
Object REXX for Linux

Reference
Version 1.2

IBM





Object REXX for Linux

Reference
Version 1.2

IBM



Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix D. Notices” on page 455.

Second Edition, March 1999

This edition applies to Version 1.2 of IBM Object REXX for Linux, and to all subsequent releases and modifications
until otherwise indicated in new editions or technical newsletters.

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



Contents

About This Book . . . . . . . . . xi
Related Information . . . . . . . . . xi
How to Send Your Comments . . . . . xi
How to Read the Syntax Diagrams . . . . xii

Chapter 1. REXX General Concepts . . . 1
What Is Object-Oriented Programming? 2
Modularizing Data . . . . . . . . . 2
Modeling Objects . . . . . . . . . 3
How Objects Interact . . . . . . . . 5
Methods . . . . . . . . . . . . 6
Polymorphism . . . . . . . . . . 6
Classes and Instances . . . . . . . . 7
Data Abstraction . . . . . . . . . . 8
Subclasses, Superclasses, and Inheritance 8
Structure and General Syntax . . . . . 9

Characters . . . . . . . . . . . 10
Comments . . . . . . . . . . . 10
Tokens . . . . . . . . . . . . 12
Implied Semicolons . . . . . . . . 17
Continuations . . . . . . . . . . 18

Terms, Expressions, and Operators . . . . 18
Terms and Expressions . . . . . . . 19
Operators . . . . . . . . . . . 19
Parentheses and Operator Precedence 23
Message Terms . . . . . . . . . 25
Message Sequences . . . . . . . . 27

Clauses and Instructions . . . . . . . 28
Null Clauses . . . . . . . . . . 28
Directives . . . . . . . . . . . 28
Labels . . . . . . . . . . . . 29
Instructions . . . . . . . . . . 29
Assignments . . . . . . . . . . 29
Message Instructions . . . . . . . 29
Keyword Instructions . . . . . . . 30
Commands. . . . . . . . . . . 30

Assignments and Symbols . . . . . . 30
Constant Symbols . . . . . . . . 31
Simple Symbols . . . . . . . . . 32
Stems . . . . . . . . . . . . 32
Compound Symbols. . . . . . . . 34
Environment Symbols . . . . . . . 36

Message Instructions . . . . . . . . 37
Commands to External Environments . . . 38

Environment . . . . . . . . . . 38

Commands. . . . . . . . . . . 39
Using REXX on Linux . . . . . . . . 40

Chapter 2. Keyword Instructions . . . . 41
ADDRESS . . . . . . . . . . . . 42
ARG . . . . . . . . . . . . . . 43
CALL . . . . . . . . . . . . . 45
DO . . . . . . . . . . . . . . 49
DROP . . . . . . . . . . . . . 50
EXIT . . . . . . . . . . . . . . 51
EXPOSE. . . . . . . . . . . . . 52
FORWARD. . . . . . . . . . . . 53
GUARD. . . . . . . . . . . . . 56
IF . . . . . . . . . . . . . . . 57
INTERPRET . . . . . . . . . . . 58
ITERATE . . . . . . . . . . . . 60
LEAVE . . . . . . . . . . . . . 61
NOP . . . . . . . . . . . . . . 61
NUMERIC . . . . . . . . . . . . 62
PARSE . . . . . . . . . . . . . 63
PROCEDURE . . . . . . . . . . . 66
PULL . . . . . . . . . . . . . 69
PUSH . . . . . . . . . . . . . 70
QUEUE . . . . . . . . . . . . . 71
RAISE . . . . . . . . . . . . . 71
REPLY . . . . . . . . . . . . . 74
RETURN . . . . . . . . . . . . 75
SAY . . . . . . . . . . . . . . 75
SELECT . . . . . . . . . . . . . 76
SIGNAL. . . . . . . . . . . . . 78
TRACE . . . . . . . . . . . . . 79
USE . . . . . . . . . . . . . . 84

Chapter 3. Directives . . . . . . . . 87
::CLASS . . . . . . . . . . . . . 87
::METHOD . . . . . . . . . . . . 89
::REQUIRES . . . . . . . . . . . 91
::ROUTINE. . . . . . . . . . . . 92

Chapter 4. Objects and Classes . . . . 95
Types of Classes . . . . . . . . . . 95

Object Classes . . . . . . . . . . 95
Mixin Classes . . . . . . . . . . 96
Abstract Classes . . . . . . . . . 96

