlox.setProperty("height","350");

 DataBlox myDataBlox=myPresentBlox.getDataBlox();

 myDataBlox.setProperty("dataSourceName","TBC");

 myDataBlox.setProperty("query","<ROW(Market) <ICHILD Market

 <COLUMN(Year) Year !");

 myDataBlox.connect();

%>

</jsp:useBean>

The Developer’s Guide spends little time on this syntax. If this syntax is new to you,

don’t worry the Blox tag library provides an easier way to build Blox components

and applications. On some occasions standard JSP syntax will be the only way to

code a solution, but most of the time you’ll be able to use the Blox tags instead.

Now compare the previous code example with the following example, using Blox

tags to define the same PresentBlox:

<blox:present id="myPresentBlox"

 width="540"

 height="350">

 <blox:data

 dataSourceName="TBC"

 query="<ROW(Market) <ICHILD Market <COLUMN(Year) Year !"/>

</blox:present>

As you can see, the code is easier to read and maintain. Here are the primary

reasons you should be interested in using the JSP custom tag approach:

v Easier to read

In the PresentBlox example, code created using the Blox tag library is much

easier to read— the properties are mapped using tag attributes as simple

name/value pairs, which can be formatted for easy readability.

v Easier to code

Since there is less to type, Blox created using Blox tags can be more rapidly

coded. There is no need to add a number of additional lines for initializing and

connecting to the data source—it is handled automatically by the Blox tags.

v Easier to maintain

34 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

As a result of being easier to read and code, Blox tags should be easier to

maintain. Details, including initialization of the Blox (Java beans) and connecting

to the data source, are automatically handled for you. You focus on defining the

Blox and its properties, and the tag library takes care of making it all work.

Also, one of the advantages of encapsulating Java code with tag libraries is that

it makes future updates to the Java code easier to manage for both Alphablox

and you.

So, let’s get started learning about how to use these Blox tags to define the Blox

you will be using in your analytic applications.

Accessing the Blox Tag Library

By default, a web page will ignore tags that it doesn’t know about. This means that

if you put Blox tags on a page without telling the page where to find information

about them, it will ignore them.

So, before you take advantage of Blox tags, you need to add a single line, called a

taglib directive, to the top of your JSP pages. Here is the JSP taglib directive that

you should use:

<%@ taglib uri="bloxtld" prefix="blox" %>

This line of code tells the JSP compiler that you intend to use a custom tag library

that is located at the URI (uniform resource identifier) specified as bloxtld. This

URI, bloxtld, is a shorthand label that defines the location where your DB2

Alphablox can find the tag library descriptor file for the Blox custom tag library.

All the DB2 Alphablox tag library descriptor files are located within each

application you create.

v For V8.4 and earlier versions, the files are located in your application’s

WEB-INF/tlds directory.

v Starting in V8.4.1, the files are located in a JAR file in your application’s

WEB-INF/lib directory.

The tag library descriptor files determine which tags and tag attributes are

supported in DB2 Alphablox applications. They are automatically created in new

applications created using the DB2 Alphablox home pages.

Note: If you are curious to learn more about tag library descriptor files, see one of

the recommended JavaServer Pages technology resources listed in “Book

recommendations” on page 31. To learn more about how DB2 Alphablox

applications are created, see the Administrator’s Guide.

The taglib directive can be placed anywhere on a JSP page, as long as it occurs

before you use Blox tags on that page. The best practice, however, is to place the

taglib directive at the top of your JSP page, above the <html> tag, like this:

<%@ taglib uri="bloxtld" prefix="blox" %>

<html>

<head>

...

Once again, the taglib directive notifies your web application server that you

intend to use Blox tags, and need the library to be available. The JSP Engine then

parses through the JSP page, looking for any tags on a page that begin with the

blox prefix, as defined in the taglib directive, and when it finds one, it executes

the Java code in the tag library— you don’t need to see it.

Chapter 5. Using JavaServer Pages and the Blox Tag Library 35

Using the Blox header tag

After you’ve added the taglib directive to the top of your page, an important tag

you need to include on the page is the Blox header tag (<blox:header>). This tag

manages the rendering of Blox on your pages, making critical external JavaScript

and Cascading Style Sheets (CSS) files available. Also, it adds a few lines of code

that manage file caching.

The Blox header tag should be placed somewhere within the <head> section of

your JSP page, but after the taglib directive:

<%@ taglib uri="bloxtld" prefix="blox" %>

<html>

<head>

 <blox:header/>

 ...

</head>

Minimally, you need to add the shorthand <blox:header> tag, as shown in the

example above. Depending on your particular application, though, you may need

to add nested tags within this tag for performing other important Blox actions.

This usage will be explained later in this guide. For details about the tag’s syntax

and usage, see The <blox:header> Tag in the Developer’s Reference.

Note: When using <jsp:include> to include a file that has a Blox on a JSP page,

you need to add a <blox:header> tag to the top of that page so that the Blox

doesn’t hang at the initializing stage.

Note: When developing applications using framesets and multiple frames from

more than one application, you can use the <blox:session> tag to help

manage user sessions properly. See the The <blox:session> Tag Developer’s

Reference for further information on this tag.

The next section, on defining Blox, explains how to use Blox tags from the Blox

Tag Library to define Blox on your application pages.

Defining Blox

The following table lists the user interface Blox and their JSP custom tags:

Blox Name

Blox Tag

ChartBlox

<blox:chart>

DataBlox

<blox:data>

DataLayoutBlox

<blox:dataLayout>

GridBlox

<blox:grid>

PageBlox

<blox:page>

PresentBlox

<blox:present>

36 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Note: Details on these Blox and complete syntax for their tags, attributes, and

usage can be found in the Developer’s Reference.

Note: There are no spaces between the blox prefix, the colon, and the name of the

tag. If you put a space after the colon, you will generate JSP compiler errors.

Note: In discussions about Blox tags throughout the Developer’s Guide, you will see

references to the shorthand syntax for tags. This is to help you be clear

when the tag is being discussed instead of the Blox itself. For example,

instead of referring to the Blox GridBlox tag, this guide will frequently refer

to the <blox:grid> tag.

As discussed earlier in Chapter 1, “DB2 Alphablox applications and the underlying

Blox,” on page 1, Blox can be standalone or nested as children within other parent

Blox, depending on which Blox is being used and their particular usage. By

default, a standalone Blox includes nested Blox set to their default values. A

PresentBlox, for example, includes a nested ChartBlox, DataBlox, DataLayoutBlox,

GridBlox, PageBlox, and ToolbarBlox.

The following table lists the nested Blox components for each standalone

presentation Blox:

Standalone Blox

Nested Blox Components

ChartBlox

DataBlox, ToolbarBlox

DataBlox

CommentsBlox [optional]

DataLayoutBlox

DataBlox

GridBlox

DataBlox, ToolbarBlox

PageBlox

DataBlox

PresentBlox

ChartBlox, DataBlox, DataLayoutBlox, GridBlox, PageBlox, ToolbarBlox

 Rather than have to include nested tags for the nested Blox, you can just include

just the top-level parent Blox tag (the nested Blox listed above are implicitly

included).

A minimal PresentBlox, for example, defined with <blox:present> tag would look

like this when coded with opening and closing tags:

<blox:present id="myPresentBlox"></blox:present>

or like this, when using the shorthand method:

<blox:present id="myPresentBlox"/>

The shorthand method is recommended most of the time — opening and closing

tags are only required when content (called the body) needs to be added between

the tags.

Chapter 5. Using JavaServer Pages and the Blox Tag Library 37

Note: The minimal examples above include an id attribute, since this is the

minimum definition required for a Blox to be rendered properly. All parent

Blox within an application must be uniquely identified, but nested Blox

don’t require id attributes.

If you included all of the possible nested Blox tags that are implicit to the

PresentBlox, this is what the same PresentBlox would look like:

<blox:present id="myPresentBlox">

 <blox:grid/>

 <blox:chart/>

 <blox:toolbar/>

 <blox:page/>

 <blox:dataLayout/>

 <blox:data/>

</blox:present>

Since the nested Blox are implicitly included, even when you do not explicitly add

the nested Blox tag, include nested Blox tags only when you need to include

required tag attributes or tag attributes for properties that you need to change from

their default settings.

If you placed a PresentBlox tag on a page without any defined nested Blox or

defined tag attributes, a PresentBlox would be rendered on the page, but the Blox

would not do anything interesting — without defining a data source and query on

the nested <blox:data> tag at least, no data would be retrieved. In order for Blox

to do something useful, you usually need to add tag attributes or nested property

tags.

At this point, you should understand how to get a Blox to appear on a JSP page

and how to include nested Blox. The next section explains how to add simple tag

properties to Blox.

Setting Blox properties using tag attributes

The initial Blox properties that are used when a Blox is instantiated on a JSP page

are determined by the settings defined in Blox tag attributes or nested property

tags. Property tags will be explained in the next section, “Setting Blox Properties

Using Property Tags.”

Blox have both common and unique properties. And, just like the implicit Blox that

occur within other Blox, all of the properties on Blox have default values. Most of

these default values may never need to be changed by you, but when you need to

change their values, most of these properties can be exposed and changed using

tag attributes. Details about the hundreds of tag attributes that can be used to

customize Blox are described in the Developer’s Reference, but let’s take a look at

two of the commonly modified attributes as examples.

Without defining a data source and an initial query for a PresentBlox, it would

render properly and display No data available messages in the grid and chart

sections. To retrieve data for display, you must define two DataBlox properties,

using the dataSourceName and the query attributes. As mentioned earlier, to access

and modify a nested Blox, you need to add the nested Blox tag within the

top-level Blox, then add the required tag attributes or nested property tags. In the

following PresentBlox example, a nested DataBlox tag is added with two tag

attributes, dataSourceName and query:

38 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<blox:present id="uniqueName">

 <blox:data

 dataSourceName="definedDataSource"

 query="query"/>

</blox:present>

If you wanted to change the default chart type setting on a PresentBlox, you

would have to add a nested ChartBlox tag, defining an alternate chart type using

the ChartBlox chartType attribute. In the following example, the PresentBlox will

now display a line chart instead of the default bar chart:

<blox:present id="uniqueName">

 <blox:data

 dataSourceName="definedDataSource"

 query="query"/>

 <blox:chart chartType="Line"/>

</blox:present>

To customize Blox to meet your user requirements, you’ll be adding and modifying

many Blox properties using the tag attributes. In addition to the tag attributes,

some Blox require special property tags of their own to define properties. The next

two sections discuss how these “nested” property tags are used to define some

specific Blox style properties.

Setting Blox properties using style property tags

While most Blox properties are exposed and defined using tag attributes, other

properties, including all styles and indexed properties (properties that use an index

value to allow multiple instances within the same Blox) are relatively more

complex and most include sub-properties that also need to be defined. Some of

these properties require the use of their own tags while others can be used as

property tags or tag attributes on a Blox.

The following table lists all of the non-indexed Blox properties (properties that

cannot have multiple instances, each identified by an index value) that are exposed

and defined using property tags:

Property

Associated Sub-properties

or Attributes Applies To

titleStyle foreground font ChartBlox

footnoteStyle foreground font ChartBlox

labelStyle foreground font ChartBlox

axisTitleStyle foreground font ChartBlox

For each of the style properties listed above, a Blox property tag defines the

property and its associated sub-properties. Attributes on the tags are used to set

the individual sub-properties of the style property. Like the nested Blox definition

tags, the Blox property tags are nested within the Blox to which their properties

apply. Unlike the Blox definition tags, though, these tags do not define objects, but

are used instead to define properties on Blox.

The following GridBlox tag example includes several GridBlox tag attributes,

including id, bandingEnabled, and defaultCellFormat. In the body of the GridBlox

Chapter 5. Using JavaServer Pages and the Blox Tag Library 39

tag, you can see a nested property tag (<blox:titleStyle>), being used to define

how all of the cells in the grid should appear:

<blox:grid id="myGridBlox"

 bandingEnabled="false"

 defaultCellFormat="#,###.00"/>

 <blox:titleStyle

 foreground="red"

 font="Helvetica:10"/>

</blox:grid>

Property tags enable developers to code complex properties without having to put

all of these sub-properties on a single value string. This is a convenience for

readability and coding, helping to reduce the likelihood of coding errors. Also,

since long value strings cannot contain line breaks, they cannot be formatted as

nicely as the examples above. Using a single value string, the previous example

would look like this:

<blox:grid id="myGridBlox"

 bandingEnabled="false"

 defaultCellFormat="#,###.00"

 titleStyle="foreground=red,font=Helvetica:10;"/>

</blox:grid>

Whether to define styles using tag attributes or nested property tags is up to your

personal preference, although being consistent in your approach makes debugging

easier. Also, using nested quotation marks in a style tag attribute is trickier.

Usage of the style property tags is explained further under each style property of

the Developer’s Reference.

Setting indexed Blox properties using property tags

Indexed Blox properties, also defined using Blox property tags, include an index

value to allow multiple instances of these properties to be used within a Blox.

Unlike the previous style property tags, these property tags include index

attributes to allow handling multiple instances of the same tag within a Blox tag.

There are two important differences between indexed and non-indexed property

tags:

v You can have multiple instances of the same indexed property tag within a

parent Blox tag.

v The order in which you place indexed Blox property tags in your code affects

the outcome, unless you explicitly define the index values in your attribute.

Indexed property tags have a common index attribute for defining the order of

interpretation when multiple examples exist. The index attribute allows you to:

v script to the indexed properties defined in these property tags

v assign the order of interpretation, so that you don’t need to reorder these

property tags within a nested Blox (although keeping them in order should help

you better interpret the expected behaviors).

If the index attribute is not defined, an implicit index value is assigned

automatically. The first index attribute is assigned a value of 1. If you intend to use

multiple indexed property tags and will be scripting to these tags, you should

consider adding the index attribute to your tags and assigning values that you can

see in your code. This will help ensure that you are scripting to the right tag.

40 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

The following table lists all indexed properties, their sub-properties, and the Blox

to which they belong:

Index Property

Associated Sub-properties

or Attributes Applies To

cellAlert index enabled condition

value value2 description

font foreground

background apply format

align valign link image

image_align scope

GridBlox

cellFormat index format scope GridBlox

cellEditor index scope GridBlox

cellLink index description image

image_align link scope

GridBlox

generationStyle index foreground

background font align

valign

GridBlox

As previously mentioned, when you script to an indexed property tag, it has either

an implied or defined index attribute. In the following example, the GridBlox has

two GridBlox cellAlert tags, but neither of them have index attributes defined:

<blox:grid id="myGridBlox">

 <blox:cellAlert

 condition="GT"

 value="50"

 scope="{Scenario:Variance}"/>

 <blox:cellAlert

 condition="GT"

 value="50"

 scope="{Scenario:Variance}"/>

</blox:grid>

To modify the second <blox:cellAlert> tag, your Java method might look like

this:

myGridBlox.setCellAlert(2,”condition=GT,value=50, background=red,

 scope={Scenario:Variable}")

Even though the GridBlox tag doesn’t explicitly show an index attribute, the index

property for the second cellAlert property is automatically set to 2. While this

works, it would be better to define your cell alerts by setting explicit index

attributes, like this:

<blox:grid id="myGridBlox">

 <blox:cellAlert index="1"

 condition="GT"

 value="50"

 scope="{Scenario:Variance}"/>

 <blox:cellAlert index="2"

 condition="GT"

 value="50"

 scope="{Scenario:Variance}"/>

</blox:grid>

Chapter 5. Using JavaServer Pages and the Blox Tag Library 41

Doing this, especially with many more cell alerts defined, would make it easier to

know the index values on each of the cell alerts.

Controlling the visibility of Blox components

The visible common Blox property allows developers to control the rendering, or

display, of a Blox on a JSP page. This property can be applied to the following

Blox: ChartBlox, DataBlox, DataLayoutBlox, GridBlox, PageBlox, PresentBlox,

RepositoryBlox, and the nested ToolbarBlox. By default, the value for visible on

these Blox is true. You can set the visible property to false and later use the

<blox:display> tag to display it after you are done with some processing logic.

Note: When using the DHTML client, Blox JavaScript objects are created on the

client page, allowing the page to communicate with DB2 Alphablox using

the Client API. But, if the visible property is set to false, the client-side

JavaScript Blox object will not be created.

Details about the visible tag attribute can be found in Developer’s Reference.

Processing logic before rendering

In more advanced analytic applications, you may find the need to use Java

methods in scriptlets to process some business logic before making a Blox visible

on a JSP page. In these instances, you can set the visible attribute of the Blox to

false, then use the Blox display tag (<blox:display>) to control the visibility of a

Blox.

Before rendering a view to a JSP page, you can set the visible attribute of the Blox

to false, include your processing logic code, then render Blox after the processing

has been completed.

The following example shows a PresentBlox with the visible attribute set to false,

followed by a scriptlet with some processing logic using Java, and finally the

<blox:display> tag, resulting in the PresentBlox being displayed on a page:

<blox:present id="myPresentBlox"

 visible="false"

 ...

/>

<%

 your processing logic would go here

%>

<blox:display bloxRef="myPresentBlox"/>

In this example, if you did not set the PresentBlox’s visible attribute to false, the

JSP container would have rendered two Blox on the page, one before the

processing logic was done and one after. And, the first PresentBlox would not

show the effects of the logic you performed.

For Blox such as the RepositoryBlox and the DataBlox, that are not visible on a

page anyway, setting the visible property to false will have no effect. For both of

these Blox, the visible property is ignored since these Blox are never visible.

42 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Rendering Blox on multiple pages

The <blox:display> tag also comes in handy when you need to create a Blox on

one page, or a frame in a frameset, but render the same Blox on a different page.

There are two common instances where this might be useful: when you have a

Blox on a page and you would like to have custom pages for printing or exporting

to Microsoft Excel. When a Blox view is exported to Microsoft Excel, for example,

you can define your Blox on one page that has an “Export to Excel” button. When

a user clicks on that button, you could load a page into Excel displaying only the

grid and the chart, without unnecessary text or buttons from the originating page

appearing.

Also, once a Blox has been instantiated during a session, its current view can be

made available to other pages using the <blox:display> tag.

For details about the <blox:display> tag, see the Developer’s Reference and the

“Creating custom print pages using the <blox:display> tag” on page 158 of this

guide.

Blox utility tags

Some Blox tags are not used to define Blox that appear on a page, but instead

provide access to additional functionality. Here is a brief description of the Blox

utility tags, but details can be found in the General Blox Reference Information.

Blox header tag

The Blox header tag (<blox:header>) was described earlier in “Using the Blox

header tag” on page 36.

Blox context tag

The <blox:bloxContext> tag is similar to the <blox:header> tag in that it creates

the appropriate BloxRequest, BloxResponse, and BloxContext objects depending on

the actual request and response type (HTTP or portlet-based). However, it does not

output any themes or JavaScript code for rendering. An example of the use of this

tag is when you do not have a Blox on a certain JSP page but need to access Blox

context information on the portlet that contains other JSP pages with Blox. Since

both the <blox:bloxContext> tag and the <blox:header> tag attempt to declare the

same variables, they cannot coexist in a JSP page.

Blox debug tag

The Blox debug tag (<blox:debug>), another special tag, can be added to a JSP page

to have useful debugging information sent to the system console.

More information about the use of the Blox debug tag can be found in the

Troubleshooting section. For information on using the system console, see the

Administrator’s Guide.

Blox display tag

The <blox:display> tag, discussed earlier, is useful for either rendering a Blox after

some processing logic has occurred or rendering a Blox on different pages than it

was originally created on. Details about using the <blox:display> tag can be found

in Chapter 15, “Presenting data,” on page 153 and The <blox:display> Tag topic in

the Developer’s Reference.

Chapter 5. Using JavaServer Pages and the Blox Tag Library 43

Resource bundle tags

Resource bundles let you develop applications that can be localized and translated

into different languages. DB2 Alphablox provides wrapper tags for the Java

ResourceBundle class that let you access a locale-specific resource from the

resource bundle for your application. The wrapper tags are:

v <blox:resourceBundle>

v <blox:message>

v <blox:messageArg>

Details about these tags and their usage can be found in Resource Bundle Related

Tags in the Developer’s Reference.

Using standard JSP syntax

Blox can be defined using the standard JSP syntax instead of the Blox custom tags.

As discussed earlier, Blox tags almost always offer the best method for defining

Blox. In some situations, however, you may find that the only alternative is to use

standard JSP syntax.

If you have only coded using the standard JSP syntax before and have never used

tag libraries, you may prefer to use that syntax than Blox tags because it is familiar.

But before you decide to use standard JSP syntax, you should try to use the Blox

custom tags for the reasons described earlier in this topic.

Note: If you use both standard JSP syntax and the Blox tags on the same page,

you need the following two lines at the top of your page:

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ page import="com.alphablox.blox.*" %>

Note: Blox tags define Blox (Java beans) using a scope set to session. If you are

using standard JSP syntax, you almost always should use your bean (in this

case, a Blox) with a session scope. The default for the useBean syntax sets

the scope to page. Here is an example of what this might look like:

<jsp:useBean id="regionsPresentBlox"

 class="com.alphablox.blox.PresentBlox"

 scope="session">

Next steps

Throughout this section, you’ve learned how to use the core Blox tags to define

presentation Blox and their properties. You’ve also learned about the Blox utility

tags, including <blox:display>, <blox:debug>, and <blox:header>. To learn

specifics about the syntax and usage of these tags, see the Developer’s Reference and

this guide.

In the rest of this Developer’s Guide, you will be introduced to commonly

encountered tasks and some potential solutions. The Developer’s Guide and the

Developer’s Reference, along with some good JavaServer Pages references, should

take you a long way towards helping you develop sophisticated analytic

applications for your users.

44 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 6. Blox Form Tag Library

The Blox Form Tag Library includes FormBlox and other tags for generating

HTML form elements with built-in enhancements. Some of the tags automatically

generate selection lists for data sources, dimensions, and dimension members.

Others can be used to manage radio buttons and checkboxes, or to create tree

controls for navigation and other purposes. And, when you use these tags,

persistence of state is handled during the session. As a result, you do not need to

write additional Java or JavaScript code to manage the persistence of selections

during a user’s browsing session. The checkboxes maintain their checked state, the

last radio button selected stays selected, and tree menus maintain their state even

if a user leaves that page and returns to it later during the same session.

Using the Blox Form Tag Library

The FormBlox and related tags are defined in the Blox Form Tag Library descriptor

file. When you create a new DB2 Alphablox application, all the tag library

descriptor files are automatically included in the application’s WEB-INF directory.

Note: If the tag library descriptor files are not found, or are accidentally deleted:

v In V8.4 and earlier versions, copy the tag library descriptor files (TLD

files) from <alphablox_dir>/bin into your application’s WEB-INF/tlds

directory.

v In V8.4.1, copy the aastaglibs.jar file from <alphablox_dir>/lib into your

application’s WEB-INF/lib directory.

To use Blox form tags, the following taglib directive must be included at the top of

JSP pages for the tag library to be recognized.

<%@ taglib uri=”bloxformtld” prefix=”bloxform” %>

Overview of FormBlox components

The FormBlox components are briefly described below and some simple examples

of usage are described. The FormBlox components have been built using the same

lower-level Blox UI components that you have access to as a developer, but the

work of building these convenient Blox components has already been done for

you.

Detailed information (including syntax, usage, and examples) about the FormBlox

API and other form-related tags can be found in the Blox Form Tags Reference

section of the Developer’s Reference and in the Blox API Javadoc documentation.

FormBlox component categories

The FormBlox components of the Blox Form Tag Library can be grouped into four

categories: form controls, metadata selection lists, time schema selection lists, and

tree controls. Below is a brief overview of these component groups.

Basic form controls

This group of FormBlox components create basic HTML form controls, including

checkboxes, text fields or text areas, radio buttons, and selection lists. For the most

part, these Blox components offer similar capabilities as the standard HTML

© Copyright IBM Corp. 1996, 2006 45

elements, but also have the benefit of maintaining state throughout a session.

When a user event occurs, such as checking a checkbox or selecting an item in a

selection list, the changed value is sent to the appropriate object without refreshing

the page.

FormBlox Component

Description

CheckBoxFormBlox

Creates checkboxes (either individual or grouped) for selecting or

deselecting items using HTML <input type="checkbox"> tags.

EditFormBlox

Creates text fields or text areas using HTML <input type="text"> or

<textarea> tags.

RadioButtonFormBlox

Creates radio button form controls with <input type="radio"> tags.

SelectFormBlox

Creates drop-down and scrolling selection lists using the HTML <select>

and <option> tags.

Metadata selection lists

This group of FormBlox components create specialized HTML selection lists that

generate selection list options from data source metadata. These include selections

lists for data sources, multidimensional databases, cubes, dimensions, and

members. Since these lists are dynamically generated, you do not need to worry

about remembering to add or remove list options.

Unlike other basic HTML selection lists, these metadata selection lists maintain

state throughout a user session. When a user event occurs, such as checking a

checkbox or selecting an item in a selection list, the changed value is sent to the

appropriate object without refreshing the page.

FormBlox Component

Description

DataSourceSelectFormBlox

Creates a dynamically-generated HTML selection list of DB2 Alphablox

data sources.

CubeSelectFormBlox

Creates a dynamically-populated HTML selection list containing the

available cubes in a specified DB2 Alphablox data source.

DimensionSelectFormBlox

Creates a dynamically-populated HTML selection list of the available

dimensions in a specified multidimensional cube.

MemberSelectFormBlox

Creates a dynamically-populated HTML selection list including the

available members in a selected dimension.

Time schema selection lists

The time schema-related Blox Form tags allow developers to dynamically generate

selection lists for users to choose common business time periods and time units.

These selection lists can be used to drive analytic views that users see. Here is a

summary of the two major time schema tags, the TimePeriodSelectFormBlox and

the TimeUnitSelectFormBlox.

46 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Blox Component

Description

TimePeriodSelectFormBlox

Creates selection lists offering common business time periods, including

current week, current month, month to current, quarter to current, year to

current, last quarter, last two quarters, four quarters, last two months, last

three months, last six months, last year, and last two years. Can include

custom time periods.

TimeUnitSelectFormBlox

Creates HTML selection lists offering time unit options, which can include

day, week, month, quarter, and year.

Tree controls

This category includes one item, the TreeFormBlox. The TreeFormBlox creates tree

controls composed of folders and items. These folders and items, when selected,

which can have actions associated with them. A TreeFormBlox can be used to

create hierarchical selection lists and navigation menus. It can also use the HTML

form POST method. If enabled, items and folders can be dragged and dropped

within the tree control.

Blox Component

Description

TreeFormBlox

Creates DHTML tree controls that can be used for creating hierarchical

selection lists as well as navigation menus.

Getting and setting Blox and JavaBeans component

properties

The Blox Form Tag Library includes two nested tags, <blox:getChangedProperty>

and <blox:setChangedProperty>. The <blox:getChangedProperty> is useful for

passing pass values, or linking, between two FormBlox. The

<blox:setChangedProperty> can be used between two FormBlox, between a

FormBlox and another Blox component (e.g., a DataBlox), or between a FormBlox

and other custom JavaBeans components. The <blox:setChangedProperty> also

includes a callAfterChange attribute that can invoke a server-side Java method

after a change has happened. The boolean debugEnabled attribute can be useful in

debugging unexpected behavior.

Here is a summary of these two nested FormBlox tags:

Blox Component

Description

<bloxform:getChangedProperty>

Nested within a FormBlox to target another FormBlox. The specified

property value from the target FormBlox is passed to the FormBlox with

this tag.

<bloxform:setChangedProperty>

Nested within a FormBlox to target any other JavaBeans components,

including other FormBlox, Blox, or custom beans. The specified property

value from the owning FormBlox is passed to the target bean.

Chapter 6. Blox Form Tag Library 47

Detailed information (including syntax, usage, and examples) about the

<bloxform:getChangedProperty> and <bloxform:setChangedProperty> tags can be

found in the Blox Form Tags Reference section of the Developer’s Reference and in

the Blox API Javadoc documentation.

FormBlox event model

If you find it necessary, you can write your own event handlers for FormBlox

components. The simple FormBlox event model provides before and after values

from a control whenever it changes. The FormBlox components are not intended to

be comprehensive solutions for development, but offers a simple event model that

can be used to handle basic events, which occurs most of the time. If you need to

create more sophisticated components that can handle more complex requirements,

you can build your own using the Blox UI Model components, which support a

richer event model as well.

Examples using FormBlox tags

Many examples in Blox Sampler and elsewhere include the use of FormBlox

components. And, throughout this guide, examples appear using FormBlox. The

FormBlox components are a great resource for developers, handling many of the

onerous tasks involving coding for dynamic generation of lists and state

management. Highlighted below are some examples that make use of various

FormBlox components.

Ad Hoc Analysis using DataSourceSelectFormBlox

In Blox Sampler, under the Using FormBlox and Logic Blox section, there is

an example of using a DataSourceSelectFormBlox to create a simple view

for users to select a data source, then use a fully interactive PresentBlox to

analyze using the cube specified. A step-by-step description of the code

used in this example can be found in “Setting different data sources using

DataSourceSelectFormBlox” on page 114, in the Connecting to Data topic.

Query Builder

The Query Builder, found under the Workbench section of the Assembly

tab in the DB2 Alphablox Admin pages, is an interface that helps

developers generate multidimensional query statements for use with DB2

OLAP Server, Hyperion Essbase, and Microsoft Analysis Services. Behind

the scenes, if you view the source code for Query Builder, you will find

instances of FormBlox components being used, including the

DataSourceSelectFormBlox, the CubeSelectFormBlox,

Specifying Report Options using FormBlox

Another good example of usage of FormBlox components can be found in

the Using HTML Form Elements example under the Interacting with Data

section of Blox Sampler. In this example, the RadioButtonFormBlox and the

CheckboxSelectFormBlox are used to select report options.

Navigation Menu Using TreeFormBlox

When you open the Blox Sampler application, the navigation menu that

opens in the left frame uses the TreeFormBlox. See the navigation.jsp file

in the Blox Sampler application for an example of a large navigation menu

created using this FormBlox.

Report Templates in FastForward Applications

The Alphablox FastForward application makes extensive use of FormBlox

components to build report templates and for the navigation menu. To

examine the code used in the Alphablox FastForward application, create a

new copy of the application. Code examples of the use of FormBlox

48 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

components are also described in Chapter 25, “Working with DB2

Alphablox FastForward,” on page 259.

Chapter 6. Blox Form Tag Library 49

50 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 7. Blox Logic Tag Library

The Blox Logic Tag Library includes more easy-to-use tags that can be used for

handling time period selections, manipulation of multidimensional database

queries without a user needing to know how to create Essbase report scripts (for

use with DB2 OLAP Server and Essbase) or MDX statements (for use with

Microsoft Analysis Services) and member security.

Using the Blox Logic Tag Library

Tags for adding Business Logic Blox are available in the Blox Logic Tag Library.

When you create a new DB2 Alphablox application, all the tag library descriptor

files are automatically included in the application’s WEB-INF directory.

Note: If the tag library descriptor files are not found, or are accidentally deleted:

v In V8.4 and earlier versions, copy the tag library descriptor files (TLD

files) from <alphablox_dir>/bin into your application’s WEB-INF/tlds

directory.

v In V8.4.1, copy the aastaglibs.jar file from <alphablox_dir>/lib into your

application’s WEB-INF/lib directory.

To access the Blox Logic Tag Library on a page, the following JSP taglib directive

needs to be included:

<%@ taglib uri="bloxlogictld" prefix="bloxlogic" %>

Blox Logic Tag Library components

The major Blox Logic components in the Blox Logic Tag Library include the

MDBQueryBlox, the MemberSecurityBlox, and the TimeSchemaBlox summarized

below.

Detailed information (including syntax, usage, and examples) about the Blox Logic

Tag Library components can be found in the Business Logic Blox and TimeSchema

DTD Reference section of the Developer’s Reference and in the Blox API Javadoc

documentation.

Logic Blox

Description

MDBQueryBlox

MDBQueryBlox is an object representation of a multidimensional data

query. It allows you to manipulate an MDB query without using the query

language associated with the data source. Using the <bloxlogic:mdbQuery>

tag or its API, you can manipulate parts of the query such as changing

parts of the tuples of an axis. Once a change is made in MDBQueryBlox

(by calling its changed() method), its source DataBlox is automatically

updated with the data query re-executed.

MemberSecurityBlox

MemberSecurityBlox provides a list of members a user has access to on a

given dimension. It constructs the list by performing a suppressNoAccess

on the DataBlox based on the specified MemberSecurityFilter. To set a

© Copyright IBM Corp. 1996, 2006 51

MemberSecurityFilter, specify the dimension and the member(s) in that

dimension using the addMember() or setMember() method.

TimeSchemaBlox

Creates a time table for a given data source based on your definition of a

time schema. Using the TimeSchema Data Type Definition (DTD), you can

define how the Time dimension is structured by specifying: name(s) of the

time dimension(s), generation levels (for Year, Quarter, Month and Week),

start date of the time period in the cube, whether normal calendar time or

weekly time should be applied, and if the length of a year is exceptional

(such as 48-week year).

Using MDBQueryBlox components to select products

Through easy-to-use tags, the MDBQueryBlox can be used to manipulate

multidimensional queries without having any logic specific to DB2 OLAP Server,

Hyperion Essbase, or Microsoft Analysis Services.

In Blox Sampler, under Using Logic Blox, there is an example of using the

MDBQueryBlox with a PresentBlox to allow users to select a product from a select

list (created using a MemberSelectFormBlox). Here we’ll quickly go through the

major steps in creating a similar page:

1. Add the JSP taglib directives for the Blox tag libraries to be used on the page.

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxlogictld" prefix="bloxlogic" %>

<%@ taglib uri="bloxformtld" prefix="bloxform" %>

2. Define the DataBlox that will be used, setting the visible attribute to false and

enabling the use of alias member names by setting useAliases to true.

<blox:data id="dataBlox"

 visible="false"

 dataSourceName="QCC-Essbase"

 useAliases="true" />

3. Specify the lists of tuples to be used on the column, row, and page axes.

<!-- Column Time tuples -->

<bloxlogic:tupleList id="timeTuples">

 <bloxlogic:dimension>All Time Periods</bloxlogic:dimension>

 <bloxlogic:tuple>

 <bloxlogic:member>Qtr 1 01</bloxlogic:member>

 </bloxlogic:tuple>

 <bloxlogic:tuple>

 <bloxlogic:member>Qtr 2 01</bloxlogic:member>

 </bloxlogic:tuple>

</bloxlogic:tupleList>

<!-- Column Measures tuples -->

<bloxlogic:tupleList id="measuresTuples">

 <bloxlogic:dimension>Measures</bloxlogic:dimension>

 <bloxlogic:tuple>

 <bloxlogic:member>Sales</bloxlogic:member>

 </bloxlogic:tuple>

 <bloxlogic:tuple>

 <bloxlogic:member>Sales % of All Locations</bloxlogic:member>

 </bloxlogic:tuple>

</bloxlogic:tupleList>

<!-- Page tuples -->

<bloxlogic:tupleList id="pageTuples">

52 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<bloxlogic:dimension>Scenario</bloxlogic:dimension>

 <bloxlogic:dimension>All Products</bloxlogic:dimension>

 <bloxlogic:tuple>

 <bloxlogic:member>Actual</bloxlogic:member>

 <bloxlogic:member>All Products</bloxlogic:member>

 </bloxlogic:tuple>

</bloxlogic:tupleList>

4. Add a MemberSelectFormBlox for users to be able to select products from the

Product dimension.

<!-- MemberSelect FormBlox for the Product dimension. On change event,

 MemberSelect FormBlox will change the pageTuples.

-->

<bloxform:memberSelect id="selector"

 visible="false"

 dataBloxRef="dataBlox"

 dimensionName="All Products"

 rootMemberName="100"

 selectedMemberName="100">

 <bloxform:setChangedProperty

 formProperty="selectedMembers"

 targetRef="pageTuples"

 targetProperty="listFromMetadataMembers"

 callAfterChange="changed"/>

</bloxform:memberSelect>

5. Add an MDBQueryBlox.

<!-- The MDBQuery creates a query from the 2 column tuples,

 the page tuple and the row query fragment

-->

<bloxlogic:mdbQuery id="query"

 dataBloxRef="dataBlox">

 <bloxlogic:axis type="columns">

 <bloxlogic:crossJoin>

 <bloxlogic:tupleList tuplesRef="timeTuples" />

 <bloxlogic:tupleList tuplesRef="measuresTuples" />

 </bloxlogic:crossJoin>

 </bloxlogic:axis>

 <bloxlogic:axis type="rows"

 queryFragment=’<ROW ("All Locations") <ICHILD "All Locations"’ />

 <bloxlogic:axis type="pages">

 <bloxlogic:tupleList tuplesRef="pageTuples" />

 </bloxlogic:axis>

</bloxlogic:mdbQuery>

6. Add the PresentBlox, referring to the DataBlox specified earlier

<blox:present id="presentBlox"

 visible="false">

 <blox:data

 bloxRef="dataBlox" />

</blox:present>

7. Add the rest of the page to render the Blox and layout the view

<html>

<head>

 <blox:header />

</head>

<body>

<table width="100%" height="400">

 <tr>

 <td align="center" height="10">Product: <blox:display

 bloxRef="selector" /></td>

 </tr>

Chapter 7. Blox Logic Tag Library 53

<tr>

 <td>

 <blox:display bloxRef="presentBlox" width="100%" height="100%" />

 </td>

 </tr>

</table>

</body>

</html>

See Blox Sampler, under Using Blox Logic Tags, for the complete code and a

working example using the MDBQueryBlox and MemberSelectFormBlox.

Listing cube members using MemberSecurityBlox

The MemberSecurityBlox tag allows you to list members in a dimension based on

access permission rights. It uses the DataBlox suppressNoAccess property to filter

members and can take multiple root members. It can also be used to specify

multiple dimension:members pairs for filtering.

Here’s an example of how a MemberSecurityBlox can be used to :

1. Add the JSP page directive at the top of the file specifying the Java class that

needs to be accessed.

<%@ page import="com.alphablox.blox.logic.MemberSecurityFilter" %>

2. Add the JSP taglib directives for the Blox tag libraries you will be using.

<%@ taglib uri="bloxtld" prefix="blox"%>

<%@ taglib uri="bloxformtld" prefix="bloxform"%>

<%@ taglib uri="bloxlogictld" prefix="bloxlogic"%>

3. Remember to add the <blox:header> tag to the head section of the page.

<head>

 <blox:header />

</head>

4. Add a DataBlox to the page.

<blox:data id="myDataBlox"

 query="" dataSourceName="QCC-MSAS" />

5. Add the MemberSecurityBlox tag.

<bloxlogic:memberSecurity id="memberSecurityMsas"

 dataBloxRef="myDataBlox"

 cubeName="QCC"

 dimensionName="[Products].[Category]">

 <bloxlogic:memberSecurityFilter

 dimensionName="[Measures]"

 memberName="[Measures].[Sales]" />

 <bloxlogic:memberSecurityFilter

 dimensionName="[Measures]"

 memberName="[Measures].[COGS]" />

</bloxlogic:memberSecurity>

6. Add a SelectFormBlox.

<bloxform:select id="members"

 visible="false"

 multiple="true"

 size="5" >

<%

 members.setItems(memberSecurityMsas.getDisplayMemberNames());

%>

</bloxform:select>

7. Add a <blox:display> tag to the page where you want the selection list to

appear

54 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<body>

 <blox:display bloxRef="members" />

</body>

TimeSchemaBlox component

The TimeSchemaBlox creates a time table for a given data source based on your

definition of a time schema. Using the TimeSchema Data Type Definition (DTD),

you can define the structure of the Time dimension by specifying: names of the

time dimensions, generation levels (for Year, Quarter, Month and Week), start date

of the time period in the cube, whether normal calendar time or weekly time

should be applied, and if the length of a year is exceptional (such as 48-week

year).

The <bloxlogic:timeSchema> tag creates a TimeSchemaBlox that can be referenced

by a TimePeriodSelectFormBlox, a TimeUnitSelectFormBlox, or a MDBQueryBlox to

create a time period selection list or to manipulate the data query.

The XML file containing the definition of the TimeSchema should be named

timeschema.xml and stored in your application’s WEB-INF directory. The Data Type

Definition (DTD) used to define the TimeSchema XML is described in TimeSchema

XML DTD.

Details about the syntax and usage of TimeSchemaBlox and the TimeSchema XML

DTD can be found in the Business Logic Blox and TimeSchema DTD Reference

section of the Developer’s Reference.

The following code snippet shows a TimeSchemaBlox used by a

TimePeriodSelectFormBlox . By default, TimePeriodSelectFormBlox presents the

users with a list of time periods to choose from. When a selection is made, the

histTuples’ listFromMetadataTuples property is changed accordingly as the

changed() method is called.

<blox:data id="dataBlox"

 dataSourceName="QCC-MSAS"/>

 <bloxlogic:timeSchema id="timeSchema"

 name="MSAS"

 dataBloxRef="dataBlox" />

<bloxlogic:tupleList id="histTuples">

 <bloxlogic:dimension

 list="<%=timeSchema.getDimensions()%>">

 </bloxlogic:dimension>

 </bloxlogic:tupleList>

<bloxform:timePeriodSelect id="historySelector"

 timeSchemaBloxRef="timeSchema"

 selectedSeriesString="SEQUENCE(QUARTER,-1,1)(QUARTER)"

 visible="false">

 <bloxform:setChangedProperty

 formProperty="tuples"

 targetRef="histTuples"

 targetProperty="listFromMetadataTuples"

 callAfterChange="changed"/>

</bloxform:timePeriodSelect>

Chapter 7. Blox Logic Tag Library 55

56 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 8. Blox Portlet Tag Library

The Blox Portlet Tag Library provides tags that let you define a portlet link or

action link in your Blox or UI components. These links allow you to use the Portlet

API for portlet-to-portlet messaging. This section introduces the Blox Portlet Tag

Library and shows how it can be used to attach a ClientLink-based link or action

link to a top-level Blox or UI Component in a portlet.

Note: A top-level Blox is the outmost Blox that nests other Blox. For example, if

you have a PresentBlox with nested GridBlox and ChartBlox, the

PresentBlox is the top-level Blox.

Overview of Blox Portlet tags

Often times you want a click of a link in one portlet to trigger an update in

another portlet. The ClientLink object of the Blox UI Model lets you attach a link

to a specific Blox UI component. This URL-based link is handled by the browser

when the component is clicked. The ClientLink object causes the view layer to

handle the user’s click using its own logic rather than sending the action back to

the server. In addition to the URL to load, ClientLink also allows you to specify

the target window in which the new page is to be loaded and a browser window

feature string (for example, features= "scrollbars=yes,width=300,height=300").

However, in the portal environment, the link will only work the first time. After

the link triggers a page reload, the portlet link becomes stale due to the way the

portal server treats each request. Subsequent clicking of the link will not submit a

real action. The Blox Portlet Tag Library lets you add a PortletLinkDefinition or

ActionLinkDefinition, which provides the following functionality:

v If a PortletLinkDefinition is added, it is used to create a PortletLink object. The

PortletLink object is then used to define the actual link to invoke the URI with

the specified parameter values. The URL is re-encoded by the portlet each time

the page is refreshed, preventing it from getting stale.

v If an ActionLinkDefinition is added, it can be used to create a PortletLink. Or it

can be used to obtain a portlet URI for this link by passing an action name to

BloxResponse.getActionURL() .

When a PortletLinkDefinition or ActionLinkDefinition is combined with Blox, the

definition is assigned to the Blox while the PortletLink is used to generate a

ClientLink for use within the Blox UI Model. You can use the Blox Portlet tags

inside any data presentation Blox, FormBlox, ReportBlox, or any Blox UI Model

components that have the concept of a clicked event. While both

PortletLinkDefinition and ActionLinkDefinition can be used to create a PortletLink,

ActionLinkDefinition also lets you set the action name for this link definition to

create the PortletURI. However, you cannot pass the action name to

BloxResponse.getActionURL() after this definition has been used to generate a

PortletLink.

For details on essential code structure and development tips on how to add Blox to

your portlet JSP, start with the portlet tutorials in the Getting Started section.

© Copyright IBM Corp. 1996, 2006 57

Using the Blox Portlet Tag Library

Tags that support portlet development are available from the Blox Portlet Tag

Library. For portlet projects, you should use a portlet development tool to properly

set up the structure and the deployment descriptor file. See the tutorial on building

portlets in the Getting Started section for information on how to create a project so

all the needed Alphablox Tag Libraries and servlet mapping are properly

referenced and specified. For details on how to add Blox components to your

portlet, see the portlet tutorial in the Getting Started section.

Note: If the tag library descriptor files are not found, or are accidentally deleted:

v In V8.4 and earlier versions, copy the tag library descriptor files (TLD

files) from <alphablox_dir>/bin into your application’s WEB-INF/tlds

directory.

v In V8.4.1, copy the aastaglibs.jar file from <alphablox_dir>/lib into your

application’s WEB-INF/lib directory.

Blox Portlet tags are added to a Blox or Blox UI component by nesting the

<bloxportlet:actionLinkDefinition> or the

<bloxportlet:portletLinkDefinition> tag inside the Blox tag. This attaches the

link definition to the component. Parameters and their values are specified using

the nested <bloxportlet:parameter> tag:

<%@ page contentType="text/html"%>

<%@ taglib uri="bloxtld" prefix="blox"%>

<%@ taglib uri="bloxportlettld" prefix="bloxportlet" %>

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<portletAPI:init/>

<%

 String bloxName = portletResponse.encodeNamespace("buttonContainer");

%>

<head>

 <blox:header />

</head>

<blox:container id="myButtonContainer" bloxName="<%= bloxName %>"

 width="40" height="20">

 <bloxportlet:actionLinkDefinition action="showData">

 <bloxportlet:parameter name="a" />

 <bloxportlet:parameter name="b" value="2" />

 <bloxportlet:parameter name="c" />

 </bloxportlet:actionLinkDefinition>

<%

 BloxModel model = myButtonContainer.getBloxModel();

 model.clear();

 Button myButton = new Button("button1", "Show Data");

 model.add(myButton);

 model.changed();

%>

</blox:container>

You can then get to PortletLink from the named action, and set the link

information or parameter values in a scriptlet:

<%

 // programmatically set the parameter values for the named Portlet

 PortletLink plink = myButtonContainer.getPortletLink("showData");

58 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

plink.setParameterValue("a","1");

 plink.setParameterValue("c","xyz");

 myButton.setClientLink(plink.getClientLink());

%>

PortletLink is used to generate markup to call into a PortletLinkDefinition. Some of

the PortletLink methods include:

v getClientLink(): Returns a ClientLink representing this PortletLink to be used

within the Blox UI Model

v getLinkHRef(): Returns a String representing an HREF that could be used in an

HTML anchor tag

v setParameterValue(): Sets the parameter’s value within this link

For more information on ClientLink, see “The DHTML Client API framework” on

page 96.

Blox Portlet Tag Library examples

This section includes examples demonstrating the use of Blox Portlet tags inside a

Button (a Blox UI component) and a ReportBlox. Each example uses the basic

approach to adding an action link or portlet link:

1. Add the <bloxportlet:actionLinkDefinition> tag inside the Blox or UI

component to attach this link definition, and specify a name for the action

using the action attribute.

2. Use the nested <bloxportlet:parameter> tag to specify the name of the

parameter and its value.

You can then get the PortletLink for the named action and set the link information

or parameter values in a scriptlet. For details on the APIs, see the

com.alphablox.blox.portlet package in the Javadoc documentation. For more

examples on how to add a portlet link to a GridBlox and a TreeFormBlox, see the

Blox Portlet Tag Library Reference topic in the Developer’s Reference.

Adding links to buttons

The following example defines an action named ″showData″ for a Button with

three parameters. The PortletLink’s ClientLink is hooked up with the button, so

when the button is clicked, values for two of the three parameters for this

PortletLink are set. Additional code is needed to use this information, such as in

another portlet. This example only demonstrates how to set the link.

<%@ page contentType="text/html"%>

<%@ taglib uri="bloxtld" prefix="blox"%>

<%@ taglib uri="bloxportlettld" prefix="bloxportlet" %>

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<portletAPI:init/>

<%

 String bloxName = portletResponse.encodeNamespace("buttonContainer");

%>

<head>

 <blox:header />

</head>

<blox:container id="myButtonContainer" bloxName="<%= bloxName %>"

 width="40" height="20">

Chapter 8. Blox Portlet Tag Library 59

<bloxportlet:actionLinkDefinition action="showData">

 <bloxportlet:parameter name="a" />

 <bloxportlet:parameter name="b" value="2" />

 <bloxportlet:parameter name="c" />

 </bloxportlet:actionLinkDefinition>

<%

 BloxModel model = myButtonContainer.getBloxModel();

 model.clear();

 Button myButton = new Button("button1", "Show Data");

 model.add(myButton);

 model.changed();

 // programmatically set the parameter values for the named Portlet

 PortletLink plink = myButtonContainer.getPortletLink("showData");

 plink.setParameterValue("a","1");

 plink.setParameterValue("c","xyz");

 myButton.setClientLink(plink.getClientLink());

%>

</blox:container>

Adding links to ReportBlox components

The following example defines an action named ″selectProductCode″ for a

ReportBlox. The link is attached to the Product column. When a product name in

the report is clicked, the value for the parameter ″code″ is set to the product’s

code. Additional code is needed to use this information, such as in another portlet.

This example only demonstrates how to set the link.

<%@ page contentType="text/html" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<%@ taglib uri="bloxreporttld" prefix="bloxreport"%>

<%@ taglib uri="bloxportlettld" prefix="bloxportlet" %>

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<portletAPI:init/>

<head>

 <blox:header/>

 <link rel="stylesheet" href="/AlphabloxServer/theme/report.css">

</head>

<%

 String reportName = portletResponse.encodeNamespace("myReportBlox");

%>

<bloxreport:report id="report" bloxName="<%= reportName %>" interactive="false">

 <bloxreport:cannedData />

 <bloxreport:filter expression="Sales < 100" />

 <bloxreport:group members="Area" />

 <bloxreport:sort member="Week_Ending" />

 <bloxportlet:actionLinkDefinition action="selectProductCode">

 <bloxportlet:parameter name="code" />

 </bloxportlet:actionLinkDefinition>

<%

 PortletLink link = report.getPortletLink("selectProductCode");

 link.setParameterValue("code", "<value member=\"code\"/>");

 String href = link.getLinkHRef();

 String productLink = "<value/>";

 %>

 <bloxreport:text>

 <bloxreport:data columnName="Product" text="<%= productLink %>" />

 </bloxreport:text>

</bloxreport:report>

60 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

The following shows how this action might be processed with an

actionPerformed() method created to utilize this information through the Portlet

API:

<%

public void actionPerformed(ActionEvent event) throws PortletException {

 String actionString = event.getActionString();

 PortletRequest request = event.getRequest();

 if (actionString.equals("selectProductCode")) {

 String productCode = request.getParameter("productCode");

 // ... use the value of the parameter accordingly ...

 }

}

%>

Chapter 8. Blox Portlet Tag Library 61

62 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 9. Blox UI Tag Library

The DHTML Client UI model provides a library of tags to enable easy access to

commonly used UI manipulations. The tags are contained in the Blox UI Tag

Library and a full listing of each tag with properties can be found in the Blox UI

Tag Reference section of the Developer’s Reference.

DB2 Alphablox provides a tag library for manipulating the Blox, called the Blox

Tag Library. The Blox UI Tag Library is complementary to the Blox Tag Library.

Developers should use the Blox Tag Library to set data properties, perform general

UI manipulations (such as chart/grid orientation, making menu bars visible, and

adjust the split pane), and access general DB2 Alphablox functionality, such as cell

alerts and calculated members. If you need a higher level of control over the user

interface that cannot be provided by the Blox Tag Library, the Blox UI Tag Library

might provide the functionality that you need.

Blox UI Tag Library categories

The Blox UI tags are grouped into four categories:

Category

Description

Component Customization

For customizing the UI at the component level. Examples: customizing

menus and toolbars.

Custom Layout

Provide control over the layout of the grid, such as adding blank rows or

columns, or producing the grid in a butterfly layout.

Analysis

Used to incorporate analysis features into your application.

Utility Convenience tags for facilitating the processing of actions. Developers can

use utility tags to intercept user selections or take action when the grid

changes.

Blox UI tag examples

In this section, a few examples of the many Blox UI tags are shown to give you a

flavor of the power of these easy-to-use tags.

Blox UI component customization

The following example shows a component customization tag. These tags can be

used to add and remove, or enable and disable, menus in the user interface.

For example, you could disable the tools menu and remove the bookmarks menu

by using the following Blox and Blox UI tags:

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxuitld" prefix="bloxui" %>

...

<blox:grid id="testGridBlox"

 width="600"

© Copyright IBM Corp. 1996, 2006 63

height="700"

 bandingEnabled="true"

 rowIndentation="None"

 commentsEnabled="false">

 <blox:data bloxRef="dataBlox" />

 <bloxui:menu name="toolsMenu" disabled="true" />

 <bloxui:menu name="bookmarkMenu" visible="false" />

</blox:grid>

Custom layout tags

This next example shows the use of a custom layout tag to change the display of

the grid to a butterfly layout, which moves the row header into the middle of the

grid as shown in the following picture:

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxuitld" prefix="bloxui" %>

...

<blox:present id="bfpresent"

 visible="true"

 width="600"

 height="400"

 chartAvailable="false">

 <blox:grid bandingEnabled="true" />

 <blox:data bloxRef="bfdata" />

 <bloxui:butterflyLayout

 scope="{ Scenario:Budget }"

 showOnLayoutMenu="true"

 addSeparatorColumns="false" />

</blox:present>

Using the properties of this tag, developers can specify the position of the row

headers as well as whether or not separator columns should be introduced

between the header and the data.

Analysis tags

Developers can also incorporate analytics directly into their applications using an

analysis tag. For example, the assembler might want to incorporate a ‘bottom N’

calculation into their application:

This view can be achieved using the following PresentBlox tag and the Blox UI

bottomN tag:

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxuitld" prefix="bloxui" %>

...

<blox:present id="tbnpresent"

 width="600"

 height="500"

 chartAvailable="false">

 <blox:grid bandingEnabled="true" />

 <blox:data bloxRef="tbndata" />

 <bloxui:bottomN

 prompt="true"

 showRank="true"

 number="7"/>

</blox:present>

Blox UI analysis tags also include a general tag that enables developers to

incorporate calculations into their application.

64 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Utility Tags

Finally, the Blox UI Tag Library offers tags to make processing of user input much

easier. The following code sample uses a utility tag to intercept the user clicking on

the Pivot menu item to display a dialog.

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxuitld" prefix="bloxui" %>

...

<blox:grid id="testActionFilter"

 width="80%"

 height="500"

 bandingEnabled="true">

 <blox:toolbar visible="true" />

 <blox:data bloxRef="dataBlox" />

 <bloxui:actionFilter

 className="<%= MyActionFilter.class.getName() %>"

 componentName="dataPivot" />

</blox:grid>

<%!

 public static class MyActionFilter implements IActionFilter

 {

 public void actionFilter(DataViewBlox blox,

 Component component) throws Exception

 {

 MessageBox.message(component, "Action Filter",

 "Item clicked!");

 }

}

%>

In this example, the actionFilter class is defined in the JSP file and then

associated with the grid and the pivot menu item. Event filters are further

discussed in the Utility Tags section of the Blox UI Tags Reference in the

Developer’s Reference.

More Examples

Check out Blox Sampler for running examples, with source code, of these and

other Blox UI Tag Library tags.

Chapter 9. Blox UI Tag Library 65

66 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 10. DHTML Client UI Extensibility

This advanced topic is for developers comfortable working with server-side Java

APIs. The Blox UI Model, described in depth here, offers a rich and powerful API

for customizing user interfaces beyond the use of simple Blox UI tags. The next

topic, Chapter 11, “DHTML Client API,” on page 95, discusses the DHTML Client

API, which helps application developers bridge the gap between client-side and

server-side programming models.

The Blox UI Model

The DHTML User Interface Model is a programmatic API allowing application

developers to examine and control the end user’s user interface. This API provide

direct control over all aspects of the user interface, including what gets displayed

as well as the processing of user input. The UI Model API also provides a level of

control over the user interface similar to the control developers have over metadata

and result set data using the data API. Together, the data and user interface APIs

provide a developer total control and customization of all aspects of an

application.

As shown in the diagram below, the DB2 Alphablox framework includes:

v DB2 Alphablox internal architecture

v DB2 Alphablox server-side programming model, which includes the UI Model

v DB2 Alphablox application logic

v Blox Tag Libraries, including the Blox UI Tag Library

v DHTML Client API

The Blox UI Model API is a key part of the DB2 Alphablox server-side

programming model and is supported by all of the presentation Blox, including

Browser

DB Alphablox2

Application client code (JS)

DHTML client API DHTML/HTML/CSS/JS

Application server-side application logic (JSP/Java)

Blox tab libraries
including Blox UI

DB Alphablox2
application logic

Application server-side programming model/UI model

DB Alphablox2 internal architecture

Web application server

© Copyright IBM Corp. 1996, 2006 67

PresentBlox, GridBlox, ChartBlox, DataLayoutBlox, and PageBlox. The server-side

getBloxModel() method allows the application developer to access the model for a

specific Blox instance.

When we refer to the Blox UI Model, we are actually referring to three distinct

user interface concepts: components, controllers, and events. These components are

summarized here:

Concepts

Description

Components

The individual controls and containers that make up the user interface

such as buttons, list boxes, edit fields, grids, and charts. Components exist

in a hierarchy of containers to provide structure to the user interface. The

resulting model is a logical representation of the user interface presented to

the user.

Controllers

Used to process events from components, translating generic component

behaviors into application-defined behaviors. For example, a chart may be

displayed in response to a user selecting a CheckBox. In this case, a

controller interprets the checking of the checkbox as a signal to display the

chart. All application logic should reside in the one or more controllers

attached to model Components (or containers).

Events

Communicate state changes from the user interface, the underlying

application logic, and from the model itself to the Model’s components and

controllers. Each component and controller has a predefined set of events

that it recognizes and understands. Recognized events usually result in

modifying the locally stored state of the Component. Application code

should use events to trigger application logic based on user actions. For

example, when the state of CheckBox is changed on the browser, a

ClickEvent is generated and sent to the server. When an application’s

custom controller receives the ClickEvent it can perform the associated

application behavior such as displaying a chart.

 The main points to remember about the UI Model include:

v The Model is a server-side representation of the state of user interface objects on

the client. This allows server-side Java code to set up components, deal with

interactions between components, and process user input without having to

actually write any actual client-side code. The Model itself doesn’t really have an

input button; instead it allows server-side code to control the state of such a

button that is present to the user on the browser. For example, this allows

server-side code to determine which grid cells a user has selected.

v Programming directly to the UI Model is optional. Application developers only

need to interact with the model if and when they want to add new features or

modify existing features.

Purpose of the Blox UI Model

Each presentation Blox already provides a wide array of features and properties

that change the Blox’s appearance and behavior. These include:

1. Blox tag attributes (bandingEnabled, chartFirst, etc.)

2. Blox properties, manipulated in JSP scriptlets by method calls

3. Blox UI modifier tags, such as butterfly layout, compressed headers, etc.

68 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

If the built-in behavior is what the application developer desired then all that is

required is to add an attribute to the Blox tag or call a server-side Java method.

In some cases, the application developer desires a new feature that is not available

as a built-in property or wishes to tweak the implementation of built-in feature.

Prior to the introduction of the UI Model, the only recourse was to request a

change and wait for it to appear is a future product release.

Using the UI model, an application developer can change the behavior of built-in

features as well as add new features to the UI. Some examples of these

customizations include:

v Adding a new toolbar that provides a custom calculation operations

v Changing the appearance of grid

v Adding checkbox or other controls to grid cells and providing the logic to

process the user’s selections

v Modifying the right click menu depending on what user interface component

the user clicks on

The UI Model does not take the place of easy-to-implement built-in product

features, but it does provide application developers with practically unlimited

customization possibilities when needed.

Blox UI components overview

Every component in the model corresponds to a particular control on the user

interface. These controls include buttons, grids, trees, check boxes, list boxes,

charts, menus, toolbars, etc. Changing the state of a component in the UI Model

will affect the state of the control in the user interface. Likewise, as the user

interacts with the controls in the user interface, the UI Model is updated to reflect

the state of the control.

Since the model maintains the state of all the components, even if the user

refreshes the page, the server-based model will maintain the state of the

components and will use that state when refreshing the page. Server-based

application code can, at any time, inspect the state of any of the components used

in the user interface and does not need to store or mange state information

separately. For example, if a Checkbox component is added to the UI Model, the

Checkbox.isChecked() method will provide up-to-date information regarding the

checked state.

Within the UI Model, Components are arranged in a hierarchy that provides both

formatting control as well as a way to centrally manage sets of primitive

Components. This hierarchy is made possible by using one or more

ComponentContainers, which, in turn, can contain Components as well as other

ComponentContainers.

The resulting hierarchy might look something like this for a simple dialog:

Dialog ComponentContainer ComponentContainer CheckBox RadioButton

RadioButton ComponentContainer Button Button

UI Model components can be changed, modified, added, or deleted at any time

during the lifetime of a Blox. This allows the user interface to change as the user

interacts with the interface, selecting options and features. When changing

Chapter 10. DHTML Client UI Extensibility 69

components after the initial page has been delivered to the browser, the developer

must invoke the changed() method as follows:

v If a component is modified either directly or indirectly (i.e., its style is changed),

then changed() should be invoked on the component itself

v If a component is added or deleted, then changed() should be invoked on the

parent container.

The changed() method has no effect (either positive or negative) when called on

components before the initial page is delivered to the user.

Components

Every component in the model corresponds to a particular control on the user

interface (except those that are hidden). These controls include buttons, grids, trees,

check boxes, list boxes, charts, menus, toolbars, etc. In the UI Model, Component is

the base class for all visual components and containers. Thus, every visual

component is derived from Component. The Component class provides the base

set of properties and behaviors needed for a visual component to participate in the

UI Model framework. Likewise, all non-visual model objects such as styles, layouts

and chart axis definitions do not descend from the Component base class.

Component names

All components can be assigned a name. The name is changeable during the

lifetime of the Component, but most likely it will be set once and remain

unchanged for the lifetime of the component. The name serves two purposes:

1. The name is used to identify the component and its role in the model. For

example, each menu item has a name that is used to identify its specific

function. If components did not have names, then it would be very difficult to

identify the components purpose – especially when components are moved

around inside of the model. Named components can be moved around inside

of the model and still operate normally.

2. The name of a component serves as its “action code.” Components that

generate action events (for example, ClickEvent) use the name of the

component, if available, to map the action to a method. This is fully described

later in the Controller section.

Handling non-unique component names

Names do not have to be unique and in the default Blox models, some names are

shared by different components. This is very handy when multiple components

map to the same action and also allows components to be freely moved between

different Models.

Since names are not guaranteed to be unique, code that searches for components

by name should be prepared to deal with multiple results. To reduce the chances

of multiple results from a name-based search, start the search as deep in the

component hierarchy as possible. For example, if you are looking for a toolbar

button named “sort” you should start the search in each toolbar rather than at the

top of the model.

The example below shows you how to lookup all components with the same name

in order to perform some action on them (in this case to hide them).

ArrayList components =

 myBlox.getBloxModel().searchForAllComponents(“componentName”);

70 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

for (int i=0; i < components.size(); i++) {

 Component component = (Component)components.get(i);

 component.setVisible(false);

 }

Finally, there is no written “law” that names have to not be unique. Custom model

code can easily stick to a unique naming convention for the components it adds

and not worry about multiple results from component searches.

Built-in names

All components added by the Blox Model’s have a standard set of names. Avoid

using the same names for unrelated functions. Standard names for all major Blox

components are defined in the com.Alphablox.blox.uimodel.ModelConstants class

file in the Blox API Javadoc documentation as well as in the Blox UI Tags Reference

section of the Developer’s Reference. Always use the defined constants in your code

rather than using hardcoded strings.

Component titles

The title is used to describe the component to the user. For example, the title

added to a CheckBox would be used to tell the user why they are checking the

box. Each component uses the title in a slightly different manner, but the purpose

is the same. Below is a list of each component and how the title is used.

Component Type

How the “title” is used

Static The displayed value

ComponentContainer

Title for top-level containers, otherwise ignored

Checkbox

Displayed after the CheckBox

RadioButton

Displayed after the RadioButton

Edit Ignored

GroupBox

Title of the GroupBox

ListBox, DropDownList

Ignored

Image, StaticImage

Ignored

Toolbar, Menu bar

Used in menus to refer to Toolbars, otherwise ignored

Menu, MenuItem

The menu label

Button

The button label

Spacer

Ignored

Chapter 10. DHTML Client UI Extensibility 71

Containers

Every component must be in a container in order to be displayed. Containers can

be arranged in a hierarchy to provide encapsulation of sets of components as well

as for layout control. ComponentContainers provide services such as searching for

components inside of the container as well as searching for components anywhere

in a container’s hierarchy.

ComponentContainers are descendents of Component which allows containers to

be added to other containers and to share the base Component capabilities. For

example, containers can have names, UIDs, borders and background colors.

Components inside of a container are displayed according to the order in which

the components were added to the container. The container’s layout defines how

this order should be interpreted.

Layout

ComponentContainer layouts are limited to specifying the orientation used to

display Components in the container. Attach a VerticalLayout to a container to

cause the components to be stacked vertically. Attach a HorizontalLayout to a

container to cause the components to be displayed left to right.

// Show the components in the container vertically stacked

ComponentContainer.setLayout(new VerticalLayout());

// Show the components in the container left to right

ComponentContainer.setLayout(new HorizontalLayout());

Compound components

The Model provides a number of core user interface Components. But, in many

cases, it may be desirable to create higher-level Components consisting of some

number of core components working in harmony. These “compound components”

can then be treated as any other component and can be added to the UI as needed.

Creating a compound Component is as simple as extending the

ComponentContainer class and adding the desired user interface Components.

For example:

Class MyComponent extends ComponentContainer {

 public MyComponent() {

 add(new Static(“label:”));

 add(new ListBox());

 }

// Deal with events and add custom behaviors

}

The above MyComponent class can then be added to any ComponentContainer as

easily as any of the core Component classes:

myContainer.add(new MyComponent());

Create compound Components to create reusable custom Components with built-in

behavior that can be used as easily as one of the core Components.

72 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Using ContainerBlox

In order to display any UI Model components on the page, they must be placed

inside of a Blox frame. ContainerBlox is essentially an empty Blox frame with no

predefined DB2 Alphablox application logic. It provides developers with an area

on the page to create custom user interfaces using the UI Model’s user interface

components. Since the ContainerBlox has no predefined behavior, the developer

needs to manually add all required Components including menus, toolbars, grids,

etc.

An application developer would use a ContainerBlox when the application requires

a custom user interface which is not provided by any of the presentation Blox. For

example, use a ContainerBlox to place a UI Model Tree component on the page to

assist in user navigation. In this example, it is desirable not to inherit any of the

existing Blox behaviors since the tree operation is 100% defined by the application.

ContainerBlox can be used like any other Blox with a UI Model such as:

<blox:container id="myComponent" >

<%

 BloxModel model = myComponent.getBloxModel();

// Add user interface components and handlers

// Keep in mind that the model is empty

%>

</blox:container>

Alternatively, the ContainerBlox can be subclassed in order to create a

self-contained custom Blox component based on the Model.

class MyComponent extends ContainerBlox

{

 public MyComponent()

 {

 BloxModel model = myComponent.getBloxModel();

// Add user interface components and handlers

 }

}

The above class could then be used in a <jsp:useBean> tag, such as:

<jsp:useBean id="myBlox" class="MyComponent" scope="session" />

Controllers

Controllers provide the application logic that defines the behavior of one or more

components. The UI Model’s base controller class also provides a number of

services, which make processing events easier, as well as provide a framework to

easily override standard controller behavior. Any Component or

Component-derived class can have an attached controller, however, not all

Components need to have a controller and in most cases this will be the norm.

When a Component receives an event, the event is dispatched to the Controller

attached to the component. If a controller is not available or the attached controller

indicates that the event should be passed along (by returning false from the event

handler), the event is sent to the component’s parent. The process repeats until the

event is handled or the component has no parent, as in the case of the top-level

container, and the event is just ignored.

Chapter 10. DHTML Client UI Extensibility 73

Since controllers typically provide application logic that translates the state of

many components into a single action, they are most likely to be attached to

containers rather than the individual components. A prime example of this are

Dialogs where many components will be controlled by the controller attached to

the dialog.

Even though containers are more likely to have an attached controller, there is

nothing preventing a component from having a dedicated controller. Typically

components will have their own controller in the following situations:

v The Component is an addition to the user interface that does a specific task.

Most application developer added menu items and toolbar buttons fall into this

category and it makes sense to simply add a controller to the added component.

v The Component is part of a container with a controller, but the component does

some special processing that affects its state. For example, an edit control could

have a controller that specifically validates user input.

The Controller base class

All controller classes must descend from the Controller class. This base class

provides a number of services, including:

v Converting all received events to method calls. Each event received by the

controller causes a method of the form public boolean

handleEventType(EventType event) throws Exception to be invoked. EventType

should be replaced with the actual event class such as SelectionChangedEvent. If

the method does not exist, then the controller will ignore the event.

v Converts ClickEvents, which are the primary user action events, into method

calls based on the name of the Component the user clicked. For example, a

ClickEvent on the Button Component named “myButton” will cause the method

public void actionMyButton(ModelEvent event) throws Exception to be

invoked. If the method does not exist, then the controller will ignore the event

and pass it along to the next interested party, if any.

v Invokes the closedDialogName() method when a dialog created by a component

associated with the controller is closed.

v Provides the infrastructure that allows custom code to add event handlers to

override the controller’s built-in event behavior.

Implied controllers

A number of the core Components have implied controller that cannot be

overridden. These implied controllers handle internal state changes so that the

Component reflects the correct state before the attached controller can examine the

Component’s state. For example, when a check box is checked, the CheckBox

component will immediately check itself when it receives a ClickEvent before any

controllers receive the ClickEvent.

When a controller receives an event, the controller can safely interrogate the

Component for state information and be assured that the Component’s model on

the server accurately reflects the state of the control on the client.

74 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Blox UI Model events

Events are used to communicate component state changes and actions between the

browser and the UI Model. They are also used inside the UI Model to notify

controllers of model and property changes.

The main points about UI Model events:

v Most events convey granular user interface actions. For example, button clicks,

menu clicks, scrolling, etc.

v Events can be intercepted by application developer code. For example, code can

intercept a users click on the drill down menu item.

v Events in the UI Model are similar to JavaScript events in that they are both

concerned with user interface actions

v An event is dispatched to the component which generated the event and then to

its parents

v Events are also used to transmit information between controllers and

components inside of the model

v These internal events allow code to intercept key actions inside of the model as

well user interface actions. For example, when the grid creates a cell it generates

an event that allows code to customize the cell.

Events are dispatched in a specific order that lets all related components and

controllers participate in event processing as follows:

1. Model object – the specific model component generating the event (such as an

edit field content change).

2. Model object controller – if the component has a controller, that controller will

receive the event

3. Model object’s parents - Steps 1 and 2 above are repeated until the top-level

container is reached.

4. Model controller – The top-level controller for the model will be the last stop

for the event. If the controller does not handle the event, it will be discarded.

In all cases, an event handler can do one of the following:

v Ignore the event and do nothing which causes the event to continue being

dispatched

v Absorb the event and optionally take some action, which may include

generating additional events. No further dispatching of the event will take place.

v Modify the event and allow it to continue being dispatched.

v React to the event, but allow it to continue being dispatched

v Access the component which generated the event using getComponent()

v Access any other properties specific to the event

The following examples describe how you can intercept an event from a Button

Component. For each example, the component is a button named MyButton and it

is being added to a Blox named blox. All buttons generate a ClickEvent when the

user presses the button.

Adding dedicated controllers to components

In this example, we will add a controller to the button itself, which will process the

button click. This makes it simple to add behavior when single Components are

added to the model, but can make it difficult to coordinate behavior across

Chapter 10. DHTML Client UI Extensibility 75

multiple Components. You would use this method of handling events when a

component does not already contain a controller or when you wish to replace the

preexisting controller.

<blox:grid ... >

<%

 BloxModel model = blox.getBloxModel();

 Button button = new Button("MyButton");

 button.setController(new Controller() {

 public boolean actionMyButton(ModelEvent event) throws Exception

 {

 // Do something

 }

 });

 model.add(button);

%>

</blox:grid>

Adding listeners to preexisting controllers

This example adds the button handler to a Blox model controller. Here we are

adding our listener to a controller higher in the model hierarchy. The event will be

sent to the component that caused the event (i.e., the Button component), and then

percolate up the component hierarchy.

<blox:grid >

<%

 BloxModel model = blox.getBloxModel();

 model.add(new Button("MyButton"));

 model.getController().addEventHandler(new IEventHandler() {

 public boolean handleClickEvent(ClickEvent event)

 throws Exception {

 if (“MyButton”.equals(event.getComponent().getName())){

 // Do something

 return true;

 }

 return false;

 }

 });

%>

</blox:grid>

Notice that in all of the above examples, the event handler is being added inside of

the Blox tag. This is an important point because you do not want the handler

added every time the page is refreshed. All code inside of the Blox tag is only

executed when the Blox is initially created and not on every page refresh. There is

a similar convention when <jsp:useBean> is used with session scope.

Model Dispatcher

Once a component is attached to a Blox model, that component can be used to

obtain a model dispatcher. The dispatcher is a service point provided by the

top-level container in the model, and offers a number of model-related services.

The following services are available from the dispatcher (see BloxModel and the

IModelDispatcher interface):

v Displaying a dialog – causes a dialog to be displayed on the client using

showDialog()

v Closing a dialog – cause the dialog to be closed on the client using

closeDialog()

76 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

v Obtaining a reference to the top-level container with getTopLevelContainer()

v Dispatching events – dispatches an event inside the model using

dispatchEvent()

v Displaying a browser window – causes the browser to display a new window

with the provided URL with showBrowserWindow()

v Sending JavaScript commands to the client with sendClientCommand()

v Displaying a right click menu – causes the browser to immediately display a

right click menu at the specified location using setAttachedRightClickMenu()

v Controlling the busy state – allows code to put the browser UI into a busy state

until release using setBusy()

The most common use of the dispatcher is to display a Dialog as follows:

component.getDispatcher().showDialog(myDialog);

Components not attached to a Model will not have model dispatcher.

Dialogs

Dialogs are used to collect input from users in order to set options or clarify user

intentions. The UI Model makes it easy for application developers to quickly

construct and display a dialog to the user. A Dialog is a container which extends

the base ComponentContainer model object by adding two special abilities:

1. The Dialog lives in its own separate, sizable, moveable window on the browser

2. The dialog can optionally stop the rest of the user interface from accepting

input until it is dismissed.

Otherwise, Dialogs work like other ComponentContainers. Most, if not all Dialogs

will also require a Controller to interpret a user’s selections and take action.

To focus the user’s attention on a Dialog, set the dialog’s modal property using the

Dialog.setModal(boolean) method. Modal Dialogs prohibit interaction with other

parts of the user interface until they are dismissed. Modeless Dialogs do not

prohibit user interface interaction and are best used for Dialogs having an “apply”

feature. Multiple Dialogs can be simultaneously displayed with the last displayed

Modal Dialog in control of the user interface.

Dialogs will redisplay if the user refreshes the browser page.

Creating simple dialogs

Using the Blox UI Model, you can create dialogs for capturing input from users. To

create a dialog, follow these basic steps:

1. Create the dialog from a UI Model resource file.

2. Create a controller which extends DialogController to handle all user

interactions with the dialog. In most cases OK, cancel, and apply will be the

only user actions that the controller is interested in.

3. Attach the controller to the Dialog object.

4. Instruct the model dispatcher to display the dialog.

In the example that follows, the JSP page adds a custom menu item labeled “My

Menu Choice,” available under Data in the menu bar of a PresentBlox. When a

user clicks on “My Menu Choice,” the dialog defined in an XML resource file is

displayed. In this simple example, the dialog asks the user a question with an OK

Chapter 10. DHTML Client UI Extensibility 77

or Cancel response. Shown below is the code for the two files, the JSP page

displaying the PresentBlox and custom menu item and the XML resource file used

to define the dialog window. The JSP page expects the XML resource file to be

found at the application’s root directory.

JSP page (customDialog.jsp)

The following JSP file will display a PresentBlox on a page, with a custom “My

Menu Choice” menu option available at the bottom of the Data menu. To

understand what is happening, read the comments in the JSP file.

<%@ page import="com.alphablox.blox.*,

 com.alphablox.blox.uimodel.*,

 com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.core.event.*,

 com.alphablox.blox.uimodel.core.Component.*,

 com.alphablox.blox.uimodel.core.grid.*,

 com.alphablox.blox.uimodel.tags.IActionFilter,

 com.alphablox.blox.uimodel.tags.internal.ActionFilterAdapter,

 com.alphablox.blox.data.*,

 com.alphablox.blox.data.mdb.*" %>

<%@ page import="java.io.*,

 java.io.File.*,

 java.util.*" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<%@ taglib uri="bloxuitld" prefix="bloxui"%>

<%!

 // class needs to be static in order to be used by the

 // bloxui:actionFilter tag

 public static class MyActionFilter implements IActionFilter {

 String dialogPath;

 public MyActionFilter(PageContext pageContext) {

 File ctxPath =

 new File(pageContext.getServletContext().getRealPath(""));

 dialogPath = ctxPath.getAbsolutePath() + File.separator +

 "MyDialog.xml";

 }

 // handle the action for the MyMenuChoice component

 public void actionFilter(DataViewBlox blox, Component component)

 throws Exception {

 System.out.println("actionMyMenuChoice() was called");

 try {

 Dialog dialog = Dialog.createFromResource(dialogPath);

 DialogController dialogController = new MyDialogController(dialog);

 // Attach the controller to the dialog

 dialog.setController(dialogController);

 // Get component from the event so we can get model dispatcher

 // The dispatcher is used to send the dialog to the client

 component.getDispatcher().showDialog(dialog);

 }

 catch(Exception e) {

 System.out.println("actionMyMenuChoice() exception" + e.getMessage());

 throw e;

 }

 }

 }

 public static class MyDialogController extends DialogController {

78 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

public MyDialogController(Dialog dialog) {

 super(dialog); // must be the first thing in this constructor

 System.out.println("MyDialogController () was called");

 }

 public void actionOk() {

 // Take some action

 System.out.println("actionOk() was called");

 // Invoke default OK handler after taking the action

 super.actionOk();

 }

 }

%>

<blox:data id="analyticsDataBlox"

 dataSourceName="QCC-Essbase"

 query="!">

</blox:data>

<blox:present id="analyticsBlox"

 visible="false"

 width="95%"

 height="45%"

 splitPane="false"

>

<blox:data bloxRef="analyticsDataBlox"/>

 <bloxui:menu name="dataMenu">

 <bloxui:menuItem separator="true" />

 <bloxui:menuItem name="MyMenuChoice"

 title="My Menu Choice" />

 </bloxui:menu>

 <bloxui:actionFilter

 filter="<%= new MyActionFilter(pageContext) %>"

 componentName="MyMenuChoice" />

</blox:present>

<html>

<head>

 <blox:header/>

</head>

<body>

<blox:display bloxRef="analyticsBlox" />

</body>

</html>

XML resource file (MyDialog.xml)

In the example above, we created the dialog using a resource file. Alternatively, we

could create the dialog by creating and adding the individual components that

make up the dialog. The resource file consists of a language localizable XML

representation of Components in the dialog and is a simple way to create dialogs,

menu bars, and toolbars.

The dialog resource MyDialog for the example would look something like this:

<?xml version="1.0" ?>

<Dialog name="MyDialog"

 title="My Dialog"

 cache="false"

 modal="true"

 height="150"

 width="500"

 layout="vertical">

<Static title="Do you really want to do this?" />

<ComponentContainer layout="horizontal" alignment="center">

 <Button name="ok" title="OK" />

Chapter 10. DHTML Client UI Extensibility 79

<Button name="cancel" title="Cancel" />

</ComponentContainer>

<Spacer />

</Dialog>

Any of the core Model Components can be added to the resource file as children of

a container. For more information about resource files, refer to the XML Resource

Files Reference section of the Developer’s Reference.

MessageBox

A MessageBox is a modal Dialog with a simple API to enable developers to quickly

and easily display a text-based message to the user. The MessageBox can collect

simple input from the user in the form of OK, Yes/No, Yes/No/Cancel, and

OK/Cancel responses. The MessageBox is always modal in nature so that the user

must respond before continuing to interact with other parts of the user interface.

If the application logic needs to inform the user about some situation, then a

MessageBox can be sent to the user and the user’s response can be ignored.

MessageBox.message(myBlox.getBloxModel().getModelDispatcher(),

 "Attention User",

 "Some situation has occurred you should know about");

When the application logic is interested in the user’s response, it can use the

callback mechanism provided by the MessageBox class to be informed of the user’s

wishes. In this case, the MessageBox invokes a method on the IMessageCallback

interface to communicate the user’s response back to the application code. Any

class can implement this interface in order to receive notification when user

responds to the MessageBox.

An example of a Class displaying a MessageBox and providing a response handler:

class MyClass implements IMessageCallback

{

 public void ask(IModelDispatcher dispatcher) {

 MessageBox.message(dispatcher, “MessageBox Title”,

 “MessageBox message”,

 MessageBox.MESSAGE_OKCANCEL,this);

 }

 public boolean action(MessageBox messageBox,String action){

 // handle the user response

 }

}

// To invoke the above MessageBox

MyClass mine = new MyClass();

mine.ask(myBlox.getBloxModel().getModelDispatcher());

DHTML client application logic and flow

The UI Model controls a user interface that is split across multiple tiers - the DB2

Alphablox on one tier and the browser on the other. This is similar to the tiered

nature of HTML, but there are some critical differences.

The UI Model updates the DHTML user interface without page refreshes. As the

user interacts with the UI, changes are made to the page without refreshing the

entire page or frameset.

80 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

The UI Model keeps a representation of the user interface on the server that

maintains the state of the UI and provides a server-based programmatic interface

to the UI. This means that the two tiers need to be kept in sync with each other

and changes on the server need to be reflected on the client and vise versa.

Having the user interface split across multiple tiers and based on the HTTP

protocol impacts the way server-side code is written and how it handles user

actions. Server side code cannot wait around for user responses because those

responses happen on different threads and each thread is a limited server resource.

Most of this is not all that different than the way other user interfaces operate

whether it is done with message loops, callbacks, or handlers. In the UI Model,

controllers are used to handle user actions.

Code will typically be structured as follows:

Thread 1 (assume the user hit a button on the user interface)

1. Intercept the ClickEvent

2. Create a Dialog object

3. Populate the dialog with the required components

4. Attach a controller to the dialog to handle events from the dialog

5. Use the dispatcher to show the dialog (the dialog is not really shown at this

point, rather it is queued to be show as soon as possible)

6. Return from the ClickEvent handler

Some time passes ...

Thread 2 (assume the user hit OK on the dialog created by in thread 1)

1. Intercept the ClickEvent for the OK button in the dialog controller

2. Act on the state of the components in the dialog

3. Cause the dialog to close (again, the dialog is queued to be closed as soon as

possible)

4. Return from the ClickEvent

The example uses the case of displaying and collecting input from a Dialog, but

the general structure is the same for all Model components. The processing of user

actions and the creation of the model are always on different threads.

DHTML client is theme-based

The UI Model is driven by themes. All of the CSS class names used by the

DHTML client are published and available for override by application developers

who what to create their own custom themes. Keep in mind that the UI Model’s

chart object does not use the theme’s CSS setting since it is an image (see

“Charting” on page 83).

The CSS files are organized so that the common visual attributes such as color,

font, font size, and background image are easy to locate and change. All of these

attributes are located in each theme’s directory in a file named

themeName_dhtml.css (for example, coleman_dhtml.css). Refer to the CSS themes

documentation (“CSS themes” on page 158) for a list of the CSS class names and

their functions.

Chapter 10. DHTML Client UI Extensibility 81

The theme’s layout is applied to each Blox immediately before it is rendered. If

you have custom code that dramatically modified the layout of the UI Model, you

should turn off the theme layout application for that Blox. If you do not turn off

the theme layout application, it is very likely that your changes will be undone in

favor of the theme’s default layout.

The setApplyThemeLayout(boolean) method controls the application of the theme’s

layout to the Blox Model. Set this to false to stop the server from applying the

layout.

Styles

All UI Model components allow the developer to apply styles to override the

default styles provided by the controlling theme. Styles which may be applied to a

component include the foreground and background colors, fonts, borders, and

other text attributes such as underline, bold and italic.

UI Model styles work in conjunction with the styles defined in the controlling

theme’s CSS classes. When a style is applied to a component, only the attributes

specifically set in the style are applied to the component. Attributes not set will

continue to inherit the values supplied by the theme. This allows a developer to

set the foreground or background of a component and not worry about all the

other attributes such as fonts and borders.

Chart components use a slightly different style mechanism since charts are based

on images files which are not affected by a theme’s CSS styles. See the chart

section for a description of the chart-specific styles.

To apply a style to a UI Model component, you create a Style object and set it in

the component as follows:

// Make the text in a component bold

Style myStyle = new Style();

myStyle.setBold(true);

myComponent.setStyle(myStyle);

Alternatively, you can create a Style object using a CSS-like shorthand notation.

Please note that the shorthand notation is a limited subset of CSS and only

supports those CSS styles that are specifically supported by the Blox model Style

object.

// Make the text in a component bold

Style myStyle = new Style("font-weight:bold;");

myComponent.setStyle(myStyle);

In addition to the Style object, developers can also specify a specific CSS class to

be used for each UI Model component. You should use this when you want to

apply CSS styles that are not supported by the Blox model Style object. The class

specified can be located in a CSS file or specified on the HTML page using the

<Style> element.

// Set the CSS class to be used by tha component

myComponent.setThemeClass("myCssClass");

Care should be exercised when taking this approach since it also has the effect of

overriding the default DHTML theme classes specified for some components.

Further, some model components modify the theme class names depending on the

state of the component. For example, appending Disabled or Enabled to the CSS

class name.

82 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Setting multiple theme classes

If you want to extend the CSS class used for a component, it is possible to add

multiple theme class names separated by a space. For example, to add your CSS

class to a component which already has a class defined do the following:

button.setThemeClass("myThemeClass "+ button.getThemeClass());

Charting

One particularly interesting feature of the UI Model is charting. There are Chart

components that allow the assembler to create a chart or modify existing charts.

The purpose of this section is to provide a general structure of the chart UI Model

and several examples of common tasks so that an assembler can get started with

charting extensibility.

Key Terms related to charting

DataSeries

A data series is a list of data values each of which generally represents a

single member. For instance, if I have a grid with Sales versus Region

(East, West, North, and South), then I would have a data series that has 4

data values (1 for East, West, North, and South) and my data series would

have a name ″Sales″. Then, when the data is plotted on the chart, it would

make one line with 4 points on it. Different charts accept different types of

data series objects. One type of data series used by Bar, Line, Area, and Pie

charts is a SingleValueDataSeries where each point on the chart is just a

single value. BarDataSeries and LineDataSeries both extend

SingleValueDataSeries. Additionally there are multi-value data series as

well (such as ScatterDataSeries and BubbleDataSeries). For instance, a

ScatterDataSeries has an X and Y value for each data point.Some chart

types support only 1 data series. Currently the PieChart only supports a

single pie and there is only 1 data series per pie. Most chart types support

multiple data series. Imagine a line chart with 3 lines on it. Each line

represents a single data series (might be Sales, COGS, and Inventory for

instance) Each line has 4 points (East, West, North, South). Each data series

is plotted against 1 or more Axis. Axes can either be an OrdinalAxis or a

NumericAxis. See the bar chart code sample for how you might set up

your own BarChart.

OrdinalAxis

An OrdinalAxis is essentially an axis with string based labels. This is the

axis that contains the labels for groups of data. For instance, if I am

plotting a data series with values 3, 5, 4, 6 and these values come from the

East, West, South, and North Sales numbers, then the OrdinalAxis would

contain labels ″East″, ″West″, ″South″, and ″North″. The reason it is called

Ordinal is because the order of the data series matches the order of the

labels. Each label is essentially a bucket for data points.

NumericAxis

A NumericAxis is an axis on the chart where the actual data values (from

the data series) are plotted. For instance, if I have a data series with values

3, 5, 4, 6 then the NumericAxis would have a range of 0 to 10 (controllable)

and have tic marks every 1 (controllable) and would show up on the left

hand side of the chart (controllable).

Chapter 10. DHTML Client UI Extensibility 83

The Chart component

There is no single ″Chart″ component that represents all charts. The chart UI

Model has a different component for every basic class of charts (PieChart,

BarChart, LineChart, ScatterChart, DialChart, etc.). There are slightly different

APIs for each basic class of charts. For example, on a bar chart, several visual

properties can be set such as bar border styles, and bar width. These visual

properties have no analog in a LineChart (lines don’t have borders or width

although they do have thickness). So BarChart has a setBarBorder(borderStyle)

method while a LineChart does not.

All chart classes descend from the ChartObject. There are other logical groupings

where various chart classes can be treated similarly. For instance, there could be

code that works for all RectangularChart objects to put grid lines in the chart

region.

One important point in using the Chart UI Model involves casting the Chart object

to the appropriate type (see the above diagram). In order to get to the BarChart

APIs, you should first check that the Chart object is actually a BarChart, then cast

it accordingly:

Component chart = bloxModel.searchForComponent(ModelConstants.CHART);

 // Checks to see if the chart is actually a BarChart

 if (chart != null && chart instanceof BarChart) {

 BarChart barChart = (BarChart) chart;

 // Now we can use the specific BarChart APIs

 barChart.setBarWidth(20);

}

Chart objects can be created from scratch (see BarChart example below) but more

frequently, an assembler may want to modify an existing Chart object which has

been created from a ChartBlox. To illustrate how this is best done, see the Change

Context (Right-Click) Menu example below) which places a custom context

(right-click) menu on the Chart object.

Controlling chart settings

There are some common items that an assembler may want to configure. For more

details on the specific APIs, refer to the Blox API Javadoc documentation, available

from the Help menu in the DB2 Alphablox Admin Pages.

NumericAxis

Attribute

Description

axisTitle

The title for the axis. Will be displayed if possible (not possible for pies).

formatMask

Sets the format mask for how the numbers along the tic marks will be

displayed.

scale Sets the minimum, maximum and step size values for this axis.

84 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

OrdinalAxis

Attribute

Description

axisTitle

The title for the axis. Will be displayed if possible (not possible for pies).

labels Sets the text labels displayed below each tic mark.

DataSeries

Attribute

Description

seriesName

The title for the data series. Will be displayed in the legend.

dataValues

Sets the data values.

Legend

Attribute

Description

legendTitle

The legend title is displayed just above the legend items.

position

Along with Right and Bottom, TopLeft, TopRight, BottomLeft,

BottomRight, and Center. Center puts the Legend inside the chart.

legendLayout

Vertical or Horizontal orientation for the legend items. Horizontal means

all the legend items go on one line. Vertical puts 1 on each line.

ChartTitle, Footnote, AxisTitle

These are all ChartStatic objects.

Attribute

Description

displayText

The displayed text

tooltip

The tooltip that will be displayed if dwellLabelsEnabled is turned on

textStyle

Gives the ability to control the foreground color, font name, font size, and

font angle

regionStyle

Gives the ability to control the background color/image, border width,

border type, and border color.

Chart event handling

The chart component itself has the same event handling mechanisms as any other

Component. However, end-users can click on various portions of the chart (a data

point, a label, a legend item, etc.) and these events are handled differently since

Chapter 10. DHTML Client UI Extensibility 85

these are not full-fledged Components (they don’t extend the Component class).

Instead, there is a ChartComponent that serves as a superclass to Axis, Legend,

AbstractDataSeries, and ChartStatic (title, footnote). One ChartComponent can be

selected on a Chart at a time. An assembler can intercept this selected event in the

Chart’s Controller (or any parent Controller) using the example below. Note in the

example that only SelectedEvents which contain a special attribute

(Chart.EVENT_ATTR_TARGET) are processed. This “target” is the ChartComponent that

was selected:

chart.setController(new Controller() {

 public void handleSelectedEvent(SelectedEvent event) {

 Chart theChart = (Chart) event.getComponent();

 if (event.getAttribute(Chart.EVENT_ATTR_TARGET) != null) {

 ChartComponent chartComponent =

 theChart.getSelectedChartComponent();

 // If the user clicked on an OrdinalAxis, then figure

 // out the label and print it out

 if (chartComponent instanceof OrdinalAxis) {

 OrdinalAxis axis = (OrdinalAxis) chartComponent;

 Label label = axis.getLabels()[axis.getSelectedIndex()];

 MessageBox.message(theChart, "OrdinalAxis", "Label "

 + axis.getSelectedIndex() + ": " + label.getDisplayText());

 }

 if (chartComponent instanceof Legend

 && theChart instanceof OrdinalChart)

 {

 // Remember that the legend items map to 1 to each data series.

 Legend legend = (Legend) chartComponent;

 SingleValueDataSeries dataSeries = ((OrdinalChart)

 theChart).getAllDataSeries()[legend.getSelectedIndex()];

 MessageBox.message(theChart, "Legend", "Legend Item "

 + legend.getSelectedIndex() + ": " +

 dataSeries.getSeriesName());

 }

 if (chartComponent instanceof AbstractDataSeries

 && theChart instanceof OrdinalChart)

 {

 SingleValueDataSeries dataSeries = (SingleValueDataSeries)

 chartComponent;

 Number value = dataSeries.get(dataSeries.getSelectedIndex());

 MessageBox.message(theChart, "DataSeries", "Data Point "

 + dataSeries.getSelectedIndex() + ": " + value);

 }

 }

 }

});

Custom context (right-click) menus for charts

This example demonstrates attaching a custom right click menu to an existing

Chart object. When the end user right-clicks on chart data points, axis labels,

legends, etc. the custom contextual (right-click) menu will appear. One interesting

point to note is that any time an end-user does a data operation (e.g. drill down)

or changes chart types, the Chart object is rebuilt completely. The custom

right-click menu needs to be reattached every time this occurs. The

ComponentRebuiltNotify event is sent anytime the Chart object is rebuilt. A

handleComponentRebuiltNotify event handler is to reattach the context menu in

86 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

these cases. It is crucial that any modifications to the Chart object are done inside

the handleComponentRebuiltNotify() event handler otherwise as soon as the chart

type is changed (or there is some data operation), your customizations will be lost:

<blox:present id="customRightClick"

 width="80%"

 height="500">

<%

 PresentBloxModel bloxModel =

 customRightClick.getPresentBloxModel();

 // Find the chartBrixModel and its controller

 bloxModel.addEventHandler(new IEventHandler() {

 public boolean handleComponentRebuiltNotify(

 ComponentRebuiltNotify event)

 throws Exception

 {

 Component component = event.getComponent();

 if (component instanceof ChartBrixModel) {

 ChartBrixModel chartBrixModel = ((ChartBrixModel) component);

 Component chartMaybe =

 chartBrixModel.searchForComponent(ModelConstants.CHART);

 if (chartMaybe != null) {

 Chart chart = (Chart) chartMaybe;

 /*** Make the menu ***/

 Menu headerMenu = new Menu();

 headerMenu.add(new MenuItem("headerItem",

 "Header Menu Item ..."));

 // Add a dedicated controller to the header menu

 headerMenu.setController(new Controller() {

 public void actionHeaderItem(ModelEvent event) {

 MessageBox.message(event.getComponent(), "Right Click",

 "Test");

 }

 });

 chart.setRightClickMenu(headerMenu);

 return true;

 }

 }

 return false;

 }

});

%>

<blox:data

 dataSourceName="qcc-essbase"

 useAliases="true"

 query="<ROW (\"All Products\") <ICHILD \"All Products\"

 <COLUMN (\"All Time Periods\") <CHILD \"All Time Periods\" !"/>

</blox:present>

Blox UI Model examples

Single toolbar

In this example, the two default DHTML client toolbars are combined into a single

toolbar. This saves vertical space at the expense of horizontal width. Instead of

constructing an entirely new toolbar, the code appends all of the navigation toolbar

buttons onto the end of the standard toolbar and then removes the empty

Chapter 10. DHTML Client UI Extensibility 87

navigation toolbar. Since UI Model components can only exist in a single container

at one time, adding a component to a container also removes it from its old

container.

<blox:present id="task1present"

 width="800"

 height="400">

<%

 // Get the model

 PresentBloxModel model = task1present.getPresentBloxModel();

 // Get the two default toolbars

 Toolbar standard = model.getStandardToolbar();

 Toolbar navigation = model.getNavigateToolbar();

 // Add a separator

 standard.add(ToolbarButton.separator());

 // Move the buttons (don’t use an iterator because

 // the component is changing)

 while (navigation.size() > 0)

 standard.add(navigation.get(0));

// Remove the navigation toolbar and update the toolbar menu

 navigation.delete();

 model.populateToolbarMenu();

%>

</blox:present>

Disabling context (right-click) menus

This example will intercept the right click event on a Blox’s grid and, rather than

displaying the right click menu, it will display a message to the user. Since the grid

already has an attached controller, the example adds an event handler to that

controller which intercepts all RightClickEvents. Returning true from the event

handler will stop future processing of the event (return false to allow other

handlers to handle the event).

A Blox property exists which will disable the right click menu, but this example is

important because it is the foundation for customizing right clicking behavior. For

example, the handler could enable or disable the right click menu based on the

type of cell (row header, column header, data) or based on the contents of the cell

the user has selected.

<blox:present id="task2present"

 width="800"

 height="400">

<%

 // Get the model

 PresentBloxModel model = task2present.getPresentBloxModel();

 // Find the grid and its controller

 GridBrixModel grid = model.getGrid();

 Controller controller = grid.getController();

 //Add custom event handler to intercept the right-click event

 controller.addEventHandler(new IEventHandler() {

 public boolean handleRightClickEvent(RightClickEvent event) {

 MessageBox.message(event.getComponent(), "Not allowed",

 "Right clicking the grid is not allowed");

 // Return true to stop the processing this event

 return true;

88 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

}

 });

%>

</blox:present>

Customized context (right-click) menu

When a static header or cell right-click menu is not provided (that is, when

getHeaderCellRightClickMenu() or getCellsRightClickMenu() returns null), the grid

Brix’s contextual (right-click) menu is a copy of the Data menu found on the menu

bar of the Blox component. This is the default behavior for a newly created grid

Brix in either a PresentBlox or GridBlox. There are several ways of customizing the

right-click menu ranging from full replacement to adding items to the default

menu. Use the table below to help decide which method is best for the task.

 Table 2. Possible solutions for customization of menus

Requirement Solution

Replace the default right-click menu with a

static menu which is not affected by the

current cell selection.

Use setHeaderCellRightClickMenu() and

setCellsRightClickMenu() methods

Replace the default right-click menu with a

dynamic menu based on the current cell

selection.

Intercept the RightClickEvent at the

GridBrixController level and supply a menu

based on the cell selection. Be sure to return

″true″ from the event handler to prevent

default handling of the right-click event. See

the IModelDispatcher interface for details on

launching the right-click menu.

Add menu items to the default right-click

menu where the items are not dependant on

the current cell selection.

Add the menu items to the Data menu on

the menu bar. This only needs to be done

once and they will be automatically

replicated on the right-click menu.

Add menu items to the default right-click

menu where the items are dependant on the

current cell selection

Intercept the RightClickEvent at the

BloxModelController level, get the current

right-click menu using the IModelDispatcher

interface, and then add the custom menu

items.

This example overrides this default behavior by setting a custom right-click menu

for grid header cells and another for grid data cells. The menu items will display a

MessageBox to the user indicating the type of cell selected as well as the cell’s

value.

Although the right click menus added by this example are static (i.e., they do not

change based on the cell selected) the action that results from selecting the menu

item is very dynamic as the message displayed is adjusted for the cell(s) selected.

To do this, the controller attached to each menu item examines the current grid cell

selection and tailors the message using that selection.

For simplicity, this example only examines the first cell in the selection list which

may not be the actual clicked cell if multiple cells are selected.

<blox:present id="task3present"

 width="800"

 height="400">

<%

 // Get the model

 PresentBloxModel model = task3present.getPresentBloxModel();

Chapter 10. DHTML Client UI Extensibility 89

// Find the grid and its controller

 final GridBrixModel grid = model.getGrid();

 Controller controller = grid.getController();

 // Make and add the header right click menu

 Menu headerMenu = new Menu();

 headerMenu.add(new MenuItem("headerItem","Header Menu Item ..."));

 grid.setHeaderCellRightClickMenu(headerMenu);

// Add a dedicated controller to the header menu

 headerMenu.setController(new Controller() {

 public void actionHeaderItem(ModelEvent event) {

 // Get the selected cell(s)

 GridCell[] cells = grid.getSelectedCells();

 MessageBox.message(event.getComponent(),"Right Click",

 "You right clicked on a header cell - " +

 cells[0].getValue());

 }

 });

 // Make and add the data cell right click menu

 Menu cellMenu = new Menu();

 cellMenu.add(new MenuItem("cellItem","Cell Menu

 Item ..."));

 grid.setCellsRightClickMenu(cellMenu);

 // Add a dedicated controller to the cell menu

 cellMenu.setController(new Controller() {

 public void actionCellItem(ModelEvent event) {

 // Get the selected cell(s)

 GridCell[] cells = grid.getSelectedCells();

 MessageBox.message(event.getComponent(),"Right Click",

 "You right clicked on a data cell - " +

 cells[0].getValue());

 }

 });

%>

Custom grid layout

This example shows you how to create a custom grid layout that can modify the

contents of individual grid cells when the grid cell is created. In this example, the

layout modifies the cell by adding the Microsoft Analysis Services cell attributes as

a tool tip to each header cell (this example will only work for Microsoft Analysis

Services data sources).

The custom layout tag provides application developers with a way to customize

the entire grid or individual cells by taking care of most of the details of hooking

into the grid. These details include dealing with grid rebuild notifications and

handling cell modifications as the cells are needed rather than up-front when the

grid is built.

By default, the cells in a grid are not actually created until either (1) the user

requests a page containing the cell or (2) server-side code requests the cell from the

grid. In general, it is better to not cause the grid to create all cells.

The first part of this example demonstrates the <bloxui:customLayout> tag, which

hooks the custom layout class to the Grid. The tag will create an instance of the

layout class and attach it to the grid. It will also manage the layout’s appearance

90 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

on the layout menu which is an optional feature letting the user turn the layout on

and off. Further, the tag will save the user’s setting in all bookmarks saved by the

user.

<blox:present id="task5present" width="800" height="400" visible="true">

 <bloxui:customLayout

 className="CustomLayout"

 showOnLayoutMenu="true" />

</blox:present>

The class specified by the className attribute in the tag must exist on the server’s

class path or the tag will not be able to create an instance of the layout class. The

class itself must extend com.alphablox.blox.uimodel.layout.AbstractLayout. Refer

to the AbstractLayout Javadoc documentation for a complete listing of all the

methods and services provided. In this example, our layout class is only concerned

with cell creation and ignores grid creation.

The second part of the example is the actual class which extends AbastractLayout

and performs all of the work. The getFormatName() method returns the name of

the layout and will be used as the menu item if the layout is added to the menu

system.

All of the real work is done in the layoutCell() method. Each time a grid cell is

created; the layoutCell() method is invoked with a reference to the newly created

cell. The method checks the cell to see if it is a header cell and if so adds a tool tip

to the cell containing the member attribute information.

public class CustomLayout extends AbstractLayout {

 protected String getFormatName() {

 return "Custom Layout (show MSAS member attributes)";

 }

 protected void layoutCell(GridCell gridCell,DataViewBlox dataViewBlox)

 throws Exception {

 // Make sure this is a header cell, and it belongs to the grid Brix

 // (i.e. not added by another layout)

 if (!gridCell.isColumnHeader() && !gridCell.isRowHeader())

 return;

 Property[] properties = getHeaderCellProperties(gridCell,

 dataViewBlox);

 if (properties.length > 0) {

 // Create a tooltip with the properties and add to the cell

 StringBuffer buffer = new StringBuffer(200);

 for (int i=0; i < properties.length; i++) {

 if (i > 0)

 buffer.append("\r\n");

 buffer.append(properties[i].getName());

 buffer.append("=");

buffer.append(properties[i].getValue());

 }

 gridCell.setTooltip(buffer.toString());

 }

}

private Property[] getHeaderCellProperties(GridCell gridCell,

 DataViewBlox dataViewBlox) throws ServerBloxException {

 if (!(gridCell instanceof GridBrixCellModel))

 return new Property[0];

 GridBrixCellModel cell = (GridBrixCellModel)gridCell;

 MDBResultSet results =

Chapter 10. DHTML Client UI Extensibility 91

(MDBResultSet)dataViewBlox.getDataBlox().getResultSet();

 Axis axis = results.getAxis(cell.isColumnHeader() ?

 Axis.COLUMN_AXIS_ID : Axis.ROW_AXIS_ID);

 Tuple tuple = axis.getTuple(cell.isColumnHeader() ?

 cell.getNativeColumn() : cell.getNativeRow());

 TupleMember tupleMember = tuple.getMember(cell.isColumnHeader() ?

 cell.getNativeRow() : cell.getNativeColumn());

MDBMetaData meta =

 (MDBMetaData)dataViewBlox.getDataBlox().getMetaData();

Property[] properties =

 meta.getPropertiesOfMember(tupleMember.getUniqueName());

 return properties;

 }

}

Mapping grid cells to underlying result sets

This example of a custom grid layout adds a tool tip to each cell with information

about the unique name of header cells and the value of data cells. The example

demonstrates two important concepts:

1. The grid layout class can be put directly in the JSP page which may be

appropriate if the layout is only going to be used with a single Blox. Placing

the class code in the JSP file can quicken the development debugging cycle for

all layouts. However when a layout is developed in this manner it should be

placed in a separate class file after debugging.

2. The layout uses the MDBResultSet to UI Model conversion methods available on

the GridBrixModel to map UI Model grid cells to MDBResultSet objects.

The first part of this example shows you how to reference a class defined in the

actual JSP page. Since most web servers mangle the class name each time the JSP

file is compiled, the code obtains the layout’s class name directly from the class

itself. The application developer does not need to worry about the class path when

the layout class is placed in the JSP file.

<blox:present id="lookupGridCell"

 width="700"

 height="500">

 <bloxui:customLayout

 className="<%= CustomLayout.class.getName() %>"

 showOnLayoutMenu="true"/>

</blox:present>

The second part of this example demonstrates the Java class that implements the

layout. When each UI Model grid cell is created the custom layout invokes

findGridBrixCell() to obtain the MDBResultSet object corresponding to created

cell. The value returned from this method will depend on the result set object

matching the UI Model cell (this object will be a Cell, TupleMember or null).

GridBrixModel also provides methods to map cells from the result set to cells in the

UI Model.

Keep in mind when implementing custom layouts that the order of cells in the UI

Model grid may not match the order of cells in the actual MDBResultSet. This is

especially true for layouts such as the butterfly layout which moves the row

headers.

92 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<%!

 public static class CustomLayout extends AbstractLayout {

 protected String getFormatName() {

 return "Custom Layout";

 }

 protected void layoutCell(GridCell gridCell, DataViewBlox dataViewBlox)

 throws Exception {

 MDBResultSet results =

 (MDBResultSet)dataViewBlox.getDataBlox().getResultSet();

 GridBrixModel grid = (GridBrixModel)gridCell.getGrid();

 Object object = grid.findGridBrixCell(results, gridCell);

 if (object == null) {

 gridCell.setTooltip("This cell is not from the MDB result set");

}

 else if (object instanceof Cell) {

 gridCell.setTooltip("Cell\r\nValue:" + ((Cell)object).getDoubleValue());

 }

 else if (object instanceof TupleMember) {

 TupleMember member = (TupleMember)object;

 gridCell.setTooltip("TupleMember" + \r\nUniqueName: " +

 member.getUniqueName() +

 "\r\nDimension: " + member.getDimension().getUniqueName() +

 "\r\nAxis :" + member.getDimension().getAxis().getIndex());

 }

 else

 gridCell.setTooltip("Unexpected object: "

 + object .getClass().getName());

 }

}

%>

Javadoc documentation

See the DB2 Alphablox Information Center for complete UI Model Javadoc

documentation. The server-side Javadoc documentation lists all of the UI Model

classes and their methods. The Blox API Javadoc documentation is available by

clicking on the Help menu option in the DB2 Alphablox Admin Pages.

Chapter 10. DHTML Client UI Extensibility 93

94 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 11. DHTML Client API

This topic covers the DHTML Client API, which enables easy access to server-side

application logic and APIs using JavaScript methods and allows the assembler to

leverage client-side scripting to add value to the application by offloading

navigation, some UI manipulation, and entry validation from the server.

DHTML Client API overview

The core logic for an application built for the DHTML client is made up of

server-side components such as the UI Model, scriptlets, beans and other

supporting classes. As a result, the focus of the DHTML Client API is to enable

easy access to server-side application logic and APIs rather than exposing a large,

RPC-based API on the client. It also allows the assembler to leverage client-side

script to add value to the application by offloading navigation, some UI

manipulation and entry validation from the server.

The DHTML Client API is a client framework that provides services such as event

processing, error handling, communications services and an RPC mechanism for

JavaScript code.

Using the DHTML Client API

The DHTML Client API is used when HTML or JavaScript on the surrounding

page needs to interact with one or more Blox on the page. The main uses of the

client API include:

v Invoking server-side application logic: The DHTML Client API provides

methods to directly invoke methods on server-side beans. In addition, return

values from the server side beans are returned to the client and converted to the

appropriate JavaScript object.

v Event processing: Through the API, assemblers can send events to the server to

simulate a user interaction with the UI. JavaScript can be used to create event

objects such as click events and methods are provided to send the event to the

server. This allows HTML buttons and other controls outside of the Blox

framework to simulate user interactions. Events may also be used to change the

state of components within the model.

v Intercepting events: JavaScript methods can be registered as listeners for all

events generated by all Blox on the page. The event listener can choose to ignore

the event or let the event be processed normally. JavaScript can be written which

changes the behavior of the UI and/or processes some user selections on the

client.

v Polling the server for changes: The client API framework, in conjunction with

the server, automatically handles all UI updates and transfer of information

between client and server. However, the assembler does have the ability to

explicitly poll for changes. This is most often useful if the application is making

changes outside of the client framework. Common examples of this would

include communicating with the server through other frames or by using an

HTTP communications facility such as the XMLHTTP object.

© Copyright IBM Corp. 1996, 2006 95

v Handling errors returned by the server or communications layer: The client

framework will invoke a JavaScript method to handle server and

communications errors. Client code can register its own error handler to process

these errors.

Later in this section, examples of common uses of the DHTML Client API will be

provided.

The DHTML Client API framework

The client framework consists of two main objects, the BloxAPI object and the Blox

object, that power the UI and handle communications with the server. Some

related utility objects are also available.

BloxAPI Object

The BloxAPI JavaScript object contains a number of generic services used by all

Blox on the page. It provides communications services between the client and

server as well as a convenient RPC mechanism for JavaScript code. There is exactly

one BloxAPI object per frame controlling all incoming and outgoing traffic between

the server and all Blox in that frame.

The BloxAPI object handles the following:

v Polling the server for changes

v Providing APIs for event and error management

v Dispatching changes to the various Blox in the frame

v Handling communication and server errors

v Providing APIs for RPC access

v Providing an API to send events

Blox Object

Each Blox in the frame has an associated JavaScript Blox object. The Blox object is

responsible for the following:

v Responding to change notifications from the server

v Responding to and handling busy state and busy indication

v Providing DB2 Alphablox 4.x compatibility methods: isBusy(),

updateProperties(), flushProperties(), call(), and setDataBusy()

v Handling and managing Dialogs associated with the Blox

v Handling the right click menu associated with the Blox

Utility objects

In addition to the BloxAPI and Blox objects, the framework also supports some

utility objects, the most important of which include:

v xxxEvent – Specific objects for each type of model event that can be issued by

the client. Example: ClickEvent

v Grid – Provide read-only access to some grid properties such as the list of visible

selected cells

v Exception - Object used to communicate server exceptions to the client

96 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Sending events

The UI model exposes a number of events that can be issued by the client, such as

a ClickEvent. For each of these events, the DHTML Client API defines JavaScript

objects. As a result, JavaScript can be used to create event objects and sent the

event to the server. This allows HTML buttons and other controls outside of the

Blox framework to simulate user interactions. Events may also be used to change

state on custom model components. For example, the following HTML code will

send a ClickEvent to a model component with a UID of UID:

<input type=button value=”Show Dialog”

 onclick=”bloxAPI.sendEvent(new ClickEvent(‘container’, UID));” >

For a list of events that are exposed to the client, see the Developer’s Reference.

Initiating Blox UI Model events from JavaScript

It is possible to generate and send UI Model events from JavaScript back to the

server. Doing this allows regular HTML controls on the page to simulate the user

clicking on the Blox used interface. For example, the Blox’s menu can be turned

off, but HTML buttons can be placed on the page to give a user to some features

of the UI.

The example below will create an HTML button which invokes the data options

menu item when clicked.

<blox:present id="samplePresent"

 width="700"

 height="500">

</blox:present>

<%

/* In order to send an event from the client, we need the component’s UID */

 BloxModel model = samplePresent.getBloxModel();

 Component component = model.searchForComponent(

 ModelConstants.DATA_OPTIONS);

 int uid = component.getUID();

%>

<input type=button value="Data Options"

 onclick="bloxAPI.sendEvent(new ClickEvent(’samplePresent’,<%= uid %>));">

The input element’s onclick event handler is using the BloxAPI to send a

ClickEvent to the server. The ClickEvent is a JavaScript object which takes the

Blox name and the UID of the target component. Since the UID is dynamically

assigned, the code has to look it up in the model when the page is requested.

Intercepting events

There are two facilities available for intercepting events on the client side:

1. JavaScript code can register a listener for all client-side events. This means that

every action a user takes can be intercepted, examined, and either ignored or

processed. This approach provides control over just about every user

interaction with the UI. For example, each time the user selected a menu item a

ClickEvent is generated containing the Blox, the UID of the menu item, and the

name of the menu item.

2. The UI Model provides a ClientLink object that can be attached to most Model

Components that have the concept of a clicked action (i.e., generate that

ClickEvent). The ClientLink object causes the view layer to handle the user’s

Chapter 11. DHTML Client API 97

click using its own logic rather than sending the action back to the server. For

the DHTML client, any Component which has an attached ClientLink will be

processed on the client in the form of a JavaScript call or the opening of a new

browser window.

Intercepting client-side events

This example demonstrates how to intercept UI Model events on the client. A

developer would do this when the UI Model event performs some client-side

action that does not require server involvement.

The JavaScript eventHandler() function will be invoked for all events generated by

the UI. Since the handler sees all events, the code must examine the type of event

as well as the destination UID (or name) in order to intercept specific UI events.

Returning false from the handler will allow the event to be processed and sent to

the server. Return true to stop all further processing of the event.

The example is client-side JavaScript code:

<script>

function eventHandler(event) {

 alert("At handler for event " + event.getEventClass() +

 " on component " + event.getDestinationName() +

 " UID “ + event. getDestinationUID());

 return false;

}

</script>

bloxAPI.addEventListener(eventHandler);

Invoking JavaScript directly from the user interface

Rather than intercepting every event generated by the UI on the client, components

can be instructed to invoke client-side JavaScript directly. In this case, the

component will not sent a ClickEvent event to the server.

The code for assigning JavaScript methods to clickable components resides on the

server. The example below finds the options menu item on the Data Menu and

forces the menu item to invoke a JavaScript method (alternatively, the menu item

can be set to load a browser URL).

<blox:present id="samplePresent" width="700" height="500">

<%

 // Find the component

 BloxModel model = samplePresent .getBloxModel();

 Component component = model.searchForComponent(

 ModelConstants.DATA_OPTIONS);

// Create a client link using javascript:protocol method

 ClientLink link = new ClientLink(“javascript:

 myJavaScriptFunction();”);

 // Set the link on the component

 component.setClientLink(link);

%>

</blox:present>

When the Data Options menu item is clicked, the client will invoke the JavaScript

myJavaScriptFunction() function rather than send the event to the server. It is

assumed that the JavaScript function has been already defined on the page.

98 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Exception handling

When using callBean to invoke server-side code your code should be prepared to

handle Java exceptions if your server-side method has the possibility of throwing

exceptions. Given the exceptionThrower() method on the client bean myBean, your

JavaScript code should examine the return value to determine if an exception has

been thrown before processing the result as follows:

var retval = myBean.exceptionThrower();

if (retval.constructor == Exception) {

 alert(“Exception returned: “ + retval);

} else {

 // Process the response

}

Invoking server-side logic using the DHTML Client API

There are essentially three methods for invoking server side logic from the

DHTML client. The method you choose depends on how much of the process you

want the server to automate. The methods are listed here in order of least

automation to the most automation.

BloxAPI.call() and Blox.call() methods

This is the same call() method that was available in DB2 Alphablox 4. It allows

you to invoke URLs on the server, passing arguments as URL parameters. This

method can call rmi.jsp to provide automated argument passing and bean method

invocation. Values returned to JavaScript must be parsed and converted into the

desired data types.

For example, the following code uses the bloxAPI.call() method to invoke a

method on a bean (MyBean) that toggles the visibility of the data layout panel.

<%@ taglib uri=’bloxtld’ prefix=’blox’%>

<%@ taglib uri=’bloxuitld’ prefix=’bloxui’%>

<blox:present id="callpresent"

 visible="false"

 width="600"

 height="500"

 chartAvailable="false" >

 <blox:grid bandingEnabled="true" />

 <blox:data bloxRef="calldata" />

</blox:present>

<jsp:useBean class="MyBean" scope="session" id="myBean">

<%

 myBean.setBlox(callpresent);

%>

</jsp:useBean>

<html>

<head>

 <blox:header />

<script>

// Use call to invoke method on the bean

function showDataLayout(show) {

 var result =

 bloxAPI.call("rmi.jsp?bean=myBean&method=showDataLayout&arg1="+show);

 alert("Result type: " + typeof result + "\r\n\r\n" + result);

}

</script>

Chapter 11. DHTML Client API 99

</head>

<body>

<blox:display bloxRef="callpresent" />

<input type="button" value="Hide Data Layout"

 onclick="showDataLayout(false);" >

<input type="button" value="Show Data Layout"

 onclick="showDataLayout(true);" >

</body>

</html>

BloxAPI.callBean() method

This method will call a Java bean on the server similar to the combination of the

call method and rmi.jsp described above. It differs from that combination as

follows:

v It works directly with the server in finding and invoking a bean method. There

is no extra JSP file involved (i.e., you don’t need rmi.jsp).

v You can specify data types for outgoing method arguments.

v The return value is converted to a real JavaScript object.

v Most simple data types and arrays are supported as arguments and return

values.

To use callBean in the above example, simply replace the call() invocation with

the following:

var result=bloxAPI.callBean("myBean","showDataLayout",new Array(show));

The clientBean (<blox:clientBean>) tag

The Blox clientBean tag (<blox:clientBean>) can be nested inside of the

<blox:header> tag, and results in the server generating a JavaScript object for the

specified Java bean (or Blox). To use <blox:clientBean> in the above example,

incorporate the client bean tag into the Blox header. At that point, the developer

can make normal JavaScript method calls:

<blox:header>

 <blox:clientBean name="myBean" />

</blox:header>

<script>

// Use ClientBean to invoke method on the bean

function showDataLayout(show) {

 var result = myBean.showDataLayout(show);

 alert("Result type: " + typeof result + "\r\n\r\n" + result);

}

</script>

Important: In this example, no method was specified in the <blox:clientBean>

tag. As a result, a JavaScript method will be generated for each public

method in the bean. This can result in significant overhead for beans

with more than a few methods. As a result, it is recommended that

assemblers explicitly list the methods for which JavaScript is generated,

and that assemblers keep the number of methods to a minimum.

100 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Note that the only restriction on the use of <blox:clientBean> is that the

arguments passed and returned need to be supported by JavaScript, which

effectively limits the supported arguments to primitives and arrays.

Using <blox:clientBean> with server-side Blox components

The <blox:clientBean> tag can be used to access server-side Blox from the client

as well. Here is an example of how a JavaScript object for a PresentBlox could be

generated:

<blox:header>

 <blox:clientBean name=”myPresentBlox”>

 <blox:method name=”setDividerLocation”>

 <blox:method name=”setChartFirst”/>

 </blox:clientBean>

</blox:header>

Important: In this example, two methods are exposed. Given the number of

methods available on most of the SSPM Blox objects, it is mandatory

that the methods used be explicitly listed in the clientBean tag in the

header.

In order to use a server-side Blox in the header, define the Blox with

visible="false" and then use the <blox:display> tag to render the Blox in the

body of the HTML.

When an server-side Blox is used with clientBean, the following special processing

takes place:

v The name of the bean on the client has API appended to the end. This is done

regardless of the type of server-side Blox. In the above example, the actual

JavaScript object would be named myPresentBloxAPI. This is done because, in

most cases, there will already be a JavaScript object on the page added by the

DHTML client.

v As a convenience, if the DHTML client finds a JavaScript object with the Blox

name ending in API, it will allow developers to call the methods directly on the

main DHTML client’s Blox object. So, even though the client bean is called

myPresentBloxAPI, you can call methods on the myPresentBlox Blox object

directly. For example, both myPresentBlox.setChartFirst() and

myPresentBloxAPI.setChartFirst() will set the chart first.

v If a server-side Blox has a DataBlox or other nested Blox, such as within a

PresentBlox, you can access the nested Blox on the client without having to

create a separate client bean section. To do this, add methods to the parent

Blox’s list prefixed by data, grid, chart, dataLayout, toolbar, and page. To

invoke the method, use the appropriate getter with the main Blox for example,

myPresentBlox.getDataBlox().connect().

The example below is a full JSP page which demonstrates the use of embedded

Blox and the API suffix. Note that the data.setQuery in the GridBlox’s client bean

section which makes that DataBlox method available to JavaScript code.

<%@ page import="com.alphablox.blox.uimodel.*"%>

<%@ taglib uri=’bloxtld’ prefix=’blox’%>

<%@ taglib uri=’bloxuitld’ prefix=’bloxui’%>

<blox:data id="gridDB" ... />

<blox:grid id="grid" width="700" height="500">

 <blox:data bloxRef="gridDB" />

</blox:grid>

Chapter 11. DHTML Client API 101

<html>

<head>

 <blox:header>

 <blox:clientBean name="grid">

 <blox:method name="setBandingEnabled" />

 <blox:method name="isBandingEnabled" />

 <blox:method name="data.setQuery" />

 <blox:method name="data.connect" />

 </blox:clientBean>

 <blox:clientBean name="gridDB">

 <blox:method name="setQuery" />

 <blox:method name="connect" />

 </blox:clientBean>

</blox:header>

</head>

<body>

...

<!--

 Calling DataBlox methods via the GridBlox. Since the GridBlox

 is a DHTML Blox and appears on the page, the API suffix is optional.

-->

<input type="button" value="Set query via grid"

 onclick="grid.getDataBlox().setQuery(’!’);

grid.getDataBlox().connect();">

<!-- Calling datablox methods directly on the DataBlox. Note that

 here the API suffix is mandatory because there is not DHTML client

 Blox for the DataBlox.

-->

<input type="button" value="Set query via datablox"

 onclick="gridDBAPI.setQuery(’!’); gridDBAPI.connect();">

<input type="button" value="Toggle grid banding"

 onclick="grid.setBandingEnabled(!grid.isBandingEnabled());">

<blox:display bloxRef="grid" />

</body>

</html>

The DHTML Client DOM API

The Internet Explorer DOM is used extensively by the DHTML Client. The client

updates portions of the DOM as the user interacts with the client. As this is part of

the implementation the DHTML client, the DOM objects and attributes created by

the DHTML client will change in future versions.

Important: Developers should not write client-side code that manipulates or

traverses the DOM generated by the DHTML client, as the

implementation will likely change going forward.

The DHTML Client DOM API is included in Chapter 26, “DHTML client DOM

API,” on page 275.

Using multiple frames

The DHTML client treats each frame in an application as a separate entity. This

means that each frame containing a <blox:header> tag will have its own Client API

framework BloxAPI object. As far as the server and client API are concerned, Blox

in separate frames may as well be in different browsers.

Because Blox in separate frames are treated as separate entities, unexpected results

can occur if:

102 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

1. Blox in different frames refer to a common DataBlox. In this case, drilling or

other navigation operations performed on the Blox in one frame will not cause

the immediate update of a Blox dependent on the same DataBlox sitting in a

different frame. In practice, this shouldn’t occur too often, if at all.

2. Server-side code executed in one frame modifies or otherwise affects Blox in a

different frame.

In both cases, only the Blox in the frame causing the modification will be

immediately updated. Blox in other frames will not be updated until those frames

perform their automatic polls.

If this situation does occur, the automatic poll in its default state will not be

adequate since it may take as long as two minutes to update the Blox in all frames.

Some suggested options include:

1. Performing a manual poll using the BloxAPI object in each frame with affected

Blox.

2. Decreasing the poll timer from its default to a faster interval.

3. Avoiding the situation altogether by keeping Blox in a single frame or by not

allowing Blox in different frames to depend on the same DataBlox.

Refreshing pages

The DHTML client updates without refreshing the page by changing the contents

of HTML elements. Thus, as a user interacts with the client, HTML is constantly

changing in order to present new information. However, the browser does not

track any of these HTML changes. Instead, the browser caches HTML received

when the page was first requested. The browser also displays the HTML of the

initial page if you do a view source.

Important: Due to incremental page updates that occur with the DHTML client,

the HTML source code viewed from a browser’s View Source option

will usually not match the current state of the browser. This can make

debugging more difficult.

When a user refreshes a page or returns to a page using the browser’s Back button,

the browser restores the cached version of the page. Because changes to the

DHTML client are maintained on the server, the client and server have a method of

detecting and handling this situation to insure that the user is viewing the

up-to-date representation of the Blox. A side effect of this mechanism is that when

refreshing the page or using the Back button, you may see the original state of the

Blox momentarily before they are updated to the current state.

Chapter 11. DHTML Client API 103

104 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 12. Capturing events using server-side event filters

and listeners

You can capture a data analysis event and perform custom actions either before or

after the event is processed on the server. For example, when a user drills down on

a member, you can perform some checks to see if the user has the authority to

perform the action before the event is processed on the server. This allows you to

cancel the action if necessary. Or you might want to send an e-mail to the finance

department each time someone drills down on certain sensitive parts of the

database. Event filters are server-side objects that allow you to capture user data

analysis events such as drilling down or pivoting before the event is actually

processed on the server. Event listeners allow you to be notified after the user

event has been processed.

An important aspect of event filters is that they are triggered when an action

happens, but before the event is actually processed, thus allowing your application

to cancel the action before it happens. For example, the DrillDownEvent occurs

when a user clicks on a member to drill down, but before the drill-down action is

executed on the database and new data is returned to the client. Event listeners, on

the other hand, let you perform additional actions after the event is completed

successfully on the server. For example, after a hide-only event is completed, you

might want to update another Blox, handle an exception that is a side-effect of the

event, or send messages back to the client based on the results of the event. This

can be achieved using the event listeners. Event listeners will only be triggered

when the event is completed with no errors.

Event filter objects

The event filter objects are server-side objects that allow you to capture certain user

events such as drilling down or pivoting and perform actions before the event is

actually processed.

There are two types of event filter objects.

v DataBlox related: You can capture the following data analysis operations:

collapse, drill down, drill through, drill up, expand, hide only, keep only,

member select, pivot, remove only, show all, show only, swap axis, and data

query.

v Bookmark related: You can capture the following bookmark related events:

delete bookmark, load bookmark, rename bookmark, and save bookmark.

To use the event filters, you need to first add the specific event filter object using

the common addEventFilter() Blox method. Once you add an event filter to

DataBlox, PresentBlox, or other user interface Blox, you can then write your own

class that implements the corresponding event filter object and specify the actions

you want to take before the event is actually processed.

To perform post-event processing, you should use the event listeners. For details

on event listeners and a comparison of the usage of the two, see “Event listener

objects” on page 106.

© Copyright IBM Corp. 1996, 2006 105

Event listener objects

The event listener objects are server-side objects that allow you to be notified of

certain user events such as drilling down or pivoting and perform some actions

after the event has been processed. There are three types of event listener objects.

v DataBlox related. You can capture the completion of the following data analysis

operations: collapse, drill down, drill through, drill up, expand, hide only, keep

only, member select, pivot, remove only, show all, show only, swap axis, and

data query.

v Bookmark related. You can capture the completion of the following bookmark

related events: delete bookmark, load bookmark, rename bookmark, and save

bookmark.

v ChartBlox related. You can capture the event when users change the page filter.

When a user-triggered event, such as swapping axis from the Blox user interface, is

completed, the corresponding event listener will be notified. To use the event

listener, you need to first add the specific event listener object using the common

addEventListener() Blox method. Once you add an event listener to DataBlox,

PresentBlox, or other user interface Blox, you can then write your own class that

implements the corresponding event listener object and specify the actions you

want to take when the event is completed.

To perform pre-event processing, you should use the event filters. For a

comparison of the usage of the two, see “Event listeners compared to event filters”

on page 110.

Using event filters and event listeners

The event filter objects are part of the com.alphablox.blox.filter package. You

must use the following JSP import statement at the beginning of any JSP file that

uses these objects:

<%@ page import="com.alphablox.blox.filter.*" %>

This package includes interfaces for filters of the various events. You will need to

define a class which implements these interfaces in order to intercept the specific

event you want to capture. The name of these interfaces all end with the word

Filter, such as BookmarkDeleteFilter, DrillDownFilter, ExpandFilter, and

HideOnlyFilter. These filters have a corresponding method such as

bookmarkDelete(), drillDown(), expand(), and hideOnly() that you can implement

to specify your own actions. All these methods require a corresponding event

object as the input to act on. These event object names all end with the word

Event, such as BookmarkDeleteEvent, DrillDownEvent, ExpandEvent, and

HideOnlyEvent.

The event listener objects are part of the com.alphablox.blox.event package. You

must use the following JSP import statement at the beginning of any JSP file that

uses these objects:

<%@ page import="com.alphablox.blox.event.*" %>

This package includes interfaces for listeners of the various events. The way to use

event listeners is very similar to that for event filters. You will need to define a

class which implements these interfaces in order to intercept the specific event

whose completion you want to be notified of. The name of these interfaces all end

with the word Listener, such as BookmarkDeleteListener, DrillDownListener,

ExpandListener, and HideOnlyListener. These listeners have a corresponding

106 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

method such as bookmarkDelete(), drillDown(), expand(), and hideOnly() that you

can implement to specify your own actions. All these methods require a

corresponding event object as the input to act on. These event object names all end

with the word Event, such as BookmarkDeleteEvent, DrillDownEvent, ExpandEvent,

and HideOnlyEvent.

For example, if you want to check if the user performing a drill down operation

should be allowed to, you need to:

1. Add a server-side drill down event filter to your DataBlox using the method

addEventFilter(YourDrillDownEventFilter):

<blox:present id="myPresent">

 ...

<%

 myPresent.getDataBlox().addEventFilter(new DDFilter());

%>

</blox:present>

In the above example, DDFilter is the name of your drill down event filter

object.

2. Have your drill down event filter object implement the DrillDownFilter

interface:

<%!

public class DDFilter implements DrillDownFilter

{

 //more code here....

}

%>

3. Add actions to take when the drillDown method is called. The method takes a

DrillDownEvent object as input.

<%!

public class DDFilter implements DrillDownFilter

{

 BloxModel model;

// drillDown is the method to implement to capture a drilldown

// events. It takes a DrillDownEvent object as input.

 public void drillDown(DrillDownEvent dde) throws Exception

 {

 DataBlox blox = dde.getDataBlox();

 StringBuffer msg = new StringBuffer("DRILL DOWN event on " +

blox.getBloxName() + "\n");

 msg.append("With Axis ID: " + dde.getAxisIndex() + ", ");

 msg.append("Nest level: " + dde.getNestLevel() + ", ");

 msg.append("Member index: " + dde.getMemberIndex() + ", and ");

 msg.append("TupleMember: " + dde.getMember().getDisplayName());

 MessageBox msgBox = new MessageBox(msg.toString(), "DrillDown Filter

Message", MessageBox.MESSAGE_OK, null);

 model.getDispatcher().showDialog(msgBox);

 }

}

%>

Place add and remove methods inside Blox custom tags

To ensure that a new event is not added each time the page is reloaded, place the

code using the addEventFilter() methods inside of the Blox custom tags on your

JSP page. For example, the following code creates a Blox and adds a filter that is

called whenever a user drills down on a member:

Chapter 12. Capturing events using server-side event filters and listeners 107

<%@ taglib uri = "bloxtld" prefix = "blox"%>

<%@ page import="com.alphablox.blox.filter.*" %>

<blox:present id="myPresent">

 <blox:data .../>

<%

 myPresent.getDataBlox().addEventFilter(new DDFilter());

%>

</blox:present>

To ensure that a new event is not added each time the page is reloaded, place the

code using the addEventListener() methods inside of the Blox custom tags on

your JSP page. For example, the following code creates a Blox and adds a listener

that is called whenever a user hides (only) a member:

<%@ taglib uri = "bloxtld" prefix = "blox"%>

<%@ page import="com.alphablox.blox.event.*" %>

<blox:present id="myPresent">

 <blox:data .../>

...

<%

 myPresent.getDataBlox().addEventListener(new HideOnlyHandler());

%>

</blox:present>

<%!

 public class HideOnlyHandler implements HideOnlyListener

 {

 public void hideOnly(HideOnlyEvent hoe)

 {

 ...// custom actions here

 }

 }

%>

A complete drillDownEventFilter example

This complete example shows how to intercept a drill down action and write

output using the MessageBox UI model component when the drill down event is

triggered.

<%@ taglib uri="bloxtld" prefix="blox"%>

<%@ page import="com.alphablox.blox.filter.*,

 com.alphablox.blox.uimodel.core.MessageBox,

 com.alphablox.blox.uimodel.BloxModel,

 com.alphablox.blox.DataBlox" %>

<html>

<head>

<blox:header/>

</head>

<body>

<blox:present id="myPresent">

 <blox:data dataSourceName="QCC-Essbase" query="!" />

 <% myPresent.getDataBlox().addEventFilter(new

DDFilter(myPresent.getBloxModel())); %>

</blox:present>

</body>

</html>

<%!

 public class DDFilter implements DrillDownFilter

 {

108 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

BloxModel model;

 public DDFilter(BloxModel model) {

 this.model = model;

 }

 // drillDown is the method to implement to capture a drilldown

 // event. It takes a DrillDownEvent object as input.

 public void drillDown(DrillDownEvent dde) throws Exception

 {

 DataBlox blox = dde.getDataBlox();

 StringBuffer msg = new StringBuffer("DRILL DOWN event on " +

blox.getBloxName() + "\n");

 msg.append("With Axis ID: " + dde.getAxisIndex() + ", ");

 msg.append("Nest level: " + dde.getNestLevel() + ", ");

 msg.append("Member index: " + dde.getMemberIndex() + ", and ");

 msg.append("TupleMember: " + dde.getMember().getDisplayName());

 MessageBox msgBox = new MessageBox(msg.toString(), "DrillDown Filter

Message", MessageBox.MESSAGE_OK, null);

 model.getDispatcher().showDialog(msgBox);

 }

 }

%>

By placing the addEventFilter() method within the Blox custom tags, it ensures

that you will not add multiple filters each time the page is reloaded. In this

example, the class created displays a message dialog box containing information

about the current drill down action before the drill down event occurs.

You can add as many filters on the same event as you like, and they will be

processed in the order in which they are added or until the event is canceled.

This example is available in Blox Sampler, under the Interacting with Data section.

A complete drillDownEventListener example

This complete example shows how to be notified when a drill down action has

occurred and write the output using the MessageBox UI model component:

<%@ page import="com.alphablox.blox.event.*,

 com.alphablox.blox.uimodel.core.MessageBox,

 com.alphablox.blox.uimodel.BloxModel" %>

<%@ page import="com.alphablox.blox.DataBlox" %>

<%@ taglib uri="bloxtld" prefix="blox" %>

<html>

<head>

 <blox:header/>

</head>

<body>

<blox:present id="myPresent2">

 <blox:data

 dataSourceName="QCC-Essbase"

 query="!" />

 <% myPresent2.getDataBlox().addEventListener(new

SimpleListener(myPresent2.getBloxModel())); %>

</blox:present>

</body>

</html>

<%!

 public class SimpleListener implements DrillDownListener

 {

 BloxModel model;

Chapter 12. Capturing events using server-side event filters and listeners 109

public SimpleListener(BloxModel model) {

 this.model = model;

 }

 public void drillDown(DrillDownEvent event) throws Exception

 {

 DataBlox blox = event.getDataBlox();

 StringBuffer msg = new StringBuffer("DRILL DOWN event on " +

blox.getBloxName() + "\n");

 msg.append("With Axis ID: " + event.getAxisIndex() + ", ");

 msg.append("Nest level: " + event.getNestLevel() + ", ");

 msg.append("Member index: " + event.getMemberIndex());

 MessageBox msgBox = new MessageBox(msg.toString(), "DrillDown

Listener Message", MessageBox.MESSAGE_OK, null);

 model.getDispatcher().showDialog(msgBox);

 }

 }

%>

You can add as many listeners on the same event as you like, and they will be

processed in the order in which they are added.

Event listeners compared to event filters

Event listeners are used to be notified of a successful completion of an event while

event filters are used to intercept an event on the server as the server receives it,

yet before the event is processed. Implementation of an event listener and that of

an event filter are very similar. The following table provides a summary of the

similarity and differences of the two.

 Event Listeners Event Filters

When notification is

received

After event is processed Before event is processed

Package com.alphablox.blox.event com.alphablox.blox.filter

Interfaces in the

package

All interfaces end with the word Listener,

such as DrillDownListener and

RemoveOnlyListener

All interfaces end with the word Filter,

such as DrillDownFilter, and

RemoveOnlyFilter

Methods to implement These listeners have a corresponding method,

such as drillDown(), and removeOnly(), that

takes the corresponding event object as

argument: drillDown(DrillDownEvent)

removeOnly(RemoveOnlyEvent)

These filters have a corresponding method

such as bookmarkLoad(), drillDown(), and

removeOnly(), that takes the corresponding

event object as argument:

drillDown(DrillDownEvent)

removeOnly(RemoveOnlyEvent)

Events Same event object names as those in event

filters.

Same event object names events as those in

event listeners. However, these events have

a cancelEvent() and a isCanceled()

method that those in event listeners don’t.

You can create an event handler that handles both pre- and post-event processing

for a specified event. For example:

<%!

 public class DDHandler implements DrillDownFilter, DrillDownListener

 {

 public void drillDown(DrillDownEvent event) throws Exception {

 // actions to take before the event is processed

 }

 public void drillDown(com.alphablox.blox.event.DrillDownEvent event) {

110 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

// actions to take after the event has been processed

 }

 }

%>

However, since the event objects have the same name in both the event filters and

the event listeners packages, if you want to use the same class to handle both

pre-event and post-event processing, you should specify the complete class names

that include the package information.

Methods to implement for event filters

To create an event filter, you must write a class that implements one or more event

filter methods listed below. The following table lists the events to capture, the

method to implement in order to catch that event, and the supporting methods for

that filter event.

 Event to capture (when a

user performs the action) Interface to implement Available Event Methods

bookmark:delete bookmarkDelete(BookmarkDeleteEvent) in

BookmarkDeleteFilter

BookmarkDeleteEvent methods

bookmark: load bookmarkLoad(BookmarkLoadEvent) in

BookmarkLoadFilter

BookmarkLoadEvent methods

bookmark: rename bookmarkRename(BookmarkRenameEvent) in

BookmarkRenameFilter

BookmarkRenameEvent methods

bookmark: save bookmarkSave(BookmarkSaveEvent) in

BookmarkSaveFilter

BookmarkSaveEvent methods

collapse collapse(CollapseEvent) in CollapseFilter CollapseEvent methods

data sort dataSort(DataSortEvent) in DataSortFilter DataSortEvent methods

drill down/expand all drillDown(DrillDownEvent) in DrillDownFilter DrillDownEvent methods

drill through drillThrough(DrillThroughEvent) in

DrillThroughFilter

DrillThroughEvent methods

drill up drillUp(DrillUpEvent) in DrillUpFilter DrillUpEvent methods

expand expand(ExpandEvent) in ExpandFilter ExpandEvent methods

hide only hideOnly(HideOnlyEvent) in HideOnlyFilter HideOnlyEvent methods

keep only keepOnly(KeepOnlyEvent) in KeepOnlyFilter KeepOnlyEvent methods

select a member (for

example, in Member Filter)

memberSelect(MemberSelectEvent) in

MemberSelectFilter

MemberSelectEvent methods

pivot pivot(PivotEvent) in PivotFilter PivotEvent methods

data query query(QueryEvent) in QueryFilter QueryEvent methods

remove only removeOnly(RemoveOnlyEvent) in

RemoveOnlyEvent

RemoveOnlyEvent methods

show all showAll(ShowAllEvent) in ShowAllFilter ShowAllEvent methods

show only showOnly(ShowOnlyEvent) in ShowOnlyFilter ShowOnlyEvent methods

swap axis swapAxis(SwapAxisEvent) in SwapAxisFilter SwapAxisEvent methods

Chapter 12. Capturing events using server-side event filters and listeners 111

Methods to implement for event listener objects

To create an event listener, you must write a class that implements one or more

event listener methods listed below. The following table lists the events to capture,

the method to implement in order to catch that event, and the supporting methods

for that filter event.

 Event to capture (when a

user performs the action) Interface to implement Available Event Methods

bookmark:delete bookmarkDelete(BookmarkDeleteEvent) in

BoomarkDeleteListener

BookmarkDeleteEvent methods

bookmark: load bookmarkLoad(BookmarkLoadEvent) in

BoomarkLoadListener

BookmarkLoadEvent methods

bookmark: rename bookmarkRename(BookmarkRenameEvent) in

BoomarkRenameListener

BookmarkRenameEvent methods

bookmark: save bookmarkSave(BookmarkSaveEvent) in

BoomarkSaveListener

BookmarkSaveEvent methods

filter change in ChartBlox changePage(ChartPageEvent) in

ChartPageListener

ChartPageEvent methods

collapse collapse(CollapseEvent) in CollapseListener CollapseEvent methods

data sort dataSort(DataSortEvent) in DataSortListener DataSortEvent methods

drill down/expand all drillDown(DrillDownEvent) in

DrillDownListener

DrillDownEvent methods

drill through drillThrough(DrillThroughEvent) in

DrillThroughEvent

DrillThroughEvent methods

drill up drillUp(DrillUpEvent) in DrillUpListener DrillUpEvent methods

expand expand(ExpandEvent) in ExpandListener ExpandEvent methods

hide only hideOnly(HideOnlyEvent) in HideOnlyListener HideOnlyEvent methods

keep only keepOnly(KeepOnlyEvent) in KeepOnlyListener KeepOnlyEvent methods

select a member (for

example, in Member Filter)

memberSelect(MemberSelectEvent) in

MemberSelectListener

MemberSelectEvent methods

export data to PDF pdf(PdfEvent) in PdfListener PdfEvent methods

pivot pivot(PivotEvent) in PivotListener PivotEvent methods

data query query(QueryEvent) in QueryListener QueryEvent methods

remove only removeOnly(RemoveOnlyEvent) in

RemoveOnlyListener

RemoveOnlyEvent methods

show all showAll(ShowAllEvent) in ShowAllListener ShowAllEvent methods

show only showOnly(ShowOnlyEvent) in ShowOnlyListener ShownOnlyEvent methods

swap axis swapAxis(SwapAxisEvent) in SwapAxisListener SwapAxisEvent methods

112 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 13. Connecting to data

Before you can do anything useful with DB2 Alphablox applications, the first task

you need to do is connect to your data sources. In this section, you’ll learn more

about creating data sources, connecting to data sources, and how to manage access

to data sources.

Creating data sources

Before analytic applications can do anything useful, they need access to data that

can be viewed and analyzed by users. One of the first tasks that you need to do is

to create Data Source definitions in the DB2 Alphablox Admin pages. These data

source definitions point to the relational or multidimensional databases you will be

connecting to, and allow you to quickly connect and retrieve result sets from them.

Creating data source definitions is more of an administrative task, but can be done

by either server administrators or developers, as long as they have administrative

rights. Following is a short description of the task that developers or

administrators must perform to define a DB2 Alphablox data source.

Note: All of the examples used in the Developer’s Guide and in the Blox Sampler

application use the QCC databases, either QCC-Essbase (for DB2 OLAP

Server and Essbase) or QCC-MSAS (for Microsoft Analysis Services). To

install and configure QCC, see the readme.txt file, which is located on the

DB2 Alphablox CD under the sample data directory:

<cdromDir>/sampledata/qcc/

Defining data sources

Defining a data source involves the following steps:

1. Access the DB2 Alphablox Home Page using the Start menu or by entering the

following URL in a web browser:

http://<serverName>/AlphabloxAdmin/home/

2. Log in with a user name and password with administrator rights. The DB2

Alphablox Admin Pages with three tabs should appear, defaulting to the

Applications page.

3. Click the Administration tab. Then click Data Sources to view the list of

available data source definitions.

4. To define a data source, click the Create button below the list of existing data

source definitions. (If the data source definition you need for your application

already exists, you can skip the rest of these steps.)

5. Complete the entries on the Create Data Source panel. For assistance, click on

the Help button on this page.

6. Click Save to save the new definition. The newly defined data source name

should appear in the list of available data source definitions.

See the Defining A New Data Source section of the Administrator’s Guide for

complete descriptions of data sources and more details about the steps involved in

defining them for supported multidimensional and relational databases.

© Copyright IBM Corp. 1996, 2006 113

Defining the DataBlox dataSourceName property

A DataBlox, whether used as a standalone or nested Blox, is used to manage the

connection between your presentation Blox and the appropriate data source.

DataBlox are also responsible for submitting queries and retrieving result sets from

data sources. After you have defined your data source in the DB2 Alphablox

Admin pages, you need to tell a DataBlox where to go to get information on

accessing the appropriate database. To point a DataBlox to a data source, you use

the DataBlox dataSourceName property.

Two techniques are available for pointing a DataBlox to a data source:

v setting the DataBlox dataSourceName attribute

v setting the DataBlox setDataSourceName method, using either the server-side

Java method or JavaScript to invoke the server-side method (using the DHTML

Client API).

Setting the dataSourceName attribute

The most frequently used technique for defining a data source is to add a

dataSourceName as an attribute and set its value. The value should be the name of

one of the data sources you have already defined in the DB2 Alphablox Admin

Pages.

For example, in the following code example the nested DataBlox sets the data

source to QCC-Essbase:

<blox:present id="myPresent" ...>

...

 <blox:data

 dataSourceName="QCC-Essbase"

 query=’<SYM <ROW("All Products")

 <COLUMN ("All Time Periods") "2000" Sales !’ />

</blox:present>

Note: If you forget to add the dataSourceName attribute to a DataBlox, your data

presentation Blox will display a No data available message. Or, if the data

source is undefined, the JSP page will not compile properly, resulting in an

exception being generated.

Using the setDataSourceName() JavaScript method

Sometimes you may want to change the data source programmatically, using

JavaScript or Java, perhaps when a user clicks on a button. The following example

shows an example using the Blox JavaScript setDataSourceName method:

Setting different data sources using

DataSourceSelectFormBlox

Follow these steps to create a JSP page that has a selection list for DB2 OLAP

Server and Essbase data sources. When a data source is selected, a default query is

executed that loads the available dimensions into the DataLayout panel alloying

users to perform ad hoc analysis. A complete version of this example can be found

in the Ad Hoc Analysis example in Blox Sampler under the Using FormBlox

section. The following example uses the DB2 OLAP Server and Essbase version,

but the Microsoft Analysis Services version works similarly.

114 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

1. At the top of the page, add a JSP page directive specifying the Java classes that

need to be made available:

<%@ page import="com.alphablox.blox.form.FormEventListener,

 com.alphablox.blox.DataBlox,

 com.alphablox.blox.form.FormEvent" %>

2. Below the page directive, add taglib directives for the Blox tag libraries that

will be used on this page, in this case the standard Blox tag library and the

Blox Form tag library:

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxformtld" prefix="bloxform" %>

3. Specify the DataBlox that will be used, enabling alias member names (DB2

OLAP Server and Essbase only) and telling the DataBlox not to connect to the

data source on startup:

<blox:data id="AdHocDataBlox"

 connectOnStartup="false"

 useAliases="true" />

4. Specify the PresentBlox:

<blox:present id="AdHocPresentBlox"

 visible="false"

 width="600"

height="350">

 <blox:grid noDataMessage="Select a data source" />

 <blox:chart noDataMessage="Select a data source" />

 <blox:data bloxRef="AdHocDataBlox" />

</blox:present>

We set the common Blox noDataMessage value to “Select a data source” as a

better message than the default No data available message. And, the nested

DataBlox tag says to use the previously defined DataBlox.

5. Now we can add a DataSourceSelectFormBlox, which will automatically

generate a list of available DB2 OLAP Server and Essbase data sources:

<bloxform:dataSourceSelect id="dataSourceSelector"

 type="MDB"

 adapter="IBM DB2 for OLAP"

 visible="false"

 nullDataSourceLabel="Select the data source">

<%

 dataSourceSelector.addFormEventListener(new

 DataSourceFormBloxEventListener(AdHocDataBlox));

%>

</bloxform:dataSourceSelect>

The type attribute says that we’re specifying multidimensional data sources

only and the adapter attribute setting limits the data sources to DB2 OLAP

Server or Essbase only. And, rather than have a data source specified when the

page loads, adding the nullDataSourceLabel option will tell the user to “Select

the data source.”

Also, the nested Java scriptlet tells the DataSourceSelectFormBlox that it needs

to add a FormEventListener included at the bottom of the page. This event

listener will allow us to create the DataBlox without specifying the data source

until a user selects one.

6. Layout the page and specify where the DataSourceSelectFormBlox and

PresentBlox should appear by using the following <blox:display> tags:

<blox:display bloxRef="dataSourceSelector"/>

<blox:display bloxRef="AdHocPresentBlox" />

See the Blox Sampler example for the complete code laying out the page.

7. Finally, add the FormBloxEventListener class:

Chapter 13. Connecting to data 115

<%!

 public class DataSourceFormBloxEventListener

 implements FormEventListener {

 private DataBlox dataBlox;

 public DataSourceFormBloxEventListener(DataBlox dataBlox) {

 this.dataBlox = dataBlox;

 }

 public void valueChanged(FormEvent event) throws Exception {

 String dataSourceName = event.getFormBlox().getFormValue();

 dataBlox.setDataSourceName(dataSourceName);

 if (dataSourceName != null) {

 dataBlox.setQuery("!");

 dataBlox.updateResultSet();

 }

 else

 dataBlox.disconnect(true);

 }

 }

%>

This DataSourceFormBloxEventListener class will get the FormBlox value for the

data source and set the default query, which will populate the DataLayout panel of

the PresentBlox with all of the available dimensions.

Note: For details about the syntax and usage of the FormBlox or DataBlox

properties and methods, see the Developer’s Reference.

Connecting to and disconnecting from data sources

When a standalone or nested DataBlox is instantiated, an implicit connect method

is invoked. If a query has been specified in the DataBlox, the query is executed and

a result set is generated. If the DataBlox connectOnStartup property is set to false

(default is true), then the connect method will not be invoked and you will have

to programmatically connect later.

After a Blox has made a connection to its data source, the connection persists

throughout the current session. This default behavior is optimal for performance,

preventing an application from repeatedly opening and closing database

connections for every query (including initial queries and queries resulting from

user interaction with a Blox).

Depending on your task, there are a number of different options available for

managing data source connections with DataBlox properties and methods,

summarized here:

116 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Goal DataBlox Properties and Methods Result

Connect to data

source, but do

not execute

query

<blox:data ...

connectOnStartup="true" ...

</blox:data>

[Note: query attribute not set]

v no result set retrieved

v users see common Blox

noDataMessage property’s

message (default: "No data

available") which can be

customized

connect(false);

v if connection already exists,

disconnect, then reconnect

v connection is made

v defined query is not executed

v users see common Blox

noDataMessage property’s

message (default: "No data

available") which can be

customized

Connect to data

source and

execute query

connect();or connect(true);

[Note: assumes query is already set]

v defined textual query is

executed

v result set is retrieved

setQuery(); updateResultSet();

v query is set, connection

established, and result set is

retrieved

Update a result

set based on

connection

property

changes

// Change properties first

updateResultSet();

v updates the result set after

applying result set property

changes (e.g., after setting

useAliases to true or false)

[Note: Use the connect method

instead if applying connection

properties (such as

dataSourceName, username, schema,

and password).]

Note: For details about the syntax and usage of these DataBlox properties and

methods, see the Developer’s Reference.

Here’s an example of what a Java scriptlet would look like for setting a query, then

connecting:

<%

 String query = "<ROW (\"All Products\") <ICHILD \"All Products\" "+

 "<COLUMN (\"All Time Periods\") <CHILD \"All Time Periods\" "+

(Measures) Sales !";

 PresentBlox3.getDataBlox().setQuery(query);

 PresentBlox3.getDataBlox().connect();

%>

Note: The “Initial Query Using JSP Scriptlet” example in the Retrieving Data

section of Blox Sampler demonstrates this technique.

Sometimes you may prefer to control when a Blox connects and disconnects from

data sources programmatically. For example, you might have a page designed to

let the users make a number of selections using selection lists, radio buttons, and

checkboxes before they can submit their view request by clicking on a button.

There are many ways that this could be implemented, including loading a default

Chapter 13. Connecting to data 117

view and presetting HTML form elements or FormBlox with default values or

loading a Blox with no view until the users have made their selections. For an

example of how this could be done, see “Auto-connecting and auto-disconnecting”

below.

Auto-connecting and auto-disconnecting

As described below, the DataBlox autoConnect and autoDisconnect properties can

be used in certain situations with relational and multidimensional data sources for

better managing performance and scalability of DB2 Alphablox analytic

applications.

Details on the syntax and usage of the autoConnect and autoDisconnect attributes,

see the DataBlox section of the Developer’s Reference.

Relational data sources

When you have a limited number of ports available and are using relational data

sources, you can set the autoConnect and autoDisconnect properties on DataBlox

to manage the use of application connections. The following table summarizes all

possible setting combinations of the autoConnect and autoDisconnect properties

and the resulting behavior:

 autoConnect autoDisconnect Behavior

false false These are the default settings on a DataBlox.

Defined queries are executed against defined

data sources using an implicit connect method.

Once a connection is established, it is maintained

during the current browsing session.

true true Recommended only when there are limited

database ports available. The initial database

connection is made and the query executes,

followed by the return and display of the result

set and automatic disconnection from the

database. Remember that many of the user

interactions on a Blox will repeat this cycle and

require a connection to be reestablished.

true false This is really no different from the default

behavior.

false true After the initial result set is displayed, the user

will not be able to perform any operations on the

result set. While this combination of settings is

possible, it is generally not recommended.

Multidimensional data sources

The DataBlox autoConnect property has no effect on multidimensional databases,

but the autoDisconnect property can be used with Microsoft Analysis Services data

sources to manage scalability and performance of analytic applications.

For Microsoft Analysis Services data sources only, setting the autoDisconnect

property to true results in data source connections immediately disconnecting after

118 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

query executions, which include executing queries, drilling down and up, pivoting,

using Keep Only, and Remove Only. Metadata calls are not affected. After each

disconnection, the PivotTable Services cache memory is cleared from the java.exe

process and the DataBlox immediately reconnects using the previous connection

information.

Only consider using the autoDisconnect property with Microsoft Analysis Service

if you are experiencing scalability issues resulting from excessive PivotTable

Services cache memory consumption. Each MSAS connection that is maintained

can consume up to about 250 MB of memory, rapidly consuming available server

memory resources. By setting autoDisconnect to true, PivotTable Services memory

consumption will be prevented. With autoDisconnect set to false (default value),

the PivotTable Services cache is maintained and may result in faster display of

frequently accessed data to users.

Single sign-on for Essbase and DB2 OLAP Server

DB2 Alphablox applications support the use of Essbase single sign-on credential

objects for accessing Hyperion Essbase and DB2 OLAP Server data sources. This

functionality allows Essbase users to sign on once and use the generated

credentials to move between DB2 OLAP Server and Essbase data sources.

Single sign-on allows users to connect to multiple DB2 OLAP Server and Hyperion

Essbase data sources after logging in only once. When a user is authenticated on a

supported data source, an encrypted token is generated which contains user

credentials (including the user name and, depending on the configuration, the user

password) that can be passed between multiple Essbase data sources. DB2

Alphablox applications can be created to use the credential objects created by the

Hyperion Common Security Services and pass this user information through a

DataBlox. When Essbase single sign-on is used with DB2 Alphablox applications,

user names and passwords do not need to be stored in the DB2 Alphablox

Repository.

Passing user credentials using the DataBlox credential

attribute

DB2 OLAP Server and Hyperion Essbase user credentials can be passed to a

supported data source using the DataBlox credential attribute.

The following steps assume you have access to DB2 OLAP Server or Hyperion

Essbase data sources that support single sign-on.

To pass a credential object:

1. Add a JSP scriptlet that specifies a variable that obtains the user credentials

token.

Important: This scriptlet must appear above the DataBlox tag for the data

source that will be receiving the user credentials.

2. In the DataBlox tag, add the credential attribute and set the value to be a JSP

expression that retrieves the value for the variable you specified.

In the following example, the required Java packages are made available using JSP

page directives, then a JSP scriptlet specifies a variable (userCredential) that is

used to retrieve the user credentials token. The credential attribute of the

DataBlox then retrieves this information to access the specified Essbase data

source.

Chapter 13. Connecting to data 119

<%@ page import="com.hyperion.css.CSSAPIIF" %>

<%@ page import="com.hyperion.css.CSSException" %>

<%@ page import="com.hyperion.css.CSSSystem" %>

<%@ page import="com.hyperion.css.application.CSSApplicationIF" %>

<%@ page import="com.hyperion.css.common.CSSUserIF" %>

<%@ page import="java.io.*" %>

<%@ page import="java.net.*" %>

<%@ page import="java.util.*" %>

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ page contentType="text/html;charset=utf-8" %>

<%!

public class MyCssApp implements CSSApplicationIF {

 //Implements your application contract - code omitted here.

}

%>

<html>

<head>

 <blox:header/>

</head>

<body>

<%

 String credential = request.getSession().getAttribute("SSOToken");

 if (credential == null)

 {

 HashMap css_context = new HashMap();

 String user = request.getParameter("username");

 String password = request.getParameter("password");

 MyCssApp myApp = new MyCssApp();

 CSSSystem system = CSSSystem.getInstance();

 CSSAPIIF css = system.getCSSAPI();

 css_context.put(CSSAPIIF.LOGIN_NAME, user);

 css_context.put(CSSAPIIF.PASSWORD, password);

 css.initialize(css_context, myapp);

 CSSUserIF css_user = css.authenticate(css_context);

 credential = css_user.getToken();

 request.getSession().setAttribute("SSOToken", user1.getToken());

 }

%>

 <blox:data id="myDataBlox"

 credential="<%= credential %>"

 dataSourceName="EssbaseSSO"

 ...

 </blox:data>

 <blox:present id="myPresentBlox"

 width="700" height="500"

 <blox:data bloxRef="myData" />

 </blox:present>

</body>

</html>

For more information on the DataBlox credentials attribute, see the Data Reference

section of the Developer’s Reference.

120 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Passing user credentials using the Blox API

Hyperion Essbase user credentials can be passed to an Essbase data source using

the Blox API to invoke the DataBlox setCredential() method.

The following steps assume you have access to Hyperion Essbase data sources that

support single sign-on.

To pass a credential object using the Blox API:

1. Add a JSP scriptlet to specify a variable that obtains the user credentials token.

Important: This scriptlet must appear above the DataBlox tag for the data

source that will be receiving the user credentials.

2. Add the DataBlox tag, but do not add the credential attribute.

3. Add a JSP scriptlet below the DataBlox tag to set the user credentials.

In the following example, the JSP scriptlet specifies a variable (usercredential)

that is used to retrieve the user credentials token. Then, the DataBlox

setCredential() retrieves the user information and applies it to the specified

DataBlox.

<%

 String userCredential = myGetCSSToken();

%>

...

<blox:data id="myDataBlox"

 datasourceName="EssbaseSSO"

 ...

</blox:data>

...

<%

 myDataBlox.setCredential(userCredential);

%>

Using the Blox API to control the setting of user credentials allows you to perform

additional operations you may need to perform before you want the user

credentials to be retrieved. For more information on the setCredential() method, see

the Blox API Javadoc documentation.

Limitations of single sign-on

When using single sign-on with Hyperion Essbase or DB2 OLAP Server data

sources, you should be aware of these known limitations and other issues which

can affect your application.

Single sign-on support is available in DB2 Alphablox for data sources using

Hyperion Common Security Services 2.6 and 2.7 (Hyperion Essbase and Hyperion

Essbase Deployment Services 7.1.3, 7.1.2, and 7.1.1). Corresponding DB2 OLAP

Server 8.2 versions are also supported by DB2 Alphablox.

v When you use an LDAP server for external authentication, a user credentials

token that works in Essbase 7.1.3 will not work in Essbase 7.1.1 or 7.1.2, and vice

versa. Corresponding DB2 OLAP Server 8.2 versions will behave the same.

– Essbase 7.1.3 attempts to look up users using a User ID (UID). If a token is

generated with a user’s UID, the user credentials token will work with

Essbase 7.1.3 data sources but will fail with an ″Unknown User″ message

when applied to Essbase 7.1.1 and 7.1.2.

Chapter 13. Connecting to data 121

– Essbase 7.1.1 and 7.1.2 attempt to look up users using the Common Name

(CN). If a token is generated using a user’s CN, the token will work when

passed to Essbase 7.1.1 and 7.1.2 but will fail with an ″Unknown User″

message when applied to Essbase 7.1.3.
v If you apply a user credentials token to a DataBlox, any other user name or

password associated with the DataBlox will be ignored. If you have specified

user names or passwords using DataBlox tag attributes or in the DB2 Alphablox

Repository, they will be ignored when user credentials tokens are used.

122 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 14. Retrieving data

After connecting to a data source, the next task is to retrieve data in result sets

generated from your submitted queries. Sometimes, these queries will be provided

to you by database administrators or data analysts. More often, you’ll be writing

query statements on your own, or in collaboration with others. The more familiar

you are with the data sources you’ll be accessing, the more will you will be able to

work independently. In this section, you’ll learn only the basics of retrieving data

for viewing in DB2 Alphablox applications from various data sources. The goal

here is to help you through some of the frequently encountered issues.

Depending on the data source you are accessing, the syntax used for specifying

application queries can vary considerably. In DB2 Alphablox applications, query

strings can be one of the following:

v Essbase report scripts: for IBM DB2 OLAP Server and Hyperion Essbase data

sources

v Multidimensional expressions (MDX): for Microsoft SQL Server Analysis Services

and DB2 Alphablox Cube Server

v SQL statements: for relational data sources

If you are familiar with a particular data source and know how to create queries to

retrieve data, most of your knowledge is directly applicable in DB2 Alphablox

applications. When working with DB2 Alphablox, though, there are some useful

tips and techniques that you should know about, so be sure to read the

appropriate topics in this section on data sources you’ll be working with.

If you are not familiar with a particular data source, the sections that follow should

help give a brief overview of syntax and DB2 Alphablox issues you might

encounter when working with data sources. For details on working with data

sources, see the appropriate sections below for where to find more information.

The Query Builder, included in the Application Studio Workbench, can be used to

enter and test queries against data sources you will be using in your analytic

applications. This tool connects to any data source defined in DB2 Alphablox. You

can use Query Builder in several ways to develop queries:

v enter a text string and see the resulting analysis view

v invoke the last query against the data source and see the resulting analysis view

v execute the data source’s default query (if one exists) and see the resulting

analysis view

v use the GridBlox user interface to move dimensions among axes; pivot, drill,

and filter data; and perform other actions to arrive at the application’s required

analysis view. Then retrieve the query string required to generate that view.

After arriving at the appropriate query string, you can cut and paste it into a

DataBlox’s query value, or save it in a text file for later use. For more information,

see “Query Builder” on page 145.

The application design determines where to specify an application’s queries. A DB2

Alphablox application can issue a query request based on:

v Blox instantiation (through the DataBlox query property)

© Copyright IBM Corp. 1996, 2006 123

v a user selecting from a list of predefined queries, perhaps though HTML form

buttons

v a custom property, containing a query string, that is associated with a user

profile

Setting the DataBlox query property

The DataBlox’ query property determines the initial query that should be executed

on a database after a DataBlox or a nested DataBlox is loaded. If a query is not

defined, the default query is an empty string. By default, a Blox that loads without

a result set will display a message stating No data available.

To define an initial query for a Blox, there are two options:

v Define an initial query in the value for the query attribute of the DataBlox, or

v Use a Java method to set the query and then execute it

To define the query string using the DataBlox query attribute, just add a query

attribute to a DataBlox. The DataBlox query attribute should be entered as follows:

query="queryString"

where queryString is a string defining the query to be executed against the data

source defined using the dataSourceName attribute.

In the following example, the nested DataBlox of a GridBlox will execute the

defined queryString against the QCC-Essbase data source:

<blox:grid id="myGrid">

 <blox:data

 dataSourceName="QCC-Essbase"

 query=’<ROW("All Products") <CHILD "All Products"

 <COLUMN("All Time Periods") <CHILD "2000" Sales !’/>

</blox:grid>

For readability purposes and ease of coding, you may find it useful to define the

query property in a Java function. The two tasks below show how this can be

done. When you use the query attribute, the Blox, by default, will take care of

connecting to the defined data source and executing the query. When using

methods, you need to use the DataBlox connect() method to have the defined

query executed. The following task shows an example of how to use Java methods

to retrieve result sets from defined data sources.

Setting and executing queries using JSP scriptlets

When performance becomes an issue, you may want to use this simple trick to

enhance the speed of response of a displayed view by taking advantage of a JSP

scriptlet, in which two server-side methods are used to generate a result set. The

DataBlox setQuery() method can be used to define the initial query, then the

connect() method will result in the execution of that query and return the result

set to the containing Blox.

1. At the top of your JSP page, but after the taglib directive, add the appropriate

Blox tags to define your presentation Blox, but setting the visible attribute to

false so that the Blox is not rendered before the data is available. Include a

nested DataBlox with the dataSourceName attribute to define the data source,

but don’t include the query attribute.

124 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

For example, the following Blox tag defines a PresentBlox with visible set to

false and with a dataSourceName set to QCC:

<blox:present id="PresentBlox3"

 visible="false"

 width="550"

 height="350">

 <blox:data

 dataSourceName="QCC"/>

 <blox:grid

 bandingEnabled="true"/>

 <blox:chart

 chartType="Bar"/>

</blox:present>

2. Below the Blox tag defining your presentation Blox, add a JSP scriptlet that

does three sub-steps:

v Declare a query variable

v Set the query defined in the query variable

v Connect the Blox to the data source, resulting in the result set being returned
The following scriptlet example shows a query being defined and executed

using Java methods:

<%

 String query="<ROW(\"All Products\") <ICHILD \"All Products\""+

 "<COLUMN(\"All Time Periods\") <CHILD 2000 "+

 "<PAGE(Measures) Sales !";

 PresentBlox3.getDataBlox().setQuery(query);

 PresentBlox3.getDataBlox().connect();

%>

In this example, the query variable is declared as a string (by placing String in

front of the variable declaration), then setting that variable equal to the desired

query statement (in this example, the query is an Essbase report script). Notice

that the query is laid out for easy reading and maintenance using concatenated

strings. After the query is declared, two DataBlox methods, setQuery() and

connect(), are used. The setQuery() method sets the query in the DataBlox (in

this example, notice that the defined query can be substituted in the argument

of the method by placing query as the argument). Then, using the connect()

method, the DataBlox is instructed to connect to the data source and execute

the set query.

3. Further down in the <body> of your JSP page, place a Blox display tag where

you want the Blox to be rendered for viewing. Reference the presentation Blox

using the bloxRef attribute, setting its value to the name of the Blox being

rendered.

For the example here, within the <body> tag, you would place the following

tag:

<blox:display bloxRef="PresentBlox3"/>

As you can see in this example, you can use this technique even with limited Java

knowledge.

Multidimensional data sources

An overview on multidimensional databases is available in the Administrator’s

Guide. See the following sections for more information on:

v OLAP Terms and Concepts

v Multidimensional Analysis

Chapter 14. Retrieving data 125

v OLAP Database Terms

IBM DB2 OLAP Server and Hyperion Essbase

IBM DB2 OLAP Server and Hyperion Essbase are multidimensional databases

optimized for analysis, typically generating sub-second responses to queries.

To retrieve data from DB2 OLAP Server or Essbase cubes, you need to use the

Essbase Report Specification Language to generate report scripts, which can be

used for query values in DB2 Alphablox applications.

Following is a basic summary of how to create Essbase report scripts with

important tips on how to use report scripts in conjunction with DB2 Alphablox

functionality.

For details about using DB2 OLAP Server or Essbase and Essbase report scripts,

see your DB2 OLAP Server or Essbase documentation.

Creating Essbase report scripts

To pass a query to a IBM DB2 OLAP Server or Hyperion Essbase data source, use

the Essbase Report Specification language to create report scripts.

Tip: For information on the Report Script Specification Language, see the online

documentation in the DB2 OLAP Server or Essbase installation directory at

/docs/techref/RPTIND.HTM. If you have the DB2 OLAP Server or Essbase

Application Manager installed on your workstation you can access this

documentation through the Help menu.

The following example on a DataBlox specifies that:

v The Market and Accounts dimensions are to appear on the column axis.

v The Scenario and Product dimensions are to appear on the row axis.

v The children of all four dimensions should be included in the result set.

v Any unused dimensions appear on the “Other” axis.

<blox:data ...

 query="<SYM <ROW (Scenario,Product)

 <ICHILD Scenario <ICHILD Product <COLUMN (Market, Accounts)

 <ICHILD Market <ICHILD Accounts !"/>

Essbase report script commands supported by DB2 Alphablox

The following table lists most Essbase report script commands, whether they are

supported by DB2 Alphablox (that is, they work when entered in report scripts),

the equivalent or near-equivalent DB2 Alphablox functionality, and report script

examples using these commands.

 Report Script Command Report Script Example and Comments

! This is required to execute a report script query. By

itself, the “bang” query returns one dimension on a

grid or chart, and a list of all available dimensions in

the DataLayout panel. Multiple bang report output

commands are not supported by DB2 Alphablox. See

note below this table.

126 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Report Script Command Report Script Example and Comments

&1 &CurrentMonth If defined in IBM DB2 OLAP Server or

Hyperion Essbase, server substitution variables can be

added to report scripts. They are primarily used to

simplify maintenance of scripts.

ALLINSAMEDIM <ROW (Scenario) <ALLINSAMEDIM Actual !

ALLSIBLINGS <ROW (Scenario) <ALLSIBLINGS Actual !

ANCESTORS <ROW (Measures) <ANCESTORS "Marketing" !

ASYM <ASYM <COL (Scenario, Year) Actual Jan Budget Feb

!

ATTRIBUTE <ROW (Product) <ATTRIBUTE Bottle !

BOTTOM <ROW (Year) <DIMBOTTOM Year <BOTTOM (6,

@DataCol(1)) !

CALCULATECOLUMN See DB2 OLAP Server or Essbase documentation for

examples.

CALCULATEROW See DB2 OLAP Server or Essbase documentation for

examples.

CHILDREN <ROW (Market) <CHILDREN Market !

CLEARALLROWCALC See DB2 OLAP Server or Essbase documentation for

examples.

CLEARROWCALC See DB2 OLAP Server or Essbase documentation for

examples.

COLUMN <COLUMN (Year) <CHILD Year !

DESCENDANTS <ROW (Year) <DESCENDANTS Year !

DIMBOTTOM <ROW (Year) <DIMBOTTOM Year !

DUPLICATE <ROW (Year) <Child Year <DUPLICATE Qtr1 !

FIXCOLUMNS <COL (Year) {FIXCOLUMNS 3} <DIMBOTTOM Year !

GEN <ROW (Product) gen2,Product !

IANCESTORS <ROW (Year) <IANCESTORS Jan !

ICHILDREN <ROW (Product) <ICHILDREN Colas !

IDESCENDANTS <ROW (Product) <IDESCENDANTS Product !

Chapter 14. Retrieving data 127

Report Script Command Report Script Example and Comments

INCMISSINGROWS {SUPMISSINGROWS} {INCMISSINGROWS} <PAGE (Market)

"New York" <ROW (Product) lev0,Product !

INCZEROROWS {SUPZEROROWS} {INCZEROROWS} <PAGE (Market) "New

York" <ROW (Product) lev0,Product !

IPARENT <ROW (Year) <IPARENT Jan !

LATEST <LATEST Aug <ROW (Year) <CHILD QTR3 Q-T-D !

LEV <ROW (Product) lev0,Product !

LINK <ROW (Year) <LINK(<DIMBOTTOM(Year) AND

<DESCENDANTS(Qtr1)) !

MATCH <ROW (Market) <MATCH (Market, C*) !

NAMESON {SUPNAMES} {NAMESON} <ROW (Market) <CHILD East !

NOROWREPEAT {NOROWREPEAT} <ROW (Market, Product) <CHILD East

<CHILD Product !

OFFCOLVCALCS See DB2 OLAP Server or Essbase documentation for

examples.

OFFROWCALCS See DB2 OLAP Server or Essbase documentation for

examples.

OFSAMEGEN <ROW (Market) <OFSAMEGEN East !

ONSAMELEVELAS <ROW (Market) <ONSAMELEVELAS East !

ORDER {ORDER 0 5 4 3 2 1} <COL (Product) <CHILD Product

!

ORDERBY <ROW (Product) <DIMBOTTOM Product <ORDERBY

("Product", @DATACOL(1) ASC) !

PAGE <PAGE (Market) East <ROW (Product) <CHILD Product

!

PARENT <ROW (Year) <PARENT Jan !

REMOVECOLCALCS See DB2 OLAP Server or Essbase documentation for

examples.

RESTRICT <ROW (Product) <DIMBOTTOM Product <RESTRICT

(@DATACOL(1) > 10000) !

ROW <ROW (Year) <PARENT Jan !

SCALE {SCALE 100} <ROW (Product) <CHILD Product !

128 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Report Script Command Report Script Example and Comments

SETROWOP See DB2 OLAP Server or Essbase documentation for

examples.

SINGLECOLUMN <SINGLECOLUMN <COL (Year) Year <ROW (Product)

<CHILD Product !

SORTALTNAMES <ROW (Product) <SORTALTNAMES <DIMBOTTOM Product !

SORTASC <ROW (Market) <SORTASC <DIMBOTTOM Market !

SORTDESC <ROW (Market) <SORTDESC <DIMBOTTOM Market !

SORTGEN <ROW (Product) <SORTGEN <DESCENDANTS Product !

SORTLEVEL <ROW (Product) <SORTLEV <DESCENDANTS Product !

SORTMBRNAMES <ROW (Product) <SORTMBRNAMES <SORTDESC <DIMBOTTOM

Product !

SORTNONE <ROW (Product) <SORTMBRNAMES <SORTDESC <SORTNONE

<DIMBOTTOM Product !

SPARSE <SPARSE <ROW (Product, Market) <DIMBOTTOM Product

<DIMBOTTOM Market !

SUPEMPTYROWS {SUPEMPTYROWS} <PAGE (Market) "New York" <ROW

(Product) lev0,Product !

SUPMISSINGROWS {SUPMISSINGROWS} <PAGE (Market) "New York" <ROW

(Product) lev0,Product !

SUPSHARE <SUPSHARE <ROW (Product) lev0,Product !

SUPSHAREOFF <SUPSHARE <SUPSHAREOFF <ROW (Product) lev0,Product

!

SUPZEROROWS {SUPZEROROWS} <COL (Measures) Sales <ROW (Year)

Jan Feb Mar !

SYM <SYM <COL (Measures, Year) Sales COGS Jan Feb !

TOP <ROW (Market) <DIMBOTTOM Market <TOP(5,

@DATACOL(1)) !

UDA <ROW (Market) <UDA (Market, "Major Market") !

WITHATTR <ROW (Product) <WITHATTR(Caffeinated,"<>",True) !

Notes:

1. DB2 Alphablox custom properties can be used.

2. DB2 Alphablox uses selectableSlicerDimensions to control page displays, but

the <PAGE command works in report scripts to slice the data.

Chapter 14. Retrieving data 129

3. suppressMissingOnRows, suppressMissingOnColumns, and suppressZeros can be

used in DB2 Alphablox for a similar effect.

4. suppressMissingOnRows and suppressMissingOnColumns in DB2 Alphablox

suppresses missing values in rows and columns.

5. suppressZeros can be used in DB2 Alphablox, but this property suppresses

zeros in both rows and columns.

Note: Multi-bang queries, including multiple bang (!) report output commands are

not supported in DB2 Alphablox. You may discover that a few select report

scripts employing multiple bang report output commands may display

results within Blox, but you use them at your own risk.

Unsupported report script commands with DB2 Alphablox

equivalents

The following Essbase report script commands are not supported in DB2

Alphablox. Use the listed DB2 Alphablox equivalents instead of the listed Essbase

report script commands.

Report Script Command

DB2 Alphablox Equivalents

AFTER defaultCellFormat (GridBlox)

BEFORE defaultCellFormat (GridBlox)

COMMAS defaultCellFormat (GridBlox)

DECIMAL

defaultCellFormat (GridBlox)

EUROPEAN

defaultCellFormat (GridBlox)

MISSINGTEXT

missingValueString (GridBlox)

NOINDENTGEN

rowIndentation (GridBlox)

OUTALT useAliases (DataBlox)

OUTALTNAMES

useAliases (DataBlox)

OUTALTSELECT

aliasTable (DataBlox)

OUTMBRNAMES

useAliases (DataBlox)

SUPBRACKETS

defaultCellFormat (GridBlox)

SUPCOMMAS

defaultCellFormat (GridBlox)

130 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Unsupported report script commands without DB2 Alphablox

equivalents

BLOCKHEADERS BRACKETS COLHEADING

CURHEADING CURRENCY DIMEND DIMTOP

DIMBOTTOM ENDHEADING FEEDON

FORMATCOLUMNS HEADING IMMHEADING

INCEMPTYROWS INCFORMATS INCMASK INDENT

INDENTGEN LMARGIN MASK NAMESCOL

NAMEWIDTH NEWPAGE NOPAGEONDIMENSION

NOSKIPONDIMENSION PAGEHEADING PAGELENGTH

PAGEONDIMENSIONS PRINTROW

SAVEANDOUTPUT SAVEROW SETCENTER SETROWOP

SKIP SKIPONDIMENSION STARTHEADING SUPALL

SUPCOLHEADING SUPCURRHEADING SUPEUROPEAN

SUPFEED SUPFORMATS SUPHEADING SUPMASK

SUPNAMES SUPOUTPUT SUPPAGEHEADING

TABDELIMIT TEXT TODATE UCHARACTERS

UCOLUMNS UDATA UNAME UNAMEONDIMENSION

UNDERLINECHAR UNDERSCORECHAR WIDTH

ZEROTEXT

Calc Scripts

Calc (calculation) scripts are text files containing instructions to calculate data in

DB2 OLAP Server or Essbase cubes. Calc scripts can be invoked in DB2 Alphablox

applications using the following DataBlox methods:

v executeCustomCalc

v executeNamedDBCalcScript

v substituteCalcScriptTokens

v writeback

For details on using these methods, see the Developer’s Reference. For more

information on using calc scripts in your DB2 OLAP Server or Essbase cubes, see

the DB2 OLAP Server or Hyperion Essbase documentation.

Substitution variables

In IBM DB2 OLAP Server or Hyperion Essbase cubes, substitution variables act as

global placeholders for information that changes regularly. Each variable has a

value assigned to it and can be changed at any time by the database administrator.

The use of substitution variables helps reduce maintenance of report scripts,

eliminating the need for manual changes to individual report scripts in DB2

Alphablox applications.

For example, many report scripts refer to reporting periods, such as current month

or current quarter. By using substitution variables set on the IBM DB2 OLAP

Server or Hyperion Essbase server, such as CurrentMonth or CurrentQuarter, you

can change the assigned value in one place, and the appropriate report scripts are

dynamically updated when the report script is executed.

To refer to a substitution variable in your report script, place an ampersand (&) in

front of the variable name. For example, use &CurrentMonth in your report script to

reference the substitution variable CurrentMonth. The following DataBlox example

shows the use of &CurrentMonth in the query attribute:

<blox:data

 dataSourceName="QCC-Essbase"

 query=’<ROW("All Products") <COLUMN("All Time Periods")

 &CurrentMonth <PAGE(Measures) Sales !’/>

When the query is executed, &CurrentMonth is substituted with the value defined

in the IBM DB2 OLAP Server or Hyperion Essbase server.

While substitution variables help reduce maintenance in report scripts, someone

still has to manually change the values in the IBM DB2 OLAP Server or Hyperion

Chapter 14. Retrieving data 131

Essbase server. As an alternative in DB2 Alphablox applications, you could use

Java methods in your JSP pages to automatically calculate a value for the current

month or other reporting period, then substitute that value in your report scripts.

Using DB2 OLAP Server or Essbase aliases

DB2 OLAP Server or Essbase aliases, or alternate names for members defined in

DB2 OLAP Server or Essbase cubes, can be used to improve the readability of an

analytic view. Aliases can be used to refer to alternate member names, such as in a

foreign language, or to refer to product identification values. DB2 Alphablox

supports the use of aliases in report scripts and values in various properties.

By default, DB2 Alphablox applications display unique members names and not

aliases. If you want to display aliases in your analytic views, set the DataBlox

useAliases property to true. For more information, see the DataBlox Reference

section within the Developer’s Reference.

Working with decimals

When displaying numeric data values with a specified number of decimal places,

you may need to add the {DECIMAL} report script command to your DB2 OLAP

Server or Essbase query statement. For more information, see the detailed

descriptions of these properties in the Developer’s Reference.

Use the following Blox tag attributes: On this Blox:

And this Report Spec

directive:

<blox:grid id="myGrid" ...

defaultCellFormat="#,###.00; -#,###.00"

> <blox:cellFormat scope="{Sales}"

format="#,###.##"/> <blox:cellAlert

background="#3333ff"

format="#,###.##;(#,###.##"

scope="{Scenario}"/> </box:grid>

GridBlox

{DECIMAL 2}

Microsoft Analysis Services

Microsoft SQL Server includes Microsoft Analysis Services, and can be used to

retrieve data from multiple relational data sources, including Microsoft SQL Server,

Oracle, and others. While similar to IBM DB2 OLAP Server and Hyperion Essbase

in functionality, Microsoft uses the Multidimensional Expressions Language (MDX)

to query the Microsoft Analysis Services multidimensional data cubes.

For more information on Microsoft Analysis Services, see the following resources:

Books

Spofford, George. 2001. MDX Solutions: With Microsoft SQL Server Analysis Services.

New York: John Wiley & Sons.

An excellent and thorough tutorial/reference guide on how to use MDX to access

and analyze data for decision support. Cover basic and advanced MDX statements,

offering clear solutions to the most commonly-encountered problems. Strongly

recommended for serious developers.

132 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Jacobsen, Reed. 2000. Microsoft SQL Server Analysis Services Step by Step. Redmond,

Washington: Microsoft Press.

A good tutorial introduction to all aspects of Microsoft Analysis Services, including

database administration, building databases, and basic MDX usage.

Newsgroups

If you cannot get your questions answered in the books above or the Microsoft

documentation, you can turn to another great resource— Internet newsgroups. For

MSAS, though, there is really only one newsgroup to go to get answers to your

questions: microsoft.public.sqlserver.olap. Use this peer-to-peer newsgroup to

discuss MSAS with other administrators and developers. Many great contributors

on this newsgroup make it one of the most useful computing newsgroups. George

Spofford, the author of MDX Solutions, has been a frequent contributor, asking

many tough questions. Also, several Microsoft Analysis Services team members

follow this newsgroup and contribute insights that may not be found elsewhere.

To join, point your news server to:

news:msnews.microsoft.com/microsoft.public.sqlserver.olap

Alternatively, you can access the OLAP newsgroup from the following link, which

lists all Microsoft SQL Server-related newsgroups:

http://www.microsoft.com/sql/support/newsgroups/

And, to search the archives of this newsgroup, point your web browser to Google

Groups, a search engine for Usenet newsgroups, available at:

http://groups.google.com/

In the search field on the home page for Google Groups, enter the following:

microsoft.public.sqlserver.olap

and click the Google Search button. Almost immediately, you will be presented

with the most recent postings. You can also narrow your search further by

searching on keywords while limiting your search to just this newsgroup. This is a

great resource when you need answers in a hurry.

Creating MDX query statements

To pass a query to Microsoft® SQL Server 2000 Analysis Services, use a valid MDX

SELECT statement. MDX syntax is somewhat similar to SQL syntax. In the

following syntax for simple queries, note the use of the SELECT, FROM, and

WHERE keywords:

SELECT axis specification ON COLUMNS,

axis specification ON ROWS

FROM cube_name

WHERE slicer_specification

Note: MDX statements queries on rows are not valid unless a column is defined.

The following expression queries the Sales cube and returns a summary of the

measures dimension for all the stores in California and Washington. The Measures

dimension appears on the column axis; the Store dimension on the row axis:

SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store

State].[CA], [Store].[Store State].[WA]} ON ROWS

FROM [Sales]

Chapter 14. Retrieving data 133

http://www.microsoft.com/sql/support/newsgroups/default.asp
http://groups.google.com
microsoft.public.sqlserver.olap

To obtain the detail for the members (stores) in each of these states, add the

CHILDREN key word:

SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store State].

[CA].CHILDREN, [Store].[Store State].[WA].CHILDREN} ON ROWS

FROM [Sales]

Note that the approach for obtaining a unique member name is to cascade down

the dimension hierarchy. For example, assume a dimension named Stores with the

following hierarchy:

All Stores

 Canada

 USA

 CA

 OR

 Mexico

The following are valid unique member names in that hierarchy:

[Store].[All Stores]

[Store].[All Stores].[USA]

[Store].[All Stores].[USA].[CA]

For more information on the subset of MDX syntax that DB2 Alphablox supports,

please see the DB2 Alphablox Cube Server Administrator’s Guide.

An Introduction to Multidimensional Expressions (MDX) is available online

through the Microsoft site: http://msdn.microsoft.com. The Introduction provides

these and many more examples.

Clearing PivotTable Services caches using the autoDisconnect

property

If you have a large MSAS cube and are experiencing scalability issues resulting

from excessive PivotTable Services memory cache consumption that occurs from

MDX queries returning large result sets, you may be able to use the DataBlox

autoDisconnect property to help manage the scalability and performance of

MSAS-based analytic applications. See “Auto-connecting and auto-disconnecting”

on page 118 for details about using this property.

DB2 Alphablox Cube Server

The DB2 Alphablox Cube Server supports queries generated using a limited subset

of MDX commands. For complete information on these commands and their use,

see the DB2 Alphablox Cube Server Administrator’s Guide.

Using SAP Business Information Warehouse (SAP BW) with

DB2 Alphablox

Before using SAP BW with DB2 Alphablox, the prerequisites discussed must be

met.

SAP Business Information Warehouse (SAP BW), an enterprise business intelligence

solution from SAP, can be accessed by DB2 Alphablox analytic applications. SAP

BW data sources can be accessed using the OLE DB for OLAP data adapter

provided by DB2 Alphablox. Using DB2 Alphablox, sophisticated analytic

applications can be custom-built to meet the needs of business users in a SAP BW

environment. DB2 Alphablox uses the existing OLE DB for OLAP infrastructure to

connect to SAP BW via the SAP OLE DB for OLAP provider.

134 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

http://msdn.microsoft.com

Before DB2 Alphablox can be used with SAP BW, the following prerequisites must

be met:

v SAP BW 3.5 Frontend components and the Microsoft Data Access Components

(MDAC) must be installed on the same machine as DB2 Alphablox. SAP BW 3.5

Frontend is included in the SAP NetWeaver software packages..

v Microsoft’s MDAC 2.7.1, 2.8.0, and 2.8.2 have been tested with DB2 Alphablox.

v The SAP Logon Frontend component should be installed by you SAP Basis

Administrator.

Once the above conditions have been met, you can define DB2 Alphablox data

source definitions for your SAP BW data sources.

Creating SAP BW data source definitions

Before creating analytic applications that you can use with SAP BW, you need to

create data source definitions in DB2 Alphablox.

In order to create SAP BW data source definitions in DB2 Alphablox, make sure

you have met the prerequisites described in “Using SAP Business Information

Warehouse (SAP BW) with DB2 Alphablox” on page 134.

To create a DB2 Alphablox data source definition:

 1. In the DB2 Alphablox Admin Pages click on the Administration tab and then

click on the Data Sources menu item.

 2. Below the list, click on the Create button. The Create Data Source window

appears.

 3. Enter a name for your SAP BW data source in the Data Source field.

 4. From the Adapter selection list, choose the OLE DB for OLAP option. The

screen will refresh with fields relevant to this adapter.

 5. In the OLAP Server field, enter the value from the Description Field from the

Frontend configuration system.

 6. For the Default Database field, enter the name of your InfoCube.

 7. Leave the Default Schema field blank.

 8. In the Provider field, enter the value for your SAP OLE DB for OLAP

provider. Ask your SAP Basis Administrator for the SFC_CLIENT and

SFC_LANGUAGE values. The provider string should be:

MDrmSAP;SFC_CLIENT=clientValue;SFC_LANGUAGE-languageValue

where clientValue and the languageValue are the ones you obtained from the

SAP Basis Administrator.

 9. Fill in the Default Username and Default Password fields with values for the

UserID and password provided to you by your SAP Basis Administrator.

10. Click the Save button.

You have now created a DB2 Alphablox data source that can be used with DB2

Alphablox analytic applications.

Creating MDX queries for use with SAP BW

Using the MDX syntax supported by SAP BW, you can begin building DB2

Alphablox applications.

The stage needs to be set just so.

Chapter 14. Retrieving data 135

v Using the Blox API, you can set SAP BW MDX queries using the DataBlox

setQuery() method. For details on the use of this method, see the Blox API

Javadoc documentaiton. Here is an example of setting an MDX query using

thesetQuery() method:

DataBlox.setQuery(“SELECT DISTINCT(crossjoin ({[0CALYEAR].[2001]},

{[0D_SALE_ORG].[All]})) ON AXIS(0), DISTINCT({[Measures].[0D_COST],

[Measures].[0D_INV_QTY], [Measures].[0D_NETVLINV], [Measures].[0D_TAXAMOUN]})

ON AXIS(1) FROM [$0D_DECU]”);

v Use unique names only in queries and arguments when using the DB2

Alphablox APIs since the SAP OLE DB for OLAP provider requires them. Here

is an example of a DB2 Alphablox method using the unique name from an SAP

BW data source:

ODBOMetaData.resolveMember("[Measures].[0D+NETVLINV]");

v For more information on SAP BW and its use of the MDX expression language,

see the SAP Help Portal web site (http://help.sap.com/) or your SAP BW

documentation.

v DB2 Alphablox does not currently support native drillthrough and writeback on

SAP BW.

Drillthrough support for DB2 OLAP Server and Hyperion Essbase

(using EIS)

OLAP data sources offer business analysts and line of business users deep insights

into trends in data, but do not give these users ready access to the raw data unless

some mechanism is provided to drillthrough into the underlying data sources.

Drillthrough support, if available in an OLAP data source, allows users to reach

deeper into the raw data contained in the underlying fact table records for selected

cells in the OLAP database.

DB2 OLAP Server or Essbase Integration Services allows DB2 OLAP Server or

Essbase administrators to map multidimensional data to more detailed relational

data. Out-of-the box, Integration Services can be used with Microsoft Excel to view

any predefined drillthrough reports available on the EIS server. The reports

generated using Excel are basic reports, offering:

v rows and columns only

v no data formatting

v no control over user interactions

v users cannot view multiple reports or sheets simultaneously

Using DB2 Alphablox drillthrough support for EIS, users can drill from

summarized and calculated data stored in DB2 OLAP Server (or Essbase) into

detailed data stored in a relational warehouse (using a star schema). DB2

Alphablox drillthrough support for Integration Services leverages predefined

Integration Services drillthrough relational reports, is easy to enable and configure,

offers powerful functionality and flexible customization.

Out-of-the-box Integration Services drillthrough support

With minimal effort, you can begin using the native DB2 OLAP Server or

Hyperion Essbase Integration Services drillthrough support by setting the GridBlox

drillThroughEnabled property to true (default is false). Once enabled, a Drill

Through menu option is added to the contextual (right-click) menu, available when

right-clicking on a data cell in a grid. DB2 Alphablox automatically generates a

dialog window offering a list of the available Integration Services drillthrough

136 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

http://help.sap.com/

reports (predefined by the EIS administrator). After a user selects a report, a

built-in default JSP page returns the report data displayed in a basic interactive

Alphablox Relational Reporting view within a separate browser window.

Detailed information about DB2 Alphablox relational reporting functionality is

available in the Relational Reporting Developer’s Guide.

Controlling EIS drillthrough window styles

While the default drillthrough window may be adequate for your purposes, DB2

Alphablox also allows you to customize the display window by use of the nested

GridBlox <blox:drillThroughWindow> tag. When this tag is nested in a GridBlox

that has drillthrough support enabled, it overrides the default out-of-the-box

behavior and allows custom browser window properties to be defined.

The tag attributes on the <blox:drillThroughWindow> are modeled after the most

commonly used window definition properties defined in the features argument of

the JavaScript window.open(url,windowName,features) method that is used to open

browser windows. The supported properties include the following:

Tag Attribute

Description

url Defines the location of the JSP for the drillthrough window

name Name of the drillthrough window

height Height of the window

width Width of the window

resizable

Boolean property determining if the drillthrough window can be resized

by users. True by default.

statusbarVisible

Boolean property determining if the drillthrough browser window’s status

bar should be visible. True by default.

scrollbarVisible

Boolean property determining if the drillthrough browser window’s scroll

bars should be available. True by default.

locationbarVisible

Boolean property determining if the drillthrough browser window’s

location bar (address bar) should be displayed. True by default.

toolbarVisible

Boolean property determining if the drillthrough browser window’s toolbar

should be displayed. True by default.

menubarVisible

Boolean property determining if the drillthrough browser window’s menu

bar should be displayed. True by default.

For details about the <blox:drillThroughWindow> tag and its attributes, see the

GridBlox Reference section of the Developer’s Reference.

Chapter 14. Retrieving data 137

Custom EIS drillthrough support using DB2 Alphablox

Relational Reporting

DB2 Alphablox Relational Reporting Blox, discussed fully in the Relational Reporting

Developer’s Guide, can be used to generate custom drillthrough support with many

desirable features not possible in the native EIS drillthrough support using

Microsoft Excel. The flexibility of DB2 Alphablox allows you to customize how

your drillthrough behaves. Using the DB2 Alphablox EIS drillthrough support,

developers can:

v provide security at the user or role level by permanently hiding columns in the

resultset

v control the order of the result set columns

v add calculated columns to the result set

v create break groups and totals

v rename columns

v format data

v open multiple reports simultaneously

Using RDBREsultSetDataBlox and RDBResultSetTag

When using Relational Reporting to display custom reports, consider the following

points:

v RDBResultSetDataBlox and RDBResultSetTag allow you to reference a DataBlox

and take its RDBResultSet and place it as the data “producer” of the relational

reporting pipeline.

v RDBResultSetDataBlox works with DataBlox pointing to a relational data source

or DataBlox pointing to a drillthrough-enabled DB2 OLAP Server or Essbase

data source. If rowCoordinate and columnCoordinate are specified, the data for

the RDBResultSet should come from a drillthrough performed on the DataBlox

referenced by the bloxRef attribute. For drillthrough to work on DB2 OLAP

Server or Essbase data sources, a report name must also be set. If rowCoordinate

or columnCoordinate are not specified, the data for the RDBResultSet should

come from a getResultSet call on the DataBlox referenced by the bloxRef

attribute. In both cases, null will be returned if the action (drillthrough or

getResultSet) cannot be performed correctly.

Supporting multiple reports

To support multiple reports for each cell, you application must be able to handle

multiple reports. For example, for each report you may want to group on different

columns. Also, each report might also use different CSS style sheets. A

controller.jsp file could be used to distribute reports to the appropriate JSP

pages. Or, if the reports are not complicated, you could use a single JSP file to

handle all of the reports. In either case, you need to pass the report name into the

JSP page since the report name is required for the RDBResultSetDataBlox to work.

Adding custom menu options

Using the Blox UI Model, you can create your own custom menu option (for

example, “Drill to Relational”) to appear when a user right-clicks on a data cell. In

this case, you can use your own custom options instead of the menu options

provided out-of-the-box in DB2 Alphablox.

In the following Java code example, a “Drill to Relational” option is added to the

grid’s right-click menu:

138 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Menu cellMenu = new Menu();

cellMenu.add(new MenuItem("cellItem","Drill To Relational"));

grid.setCellsRightClickMenu(cellMenu);

// Add a dedicated controller to the cell menu

DataBlox db = presentBlox.getDataBlox();

cellMenu.setController(new DrillingController(db,grid,

 abSessionName,appName));

Depending on your needs, you could create a DrillController to handle the

drillthrough and disable drillthrough on particular cells if the report would return

too many rows of data. Or, you could even open two different reports

simultaneously from a single cell.

Other custom EIS drillthrough support

If you decide to build your own custom drillthrough support and do not want to

display the data using DB2 Alphablox Relational Reporting, you will need to use

the following DataBlox methods:

v RDBResultSet drillThrough(String reportName, Tuple[] coordinates);

v RDBResultSet drillThrough(String reportName, int columnCoordinate, int

rowCoordinate);

v String[] getDrillThroughReportNames(int columnCoordinate, int

rowCoordinate);

Use the RDBResultSet that is returned to build your own custom reports, iterating

through the rows and columns to get the data. Also, use

getDrillThroughReportNames to return a list of the available drillthrough reports

for the specific cell, then call drillthrough a specific report and cell.

For details about the RDBResultSet object and DataBlox methods, see the DataBlox

Reference in the Developer’s Reference.

Drillthrough support for Microsoft Analysis Services

OLAP data sources offer business analysts and line of business users deep insights

into trends in data, but do not give these users ready access to the raw data unless

some mechanism is provided to drillthrough into the underlying data sources.

Drillthrough support, if available in an OLAP data source, allows users to reach

deeper into the raw data contained in the underlying fact table records for selected

cells in the OLAP database.

An MDX DRILLTHROUGH statement can be used to retrieve the source rowsets from

the fact table (the relational data source) that was used to create a specified cell, or

tuple in a Microsoft Analysis Services cube. Here is an example DRILLTHROUGH

statement for Foodmart, a sample OLAP database that ships with Microsoft

Analysis Services:

DRILLTHROUGH SELECT FROM [Inventory] WHERE (

[Product].[ByManufacturer].[All Product].[Acme], [Warehouse].[Whse 8],

[Time].[Aug. 2000]) DB2 Alphablox native DrillThrough support for MSAS

retrieves the underlying resultset using the following DRILLTHROUGH statement:

DRILLTHROUGH [<Max_Rows>] [<First_Rowset>] <MDX SELECT>

Chapter 14. Retrieving data 139

where <Max_Rows> is equivalent to the MDX MAXROWS value, <First_Rowset> is

equivalent to the MDX FIRSTROWSET value, and <MDX SELECT> is the automatically

generated SQL query. The value for <Max_Rows> is taken from the setting in the

DB2 Alphablox data source definition.

Before being able to retrieve rowsets from the underlying data source using the

DRILLTHROUGH statement, you must first enable the MSAS cube to allow

drillthrough in the Drillthrough Options dialog and specify which columns you

want to be returned. And, your client application must provide drillthrough

support. [See Microsoft’s SQL Server Books Online documentation, available from

the Microsoft SQL Server menu, for details about configuring drillthrough options

on a cube.]

While some client applications provide limited drillthrough support, DB2

Alphablox support for MSAS Drillthrough is easy to configure, yet also allows

customized drillthrough behavior that other client applications do not offer. With

DB2 Alphablox drillthrough support, you can:

v control the order of the result set columns

While Microsoft Analysis Services allows you to choose which columns you

want to be displayed in a drillthrough operation, you cannot order the columns

in the resulting records. DB2 Alphablox ReportBlox functionality allows you to

define the order of columns displayed. The OrderBlox can be configured to

specify the order in which result set columns should be displayed.

v provide security at the user/role level by permanently hiding columns in the

result set

The built-in security of MSAS only allows you to enable drillthrough or not; you

cannot control which drillthrough columns are available based on user roles.

Using a nested MembersBlox of a ReportBlox, you can permanently hide

columns. End users will not be able to show the columns again using the UI, but

the developer can reveal columns using the appropriate API calls.

v add calculated columns to the result set

Using the ReportBlox’s CalculateBlox, you can replicate calculations in the

relational report, even though MSAS doesn’t natively let you return calculated

columns.

v open multiple reports in separate windows

The out-of-the-box drillthrough support provided by DB2 Alphablox allows end

users to open multiple report windows to compare drillthrough data from

multiple cells in a grid. You can also custom code your own solution for opening

multiple windows -- a Blox Sampler example, in the Retrieving Data section

under Microsoft Analysis Services, shows one way of accomplishing this.

Out-of-the-box Microsoft Analysis Services Drillthrough

support

With minimal effort, you can quickly begin using the native Microsoft Analysis

Services Drillthrough support by setting the GridBlox drillThroughEnabled

property to true (default is false). Once enabled, the Drill Through option is

added to the context (right-click) menu, available when right-clicking on a data cell

in a grid. DB2 Alphablox automatically generates the appropriate DRILLTHROUGH

statement and executes the query. The returned resultset is displayed in an

interactive ReportBlox within a separate browser window.

140 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Controlling drillthrough window styles

While the default drillthrough window may be adequate for your purposes, DB2

Alphablox also allows you to customize the display window by use of the nested

GridBlox <blox:drillThroughWindow> tag. When this tag is nested in a GridBlox

that has drillthrough support enabled, it overrides the default out-of-the-box

behavior and allows custom browser window properties to be defined.

The tag attributes on the <blox:drillThroughWindow> are modeled after the most

commonly used window definition properties defined in the features argument of

the JavaScript window.open(url,windowName,features) method that is used to open

browser windows. The supported properties include the following:

Tag Attribute

Description

url Defines the location of the JSP for the drillthrough window

name Name of the drillthrough window

height Height of the window

width Width of the window

resizable

Boolean property determining if the drillthrough window can be resized

by users. True by default.

statusbarVisible

Boolean property determining if the drillthrough browser window’s status

bar should be visible. True by default.

scrollbarVisible

Boolean property determining if the drillthrough browser window’s scroll

bars should be available. True by default.

locationbarVisible

Boolean property determining if the drillthrough browser window’s

location bar (address bar) should be displayed. True by default.

toolbarVisible

Boolean property determining if the drillthrough browser window’s toolbar

should be displayed. True by default.

menubarVisible

Boolean property determining if the drillthrough browser window’s menu

bar should be displayed. True by default.

For details about the <blox:drillThroughWindow> tag and its attributes, see the

GridBlox Reference section of the Developer’s Reference.

Custom Drillthrough Support Using DB2 Alphablox Relational

Reporting

DB2 Alphablox Relational Reporting Blox, discussed fully in Relational Reporting

Developer’s Guide, can be used to generate custom drillthrough support with many

desirable features not possible in the native Microsoft Analysis Services

drillthrough support. In Blox Sampler, under Retrieving Data for both DB2 OLAP

Chapter 14. Retrieving data 141

Server (and Essbase) and Microsoft Analysis Services, there is an example of

custom drillthrough support. Here we walk through the code, explaining the most

important code parts:

1. In your JSP file, enable the Drillthrough context (right-click) menu option by

adding the drillThroughEnabled attribute to the <blox:grid> tag, setting the

value to true:

<blox:grid ...

 drillThroughEnabled="true" ... />

2. Set up the interception and handling of the right-click event on the

Drillthrough context (right-click) menu option by adding a

<bloxui:actionFilter> tag to the PresentBlox:

<bloxui:actionFilter

 className="<%= MyDrillThroughClass.class.getName() %>"

 componentName="dataAdvancedDrillThrough" />

The componentName attribute is set to the value of dataAdvancedDrillThrough

and the className attribute must be set to the name of the class you’re adding

to handle the right-click event.

3. Add a JSP page directive at the top of the page, specifying the required classes

for your page:

<%@ page import="com.alphablox.blox.uimodel.ModelConstants,

com.alphablox.blox.uimodel.tags.IActionFilter,

com.alphablox.blox.DataViewBlox,

com.alphablox.blox.uimodel.core.Component,

com.alphablox.blox.uimodel.core.MessageBox,

com.alphablox.blox.uimodel.GridBrixModel,

com.alphablox.blox.uimodel.PresentBloxModel,

com.alphablox.blox.uimodel.core.grid.GridCell,

com.alphablox.blox.uimodel.GridBrixCellModel,

com.alphablox.blox.uimodel.core.ClientLink" %>

4. Add the handler class for the actionFilter:

<%!

 public static class MyDrillThroughClass implements IActionFilter

 {

 public void actionFilter(DataViewBlox blox, Component component)

 throws Exception {

 GridBrixModel grid =

 ((PresentBloxModel)blox.getBloxModel()).getGrid();

 GridCell[] cells = grid.getSelectedCells();

// Make sure that a single data cell is selected

if (cells.length != 1 || cells[0].isRowHeader() ||

 cells[0].isColumnHeader() || !(cells[0]

 instanceof GridBrixCellModel)) {

 MessageBox.message(component, "Error", "You must select a single

 data cell to drill through");

return;

 }

 GridBrixCellModel cell = (GridBrixCellModel)cells[0];

 int rowIndex = cell.getNativeRow();

 int colIndex = cell.getNativeColumn();

 String bloxName = blox.getBloxName();

 String urlStr = "someReportBlox.jsp?bloxRef="+bloxName;

 urlStr += "&colIndex=";

 urlStr += colIndex;

 urlStr += "&rowIndex=";

 urlStr += rowIndex;

 String timestamp = String.valueOf(System.currentTimeMillis());

142 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

urlStr += "&reportName=";

 urlStr = urlStr + "reportBlox"+timestamp;

 ClientLink link =

 new ClientLink(urlStr,"reportBlox"+timestamp);

 component.getDispatcher().showBrowserWindow(link);

 }

 }

%>

5. Set up the custom relational report. In this example, someReportBlox.jsp:

<%

 String reportName = request.getParameter("reportName");

 if(reportName == null) {

 reportName = "defaultName";

 }

%>

6. Set up your custom relational report using the <blox:RDBResultSetData> or

<bloxreport:RDBResultSetData> tag of the Blox Reporting Tag Library.

<blox:report id="drillThrough"

 bloxName="<%= reportName %>"

 interactive="true">

 <blox:rdbResultSetData

 bloxRef="<%= request.getParameter(\"bloxRef\") %>"

 columnCoordinate="<%= request.getParameter(\"colIndex\") %>"

 rowCoordinate="<%= request.getParameter(\"rowIndex\") %>">

</blox:rdbResultSetData>

...

[Optional] Setup a default ReportBlox name if you want to support the opening

of multiple reports.

[Optional] Set the bloxName attribute for the ReportBlox if you are using

multiple reports. Details about the use of the bloxName attribute can be found in

the Common Blox Reference section of the Developer’s Reference.

[Optional] Define a MembersBlox if you want to permanently exclude members

from the view.

[Optional] Define a GroupBlox if you want to create a cleaner layout using

break groups and aggregations.

[Optional] Define a CalculateBlox to add replicated calculations which MSAS

does not natively support.

[Optional] Define an OrderBlox to order the columns. Natively, MSAS

DrillThrough support does not let you reorder the columns.

Review the complete code to perform the custom drillthrough in the Blox Sampler

example.

For details on creating relational reporting views, see the Relational Reporting

Developer’s Guide. In the following example, we’ll cover some important points

relevant to using relational reporting for drillthrough. In this example, we’ll call

the page being retrieved someReportBlox.jsp and use the <blox:RDBResultSetData>

tag to get the drillthrough data into the relational pipeline.

Other custom drillthrough support

To provide your own customization, one option is to intercept the right-click event

controlling the drillthrough support provided by DB2 Alphablox, then use a

server-side ClickEvent to manage drillthrough customization.

Chapter 14. Retrieving data 143

If you want to develop a drillthrough report using your own solution, instead of

using the Blox Reporting Tag Library, you need to use one of the following

DataBlox methods:

v RDBResultSet drillThrough(Tuple[] coordinates)

v RDBResultSet drillThrough(int columnCoordinate, int rowCoordinate)

These methods will return an RDBResultSet containing the relational data for the

drillthrough performed at the specified coordinates. Then, you can display the

relational drillthrough data as you’d like.

For details about the RDBResultSet object, see the Relational Result Set Methods

section of the DataBlox Reference in the Developer’s Reference.

Relational data sources

DB2 Alphablox supports the viewing of relational result sets using the presentation

Blox. Similar to the other supported databases, you need to specify a data source

and a query. When relational result sets are displayed, a limited subset of DB2

Alphablox functionality is available in the standard presentation Blox. ReportBlox

can also be used to display relational data, and offers support for many reporting

purposes. See the Relational Reporting Developer’s Guide for details on using the new

relational reporting functionality to display relational reports.

Below is a quick overview and summary of SQL statements, and how to use them

with DB2 Alphablox.

Creating SQL Statements

To pass a query to a relational data source, use the SQL SELECT statement syntax

supported by your RDBMS. For example, the following SQL syntax is supported

by several relational data sources:

SELECT... FROM... WHERE... ORDER BY... GROUP BY...

v SELECT (ALL|DISTINCT) [COLUMNS] to identify the data columns to include in the

result set

v FROM [TABLELIST] to identify the name of each database table from which to

obtain data

v WHERE [PREDICATE EXPRESSION] to specify filters and joins on the data

v ORDER BY [COLUMNNAMES] to specify a sort sequence

v GROUP BY [COLUMNNAMES] to specify a group list

Note: Functions are not supported.

The following example specifies that:

v Columns named SalesQty and ProductID are selected from two tables (named

Actual and Projected)

v Only those rows are selected where the actual quantity sold is less than the

projected quantity sold

<blox:data query="SELECT Actual.SalesQty, Actual.ProductID,

 Projected.SalesQty, Projected.ProductID FROM Actual,

 Projected WHERE Actual.SalesQty < Projected.SalesQty".../>

144 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Query Builder

The Query Builder provides an easy way to develop and test query syntax. The

tool uses a point-and-click interface and does not require in-depth knowledge of a

data source’s query language.

Query Builder supports interactive query development. You simply manipulate a

grid that displays a default result set until they achieve the appropriate data view.

Clicking the Get Current Query button displays the query statement in the correct

syntax. You can copy and paste the statement into a text file for later use, or

directly into the value of a query within an application template.

Another powerful feature of the Query Builder is the Generate Blox Tag button,

which allows you to retrieve the Blox tag syntax required to reproduce the

PresentBlox showing the same view and result set. Similarly, you can copy and

paste the tag into a text file for later use, or paste it directly into your application.

Using Query Builder

The following task shows you how you can use the Query Builder to begin

learning about query statements and how they impact views in DB2 Alphablox

applications.

To access Query Builder:

1. On the Application Studio page, click Workbench. The Workbench page opens.

2. Click the Query Builder link.

3. Click on the Connection Settings button to open the drop down list. Select the

data source for which you want to build a query. Values for the Catalog,

Schema, Username, and Password fields are taken from the data source

definition and appear in the text boxes.

4. If necessary, change the values for Catalog, Schema, Username and Password.

Click the Execute Default Query checkbox if you want to execute the default

query upon connection.

5. Click the Connect button. Upon successful connection, a confirming indicator

appears in the Status Frame.

6. Do any of the following:

v Type a query string into the text box and click the Execute Query button.

The results appear in the PresentBlox at the bottom of the page.

Click the Get Current Query button to retrieve the most recent successful

query against this data source. The query string appears in the text box.

v Click the Default Query button. The default query string associated with this

data source appears in the text window. If the data source is an Alphablox

cube or an Microsoft Analysis Services cube, ensure that the cube name is

correct.

Note: With the Relational Database connection pooling feature, you will not

be able use the Default Query button to get the default query on a

relational cube.

v To view the results of the query, click the Execute Query button. The result

set appears in the PresentBlox at the bottom of the page.

v When data appears in the PresentBlox at the bottom of the page, use the

standard user interface to swap axes, drill up or down, move dimensions

between axes, and so forth.

Chapter 14. Retrieving data 145

v Click the Generate Blox Tag button. This opens a text box containing the

complete tag to duplicate the view and result set seen in the PresentBlox.

v Expand the Asymmetrical Query Builder pane, deselect any columns to

remove, and click the Apply Column Set button.

Note: The Asymmetrical Query Builder pane only works with DB2 OLAP

Server or Essbase data sources, and only on column headers.
7. After developing the appropriate data view, click the Get Current Query

button. The text box displays the query string required to develop the current

data view.

After deriving the appropriate query string, you can copy and paste it into a

text file for future use, or directly into the value of your query. To exit Query

Builder, close its browser window.

8. Click the Generate Blox Tag button. A text box opens displaying the tag to

reproduce the PresentBlox layout and result set. You can copy and paste this

tag into a text file for later use, or paste it directly into an application.

Working with JDBC data sources

DataBlox lets you connect to multidimensional as well as relational data sources.

Once your relational data source is defined to DB2 Alphablox through the DB2

Alphablox Admin Pages, you can use DataBlox to connect to the data source and

retrieve data. However, with JDBC data sources, you might need to perform

specific JDBC calls, obtain JDBC URL connection string, or take advantage of

connection pooling or stored procedures. DB2 Alphablox provides a

JDBCConnection bean that allows you to construct JDBC connection strings from

DB2 Alphablox JDBC data sources. DB2 Alphablox also offers

StoredProceduresBlox for using stored procedures in relational databases.

Using the JDBCConnection Bean

The JDBCConnection bean is a Java bean that allows you to get information about

a DB2 Alphablox relational data source. Through the JDBCConnection bean you

can get the JDBC URL connection string and perform JDBC calls without creating a

Blox. Additionally, you can use this bean to override properties of a relational

(JDBC) data source defined in DB2 Alphablox.

The JDBCConnection bean is a class in the com.alphablox.blox.data.rdb package,

and you must use the following JSP import statement at the beginning of any JSP

file that uses any of the APIs in this bean:

<%@ page import="com.alphablox.blox.data.rdb.*" %>

JDBCConnection Bean Example

The following is a sample JSP file that uses the JDBCConnection bean to print out

the JDBC URL connection string.

<%@ page import="com.alphablox.blox.data.rdb.*" %>

<%@ page import="java.sql.*" %>

<%@ page import="java.io.*" %>

<html>

<head>

<title>JDBC Connection Bean Example</title>

</head>

<body>

<%

146 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

String ds = (String)request.getParameter("ds") ;

%>

<form name=form method=get>

Enter data source name:

<input name="ds" value="<%= ds == null ? "" : ds %>">

<input type=submit value="Go">

</form>

<%-- Create the Bean --%>

<jsp:useBean id="jbean"

 class="com.alphablox.blox.data.rdb.JDBCConnection"

 scope="session" />

<%-- Put in try statement to catch errors --%>

<% try { %>

<%--Test if there is a data source --%>

<% if (ds != null) { %>

<%

jbean.setDataSourceName(ds);

%>

<%-- Use the Alphablox bean to get the connection JDBC string --%>

<%= "URL = " + jbean.getURL() %>

Properties = <%= jbean.getConnectionProperties() %>

<%

Connection connection = jbean.createConnection();

%>

Connection = <%= connection %>

<%-- If no data source, prompt for one --%>

<% } else { %>

Please enter a relational data source name!

<% } %>

<%-- Catch the exception --%>

<% } catch (Exception e) {

 out.write("
An error has occured: "

 + e.getMessage() + ""); } %>

</body>

</html>

Using StoredProceduresBlox

StoredProceduresBlox is the starting point for using relational database stored

procedures. It allows you to create a connection to a database and prepare a stored

procedure statement. Once the correct DB2 Alphablox data source and any other

connection parameters are set, you can:

v use the prepare(...) method to return a JDBC CallableStatement object, which

can be used to set up any stored procedure parameters necessary to execute the

stored procedure

v use the getStoredProcedure() method to access the current StoredProcedure

object; you can then execute the stored procedure, get to the ResultSet of the

executed stored procedure, or access the JDBC ResultSet

v use the getStoredProcedures() or getStoredProcedures(...) methods to return

one or more MetaData objects that give you access to the individual parameters

Chapter 14. Retrieving data 147

The StoredProcedure object and the MetaData object are separate classes in the

com.alphablox.blox.data.rdb.storedprocedure package. By having separate

objects for StoredProcedure and MetaData from StoredProceduresBlox, you can

prepare a stored procedure once and then execute it multiple times. Even though

stored procedure parameters can be altered between executions, you can enhance

the performance by not preparing the stored procedures at every execution.

The following diagram shows the object hierarchy of stored procedure related

objects.

Because the StoredProcedure and MetaData objects are in a separate package, you

must use the following JSP import statement at the beginning of any JSP file to use

any of the APIs in these objects:

<%@ page import="com.alphablox.blox.data.rdb.storedprocedure.*" %>

Note: JDBC Stored procedures are supported for IBM DB2 UDB, Sybase, Oracle,

and Microsoft SQL Server databases.

Note the following when using the StoredProcedure object to execute a prepared

stored procedure:

v If a DataBlox is used to display information from a stored procedure, the

DataBlox must be separately connected to the same data source as

StoredProceduresBlox.

v If a DataBlox is used to display information from a stored procedure and the

stored procedure also has output parameters, the result set must first be used

before getting the output parameters. This is a JDBC restriction.

v If the stored procedure has input and output parameters, you should use

StoredProceduresBlox.prepare(...) to get the JDBC CallableStatement object.

This object allows you to get and set input and output parameters on the stored

procedure.

v Once the stored procedure has been executed and any output parameters or

result sets are used, you need to call the StoredProceduresBlox.disconnect() to

disconnect and free up any resources. If you want to keep the connection to the

data base open, call StoredProceduresBlox.close() to free up any resources

used.

148 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

v If a DataException is thrown, extra information might be available as a

SQLException by looking at DataException.getNestedException().

Once the stored procedure is executed, it returns a StoredProcedure.ResultSet

object, which gives you access to the JDBC ResultSet object. If you need to use the

JDBC ResultSet object directly, use the ResultSet.getResultSet() method to get to

this object.

It is recommended that you also import the java.sql package when working with

stored procedures, so your JSP files should import two packages:

<%@ page import="com.alphablox.blox.data.rdb.storedprocedure.*" %>

<%@ page import="java.sql.*" %>

StoredProceduresBlox examples

This section includes six examples that demonstrates the use of

StoredProceduresBlox. For more examples, see the Javadoc documentation.

v “Connecting to the data source without a DataBlox”

v “Using the StoredProceduresBlox to connect the data source for use with

DataBlox”

v “Getting a list of stored procedures whose name matches a specified pattern” on

page 150

v “Getting a list of all parameters for each stored procedure” on page 150

v “Executing a stored procedure that has one input parameter and two output

parameters” on page 151

v “Setting a stored procedure result set to a DataBlox” on page 152

Connecting to the data source without a DataBlox

This example demonstrates how to connect to the data source without a DataBlox

as you may only want to get the parameters or run an INSERT SQL stored

procedure that does not require a DataBlox.

<%@ page import="com.alphablox.blox.StoredProceduresBlox" %>

<%@ page import="com.alphablox.blox.data.rdb.storedprocedure.*" %>

<%@ page import="java.sql.*" %>

<%@ taglib uri="bloxtld" prefix="blox" %>

<blox:storedProcedures id="mySP"/>

<%

 mySP.setDataSourceName("sales");

 mySP.connect();

%>

Using the StoredProceduresBlox to connect the data source for

use with DataBlox

This example demonstrates how the DataBlox used to display information from a

stored procedure needs to be separately connected to the same data source as

StoredProceduresBlox.

<%@ page import="com.alphablox.blox.StoredProceduresBlox" %>

<%@ page import="com.alphablox.blox.data.rdb.storedprocedure.*" %>

<%@ page import="java.sql.*" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<blox:storedProcedures id="mySP"/>

<blox:data id="myDataBlox" visible="false"/>

<%

 myDataBlox.setDataSourceName("sales-sql");

Chapter 14. Retrieving data 149

myDataBlox.connect();

 mySP.setDataSourceName("sales-sql");

 mySP.connect();

%>

Getting a list of stored procedures whose name matches a

specified pattern

This example demonstrates how to use the getStoredProcedures(...) method to

get a list of stored procedures whose name starts with ″procedure″. This method

returns an array of MetaData objects. The MetaData object contains information on

the parameters for each stored procedure.

<%@ page import="com.alphablox.blox.StoredProceduresBlox" %>

<%@ page import="com.alphablox.blox.data.rdb.storedprocedure.*" %>

<%@ page import="java.sql.*" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<blox:storedProcedures id="mySP"/>

<%

 mySP.setDataSourceName("sales-sql");

 mySP.connect();

 MetaData procedures[] =

 mySP.getStoredProcedures("procedure%");

%>

<%

 if (procedures.length == 0) {

%> No procedures found. <%

} %>

Through the MetaData object, you can then access the individual parameter for a

specified stored procedure.

Getting a list of all parameters for each stored procedure

This example demonstrates how to use the MetaData object to get to each stored

procedure and the parameters for each stored procedure. This example assumes

you already have a MetaData object returns as shown in the previous example:

MetaData procedures[] =

 mySP.getStoredProcedures("procedure%");

We will now list each stored procedure and its catalog, schema, name, and remark

information in a table:

<table border="1" >

<tr><th colspan="4">Stored Procedure Information</th></tr>

<tr><th>Catalog</th><th>Schema</th><th>Name</th><th>Remarks</th></tr>

<%

 for (int i = 0; i < procedures.length; i++) {

 String catalog = procedures[i].getCatalog();

 String schema = procedures[i].getSchema();

 String name = procedures[i].getName();

 String rem = procedures[i].getRemark();

 String type = null;

 %>

 <tr><td><%= catalog %></td>

 <td><%= schema %></td>

 <td><%= name %></td>

 <td><%= rem %></td></tr>

 <%

 }

%>

</table>

We can also get the detail of each parameter for each stored procedure:

150 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

//for each of the stored procedure, we will get the MetaData.Column //

object which contains the detail of the parameters

<%

for (int spCount = 0; spCount < procedures.length; spCount++) {

 String currProcedure = procedures[spCount].getName();

 MetaData.Column cMeta[] = procedures[spCount].getColumnMetaData();%>

 //for the current stored procedure, we will get the list the

 //detail for each parameter in a table

 <table border="1">

 <tr><th colspan="7">Stored Procedure Params for

 <%=currProcedure %></th></tr>

 <tr><th>Catalog</th><th>Schema</th><th>Name</th><th>Column Name</

th><th>Type</th><th>Type Name</th><th>Remark</th></tr>

 //Iterate through the parameters in the current stored procedure

 <% for (int i = 0; i < cMeta.length; i++) {

 String catalog = cMeta[i].getCatalog();

 String schema = cMeta[i].getSchema();

 String name = cMeta[i].getName();

 String colName = cMeta[i].getColumnName();

 short type = cMeta[i].getType();

 String typeName = cMeta[i].getTypeName();

 String remark = cMeta[i].getRemark();

 %><tr><td><%= catalog %></td>

 <td><%= schema %></td>

 <td><%= name %></td>

 <td><%= colName %></td>

 <td><%= type %></td>

 <td><%= typeName %></td>

 <td><%= remark %></td></tr><%

 } %>

 </table>

<% }

%>

Executing a stored procedure that has one input parameter and

two output parameters

This example demonstrates how to the prepare() method to return a JDBC

CallableStatement object that you can use to execute a stored procedure with input

and output parameters.

<%@ page import="com.alphablox.blox.data.rdb.storedprocedure.*" %>

<%@ page import="com.alphablox.blox.data.rdb.*" %>

<%@ page import="com.alphablox.blox.StoredProceduresBlox" %>

<%@ page import="java.sql.*" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<blox:storedProcedures id="mySP"/>

<%

 mySP.setDataSourceName("storeSales");

 mySP.connect();

 // param 1 is an integer output, param 2 is a string input,

 // param 3 is a string output

 CallableStatement cstmt = mySP.prepare("{call a_procedure(?, ?, ?)}");

 cstmt.setString(2, "users/admin%");

 cstmt.registerOutParameter(1, Types.INTEGER);

 cstmt.registerOutParameter(3, Types.VARCHAR);

 mySP.execute();

 int out1 = cstmt.getInt(1);

 String out3 = cstmt.getString(3);

%>

...

Chapter 14. Retrieving data 151

<!-- Closes all resources associated with executing the stored procedure -->

<%

 mySP.close();

%>

...

<!--Disconnects from the data source -->

<%

 mySP.disconnect();

%>

Setting a stored procedure result set to a DataBlox

This example demonstrates how to get a stored procedure result set to a DataBlox.

<%@ page import="com.alphablox.blox.data.rdb.*" %>

<%@ page import="com.alphablox.blox.data.rdb.storedprocedure.*" %>

<%@ page import="com.alphablox.blox.StoredProceduresBlox" %>

<%@ page import="java.sql.*" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<blox:storedProcedures id="mySP"/>

<blox:data id="myDataBlox" visible="false" />

<%

 myDataBlox.setDataSourceName("sales-sql");

 myDataBlox.connect();

 mySP.setDataSourceName("sales-sql");

 mySP.connect();

 mySP.prepare("{call a_procedure}");

 mySP.execute();

 mySP.loadResultSet(myDataBlox, 1);

%>

152 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 15. Presenting data

The common user interface Blox (GridBlox, ChartBlox, and PresentBlox) offer many

alternatives to developers for customizing the analytic views. This topic will help

you decide which Blox you should use and how to effectively use user interface

Blox.

Choosing Blox for presenting data

In DB2 Alphablox applications, you can use any of the common user interface Blox

(GridBlox, ChartBlox, and PresentBlox) to display result sets to end users, but the

decision on which particular Blox to use depends on your user requirements.

User interface Blox can only display the results from one data source at a time. If

you need to display results from multiple data sources simultaneously on the same

page, you have a couple of options:

v Place multiple Blox on a page, each pointing to a different data source.

v Use a single Blox on a page to display results from multiple data sources by

using either the server-side Java API or client-side Blox Client API to change

data sources. See the “Setting different data sources using

DataSourceSelectFormBlox” on page 114 for an example.

Choosing data presentation Blox components

As discussed earlier in this guide, the primary Blox of interest to users are the Blox

which display data: ChartBlox, GridBlox, and PresentBlox. This guide focuses on

the use of the user interface Blox available in the DHTML client.

Below is a table summarizing the pros and cons of each of the data presentation

Blox:

 Blox Advantages Disadvantages

GridBlox

v users can readily compare

numbers that show small

differences

v alerts can be created to

highlight information in

particular cells

v information links (using the

cellLink and cellAlert

properties) can be added to

individual cells or groups of

cells

v information links (using

header links defined in the

application definition) can be

used to add links to

information in row and

column headers

v users may have more difficulty

spotting large differences

between values, when trying to

quickly view differences

v no access to DataLayout panel

© Copyright IBM Corp. 1996, 2006 153

Blox Advantages Disadvantages

ChartBlox

v displays multidimensional or

relational data in a variety of

chart formats

v viewing data visually can

obscure the differences between

values when values vary only

slightly

v information links (see GridBlox

advantages) cannot be accessed

on charts

v users cannot see alerts tied to

the data

v no access to DataLayout panel

PresentBlox

v combines both grid and chart

views of data into a single

Blox

v users can toggle between

grid and chart view, or

display both views

simultaneously (when split

pane is enabled)

v DataLayout panel allows

advanced users to

manipulate display of

dimensions

v with only a grid or a chart

enabled, users can have

access to the DataLayout

panel or the Page panel

(these are not available in

standalone GridBlox and

ChartBlox)

v sometimes users should only be

allowed to see only a grid, when

data density is too high (too

many data points in a chart can

be difficult to interpret); the

PresentBlox chartEnabled

property can be set to false, but

this eliminates one of the

advantages of a PresentBlox

Render formats available to the DHTML client

The DHTML client’s rendering is one of the different Blox rendering formats

available. All new applications created on DB2 Alphablox render pages in the

DHTML format. The other rendering formats are printer, Excel, PDF, and XML.

Depending on the particular rendering format being used, the rendering format

may be accessed through the common Blox render property, the render URL

attribute, or through other mechanisms described in this section.

DHTML format (render=dhtml)

By default, applications created on the DB2 Alphablox are rendered using DHTML.

This format uses standard DHTML technologies (HTML, CSS, DOM, and

JavaScript) along with server-side Java technologies to create renderings of data in

a highly interactive format that matches Java clients in power, but without the

need to use Java plug-ins or Java-enabled browsers. An additional benefit of the

DHTML rendering format is that the user interface, defined by the Blox UI Model,

can be extended and customized beyond the built-in support of the DHTML

format.

The DHTML rendering format is supported when using either the common Blox

render property or the render URL attribute.

Note: Blox cannot be rendered in DHTML if a page is set to render in a different

format since essential JavaScript files will not load.

154 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Printer format (render=printer)

The Printer format generates a view of a Blox’s data that is optimized for printing

purposes using your browser’s built-in printing functionality. The Blox view is

generated using HTML tables and CSS styles, and also converts all selectable page

filters into a list of selected filters including the dimension names and their

selected members. The Printer format generates visual representations based on the

same Blox UI model the DHTML client is built on.

The Printer rendering format is supported as both the common Blox render

property or using the render URL attribute.

Typically, to use this format, you would include an HTML button or link on a page

with a Blox view, allowing the user clicks to request a printable copy. In response

to a user’s request, the DB2 Alphablox renders the page in pure HTML before

delivering it to the client. After the page appears in the browser, the user can click

the browser’s Print button to send the page to the printer. For details, see “Printing

Blox output” on page 156.

PDF format (render=pdf)

Users frequently like having access to PDF files for future reference or for sharing

with others. DB2 Alphablox offers an alternative print delivery mechanism, the pdf

format, that exports the user interface Blox on the page to PDF. When the common

Blox render property is set to pdf, or when a JSP page is called with its render

URL attribute value set to pdf, the page is loaded directly into Adobe Acrobat.

A more sophisticated Export to PDF function is provided to end users to allow

them to export the data in the grid and chart to PDF format. The Export to PDF

option is available under the File menu in the menu bar. There is also an Export to

PDF button on the toolbar. When users select this option, a dialog pops up,

allowing them to specify the page orientation, header or footer text to add to the

PDF, and how they want the grid or chart to appear. DB2 Alphablox also offers

options for application developers to programmatically customize the page layouts,

such as specification of the size of the chart, when page break should occur, and

the headers and footers with logos and defined text.

To learn more about how PDF reports work and to add this feature to your

applications, see “Exporting to PDF” on page 241.

Export To Excel format (render=xls)

When the render Blox property or the render URL attribute is set to xls, DB2

Alphablox delivers the output in an HTML format that is loaded into a Microsoft

Excel spreadsheet. When using this format, the MIME type on the page being

returned is set to application/vnd.ms-excel, the standard MIME type for

Microsoft Excel.

Because this rendering format simply sets the MIME type on the HTML output,

the data is not in native Excel format. Data in the grid is loaded as is, and the

chart is loaded as a graphic.

A more sophisticated Export to Excel function is provided to end users to allow

them to export the data in the grid and chart to native Excel format. The Export to

Excel option is available under the File menu in the menu bar. There is also an

Export to Excel button on the toolbar. When users select this option, a dialog pops

Chapter 15. Presenting data 155

up, allowing them to choose the Excel template to use and whether they want to

open it in Excel or save the spreadsheet onto their system.

For a complete explanation of this advanced exporting to Excel function, see

“Exporting data to Excel” on page 237.

XML format

With an standalone DataBlox (that is, one that is not nested inside of another Blox),

you can render a query result set from an application data source into XML format

by setting the render URL attribute to xml (render=xml). Using the XML format is

explained further in “Exporting to XML” on page 249.

Specifying delivery formats

By default, application pages are delivered in DHTML format. There are no special

steps required to enable multiple application delivery formats. An attribute added

to an application’s URL informs DB2 Alphablox to deliver the page in the specified

format. For example, the following URL requests that the MyApplication page be

delivered in DHTML format:

http://<server>/applications/ThisView.jsp?render=dhtml

And, if you want a page to be rendered in Printer format, the URL would look

similar to this:

http://<server>/applications/ThisView.jsp?render=printer

Valid values when using the render URL attribute with the DHTML client include:

Render attribute

Description

dhtml Default. Renders Blox using DHTML technologies on the client.

none Remove all Blox from the page.

printer

Render in printer-ready format with no interactivity

xls Render the page to an HTML format and sets the page’s MIME type to

application/vnd.ms-excel, resulting in the page being exported to

Microsoft Excel

xml Render into XML format (applicable only to explicit DataBlox)

Printing Blox output

Two alternatives, the Printer format and the PDF Report format, are available for

generating printable pages displaying Blox results. The Printer format renders Blox

components on a web page using PNG images and HTML tables. Also, any

PageBlox page filters (either standalone or nested in a PresentBlox) are converted

from interactive HTML selection lists into static lists of dimensions and the

selected slicers for each dimension.

The PDF option generates a PDF file allowing more flexibility over the resulting

printable file by the assembler and user. For details on using the PDF Report

format, see “Exporting to PDF” on page 241.

156 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Printing with HTML-based printing

Although Blox on HTML pages can be printed using the browser’s Print button,

DB2 Alphablox can be used to render Blox output into a more printer-friendly

format, as described in the example below. The rendered output appears in a

browser window, replacing the interactive Blox with its printable version.

Note: By default, Microsoft Internet Explorer browsers do not print background

colors and images. In order for users to print background colors and images

in Internet Explorer, the user must manually configure their browser. As a

result, you should assume that the majority of users will not have this

setting enabled. Since you have no control over this browser setting, you

should design printable pages with the assumption that most users have not

modified this setting— most will neither know about this setting nor where

it can be found in their browser options.

To set this property, from the browser’s menu bar, click View, then Internet

Options. Select the Advanced tab and scroll down to the Printing section. Then

check the Print background colors and images option, and click Apply.

Creating printable pages using the render=printer URL

attribute

The simplest method for rendering printable pages is to use the render=printer

URL attribute. By appending ?render=printer to the end of the URL for a page,

the Blox on that page will be rendered in a printer-friendly format. If the Blox is a

PresentBlox, selectable page filters will appear in a list at the top of the Blox view,

indicating to viewers which slicers were active when the printable copy was

generated. Instead of applying the URL attribute to the existing page, it is usually

preferable to open a new browser window displaying the printable version of a

view.

Follow these steps to create printable pages using this method:

1. On a page with Blox on it, add a button or link to generate a printable page.

For example, the following HTML code creates a button, labeled “Print

Preview” in the body of a JSP page, that will open the current page’s view in a

new window, rendering it in printer mode:

<form>

<input type="button" value="Print Preview"

 onclick="window.open(’mView.jsp?render=printer’,’_new’)">

</form>

2. Now open your view and test the button. You should see a new window pop

open with the current view rendered in a printable format.

You should also notice that this page includes the button you added. Typically, this

would not be desired, so you could, for example, place common services buttons

in one frame of a frameset, including a print button and export to Excel button,

and display your analytic views in a separate frame. Then your buttons could

trigger the opening of your view page in a separate, printable page without the

buttons appearing on it.

A better alternative would be to open a new page in a separate window. A custom

print page offers more potential as a reasonable printable page. The following task

gives one approach for generating custom print pages.

Chapter 15. Presenting data 157

Creating custom print pages using the <blox:display> tag

The following steps show you how to create a page that uses the <blox:display>

tag to render a new page with the same data view, but in a printable format:

1. Create your analytic view and add a button that will be used to open a custom

print page for this view. In the following code snippet, a button is created that

will open a new window with MyView-print.jsp displayed within it.

<form>

 <input type="button" value="Print View"

 onclick="window.open(’MyView-print.jsp’,’_new’)">

</form>

2. Now, create your custom print page. Besides including a <blox:display> tag

for rendering the view, you might consider including the following items:

v title for the view being printed

v summary of content

v company name or logo graphic

v date the page was generated

v warning about usage (i.e., internal or confidential)

v copyright notice
The following code snippet is an example of a simple print page, which would

generate a printable page that includes a title, Blox rendered in printer mode,

and the date it was printed:

<h2>My Grid View</h2>

<blox:display bloxRef="MyGridBlox2" render="printer"/>

<p>

 Printed: <script>document.write(new Date());</script>

</p>

3. Save your custom print page.

Using this approach, you can offer many customized printing options.

A working example of the example above can be seen in Blox Sampler under

Presenting Data. In the print page that is generated, users can select the browser’s

File menu to print the page.

CSS themes

DB2 Alphablox uses Cascading Style Sheets (CSS) themes to control aspects of the

layout and appearance of pages rendered. Themes enhance the look-and-feel of

applications. Custom themes can be created, helping your organization to adopt a

corporate appearance in your DB2 Alphablox applications or to create appearances

that integrate well with existing web-based applications or portals.

Specifying themes

Themes can be specified for the appearance of Blox in four ways:

v The Default HTML Client Theme setting on the DB2 Alphablox Admin Pages

sets the default theme for all applications on this DB2 Alphablox instance. Upon

initial installation, the coleman theme is selected. To specify a different system

default theme, on the DB2 Alphablox Admin Pages, click the Administration

tab. Then under the General Properties section on the left menu, select System.

The Default HTML Client Theme option provides a drop-down list for theme

selection. This sets the theme at the system-level.

158 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

v Each application’s definition on the DB2 Alphablox Admin Pages includes a

Default Theme setting. This sets the theme at the application-level, overriding

the system-level setting. If the Default Theme is set to ″default,″ then the

system-level’s default theme is applied.

v The <blox:header> tag has a theme attribute. This sets the theme at the

page-level, overriding the theme setting at the application-level or system-level.

v The theme URL attribute appended to the URL when the page is called overrides

all other theme settings.

To specify the theme property as a URL attribute, use the following format:

http://.../application/view.jsp?theme=financial

When you define a theme using a URL attribute, the theme property defined

applies to all Blox on that page.

CSS theme files

The files for the DB2 Alphablox CSS themes can be found in the theme directory of

the DB2 Alphablox Repository:

<alphabloxDirectory>/repository/theme

A DB2 Alphablox theme consists of the following structure:

<themeName>.properties

Includes theme specifications about file locations, layout, and color. The

<themeName>.properties file settings are specified below.

<themeName>_dhtml.css

Includes theme specifications unique to the DHTML rendering format

i Folder containing images specific to the theme

 DB2 Alphablox theme files are named based on the theme to which they belong

(for example, financial.properties and financial_dhtml.css are the theme files

for the finanical theme option. These files are located in a theme directory, also

named based on the theme option. For example, the financial theme files are

located in the following directory:

<alphabloxDirectory>/repository/theme/financial

Note: For portlet development, use the Portal Theme Utility to create a theme that

will combine your selected portal theme with a DB2 Alphablox theme. This

tool is available under the Administration tab on the DB2 Alphablox home

page.

CSS theme properties defined in themeName.properties files

The theme properties file (<themeName>.properties) is a plain text file that defines

the following DHTML-related theme properties:

Property

Description

name = <themeName>

The name of the theme (e.g., coleman or financial)

description = description

A description of the theme which appears on the server console

Chapter 15. Presenting data 159

bgcolor = #3d3d5f

The background color for areas of ChartBlox not specified in

<themeName>.css

fgcolor = white

The foreground (text) color for areas of ChartBlox not specified in

themeName.css

css = <themeName>.css

The name of the themeName.css file

background = true

Causes the Blox background to appear

privateimages = true

For all the images used by this theme, use the theme’s private images

directory (<repository>/theme/<themeName>/i/)

windowbgcolor = #655973

The background color for a chart display area within PresentBlox

windowfgcolor = white

The foreground (text) color for the chart display area within PresentBlox

bkgrd_image_chart = imageFile

The background image to appear in charts

chart_color_series

The 18 colors used in creating chart colors, including lines, bars, pie slices,

etc.

CSS classes defined in the .css file

The themeName.css file is a plain text file that defines the CSS classes described

below. To see the values set for a class in a particular theme, open the theme’s

themeName_dhtml.css file, found here:

<alphabloxRepository>/theme/<themeName>/themeName_dhtml.css

Tip: Cascading Style Sheets specifications can be found at the World Wide Web

Consortium (http://www.w3c.org/style/css).

The following tables list the application-wide styles, the legacy styles, and the

overrides available in the themeName_dhtml.css file:

Application-wide styles

csApBg Application background color - overall background of a Blox

csCmpBg

Component background color - data area backgrounds of individual Blox

csCmpBrdr

Component border - borders of individual Blox and controls

csThmClr

Base theme color - used by text labels, information text, decorative

elements

csFntClr

Default font color - used by data, messages, functional text

160 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

http://www.w3c.org/style/css/

csFntSpc

Default font spec - used mainly by menus, toolbars and buttons

csLblFnt

Default label font spec - used by labels for GUI interactive-controls

csGrdFnt

Default grid font specification - used by all grid cells

csSlctBg

Default selection background color

csSlctClr

Default selection font color

csDsbldClr

Default disabled font color

csThrDBrdrRsd

3D raised border

csThrDBrdrLwrd

3D depressed border

csBckClr

Background color (Blox components)

csWndwClr

‘Window’ color (Blox components)

Grid styles

csDmnsnHdrs

Dimension headers

csClmnHdrs

Column headers

csRwHdrs

Row headers

csRwHdrsNnBnd

Row headers - non-banded

csRwHdrsBnd

Row headers - banded

csDtCl Data cell

csDtClBnd

Data cell - banded

csDtClNnBnd

Data cell - non-banded

Overrides

Style Class

Description

csRwHdrs

Row headers

csRwHdrsNnBnd

Row headers - non-banded

Chapter 15. Presenting data 161

csRwHdrsBnd

Row headers - banded

csDtCl Data cell

csTdClBnd

Data cell - banded

csDtClNnBnd

Data cell - non-banded

Overriding defined styles

One of the results of adding the <blox:header> tag to the head section of JSP pages

is to provide an automatic link to the appropriate CSS file.

Note: See also the information on applying styles to data cells and cell alerts,

described in “Using format masks to highlight data” on page 171 and

“Using cell alerts to highlight data” on page 172)

To override defined styles, you can create an entirely new theme:

1. Copy an existing theme directory, giving it a new name.

2. Rename the themeName_html.css and themeName.properties within that

directory.

3. Make the appropriate content changes to these files.

4. In the application URL, provide the name of the new theme. For a page named

view.jsp, the URL might become:

/<applicationName>/view.jsp?theme=MyTheme

Note: To load a new theme or reload a modified theme, use the load theme

command in the DB2 Alphablox console. Note that this command does not

accept a specific theme name as a parameter; the command simply loads all

themes from the Repository.

Note: Web browsers frequently cache files, such as buttons and icon GIF files.

When testing a new or modified theme, you may need to make sure the

browser cache’s cache is cleared before you can see changes you’ve made.

Applying styles to cell alerts

The styles for cell alerts are not defined in a CSS file. Instead, they are defined

inline in the HTML, based on the DataBlox cellAlert property. Because CSS has

cascading effect, the inline style is the one rendered by the browser, overriding any

other styles defined for a data cell.

User interface appearance

Blox can be configured to display different color schemes, fonts, and banding

characteristics which can complement the appearance, or “look and feel,” of your

application pages. Just as you can control the colors of fonts and background

colors on web pages using Cascading Style Sheets, you can also use Blox

properties and HTML themes to control the appearance of Blox on your

application pages. In the following sections, common appearance properties are

discussed.

162 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Included in the table below is a list of the most commonly modified appearance

features on the presentation Blox:

Blox Common Appearance Properties

GridBlox

v missingValueString: determines what to display in place of default

#MISSING

v rowHeadingsVisible: specifies whether the row headings to the left of

the data values appear on the grid

v gridLinesVisible: turn grid lines on or off

ChartBlox

v chartType: change chart type

v depthRadius: can be used to create a slight 3D effect on standard bar

charts

v labels and placement

PresentBlox

v dividerLocation: when splitPane is enabled, determines where the

divider should appear on loading of the PresentBlox

v splitPane: enables a splitter bar that allows simultaneous display of grid

and chart

v splitPaneOrientation: determines whether the splitter bar is horizontal

or vertical

DataBlox

v suppressMissing: suppresses rows or columns where there is no data

v suppressNoAccess: suppresses visibility of rows and columns where the

user has no access rights to the data

v suppressZeros: suppresses rows or columns where all zeros appear

ToolbarBlox

v removeButton: removes defined buttons from the toolbar

v button color and size

ReportBlox

v See Relational Reporting Developer’s Guide. CSS style settings can be

modified for most HTML elements

 For complete listings of appearance properties, see the listings of appearance

properties and tags in the “by Category” sections of each Blox Tag Reference

section in Developer’s Reference.

The next sections, discuss in more detail some of the common appearance

properties used in the GridBlox, ChartBlox, and PresentBlox.

Grid Appearance

Grids can be a great source of information, but sometimes reading them or being

able to notice important information is difficult. As a developer, you can change

many of the appearance properties of grids, but the following are the most

commonly changed properties:

v missingValueString: determines what to display in place of default #MISSING

v rowHeadingsVisible: specifies whether the row headings to the left of the data

values appear on a grid

v gridLinesVisible: turn grid lines on or off

Chapter 15. Presenting data 163

The sections below discuss some of these properties and how to use them to create

more usable grids.

Row banding

In a grid with many rows, row banding is enabled by default. If necessary, for

aesthetic reasons or to avoid classes with cell alert colors you may have selected,

you can changed the background and foreground colors used in row banding by

modifying CSS theme properties. For information on CSS themes, including a list

of modifiable CSS themes, see “CSS themes” on page 158

Cell appearance

The grid data cells that display the result sets can be customized to display in

different foreground and background colors, and fonts. To control these options,

use CSS themes. For information on CSS themes, including a list of modifiable

modifying CSS themes, see “Printer format (render=printer)” on page 155

Chart Appearance

The appearance of charts within DB2 Alphablox applications can be customized in

many ways to meet your users’ particular needs. A few of the commonly changed

ChartBlox properties, chartType, depthRadius, and chart_color_series are

discussed here.

Chart Types

The most frequently changed property on a ChartBlox is chartType, which defaults

to Vertical Bar, Side-by-Side, 3D Effect. ChartBlox has many other chart types

available to cover almost every user’s needs, but four of the most commonly used

chart types are Bar, Line, 3D Bar, and Pie. You can either use these short names or

their full chart type names in the chartType property setting. For a complete listing

of valid names for all of the supported chart types, see the ChartBlox Tag

Reference section of the Developer’s Reference. The following table lists the four

available chart shortcut names and their full chart type names:

Shortcut Name

Full Chart Type Name

Bar Vertical Bar, Side-by-Side

3D Bar 3D Bar

Line Vertical Line, Absolute

Pie Pie

Adding 3D appearance to charts

The default chartType property for ChartBlox is Vertical Bar, Side-by-Side, 3D

Effect, which results in a two-dimensional bar chart with a slight 3D effect. A

standard bar chart (Bar or Vertical Bar, Side-by-Side) or line chart (Line or

Vertical Line, Absolute) is flat and two dimensional, but by setting the

depthRadius property, you can add a subtle 3D effect of your own choice to the

these charts, giving them a different look. To add a subtle bit of depth to the flat

bar and line charts, combine the depthRadius property along with the chartType

property, for example like this:

164 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<blox:chart

 ...

 chartType="Bar"

 depthRadius="5"

 ... />

Acceptable values for depthRadius are integers between 0 and 100. The

depthRadius setting will also affect the appearance of other 2D charts.

Chart colors

The chart colors used to create the lines, bars, and pie slices can be set based on

the CSS theme being used. To specify chart colors other than the default colors

used in a particular theme, you can define your own chart color series, consisting

of 18 different colors. To specify a different color series to be used in a theme, open

the themeName.properties file (for example, coleman.properties), found in the

following directory:

<alphabloxRepository>/theme/themeName/

Find the chart_color_series property and redefine the 18 colors used to define

colors. Chart colors are specified using hexadecimal code (e.g., #E0CB68), like the

values commonly used in web pages.

PresentBlox appearance

The following topics describe a few ways that you can easily change the

appearance of a PresentBlox.

Split panes

By default, the PresentBlox instantiates displaying two panes, one with a grid and

the other with a chart. The splitPane property, by default set to true, allows users

to view their data in tabular and graphical representations simultaneously. Also, as

a user interacts with the data in one pane, the other pane is simultaneously

updated to reflect those changes. For example, when the user drills down on the

data in the chart, the grid pane reflects the new result set.

With split panes available, the divider is set to vertical by default. When more

than a few items will appear on the y-axis of your graph, you may want to

consider changing dividerLocation to horizontal, displaying both the grid and

chart across the full width of the PresentBlox. Frequently, when using a horizontal

setting, you may also find that the chart looks better when it appears above the

grid. This can be specified by setting the chartFirst property to true, overriding

the default.

Due to a lack of available screen space, or because the data density of the initial

result set may make the initial graph unreadable, you may think it would be better

to set splitPane to false. While this is a reasonable choice, you may want to

consider leaving the split pane option available to the user (consider that this

particular option cannot be changed in any of the available Toolbar options), but

change the initial display location of the split pane divider, setting it to one side

but leaving it available.

The dividerLocation property allows you to set the initial location of the splitter

bar. The acceptable values range from 0 to 1, with value of 0 meaning that only the

display on the right (or bottom, depending on the splitPaneOrientation setting)

Chapter 15. Presenting data 165

should appear, and a value of 1 meaning that only the display on the left (or top)

should appear. Try a few different settings to see if it makes sense to change it

from the default value of 0.5.

For complete information about the splitPane, splitPaneOrientation,

dividerLocation, and chartFirst properties, see the PresentBlox Tag Reference in

the Developer’s Reference.

Modifying DataLayout properties

By default, the DataLayoutBlox, or DataLayout panel, is available, but not visible

to end users. For analytic views where you will have mostly advanced users, you

may decide that you want to have the DataLayout panel visible when a

PresentBlox loads. To make the DataLayout panel visible when the PresentBlox

loads, you need to set the nested DataLayoutBlox’s visible attribute to true, as in

this example:

<blox:present id="myPresentBlox">

 ...

 <blox:dataLayout visible="true"/>

 ...

</blox:present>

If you do not want the DataLayout panel to be available to users, for example if

you expect only casual users to view and use a PresentBlox, you can disable the

DataLayout panel by setting the PresentBlox dataLayoutAvailable attribute to

false. This will automatically result in the DataLayout button not appearing on the

toolbar. The following code snippet shows the proper usage of this property:

<blox:present id="myPresentBlox"

 dataLayoutAvailable="false">

 ...

</blox:present>

The availability of the DataLayout panel is determined by the PresentBlox

dataLayoutAvailable property setting, and is an attribute on the <blox:present>

tag. The visibility of the DataLayout panel is a property of the DataLayoutBlox

object itself and is thus controlled using the visible attribute of the

<blox:dataLayout> tag.

Modifying menu bar properties

The menu bar is the text-based menu appearing at the top of Blox, automatically

incorporating relevant menus based on whether the Blox is a GridBlox, ChartBlox,

or PresentBlox. By default, the menubarVisible tag attribute of the <blox:grid>,

<blox:chart>, and <blox:present> is set to true. To remove the menu bar from one

of these Blox, add the menubarVisible tag attribute to the Blox tag and set the

value to false.

Other than displaying or not displaying the menu bar, there are no tags or tag

attributes to control its appearance. Advanced developers can use the extensibility

of the Blox UI model to uniquely customize the menu bar.

Modifying toolbar properties

By default, the toolbar is available to users on a PresentBlox. There are a couple of

common appearance settings that are frequently modified by developers. The

166 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

toolbar is considered always available, but can be set to not be visible to users

using the visible attribute of the ToolbarBlox tag.

If you decide to keep the toolbar visible, you may still choose to disable, or

remove, some of the toolbar buttons. To remove buttons from the toolbar, use the

removeButtons property of the nested ToolbarBlox to remove any buttons you

decide are unwanted. For example, the following example shows the Help would

be removed from a ToolbarBlox:

<blox:present ...>

 <blox:toolbar removeButtons="Load,Save,Help"/>

</blox:present>

Note: Note that you must remember to add Load and Save to the removeButtons

tag attribute since they are included in the default value string for this

property. If you forget to add them to the string, the Load and Save buttons

will appear in the toolbar.

Data appearance

When you retrieve result sets from a data source, the data may either be returned

pre-formatted or not. Once the results are retrieved into a DB2 Alphablox

application, you have several options for controlling the appearance and

formatting of data. Using DataBlox properties, you can suppress rows or columns

with zeros, missing data (or null values), duplicate data, or data that a user does

not have access rights to. In a GridBlox, you can format the numbers, including

symbols ($, %, etc.) or groupings (showing commas or periods). Also, in a

GridBlox, you can display numbers in thousands, millions, or whatever grouping

you find appropriate for your data.

GridBlox properties

Three GridBlox properties are useful for changing the formatting of data values,

and thus your data’s appearance on grids, include defaultCellFormat, cellFormat,

and formatMask. In the following tasks, you’ll learn how to use these format mask

properties to solve some frequently encountered tasks. For complete details on the

use of these properties, see GridBlox Tag Reference.

Formatting values in thousands and billions

A common request from end users is to get rid of unnecessary noise in the data by

eliminating, or essentially rounding out, irrelevant numbers. If a user is working

on a budget that is many thousands of dollars, then seeing the cents and even

dollars may not be of any use, and will occupy unnecessary space in the data cells.

As a developer, you can help this user out by changing the defaultCellFormat

property of the GridBlox. For example, to display all grid values in thousands you

have two options. To display the value in thousands followed by a “K,”

representing thousands, enter the following setting:

defaultCellFormat="#,###K"

The K in the value tells DB2 Alphablox that you want the numbers in thousands,

but to append a K to the end of the value.

While the K indicates that the value is displaying in thousands, many users prefer

not to see the K in every field. To display the grid values in thousands, but without

Chapter 15. Presenting data 167

the K suffix, you can use a feature, available on all format masks in DB2 Alphablox

applications to calculate the numbers in thousands by entering the following

setting:

defaultCellFormat="#,###/1000"

In some situations, you may want to display a special character at end, for

example a “B” for billions. To add a “B” to the end of this value, modify the

previous setting to show:

defaultCellFormat="#,###/1000‘B’"

For details on use of defaultCellFormat and other format mask properties, see

GridBlox Tag Reference.

Displaying percentages for specific members

When using the GridBlox defaultCellFormat property, the entire grid of values is

affected. Frequently, you will want to limit the formatting of values to a particular

row or column, or use the defaultCellFormat property for all data values except

for those for a particular member. To limit number formatting to a specific

member, affecting only a single row or column, you can use the cellFormat

property. Unlike the defaultCellFormat property, cellFormat is an indexed

property and requires the use of its own Blox tag. Because it is a separate tag and

represents a GridBlox property, the cellFormat tag must be nested within the body

of a GridBlox tag. Here is a code snippet showing what a cellFormat tag would

look in a non-nested GridBlox if you only wanted to display your Variance %

values with the percent symbol (%) after each value for that member:

<blox:grid id="myGridBlox">

 <blox:cellFormat

 format="#,###.00%"

 scope="{Scenario: Variance %}" />

</blox:grid>

In this example, Variance % would show values in percent to two decimal places.

Controlling decimal appearances

While it may not be immediate obvious to you how decimals affect the appearance

of your data, here’s an example where data display makes the readability of a grid

more difficult. In the following grid, notice how the numbers in the column do not

line up in a row with any of the value places appearing in alignment:

 7.654

3.21

43.21

543.2

3

3.2

As you notice, even in this small sample of numbers, it is difficult to compare

values since you have to mentally try to line up the numbers based on the decimal

location. You can define format masks so that all of the decimals on these values

line up in the column. For example, you could have the Variance % column up

using a <blox:cellFormat> tag, like this:

168 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<blox:cellFormat

 format="#,###.000"

 scope="{Scenario:Variance %}"/>

The Variance % column would now display data like this:

 7.654

 3.210

 43.210

543.200

 3.000

 3.200

As you have learned in this example, the appropriate format mask will make your

data more readable, more meaningful, and better looking. Format masks can also

be used to display negative values in parentheses or in red, display currency

symbols, and percentage symbols. See the GridBlox Tag Reference in the Developer’s

Reference for other format mask options.

Chapter 15. Presenting data 169

170 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 16. Highlighting and commenting on information

How can you call attention to information that differs in some significant way

from the rest of the data? Commonly referred to as “exception reporting” or

“traffic lighting,” a common goal is to alert users to information that may be

important to make decisions upon. This topic discusses the use of DB2 Alphablox

cell alerts and information links to solve this problem. Cell alerts can be used to

highlight information by changing data cell styles, and can also be used to show

links based on some criteria. Information links, including header and cell links, can

also provide a way to highlight cells, leading users to more information.

The ability for users to add and view comments on specific data in a grid is

another powerful way to highlight information. A topic in this section covers how

to use CommentsBlox to add this feature your applications.

Overview

Along with access to the wealth of information stored within your company’s

databases comes the problem of how to help users find important information

quickly. DB2 Alphablox developers can use techniques such as cell alerts and

hyperlinks on grids to either highlight information based on some business criteria

or to link users to further information relevant to the application they are using. In

the following sections, you will learn how to use cell alerts, cell links, and cell alert

links to bring attention to important or ancillary information.

The ability for users to add and view comments on specific data in a grid is

another powerful way to highlight information. In this topic, you will also learn

about how to enable users to add and display comments (or annotations) to data

cells in multidimensional databases.

Using format masks to highlight data

Negative values in a grid show minus signs in front of the values by default. As an

alternative, you can use the defaultCellFormat or other format mask properties to

display negative values with parentheses around them or in red. Like Microsoft

Excel, format masks in DB2 Alphablox applications can be used to display negative

values in red.

Highlighting negative values in red

To highlight all negative values on a grid in red, set the defaultCellFormat using

one of the format masks that will display negative values in red. All values are

formatted according to the values in the cellStyle, which by default displays all

values in black.

In the following example, the positive values will display all values with two

decimal places and groupings will be separated with commas. All negative values

(indicated by the format mask to the right of the semicolon) will show the same

formatting as the positive values, except that these values will be red:

<blox:grid ...

 defaultCellFormat="#,###.00;[red]#,###.00"

</blox:grid>

© Copyright IBM Corp. 1996, 2006 171

If you only wanted negative values for specific members to be displayed in red,

you would need to use the cellFormat property. In the following example, the

negative values for the member Actual will be displayed in red:

<blox:grid ...>

 <blox:cellFormat

 format="#,###.00;[red]#,###.00"

 scope="{Scenario:Actual}"/>

</blox:grid>

For details on the use of defaultCellFormat and cellFormat properties, see

GridBlox Tag Reference.

Highlighting negative values with parentheses

Another alternative, which reflects a common practice in the financial community,

is to display negative values within parentheses (but without minus signs). While

this is a common number formatting practice, it also may help call attention to

negative values in a grid. In the following example, negative values will be

surrounded by parentheses:

<blox:grid ...

 defaultCellFormat="#,###.00;(#,###.00)"

</blox:grid>

If desired, you can combine these two highlighting methods. The following setting

will result in negative values being displayed within parentheses and in red:

<blox:grid ...

 defaultCellFormat="#,###.00;[red](#,###.00)"

</blox:grid>

For details on the use of defaultCellFormat and cellFormat properties, see the

GridBlox section of the Developer’s Reference.

Using cell alerts to highlight data

Analyzing information is difficult enough to do without having to carefully

scrutinize all of the numbers in a large grid to spot deviations or trends that

warrant further attention. If an analyst misses an important deviation in even a

single value, it could have costly consequences for a company. Since time is scarce,

anything that can be done to speed up their work yet help keep them from

missing important changes will be a productivity boost. Many analytic

applications, including flash reports and executive scorecards, use exception

reporting or traffic lighting to signal that attention needs to be given to some data.

DB2 Alphablox supplies Blox properties and methods that can be used to highlight

this critical information.

In DB2 Alphablox applications, the GridBlox cellAlert property can be used to

highlight important information that users might be interested in being alerted to:

v significant deviations from expected values

v negative values, pointing out potential profitability issues

v ratios that are out of bounds from acceptable ranges

Two ways of using the cellAlert property to highlight information will discussed

below: cell formatting and cell alert links.

172 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Cell formats

Depending on the application you are working on, it might be a user requirement

for you to perform “traffic lighting” on values based on some business logic.

Traffic lighting is a commonly-used term used to describe a form of exception

reporting in which different ranges of values are highlighted to users using

something as simple as the red, yellow, and green light metaphors of the real

traffic lights you encounter when driving your car around town. Traffic lighting is

an easy-to-comprehend technique that applies knowledge from one domain of life

(driving a car or walking across a street) to another domain (business intelligence).

A typical application of traffic lighting in an analytic application is to highlight the

backgrounds of data values according to some criteria that are commonly reflected

in the three standard traffic light colors. The following table lists the three standard

traffic light colors and describes their commonly used meanings:

Background Color

Description

Red Dangerous levels, values which should be of major concern to users.

Yellow

Values are not within acceptable, or desired, ranges and could merit

attention.

Green Acceptable values that are “safe” or “good” ranges and do not necessarily

need attention.

 The following task explains how you can create a simple traffic lighting reporting

system to alert your users to important changes in their data.

A simple traffic lighting reporting system

There are many possible variations possible in creating a traffic lighting notification

system for reporting. Earlier in this topic, you learned about how you could use

the GridBlox defaultCellFormat or cellFormat properties to highlight negative

values in a grid. While this is a good solution for many situations, there will be

instances when negative values are actually “good” values, so highlighting them in

red using format masks may not work. The GridBlox cellAlert property allows

you to customize alerting by

v background colors of cells

v data value styles, including font and color

v cell links that appear when criteria are met

For complete details about all attributes that can be used with the cellAlert

property, see GridBlox Tag Reference . Follow these steps to create a simple traffic

lighting system for a member on a grid:

1. Pick the member on which you want to highlight ranges of values.

In this example, the member on which traffic lighting will be done is Variance

%. While four columns (Actual, Forecast, Variance, and Variance %) will appear

in the grid, only the Variance % member will display background colors

indicating levels of concern.

2. Add a <blox:cellAlert> tag to define values that should appear with red

backgrounds.

Chapter 16. Highlighting and commenting on information 173

<blox:cellAlert

 scope="{Scenario:Variance %}"

 condition="LT"

 value="0"

 background="red">

</blox:cellAlert>

3. Add a <blox:cellAlert> tag to define values that should appear with yellow

backgrounds.

<blox:cellAlert

 scope="{Scenario:Variance %}"

 condition="between"

 value="0"

 value2="10"

 background="yellow">

</blox:cellAlert>

4. Add a <blox:cellAlert> tag for values that should appear with green

backgrounds.

<blox:cellAlert

 scope="{Scenario:Variance %}"

 condition="GT"

 value="10"

 background="green">

</blox:cellAlert>

5. Run your report.

Example: To see a working example of this reporting system, see the Traffic

Lighting example in the Highlighting Data section of Blox Sampler.

When you use traffic lighting and exception reporting, here are a few important

points to keep in mind:

v Be careful that ranges cover all values. For example, if you have values greater

than zero appearing in green and values less than zero appearing in yellow, then

when the value is zero, no highlighting will occur.

v For extremes, unless there are fixed limits on the range of values, consider using

GT or GTEQ on one end of your range and LT or LTEQ at the other end of the value

ranges. This prevents having to perform extra maintenance later, if values

exceeded predefined ranges.

v Color schemes used in row banding, generation styles, and cell styles can

interfere with your cell alerts, causing an important alert to be missed. For

example, if your default row banding displays alternate row backgrounds in

yellow, and an alert is also using yellow as its background color, a user would

most likely miss the alert.

v Color schemes used in alerts can affect the results of printed pages. Cells with

red backgrounds, depending on the printer, may turn black or very dark on

printing, obscuring the value in those cells.

v Online readability of cells with alerting background colors may be difficult

because of the low contrast between the value color and the background color.

Black values with red backgrounds can be particularly difficult to read. And,

keep in mind that variations in colors and color contrasts can vary from monitor

to monitor.

Cell alert links

In addition to changing the appearance of a cell as the result of a match with a cell

alert’s criteria, you can also define a link that will appear when certain criteria are

174 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

met. For example, when a particular value matches your conditions, then you may

want to pop open a text window saying something about that value, and why the

cell alert applies in this case.

Creating alert messages for cell alerts

In this task, the goal is to pop open a text window when a user clicks on the link

icon for a cell. Here are the steps to follow:

1. Create the window that will be popped up for the alert.

For example, your window might be a simple HTML window with a short

message, no navigation elements, and a Close Window button. It might look

like this:

<html>

<head>

<title>Alert Message</title>

</head>

<body>

Your alert message here

</body>

</html>

In this example, assume that the file is saved as alertMessage.html.

2. Nest a GridBlox cellAlert tag within the GridBlox tag.

<blox:grid id="myGridBlox"

 ...>

 <blox:cellAlert

 condition="LT"

 value="0"

 link="http://<serverName>/<appName>/notes/alertMessage.html"/>

</blox:grid>

Note: Links used within cellAlert tags should be either absolute URLs,

showing the entire path to the page, or a relative URL (including an

initial forward slash) from the application context. When the link is an

absolute URL, it must include the server name in the URL. The

following two examples are both valid:

link="http://<serverName>/<appName>/notes/alertMessage.html"

link="/notes/alertMessage.html"

In the URL above, serverName must be the server in which your DB2 Alphablox

application is running.

3. Test your application page.

Note: When used in conjunction with cell links, you need to be aware that cell

alerts take precedence over cell links when images are included in both. If a

cell alert applies to a data cell, and there is also a defined cell link with an

image or image alignment defined, the cell link will not appear. However, if

you have a cell alert that does not include a link or an image, then both will

be applied.

Using chart series colors to highlight data

In DB2 Alphablox applications, in addition to highlighting data in grid using the

GridBlox cellAlert property, you can specify different data series colors in charts

to signal data that needs attention. For example, you can set the bar color to red if

the data value falls under a specified threshold.

To create traffic lighting effect in charts involves two general tasks:

Chapter 16. Highlighting and commenting on information 175

v Setting data series colors.

v Setting the color and display label for each legend item to explain what the

colors indicate.

Setting data series colors

Each data series in a chart contains many data points and is represented as a single

legend item (with the exception of a Pie chart). All data series extend the

AbstractDataSeries class in the com.alphablox.blox.uimodel.core.chart package.

AbstractDataSeries provides the base functionality for setting and getting the data

series name, stores the state for the selected data point, and does some basic event

handling for end user data point selection events. The SingleValueDataSeries object

extends AbstractDataSeries and is the super class for all data series that contain a

single value for each data point such as a BarChart, LineChart, or PieChart.

The colors for the data series can be set using the ChartBlox setSeriesColorList()

method. However, this method only lets you set the color based on the order of

the series for you to customize the colors to meet the theme or color scheme of

your application. To set the color based on the data value, you should use the

AbstractDataSeries’ or SingleValueDataSeries’ setColor() method.

Setting colors and display labels for legend items

The Legend class in the com.alphablox.blox.uimodel.core.chart.common package

allows you to manipulate the visual aspects of a chart’s legend. By default, the text

for the legend items comes from the name of the data series that is plotted. For

instance, if there are 4 bars plotted on a bar chart, each bar is a BarDataSeries and

has a series name. This series name is what would be displayed as the legend

item. The Legend object gives you access to and control over each LegendItem,

which gives you specific control over which items show up in the legend, what the

fill color or pattern should be, and what display labels are.

For a traffic lighting chart, you typically want to set the color and the display text

for each legend item. Through the LegendItem’s setFillColor() and setText()

methods, you can specify, for example, that green bars indicate data series that

meet or exceed the sales goal and yellow bars indicate data series that are in

danger of not meeting the quarterly goal.

For a complete example of a traffic lighting chart, see “A traffic lighting chart

example.”

A traffic lighting chart example

This example demonstrates a simple traffic lighting bar chart (chartType = "Bar")

by:

v Setting the bar color to red if the data value is less than 3000000.

v Setting the bar color to green if the data value is greater than 6000000.

v Setting the bar color to yellow if the data value does not meet either of the

above conditions.

v Setting the colors and display text for the legend items in the chart to explain

the meanings of the colors.

There are several techniques demonstrated in this example:

176 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

v We use a PresentBlox with its nested GridBlox, DataLayoutBlox, and PageBlox

disabled. The visibility of the toolbar and the menu bar is to false, so the entire

300 x 300 pixels of display area is occupied by the chart.

v A custom controller MyController is created for the DoubleClickEvent on the

legend. When users double-click a legend item, a URL specific to the legend

item is loaded in a new browser window.

v Data series in a bar chart are SingleValueDataSeries objects. To get all the data

series in the bar chart:

BarChart bChart = (BarChart) chart;

SingleValueDataSeries series[] = bChart.getAllDataSeries();

We then iterate through the data series and set the bar color based the data

values.

v The LegendItem for each of the data series is modified to describe what the

colors indicate:

LegendItem items[] = new LegendItem[3];

items[0] = new LegendItem();

items[0].setFillColor(Color.green);

items[0].setSymbolType(LegendItem.SHAPE_BAR);

items[0].setText("Meeting the quarterly goal");

items[0].setEventIndex(0);

For more information on the SingleValueDataSeries and LegendItem objects, see

“Using chart series colors to highlight data” on page 175.

The complete example is as follows:

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ page import="com.alphablox.blox.uimodel.BloxModel,

 com.alphablox.blox.uimodel.ChartBrixController,

 com.alphablox.blox.uimodel.ChartBrixModel,

 com.alphablox.blox.uimodel.ModelConstants,

 com.alphablox.blox.uimodel.core.Component,

 com.alphablox.blox.uimodel.core.Controller,

 com.alphablox.blox.uimodel.core.chart.BarChart,

 com.alphablox.blox.uimodel.core.chart.Chart,

 com.alphablox.blox.uimodel.core.chart.SingleValueDataSeries,

 com.alphablox.blox.uimodel.core.chart.common.ChartComponent,

 com.alphablox.blox.uimodel.core.chart.common.Legend,

 com.alphablox.blox.uimodel.core.chart.common.LegendItem,

 com.alphablox.blox.uimodel.core.event.ComponentRebuiltNotify,

 com.alphablox.blox.uimodel.core.event.DoubleClickEvent,

 com.alphablox.blox.uimodel.core.event.IEventHandler"%>

<%@ page import="java.awt.*"%>

<%@ page import="java.util.ArrayList"%>

<%@ taglib uri="bloxtld" prefix="blox" %>

<html>

<head>

 <blox:header/>

</head>

<%

class MyController extends Controller{

 public boolean handleDoubleClickEvent(DoubleClickEvent event) throws Exception {

 Chart theChart = (Chart) event.getComponent();

 ChartComponent chartComponent = theChart.getSelectedChartComponent();

 if (chartComponent instanceof Legend){

 Legend legend = (Legend) chartComponent;

 int selected =legend.getSelectedIndex();

 String color = ((String[])legend.getUserObject())[0];

 String url = "http://webexhibits.org/pigments/indiv/color/"+ color + ".html";

 theChart.getDispatcher().sendClientCommand("window.open(’"+url+"’,

’"+color+"’)");

 return true;

Chapter 16. Highlighting and commenting on information 177

}

 return false;

 }

}

%>

<body>

<blox:present id="TrafficLight"

 gridAvailable="false"

 dataLayoutAvailable="false"

 pageAvailable="false"

 menubarVisible="false"

 toolbarVisible="false"

 width="300"

 height="300">

 <blox:dataLayout visible="false" />

 <blox:chart

 chartType="Bar"

 legendPosition="bottom"/>

 <blox:data

 dataSourceName="QCC-Essbase"

 query="<COLUMN (\"All Time Periods\") (\"All Time Periods\")

 <ICHILD \"2001\" <ROW (\"Measures\") Sales !"

 parentFirst="true"

 useAliases="true" />

<%

BloxModel model = TrafficLight.getBloxModel();

model.addEventHandler(new IEventHandler() {

 public boolean handleComponentRebuiltNotify(ComponentRebuiltNotify event)

throws Exception {

 Component component = event.getComponent();

 if (component instanceof ChartBrixModel) {

 Chart chart=(Chart)((ChartBrixModel) component).searchForComponent(

ModelConstants.CHART);

 if (chart instanceof BarChart) {

 //Gets the data series in the bar chart

 BarChart bChart = (BarChart) chart;

 SingleValueDataSeries series[] = bChart.getAllDataSeries();

 for (int i = 0; i < series.length; i++) {

 for (int j = 0; j < series[i].size(); j++) {

 Number val = series[i].get(j);

 if (val != null && val.doubleValue() < 3000000){

 series[i].setColor(j, Color.red);

 }

 else if (val != null && val.doubleValue() > 6000000){

 series[i].setColor(j, Color.green);

 }

 else {

 series[i].setColor(j, Color.yellow);

 }

 }

 }

 }

 LegendItem items[] = new LegendItem[3];

 items[0] = new LegendItem();

 items[0].setFillColor(Color.green);

 items[0].setSymbolType(LegendItem.SHAPE_BAR);

 items[0].setText("Meeting the goal");

 items[0].setEventIndex(0);

 items[1] = new LegendItem();

 items[1].setFillColor(Color.yellow);

 items[1].setSymbolType(LegendItem.SHAPE_BAR);

 items[1].setText("Potential problem areas");

 items[1].setEventIndex(1);

 items[2] = new LegendItem();

 items[2].setFillColor(Color.red);

 items[2].setSymbolType(LegendItem.SHAPE_BAR);

 items[2].setText("Not meeting the goal");

178 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

items[2].setEventIndex(2);

 chart.setController(new MyController());

 Legend legend = chart.getLegend();

 legend.setLegendItems(items);

 String desc[] = new String[]{"greens", "yellows", "reds"};

 legend.setUserObject(desc);

 chart.changed();

 component.changed();

 }

 return false;

 }

}

);

((ChartBrixController)(model.getChart().getController())).synchronize();

%>

</blox:present>

</body>

</html>

This example demonstrates the essential methods and approach to create a traffic

lighting chart. Because the specified colors and threshold values will continue to

apply to the chart data as your users perform data navigation actions such as

drilling down, the colors can become misleading. Additional custom code may be

needed to control data navigation actions, reset the data series colors, or change

the threshold values. Another option is to set the Blox user interface to be not

clickable (by using the <bloxui:component> tag’s clickable attribute).

Information links

In analytic applications, there may be times when you may need to include links to

more information about the data within your grids. Links can serve many different

uses, including:

v links to more information about a heading

v links to information about a particular cell

v links to alert information on a cell, based on business logic

DB2 Alphablox offers three types of information links: header links, cell links, and

cell alert links. The following lists the advantages and disadvantages of each of

these link types.

Link Type

Summary of Uses

Header Links

v Links appear to the right of dimensional members when they appear in

row or column headers

v Defined in the application definition page of the DB2 Alphablox Admin

pages

v Always visible when member has an associated link

v Only one icon image available for all header links

Cell Links

v Links can be defined using scope.

v Defined using GridBlox cellLink property

v Different images can be defined based on cellLink

v Can result in opening of information window or can trigger execution of

JavaScript function

Cell Alert Links

v Defined as part of the cellAlert property

Chapter 16. Highlighting and commenting on information 179

v Can be used in conjunction with cell links, but if images appear in both,

cell alert links take precedence

v Can be used to appear based on conditional logic or scoping

v Can result in opening of information window or can trigger execution of

JavaScript functions

 See details about the use of each of these information link types below.

Using header links

Header links are application-specific information links you can define to display

web pages or trigger JavaScript functions when a user clicks on an information

icon (represented as a blue circle with a white “i” within it) appearing next to a

row or column member in a grid. Header links only appear in the headers for

members which have been defined in the Header Links text box of the application

definition page.

To add a header link for a specific application, open the application definition page

in the DB2 Alphablox home page. Near the bottom of the page is the Header Links

text box, where you can define header links using the following syntax:

memberName = URL

where the memberName is the unique member name defined in your data source and

URL is either an absolute URL, showing the entire path to the page, or a relative

URL (including an initial forward slash) from the application context. When the

link is an absolute URL, it must include the server name in the URL. For example,

to create an information link to a product page for Diet Cola, the following header

link definition might be used:

Diet Cola = http://productServer/products/dietcola.html

or

Diet Cola = /<pathTo>/dietcola.html

Note: JavaScript protocol methods are not supported.

Using cell links

Just as header links can be used to place links in the row and column headers, the

GridBlox cellLink property can be used to define hyperlinks on data cells. Unlike

header links, cell links can also be used to invoke a JavaScript method using the

JavaScript protocol method. Cell links, like other indexed properties, are evaluated

according to their index values, which are either dynamically generated at runtime

or defined by the developer.

The number of the cell link dictates the order in which it is evaluated, starting

with the cellLink with an index value of 1. The first defined cell link that matches

the cell’s condition and scope is the only link applied to that cell. Be sure to

consider possible overlaps when defining cell links. Also, cell alert links take

precedence over links created using cellLink. That is, if there is a cell alert link

and a cell link defined for a particular data cell, the cell alert link will appear in

the cell, but the cell link will not.

It is possible to have both cell alerts and cell links on the same data cell, but if

both have image elements (image, image_align, or link) defined, the cell alert link

180 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

will take precedence over the cell link— only one icon and link can be available on

a cell and cell alerts (with a link) are assumed to be more important than a cell

link.

Here is an example of a cell link property tag, which is nested within a GridBlox

tag:

<blox:grid id="cellLinkGridBlox">

 <blox:cellLink

 scope="{Scenario:Variance %}"

 description="Opens information window"

 link="/<applicationDirectory>/links/Manhattan.html"/>

 <blox:data dataSourceName="QCC-Essbase"

 query=’<ROW("All Products") "All Products"

 <COLUMN(Scenario) <CHILD Scenario

 <PAGE("All Locations") Manhattan Sales !’/>

</blox:grid>

The cell link defined above would appear only in the Manhattan data cell under

Variance %. The page that would be opened is located in the links subdirectory in

the application folder.

The specified URL can either be an absolute URL, showing the entire path to the

page, or a relative URL (including an initial forward slash) from the application

context. When the link is an absolute URL, it must include the server name in the

URL. In the example above, <serverName> represents the server, and

<applicationDirectory> represents the name of the application directory where the

file is located.

See the Developer’s Reference for details about the syntax and usage of the cellLink

property and its associated methods getCellLink() and setCellLink().

Using cell alert links

As described in “Cell alert links” on page 174, a cellAlert can also display a link.

The combination of both links created with the cellAlert property and links

created with the cellLink property provide you with different alternatives on how

to highlight information your users may want to know.

Another option is to extend the user interface to get multiple images on a cell by

using the UI Model’s extensibility.

For details about both cellAlert links and links created with cellLink, see

GridBlox Tag Reference.

Comments in grid data cells

The sharing of information within an organization frequently involves commentary

on data, but often these comments get lost in e-mail messages or elsewhere.

Incorporated into DB2 Alphablox is the ability to add these important comments to

a commentary database and view them in the context of user analysis. Using this

feature, users can view comments associated with particular data cells by

retrieving comments on those cells, or by viewing comments in separate listings on

an application page.

There are two types of comments supported using CommentsBlox components,

cell-level comments and named comments. Cell level comments are comments

attached to a specific data cells and displayed in a grid. They can be defined over

Chapter 16. Highlighting and commenting on information 181

a set of dimensions. Named comments are comments have string addresses that

can be used to define the scope of the comments.

If comments have been added for a data cell in a grid and the grid has been

comments-enabled, a comments indicator will appear. By default, the comments

indicator is a small red triangle appearing in the upper right corner of data cells

that have comments associated with them. When a user right-clicks on cells with

comments indicators, a Comments option appears in the context (right-click) menu.

Two submenu options are available, Add Comment for allowing users to add new

comments to the selected cell and Display Comments for allowing users to view

available comments on the selected cell.

Note: To use the Comments Management Dialog, you need to have rights for

creating and dropping relational tables. For using the CommentsBlox API in

developing custom commentary applications, you may need rights for

selecting, inserting, updating, deleting, creating, and dropping tables.

Key Terms

Description

Comments Collection

A repository for a group of comments for a single multidimensional cube.

Stored in a relational database.

CommentsBlox

Represents the comments collection on a page. Includes a set of tags which

are nested within a DataBlox.

CommentsSet

A group of comments that exist for a single data cell or with the same

address or name. Includes all comments that have one scope or address

(e.g., comments for Product:100, Year:Qtr1, Scenario:Actual).

Elements of a comment

An individual comment has the following parts:

Comment Element

Description

Author

Required. The author of the comment. By default, this field is set by DB2

Alphablox at the time of comment creation to the currently logged in user.

Timestamp

Required. The time the comment was created. Automatically set by the

server when the comment is first saved to the comment set.

Comment Text

Required. The text of the comment, which can include hyperlinks and

could even formatted text (using HTML). No limit on text size.

Custom fields

To provide maximum flexibility, you can define additional custom fields

for the comments in a comment set. Examples: subject, importance, cell

value.

Address

Each comment has an address. For cell level comments, the address will be

a list of <dimension, member> that uniquely identify the cell to which the

comment is attached. For named comments, the address is simply a string

182 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

whose meaning is defined by the developer. For example, a set of

Blox-level comments might have an address that consists of the name of

the Blox to which the comments are associated. For an application-level

comment, the address might be the name of the application. Assemblers

can use this string to define a namespace for comments as well as to assist

in personalization capabilities.

 Cell level comments may have an addressing scheme that incorporates a

subset of the dimensions in a particular cube. Dimensions not included in

the collection’s definition are ignored. As an example, if your cube contains

three dimensions, Time, Measures and Product, and you define that

comments in your current collection are specified using values of Time and

Measures, then any comments that are defined apply for any value of

Product. Generally, you should include all dimensions in the comments

definition that might be manipulated as part of the report.

 This addressing scheme for cell level comments serves two purposes. First,

it makes administration of comments easier, especially in larger outlines.

Second, it makes it easier to share comments across cubes and data

sources. A comment set defined over Product, Time and Measures may be

applicable over a number of data sources, while a comment set defined

over an every dimension in an outline runs the risk of becoming cube and

data source specific.

Defining comments collections

To define a comments collection, you need to create a relational data source. This

data source can hold multiple collections. Two steps are required to create a

comments collection:

1. Create a data source and defined it on the DB2 Alphablox data source

definition page.

2. Create the comments collection repository.

To define a comments collection, open the DB2 Alphablox Admin Pages, then

click on Administration tab. In the menu on the left, under Runtime

Management, click on Comments Management to open the Comments

Management window.

A collection requires a collection name, selected dimensions from a cube and

the creation of fields to be used. The author, timestamp, and comment text

fields are automatically defined, but custom fields can also be created.

Help on configuring a comments collection is also available in the Comments

Management window.

Enabling cell comments

To enable comments on data cells in a grid, you need to follow these steps:

1. In a standalone or nested GridBlox, add the commentsEnabled attribute and set

it to true.

2. In the standalone or nested DataBlox for the grid above, add the

CommentsBlox tag, specifying the collectionName and dataSourceName

attributes for your comments collection. The data source and the collection

names are defined using Comments Management under Administration tab of

the DB2 Alphablox Admin Pages.

Here is an example of what a PresentBlox enabled to support comments would

look like:

Chapter 16. Highlighting and commenting on information 183

<blox:present id="myPresentBlox">

 <blox:grid commentsEnabled="true" />

 <blox:data dataSourceName="QCC-Essbase" query="<%=query%>">

 <blox:comments

 collectionName="sales_comments"

 dataSourceName="CommentsCollection" >

 </blox:comments>

 </blox:data>

</blox:present>

Once this has been done, users can right-click on data cells and add or view

comments. No other steps are required by developers for basic comments support.

Adding custom comments support

The ability for users to add their own comments and view the comments of others

is a powerful collaboration and information sharing mechanism. Out-of-the-box,

enabling comments is easy to configure and use. But, the power and flexibility of

the CommentsBlox capabilities allow developers to customize the use of

commenting. Below are a couple of examples of potential customizations that can

further enhance your applications using CommentsBlox.

Note: For details about the syntax and usage of CommentsBlox, see

CommentsBlox Tag Reference.

Sometimes, users may prefer to be able to add comments about a particular topic

or a particular analytic view without having to associate those comments with a

particular data cell. This can easily be accomplished using the CommentsBlox tags

and server-side Java API. Under the Commenting on Data section of the Blox

Sampler application, the General Comments on a Page example shows an example

of allowing general comments, appearing below a grid, to be added and viewed in

a separate comments window.

Users may also want to be able to print out all of the comments associated with a

particular grid. The Printing Comments in a Grid example, included in the

Commenting on Data section of Blox Sampler , includes a button which will open

a new browser window and display all of the comments in the grid.

184 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 17. Interacting with data

This topic focuses on user behavior and interactivity with Blox. Primary issues

discussed include how Blox behavior can be controlled and modified, basic

techniques used to limit behavior, and how you can capture user actions and

control interactivity and actions.

Interactivity considerations

The interactive, visual presentation Blox enable users to manipulate the views

presented to them, drilling down or up in the data, changing chart types, and

many other options. Depending on your applications, your audience, and their

skill levels, you may decide you want to exclude or limit the control of the

applications. The following subsections discuss issues to consider when limiting

interaction with Blox.

Allowing limited or no interactivity

If your users only require a simple view of important data, and are not interested

in manipulating the data for deeper analysis, a GridBlox, ChartBlox, or PresentBlox

will be fine. You may even consider displaying a slice of data in a Blox view that

offers no interactivity.

To prevent interactivity with a Blox, for example, you can add the Blox UI

component tag (<bloxui:component>), setting the clickable tag attribute to false.

For example, the following code shows the use of a nested <bloxui:component> tag

to generate a PresentBlox with user interaction disabled:

<blox:present id="myPresentBlox"

 width="80%"

 height="70%"

 menubarVisible="false">

 <blox:toolbar

 visible="false" />

 <blox:data

 bloxRef="dataBlox" />

 <bloxui:component name="myPresentBlox"

 clickable="false" />

</blox:present>

Disabling interactivity may be the best solution for users who are either “too busy”

to drill into data or are not interested in learning how to manipulate data. Upper

management executives in your company, for example, may only be interested in

seeing snapshot views of how the company is doing, leaving detailed analysis to

business or financial analysts.

The following task shows how you can either disable an entire Blox or selected

Blox nested within another Blox.

Disabling pivoting and drilling on columns

In the Blox UI Tags section of Blox Sampler, the butterfly report example includes

an event filter to prevent users from pivoting or drilling on columns. Both of these

user operations would result in the displayed asymmetric report no longer

displaying properly. To prevent users from getting themselves into a situation that

© Copyright IBM Corp. 1996, 2006 185

is confusing and difficult to get back out of, you can add an event filter, using the

UI Model, that traps a user’s attempts to pivot or drill keeps the view usable.

The following code snippet shows an event handler used on the grid to prevent

pivoting and drilling on columns:

<%

 GridBloxModel model =

 butterflyReportGridBlox.getGridBloxModel();

 model.populateDataNavigationButton();

 model.getGrid().getController().addEventHandler(

 new IEventHandler() {

 public boolean handleGridDataActionEvent(GridDataActionEvent

 event) throws Exception {

 GridBrixCellModel cells[] = event.getGridCells();

// If any of the cells is a header cell, then ignore the data action

 for (int i=0; i < cells.length; i++)

 if (cells[i].isColumnHeader())

 return true;

 return false;

}

});

%>

For the entire code example, see Blox Sampler.

For details about using event handlers with the DHTML extensibility capabilities of

the Blox UI Model to customize application like this example, see “Blox UI Model

events” on page 75.

Modifying interactivity using Blox properties

User interaction can also be controlled using Blox properties and methods. When

the Toolbar, DataLayout, and Page panels are enabled on data presentation Blox,

users can interact more with the data. You may find that while this helps some

users, others will quickly become lost in the data, especially if they are not familiar

with the structure of the data. Besides the techniques described above using the

<bloxui:component> tag and Blox visible attributes, you can also use other Blox

properties to tune the interactivity of your views, enabling some panels and not

others, limiting the number of ways a user can get into a confusing situation. And,

using personalization techniques, you can use server-side Java, JavaServer Pages,

and JavaScript methods to customize interactivity based on the user login.

The following table lists some of the commonly used Blox properties that can affect

user interactions with the data:

186 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Blox Property (or Associated Methods)

Description and

Comments

GridBlox cellAlert Cell alert links can be

used to open an

information window or

invoke a JavaScript

function

cellLink Cell links can be used

to open an information

window or invoke a

JavaScript function

expandCollapseMode Enables Windows

Explorer-like use of plus

and minus icons to drill

up and down in grid

writebackEnabled Allows authorized users

to enter data directly

into grid based on

scoped cells

DataBlox drillDownOption Determines whether

drilling goes to next

generation, all

descendants, bottom

generation, siblings, or

same generation

drillKeepSelectedMember Keeps the selected

member that is being

drilled on

drillRemoveUnselectedMembers Removes members not

selected when drilling

enableKeepRemove Specifies whether the

Keep Only and Remove

Only options are

available

enableShowHide Specifies whether the

Show Only, Show All,

and Hide Only options

are available

DataLayoutBlox interfaceType Specifies how users

select dimensions, either

using a drop lists or a

drag-and-drop tree

interface.

ReportBlox See Relational Reporting Developer’s Guide.

Chapter 17. Interacting with data 187

Note: Changes in interaction behavior resulting from property changes can result

in users becoming confused or surprised when normally familiar behaviors

don’t act as expected. For example, setting the DataBlox

drillKeepSelectedMember and drillRemoveUnselectedMembers to true can be

useful at times, helping users effectively manage the amount of information

visible on a grid or chart. An important consideration is that if all views in

an application or across multiple applications do not behave the same way

when the user drills, he may become confused when a particular Blox view

behaves differently than all of the others encountered. One way to help

users in situations like this is to clearly note on the page what the user

should expect. Alternatively, radio buttons or check boxes can be used to

allow users to toggle between the two drilling behaviors.

Grids

Grids are available as either a standalone GridBlox or nested within a PresentBlox.

In either mode, users can drill, pivot, sort, and explore their data. A grid used in a

PresentBlox, though, includes some additional functionality not available in the

explicit GridBlox. The following table shows a summary of the key differences

between standalone GridBlox and a nested GridBlox:

Functionality Standalone GridBlox

Nested GridBlox (within

PresentBlox)

DataLayoutBlox Requires standalone

DataLayoutBlox, using same

DataBlox

Made available using PresentBlox

dataLayoutAvailable

PageBlox Requires standalone

PageBlox, using same

DataBlox

Available by setting pageAvailable

to true

ChartBlox Requires standalone

ChartBlox, using same

DataBlox

Grid automatically synchronizes

with chart. Chart can be made

available.

Since the functionality listed above is available by using a PresentBlox, the majority

of the time you want to give access to users to this functionality.

Charts

Like grids, users can drill up or down in the data being displayed in charts. But,

unlike grids, users may not realize they can interact with charts -- no visual cues,

such as the grid’s up/down arrows or plus/minus icons, exist to help users

understand that they can directly interact with charts. The first time a user might

realize they can drill on charts is when they see someone else doing it, or just

happen to try it, or right-click on chart elements and see menu options. Most users

discover that data values and labels will appear when they hover over chart bars

and data points. If necessary, you can use ChartBlox properties, such as

pieFeelerTextDisplay for pie charts and dataTextDisplay for bar charts, to

display values or labels without requiring the users to move their cursors over a

chart element.

Whether a user is accessing an application over the Internet from a remote location

or using it while sitting in an office nearby you, they may not have received

training or know much about your applications and how to use them. As a

developer or application designer, you need to consider how to make analytic

applications as easy to use as possible. If you present them with pages of charts

188 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

and no directions, you shouldn’t be surprised to discover that many users will

never interact with your charts, instead just viewing what you present to them. As

you design, consider how you can increase the likelihood that your users will be

successful and learn to use your charts more productively. Adding Help or Tips

buttons to access DB2 Alphablox help or custom help pages will help them learn

what they can do with applications. Alternatively, you could place some short

hints directly on the pages. In some situations, you may find it useful to place user

information directly in footnotes on a chart, using the ChartBlox footnote property.

Allowing user control of generations displayed

A simple way to add interactivity to a chart is to add the totalsFilter attribute to

a ChartBlox, setting the property to 2. By setting the value to 2, you enable a totals

filter slider panel to appear at the bottom of a chart. Depending on the query used,

users may then be able to control which dimension levels are displayed. In the

following ChartBlox example, the totalsFilter attribute is set to 2:

<blox:chart id="totalsFilterChartBlox"

 width="90%"

 height="90%"

 chartType="Bar"

 totalsFilter="2"

 title="Truffle Sales for 2001">

 <blox:data

 dataSourceName="QCC-Essbase"

 query=’<ROW ("All Products") <ICHILD "All Products"

 <COLUMN ("All Time Periods") <DESCENDANTS "2001" Sales !’/>

</blox:chart>

When rendered on a page, two generation selectors will appear on the panel below

the chart. The selector on the left allows users to control the generation level of the

All Products dimension, and the selector on the right allows them to select the

generation level of several time periods in the year 2001.

Example: The “Chart totalsFilter Selector Enabled” example under the Interacting

With Data section in Blox Sampler shows the use of the totalsFilter slider panel.

DataLayout interface

When a DataLayout panel (DataLayoutBlox) is available on a PresentBlox, users

can access it to move dimensions between the Row, Column, and Other (page

filter) axes in order to create the layout of data within grids and charts that they

are interested in seeing. By default, the DataLayout panel displays the dimensions

in drop lists (or selection lists) that allows users to click on a dimension name and

select an option for the movement of the dimension. Alternatively, developers can

set the DataLayout panel to use a drag-and-drop tree interface, more similar to

Windows Explorer in behavior. To explicitly set the interface type for the

DataLayout panel, set the DataLayoutBlox interfaceType attribute to one of two

values, dropLists (default) or tree. The following example shows a

DataLayoutBlox set to display a tree interface:

<blox:present ...>

 ...

 <blox:dataLayout

 interfaceType="tree" />

 ...

</blox:present>

Chapter 17. Interacting with data 189

Note: The interface type can only be set by the developer -- there is no user

interface option for users to select this interface option. By default, users will

see the drop list interface.

Interactions between grids and charts

Grids and charts can appear individually using GridBlox and ChartBlox

components, or nested together within a PresentBlox component. When occurring

as standalone Blox, each Blox can use implicit data sources (defined in the nested

DataBlox) or explicit independent data sources (using standalone DataBlox

components). Grid and chart views can also share a common standalone DataBlox

as their data source. This is always the case with the GridBlox and ChartBlox

nested within a PresentBlox.

When GridBlox and ChartBlox components share a common data source (using a

standalone DataBlox), operations on a GridBlox are reflected in the ChartBlox.

Thus, when a user drills down on a member in a GridBlox, a ChartBlox sharing

the same DataBlox, will also perform and display the same drill operation. This

synchronization between grids and charts occurs within a PresentBlox since they

share the same data source.

Header links, cell alerts, cell links, and other GridBlox features are not available in

charts. In order to have both charts and these features, you will probably want to

use a PresentBlox. Also, if a grid is not visible in the PresentBlox view, users will

not see alerts or be able to access grid-based links unless they access them through

the grid component.

Another important point to realize is that the formatting of data is set

independently in grids and charts. Thus, if you want both grids and charts to use

the same formatting of values, you’ll need to remember to set all of the following

Blox properties:

Blox Property

ChartBlox

y1FormatMask y2FormatMask

GridBlox

defaultCellFormat cellFormat

Setting the “No data available” message in grids and charts

When a data source is not available or a result set has not yet been retrieved, DB2

Alphablox grids and charts will display the following default message: “No data

available.”

If the retrieval of a result set takes longer than a user might expect, the default

“No data available” message can be deceiving. While it is true that no data is

available at that moment, if the user waits a while longer, the data will usually

appear. If the retrieval takes more than a few seconds, users may think that the

application is not working properly and try reloading the application or the page,

without waiting long enough for the data to appear. When this could be an issue,

many DB2 Alphablox developers set the noDataMessage to a message like one of

the following: Please wait for data... or Waiting for data....

This is usually a good solution, except when there really is no data available. In

these cases, the message does not change to indicate that no data is available.

190 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Consider the implications of your noDataMessage before deciding to modify it, but

typically the benefit of a clearer message outweighs the likelihood that the data

source will actually not be available.

To modify the message that appears in grids and charts, add the noDataMessage

attribute to a PresentBlox, GridBlox, or ChartBlox. If the noDataMessage attribute is

added to a PresentBlox, the new message will appear in both the nested GridBlox

and ChartBlox displays. If you would prefer to set the values separately for the

nested GridBlox and ChartBlox, you can set the noDataMessage attributes on each

nested Blox separately. The following settings on the nested GridBlox and

ChartBlox in a PresentBlox will result in the different messages appearing in a grid

and a chart:

<blox:present ...>

 <blox:grid

 noDataMessage="Grid not available"/>

 <blox:chart

 noDataMessage="Chart not available"/>

</blox:present>

If used cautiously, changing the noDataMessage attribute can result in a better

application. For more information on the noDataMessage, see the Common Blox

section of the Developer’s Reference.

HTML form elements and FormBlox components

Grid and chart views created using PresentBlox, GridBlox, and ChartBlox can

include built-in features such as toolbars, page filters, and contextual (right-click)

menus. If a toolbar is available, the user has options menus available for modifying

charts, grids, and data appearance and behavior. Sometimes, though, having many

options available can be overwhelming for novices and casual users. Depending on

your specific needs, the best option may be to offer a limited number of choices

instead. Using a combination of HTML form elements, JavaScript, Java, and the a

rich Blox API, you can create custom analytic applications with options tuned to

the needs and skills of your users, or to customize interaction. And, in Blox

Sampler, you will find some examples using HTML form elements (buttons,

checkboxes, etc.) to offer controlled interactivity or options for changing data

views.

Most often, though, a more compelling option may be to use the FormBlox

components, available when using the Blox Form Tag Library, to manage HTML

form elements. Details about the FormBlox components and how to use them are

discussed more thoroughly in “Using the Blox Form Tag Library” on page 45 of

this guide and in the Blox Sampler examples.

Also, Blox Sampler includes many examples of interactivity with Blox controlled

using HTML elements and FormBlox components. In particular, take a look at the

examples in the Using FormBlox and Logic Blox section or the Interacting with

Data section.

In the following subsections, some of the standard HTML form elements and their

FormBlox equivalents will be highlighted.

Selection lists

Using Blox API properties and methods, PageBlox page filters can be customized

with fixed choice lists (using fixedChoiceLists), virtual roots (using

Chapter 17. Interacting with data 191

dimensionRoot), and the Member Filter (using moreChoicesEnabled

and moreChoicesEnabledDefault). Sometimes, though, a PageBlox page filter can’t

solve all of your requirements.

If you turn off the toolbar on a grid and chart views, you can create drop-down

menu items to replace ones no longer available. Hardcoded selection lists let you

offer controlled options for end users while making your analytic views easier to

use. For example, the chart types list available with the Charts button can be

overkill for a particular view, so you could offer a limited subset of chart types in a

selection list. This way users can have some choices in how data is displayed,

while not being offered choices that may not make sense on a particular view.

Cascading selection menus are useful for letting end users select an option from

one list, then offering secondary menu choices based on their selections on other

lists. Creating your own cascading menus using HTML form elements and

JavaScript can be a major undertaking. But, using the MemberSelectFormBlox

available in the Blox Form Tag Library, and with much less coding, you can

quickly create a cascading menu and tie it to a data view. The FormBlox

components used will also handle persistence. That is, during a user’s session, the

dynamically-generated HTML form elements will maintain their selections when

users leave the page and return later. To see this in action, take a look in the Using

FormBlox and Logic Blox section of Blox Sampler, where you can find a

MemberSelectFormBlox example that has three selection lists that change

dynamically based on user selections.

Page filters within a Blox will typically display only members of a dimension in a

prescribed order. But, by moving page filter selections to HTML form elements,

either custom-coded or using the MemberSelectFormBlox, you can create

dynamically-generated page filters that are based on customized queries against

your data sources.

Check boxes and radio buttons

When you do not include a toolbar on a grid or a chart view, you can use check

boxes and radio buttons, either custom-coded or created using FormBlox

components (CheckBoxFormBlox and RadioButtonFormBlox) to give users choices

that are not accessible when the menu bar or toolbar is not available. Since users

frequently don’t make their way to various dialog boxes available in the toolbar,

they may not even know that some options are available. Another advantage of

not using the toolbar and menu bar on a view is that you can offer a limited set of

clear options more visibly on the page. For example, you might include Suppress

Missing and Suppress Zeros check boxes that toggle states depending on whether

the check box is checked or not. Radio buttons are great for offering options that

are not compatible with each other. Blox Sampler has examples throughout using

FormBlox components to manage check boxes and radio buttons.

Standard HTML buttons

Standard HTML buttons are useful in applications for executing queries, resetting

queries, and generating views. But these buttons are less desirable for showing

different views, since unless the title changes on the page, a user may not be able

to tell which button they used to get the current view. Using radio buttons can be

a good alternative, since the particular item selected always has the radio button

highlighted.

192 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Text fields

Text entry fields are not used as often as other HTML form elements in analytic

application, but they can be useful in special situations. Most of the time, fixed

choice options (such as those available with radio buttons, check boxes, and

selection lists) are preferable, since they help prevent misspellings and issues you

can encounter with expected values (e.g. users entering characters instead of

numbers). In some situations, your best or only practical option is to allow users to

enter values on their own. For example, in analytic applications text fields can be

used to allow users to input data for writeback to a data source or to personalize

applications by setting their own threshold levels on cell alerts. Text fields and text

areas can be used in allowing users to add comments in an application. In DB2

Alphablox applications, you have the option of either using custom-coded HTML

text fields or to use the EditFormBlox component to create text fields for use in

your analytic applications. The EditFormBlox has built-in capabilities of

automatically changing properties in other Blox components.

Using Toolbar buttons

Each Blox component which users interact with can include a toolbar for accessing

Blox functionality. DB2 Alphablox provides several ways to create tailored Blox

toolbars, which may enhance the user experience.

By default, each Blox displays its toolbar. To make a toolbar invisible on a specific

Blox, set the Blox’s visible property to false.

Used in combination with the clickable property of the Blox set to false (see

“Allowing limited or no interactivity” on page 185), the result is a static data

presentation, rather than an interactive UI. This may be appropriate for quick

snapshots and executive reports. Making Blox toolbars invisible may also be

appropriate where an application uses a custom HTML user interface to replace

toolbar functionality.

By default, a text-based menu bar appears above the Blox toolbar. To make it

appear, set the Blox menubarVisible property to true.

Each button on the toolbar does not display a descriptive text label by default. To

turn on this text (thus increasing the display space required for some buttons), set

the textVisible property to true Note that turning on toolbar text results in a

bigger toolbar, which will take more of the Blox area.

You can specify the buttons to be removed from the toolbar using the

removeButtons property of the nested ToolbarBlox. For details on these and other

ToolbarBlox functionality, see the ToolbarBlox section of the Developer’s Reference.

Events

DB2 Alphablox provides properties and methods for handling events. An event is a

normal action that you can use to trigger further processing.

Blox can capture the following user actions and treat them as events:

v drill down or up

v pivot

v select header or cell menu item

v change the page filter

Chapter 17. Interacting with data 193

v load or saving a bookmark

v change the data value in a grid cell

v keep or remove only

v hide or show only

Descriptions on Blox UI Model events are described beginning in “Blox UI Model

events” on page 75. Also, the UI Model exposes a number of events that can be

issued by the client, such as a ClickEvent. For each of these events, the DHTML

Client API defines JavaScript objects. As a result, JavaScript can be used to create

event objects and sent the event to the server. For more information, see “Sending

events” on page 97, “Intercepting events” on page 97, and “Invoking JavaScript

directly from the user interface” on page 98.

194 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 18. Inputting and modifying data

You can input, or write back, data to data sources using DB2 Alphablox. You can

also use calculated members to create new data that is derived from data that is

retrieved from your data source.

Writing back to multidimensional data sources

You can use DB2 Alphablox Java methods to modify a result set and update its

underlying data source. To give users the ability to update values in data cells and

then write those values back to the underlying data source, you need to utilize a

set of properties and associated methods to achieve the following effects and

results:

v Enable the grid to be edited

v Define the cells in the grid that are available for editing

v Specify the style (usually a foreground or background color) for displaying an

editable cell

v Specify the style for displaying an edited cell

v Optionally, specify the processing to occur when a user edits a cell
 Related concepts

 “GridBlox properties and associated writeback methods”

 “GridBlox Java writeback methods”

 “DataBlox writeback-related methods” on page 196
 Related tasks

 “Enabling GridBlox components for data writeback” on page 196

GridBlox properties and associated writeback methods

The following GridBlox properties and associated Java methods are required or

available for designing and managing writeback applications:

 Property and related methods Description

v writebackEnabled

v isWritebackEnabled()

v setWritebackEnabled()

Required to enable writeback; permits users to

edit cells in the grid

v cellEditor

v getCellEditor()

v setCellEditor()

Required to enable writeback; specifies a rule

for defining and highlighting an editable area of

data cells

Other related methods not associated with a property are discussed in “GridBlox

Java writeback methods.” To specify the appearance of cells the user has edited or

can edit, you can use CSS themes.

GridBlox Java writeback methods

The following are GridBlox Java methods that do not have associated properties:

getWritebackValue(); setWritebackValue()

Sets or returns the value of a specific data cell changed in the grid

© Copyright IBM Corp. 1996, 2006 195

listCellEditorIds()

Returns a list of IDs of all of the defined cell editors as an array of integers

getChangedCellList()

Returns a String of edited cells

getChangedCellValues()

Returns a String of edited cell values

Enabling GridBlox components for data writeback

The following example includes the minimum properties that are required to

enable the writeback capability on a GridBlox component and other commonly

used properties.

<blox:grid id="Grid1"

 width="800"

 height="500"

 writebackEnabled="true">

 <blox:data

 bloxRef="Data1"/>

 <blox:cellEditor

 scope="{Market:New_York}"/>

</blox:grid>

The GridBlox properties above are for enabling the writeback feature, defining

editable cells, and changing the appearance of writable data cells. To write data

back to a data source, there are a set of DataBlox writeback-related methods that

you use. See “DataBlox writeback-related methods.”

DataBlox writeback-related methods

After you configure a GridBlox to enable the writeback feature, you need to use

server-side DataBlox methods to perform the writeback operations. These

writeback methods are designed for applications that write data back to a DB2

OLAP Server, Essbase, or Microsoft Analysis Services 2000 data source. Some of the

methods are specific to DB2 OLAP Server or Essbase only. The available DataBlox

Java writeback methods are:

writeback()

A convenience writeback method that takes three arguments, and uses

these methods:

v lockCurrentDataSet()

v setDataValues()

v commitData()

v unlockAll()

v executeCustomCalc()

v refresh()

lockCurrentDataSet()

Locks the called-upon result set; does not lock the entire database

setDataValues()

Changes data values in the result set at the specified coordinates

commitData()

Writes the current data set back to the database

unlockAll()

Unlocks any data that was previously locked in a DB2 OLAP Server or

Essbase database

196 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

executeCustomCalc()

Executes a calculation script on a DB2 OLAP Server or Essbase database

refresh()

Refreshes the current data set

executeNamedDBCalcScript()

Executes the named DB2 OLAP Server or Essbase calc script

Enabling the writeback feature to multidimensional databases

Using the server-side Java APIs, you can create application pages that allow users

to write data back to multidimensional databases. Included in Blox Sampler are

three examples, one that uses a custom Java class (recommended approach) and

two that use Blox UI controllers (generic and custom).

Restriction: DB2 OLAP Server and Hyperion Essbase queries do not support the

use of attribute dimensions in writeback operations.

The custom Writeback class available in Blox Sampler involves the following steps:

1. Add a JSP page directive importing the required classes:

<%@ page import="bloxsampler.writeback.Writeback,

 com.alphablox.internal.PresentBlox" %>

2. Add a JSP taglib directive for the Blox tag libraries to be used on the page:

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxuitld" prefix="bloxui" %>

3. In the head section of the page, add the required <blox:header/> tag, which

automatically adds the required CSS and JavaScript methods:

<head>

 <blox:header />

</head>

4. Add a JavaScript function that uses the Blox UI Model to perform a simulated

click event on the server, as if the user had clicked theData → Writeback menu

option in the PresentBlox menu bar:

<script language="JavaScript">

 function wb() {

 bloxAPI.sendEvent(new ClickEvent(’wb3PresentBlox’,

 <%= wb3PresentBlox.getBloxModel().searchForComponent(

 "dataWriteback").getUID() %>));

 }

</script>

5. Add a PresentBlox with the grid writebackEnabled attribute set to true and

include a scriptlet that references the custom Writeback class (with two

arguments, the Blox name and the scope):

<blox:present id="wb3PresentBlox"

 height="400"

 width="600"

 pageAvailable="true"

 chartAvailable="false"

 dataLayoutAvailable="false">

 <blox:data

 dataSourceName="QCC-Essbase"

 query=’<SYM <ROW("All Products") <CHILD Truffles

 <COLUMN(Scenario) "Initial Budget" Manhattan

 <ICHILD "Jan 01" "Units Sold" !’ />

Chapter 18. Inputting and modifying data 197

<%

 new Writeback(wb3PresentBlox,"{Scenario:Initial Budget}");

%>

</blox:present>

6. Add a button on the page for users to click to write data back to the data

source.

<form>

 <input type="button" value="Submit Changes"

 onclick=’setTimeout("wb();", 1);’>

</form>

The JavaScript wb function is called after a brief timeout to allow the data to be

updated on the server before this function is called. If the JavaScript setTimeout

function is not used, the correct data might not be written back to the data source.

In this example, the writeback feature has now been incorporated into the

PresentBlox. A working example of this writeback technique is included in Blox

Sampler in the section on Inputting and Changing Data. The source code for the

Java class is available in the application’s WEB-INF/src/ directory. You can modify

this source code to make any other changes you want, then compile the source

code for use in your applications.

Writing data back to Microsoft Analysis Services

For Microsoft Analysis Services, you can write data back to the leaf-level members

only. To update data in non-leaf members requires the use of the MDX UPDATE

CUBE command in a DataBlox setQuery or executeQuery method. For more

information on the UPDATE CUBE command, see the Microsoft Analysis Services

documentation.

Updating relational data sources

DB2 Alphablox supports standard SQL statements for updating relational data

sources. These statements include, but are not limited to insert, update, create,

and delete. You can use Java methods to construct the appropriate SQL statement,

then pass the statement to the application’s DataBlox. Writing data back to a

relational data source does not affect the user’s view of the data, but before the

user can see the effect of the changed data, the query must be re-executed. To

re-execute the query, you need to call the DataBlox setQuery() method and then

the connect() method.

Updating relational data sources using the writeback feature

To update a relational data source using the DataBlox Java methods, you insert a

new column containing current date into a table.

1. Create SQL query string named query1. It will insert the current date into a

table named ″review_data.″

String query1 = "insert into review_data values(TO_CHAR(SYSDATE,

 ’HH:MM:SS-MMDD’))";

2. Call the appropriate setQuery and connect methods on the data source for a

PresentBlox to pass the SQL query that inserts the new column. In this

example, the PresentBlox is named Present1.

Present1.getDataBlox().setQuery(query1);

Present1.getDataBlox().connect();

198 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Creating a calendar control

The Blox UI model provides a DateChooser component that lets you create a

graphical calendar control that allows users to select dates for use in generating

analytic views and other applications. This component adds a text field on the Web

page with a small calendar icon next to the text field. When users click the icon, a

small calender opens that allows users to select a date and populate the text field

with an appropriately-formatted date.

The DateChooser component includes the following subcomponents.

 Subcomponent Description

A graphical user

interface of a text

field

The DateChooser component extends the Edit component and supports

most of the Edit API, such as insertText(), setValue(), getValue(),

and clear().

An image for

launching the

calendar

The DateChooser component includes an Image subcomponent that is

displayed next to the text field for launching the calendar.

The getIcon() method provides access to this Image component. For

example, getIcon().setImageURL("myCalendar.gif") sets the image file

to use for the icon. By default the image is theme-based. Place the

image file in the theme’s image directory in the DB2 Alphablox

repository. To put the image in a different location, call the Image’s

setThemeBasedImage(boolean) method and set it to false. See the Blox

API Javadoc documentation for details.

A calendar

adapter

This CalendarAdapter object is a wrapper that implements the

com.alphablox.blox.uimodel.ICalendar interface. This interface

conforms to a subset of the java.util.Calendar API, such as

getTimeInMillis() and getFirstDayofWeek(). With the ICalendar

interface, you can provide your own calendar object to instantiate a

CalendarAdapter object. Your calendar object must implement all the

methods in ICalendar in order to work.

By default, the DateChooser component creates a Gregorian calendar

with an English locale. The International Components for Unicode

(ICU) libraries provide a set of calendar objects and API that allow you

to create non-Gregorian calendars easily.

A date format

adapter

This adapter is a wrapper that implements the

com.alphablox.blox.uimodel.IDateFormat interface. The IDateFormat

interface conforms to a subset of the java.text.DateFormat API such as

getCalendar(), setCalendar(), and format(). The date format is

applied to the text field that displays the selected date. The following

date formats are supported:

v FULL (default)

v LONG

v MEDIUM

v SHORT

See http://java.sun.com/j2se/1.4.2/docs/api/java/text/
DateFormat.html for examples of the different date formats.

With the IDateFormat interface, you can create a non-Gregorian

calendar with locale-specific date format. The date formatter object you

create needs to implement all the methods in the IDateFormat

interface.

 Related concepts

Chapter 18. Inputting and modifying data 199

http://java.sun.com/j2se/1.4.2/docs/api/java/text/DateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DateFormat.html

“Creating a non-Gregorian calendar” on page 204
The International Components for Unicode (ICU) is a widely used set of Java

libraries for Unicode support. Among the features and extensibility it offers is

the support for non-Gregorian calendars and different date formats. With the

ICU package, you can easily create your own calendar object and date

formatter.

Creating a Gregorian calendar

To create a calendar control involves creating a CalendarAdapter, a

DateFormatAdapter, and a DateChooser. The example below shows you how to

create a Gregorian calendar with date format in the English locale. When users

click the calendar icon and choose a date from the calendar that opens, the selected

date is used to populate the text field using the DateFormat.SHORT date format.

The same concepts and steps can be applied to other types of calendars.

To create a Gregorian calendar in your JSP:

1. Import the following packages and classes:

<%@ page import="com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.*,

 java.util.Calendar,

 java.util.Locale"%>

2. Import the Blox Tag Library:

<%@ taglib uri="bloxtld" prefix="blox"%>

3. Add a ContainerBlox to contain your DateChooser component:

<blox:container id="dateChooserContainer">

4. Get the BloxModel of the container:

<%

 BloxModel model = dateChooserContainer.getBloxModel();

 ...

%>

5. Set the locale:

Locale locale = Locale.US;

6. Create the your CalendarAdapter:

java.util.Calendar calendar = java.util.Calendar.getInstance(locale);

ICalendar calendarAdapter = new CalendarAdapter(calendar);

7. Create your DateFormatAdapter and apply the locale:

java.text.DateFormat dateFormat =

java.text.DateFormat.getDateInstance(java.text.DateFormat.FULL, locale);

IDateFormat dateFormatAdapter = new DateFormatAdapter(dateFormat);

8. Create your DateChooser object with your CalendarAdapter,

DateFormatAdapter, and locale using the

DateChooser.getInstanceWithLocale() method:

 <%

DateChooser datechooser =

DateChooser.getInstanceWithLocale(calendarAdapter, dateFormatAdapter, locale);

%>

9. Add the DateChooser to the model of the container:

<%

 ...

 model.add(datechooser1);

%>

Here is the complete example:

200 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ page import="com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.*,

 java.util.Calendar,

 java.util.Locale"%>

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

<blox:header/>

</head>

<body>

<blox:container id="dateChooserContainer">

<%

 BloxModel model = myContainer.getBloxModel();

 Locale locale = Locale.US;

 java.util.Calendar calendar = java.util.Calendar.getInstance(locale);

 ICalendar calendarAdapter = new CalendarAdapter(calendar);

 java.text.DateFormat dateFormat =

java.text.DateFormat.getDateInstance(java.text.DateFormat.FULL, locale);

 IDateFormat dateFormatAdapter = new DateFormatAdapter(dateFormat);

 DateChooser datechooser =

DateChooser.getInstanceWithLocale(calendarAdapter, dateFormatAdapter, locale);

 model.add(datechooser);%>

</blox:container>

</body>

</html>

You can easily modify the locale to create a non-English Gregorian calendar. There

are other factory methods for creating a DateChooser depending on how you want

to set the locale or the initially selected date. The “Specifying a selected date when

the calendar is launched” on page 203 example demonstrates another factory

method for creating a DateChooser. It is possible to have one locale for your

CalendarAdapter, another for your DateFormatAdapter, and yet another for your

DateChooser. For example, you can have a Japanese calendar with DateFormat (the

format to use when the selected date is displayed in the text box) in a different

language.

You can use either Java’s Calendar or the Calendar component in the International

Components for Unicode (ICU) Java libraries. To support multiple locales, you

should use ICU because of its better support for internalization. See “Creating a

Gregorian calendar using ICU for multi-locale support” on page 202 for more

information.

For a live DateChooser example, see the ″DateChooser Component″ example in

Blox Sampler, under the UI Extensibility section.

 Related concepts

 “Creating a non-Gregorian calendar” on page 204
The International Components for Unicode (ICU) is a widely used set of Java

libraries for Unicode support. Among the features and extensibility it offers is

the support for non-Gregorian calendars and different date formats. With the

ICU package, you can easily create your own calendar object and date

formatter.
 Related tasks

Chapter 18. Inputting and modifying data 201

“Specifying a selected date when the calendar is launched” on page 203
By default, when a calendar is launched, the calendar for the current month is

displayed with the current date selected. You can specify a different initial date

other than the current date.

Creating a Gregorian calendar using ICU for multi-locale

support

This example uses ICU because it has better support for non-English languages.

This example demonstrates how to get the locale from Blox context, so the date

chooser will reflect the client’s locale setting.

To create a Gregorian calendar in your JSP:

1. Import the following packages and classes:

<%@ page import="com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.*,

 java.util.Locale"%>

2. Import the Blox Tag Library:

<%@ taglib uri="bloxtld" prefix="blox"%>

3. Add a ContainerBlox to contain your DateChooser component:

<blox:container id="container">

4. Get the BloxModel of the container:

<%

 BloxModel model = container.getBloxModel();

 ...

%>

5. Get the locale from Blox context:

Locale locale = bloxContext.getLocale();

6. Create the your CalendarAdapter and apply the locale:

com.ibm.icu.util.Calendar calendar =

new com.ibm.icu.util.GregorianCalendar(locale);

ICalendar calendarAdapter = new CalendarAdapter(calendar);

7. Create your DateFormatAdapter:

com.ibm.icu.text.DateFormat dateFormat =

calendar.getDateTimeFormat(com.ibm.icu.text.DateFormat.FULL, -1, locale);

IDateFormat dateFormatAdapter = new DateFormatAdapter(dateFormat);

8. Create your DateChooser object with your CalendarAdapter,

DateFormatAdapter, and locale using the

DateChooser.getInstanceWithLocale() method:

DateChooser datechooser = DateChooser.getInstanceWithLocale(calendarAdapter,

dateFormatAdapter, locale);

datechooser.setName("datechooser");

datechooser.setWidth(300);

9. Add the DateChooser to the model of the container:

model.add(datechooser1);

Here is the complete example:

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ page import="com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.*,

 java.util.Locale"%>

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

<blox:header/>

202 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

</head>

<body>

<blox:container id="container">

<%

 BloxModel model = container.getBloxModel();

 Locale locale = bloxContext.getLocale();

 com.ibm.icu.util.Calendar calendar =

new com.ibm.icu.util.GregorianCalendar(locale);

 ICalendar calendarAdapter = new CalendarAdapter(calendar);

 com.ibm.icu.text.DateFormat dateFormat =

calendar.getDateTimeFormat(com.ibm.icu.text.DateFormat.FULL, -1, locale);

 IDateFormat dateFormatAdapter = new DateFormatAdapter(dateFormat);

 DateChooser datechooser = DateChooser.getInstanceWithLocale(calendarAdapter,

dateFormatAdapter, locale);

 datechooser.setName("datechooser");

 datechooser.setWidth(300);

 model.add(datechooser);

%>

</blox:container>

</body>

</html>

 Related concepts

 “Creating a non-Gregorian calendar” on page 204
The International Components for Unicode (ICU) is a widely used set of Java

libraries for Unicode support. Among the features and extensibility it offers is

the support for non-Gregorian calendars and different date formats. With the

ICU package, you can easily create your own calendar object and date

formatter.
 Related tasks

 “Specifying a selected date when the calendar is launched”
By default, when a calendar is launched, the calendar for the current month is

displayed with the current date selected. You can specify a different initial date

other than the current date.

Specifying a selected date when the calendar is launched

By default, when a calendar is launched, the calendar for the current month is

displayed with the current date selected. You can specify a different initial date

other than the current date.

To specify a different initial date, use the

DateChooser.getInstanceWithDateLocale() method that supports the specification

of a selected date. The following example creates a Gregorian calendar with the

selected date set to January 01, 2005.

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ page import="com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.*,

 java.text.DateFormat,

 java.util.Date,

 java.util.Calendar,

 java.util.Locale,

 java.util.GregorianCalendar"%>

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

<blox:header/>

Chapter 18. Inputting and modifying data 203

</head>

<body>

<blox:container id="dateChooserContainer">

<%

 BloxModel model = dateChooserContainer.getBloxModel();

 Locale locale = Locale.US;

 java.util.Calendar calendar = java.util.Calendar.getInstance(locale);

 ICalendar calendarAdapter = new CalendarAdapter(calendar);

 java.text.DateFormat dateFormat =

java.text.DateFormat.getDateInstance(java.text.DateFormat.FULL, locale);

 IDateFormat dateFormatAdapter = new DateFormatAdapter(dateFormat);

 GregorianCalendar mydate = new GregorianCalendar(2005, Calendar.JANUARY, 01);

 Date d = mydate.getTime();

 DateChooser datechooser = DateChooser.getInstanceWithDateLocale(d,

calendarAdapter, dateFormatAdapter, locale);

 model.add(datechooser);%>

</blox:container>

</body>

</html>

Creating a non-Gregorian calendar

The International Components for Unicode (ICU) is a widely used set of Java

libraries for Unicode support. Among the features and extensibility it offers is the

support for non-Gregorian calendars and different date formats. With the ICU

package, you can easily create your own calendar object and date formatter.

If your application needs to support multiple locales, instead of using the

java.util.Calendar and java.text.DateFormat packages, you should use the Calendar

and DateFormat objects in ICU.

 Related tasks

 “An example of a non-Gregorian calendar”

An example of a non-Gregorian calendar

Before creating a non-Gregorian calendar, you should follow the steps described in

“Creating a Gregorian calendar” on page 200 to add a basic calendar control on

your page.

The following steps demonstrate how to create a Japanese calendar control in your

JSP file. You can adapt these steps to create an Islamic, Hebrew, or Chinese

calendar control.

To create a non-Gregorian Japanese calendar control:

1. Add the following packages to your import statement:

v java.util.Date

v java.util.Locale

We will use the Calendar and DateFormat classes from the ICU package.

Because ICU is shipped with DB2 Alphablox, there is no need to import them.

Your import statement now looks as follows:

<%@ page import="com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.*,

 java.util.Date,

 java.util.Locale"%>

204 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

2. Create your Japanese CalendarAdapter. The CalendarAdapter object must

implement the ICalendar interface.

com.ibm.icu.util.Calendar japaneseCalendar =

 new com.ibm.icu.util.JapaneseCalendar(Locale.JAPAN);

ICalendar japaneseCalendarAdapter =

 new CalendarAdapter(japaneseCalendar);

3. Create a DateFormatAdapter object. Get the Japanese data format from your

calendar and apply it to your DateFormatAdapter.

com.ibm.icu.text.DateFormat japaneseDateFormat =

japaneseCalendar.getDateTimeFormat(com.ibm.icu.text.DateFormat.FULL,

-1, Locale.JAPAN);

japaneseDateFormat.setCalendar(japaneseCalendar);

IDateFormat japaneseDateFormatter = new DateFormatAdapter(japaneseDateFormat);

If the same calendar is not applied to the formatter, the text field will default to

the English format.

4. Apply the Japanese locale to the DateChooser.

DateChooser datechooserJAPAN =

 new DateChooser(japaneseCalendarAdapter,

 japaneseDateFormatter, Locale.JAPAN);

Below is the complete example:

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ page import="com.alphablox.blox.uimodel.core.*,

 com.alphablox.blox.uimodel.*,

 java.text.DateFormat,

 java.util.Date,

 java.util.Locale"%>

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

<blox:header/>

</head>

<body>

<blox:container id="dateChooserContainer">

<%

 BloxModel model = dateChooserContainer.getBloxModel();

 // Create your Japanese CalendarAdapter

 com.ibm.icu.util.Calendar japaneseCalendar =

 new com.ibm.icu.util.JapaneseCalendar();

 ICalendar japaneseCalendarAdapter =

 new CalendarAdapter(japaneseCalendar);

 // Apply the Japanese date format to your DateFormatAdapter

 com.ibm.icu.text.DateFormat japaneseDateFormat =

japaneseCalendar.getDateTimeFormat(com.ibm.icu.text.DateFormat.FULL,

-1, Locale.JAPAN);

 japaneseDateFormat.setCalendar(japaneseCalendar);

 IDateFormat japaneseDateFormatter = new DateFormatAdapter(japaneseDateFormat);

 // Apply the same locale to the chooser

 DateChooser datechooserJAPAN = new DateChooser(japaneseCalendarAdapter,

japaneseDateFormatter, Locale.JAPAN);

 datechooserJAPAN.setName("datechooserJAPAN");

 model.add(datechooserJAPAN);

%>

</blox:container>

</body>

</html>

Important:

Chapter 18. Inputting and modifying data 205

v If you use the ICU package, for Chinese calendars, you must set the

milliseconds explicitly. Otherwise the fields will not evaluate

properly.

com.ibm.icu.util.Calendar chineseCalendar =

 new com.ibm.icu.util.ChineseCalendar();

chineseCalendar.setTimeInMillis((new Date()).getTime());

ICalendar chineseCalendarAdapter =

 new CalendarAdapter(chineseCalendar);

v By default, the display direction is set to go from left to right. For

bidirectional languages such as Hebrew or Arabic, you must set the

direction of your DateChooser as follows:

myDateChooser.setBidiDirecton(DateChooser.RTL);

Fonts for calendar controls

The fonts for text in the calendar control are specified in each theme’s CSS file in

the DB2 Alphablox Repository. The fonts specified are Lucida Sans Unicode, Arial,

Helvetica, and sans-serif. The default font is set to Lucida Sans Unicode because it

is the best choice of font for supporting multiple locales. It is designed to support

the most commonly used characters defined in version 2.0 of the Unicode standard

and it is provided with Windows 2000 and Windows XP.

In rare cases where your users do not have this font installed, and their locale is

set to a language that uses Unicode code points outside of the ranges supported by

Arial, Helvetica, and sans-serif, the text in the calendar control might not display

properly. Once solution is to install the Lucida Sans Unicode font on their system.

You can also change the font specification in the CSS file by searching for Lucida

Sans Unicode and replacing it. However, you should always set it to a

Unicode-supporting font and make sure your users have that font installed on

their systems.

Calculated members

Calculated members are data members that include dynamically generated data

derived from calculations performed against members that actually exist in your

result set, and then displayed in newly created rows or columns. Some data

sources, such as DB2 OLAP Server, Hyperion Essbase, and Microsoft Analysis

Services, can generate calculated members using their query languages, the Essbase

Report Specification Language and the Microsoft Multidimensional Expression

(MDX) Language. These calculated members, however, cannot typically be

interacted with. For example, drilling up or down in cubes using calculated

members derived from queries result in the calculated member names being

resubmitted to the database. Since these members do not exist natively in the data

sources, these queries will fail.

DB2 Alphablox provides a built-in capability to create calculated members after the

result sets have been returned from the data sources and manages the interactions

so that users can interact with the data and use these calculated members as if

they were real members.

Creating calculated members in DB2 Alphablox

Calculated members are created in DB2 Alphablox applications using the

calculatedMembers property of the DataBlox. One important advantage of using

DB2 Alphablox calculated members is that they allow you to add new data to your

result sets without having to modify the actual data sources. This can be especially

206 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

useful when you cannot wait for database changes or just want to experiment with

new measures that can be derived from existing data. Here are some examples

where calculated members might be useful to your users:

v the variance and variance percentage between the values of two members (such

as Budget and Actual)

v the average for all members on a designated dimension (such as Dollar Sales)

v percentage of total sales

For details on the syntax and usage of the DataBlox calculatedMembers property,

see the Developer’s Reference. In the following sections, a few important topics about

calculated members are presented.

Custom calculation guidelines

You should be aware of the following guidelines and restrictions when working

with custom calculations:

Defining custom calculations

The following guidelines apply to defining a custom calculation:

v The definition of a calculated member is an arithmetic expression that is

evaluated according to the normal rules of mathematical precedence.

v To position a calculated member, you can specify a reference member that the

calculated member should come before in the grid. Otherwise, the calculated

member will appear at the end of the existing dimension.

v When more than one calculated member is defined to be positioned before the

same reference member, the calculated members are ordered with the last

calculated member in the definition closest to the reference member.

v A calculated member must be defined in terms of existing, displayed members

of that dimension.

v When more than one calculated member is defined on a dimension without

positioning, the members are added to the dimension in the order of definition.

v The definition expression for a calculated member can use a previously defined

calculated member (backward reference), but not an as-yet-undefined calculated

member (forward reference).

Custom calculation restrictions

v In order for calculated members to be charted, the Generation Filter must be set

to show all generations. This can be done by setting the totalsFilter property

to 0 or by setting the Generation Filter to “Show all generations” in the DHTML

client’s Chart Options dialog box.

v Calculated members can be saved and restored through normal bookmark

operations.

v Member names cannot contain the equal sign (=), curly brackets ({}), or double

quotes (″).

v Unique members names are required when using Microsoft Analysis Services or

DB2 Alphablox Cube Server data sources.

v With DB2 OLAP Server or Essbase, you are strongly advised to use unique

member names in calculated member expressions -- if the DataBlox useAliases

property is set to false or users disable alias names in the UI, calculations may

fail.

v Use the ifNotNumber function in an expression to provide special case logic if

you want missing or null values for a given member to be treated as a specified

number.

Chapter 18. Inputting and modifying data 207

Tip: Make sure you understand what the resulting values for the calculations

will be when specifying values with the ifNotNumber function. Substituting

a value for some missing or null values might not make sense when used

in a calculation.

Conditions preventing proper data display

The following table lists conditions that prevent the display of meaningful data,

and the consequences in grid displays when the conditions occur.

 Condition The Grid Cell Displays:

Divide by zero The calculated member does not appear in

the grid

Reference to members not in the result set Empty string (or the value specified in the

missingValueString property)

Invalid calculation expression #Error (and an error appears on the console

or log)

Reference to a missing or non-numeric value Empty string (or the value specified in the

missingValueString property)

Calculated member property syntax

To specify one or more custom calculations on a member, use the DataBlox

calculatedMembers property (or the setCalculatedMembers method). Note that the

tag attribute syntax can include multiple custom calculations in a single statement:

calculatedMembers="dim1:calc1{refMember1:gen:missingIsZero}=

 expr1{scopeDim:scopeMember}, dim2:calc2{refMember2} =

 expr2{scopeDim:scopeMember},..., dimn:calcN

 {refMemberN:gen:missingIsZero} =

 exprN{scopeDim:scopeMember}"

where:

v The dimN value is the name of the dimension on which to create a calculated

member.

v The calcN value is the name of calculated member.

v [Optional] The refMemberN value is the name of an existing member which the

calculated member calculation will come before in the grid. The refMemberN

cannot be another calculated member.

v [Optional] The missingIsZero component of the definitionString can be used if

you want all missing values for members involved in the calculation to be

treated as zero. By default, all missing values in calculations are treated as

missing. [Note: This keyword only affects calculations using member variables.

It has no effect on calculation functions.]

v The exprN value is the arithmetical expression involving members of dim. You

can substitute the function ifNotNumber for a member value to provide special

case logic to handle missing or null values in the result set used in the

calculation.

The ifNotNumber function has the following syntax:

ifNotNumber(memberName, value)

where:

– memberName is the name of the member in which the function operates on.

208 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

– value is the numeric value which replaces the missing or null member value.

The value specified must contain no commas.

Functions available for calculated members

In the calculation expressions you use, the following tables summarize the

arithmetic, search, special calculation, and missing value related functions

available. For details on the syntax and usage, see the DataBlox section of the

Developer’s Reference.

Arithmetic Function

Description

Abs Returns the absolute value of a member. This can only be used on a single

number item such as the result of another calculation or a single member.

Average

Returns the average of all the numbers in the definition, which is the sum

divided by count.

Count Returns the count of all numbers in the definition. Missing values are

ignored. If there are no values to count, zero is returned.

Max Returns the highest value in all the numbers in the definition.

Median Returns the value of the number in the middle of the set.

Min Returns the lowest value in all the numbers in the definition.

Product

Returns the multiplication of all the values in the definition.

Round Returns the integer part of the number rounded to the nearest whole

number; can only be used on a single number item such as the result of

another calculation or a single member.

Sqrt Returns the square root of a number; can only be used on a single number

item, such as the result of another calculation or a single member.

Stdev Returns the standard deviation of all the numbers in the definition.

Sum Returns the addition of all the numbers in the definition; missing values

are ignored. If there are no values to add, zero will be returned.

Var Returns the variance, which is the average squared deviation of each

number in the set from the average.

Search Function

Description

Child Returns all children of a specified member.

Descendants

Returns all descendants of a specified member.

Leaf Returns all leaf-level descendants of the specified member.

Special Calculation Function

Description

Rank Returns the values from the specified dimensions in ascending or

descending order for the specified member.

RunningTotal

Returns the cumulative sum of values from the specified dimension for the

specified member.

Chapter 18. Inputting and modifying data 209

Missing Value Related Function

Description

ifNotNumber

Can be used to provide special case logic to handle missing or null values

in the result set used in the calculation.

 Details on the syntax and usage of these arithmetic, search, special calculation, and

missing value related functions can be found in the calculatedMembers property

description in the DataBlox section of the Developer’s Reference.

Calculated member examples

The following examples illustrate some common uses for calculated members:

v Define a custom calculation with cell values showing the variance percentage

between actual and budget values:

calculatedMembers = "Scenario:Variance % = (Actual-Budget)/Budget*100"

v Define a custom calculation with cell values showing the variance percentage

between actual and budget values, and provide logic to substitute a value of

1,000,000 for Actual and a value of 5,000 for Budget (do not use commas when

specifying the number):

calculatedMembers="Scenario:Variance %=(ifNotNumber(Actual,1000000)-

 ifNotNumber(Budget,5000))/ifNotNumber(Budget,5000) * 100"

v Define a custom calculation that displays the sales to date for the first two

quarters of the year:

calculatedMembers = "Year: YTD = \"Q1,2000\" + \"Q2,2000\""

v Combine two custom calculations in a single attribute (where Scenario is on one

dimension and Year on another):

calculatedMembers="Scenario:Variance % =(Actual-Budget)/Budget*100,

 Year: YTD = \"Q1,2000\" + \"Q2,2000\""

v Combine two custom calculations in a single attribute, and substitute different

values for the same member used in different expressions:

calculatedMembers ="Scenario:Variance % =

 (Actual-ifNotNumber(Budget, 10000))/ifNotNumber(Budget, 10000) * 100,

 Scenario: Difference = Actual-ifNotNumber(Budget, 0)"

v Define a custom calculation with cell values showing the variance percentage

between actual and budget values. Position the calculated member Variance % to

come before the member Actual on the grid.

calculatedMembers = "Scenario: Variance % {Actual} =

 (Actual-Budget)/Budget * 100"

v To add a separate ranking within each group, you can use the Rank function, as

shown in this example:

calculatedMembers=”All Products:Rank =

 Rank(All Products,All Locations,2,DESC,GROUPDIM)

Note: To clear calculated members, pass an empty string to setCalculatedMembers.

You can also perform calculations with nested dimensions on the same axis or

calculations within calculations. Specifying the scope of the calculated members or

assign a generation number to your calculation which aids in positioning the

calculated member. For more details and examples showing the use of the

calculatedMembers property and associated methods, see the DataBlox section of

the Developer’s Reference.

210 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Calculated members using Essbase report script commands

Calculated members can also be created using Essbase report script commands.

While this can be useful in some situations, the data displayed as a result cannot

be interacted with without generating DB2 OLAP Server or Essbase error messages

indicating that calculated members (which do not actually exist in the DB2 OLAP

Server or Essbase cube) do not exist. For example, when you drill on a grid in

which calculated members exist, drilling and other operations are disabled. As a

preferred alternative, whenever possible, you should create calculated members

using DB2 Alphablox.

For details about creating calculated members using Essbase report script

commands, see your DB2 OLAP Server or Essbase documentation. Also, be sure to

check the “Essbase report script commands supported by DB2 Alphablox” on page

126.

Chapter 18. Inputting and modifying data 211

212 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 19. Filtering data

This topic discusses tips and techniques for filtering data for the users, either to

help more effectively work with large result sets, limit access to information, or

personalize the information they see.

Hiding dimensions and members

Access to data allows users to creatively ask questions and compare data in

creative ways, but sometimes the amount of available information can be

overwhelming. For naive end users, too much data to look at can leave them at a

loss for where to begin. For savvy users, lots of data can actually become “noise”

to them, distracting them from being able to focus on the essential data. As a

developer, you need to keep your intended audience in mind, and develop analytic

applications which give users just the right amount of information. Users with full

access to the DataLayout panel, the Member Filter dialogs, and complete listings of

data can end up spending a lot of their time using Hide/Show and Keep/Remove

functionality to winnow down information to the information they need. But, as a

developer, you can help them out by using DataBlox properties to filter out data

which is not relevant to the task at hand, or is data that is seldom used.

With attribute dimensions in DB2 OLAP Server and Hyperion Essbase as well as

virtual dimensions in Microsoft Analysis Services, businesses slice their data in

many ways unavailable before. For example, in the QCC sample data sources, you

can analyze chocolate sales by groupings of pieces per package or ounces per

package, whether they have nuts or, list products by their introduction dates, or

analyze stores considering their square footage. This is great, when you want to

use this information in your analysis. But, if you don’t, their presence in views can

just become a nuisance. Luckily, DB2 Alphablox has two properties which make it

easy to hide dimensions and members, the DataLayout

hiddenDimensionsOnOtherAxis property and the DataBlox hiddenMembers property.

The DataLayoutBlox hiddenDimensionsOnOtherAxis property can be used to list

dimensions which you do not want to appear in the DataLayout panel. For an

example, see the Filtering Data section of Blox Sampler. For details about the

syntax and usage of hiddenDimensionsOnOtherAxis, see the DataLayoutBlox

Reference section of the Developer’s Reference.

The DataBlox hiddenMembers property can be used sometimes to hide members

that don’t make sense to be displayed. In the Scenario dimension, for example, the

top-level member is Scenario, but this member is really just a bucket for holding

the members grouped as children under it. And, in DB2 OLAP Server and

Hyperion Essbase, Scenario actually displays the data from the first child under it

-- but there is no data for the member Scenario. In the Filtering Data section of

Blox Sampler, an example of hiding the Scenario member (in DB2 OLAP Server,

Essbase, and Microsoft Analysis Services) shows the children of Scenario. Note that

when you drill up on one of the children, Scenario will actually appear (even

though it is listed as a hidden member). But, when you drill back down into

Scenario, it disappears once again. This behavior is unavoidable, due to limitations

of how drilling operations need to perform. For details about the syntax and usage

of hiddenMembers, see the DataBlox Reference section of the Developer’s Reference.

© Copyright IBM Corp. 1996, 2006 213

Using the dimensionRoot property

One of the simplest ways to filter information, or control access to it, is to use the

DataBlox dimensionRoot property specify specific members on dimensions to be

used as virtual roots for your users. Once a particular dimension root member is

defined as a new “virtual” root, users will be prevented from drilling up into

members above the defined root. This setting applies to page filters, rows and

columns, and lists of dimension members that appear in the Member Filter. A

virtual root may be useful for limiting access to areas of your data that you do not

want others to access. This property can be used for limited security use or just to

help prevent users from getting lost in the data.

You are probably using database security to prevent users from seeing data values

that they should not have access to, however, sometimes it is possible that just

seeing the member names may be too much information to be shared. In limited

cases like this, the dimensionRoot may be useful. For example, a database listing

prospective customers in all regions of the country may provide useful information

to a disgruntled employee who is just about to leave your company for a

competitor. If you minimizing access to information like this is important to you,

then the dimensionRoot property may present a useful option.

Note: You should not use the dimensionRoot property as your only means to

prevent users from accessing private information. It is always possible that

other database tools may be used against the same data source to access

information that you have blocked using a virtual root defined in a

DataBlox.

Your primary goal could also be to improve usability by blocking paths to

information that are not relevant to the needs of particular users, thus preventing

them from drilling around in information paths that may cause them to become

lost in the data. If some information is not relevant to the task they need to

perform, then the use of dimensionRoot could help minimize this “lost in

navigation space” problem.

Setting virtual roots for users

In the following example, users are restricted in their ability to access information

about particular regions in the country. These simple steps will allow you to

configure a DataBlox to create “virtual” roots for your users tied to the region of

the country they work in:

1. Add the dimensionRoot attribute to a standalone or nested DataBlox.

<blox:data id="myDataBlox"

 dimensionRoot=""

 ...

</blox:data>

2. Add a dimension and the single member in that dimension that you want to

use as a “virtual” root for your users.

For example, if you wanted to limit access to the East region in the QCC

database, here’s what the dimensionRoot setting would look like:

dimensionRoot="All Locations:East"

3. Save your page and test it.

This is a very simple example, with a hardcoded dimensionRoot setting. The

dimensionRoot could also be dynamically set as a page loads, by basing the

214 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

dimensionRoot setting on a value stored in the DB2 Alphablox Repository. A

custom user property could have as its value the name of the region that should

appear in the data source.

Note: For security reasons, you will probably want to disallow user editing in

situations like this, to prevent users from changing their own regions and

gaining access to other regions.

Note: See the Administrator’s Guide for instructions on how to create custom user

properties for users and applications.

Once a custom user property is configured using DB2 Alphablox, you can access

that value using server-side Java methods. On a JSP page with a DataBlox, your

dimensionRoot setting could be configured dynamically in the DataBlox tag or

using the associated setDimensionRoot() method. If you included a RepositoryBlox

above the DataBlox tag on a JSP page, you can dynamically include the value

within the DataBlox tag using a JSP expression statement. The code would look

similar this example:

dimensionRoot="<%= myRB.getUserProperty("userRegion") %>"

where myRB stands for the name of the RepositoryBlox that is defined above this

setting that can get the value from the DB2 Alphablox Repository. In this example,

the custom user property is userRegion. This very simple technique can also be

applied to other properties as well.

Fixed choice lists

Typically, page filters in DB2 Alphablox applications let users roam up and down

in information within a dimension without any restrictions, and limit access to the

Member Filter. The dimensionRoot property allows you to restrict information

access by defining a root that a user cannot get below. But sometimes the better

option is to limit the number of choices a user can select from by setting the

PageBlox fixedChoiceLists, moreChoicesEnabledDefault, and moreChoicesEnabled

properties to create fixed choice lists.

Example: A “Fixed Choice List” example showing the use two of these PageBlox

properties is available in the Filtering Data section of the Blox Sampler application.

Using the fixedChoiceLists property

The PageBlox fixedChoiceLists property places named dimensions and members

on a page filter’s drop list for users to pick from. Unlike normal page filters, fixed

choice lists limit users’ options to the ones specified by you. The default value of

fixedChoiceLists is an empty string, giving users full access to dimensions and

their members. When dimensions and specific members are specified using this

property, users can access only the members you have defined. For example, to

limit a user to see only two regions, Central and East, the PageBlox

fixedChoiceLists attribute would look similar to this example:

fixedChoiceLists="All Locations:Central,East"

If your initial query does not include one of the fixed choice list members in it, the

top-level member for a dimension specified in the fixed choice list will also

initially appear in the list. After a user selects one of the fixed choice list members,

the top-level member will then disappear from the list.

Chapter 19. Filtering data 215

In order for a fixed choice list to appear in the PageBlox, you must also remember

to specify the dimensions from that list in the selectableSlicerDimensions

property of the DataBlox. In our example, the DataBlox (not PageBlox) attribute

would appear like this:

selectableSlicerDimensions="All Locations"

Note: If your initial query has more than one member from a dimension in the

fixed choice, then the fixed choice list page filter will not appear in the

PageBlox. For example, if your initial query was:
query=’<SYM <ROW ("All Products") <ICHILD "All Products"

 <COL(Scenario) <CHILD Scenario "2001" Central East !’/>

then the fixed choice list would not appear in the PageBlox. To make this query

work, you should only include the member in the query that you want to appear

by default in the fixed choice list, either Central or East.

Using the moreChoicesEnabledDefault and

moreChoicesEnabled properties

The DataBlox moreChoicesEnabledDefault property, by default, allows users to

select the More Choices option on a page filter. To disable this default feature, set

the property to false, as shown here:

moreChoicesEnabledDefault="false"

Alternatively, you can use the more selective version of this property, the

moreChoicesEnabled property. This option requires you to specify individual

dimensions for which you do not want the More Choices menu option to appear.

See the Developer’s Reference for details about the two variants of the

moreChoicesEnabled property.

Using MemberSecurityBlox to filter members

MemberSecurityBlox, included in the Blox Logic Tag Library, can be used to filter

lists of dimension members based on access permissions. MemberSecurityBlox

suppresses access to members using the DataBlox suppressNoAccess property

based on specified MemberSecurityFilter values. This property can take multiple

root members and allows specifying multiple dimension:member pairings for

filtering.

For an example of the use of MemberSecurityBlox, see “Listing cube members

using MemberSecurityBlox” on page 54. For details about the syntax and usage of

the MemberSecurityBlox, see the Business Logic Blox and TimeSchema DTD

Reference section of the Developer’s Reference.

Using HTML form elements and FormBlox components

Even though DB2 Alphablox provides many properties for configuring and

filtering information delivery within the presentation Blox components, you can

also move some of this functionality out of these Blox and onto web pages. HTML

form elements, including selection lists, check boxes, and radio buttons, as well as

FormBlox can be used to access information and make selections. You can create

powerful, yet easy-to-use applications that any web user can use by removing Blox

216 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

menu bar and toolbars, incorporating HTML form elements that invoke server-side

logic using the DHTML Client API’s JavaScript methods.

Besides using standard HTML form elements and the Blox Client API, you can also

use the Blox Form Tag Library, including FormBlox components, to build analytic

applications. FormBlox generate customized form elements with commonly used

functionality required for building analytic applications. For example, the

DimensionSelectFormBlox and MemberSelectFormBlox generate HTML selection

lists automatically populated with dimension names and member names, and can

be used to create simple lists for users to select from. An additional benefit of

FormBlox components is that they persist and maintain state even when users

leave a page and return to it later in their browser session.

Using both standard HTML form elements and the FormBlox components, you can

restrict the interactivity of user interactions and filter out options you do not want

to expose to users. For details about the available FormBlox components, see

Chapter 6, “Blox Form Tag Library,” on page 45 and the Blox Form Tags Reference

section of the Developer’s Reference.

Using queries

Perhaps the most effective way to filter data before it gets to the user is to

construct good query statements. Using queries that only return data that is

relevant to the immediate task, you can avoid large result sets, which take longer

to execute on the database server and impact network traffic.

It is outside the scope of this guide to explain how to optimize queries for your

particular data source. Check your database documentation and other resources for

details about filtering data using query statements. Also, Chapter 14, “Retrieving

data,” on page 123 in this guide provides limited information about query

techniques which might be useful for filtering information from supported

multidimensional and relational databases.

Data suppression using Blox properties

DB2 Alphablox offers several properties that can enhance the usability and

performance of your analytic applications. The following sections briefly describe

how suppressMissingOnRows, suppressMissingOnColunns, suppressZeros,

suppressDuplicates, and suppressNoAccess properties of the DataBlox can be used.

See the DataBlox Reference section of the Developer’s Reference for more details on

the syntax and usage of these properties.

While suppressing data makes sense in many situations where there are lots of

rows or columns of data that would be filled entirely of zeros or missing data,

suppressing this information can mislead a business user who, for example, would

actually need to know that data is missing in order to take action on this. If users

have access to menu bars on Blox, they can change this setting manually in the

Data Options dialog but they may not know about the setting or may not think of

unsuppressing data that they didn’t know was missing. If menu bars are not

available and you want to suppress data, consider placing form elements (such as

a checkbox or radio buttons) on pages, allow users to control this setting and

realize that a suppression of data is in use.

Chapter 19. Filtering data 217

Using the suppressMissingOnRows and

suppressMissingOnColumns properties

The suppressMissingOnRows and suppressMissingOnColumns properties removes

rows or columns from your grids when there is no data at all in the returned rows

or columns. If any cells in a row or column in your data set has a value in it, the

entire row or column is visible.

To enable this feature, add the suppressMissingOnRows and

suppressMissingOnColumns attribute to a DataBlox and set the value to true, like

this:

suppressMissingOnRows="true"

suppressMissingOnColumns="true"

You can also programmatically control this feature using the associated Java

methods listed in the DataBlox Reference section of the Developer’s Reference.

For DB2 OLAP Server and Essbase data sources, when suppressMissingOnRows or

suppressMissingOnColumns is enabled by setting the property to true in your

DataBlox, suppression is performed on both the database server and within DB2

Alphablox. Here is a summary of the behavior you should expect when using DB2

OLAP Server or Essbase:

v If the initial query is a report script (instead of a bookmark), DB2 Alphablox

does the suppression of the missing data.

v If the query is the result of a bookmark, a drill, or a pivot, the DB2 OLAP Server

or Essbase server is asked to suppress rows with missing values.

Relying on the Essbase report script command <SUPPRESSMISSING alone is not

generally the best solution, since DB2 Alphablox will not then remove missing data

that results from drilling or other operations.

When end users are using the DHTML client, the addition of the Essbase

<SUPPRESSMISSING command to your initial report script command most likely will

not noticeably affect performance, even when queries return large result sets (more

than 1000 rows). The DHTML client optimizes the result sets it retrieves, limiting it

to what can be viewed in a particular instance.

Note: Use the GridBlox missingValueString property or its associated methods to

specify what should be displayed in cells that have no value. This property

is useful when entire rows or columns are not suppressed with the DataBlox

suppressMissing property or the Essbase <SUPPRESSMISSING report script

command.

See the DataBlox Reference section of the Developer’s Reference for details about the

missingValueString property.

Using the suppressZeros property

When the DataBlox suppressZeros property is set to true (default is false), all

rows or columns containing only zeros will be suppressed. If any cells in a row or

column in your data set have values other than zero in it, the entire row or column

will be displayed.

218 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

To enable this feature, add the suppressZeros attribute to a DataBlox and set the

value to true, like this:

suppressZeros="true"

You can also programmatically control this feature using the associated Java

methods listed in the DataBlox section of the Developer’s Reference.

Using the suppressDuplicates property

The suppressDuplicates property of a DataBlox, when set to true (the default

setting), removes all duplicate header values from rows or columns in your grids.

If you do not want to suppress duplicate header values, add the

suppressDuplicates attribute to a DataBlox and set the value to false, like this:

suppressDuplicates="false"

You can also programmatically control this feature using the associated Java

methods listed in the DataBlox Reference section of the Developer’s Reference.

Note: To suppress duplicate DB2 OLAP Server or Essbase shared members in the

initial query, use the <SUPSHARE report script command in your query

statement. For more information about the suppression of DB2 OLAP Server

or Essbase shared members, see the DB2 OLAP Server or Hyperion Essbase

documentation.

Chapter 19. Filtering data 219

220 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 20. Persisting and bookmarking data

Persistence of data and views is an important consideration for analytic

applications. While most of the data accessed is stored in databases, DB2

Alphablox can be used to manage data persistence for application states,

bookmarks, and custom properties. A brief discussion and example of using

JavaServer Pages techniques for persisting data values during a session is included.

Data persistence in DB2 Alphablox

A DB2 Alphablox application is a collection of resources. DB2 Alphablox provides

built-in features that can be used to allow users to save and restore a variety of

bookmarks and application states. For example, after drilling and pivoting, or

selecting a preferred chart layout, a user can bookmark the current view for later

recall. And, depending on application settings you have defined, application states

can be maintained and automatically stored when a session is over, either when a

user closes a browser window or when the current session times out.

Bookmarks and saved application states can be saved publicly or privately. Public

bookmarks and application states can be shared among all users with access to that

application. For information on using this feature through the Blox user interface,

see the user help page. The following sections discuss further details about

bookmarks and application states, and list the available Blox properties and

methods that developers can use for managing bookmarks and application states.

Application states

Application states are another way for DB2 Alphablox to save information in your

application. When a user starts a session that accesses an application, DB2

Alphablox creates an instance of the application. As long as the session is alive,

this instance maintains the state of a user’s current application session, including

the status of application resources, such as query result sets, grid and chart

appearance, sorts and other changes made by the user.

An application state in a DB2 Alphablox application is a representation of the state

of all of the Blox in that application at a particular moment in time. During the

process of using a DB2 Alphablox application, a user’s current application state is

tracked and maintained by DB2 Alphablox. This state is defined as the current

application state. Alternatively, a saved application state is a representation of all

of the Blox within an application at the particular time the application state was

saved.

While bookmarks save the state of an individual Blox, application states save the

state of the entire application. Application states can be saved and restored later as

needed. Also, application states can be saved publicly for sharing between all users

with access to an application, or privately for each individual user.

Application state management is handled automatically by DB2 Alphablox. DB2

Alphablox automatically saves the current state of an application in the Repository

when:

v the user exits the application (by closing the browser)

v the user session times out (by default, after 15 minutes of inactivity)

© Copyright IBM Corp. 1996, 2006 221

When the user next accesses the application, DB2 Alphablox restores the most

recent saved state of the application if the Restore Saved Application State setting

in the application definition is set to yes (default is no). If the Restore Saved

Application State is set to no, then the user will access the original, default

application state. You can include a custom button on a page within an application

to allow users to restore the last saved state.

Note: After a session times out, if the user attempts to work with it in the browser

window, a message appears instructing the user to press the browser’s

Refresh (or Reload) button to reconnect to the DB2 Alphablox.

Note: DB2 Alphablox does not save the data in an application state. When a saved

application state is restored, the application retrieves fresh data from the

database.

The following table lists RepositoryBlox methods relevant to managing application

states:

 Java Methods

delete()

deleteApplicationState()

exists()

getApplicationStateNameAndDescription()

list()

load()

rename()

renameApplicationState()

restoreApplicationState()

save()

saveApplicationState()

search()

Custom properties in the DB2 Alphablox Repository

Using the DB2 Alphablox Repository, you can create custom user, group, and

application properties that can be retrieved or modified using standard JSP

methods. After being created in the user, group, and application definitions, these

custom properties can be stored and retrieved using a RepositoryBlox. Using

JavaServer Pages technology, you can substitute the values from these properties

into your Java code and within your Blox tag attributes as runtime expression

values. Custom properties are available according to the DB2 Alphablox property

inheritance hierarchy.

Note: If you are adding Blox to a portal application, keep in mind that portlets

rely on the portal infrastructure to access user profile information. Therefore

you should use the Portlet API for user information rather than through

DB2 Alphablox.

Creating custom user properties

To understand how to use a custom property, consider the ChartBlox chartType

property. The default value is 3D Bar, but for a set of financial applications, a CFO

may prefer line charts. A developer could define a custom property to specify a

different default for this user. The custom property name would be the same as the

Blox property (chartType) and would have a value of Line.

222 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Based on this example, the following steps would create the necessary custom user

property:

 1. From the DB2 Alphablox home page, choose the Administration tab.

 2. Click the Server link and then User Definitions under Custom Properties. The

User Definitions page opens.

 3. Click the Create button at the bottom of the page. The Create User Custom

Property page appears.

 4. Complete the following entries:

v Property Name: chartType

v Default Value: Line

v Value List: Line, 3D Bar

 5. Click Save to save the new property. Next you will assign this custom

property to a user’s definition.

 6. From the DB2 Alphablox home page, choose the Administration tab.

 7. Click the Users link. The User Definition page opens, displaying a list of

existing user definitions.

 8. To define a new user, click the Create button. The Create User page appears,

displaying the General Properties panel. (To assign a value for a custom

property to an existing user definition, select the user name from the list and

click the Edit button.)

 9. Provide (or edit) entries for Username, Password, and Confirm Password.

10. The chartType property appears at the bottom of the General Properties panel.

Ensure that the property value is set to Line.

11. Click Save.

12. Now test your property by logging in as the user you just created.

JavaServer Pages technology and data persistence

JavaServer Pages technology offers several methods for managing data values

throughout user sessions and between sessions. JavaServer Pages technology offers

several different ways that data values can be stored and retrieved, including URL

rewriting, hidden form values, request object methods, and session object

methods. See a JavaServer Pages book or other JSP resources for descriptions of the

techniques available within JSP-based applications.

In the following task, you will learn an example of using one of these

techniques—the request object getParameter method.

Using request parameters to retrieve a URL attribute values

When a web page is submitted, the URL address can pass information that can be

retrieved within a linked page. A common use in a DB2 Alphablox application is to

create a custom print page using the Blox view on a page. Using the DB2

Alphablox URL render attribute, you could simply open a new print page a line

like this:

window.open("view-print.jsp?render=printer","_blank");

Using this JavaScript method, a new browser window would open displaying the

current Blox view rendered into HTML for printing. But, if you use HTML form

elements (buttons, check boxes, etc.) and text on the page being rendered, all of

those elements and text would be included on the printable page. This would not

be an ideal solution.

Chapter 20. Persisting and bookmarking data 223

Instead of this, you can create a custom print page that will retrieve elements from

the Blox view and incorporate them into a custom print page. The following steps

show you how you can pass a value between JSP pages using the getParameter

method:

1. On the page with a Blox view that you want to print, create a JavaScript

function that will construct a URL that will pass information to the custom

print page.

Here is an example of a JavaScript function that creates a URL address, passing

the time, region (from the selected value in an HTML selection list), render

mode, and HTML theme:

function printPreview() {

 var region=document.RegionForm.RegionSelectionList.

 options[document.RegionForm.RegionSelectionList,

 selectedIndex].text;

 var timestamp=new Date();

 var URL="passingValues-print.jsp?Region="+escape(region)+

 "&TimeStamp="+escape(timestamp.toString())+

 "&render=printer"+

 "&theme=printer";

 window.open(URL,"PrintPreviewWindow");

}

2. In your custom print page, capture the values from the URL query string,

incorporating them into your page as needed.

In the body of the custom print page, the following example shows the time

and region being placed on the page using the request object getParameter

method:

<h1>Sales for <%= request.getParameter("Region") %></h1>

<p>

<blox:display bloxRef="RegionPresentBlox"/>

</p>

<h3><%= request.getParameter("timestamp") %></h3>

Note: The “Passing Values Between Pages” example under the Persisting and

Bookmarking section in the Blox Sampler example set demonstrates the use

of request parameters.

Bookmarks - developer details

As a developer, there are some important details to be aware of when working

with bookmarking:

v A bookmark is a collection of property sets (name-value pairs) used to restore

the state of a Blox. Here’s an example of a property set for a Blox property:

– dividerLocation = 0.25

v A bookmark includes not only Blox properties, but also bookmark properties.

These bookmark properties include:

– application

– Blox type (Present, Chart, Grid, etc.)

– Description

– Bookmark name

– Hidden (boolean)

– Reference to Blox properties
v When a bookmark is saved, it is the difference between the initial Blox state and

the current state of the Blox when the bookmark is saved. The initial state

224 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

includes the defaults plus the defined tag and tag attribute properties. In the

DB2 Alphablox Repository, bookmarks with property sets only exist for Blox

whose properties that have changed since their initial state.

v When a bookmark is saved, it is saved to and restored from a specific location in

the DB2 Alphablox Repository based on the application name, Blox name,

bookmark type (public, group, private), and the group or user name.

v The bookmarks query file, includes a serialized Query object, which is much like

a grid result set with no data (that is, tuples of member objects). This is not the

textual query, which represents the query defined in the initial Blox state.

v Using bookmark filters, you can created context filters for bookmarks, which are

useful in creating applications with a single Blox on a page, setting views based

on bookmark menu items. And, using shared bookmarks, you can create

“published” and self-service applications.

Details about common Blox properties, BookmarksBlox tags and tag attributes, and

the available server-side APIs can be found in the Common Blox Reference and

BookmarksBlox Reference sections of the Developer’s Reference.

Getting a count of all bookmarks

This example demonstrates the following:

v the use of BookmarksBlox and its listBookmarks() method to gain access to all

bookmarks stored in the repository. The listBookmarks() method returns an

array of bookmark objects

v how to get a count of the total number of bookmarks by getting the length of

the array

<%@ taglib uri="bloxtld" prefix="blox" %>

<!--import the following package in order to access the

 com.alphablox.blox.repository.Bookmark class-->

<%@ page import="com.alphablox.blox.repository.*" %>

<blox:bookmarks id="myBookmarksBlox"/>

<%

 Bookmark bks[] = null;

 bks = myBookmarksBlox.listBookmarks();

%>

There are <%= bks.length %> bookmark(s).

Getting the properties set for a bookmark

This example demonstrates how to access a bookmark based on the bookmark

name, application name, user name, Blox name, and bookmark visibility and get

information on its properties set. In particularly, it demonstrates:

v the use of the BookmarksBlox to access individual bookmarks (the Bookmark

object)

v the use of the Bookmark object’s getName(), getVisibility(), getDescription(),

getBloxType(), and getBinding() methods

v the use of the Bookmark object’s getBookmarkProperties() method to access the

individual properties (one for each nested Blox)

The generated output looks like the following:

The bookmark you are looking for exists.

1. The Repository JNDI binding for this bookmark is:

Chapter 20. Persisting and bookmarking data 225

2. The bookmark name is: q2fy02WestSales

3. The type of Blox this bookmark was saved for is: grid

4. The bookmark description is: The Q2 West Sales

5. The bookmark visibility is: private

6. The bookmark contains Blox properties in the repository

7. Types of Blox properties saved in the bookmark:

v grid

v data
<%@ page import="com.alphablox.blox.repository.*,

 com.alphablox.blox.ServerBloxMissingResourceException,

 com.alphablox.blox.ServerBloxException,

 com.alphablox.blox.BookmarksBlox" %>

<%@ page import="java.util.*" %>

<%@ page import="java.io.*" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

<!-- Blox header tag -->

<blox:header/>

</head>

<body>

<!-- Get an SSPM BookmarkBlox -->

<blox:bookmarks id="bookmarks" />

<!--getting the bookmark you want-->

<%

 String bookmarkName = "q2fy02WestSales";

 String applicationName = "SalesApp";

 String userName = "admin";

 String bloxName = "myGrid";

 String visibility = Bookmark.PRIVATE_VISIBILITY;

 Bookmark bk = null;

 try {

 bk = bookmarks.getBookmark(bookmarkName, applicationName,

 userName, bloxName, visibility);

 } catch (ServerBloxException e){

 if (e instanceof ServerBloxMissingResourceException){

 %>The bookmark DOES NOT EXIST!<%

 }

 else

 throw e;

 }

 if (bk != null) {

 %>The bookmark you are looking for exists.

 The Repository JNDI binding for this bookmark is:

 <%= bk.getBinding() %>

 The bookmark name is: <%= bk.getName() %>

 The type of Blox this bookmark was saved for is: <%=

 bk.getBloxType() %>

 The bookmark description is: <%= bk.getDescription() %>

 The bookmark visibility is: <%= bk.getVisibility() %>

 <!---Getting the individual BookmarkProperties ---->

 <%

 BookmarkProperties props[] = bk.getBookmarkProperties();

 if (props != null) {

 %>The bookmark contains Blox properties in the

 repository

226 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Types of Blox properties saved in the bookmark:

 <%

 for (int i = 0; i < props.length; i++) {

 %><%= props[i].getType() %><%

 }

 %>
<%

 }

 else {

 %>The bookmark DOES NOT CONTAIN Blox properties in the

 repository<%

 }

 }%>

 </body>

 </html>

Using server-side bookmarkLoad event filter

This example demonstrates how to use the server-side event filters to perform

custom tasks (in this example, we add a message to the console) when the

bookmarkLoad event is triggered.

1. To use server-side event filters, first add the specific event filter object using the

common Blox method addEventFilter().

<% myPresent.addEventFilter(new LoadFilter()); %>

2. Then write your own class that implements the corresponding event filter

object (BookmarkLoadFilter) and the corresponding method

(bookmarkLoad(BookmarkLoadEvent) that will be called with the event is

triggered.

public class LoadFilter implements BookmarkLoadFilter

{

 public void bookmarkLoad(BookmarkLoadEvent bre)

 {

 //actions to take when the event is triggered

 }

}

Here is the code:

<%@ page import="com.alphablox.blox.filter.*" %>

<%@ page import="com.alphablox.blox.*" %>

<%@ page import="com.alphablox.blox.repository.Bookmark" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

 <title>Bookmarks Filter Events</title>

 <!-- Blox header tag -->

 <blox:header/>

</head>

<%!

public class LoadFilter implements BookmarkLoadFilter {

 public void bookmarkLoad(BookmarkLoadEvent ble)

 throws Exception {

 Bookmark bookmark = ble.getBookmark();

 String name = bookmark.getName();

 System.out.println("A bookmark called " + name + " is

 loaded.");

 }

 }

%>

<body>

<blox:present id="myPresent" >

 <blox:data dataSourceName="TBC"

Chapter 20. Persisting and bookmarking data 227

query="<Row(Market) <ICHILD Market <Column(Year) Year !"/>

<%

 myPresent.addEventFilter(new LoadFilter());

%>

</blox:present>

</body>

</html>

Customizing applications using the BookmarksBlox API

BookmarksBlox, with its extensive API, allows you to programmatically create and

manage bookmarks and dynamically set the bookmark properties. For example,

you can create time-series reports or reports that always fetch the data for the

current quarter by dynamically modifying the data query stored with a bookmark.

You can use custom bookmark properties to store each user’s choice of report

layout or implement your own security. You can modify the query stored with a

bookmark in the case of change of member names or outline in the data source.

You can even create your own bookmark management user interface.

To use the BookmarksBlox API, add a BookmarksBlox to your page. This gives you

access to each bookmark as a Bookmark object.

Here are a couple of interesting examples of bookmark customization examples

that are included in Blox Sampler.

Using bookmark events

Four bookmark events are available to be used within DB2 Alphablox applications:

load, save, rename, and delete. Any combination of these events can be registered

with a Blox, including multiple events of a similar type. When registered, these

events will be called before the actual process is started, allowing you a chance to

customize bookmark behavior.

A typical event looks like:

public class LoadFilter implements BookmarkLoadFilter {

 public void bookmarkLoad(BookmarkLoadEvent ble) throws Exception {

 Bookmark bookmark = ble.getBookmark();

 String name = bookmark.getName();

 System.out.println("Bookmark " + name + " applied");

 }

}

In this example, an event gets the name of the bookmark being loaded, then

displays it in the console.

Using registered events

Registering events is done within Blox tags, like this:

<blox:present id="myPresent3" >

 <blox:data

 dataSourceName="QCC-Essbase"

 query="!"/>

<%

 myPresent3.addEventFilter(new LoadFilter());

 myPresent3.addEventFilter(new SaveFilter());

228 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

myPresent3.addEventFilter(new RenameFilter());

 myPresent3.addEventFilter(new DeleteFilter());

%>

</blox:present>

The Blox tag above registers all four bookmark events.

Using dynamic queries with bookmarks

With the new bookmark APIs, you can tell the server to execute a query different

than the one that originally saved with the bookmark and to use the result as the

result set.

The following example, using a Microsoft Analysis Services MDX query statement,

shows the modification of a bookmark to store a parameterized textual query that

will be used when the bookmark is loaded. Forcing a bookmark to use a different

textual query involves saving the query with the bookmark properties and setting

the textualQueryEnabled property to true.

In a bookmark save event, you can do the following to save a parameterized

query:

// Parameterized query (NOTE: :year and :quarter)

final String PARAM_QUERY = "SELECT {[Products].[Category].[All Products],

 [Products].[Category].[All Products].children} ON ROWS,

 {[Time].[Calendar].[All Time Periods].[:year],

 [Time].[Calendar].[All Time Periods].[:year].[:quarter]}

 ON COLUMNS FROM [QCC]";

// get the Bookmark Object from the BookmarkSaveEvent

Bookmark bookmark = bse.getBookmark();

// Find DataBlox properties for this bookmark

BookmarkProperties data =

 bookmark.getBookmarkPropertiesByType(Bookmark.DATA_BLOX_TYPE);

// If DataBlox properties not found in existing property set, create

if (data == null) {

 data = bookmark.createBookmarkProperties(Bookmark.DATA_BLOX_TYPE);

 }

// Set textualQueryEnabled to true, saving the query above to bookmark

 data.setProperty("textualQueryEnabled", true);

 data.setProperty("query", PARAM_QUERY);

When the bookmark is loaded, you can use a bookmark load event to replace the

parameters with relevant information given by a user, for example:

// get the Bookmark Object from the BookmarkLoadEvent

Bookmark bookmark = ble.getBookmark();

// find a DataBlox properties for this bookmark

BookmarkProperties data =

 bookmark.getBookmarkPropertiesByType(Bookmark.DATA_BLOX_TYPE);

if (data != null) {

Chapter 20. Persisting and bookmarking data 229

// Get the parameterized query from the bookmark

 String query = data.getProperty("query");

// Replace the parameters with real information

// NOTE: replaceText simply replaces any references to the 2nd argument

// with the contents of the third argument.

 query = replaceText(query, ":year", "2002");

 query = replaceText(query, ":quarter", “Qtr2”);

// set the new un-parameterized query

data.setProperty("query", query);

}

When the bookmark is loaded, the parameters will be exchanged for 2002 and Qtr2

and the query will be executed.

Getting a list of bookmarks that match the specified criteria

This example demonstrates the following:

v getting bookmarks for a specified user, and in this example, the user “admin”

with the use of the BookmarkMatcher object

v the use of the Bookmark object’s getBinding() and getBloxType() methods and

their output

The generated output is as follows:

Got 5 Bookmark Object(s) for user admin.

The Bookmarks are:

v users/admin/salesapp/salesgrid/bookmark/salesq1fy03/properties (grid)

v users/admin/salesapp/salespresent/bookmark/eastq2fy03/properties (present)

v users/admin/budgetapp/mypresent/bookmark/eastq3budget/properties

(present)

v users/admin/budgetapp/mypresent/bookmark/westq3budget/properties

(present)

v users/admin/budgetapp/present2/bookmark/mybudget/properties (present)

The code is as follows:

<%@ taglib uri="bloxtld" prefix="blox" %>

<!--import the following package in order to access the

 com.alphablox.blox.repository.BookmarkMatcherUsers class-->

<%@ page import="com.alphablox.blox.repository.*" %>

<html>

<head>

 <blox:header/>

</head>

<body>

<blox:bookmarks id="myBookmarksBlox" />

<%

 Bookmark bks[] = null;

 BookmarkMatcherUsers matcher = new BookmarkMatcherUsers();

 bks = null;

 matcher.setUser("admin");

 bks = myBookmarksBlox.listBookmarks(matcher);

%>

 <div>Got <%= bks.length %> Bookmark Object(s) for

 user <%= matcher.getUser() %></div>

230 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<div>The Bookmarks are:</div>

<%

 for (int i = 0; i < bks.length; i++) {

%><%= bks[i].getBinding() %> (<%= bks[i].getBloxType() %>)

<%

 }

 %></div>

</body>

</html>

Getting DB2 OLAP Server or Essbase serialized queries in text form

when a bookmark is loaded

This example demonstrates how to get a serialized query in text form from the

bookmark (which is not the same as the query that is in the DataBlox). Note that

this example only works with DB2 OLAP Server and Essbase data sources. To

reference Microsoft Analysis Services, you need to save the query yourself.

1. Set the DataBlox’s textualQueryEnabled property to true:

<blox:data...

 textualQueryEnabled="true" />

2. The server-side event filter, BookmarkLoadFilter, is used to trigger the custom

action when the bookmark is loaded. See “Using server-side bookmarkLoad

event filter” on page 227 for an example of the server-side event filter.

3. When a bookmark is loaded, a serialized query in text form is retrieved.

Here is the complete code:

<%@ page import="com.alphablox.blox.filter.*,

 com.alphablox.blox.repository.BookmarkProperties,

 com.alphablox.blox.repository.SerializedQuery,

 com.alphablox.blox.repository.SerializedTextualQuery,

 com.alphablox.blox.repository.SerializedMDBQuery,

 com.alphablox.blox.repository.Bookmark" %>

<%@ taglib uri="bloxtld" prefix="blox"%>

<html>

<head>

<blox:header/>

<%!

 public class LoadFilter implements BookmarkLoadFilter

 {

 public void bookmarkLoad(BookmarkLoadEvent ble) throws Exception

 {

 Bookmark bookmark = ble.getBookmark();

 SerializedQuery sq = bookmark.getSerializedQuery();

 SerializedTextualQuery stq = null;

 SerializedMDBQuery smq = null;

 String query = null;

 if(sq instanceof SerializedTextualQuery)

 {

 stq = (SerializedTextualQuery)sq;

 query = stq.getQuery();

 }

 else if(sq instanceof SerializedMDBQuery)

 {

 smq = (SerializedMDBQuery)sq;

 query = smq.generateQuery();

 }

 System.out.println("query=" + query);

 }

Chapter 20. Persisting and bookmarking data 231

}

%>

<body>

<blox:present id="myPresent"

 width="800"

 height="600">

 <blox:data

 dataSourceName="QCC-Essbase"

 query=’<ROW ("All Locations") Central East West

 <COLUMN ("All Time Periods") 2001 !"

 useAliases="true"

 textualQueryEnabled="true" />

<%

 myPresent.addEventFilter(new LoadFilter());

%>

</blox:present>

</body>

</html>

Using custom properties to restrict access

Custom properties are an enhancement to existing bookmarks. You can now place

additional key/value information into a bookmark to be used when the bookmark

is loaded during a bookmark load event.

In a bookmark save event, you can add custom properties to the bookmark, for

example:

// get the Bookmark Object from the BookmarkSaveEvent

Bookmark bookmark = bse.getBookmark();

// add username of bookmark owner as a custom property

bookmark.setCustomProperty(“Owner”, “Admin”);

Note: You can create a constructor for your BookmarkSaveEvent class, or any other

bookmark event for that matter, to take a parameter such as an owner name

When the bookmark is loaded, you can use a bookmark load event to get the

custom property and see if the owners match:

// get the Bookmark Object from the BookmarkLoadEvent

Bookmark bookmark = ble.getBookmark();

// get the owner custom property

String owner = bookmark.getCustomProperty(“Owner”);

// compare this user and the owner

if (!owner.equalsIgnoreCase(currentUser)) {

 // if user and owner do not match, stop bookmark load

 ble.cancelEvent();

}

You can also do the same to stop the deletion of a bookmark

 that the current user does not own:

// get the Bookmark Object from the BookmarkDeleteEvent

Bookmark bookmark = bde.getBookmark();

// get the owner custom property

String owner = bookmark.getCustomProperty(“Owner”);

// compare this user and the owner

if (!owner.equalsIgnoreCase(currentUser)) {

 // if user and owner don’t match, stop bookmark delete

 bde.cancelEvent();

}

232 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 21. Distributing views

You can share analytic views by e-mail and bookmarking.

Even though most analysis happens by individuals sitting alone in either an office

or cubicle, the information and results of analysis are often shared with others in a

business, including executives, colleagues, and customers. DB2 Alphablox

applications, thanks to the ubiquity of the Internet and web browsers, can be

shared with others in your office or company to distances around the world. In the

following topic, e-mail, bookmarking, and printing methods of distributing and

sharing information are discussed.

Creating mail links using an e-mail bean

An e-mail bean is available for e-mailing a static view of the data to one or more

e-mail recipients. This bean and a set of support JSP files and images are provided

in the e-mail example under the Application Studio. The core file in this example is

EmailBean.class file that needs to be included with your application.

To use this bean, an SMTP server needs to be specified to DB2 Alphablox. This can

be done in the DB2 Alphablox Admin Pages, under the System link of the

Administration tab.

Below is a general overview of the steps involved. For detailed step-by-step

instructions on configuring and customizing the files for your application, please

see the live example.

1. The first step involves copying Java class files into your application. In

particular, the EmailBean.class file and two other support class files

(HTMLFileParser.class and HTMLFile.class) need to be copied into your

application’s WEB-INF\classes\alphablox\ directory. All Java classes, servlets,

beans, or other utility classes need to reside in WEB-INF\classes\. In this case,

we create a subdirectory called alphablox\ under classes\.

2. The next step involves copying following files into your application directory:

v emailSend.jsp

v emailError.jsp

v emailTemplate.jsp

v emailDialog.html

The purpose of each file is listed in the table at the end of this section. You may

wish to modify or customize emailError.jsp, emailTemplate.jsp and

emailDialog.html. Suggested modifications are included in the table.

3. There are a number of images that are part of the example implementation, as

well as a style sheet. You may wish to modify and/or use these files as well. If

you use the images, copy them into your application directory in an images

subdirectory. The stylesheet (styles1.css) can be copied directly into your

application directory. See the table at the end of this section.

4. There is a file included with the example called emailExample.jsp. You can use

this file as an example of how to incorporate the e-mail functionality into your

application. In emailExample.jsp, a JavaScript function is defined called

© Copyright IBM Corp. 1996, 2006 233

openEmailDialog(). This function invokes the email dialog. Code is also added

so that when the button in the example is clicked the openEmailDialog function

is invoked.

 File Description Modification

emailExample.jsp The JSP file that contains:

v the user interface Blox to

be emailed

v an email link or button

that triggers the email

functionality

Copy the block of JavaScript

code in this file that brings up

emailDialog.html in a separate,

sized browser window into your

JSP file containing Blox.

In your e-mail link or button,

specify to call the JavaScript

function copied.

emailDialog.html The HTML file called by

emailExample.jsp; contains

a form for filling in sender,

recipient, subject, and body

of the email message.

Upon form submission,

the emailSend.jsp file is

invoked with all the

parameters passed via form

post.

You can use it as it is or modify

the title, logo, or style sheet

reference for your application.

emailSend.jsp The JSP file that interfaces

with the Email bean to send

the email.

Do not modify this file.

emailTemplate.jsp The returned page

informing the user the

email has been sent.

You can use it as it is or modify

the title or text for your

application.

emailError.jsp The error page for

emailSend.jsp. If something

goes wrong trying to send

the email, the error

information will be

displayed in this page.

You can use it as it is or

customize it for your

environment.

emailBlox.gif The “mailbox” image used

in emailExample.jsp as the

email icon.

You can use it as it is or modify.

required.gif The small red arrow that

indicates a required field in

the email dialog.

You can use it as it is or modify.

gridlogo-sm.gif Alphablox logo shown to

the left of the “send e-mail”

button in the email dialog.

You can use it or replace it with

an image of your own.

grid-bg.gif The image that is tiled to

form the background of the

email dialog.

You can use it or replace it with

an image of your own.

234 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

File Description Modification

style1.css The style sheet used by

emailDialog.html.

You can use it as it is or modify.

Bookmarks

Bookmarks can be used to share instances of Blox views with fresh data among

others within defined groups or publicly (to others with application access rights).

Bookmarks allow analysts and managers to quickly share customized views of data

without requiring them to wait for developers to become freed up to create custom

application views. Instead, by bookmarking views and sharing them with others,

all members of a group can share information.

Bookmarks can also be used for groups to share saved views that will potentially

be added to applications as fully customized views.

Note: The use of bookmarks for long-term use of views is not recommended since

bookmarked views maintain the use of member names that may not be

valid after a few months. Also, the addition of new members to a data

source may not be reflected in the bookmark view without modifications to

the bookmarks.

Note: Sometimes users become concerned about bookmarks, misunderstanding

what is actually being saved. When a bookmark is saved, there is no data

stored. Every time a bookmark view is opened, an appropriate query is

resubmitted to the server, and fresh data is retrieved. Also, a bookmarked

view does not give others access to information which database security

would keep from them.

For more information about bookmark functionality that you can use in developing

analytic applications, see “Custom PDF report properties using <blox:pdfReport>

tags” on page 244. For details about the available bookmark-related properties and

methods, see Common Blox Reference and BookmarksBlox Reference sections of

the Developer’s Reference.

Printing

One of the advantages of DB2 Alphablox applications is that the data presented to

users is available immediately, it is updated when the data source is updated, and

can be shared without having to be printed and distributed though company mail.

But, inevitably, users want to print copies for sharing with others. See other

sections in this guide to learn more about how to effectively deliver analytic view

through print and PDF renderings:

v “Printer format (render=printer)” on page 155

v “PDF format (render=pdf)” on page 155

v “Printing Blox output” on page 156

v “Exporting to PDF” on page 241

Chapter 21. Distributing views 235

236 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 22. Exporting data

Exporting data is a way to output data to a spreadsheet or other formats for

sharing, archiving, or further calculations. This section discusses how you can

create applications that support exporting data in Blox views to Microsoft Excel,

PDF, or in an XML format.

Exporting data to Excel

By default, the toolbar in PresentBlox or GridBlox includes an Export to Excel

button and the menu bar includes a File → Export to Excel option that allows users

to export the data in the current view to native Excel format.

To use this Export to Excel option:

v Users must have Microsoft Office 2000 or Office XP.

v Users must enable macros when they are prompted. If macros are not enabled,

only grid data is present. The chart will not be generated.

When users click the Export to Excel button, a dialog opens and prompts the users

to choose a template. DB2 Alphablox offers two templates: Default and Use Chart

Data. You can provide your own templates and make them available through the

template selection list in the dialog. Users can choose from one of the templates, or

they can choose not to use any template.

Default templates for Excel

DB2 Alphablox offers two templates by default: Default and Use Chart Data.

The table below describes the behavior and benefits of each of the templates. Users

can also choose not to use any template. The behavior and benefits for this

scenario is also described.

 Template Behavior Benefits

Default Uses the data from the grid to generate

the chart in Excel with a macro. If users

change the grid data in Excel, the chart

will be automatically updated.

However, the resulting chart in Excel

can be somewhat different to the one

that is displayed in DB2 Alphablox.

Note: The chart in a standalone

ChartBlox is not exported because there

is no grid data that can be used to

generate the chart.

The chart is always in

sync with the grid.

Use Chart Data Writes a separate chartData worksheet

of the chart data and produces a chart

with that data. If the grid data in Excel

is changed, the chart is not

automatically updated unless users

change the data in the separate

chartData worksheet.

The resulting chart in

Excel is similar to the one

that is displayed in DB2

Alphablox because the

chart is generated by

using the data from the

chart in DB2 Alphablox.

© Copyright IBM Corp. 1996, 2006 237

Template Behavior Benefits

No template Sets the MIME type to

application/vnd.ms-excel on the page

that is returned. application/vnd.ms-
excel is the standard MIME type for

Microsoft Excel. It triggers the browser

to launch the Excel application to load

the page. The page itself is not in the

native xls format.

Note: Charts are not exported. This

applies to both standalone charts and

charts nested in a PresentBlox.

No embedded macro.

To create your own templates and make them available through the template

selection list when users choose to export the data to Excel, see “Creating custom

Excel templates.”

When the Excel application is set to high security, users do not get prompted to

enable macros. Because charts are generated using macros based on grid data, in

this case, charts will not be generated. If high security is the type of environment

your users operate in, you will need to have the macros signed. For information on

how to add a digital signature to macros, see http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnoxpta/html/odc_dsvba.asp.

Creating custom Excel templates

You can create your own template for exporting data to Excel. To create your own

template, write your macros using the properties DB2 Alphablox provides. For

example, you can customize the column header style or the default cell style.

Writing custom Excel templates requires the knowledge of Microsoft Visual Basic

for Applications.

Templates for the Export to Excel option are stored under the templates directory

in the DB2 Alphablox Repository. Each template must be stored in a separate

folder. The templates directory has the following structure:

 File or directory Description

templates.xml The XML file for specifying the default

selected template.

template_dir Each template must be placed inside a

directory. Inside the directory, there should

be two files: an Excel XLT template file and

a template.xml file. The template.xml file

describes two pieces of information:

v The template’s display name as it shows

up in the template selection list in the

user interface.

v The name of the XLT file in the same

directory to be used for this template.

To create your custom template:

1. Create a directory under the repository’s templates directory.

2. Write your own template. DB2 Alphablox supplies a set of properties that you

can use in your Excel macro. These supplied properties are used by the two

238 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnoxpta/html/odc_dsvba.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnoxpta/html/odc_dsvba.asp

provided templates. You can use the two provided templates as examples to

create your own template. See “Properties for Excel templates” for the list of

properties.

3. Store your Excel template (.XLT file) in your own directory under the templates

directory in the DB2 Alphablox Repository.

4. Create a template.xml file for your directory by copying the template.xml file

from either the existing default or useChartData template directory into your

own directory. You template folder now contains two files, your template XLT

file and template.xml.

5. Modify the template.xml file you just copied into your template folder:

a. Specify the template display name in the <displayName> tag. For example,

<displayName>My Custom Template<displayName>.

b. Specify the XLT file for this template in the <file> tag. For example,

<file>myCustomTemplate.xlt</file>

Your template will now appear in the template selection drop-down list in the

Export to PDF dialog. To modify the supplied online help to include information

on your custom template, see “Creating custom user help” on page 257. To set

your template as the default selected template, see “Setting the default template for

exporting to Excel.”

Setting the default template for exporting to Excel

The default template that is selected when users choose to export their data to

Excel is Default. This is specified in the templates.xml file in the templates

directory in your DB2 Alphablox Repository.

v To set the default to your custom template named My Template, modify the

template name in the <default> tag to:

<default>My Template</default>

v To set no template as the default, modify the template name in the <default>

tag to:

<default>noTemplate</default>

If the <default> tag is missing in the templates.xml file, or if the file itself is

missing, the first directory in this templates directory that contains an XLT file is

used.

Properties for Excel templates

The following table lists the properties DB2 Alphablox provides for use in Excel

templates. These properties and their values are exported to the separate

worksheet in Excel named ″properties.″

 Property name Set by Description

WorkSheet Application

developer

The sheet index where DB2 Alphablox

exports the data. Default value is 0.

StartCell Application

developer

The cell location where DB2 Alphablox

starts the export process. Default value is

A1.

EndCell DB2 Alphablox The last cell where DB2 Alphablox writes.

This property can be used to set the bounds

of the chart.

Chapter 22. Exporting data 239

Property name Set by Description

ColumnHeaderStyle Application

developer

The style to use on column headers. The

formatting, colors, fonts, and alignment of

this cell set the style for the column headers

of the exported data.

RowHeaderStyle Application

developer

The style to use on row headers. The

formatting, colors, fonts, and alignment of

this cell set the style for the row headers of

the exported data.

DefaultCellStyle Application

developer

The style to use on cells. The formatting,

colors, fonts, and alignment of this cell set

the style for the cells of the exported data,

except when a separate format or cell alert

was set on a cell.

ExportChartData Application

developer

This property tells DB2 Alphablox whether

the chart should use data directly exported

from the Alphablox chart data, or data from

the grid. The DB2 Alphablox chart is

usually a subset of the grid data. If you

want the Excel chart to look similar to the

DB2 Alphablox chart, then set this property

to true. However, the chart data is exported

to a separate worksheet. When the data in

the Excel grid is changed, the chart will not

be affected.

ChartEndCell DB2 Alphablox If ExportChartData is set to true, then this

property marks the last cell of the chart data

and is used for setting the bounds of the

chart.

ChartTitle DB2 Alphablox The title of the chart.

ChartFootnote DB2 Alphablox The footnote of the chart.

ChartType DB2 Alphablox The DB2 Alphablox chart type. This

property is used in the macro to map the

DB2 Alphablox chart type to the Excel chart

type.

ChartY1AxisTitle DB2 Alphablox The title of the y1-axis if a title was set as a

chart property in DB2 Alphablox.

ChartY2AxisTitle DB2 Alphablox The title of the y2-axis if one was set as a

chart property in DB2 Alphablox.

ChartXAxisTitle DB2 Alphablox The title of the x-axis if a title was set as a

chart property in DB2 Alphablox.

ChartO1AxisTitle DB2 Alphablox The title of the o1-axis if a title was set as a

chart property in DB2 Alphablox.

Chart type mapping from DB2 Alphablox to Excel

The macro in the DB2 Alphablox-supplied templates maps charts in DB2

Alphablox to the closest chart types in Excel.

The following table shows the chart type mapping from DB2 Alphablox to Excel.

 Chart type in DB2 Alphablox Chart type in Excel

bar charts bar charts

240 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chart type in DB2 Alphablox Chart type in Excel

line charts line charts

pie charts pie charts

area charts area charts

scatter charts and bubble charts scatter charts

radar charts, line radar charts, line

radar charts, area radar charts, area

All other charts are mapped to bar charts. 3D effects are preserved.

Exporting to PDF

Users can export analytic views from Blox to Adobe Acrobat PDF files. The PDF

rendering format provides the following benefits over standard Web-based

printing:

v Both application developers and users have finer control over the layout. Wide

charts and grids can be rendered to multiple pages rather than being truncated.

v The PDF file can be saved for later use.

v The PDF file can be e-mailed to others.

Default user interface options for PDF reports

By default, the Export to PDF option is available on the menu bar and the toolbar

of PresentBlox, GridBlox, and ChartBlox components. When users select File >

Export to PDF on the menu bar or click the Export to PDF button on the Blox

toolbar, the default Create PDF Report dialog opens. Within this dialog, users can

modify the following settings:

 General setting Options

Orientation Landscape (default) or Portrait

Page size Letter, Legal, A3, or A4. The default depends on the client locale (for

example, Letter for US and A4 for French).

Theme A selection list of themes available on the server, with a default

value the same as the server’s default HTML theme, coleman.

Header text Blank text entry field

Footer text Blank text entry field

 Grid setting Options

Number of pages to

fit all columns

v Number of pages wide the grid should fit

v If the data columns are to be split into multiple pages, whether to

repeat the row headers

v If the data columns are to be split into multiple pages, after which

columns should there be a page break

Based on the number of pages specified, columns after which there

should be a page break are automatically suggested for the users on

the Break After panel to evenly split the columns. Users can change

the suggested columns by moving the columns between the

Available Columns panel and the Break After panel.

Chapter 22. Exporting data 241

Chart setting Options

Chart size Fit Page (default) or Customize. When set to Customize, users can

specify the width and height of the chart in pixels.

You can customize this dialog or even choose to not have the dialog appear. For

more information, see“Custom PDF report properties using <blox:pdfReport> tags”

on page 244 and “Customizing PDF Report Dialog options using the

<blox:pdfDialogInput> tag” on page 247.

Creating global default PDF report properties

Custom global default PDF report properties can defined in an optional PDF report

properties file (pdfreport.properties) placed in the following directory:

<db2alphablox_dir>/repository/theme/

Any settings in this file will be used by default in all DB2 Alphablox applications.

An example PDF report properties file (example_pdfreport.properties) is available

in the same directory. This example file uses the same properties that are

hardcoded into DB2 Alphablox. When you add a pdfreport.properties file in the

directory specified above, it will override the hardcoded values and use your new

global default settings.

To create a default PDF report properties file, make a copy of the example file,

renaming it to pdfreport.properties and modify the properties in that file to meet

your needs. The following properties can be specified in this file:

header Header, including text and layout, defined using the following macros and

an XML-based format similar to XHTML (see notes below the list).

 Available macros:

v Date: <date/>

v Time: <time/>

v Page count: <totalpages/>

v Current page: <pagenumber/>

v PDF Dialog Input: <pdfDialogInputN/> (where N is integer from 1 to 5)

By default, <pdfDialogInput1/> defines the header and

<pdfDialogInput2/> defines the footer.

 Example:

header = <table border-bottom=’1px’ width = ’100%’><tr>

<td valign = ’middle’></td>

<td align = ’center’ style=’font: bold 30px Helvetica; color: #333333;’

valign=’middle’> <pdfDialogInput1/></td>

<td align = ’right’ style = ’font: 8px Helvetica; color: black;’

valign = ’top’></td>

</tr></table>

footer Footer, including text and layout, defined using macros and an XML-based

format similar to XHTML (see notes below the list).

 Available macros:

v Date: <date/>

v Time: <time/>

242 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

v Page count: <totalpages/>

v Current page: <pagenumber/>

v PDF Dialog Input: <pdfDialogInputN/> (where N is integer from 1 to 5).

By default, <pdfDialogInput1/> defines the header and

<pdfDialogInput2/> defines the footer.

 Example:

footer = <table border-top=’1px’ width=’100%’><tr>

<td align=’left’ style=’font: 8px Helvetica; color: black;’ valign=’bottom’

width=’33%’> <date/> <time/></td>

<td align = ’center’ style = ’font: bold 10px Helvetica; color: #333333;’

valign = ’bottom’ width = ’33%’> <pdfDialogInput2/> </td>

<td valign = ’bottom’ width=’34%’>

<p style = ’font-size:10;align:right;valign:bottom;’>

<pagenumber/> of <totalpages/></p></td>

</tr></table>

headerHeight

Header height. Valid units include: pixels (px), points (pt), inches (in),

millimeters (mm), and centimeters (cm). If not specified, pixels (px) will be

used.

 Example:

headerHeight=50

footerHeight

Footer height. Valid units include: pixels (px), points (pt), inches (in),

millimeters (mm), and centimeters (cm). If not specified, pixels (px) will be

used.

 Example:

footerHeight=10

footerHeight=0.5in

margin Margin. Valid units include: pixels (px), points (pt), inches (in), millimeters

(mm), and centimeters (cm). If not specified, pixels (px) will be used.

 Example:

margin=18

size Paper size, used to define paper size (A3, A4, Letter, Legal) and orientation

(landscape, portrait). Valid attributes are: [A3 | A4 | Letter | Legal |

Custom [[Portrait | Landscape] | [width | [height]]]. Default page

size is locale-specific: In US or Canada, default is Letter, otherwise the

page size default will be A4. Default orientation is Landscape.

 Examples:

 size=Letter Portrait

 size=A4 Landscape

 size=Legal

 size=Custom 15in 100mm

 size=Custom 8in (in this case, the default height is used)

themeListEnabled

Theme list enabled. Value can be true (default) or false.

 themeListEnabled=true

Chapter 22. Exporting data 243

pdfDialogInput1

Example:pdfDialogInput1=Header Text

pdfDialogInput2

Example:pdfDialogInput2=Footer Text

repeatPageFilters

Repeat page filter on pages after the first page.

 Example: repeatPageFilters=true

theme Theme name, same as theme name used in DB2 Alphablox Repository.

 Example: theme=my_own_theme

Note: While the header and footer are specified using XHTML-like syntax, the

format is not true XHTML. There are the following limitations.

1. <center> is not supported.

2. For a non-breaking space, use the Unicode character () instead of

the HTML character ().

3. CSS shorthand attributes need to follow the W3C CSS specifications.

Using JSP tags to customize PDF reports

The DB2 Alphablox Blox Tag Library offers two custom JSP tags, <blox:pdfReport>

and <blox:pdfDialogInput>, that can be used to customize PDF properties on your

JSP pages. The <blox:pdfReport> tag can be used by developers to specify custom

PDF report properties such as footer, header, margin, and page size. The

<blox:pdfDialogInput> tag is used to specify the input field labels and text fields

to be added to the Create PDF Report dialog.

Custom PDF report properties using <blox:pdfReport> tags

The <blox:pdfReport> tag can be used by developers to specify custom PDF report

properties either at the Blox-level or the session-level (overriding the hardcoded

PDF report properties). To set PDF properties that only affect a single Blox, add a

nested <blox:pdfReport> tag to the Blox for which you want the properties to be

applied when rendering to PDF.

To specify PDF properties that will apply to all Blox on the same JSP page, placing

the <blox:pdfReport> tag outside of a Blox on a JSP page will result in the PDF

properties being applied to all PDF dialogs for Blox on that page.

The following table describes the tag attributes that can be used in defining PDF

properties with the <blox:pdfReport> tag:

Property

Description

footer Footer. Defined using XHTML tags (see note below table) and macros.

 Available macros: Date: <date/> Time: <time/> Page count: <totalpages/>

Current® page: <pagenumber/>

 Examples:

 footer="<table border-top=’1px’ width=’100%’> <tr> <td align=’left’

style=’font: 8px Helvetica; color: black;’ valign=’bottom’

width=’33%’> <date/> <time/></td> <td align=’center’

style=’font: bold 10px Helvetica; color: #333333;’ valign=’bottom’

width=’33%’> <pdfDialogInput2/> </td> <td

244 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

valign=’bottom’ width=’34%’> <p style=’font-
size:10;align:right;valign:bottom;’> <pagenumber/> of <totalpages/>

</p> </td> </tr> </table>"

footerHeight

Footer height. Valid units include: pixels (px), points (pt), inches (in),

millimeters (mm), and centimeters (cm). If not specified, pixels (px) will be

used.

 Examples:

 footerHeight="10"

 footerHeight="0.5in"

header Header. Defined using XHTML tags (see note below table) and macros.

 Available macros:

v Date: <date/>

v Time: <time/>

v Page count: <totalpages/>

v Current page number: <pagenumber/>

 Examples: header="<table border-bottom=’1px’ width = ’100%’> <tr>

<td valign = ’middle’> <img src = ’/AlphabloxServer/theme/i/
brand.gif’/> </td> <td align=’center’ style=’font: bold 30px

Helvetica; color: #333333;’ valign=’middle’>

<pdfDialogInput1/> </td> <td align=’right’ style=’font: 8px

Helvetica; color: black;’ valign=’top’> </td> </tr>

</table>"

headerHeight

Header height. Valid units include: pixels (px), points (pt), inches (in),

millimeters (mm), and centimeters (cm). If not specified, pixels (px) is used.

 Examples:

 headerHeight="10"

 headerHeight="1in"

margin Margin. Valid units are: pixels (px), points (pt), inches (in), millimeters (mm),

and centimeters (cm). If not specified, pixels (px) will be used. Value of 1in

results in pages with one-inch margins.

 Examples:

 margin="1in"

 margin="40"

pageBreak

Rule for setting the page break. The rule consists of a list of

dimension-member specifications, followed by the @ before or @ after

keyword. For example, Dim1: M1, M2; Dim2: M3, M4 @ after

 The above example specifies to add a page break after the data whenever

the members M1 or M2 of dimension Dim1, or members M3 or M4 of

dimension Dim2 change.

 Separate each dimension-member specification with a semicolon. Separate

the members from the same dimension with a comma. A page break is

Chapter 22. Exporting data 245

added when any of the specified condition is met. The keywords @ before

and @ after are case-insensitive. If the keyword is spelled incorrectly, an

exception is thrown.

size Paper size, used to define paper size (A3, A4, Letter, Legal) and orientation

(landscape or portrait). Valid attributes are: [A3 | A4 | Letter | Legal

| Custom [[Portrait | Landscape] | [width | [height]]]. Default

page size is locale-specific: In US or Canada, default is Letter, otherwise

the page size default will be A4. Default orientation is Landscape.

 Examples:

 size="Letter Portrait"

 size="A4 Landscape"

 size="Legal"

 size="Custom 15in 100mm"

 size="Custom 8in" (in this case, the default page size height is used)

theme Server HTML theme defining layout styles. Value can be any predefined or

custom DB2 Alphablox theme.

 Example:

 theme="coleman"

themeListEnabled

Theme list enabled. Value can be true (default) or false.

 Example:

 themeListEnabled="false"

Note: XHTML tag and CSS limitations:

1. <center> is not supported.

2. For a non-breaking space, use the Unicode character () instead of the

XHTML character ().

3. CSS shorthand attributes should follow CSS specification.

Examples:

<blox:pdfReport

 size="A3 portrait"

 margin="30mm" />

<blox:pdfReport

 size="Letter portrait"

 margin="0"

 theme="myTheme"

 themeListEnabled="false"/>

<%

 String header="This report has

 <totalpages> pages ";

%>

<blox:pdfReport

246 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

header="<%=header%>"

 headerHeight"50px"

 footer="<%=some_xhtml_variable%>"

 footerHeight"1in"

Customizing PDF Report Dialog options using the

<blox:pdfDialogInput> tag

The <blox:pdfDialogInput> tag is used to specify the input field labels and text

fields to be added to the Create PDF Report dialog. It can only be used as a nested

tag within a <blox:pdfReport> tag.

The following table describes the tag attributes and brief descriptions available on

the <blox:pdfDialogInput> tag:

index An integer from 1 to 5 that defines which of five fields to be defined.

 Example:

 index=″5″

displayName

The label for the text.

 Example:

 displayName=″Report Header″

defaultValue

[Optional] Default string appearing within the text field defined by the

displayName attribute.

 Example:

 defaultValue=″2004 Revenue Report″

 Examples:

<blox:pdfReport>

 <blox:pdfDialogInput index="1"

 displayName="Report Title"

 defaultValue="My Application Name" />

</blox:pdfReport>

<blox:pdfReport>

 <blox:pdfDialogInput index="1"

 displayName="Report Title"

 defaultValue="My Application Report" />

 <blox:pdfDialogInput index="2"

 displayName="Footer"

 defaultValue="My Application Report" />

</blox:pdfReport>

Creating a PDF file for multiple Blox components

On some web pages, where you are displaying multiple Blox on a page, you may

want to offer users the option of exporting all of the Blox to a single PDF file.

The following steps can be used to create a single button that users can press to

generate a single PDF file from multiple Blox on the page:

1. Add any required page directives and taglib directives at the top of the page.

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxuitld" prefix="bloxui" %>

<%@ page import="com.alphablox.blox.Blox,

 com.alphablox.blox.pdfreport.PDFReport" %>

Chapter 22. Exporting data 247

In this example, the standard Blox tag library and the Blox UI tag library are

used to define the presentation Blox and nested titles of those Blox. The page

directive gives access to the Java classes required for creating the button to be

used to generate the multiple Blox on a single PDF file.

2. [Optional] Add a title to the individual Blox using a <bloxui:title> tag nested

within the presentation Blox.

<blox:present id="myPresentBlox"> ...

 <bloxui:title title="PresentBlox View"

 style="padding:10;font-weight:bold;"

 alignment="left" />

 ...

</blox:present>

In this example, the <bloxui:title> tag creates a title appearing just above this

PresentBlox on the JSP page. And, since this tag is nested within the

PresentBlox tag, it will also appear on the PDF file. Note that any titles or other

text placed on the JSP page will not appear in the PDF file.

3. Add the button for rendering multiple Blox to a single PDF file.

<blox:container id="containerName" visible=’true’>

 <%

 String bloxNames="myGridBlox,myChartBlox,myPresentBlox";

 PDFReport.addButton(containerName,"buttonName",

 "Create PDF Report",bloxRequest,bloxNames);

 %>

</blox:container>

In this example, the bloxName string defines the list of Blox that will be

rendered to PDF, in the order in which they should appear in the PDF file.

4. With these additions to the JSP file, users will be able to generate a single PDF

file displaying all of the presentation Blox defined above.

Specifying PDF storage locations and file names

By default, PDF files generated on your application server by DB2 Alphablox are

stored only temporarily on the server. In some instances, you need to be able to

specify a permanent storage location and a unique file name, allowing users or

yourself to create HTML pages with links to those particular files or to mail links

to these stored documents.

To store the PDF report for Blox in the session to a specified location, the

PDFReport object in the com.alphablox.blox.pdfreport package has a

writePDFToFile(AbstractBlox[] bloxList, HttpServletRequest request, String

path, Printable printJob) method.

1. Add the following import statements in your JSP file:

<%@ page import="com.alphablox.blox.AbstractBlox"%>

<%@ page import="com.alphablox.blox.pdfreport.Printable"%>

<%@ page import="com.alphablox.blox.pdfreport.PDFReport"%>

<%@ page import="com.alphablox.blox.*"%>

2. Create your Blox as usual. In the following code, we create a very simple

PresentBlox.

<%@ taglib uri="bloxtld" prefix="blox"%>

<blox:data id="dataBlox" dataSourceName="Qcc-Essbase"

 useAliases="true" visible="false"

 query="!">

<html>

<body>

248 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<blox:present id="myPresentBlox"

 width="700" height="500">

 <blox:data bloxRef="dataBlox"/>

</blox:present>

3. Use the writePDFToFile() method to write the PDF report to a specified

location. The following example shows the essential code needed to save the

PDF report as the JSP page is called and the Blox is created in the session.

<%

 BloxSession bloxSession = bloxRequest.getBloxSession();

 Printable printJob = PDFReport.getPrintable(bloxSession);

 AbstractBlox[] bloxList = new AbstractBlox[1];

 bloxList[0] = myPresentBlox;

 PDFReport.writePDFToFile(bloxList, request, "c:\\temp\\sales.pdf", printJob);

%>

The PDF rendering engine does not require a browser session, and the above JSP

can be triggered in you Java code to save a PDF report directly in the specified

location. You can easily modify the example to save multiple Blox to a PDF report.

You can also specify the layout, the footer, the header, and the number of pages to

break the report using the methods in the Printable interface provided in the

com.alphablox.blox.pdfreport package.

Alternatively, you can also create two JSP session attributes, one for the PDF file

(using PDF_FILE_NAME) and one for the directory storing your PDF files (using

PDF_DIRECTORY_NAME):

<%

 session.setAttribute("PDF_DIRECTORY_NAME", "c:\\temp");

 session.setAttribute("PDF_FILE_NAME", "analysis.pdf");

%>

These attributes are optional and you can use either one or both of these session

attribute settings depending on your particular application.

Using a remote PDF processor

For performance, memory management, or to share PDF processing for multiple

DB2 Alphablox hosts, you may decide to run your PDF engine on an remote

dedicated server. For details about configuring a remote PDF server, see the Using

a Remote PDF Processor.

Exporting to XML

Data that is exported to XML format can be used by application developers to

deliver information to other applications or can be used with Java, JavaScript, and

JavaServer Pages technologies to create custom views of data. The following task

explains how a query result can be exported into an XML format.

Rendering result sets into XML format

Rendering a query result set from an application data source into XML format

involves the following steps:

1. Define an HTML page with a standard DataBlox.

Note: The DB2 Alphablox XML Cube can only access the result set of an

explicitly-defined DataBlox. It cannot access the result set of the

implicitly-defined DataBlox that underlies a PresentBlox, GridBlox, or

ChartBlox.

Chapter 22. Exporting data 249

2. Use DataBlox properties or methods to specify its data source and query string.

3. Define both the application and data source to DB2 Alphablox.

4. Invoke the application, being sure to add the render attribute to the

application’s URL:

.../AppName.jsp?render=XML

The value of XML for the render attribute triggers DB2 Alphablox to perform

the following processing:

v access the DB2 Alphablox XML Cube DTD (Document Type Definition)

v render the DataBlox result set in XML (replacing the DataBlox on the page)

v make the XML document available for further processing

Note: When using an standalone DataBlox for rendering to XML, the Blox header

tag (<blox:header/>) is not required on your application page, and may

result in the page not being displayed properly. Alternatively, instead of

using the render=xml URL attribute, you may want to use a DataBlox with

the common render property, setting its value to xml.

The next section shows the example result set from the previous page rendered

into XML.

Rendering result sets into XML Format: Sample DB2

Alphablox XML document

Below is the example result set rendered as an XML document. In some cases, line

breaks have been added for readability.

<?xml version="1.0"?>

<!DOCTYPE cube SYSTEM ’/AlphabloxServer/xml/dtd/cube.dtd’>

<cube>

 <bloxInfo>

 <bloxID>15</bloxID>

 <bloxName>MyDataBlox</bloxName>

 <appName>MyXMLDoc</appName>

 </bloxInfo>

 <data>

 <slicer>

 <slicerDimension name="Period">Period</slicerDimension>

 <slicerMember name="Period" gen="1"

 leaf="false">Period</slicerMember>

 </slicer>

 <slicer>

 <slicerDimension name="Accounts">Accounts

 </slicerDimension>

 <slicerMember name="Accounts" gen="1"

 leaf="false">Accounts

 </slicerMember>

 </slicer>

 <slicer>

 <slicerDimension name="Scenario">Scenario

 </slicerDimension>

 <slicerMember name="Scenario" gen="1"

 leaf="false">Scenario

 </slicerMember>

 </slicer>

 <axis name="columns" index="0">

 <dimensions>

 <dimension name="Market" index="0">Market</dimension>

 </dimensions>

250 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<tuple index="0">

 <member name="East" index="0" gen="2" span="1"

 spanIndex="0" leaf="false">East

 </member>

 </tuple>

 <tuple index="1">

 <member name="West" index="0" gen="2" span="1"

 spanIndex="0" leaf="false">West

 </member>

 </tuple>

 <tuple index="2">

 <member name="South" index="0" gen="2" span="1"

 spanIndex="0" leaf="false">South

 </member>

 </tuple>

 <tuple index="3">

 <member name="Market" index="0" gen="1" span="1"

 spanIndex="0" leaf="false">Market

 </member>

 </tuple>

 </axis>

 <axis name="rows" index="1">

 <dimensions>

 <dimension name="Product" index="0">Product

 </dimension>

 </dimensions>

 <tuple index="0">

 <member name="Audio" index="0" gen="2" span="1"

 spanIndex="0" leaf="false">Audio

 </member>

 </tuple>

 <tuple index="1">

 <member name="Visual" index="0" gen="2" span="1"

 spanIndex="0" leaf="false">Visual

 </member>

 </tuple>

 <tuple index="2">

 <member name="Product" index="0" gen="1" span="1"

 spanIndex="0" leaf="false">Product

 </member>

 </tuple>

 </axis>

 <cells>

 <row>

 <column>

 <cell>13438.0</cell>

 </column>

 <column>

 <cell>22488.0</cell>

 </column>

 <column>

 <cell>0.0</cell>

 </column>

 <column>

 <cell>35926.0</cell>

 </column>

 </row>

 <row>

 <column>

 <cell>33138.0</cell>

 </column>

 <column>

 <cell>40351.0</cell>

 </column>

 <column>

 <cell>24565.0</cell>

 </column>

Chapter 22. Exporting data 251

<column>

 <cell>98054.0</cell>

 </column>

 </row>

 <row>

 <column>

 <cell>46576.0</cell>

 </column>

 <column>

 <cell>62839.0</cell>

 </column>

 <column>

 <cell>24565.0</cell>

 </column>

 <column>

 <cell>133980.0</cell>

 </column>

 </row>

 </cells>

 </data>

</cube>

252 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 23. Error handling

Unfortunately, errors happen in software problems. As a developer, though, you

have some ability to manage how errors are handled. This topic includes

information on how you can use Blox exceptions, properties, and methods to

handle errors that may occur.

Exceptions

Although errors occur in software (hopefully, seldom), what matters to the end

user is what happens after the error happens. Does the program just stop working?

Or, does it recover gracefully? An exception is an event that disrupts the normal

execution of a program. The Java language allows you to catch, or try to catch,

exceptions that occur in order to handle them gracefully in a controlled manner.

For more information about exceptions in general and how to handle them, see a

good Java or JavaServer Pages reference.

Many of the Blox Java classes will throw an exception, allowing you to use the

error-handling capabilities of the Java language. The Blox exceptions that are

available can be found in the Javadoc documentation included in the following

directory on DB2 Alphablox:

<db2alphablox_dir>/system/documentation/javadoc/index.html

where <db2alphablox_dir> is the directory into which DB2 Alphablox is installed.

Custom Error Pages

When the JSP Engine attempts to compile a page but fails, an error message and

stack trace are generated and displayed to the end user. Most of these messages

mean little to the end users and tell them little to understand what happened. As a

developer, you have the option of creating custom error messages to be displayed

to your users instead of the default standard JSP error page. Two page directive

attributes, errorPage and isErrorPage, allow you to define where a JSP page

should look for the custom error page and to define particular JSP pages as custom

error pages. Brief descriptions of these attributes and the steps for using them to

create your own custom error pages are included below. For more information on

the use of the error page directives, see a basic JSP book.

errorPage Attribute

The errorPage attribute of a page directive specifies an alternate page to use as an

error page, and is defined as follows:

<%@ page errorPage="/errorPage.jsp" %>

The errorPage value specifies the relative URL where a JSP page can be found

within the same web application. In the example above, the value includes a

forward slash (“/”) in front of the specified page. The forward slash, although not

required, informs the application server that the URL that follows is relative to the

root directory of your web application. By using the forward slash in this page

directive, you can place a custom error page in one location in your application

directory and use this same page directive in all of the application’s JSP files, even

if they are located within subdirectories.

© Copyright IBM Corp. 1996, 2006 253

isErrorPage Attribute

A custom error page must include a page directive with an isErrorPage attribute

set to true. The page directive, with its boolean isErrorPage value set to true,

appears as follows:

<%@ page isErrorPage="true" %>

This directive gives the page access to information from the exception implicit

object, and allows you to control the display of information the user sees.

Creating simple custom error pages

The following steps will guide you through the process of creating a custom error

page:

1. Create a basic JSP file that will be used as your custom error page and save it

as errorPage.jsp.

2. Add a page directive, with an isErrorPage attribute set to true, at the top of

the page. For example:

<%@ page isErrorPage="true" %>

<html>

...

</html>

3. Create the layout for the body of the error page, displaying what you want

your end users to see if an error occurs.

For example, you might want to display an error page heading and include the

URL of the page that the error occurred on. Also, you may decide to display

the top-level error message and not display the stack trace of the exception,

since your users would not be likely to know how to interpret it.

Here is a simple example:

<%@ page isErrorPage="true" %>

<html>

<head>

 <title>Error Page</title>

</head>

<body>

<h2>Your application has generated an error</h2>

<h3>Please notify your help desk.</h3>

Exception:

<%= exception.toString() %>

</body>

</html>

4. To test your custom error page, add the following page directive, with the

errorPage attribute value pointing to the location of your custom page:

<%@ page errorPage="errorPage.jsp" %>

In this example, the custom error page resides within the same directory as the

test JSP page.

5. Test your error page by generating an error.

One way to generate an error is to include the following scriptlet, which will

cause a “divide by zero” runtime error:

<%

 int i = 10;

 i = i / 0;

%>

Example: This custom error page example is included in the Error Handling

section of the Blox Sampler example set.

254 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Note: The various examples and the Basic Template in the Application Studio all

include an error page that you can examine and copy for your own use.

Blox properties and error handling methods

The following Blox properties and methods are available to be used in customizing

your applications to handle error conditions. For details on these properties and

methods, see the Developer’s Reference.

noDataMessage

The noDataMessage property, which defines a string that is displayed in Blox when

no data is available, is one way to notify users of possible application errors. This

common Blox property, applicable to the ChartBlox, GridBlox, and PresentBlox, is

displayed when one of these Blox has been instantiated, but the data is not

available, either because it has not yet been received or because an error has

occurred. The default message is “No data available” and appears prominently in

grids and charts.

If the default “No data available” message is displayed in a grid or chart for more

than a few seconds, users may perceive this as an error message indicating that no

data will become available. Most of the time this is a reasonable assumption, and

the message should not be modified.

Sometimes data retrieval can take longer than anticipated. This could be caused by

a complex query, a large data set returned, or a slow connection. In instances like

these, some developers modify the noDataMessage string to “Please wait” or some

other alternate message. Even though this is a reasonable use of this property, you

should be aware that changing the displayed message can sometimes cause

confusion to end users when data is actually not available. When data is actually

not available, the message may still show “Please wait.” If you consider changing

this message, the benefit of having an initial message that more often than not is

accurate may outweigh the small risk that a user will actually be told to wait when

there is a real data availability issue.

Another alternative is to use the associated setNoDataMessage method

programmatically to return a different message depending on the events that occur.

While more complicated to create than just using the noDataMessage attribute, you

may want to explore this option.

onErrorClearResultset

The DataBlox onErrorClearResultSet boolean property specifies whether the

existing result set should be cleared from a DataBlox if a subsequent database

operation fails. For more information on this property and its associated methods,

see the DataBlox section of the Developer’s Reference.

Chapter 23. Error handling 255

256 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 24. Adding user help

This section discusses some of the issues involved in supplying user help in

applications created with DB2 Alphablox.

In an ideal world, applications are intuitive and users don’t need any help figuring

out how to use them. Unfortunately, this is rare, and the more complex the

application, the more likely it is that you will need to offer user help.

It is a common oversight in the design and development of applications to forget

to consider adding help to your applications. If the users of your application will

be frequent, skilled users, and receive training, adding help throughout an

application may not be critical, but can be useful. If your users will be untrained or

casual (infrequent) users, however, offering user help can be and important

determinant in your application’s success. Your design group should consider user

help and, if necessary, schedule time and resources for help development into your

application development cycle.

The following sections discuss the availability and behavior of user help in DB2

Alphablox applications and the implications of your design decisions.

Using existing DB2 Alphablox user help

When your applications include a GridBlox, ChartBlox, or PresentBlox, a toolbar

can be made available for users. Depending on which Blox is being used, the Help

button on the toolbar opens up the DB2 Alphablox user help system with a help

page about that particular Blox. For example, clicking the Help button on the

PresentBlox toolbar opens up a page titled, “Using PresentBlox,” which describes

PresentBlox and has additional links for further help.

Alternatively, if a toolbar is not available, selecting Help from the Help menu in

the menu bar brings up a help page for the user interface Blox, depending on if it

is a PresentBlox or a standalone GridBlox or ChartBlox. For example, on a

standalone GridBlox, selecting the Help menu option brings up a help page, titled

“Using the Grid.”

Frequently, you may decide not to include a toolbar on analytic views in your

applications. In these cases, you should make sure the menu bar is available. By

default, the menu bar is available in these user interface Blox. If for any reason you

need to turn off both the menu bar and the toolbar, you may want to consider

offering custom user help.

Creating custom user help

If you decide not to make the toolbar available on your analytic views, or you

decide you want to provide target custom user help for your users, you can add

appropriate help links or buttons. In particular, you may want to consider offering

custom user help in the following situations:

v neither the toolbar or the menu bar will be unavailable

v the toolbar or menu bar are customized with custom buttons and menu options

© Copyright IBM Corp. 1996, 2006 257

v your pages make use of custom HTML form elements instead of built-in Blox

user interface elements (such as page filters and toolbar buttons) to manage the

interaction and analysis of Blox views

v your views include members or other labels that would benefit from a glossary

or other help information

If the toolbar and menu bar are customized, you may need to customize the

existing user help as well. The help files are located in the documentation

directory:

<db2alphablox_dir>/system/documentation/help/dhtml/<locale>

Before modifying the files, you should first make a copy of the directory. Also keep

in mind that files in this directory will be removed and replaced with DB2

Alphablox user help files when you upgrade the server.

If you turn off the toolbar and the menu bar entirely, besides using standard

HTML technology to provide custom user help, you may also want to consider

using DB2 Alphablox information links, discussed in the next section, as a way to

provide targeted and visible help information.

Using information links for help

As discussed in “Information links” on page 179, there are three types of

information links available on Blox: header links, cell links, and cell alert links.

These links (by default, represented with a white “i” within a blue circle) can be

used for many purposes, including linking to information relevant to the row or

column headers, or on specified data cells. Keep in mind that these links can also

be used for targeted user help, perhaps defining what a particular member

represents, or how a particular data cell should be evaluated. One of the benefits of

information links is that they are highly visible and hard to ignore. Of course, that

can also be a reason to not include them, or at least to use them judiciously.

258 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 25. Working with DB2 Alphablox FastForward

The DB2 Alphablox FastForward application framework allows application

administrators (OLAP administrators) to copy the framework, configure report

templates, and quickly deploy analytic applications to line of business users. This

section includes an overview of the FastForward framework and new report

templates can be added to customize the application framework.

Note: DB2 Alphablox FastForward is not available when DB2 Alphablox is

installed to run on a WebSphere Portal server.

DB2 Alphablox FastForward overview

DB2 Alphablox FastForward is a sample application framework, preinstalled on

DB2 Alphablox, for quickly developing, deploying, and sharing custom analytic

views throughout business organizations. Out-of-the-box, the FastForward

framework delivers common application services, including security, collaboration,

customization, and personalization. Application administrators, typically OLAP

administrators, can create new versions of an FastForward application, publish

reports by selecting report templates and configuring report parameters, and then

deploy the new application without ever looking at code. And, because of its

flexibility and extensibility, JSP developers can modify or extend the application

framework, and add new custom report templates for application administrators to

configure and deploy.

Built into the FastForward application framework are features commonly found in

reporting and analytic applications, including:

v exporting to Microsoft Excel

v generation of printable views

v easy saving and sharing of personal views of data

v e-mailing views to others

v easy navigation between different views

By including these features, DB2 Alphablox makes it easy for you to expedite the

development of this class of commonly-used reporting and analytic applications.

You don’t need to create navigation systems, toolbars, security, and mechanisms

for the saving and sharing of reports as these have already been pre-coded for you.

By separating out the development and configuration tasks, application

administrators can focus on configuring and deploying existing report templates,

letting you focus your attention on the more challenging requirements.

Roles of FastForward users

The three major roles of DB2 Alphablox FastForward users include those of

application administrators, template developers, and end users. A good synergy

between these three groups will help ensure the success of FastForward-based

applications. More about these three roles are briefly described below.

Application administrators

Application administrators, typically OLAP administrators, should be able to create

new versions of FastForward applications by defining a few settings, create reports

© Copyright IBM Corp. 1996, 2006 259

based on the available report templates, then quickly deploy solutions to end

users. If end user requirements cannot be met using an existing report template,

the application administrator works together with template developers to create

new report templates. An application administrator should be able to accomplish

their work using their OLAP database experience, the documentation on

administering Alphablox FastForward applications (see the Administrator’s Guide),

and the online Administration Help (available in the Admin Tasks mode of a

FastForward application).

Template developers

Template developers are typically JSP developers primarily responsible for creating

custom report templates when existing ones cannot be used by an application

administrator to configure requested reports. In consultation with application

administrators and end users, template developers should be able to create new

report templates by modifying existing report templates or creating new ones as

necessary.

Using the Blox tag libraries, server-side Java API, and DHTML Client API, as well

as your web programming experience, template developers should be able to

create templates for almost every conceivable need. Besides being familiar with

building DB2 Alphablox applications and views, developers should also be familiar

with the FastForward User Help (available from the Help button in user mode),

the Administrator Help (available from the Help button in Admin Tasks mode,

when logged in as an administrator), and Administering FastForward Applications

in the Administrator’s Guide.

End users

End users, typically business analysts and other line of business users in your

organization, should be able to log into a FastForward application and use

published reports to analyze business issues. Depending on the interactivity

available in a particular FastForward-based application, end users can manipulate

data, drill around data hierarchies, change chart types, add comments, and more.

After modifying views to answer particular business questions, users can preserve

their current views, creating saved reports under the Private tab for later use or by

sharing them under the Groups tab to defined groups of application users.

For each report, users typically have a few other options available from the

application toolbar, located above the reports. Besides saving reports for online

analysis, the export to Excel option allows users to export views to Microsoft Excel

spreadsheets for offline analysis at a later time. Users can also print a copy of a

particular view using the Print Preview option. And, if desired, they can open an

email message containing a link to the current view, add comments, and send it to

other application users.

If necessary reports are not available in their applications, end users typically

request new reports directly from application administrators.

Customizing Alphablox FastForward

Although DB2 Alphablox FastForward includes sample report templates that can

be used out-of-the-box to start creating applications immediately, most likely your

reporting and analytic applications will require you to create custom report

templates for application administrators. To help you get started in working with

DB2 Alphablox FastForward applications, this section includes overviews of the

FastForward architecture and report templates. You’ll then learn how to create new

report templates.

260 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

FastForward application architecture

A FastForward application consists of two major components, the framework and

the report templates used within that framework. The FastForward framework

includes JSP pages, JavaBeans components, and many other files that define an

application framework, including common application services such as application

configuration, navigation, and security.

The sample DB2 Alphablox FastForward application is located in the following

directory:

<alphabloxDirectory>/system/ApplicationStudio/FastForward/

Important: Do not delete or modify this directory - it contains the files used in the

sample application. When upgrading DB2 Alphablox, this directory

will be overwritten.

When logged in as a DB2 Alphablox administrator (with an

AlphabloxAdministrator or other defined administrator role), you can create new

FastForward applications by clicking on the Admin Tasks button, then create a new

version of the sample application by clicking on Create in the dialog box. When

you click on the Create option, a dialog window will prompt you to define your

new application’s context name (directory name), display name (which appears on

the Applications page), a brief application description, and the Administrator role

allowed to edit the application.

Note: When a new FastForward application is created, an administrator role is

assigned. Only users who are members of that assigned role (default is

AlphabloxAdministrator) can administer that particular application.

After clicking OK, a new J2EE application is automatically created and a copy of

the FastForward application framework and sample report templates are copied to

that application’s directory, typically located here:

<alphabloxDirectory>/webapps/<applicationDirectory>

Note: For details about configuring FastForward applications, see Administering

Alphablox FastForward Applications in the Administrator’s Guide.

When you create a copy of a FastForward application, the following directories

and files are added to the web application you created. Following is a summary of

the directory structure and files that included in the FastForward framework

Directory

Description

admin Includes most of the files used when a FastForward application is used in

Admin mode, including the admin help directory.

admin/help

Help files specific to application administration

admin/images

Contains images used in Admin mode.

help Contains user help files. Can be customized by application developers as

needed.

images Contains image files used in User mode.

Chapter 25. Working with DB2 Alphablox FastForward 261

templates

Includes the collection of report templates available to the application.

Subcomponents of this directory are described below in the Report

Templates section.

WEB-INF

The standard J2EE application directory that contains files required to run

the application.

WEB-INF/classes

Includes compiled Java class files for the JavaBeans components used in

the application.

WEB-INF/src

Source files for the JavaBeans components, allowing you to customize or

extend as needed.

WEB-INF/lib (V8.4.1)

A JAR file containing all the Blox tag library descriptor files.

WEB-INF/tlds (V8.4 and earlier versions)

Copies of the Blox tag library descriptor files.

WEB-INF/ui

Includes XML files used to define the look-and-feel of the application,

including buttons.xml, toolbar.xml, and toolbarhelp.xml. These files can

be edited to add or remove buttons, change button images, and tooltip

descriptions as needed. The remaining XML files should not be changed by

application developers.

 For most applications, you will be primarily interested in the templates directory,

where the report templates are stored. The next section describes report templates

and the templates directory in more detail.

Report templates

Report templates are the heart of a FastForward application, supplying the

application administrator with the edit pages used to quickly configure reports for

end users. A report template consists minimally of four files: the edit page, the

template parameters file, the report page, and the help page. The edit page is the

page used by application administrators to create a new report by selecting from

selection lists, radio buttons, and checkboxes representing to define report and data

options. The options, or parameters, available in the edit page are defined in the

template parameters file. What the end user sees is determined by the layout of

the report page. A help page, tied to a particular report, is also included.

Optionally, print and Excel pages may be included in report templates. New report

templates can be created by template developers, adding to the collection of report

templates available and reducing the need for custom report development of

frequently used classes of reports. And, as a result, end users can access, modify,

and save copies of reports for later reuse and sharing.

For each FastForward application, the collection of report templates available to

that application are located in the following directory:

<applicationDirectory>/templates/

Inside of the templates directory are a collection of report template subdirectories,

each of which makes up a self-contained report template. When a new version of a

FastForward application is created, sample report templates are copied and

included in this directory. New report templates can also be added, on-the-fly, by

262 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

simply dropping the template into the directory containing the set of available

report templates. Besides the sample report templates included with DB2

Alphablox, others will be downloadable from Alphablox, shared among template

developers in your organization, or created by third-party developers. When a new

report template is added to the templates directory, it becomes immediately

available to application administrators in their list of available report templates.

Also, zipped copies of report templates dropped into the templates directory are

automatically uncompressed and made available in the menu. You can continue to

add new report templates as needed, making them quickly available to application

administrators without having to stop and start the server.

Inside of each report template directory are at least the following three required

files, summarized here:

File Name

Description

edit.jsp

The edit page, viewed and configured by administrators to create new

reports or to edit existing reports.

template.xml

The template parameters file that includes a list of all of the parameters

(properties) that can be set by the application administrator.

report.jsp

The report page, which when combined with the values defined by

administrators, generates the report that users can view and manipulate.

 The following template files are optional:

File Name

Description

help.jsp

The help page provides useful information to users about this particular

report. The sample templates include a help page prototype.

excel.jsp

The Excel page providing customization of the HTML page sent to

Microsoft Excel.

print.jsp

The print page provides customization of the HTML page that is made

available for printing.

 The complexity of a report template is determined by what users expect to see

(displayed in the report.jsp file), by the number and types of parameters

(specified in the template.xml file), and the user interface for configuring those

parameters (generated using the edit.jsp). With simple report templates, a limited

number of parameter settings may be possible, with many of the setting

predefined. More flexible templates offer more configuration options, but also

require a larger number of parameters to be made available.

Following the description of the sample report templates that ship with DB2

Alphablox, the section, “Creating custom report templates” on page 264, will cover

more details about these three files in the context of describing the steps to create

new report templates.

Chapter 25. Working with DB2 Alphablox FastForward 263

Sample report templates

The sample report templates that ship with DB2 Alphablox include a variety of

commonly used report types, typically encountered in most businesses. Although

some of these samples may be useful as they exist, these templates can also be

used to help you learn how to develop your own custom report templates.

The sample templates included with DB2 Alphablox target different types of

reporting needs and are summarized here:

 Sample Template Directory Name Description

Interactive Present Blox InteractiveBlox Sample reports: Interactive Analysis

Sample Allocation SampleAllocation Sample reports: Sales by Store

(Sales Analysis)

Sample Report SampleReport Sample reports: Sample Report

(Sales Analysis)

Sample Trending SampleTrending Sample reports: Sales Trend by

Region (Sales Analysis)

Sales Variance SampleVariance Sample reports: Sales Variance

(Variance Analysis)

Interactive Variance VarianceQCC Sample reports: Ad-Hoc Variance

Analysis (Variance Analysis)

Sample Report Blox SampleReportBlox Sample Report Blox template

The sample templates will not address all of your particular user needs, but are

useful for giving a jump start in learning about the power and flexibility of report

templates as well as serving as great examples for learning how to code solutions

for particular problems. While it is possible for you to deploy a copy of the sample

Alphablox FastForward application with little modification, the power of the

application framework and report templates is realized as you begin adding

custom report templates tailored to your unique user needs. The next section

explains how to create a simple report template.

Creating custom report templates

To help you get started in developing your own report templates, this section

walks you through the most important steps you need to know to begin creating

custom report templates. As described earlier, each report template contains three

important files, the report page (report.jsp), the template parameters file

(template.xml), and the edit page (edit.jsp). The following steps describe how to

create each of these required files for a simple allocation report template.

Creating or modifying the report page (report.jsp)

The report page (report.jsp) generates the view that FastForward application

users will see, after the report has been configured by an application administrator.

This page typically includes the following information: report title, data views, and

264 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

user controls. Report pages range from static viewing pages to guided analysis

reports and at the high-end may include many user controls.

To create a report page, start by creating a representative JSP page that includes the

functionality that your end users will be using.

In this example, the report loads with a title and basic pie chart view showing

percentages of subcategories of specified product grouping.

To create a report template that can be used to generate this view, you need to

create parameters that will be read in to generate the report. These parameters,

which will be defined later in the template parameters file (template.xml), include

the properties that an application administrator will be able to set when using the

edit page (edit.jsp) to configure an application. You’ll learn how to create the edit

page after we’ve finished creating the report page and template parameters file.

Taking the report prototype file, we add the following line to the top of your file:

<%@ include file="../../reportdata.jsp" %>

This JSP include directive results in the contents of the reportdata.jsp, located in

the template’s root directory, being added to the report page when it is compiled.

The reportdata.jsp file imports necessary class files, adds taglib directives for

bloxtld and bloxformtld, and makes the following objects available for use inside

the report.jsp:

Object Purpose

report Provides access to report parameters (or properties)

user Provides access to user parameters

appContext

Provides access to application parameters

template

Provides access to the template and its parameters

savedState

Provides access to the saved private and group reports

These objects implement the following methods:

 Method

String getParameter(String name) - Returns the parameter value of the named parameter

or null. Returns null if the named parameter is not defined.

String getParameter(String name, String default) - Returns the parameter value of the

named parameter or the defaultValue argument. Returns the given defaultValue if the

named parameter is not defined.

String[] getParameterValues(String name) - Returns the parameter values defined for

the named parameter. Returns an empty array if no parameter values are defined.

String[] getParameterNames() - Returns an array containing all of the named parameters

defined for this object.

Chapter 25. Working with DB2 Alphablox FastForward 265

To parameterize your report prototype, you now need to define a JSP scriptlet at

the top of the report page specifying the parameters you want to use. You need to

specify the pie slice parent member and the measure to be used, then generate a

query string that reads in these two parameters, like this for a DB2 OLAP Server

or Essbase data source:

<%

 String pieSliceParent =

 report.getParameter("pieSliceParent","Specialties");

 String measure = user.getParameter("preferredMeasure", "Sales");

 String query = "<SYM <COLUMN (\"Measures\") \""+measure+"\"

 <ROW (\"All Products\") <CHILD \""+pieSliceParent+"\" !";

%>

If you are using Microsoft Analysis Services, the third line, specifying the query

string, would look like this:

String query = "SELECT DISTINCT({[Measures].["+measure+"]}) ON COLUMNS,

{"+pieSliceParent+".children} ON ROWS FROM [qcc]";

Note that the getParameter method used in this example allows you to set default

values for both properties using an optional second argument, following the

parameter name.

Next, substitute a JSP expression in each place on the page that you want to have a

parameter value appear. In the DataBlox tag, you need to read in a user’s query

using <%= query %>:

<blox:data id="dataBlox"

 dataSourceName="QCC-Essbase"

 useAliases="true"

 query="<%= query %>"/>

You also need to add two more JSP expressions, <%= measure %> and <%=

pieSliceParent %>, to substitute the measure and pieSliceParent values into the

report title, like this:

<h3>Comparing <%=measure%> for subcategories of <%= pieSliceParent %> </h3>

The result will be a title that is appropriate for the pie chart displayed.

After you’ve added the JSP include directive at the top of the page and the JSP

expressions that will read in the saved values, the complete report.jsp file should

look similar to this:

<%@ include file="../../reportdata.jsp" %>

<%@ taglib uri="bloxlogictld" prefix="bloxlogic"%>

<%@ taglib uri="bloxuitld" prefix="bloxui"%>

<%

 String pieSliceParent =

 report.getParameter("pieSliceParent","Specialties");

 String measure = user.getParameter("preferredMeasure", "Sales");

 String query = "<SYM <COLUMN (\"Measures\") \""+measure+"\"

 <ROW (\"All Products\") <CHILD \""+pieSliceParent+"\" !";

%>

<blox:header/>

<body>

<blox:data id="dataBlox"

 dataSourceName="QCC-Essbase"

 useAliases="true"

 query="<%=query%>"/>

266 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

<h3>Comparing <%=measure%> for product code subcategories:

 <%=pieSliceParent%></h3>

<blox:chart id="chartBlox"

 bloxName="chart"

 height="100%"

 width="100%"

 chartType="Pie"

 totalsFilter="0" >

 <blox:data bloxRef="dataBlox" />

</blox:chart>

</body>

Creating or modifying the template parameters file

(template.xml)

Next, you need to define the parameters, or properties, that a FastForward

application administrator will be configuring. To do this, you need to create or

modify an example template.xml file, including only the parameters required for

the report template. This should be a relatively quick process.

At the top of the template.xml file is the required DTD specification for this XML

file:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE template PUBLIC "-//Sun Microsystems, Inc.//DTD

 Web Application 2.2//EN" "../template.dtd">

Following this specification, the template element is included, incorporating the

parameters for this particular template. The following table lists the available

nested elements of the template element:

Element

Description

display-name

Contains the name to be displayed in the selection list of report template

choices in the edit page. An optional lang attribute can be added defined

using the standard language codes and country subcodes (for example,

pt_BR or fr).

description

[Optional] Brief report description that will appear in the edit page. An

optional lang attribute can be added defined using the standard language

codes and country subcodes (for example, pt_BR or fr).

report-page

Specifies the report page that will be used to generate the report

edit-page

Specifies the file name for the edit page that creates the view used by

application administrators to define the report

report-params

[Optional] Defines the collection of report parameters that can be set by the

administrator. Each param element is nested within this element.

param [Optional] Specifies that the contents of this element define a parameter.

param-name

[Optional] Nested within the param element, this tag specifies the name of

the parameter used in coding templates.

Chapter 25. Working with DB2 Alphablox FastForward 267

param-label

[Optional] Nested within the param element, this tag specifies the display

name for a parameter, and is seen by application administrators in the edit

page of a report template. An optional lang attribute can be added defined

using the standard language codes and country subcodes (for example,

en-GB or fr).

default-value

[Optional] Default value for the parameter. When a report doesn’t supply a

value, this value will be used.

print-page

[Optional] Specifies the print page used in a report

excel-page

[Optional] Specifies the export to Excel page used in a report

help-page

[Optional] Specifies the help page used in a report

Note: The template parameters must be defined in the order should appear in the

edit page. Also, the edit page and report page file names can be anything

reasonable. The file names used in the example below follow the practice

used in the sample report templates included with FastForward, and make a

reasonable naming practice you may want to continue following.

In this example, you need to modify the display-name, description, and

report-params elements. The report-page and edit-page elements define the

actual file names for those pages.

Following with this example, here is the contents of the entire template.xml file,

with the defined parameters:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE template PUBLIC "-//Sun Microsystems, Inc.//DTD

 Web Application 2.2//EN" "../template.dtd">

<template>

 <display-name>Allocation (Essbase Version)</display-name>

 <description>First Allocation Template (Essbase Version)

 </description>

 <report-page>report.jsp</report-page>

 <edit-page>edit.jsp</edit-page>

 <report-params>

 <param>

 <param-name>pieSliceParent</param-name>

 <param-label>Parent Member of Pie Slices:</param-label>

 </param>

 </report-params>

</template>

Note that the report-params element defines the collection of report parameters

that will be used in this template. The nested param element above,

pieSliceParent, defines the parameter for specifying the parent member of the pie

slices to be displayed. After the report page and the template parameters file have

been created, your final task is to create the edit page, which displays the

selectable options for application administrators to configure.

268 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Creating or modifying the edit page (edit.jsp)

The edit page is the page that application administrators use to define the report

parameters, or properties, that typically appear in selection lists, radio buttons, and

checkboxes. The edit pages in the sample report templates included in the sample

FastForward application are more complex than the edit page required for this

example, but the same essential steps are involved.

Let’s begin creating the edit page. At the top of the edit.jsp file, add a JSP page

directive that specifies any of the required classes that need to be imported:

<%@ page import="com.alphablox.blox.form.FormEventListener,

 com.alphablox.blox.DataBlox,

 com.alphablox.blox.form.TimePeriodSelectFormBlox,

 com.alphablox.blox.logic.timeschema.TimeSchemaBlox,

 com.alphablox.blox.form.FormEvent,

 com.alphablox.blox.ServerBloxException,

 fastforward.*,

 com.alphablox.blox.form.MemberSelectFormBlox,

 com.alphablox.blox.data.mdb.Member" %>

Next, add JSP taglib directives to access Blox tag libraries used on the page:

<%@ taglib uri="bloxtld" prefix="blox" %>

<%@ taglib uri="bloxformtld" prefix="bloxform" %>

<%@ taglib uri="bloxlogictld" prefix="bloxlogic" %>

And, required on all JSP pages that access the Blox tags is the <blox:header> tag:

<blox:header />

Next, specify the DataBlox that the edit page will use to generate the selection list

options. The following <blox:data> tag defines a DataBlox which is preconfigured

to use the QCC-Essbase data source (which should already be specified in the DB2

Alphablox applications definition page):

<blox:data id="dataBlox"

 useAliases="true"

 dataSourceName="QCC-Essbase" />

Additionally, specify any tag attributes you might need. In this example, the

useAliases tag attribute value of true tells the server that you want to see the

display member names, not the unique member names, from the defined DB2

OLAP Server or Hyperion Essbase data source. If you are using Microsoft Analysis

Services, the data source name for this example would be QCC-MSAS, and you

wouldn’t add the useAliases tag attribute since it applies only to DB2 OLAP

Server and Essbase data sources.

Next, specify the MemberSelectFormBlox with an id of pieSliceParent to generate

the selection list with the pie slice parent options returned from the data source:

<formblox:memberSelect id="pieSliceParent"

 visible="false"

 dataBloxRef="dataBlox"

 dimensionName="All Products"/>

Note: A couple of important points about using FormBlox here:

v FormBlox defined in the edit.jsp page must have id attribute names identically

matching parameter names used in the template.xml file. In the example here,

note that the MemberSelectFormBlox id is pieSliceParent, matching the

pieSliceParent parameter defined in the template.xml file.

Chapter 25. Working with DB2 Alphablox FastForward 269

v Remember to set the visible tag attribute to false in order to prevent the Blox

from rendering before any processing logic is done. After the processing logic is

finished, in this example, the renderControls method of the TemplateHelper

class below will render the Blox on the page. If you forget to add this visible

attribute (visible=”false"), or if you accidentally set it to true, you will

unexpectedly see duplicate Blox on a page.

Now you are finished defining the selection list that will appear in the edit page

and can build the page.

The following JSP scriptlet generates the page to be displayed, applying previously

saved parameter values and rendering the page controls (previously set to not be

visible). It also establishes a validator that will be used to ensure that

administrators enter the expected information. The validation step is optional, but

enhances the robustness of your application, helping to ensure that users enter

expected values:

<%

 TemplateHelper.applySavedParameters(pageContext);

 TemplateHelper.renderControls(pageContext);

 Template template=(Template)request.getAttribute("template");

 template.setValidator(new Validator());

%>

Next, the Validator is defined, which implements ReportValidator. Implementing

ReportValidator requires the class to define one function, validate(ReportData

data), which does the critical work. The validator gives access to the defined

parameters the same way the report gets access to the parameters -- by calling

getParameterValue() on the data object for any parameters that need to be

checked.

In this example, a check verifies that administrators do not select a pieSliceParent

that is a leaf member (i.e., it has no children). Also, an appropriate error message is

added, appearing if a user attempts to use a disallowed value.

<%!

 public class Validator implements ReportValidator {

 public void validate(ReportData data) throws ServerBloxException {

 String pieSliceParent=data.getParameterValue("pieSliceParent");

 if (pieSliceParent == null){

 data.addError("Please select a member from the products.");

 return;

 }

// There is a FormBlox associated with pieSliceParent

// Use this FormBlox to get the selected member object and validate it

 MemberSelectFormBlox select =

 (MemberSelectFormBlox)data.getFormBlox("pieSliceParent");

 Member members[] = select.getSelectedMembers();

// there is only one selected member -- it cannot be a leaf

 if (members[0].isLeaf() == true) {

 data.addError("The selected member must have some children");

 }

 }

 }

%>

The edit page is now complete. Here is a complete copy of the entire edit.jsp file

for reference:

<%@ page import="com.alphablox.blox.form.FormEventListener,

 com.alphablox.blox.DataBlox,

 com.alphablox.blox.form.TimePeriodSelectFormBlox,

 com.alphablox.blox.logic.timeschema.TimeSchemaBlox,

270 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

com.alphablox.blox.form.FormEvent,

 com.alphablox.blox.ServerBloxException, fastforward.*,

 com.alphablox.blox.form.MemberSelectFormBlox,

 com.alphablox.blox.data.mdb.Member"%>

<%@ taglib uri="bloxtld" prefix="blox"%>

<%@ taglib uri="bloxformtld" prefix="formblox"%>

<%@ taglib uri="bloxlogictld" prefix="bloxlogic"%>

<blox:header />

<blox:data id="dataBlox"

 useAliases="true"

 dataSourceName="QCC-Essbase" />

<formblox:memberSelect id="pieSliceParent"

 visible="false"

 dataBloxRef="dataBlox"

 dimensionName="All Products" />

<%

 TemplateHelper.applySavedParameters(pageContext);

 TemplateHelper.renderControls(pageContext);

 Template template=(Template)request.getAttribute("template");

 template.setValidator(new Validator());

%>

<%!

 public class Validator implements ReportValidator {

 public void validate(ReportData data) throws ServerBloxException {

 String pieSliceParent=data.getParameterValue("pieSliceParent");

 if (pieSliceParent == null){

 data.addError("Please select a member from the products.");

 return;

 }

 // There is a FormBlox associated with pieSliceParent

 // You can use this FormBlox to get the selected member

 // object and validate it,

 MemberSelectFormBlox select =

 (MemberSelectFormBlox)data.getFormBlox("pieSliceParent");

 Member members[] = select.getSelectedMembers();

 // there is only one selected member -- it should not be a leaf

 if (members[0].isLeaf() == true) {

 data.addError("The selected member must have some children");

 }

 }

 }

%>

The edit page was the final page that you needed to create to have a working

template. After you’ve finished this simple template, you can use the edit pages in

the sample report templates to help you when you begin building more complex

templates. Before moving on to more ambitious report templates, though, you

should test the report template you just created.

Creating optional template pages

As described earlier, a template can include a help page, a print page, and an Excel

page. These can be customized to meet your specific application requirements.

For each report template created, it is recommended that you include a help page

tied to the usage of the report made available to users. The sample report

Chapter 25. Working with DB2 Alphablox FastForward 271

templates include a link, called “Report Help,” pointing to an example report help

page. The file name of the help page is specified in the help-page parameter of the

template.xml file.

In a FastForward application, the Print Preview button located on the application

toolbar results in the current report being rendered with the render URL attribute

set to printer. For details about the Printer format, see “Printer format

(render=printer)” on page 155. Other details about creating custom print pages can

be found in “Printing with HTML-based printing” on page 157.

Also on the applications toolbar is the Export to Excel option for FastForward

reports. This option generates results in the current report being rendered with the

render URL attribute set to xls. For details about the Excel format, see “Export To

Excel format (render=xls)” on page 155.

Localizing FastForward applications

DB2 Alphablox support localization globally at the server level. As a result, Blox

are localized according to the locale of the server and not based on incoming user

requests. All strings in JSP files or in Java classes are extracted from a message

bundle file, FastForwardBundle_<lang>.properties, where <lang> language code,

including any country subcodes (for example, en-GB or fr). All JSP example files

included with FastForward applications use the standard internationalization (i18n)

tag library, available from the Apache project. As described earlier in the Template

Parameters File section, an optional lang attribute can be applied to the

display-name, description, and param-label elements. Multiple instances of these

elements can be used to support multiple languages.

Testing report templates

Assuming you’ve correctly created the report page (report.jsp), parameters

definition page (template.xml), and the edit page (edit.jsp), you now have a

simple report template that can be used in your FastForward application’s

administration pages. To test the template, place this entire template in the

templates directory of a FastForward test application. Next, open your application

in Microsoft Internet Explorer, then click on the Admin Tasks button. Go ahead

and create a new report, select your new template from the list of available report

templates, and see how it works. You can preview the report while on edit page by

clicking the Preview button, or click Return to Application to test it as an end user.

Saving report templates

To use a report template, all of the template files you have created (including

report.jsp, template.xml, and edit.jsp) should be stored in a subdirectory of the

application’s template directory. The name of the template displayed in the edit

page is read from the display-name element defined in the template.xml file.

Sharing report templates

Now that you have a working template, keep in mind that you may want to share

your handiwork with other template developers. An exchange of templates can be

useful for meeting the needs of other application users, or may become good

learning examples for others. Remember that if you zip up your template directory

and pass it on to others, they can just drop the zip file in their FastForward

application’s template directory and begin allowing the application administrator

272 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

to begin using it immediately. New report templates will appear after a new

browser session opens the FastForward application.

Saving state using the savedState Object

When a reports are created by an administrator and made available to users, they

become ″published″ reports, which are simply JSP pages with defined parameters.

When a report is saved by a user for either private or group access, FastForward

attempts to save the report so that it can be restored later with the user’s current

changes. Here is a summary of how this works:

1. When the user clicks the Save Report button, FastForward stores the following

information:

a. the name of the template and report template that the new saved report is

based on

b. the parameters associated with that report

c. the FormValues property of every FormBlox on the page

d. a bookmark for every bookmarkable Blox (GridBlox, ChartBlox, PresentBlox,

and DataBlox) on the page
2. When the saved report is reloaded again later by the user, the report becomes

reconstituted in essentially the same order:

a. the page is loaded and compiled based on the saved parameters

b. call setFormValues() with the saved FormValues property

c. call the restoreBookmark() method on each Blox with a saved bookmark

This is usually acceptable for most situations. Sometimes, though, you may want

to deviate from this standard restore procedure. For example, you may want to

change the data shown in the report so that it is based on the current calendar

day/quarter/month or, in the case of group access reports, you may want to load

a personalized report, with certain values being set based on which user loads a

report.

In order to make this easier, FastForward provides the savedState object, which is

available from the JSP page whenever the report has been restored from private or

group access. If a report has been “published,” the savedState object is unavailable

and all references to it will return null.

The savedState object provides the following capabilities:

v the ability to turn off the default restore behavior

v the ability to get any FormBlox or other standard Blox on the page

v the ability to get a bookmark associated with any bookmarkable Blox

v the ability to restore the state of the various Blox in any order desired.

For details on these and other capabilities of the savedState object, refer to the

FastForward Javadoc documentation, available from the Help menu in the DB2

Alphablox Admin Pages.

In order to use this object in creating new reports, you need to add your custom

report restore logic to the end of the JSP file, thus applying your logic after the

affected Blox are instantiated but before they are rendered on the page.

In the following example, a GridBlox is modified on the restored report to have

row banding disabled on the grid:

Chapter 25. Working with DB2 Alphablox FastForward 273

<blox:present id="myBlox" visible="false"

 width="100%" height="100%"

 dataLayoutAvailable="<%=dataLayoutVisible%>"

 menubarVisible="<%= menubarVisible %>">

 <blox:grid visible="<%=gridVisible%>"

 bandingEnabled="<%=gridBanding%>"/>

 <blox:chart visible="<%=chartVisible%>"

 chartType="<%=chartType%>"

 totalsFilter="0"/>

 <blox:data bloxRef="dataBlox" />

 <blox:toolbar visible="<%=toolbarVisible%>"

 removeButton="Save,Load" />

 combineToolbars(myBlox.getBloxModel()); %>

</blox:present>

<%

 if (savedState != null) { Bookmark bookmark =

 savedState.getBloxBookmark("myBlox");

 BookmarkProperties gridProps =

 bookmark.getBookmarkPropertiesByType(Bookmark.GRID_BLOX_TYPE);

 gridProps.setProperty("bandingEnabled", "false"); }

%>

<blox:display bloxRef="myBlox"/>

Next steps

Once you have mastered some simple report templates, you can move onto more

challenging ones. The sample report templates included in the sample Alphablox

FastForward application are a fertile source of ideas and code for you to use in

constructing your own templates.

Also, use all of the available developer resources, including the Developer’s

Reference, this guide, the FastForward API Javadoc documentation, and the Blox API

Javadoc documentation. These are also available from the Help menu on the DB2

Alphablox Admin Pages.

274 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Chapter 26. DHTML client DOM API

Developers should not write client-side code that manipulates or traverses the

DOM generated by the DHTML DB2 Alphablox client unless using the published

DHTML Client DOM API described in the flowing sections, as the implementation

will likely change going forward.

GridBlox Client API

The following topics describe the client APIs available on GridBlox components

when displayed on JSP pages.

Blox definition

<blox:grid id="myBlox"

 width="80%"

 height="30%"

 bandingEnabled="true"

 visible="false">

 <blox:data bloxRef="dataBlox" />

</blox:grid>

The DHTML client will return a JavaScript object in the document namespace.

To get a reference to the JavaScript object for a Blox, use:

var gridBlox = document.myBlox;

or

var gridBlox = myBlox;

Grids

The GridBlox provides access to the grids contained within it using a zero-based

grids array.

To get a reference to a grid contained in a GridBlox defined earlier, use:

var myGrid = myBlox.grids[n];

where n is the zero-based number of the grid.

This returns the element that represents the grid. In addition, the grid contains two

attributes for the total number of rows and columns.

To return the number of scrollable rows or collumns in a grid:

var numRows=myGrid.getRowCount(); var numCols=myGrid.getColumnCount();

These values represent the total number of scrollable elements and do not

distinguish between header and data rows or columns, if they are scrollable. If the

number of scrollable elements does not fill the available area, then scrolling is not

required. If the size of the grid area changes, scroll bars will be automatically

added or removed as needed.

© Copyright IBM Corp. 1996, 2006 275

To scroll the grid to the indicated row and column, use the scrollTo method:

myGrid.scrollTo(row,column)

The scrollTo method scrolls the grid to the indicated row and column.

To determine if scrolling is enabled for the grid:

var enabled = myGrid.isScrollingEnabled()

The isScrollingEnabled method returns true if scrolling is enabled for the grid.

Selection

The grid provides end users with the ability to select one or more cells. They may

then perform an action on the selected cells. The DHTML client provide

programmatic access to those selected cells using the following methods.

Selection object

To access the selection object representing the cells that are currently selected in

that grid, use:

var myGrid=myBlox.grids[0]; var select = myGrid.selection;

Retrieving visible selected cell ID values

The selection object provides a method for retrieving a zero based array of strings

where each string is the ID of a cell currently selected in the associated grid.

var selectedCellIds = select.getCellIds();

This array will only contain the IDs of the cells that are both selected and currently

visible. If you require the full set of selected cells you should access the model

instead.

To determine if a cell is selected, use:

var selected = selection.isSelected(cellID)

Returns true if the cell is selected. Selected cells may or may not be visible on the

client, but their selected state is preserved by the client.

To control the selection of the cell, use:

selection.selectCell(cellID,selected)

The cellID must be a valid grid cell ID. Set selected to true to select the cell or

false to deselect the cell.

To clear all selected cells:

selection.clearSelection()

All cell selections will be cleared.

276 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY

10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation, Licensing, 2-31 Roppongi 3-chome, Minato-ku, Tokyo

106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS

MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions,

therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

© Copyright IBM Corp. 1996, 2006 277

IBM Corporation, J46A/G4, 555 Bailey Avenue, San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both:

 DB2 DB2 OLAP Server DB2 Universal Database™

IBM WebSphere

278 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Alphablox and Blox are trademarks or registered trademarks of Alphablox

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 279

280 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

Index

A
accessibility, application design 25

actions, capturing 193

alerts, 172

application requirements
user interface 22

application server
request processing 10

application states 221

Application Studio
location 20

applications
key characteristics, DB2 Alphablox 1

requirements, application logic 24

requirements, data 21

requirements, user interface 22

user help 257

autoConnect property
performance and scalability 118

relational data sources 118

autoDisconnect property
performance and scalability 118

relational data sources 118

use with Microsoft Analysis

Services 118

use with multidimensional data

sources 118

B
BiDi

designing for 28

Blox
tag library, accessing 35

tag library, using 33

Blox components
attributes 38

common appearance properties 162

defining, using tags 36

interaction among nested Blox 190

interactivity, 188

output, printing 156

special tags 43

style property tags 39

understanding 4

user help files 257

Blox object
DHTML Client API 96

Blox Portlet Tag Library
examples 59

Blox properties
indexed property tags 40

indexed property tags listing 40

non-indexed property tags listing 39

Blox UI Model 76

charts 84

dialogs 77

examples 87

model dispatchers 76

purpose 68

Blox UI Model (continued)
styles 82

Blox UI Tag Library
analysis tags 64

component customization tags 63

custom layout tags 64

examples 63

tag categories 63

utility tags 65

BloxAPI
callBean method 100

BloxAPI object 96

bookmarkLoad event filter
using 227

browsers
development setup 17

Internet Explorer, configuring for

development 18

browsers, configuring for

development 18

C
calculated members, 206

calculatedMembers property 208

calculations, custom
examples 210

calendar control 199

fonts 206

Gregorian 200, 202

initial date, setting 203

Japanese 204

non-Gregorain 204

non-Gregorian 204

callBean method, BloxAPI 100

cell
alerts, using links 174

header links 180

links 180

traffic lighting, setting 172

cell alerts
links 181

setting 173

cell alerts, understanding 172

cell links 180

cellFormat property 172

cells
mapping grid cells to result set 92

cellStyle property 171

chart_color_series property 165

ChartBlox
3D appearance in Bar charts,

adding 164

interactivity 188

overview 7

user interface 7

charts
Chart component 84

chart_color_series property 165

context (right-click) menus,

custom 86

charts (continued)
data series 83

NumericAxis 83

OrdinalAxis 83

clientBean tag 100

using with Blox 101

color series, chart
specifying 165

colors
chart, specifying 165

comments
cell-level 181

customization 184

defining a comments collection 183

elements 182

enabling 183

named 181

comments, adding 181

CommentsBlox, adding comments to grid

cells 181

ComponentContainer 72

components
adding dedicated controllers 75

Blox UI Model 70

Blox UI Model, overview 69

built-in names 71

chart 84

compound 72

containers 72

HorizontalLayout 72

layouts 72

ModelConstants class 71

titles 71

VerticalLayout 72

compound components 72

connect() method 116

containers
dialogs 77

overview 72

context (right-click) menus
charts 86

custom 89

disabling 88

controllers
adding listeners 76

Blox UI Model 73

Controller base class 74

implied 74

credentials attribute (DataBlox)
single sign-on 119

CSS files
overriding styles 162

values, viewing 160

CSS styles
theme definitions 160

CSS theme
properties file 159

CSS themes
multiple class selectors 83

custom calculations
Essbase Report Scripts 211

© Copyright IBM Corp. 1996, 2006 281

custom calculations (continued)
examples 210

ifNotNumber function 208

property syntax 208

restrictions 207

custom properties
understanding 222

user property, example 222

D
data

access, restricting 213

access, restricting using dimension

root 214

access, restricting using fixed choice

lists 215

accessing 113

appearance, specifying 167

cell format, specifying 168

errors in displaying data 208

exporting 237

filtering, 213

formatting, 167

hiding, 213

input, 195

interaction 185

interaction, controlling using HTML

forms 191

persisting views 221

presenting 153

retrieving 123

security 213, 214, 215

user interaction, limiting 185

writeback, 195

data layout
tree versus drop lists 189

data requirements when designing

applications 21

data series
charts 83

data source definitions
SAP Business Information Warehouse

(SAP BW) 135

data sources
auto-connecting and

auto-disconnecting, relational 118

auto-disconnecting,

multidimensional 118

changing using

DataSourceSelectFormBlox 114

connecting and disconnecting 116

dataSourceName attribute,

setting 114

definition tutorial 113

databases
writeback 197

DataBlox
overview 6

properties and methods 6

writeback methods 196

DataLayoutBlox
appearance, specifying 166

interfaceType property 189

overview 7

user interface 7

DateChooser
see also calendar control 199

DB2 Alphablox
program flow 12

DB2 Alphablox applications
development tools, choosing 17

key characteristics 1

overview 1

user interface 2

debugging 43

defaultCellFormat property 171

delivery formats
PDF 155

printer 155

specifying 156

xls 155

XML 156

DHTML client
invoking server-side logic 99

DHTML Client
Blox object 96

BloxAPI object 96

DHTML Client API
framework 96

overview 95

utility objects 96

DHTML Client API Framework
Blox object 96

BloxAPI object 96

dialogs
Blox UI Model 77

creating 77

display, using Blox UI Model

dispatchers 77

modal 77

modeless 77

resource files 79

dimensionRoot property 214

dispatchers
displaying dialogs 77

display tag 43

distributing views
bookmarks, using 235

e-mail, using 233

drillthrough support
Hyperion Essbase 136

drillthrough support 136

Microsoft Analysis Services 139

E
edit page, FastForward 262

error handling
Blox properties and methods,

using 255

custom error page, steps to

creating 254

custom error pages 253

understanding 253

error messages 253

noDataMessage 255

errorPage attribute 253

Essbase
aliases 132

calc scripts 131

calculated members 211

DECIMAL command 132

Essbase (continued)
queries 126

report script commands,

supported 126

report script commands, unsupported

with Alphablox equivalents 130

report scripts 126

report scripts, unsupported without

DB2 Alphablox equivalents 131

substitution variables 131

event filter objects
overview 105

event filters and listeners,

comparing 110

event listener objects
overview 106

eventHandler method 98

events
Blox UI Model, overview 75

definition of 193

DHTML client 98

DHTML Client API 97

event filter objects 105

intercepting 193

JavaScript 97

using 193

Excel
chart type mapping 240

creating custom templates for Blox

views 238

exported properties 239

exporting to 237

exception handling
DHTML client 99

Exception object
DHTML Client API 96

exceptionThrower method 99

executeCustomCalc() method 197

executeNamedDBCalcScript()

method 197

exporting data
options 237

properties for Excel templates 239

to Excel 237

to PDF 241

to XML, steps to 249

F
FastForward

architecture 261

edit page 262

overview 259

report page 262, 264

report templates 262

report templates, creating 264

report templates, sample 264

report templates, saving 272

report templates, sharing 272

report templates, testing 272

savedState object 273

template parameters file 262

template parameters file

(template.xml) 267

user roles 259

FastForward applications
localization 272

282 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

filtering data
dimension root, using 214

fixed choice lists, using 215

hiding dimensions 213

hiding members 213

queries, using 217

using MemberSecurityBlox 216

virtual root, specifying 214

fixedChoiceLists property 215

formatting
cell format, specifying 168

decimal alignment, setting 168

negative values, highlighting 171

FormBlox components
event model 48

linking 47

overview 45

passing values 47

frames
multiple, using 102

frames, using multiple 36

framesets 36

G
generation level

setting, in ChartBlox 189

Grid object, DHTML Client API 96

GridBlox
interactivity 188

overview 7

user interface 7

writeback methods 195

writeback properties 195

grids
layout, custom 90

H
header links 180

header tag 36

hiddenDimensionsOnOtherAxis

property 213

hiddenMembers 213

HorizontalLayout 72

I
ifNotNumber function, calculated

members 208

information links 179

interactivity
controlling using Blox properties 186

controlling using HTML forms 191

limiting 185

Internet Explorer, Microsoft
configuring for development 18

isErrorPage attribute 254

J
JavaBeans components

using with FormBlox 47

JavaScript callbacks, 193

JavaServer Pages
getProperty 14

learning resources, recommended 31

overview 31

setProperty 14

standard syntax, using 44

useBean 14

using 31

JDBC beans
examples 146

overview 146

JSP, 31

L
layouts

ComponentContainer 72

load theme command 162

localization
FastForward applications 272

lockCurrentDataSet method 196

M
MDBQueryBlox 52

MDX
queries, using 133

MDX queries
SAP Business Information Warehouse

(SAP BW) 135

Member Filter
overview 3

members
calculatedMembers property 208

links, adding to headers 180

MemberSecurityBlox 54

menu bar, turning on 193

menus
context (right-click), custom 89

context (right-click), disabling 88

MessageBox
dialogs

model 80

methods
event filter 105

Microsoft Analysis Services
drillthrough support 139

MDX, learning 132

performance and scalability 118

retrieving data 132

Microsoft Excel
default templates 237

setting default template 239

model dispatchers 76

ModelConstants class 71

moreChoicesEnabledDefault

property 216

Mozilla
issues 19

Mozilla Firefox
issues 19

multiple locales
designing for 26

N
noDataMessage property 255

NumericAxis
charts 83

O
onErrorClearResultSet property 255

OrdinalAxis
charts 83

P
page refreshing 103

PageBlox
overview 7

user interface 7

PDF
exporting to 241

PDF reports
customizing, using custom JSP

tags 244

default user interface options 241

setting global default properties 242

using remote PDF processor 249

personalization
custom properties 222

understanding 3

portlets
design requirements 24

Presentation Blox, comparison 153

PresentBlox
appearance, specifying 165

overview 7

user interface 7

printing
Blox output 156

printable page, technique for

creating 157, 158

printer render mode 155

programming model 14, 33

properties
custom properties, 222

DataBlox 6

user properties, 222

Q
QCC database

installing and configuring 113

QCC-Essbase
installing and configuring 113

QCC-MSAS
installing and configuring 113

queries
Essbase report scripts,

multi-bang 130

Essbase Report Specifications 126

executing, using JSP scriptlet 124

generating using Query Builder 145

MDX statements 133

Query Builder, using 123

query property, setting 124

SQL statements 144

Query Builder 145

Index 283

Query Builder (continued)
using 123, 145

Query Builder, DHTML
using 145

query, setting using DataBlox query

property 124

R
refresh() method 197

refreshing pages 103

Relational Reporting
user interface 3

render
modes, printer 155

modes, xls 155

modes, XML 156

URL attribute 250

rendering modes
specifying 156

report page, FastForward 262, 264

report templates, FastForward 262

saving 272

sharing 272

repository
state, managing using

RepositoryBlox 222

Repository
DB2 Alphablox, understanding 13

request object methods 223

request processing 10

resource files
dialog 79

result sets
mapping grid cells to 92

S
SAP Business Information Warehouse

(SAP BW)
data source definitions 135

MDX queries 135

using with DB2 Alphablox 134

savedState object, FastForward 273

session object methods 223

sessions
managing 36

setCalculatedMembers method 208

setCredential() method (DataBlox)
single sign-on 121

single sign-on
Essbase and DB2 OLAP Server 119,

121

limitations 121

passing user credentials 119, 121

split Panes, specifying location 165

spreadsheets
creating custom templates for Blox

views 238

default Excel templates 237

setting default template 239

SQL queries, writing 144

states
definition 221

managing, using RepositoryBlox

methods 222

StoredProceduresBlox
examples 149

overview 147

Style object 82

styles
cell alerts 162

overriding 162

property tags 39

Style object 82

suppressDuplicates property 219

suppressMissing property 218

suppressNoAccess method
using to filter members 216

suppressZeros property 218

T
tags

attributes, setting Blox properties 38

Blox header tag 36

Blox tag library, accessing 35

Blox tag library, understanding 31

Blox tag library, using 33

display tag 43

indexed properties 40

indexed properties, listing 41

non-indexed properties 39

special Blox tags 43

style property 39

template parameters file (template.xml),

FastForward 267

template parameters file,

FastForward 262

template.xml files, FastForward 267

theme
CCS style classes, listing 160

defining CSS styles, using 160

header tag 158

loading modified themes 162

overriding styles 162

priority of 158

understanding 3

URL attribute 158

themes
CSS 159

TimeSchemaBlox 55

ToolbarBlox
appearance, specifying 166

overview 7

user interface 7

toolbars
custom 87

menu bar, turning on 193

text, turning on 193

turning off 193

traffic lighting
cell alerts, understanding 172

chart series colors, using 175

tutorials
data sources, defining 113

U
unlockAll() method 196

URL attributes
render 250

URL attributes (continued)
theme 158

value, retrieving 223

user help 257

creating 257

information links, using 258

user interaction, 185

user interface
ChartBlox 7

DataLayoutBlox 7

GridBlox 7

PageBlox 7

PresentBlox 7

requirements gathering 22

ToolbarBlox 7

user properties 222

utility objects
DHTML client 96

V
VerticalLayout 72

visibility
understanding 42

W
web browsers

issues 19

writeback
enabling GridBlox 196

example, multidimensional 196

example, relational 198

general steps 195

methods in DataBlox 196

Microsoft Analysis Services 198

properties and methods in

GridBlox 195

relational data sources 198

to multidimensional databases 197

writeback() method 196

X
XML

exporting to 249

sample Alphablox XML

document 250

URL render attribute 250

XML resource files 79

284 IBM DB2 Alphablox: DB2 Alphablox Developer’s Guide

����

Program Number: 5724-L14

Printed in USA

SC18-9434-03

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IB
M

D

B
2

A
lp

ha
bl

ox

D
B

2
A

lp
ha

bl
ox

D

ev
el

op
er

’s
G

ui
de

Ve

rs
io

n
8.

4

	Contents
	Chapter 1. DB2 Alphablox applications and the underlying Blox
	Key characteristics of DB2 Alphablox applications
	Real-time data access and analysis
	Interactive user interface
	DB2 Alphablox themes
	Member Filter
	Relational Reporting user interface

	Personalization
	Custom properties

	Sharing and collaboration
	Bookmarking
	Commenting on data
	Exporting to PDF

	Real-time planning

	Underlying Blox components
	DataBlox
	GridBlox
	ChartBlox
	DataLayoutBlox
	PageBlox
	ToolbarBlox
	PresentBlox

	DB2 Alphablox FastForward

	Chapter 2. DB2 Alphablox application program flow
	Application file structure
	Application context
	DB2 Alphablox Repository
	Working with Blox in JavaServer Pages

	Request processing
	User Request 1 (http://myAppServer/MyApp1/welcome.html)
	User Request 2 (http://myAppServer/MyApp1/intro.jsp)
	User Request 3 (http://myAppServer/MyApp1/firstGrid.jsp)
	The role of the application server
	DB2 Alphablox program flow
	The role of DB2 Alphablox

	Bookmarking, application states, and the DB2 Alphablox Repository

	Application development and programming model
	Blox components
	JSP and custom tags

	Server-side API versus client-side API

	Chapter 3. Your development environment
	Choosing application development tools
	Web browsers
	General considerations
	Working with DHTML mode
	Modifying Blox tags

	Configuring and developing with Microsoft Internet Explorer
	Web browsers - known Mozilla issues

	Application Studio

	Chapter 4. Design considerations
	Defining application requirements
	Data requirements
	User interface requirements
	User groups
	Content presentation
	User instructions
	User navigation
	Data manipulation
	Saving and restoring work

	Application logic requirements
	Custom properties

	Planning for portlet development
	Designing an accessible application
	Designing for multiple locales
	Designing for bidirectional languages

	Chapter 5. Using JavaServer Pages and the Blox Tag Library
	JavaServer Pages Technology
	Book recommendations
	Web sites

	Using JavaServer Pages with DB2 Alphablox
	Server-side programming with DB2 Alphablox
	Using the Alphablox Tag Libraries
	Accessing the Blox Tag Library
	Using the Blox header tag
	Defining Blox
	Setting Blox properties using tag attributes
	Setting Blox properties using style property tags
	Setting indexed Blox properties using property tags
	Controlling the visibility of Blox components
	Processing logic before rendering

	Rendering Blox on multiple pages
	Blox utility tags
	Blox header tag
	Blox context tag
	Blox debug tag
	Blox display tag
	Resource bundle tags

	Using standard JSP syntax
	Next steps

	Chapter 6. Blox Form Tag Library
	Using the Blox Form Tag Library
	Overview of FormBlox components
	FormBlox component categories
	Basic form controls
	Metadata selection lists
	Time schema selection lists
	Tree controls

	Getting and setting Blox and JavaBeans component properties
	FormBlox event model

	Examples using FormBlox tags

	Chapter 7. Blox Logic Tag Library
	Using the Blox Logic Tag Library
	Blox Logic Tag Library components
	Using MDBQueryBlox components to select products
	Listing cube members using MemberSecurityBlox
	TimeSchemaBlox component

	Chapter 8. Blox Portlet Tag Library
	Overview of Blox Portlet tags
	Using the Blox Portlet Tag Library
	Blox Portlet Tag Library examples
	Adding links to buttons
	Adding links to ReportBlox components

	Chapter 9. Blox UI Tag Library
	Blox UI Tag Library categories
	Blox UI tag examples
	Blox UI component customization
	Custom layout tags
	Analysis tags
	Utility Tags
	More Examples

	Chapter 10. DHTML Client UI Extensibility
	The Blox UI Model
	Purpose of the Blox UI Model
	Blox UI components overview
	Components
	Component names
	Handling non-unique component names
	Built-in names
	Component titles

	Containers
	Layout
	Compound components
	Using ContainerBlox

	Controllers
	The Controller base class
	Implied controllers

	Blox UI Model events
	Adding dedicated controllers to components
	Adding listeners to preexisting controllers

	Model Dispatcher
	Dialogs
	Creating simple dialogs
	JSP page (customDialog.jsp)
	XML resource file (MyDialog.xml)

	MessageBox

	DHTML client application logic and flow
	DHTML client is theme-based
	Styles
	Setting multiple theme classes

	Charting
	The Chart component
	Controlling chart settings
	NumericAxis
	OrdinalAxis
	DataSeries
	Legend
	ChartTitle, Footnote, AxisTitle
	Chart event handling
	Custom context (right-click) menus for charts

	Blox UI Model examples
	Single toolbar
	Disabling context (right-click) menus
	Customized context (right-click) menu
	Custom grid layout
	Mapping grid cells to underlying result sets

	Javadoc documentation

	Chapter 11. DHTML Client API
	DHTML Client API overview
	Using the DHTML Client API
	The DHTML Client API framework
	BloxAPI Object
	Blox Object
	Utility objects

	Sending events
	Initiating Blox UI Model events from JavaScript

	Intercepting events
	Intercepting client-side events

	Invoking JavaScript directly from the user interface
	Exception handling
	Invoking server-side logic using the DHTML Client API
	BloxAPI.call() and Blox.call() methods
	BloxAPI.callBean() method
	The clientBean (<blox:clientBean>) tag
	Using <blox:clientBean> with server-side Blox components

	The DHTML Client DOM API
	Using multiple frames
	Refreshing pages

	Chapter 12. Capturing events using server-side event filters and listeners
	Event filter objects
	Event listener objects
	Using event filters and event listeners
	Place add and remove methods inside Blox custom tags
	A complete drillDownEventFilter example
	A complete drillDownEventListener example

	Event listeners compared to event filters
	Methods to implement for event filters
	Methods to implement for event listener objects

	Chapter 13. Connecting to data
	Creating data sources
	Defining data sources

	Defining the DataBlox dataSourceName property
	Setting the dataSourceName attribute
	Using the setDataSourceName() JavaScript method
	Setting different data sources using DataSourceSelectFormBlox

	Connecting to and disconnecting from data sources
	Auto-connecting and auto-disconnecting
	Relational data sources
	Multidimensional data sources

	Single sign-on for Essbase and DB2 OLAP Server
	Passing user credentials using the DataBlox credential attribute
	Passing user credentials using the Blox API
	Limitations of single sign-on

	Chapter 14. Retrieving data
	Setting the DataBlox query property
	Setting and executing queries using JSP scriptlets

	Multidimensional data sources
	IBM DB2 OLAP Server and Hyperion Essbase
	Creating Essbase report scripts
	Essbase report script commands supported by DB2 Alphablox
	Unsupported report script commands with DB2 Alphablox equivalents
	Unsupported report script commands without DB2 Alphablox equivalents
	Calc Scripts
	Substitution variables
	Using DB2 OLAP Server or Essbase aliases
	Working with decimals
	Microsoft Analysis Services
	Creating MDX query statements
	Clearing PivotTable Services caches using the autoDisconnect property

	DB2 Alphablox Cube Server
	Using SAP Business Information Warehouse (SAP BW) with DB2 Alphablox
	Creating SAP BW data source definitions
	Creating MDX queries for use with SAP BW

	Drillthrough support for DB2 OLAP Server and Hyperion Essbase (using EIS)
	Out-of-the-box Integration Services drillthrough support
	Controlling EIS drillthrough window styles
	Custom EIS drillthrough support using DB2 Alphablox Relational Reporting
	Using RDBREsultSetDataBlox and RDBResultSetTag
	Supporting multiple reports
	Adding custom menu options

	Other custom EIS drillthrough support

	Drillthrough support for Microsoft Analysis Services
	Out-of-the-box Microsoft Analysis Services Drillthrough support
	Controlling drillthrough window styles
	Custom Drillthrough Support Using DB2 Alphablox Relational Reporting
	Other custom drillthrough support

	Relational data sources
	Creating SQL Statements

	Query Builder
	Using Query Builder

	Working with JDBC data sources
	Using the JDBCConnection Bean
	JDBCConnection Bean Example

	Using StoredProceduresBlox
	StoredProceduresBlox examples
	Connecting to the data source without a DataBlox
	Using the StoredProceduresBlox to connect the data source for use with DataBlox
	Getting a list of stored procedures whose name matches a specified pattern
	Getting a list of all parameters for each stored procedure
	Executing a stored procedure that has one input parameter and two output parameters
	Setting a stored procedure result set to a DataBlox

	Chapter 15. Presenting data
	Choosing Blox for presenting data
	Choosing data presentation Blox components

	Render formats available to the DHTML client
	DHTML format (render=dhtml)
	Printer format (render=printer)
	PDF format (render=pdf)
	Export To Excel format (render=xls)
	XML format
	Specifying delivery formats
	Printing Blox output
	Printing with HTML-based printing
	Creating printable pages using the render=printer URL attribute
	Creating custom print pages using the <blox:display> tag

	CSS themes
	Specifying themes
	CSS theme files
	CSS theme properties defined in themeName.properties files
	CSS classes defined in the .css file

	Overriding defined styles
	Applying styles to cell alerts
	User interface appearance
	Grid Appearance
	Row banding
	Cell appearance

	Chart Appearance
	Chart Types
	Adding 3D appearance to charts
	Chart colors

	PresentBlox appearance
	Split panes
	Modifying DataLayout properties
	Modifying menu bar properties
	Modifying toolbar properties

	Data appearance
	GridBlox properties
	Formatting values in thousands and billions
	Displaying percentages for specific members
	Controlling decimal appearances

	Chapter 16. Highlighting and commenting on information
	Overview
	Using format masks to highlight data
	Highlighting negative values in red
	Highlighting negative values with parentheses

	Using cell alerts to highlight data
	Cell formats
	A simple traffic lighting reporting system
	Cell alert links
	Creating alert messages for cell alerts

	Using chart series colors to highlight data
	A traffic lighting chart example

	Information links
	Using header links
	Using cell links
	Using cell alert links

	Comments in grid data cells
	Elements of a comment
	Defining comments collections
	Enabling cell comments
	Adding custom comments support

	Chapter 17. Interacting with data
	Interactivity considerations
	Allowing limited or no interactivity
	Disabling pivoting and drilling on columns
	Modifying interactivity using Blox properties

	Grids
	Charts
	Allowing user control of generations displayed

	DataLayout interface
	Interactions between grids and charts
	Setting the “No data available” message in grids and charts

	HTML form elements and FormBlox components
	Selection lists
	Check boxes and radio buttons
	Standard HTML buttons
	Text fields

	Using Toolbar buttons
	Events

	Chapter 18. Inputting and modifying data
	Writing back to multidimensional data sources
	GridBlox properties and associated writeback methods
	GridBlox Java writeback methods
	Enabling GridBlox components for data writeback
	DataBlox writeback-related methods
	Enabling the writeback feature to multidimensional databases
	Writing data back to Microsoft Analysis Services

	Updating relational data sources
	Updating relational data sources using the writeback feature

	Creating a calendar control
	Creating a Gregorian calendar
	Creating a Gregorian calendar using ICU for multi-locale support
	Specifying a selected date when the calendar is launched
	Creating a non-Gregorian calendar
	An example of a non-Gregorian calendar

	Fonts for calendar controls

	Calculated members
	Creating calculated members in DB2 Alphablox
	Custom calculation guidelines
	Defining custom calculations
	Custom calculation restrictions

	Conditions preventing proper data display
	Calculated member property syntax
	Functions available for calculated members
	Calculated member examples

	Calculated members using Essbase report script commands

	Chapter 19. Filtering data
	Hiding dimensions and members
	Using the dimensionRoot property
	Setting virtual roots for users

	Fixed choice lists
	Using the fixedChoiceLists property
	Using the moreChoicesEnabledDefault and moreChoicesEnabled properties
	Using MemberSecurityBlox to filter members

	Using HTML form elements and FormBlox components
	Using queries
	Data suppression using Blox properties
	Using the suppressMissingOnRows and suppressMissingOnColumns properties
	Using the suppressZeros property
	Using the suppressDuplicates property

	Chapter 20. Persisting and bookmarking data
	Data persistence in DB2 Alphablox
	Application states
	Custom properties in the DB2 Alphablox Repository
	Creating custom user properties

	JavaServer Pages technology and data persistence
	Using request parameters to retrieve a URL attribute values

	Bookmarks - developer details
	Getting a count of all bookmarks
	Getting the properties set for a bookmark
	Using server-side bookmarkLoad event filter

	Customizing applications using the BookmarksBlox API
	Using bookmark events
	Using registered events

	Using dynamic queries with bookmarks
	Getting a list of bookmarks that match the specified criteria
	Getting DB2 OLAP Server or Essbase serialized queries in text form when a bookmark is loaded
	Using custom properties to restrict access

	Chapter 21. Distributing views
	Creating mail links using an e-mail bean
	Bookmarks
	Printing

	Chapter 22. Exporting data
	Exporting data to Excel
	Default templates for Excel
	Creating custom Excel templates
	Setting the default template for exporting to Excel
	Properties for Excel templates
	Chart type mapping from DB2 Alphablox to Excel

	Exporting to PDF
	Default user interface options for PDF reports
	Creating global default PDF report properties
	Using JSP tags to customize PDF reports
	Custom PDF report properties using <blox:pdfReport> tags
	Customizing PDF Report Dialog options using the <blox:pdfDialogInput> tag

	Creating a PDF file for multiple Blox components
	Specifying PDF storage locations and file names
	Using a remote PDF processor

	Exporting to XML
	Rendering result sets into XML format
	Rendering result sets into XML Format: Sample DB2 Alphablox XML document

	Chapter 23. Error handling
	Exceptions
	Custom Error Pages
	errorPage Attribute
	isErrorPage Attribute
	Creating simple custom error pages

	Blox properties and error handling methods
	noDataMessage
	onErrorClearResultset

	Chapter 24. Adding user help
	Using existing DB2 Alphablox user help
	Creating custom user help
	Using information links for help

	Chapter 25. Working with DB2 Alphablox FastForward
	DB2 Alphablox FastForward overview
	Roles of FastForward users
	Application administrators
	Template developers
	End users

	Customizing Alphablox FastForward

	FastForward application architecture
	Report templates
	Sample report templates

	Creating custom report templates
	Creating or modifying the report page (report.jsp)
	Creating or modifying the template parameters file (template.xml)
	Creating or modifying the edit page (edit.jsp)
	Creating optional template pages
	Localizing FastForward applications
	Testing report templates
	Saving report templates
	Sharing report templates
	Saving state using the savedState Object
	Next steps

	Chapter 26. DHTML client DOM API
	GridBlox Client API
	Blox definition
	Grids
	Selection
	Selection object
	Retrieving visible selected cell ID values

	Notices
	Trademarks

	Index