© Copyright IBM Corp. 1999 iii



Chapter 5. The Collection Classes . . . 119
The Array Class . . . . . . . . . . 120

NEW (Class Method) . . . . . . . 121
OF (Class Method) . . . . . . . . 121
[] . . . . . . . . . . . . . . 122
[]= . . . . . . . . . . . . . 122
AT . . . . . . . . . . . . . 122
DIMENSION . . . . . . . . . . 122
FIRST . . . . . . . . . . . . 123
HASINDEX . . . . . . . . . . 123
ITEMS . . . . . . . . . . . . 123
LAST. . . . . . . . . . . . . 123
MAKEARRAY. . . . . . . . . . 123
NEXT . . . . . . . . . . . . 123
PREVIOUS . . . . . . . . . . . 124
PUT . . . . . . . . . . . . . 124
REMOVE . . . . . . . . . . . 124
SECTION . . . . . . . . . . . 124
SIZE . . . . . . . . . . . . . 125
SUPPLIER . . . . . . . . . . . 125
Examples . . . . . . . . . . . 125

The Bag Class . . . . . . . . . . . 126
OF (Class Method) . . . . . . . . 127
[] . . . . . . . . . . . . . . 127
[]= . . . . . . . . . . . . . 127
HASINDEX . . . . . . . . . . 128
MAKEARRAY. . . . . . . . . . 128
PUT . . . . . . . . . . . . . 128
SUPPLIER . . . . . . . . . . . 128
Examples . . . . . . . . . . . 128

The Directory Class . . . . . . . . . 129
[] . . . . . . . . . . . . . . 130
[]= . . . . . . . . . . . . . 130
AT . . . . . . . . . . . . . 130
ENTRY . . . . . . . . . . . . 130
HASENTRY . . . . . . . . . . 131
HASINDEX . . . . . . . . . . 131
ITEMS . . . . . . . . . . . . 131
MAKEARRAY. . . . . . . . . . 131
PUT . . . . . . . . . . . . . 131
REMOVE . . . . . . . . . . . 132
SETENTRY. . . . . . . . . . . 132
SETMETHOD . . . . . . . . . . 132
SUPPLIER . . . . . . . . . . . 133
UNKNOWN . . . . . . . . . . 133
DIFFERENCE . . . . . . . . . . 133
INTERSECTION . . . . . . . . . 133
SUBSET . . . . . . . . . . . . 134
UNION . . . . . . . . . . . . 134
XOR . . . . . . . . . . . . . 134

Examples . . . . . . . . . . . 135
The List Class . . . . . . . . . . . 136

OF (Class Method) . . . . . . . . 137
[] . . . . . . . . . . . . . . 137
[]= . . . . . . . . . . . . . 137
AT . . . . . . . . . . . . . 137
FIRST . . . . . . . . . . . . 137
FIRSTITEM . . . . . . . . . . 138
HASINDEX . . . . . . . . . . 138
INSERT . . . . . . . . . . . . 138
ITEMS . . . . . . . . . . . . 139
LAST. . . . . . . . . . . . . 139
LASTITEM . . . . . . . . . . . 139
MAKEARRAY. . . . . . . . . . 139
NEXT . . . . . . . . . . . . 139
PREVIOUS . . . . . . . . . . . 139
PUT . . . . . . . . . . . . . 140
REMOVE . . . . . . . . . . . 140
SECTION . . . . . . . . . . . 140
SUPPLIER . . . . . . . . . . . 140

The Queue Class . . . . . . . . . . 141
[] . . . . . . . . . . . . . . 142
[]= . . . . . . . . . . . . . 142
AT . . . . . . . . . . . . . 142
HASINDEX . . . . . . . . . . 142
ITEMS . . . . . . . . . . . . 142
MAKEARRAY. . . . . . . . . . 142
PEEK . . . . . . . . . . . . 143
PULL . . . . . . . . . . . . 143
PUSH . . . . . . . . . . . . 143
PUT . . . . . . . . . . . . . 143
QUEUE . . . . . . . . . . . . 143
REMOVE . . . . . . . . . . . 143
SUPPLIER . . . . . . . . . . . 144

The Relation Class . . . . . . . . . 144
[] . . . . . . . . . . . . . . 145
[]= . . . . . . . . . . . . . 145
ALLAT . . . . . . . . . . . . 145
ALLINDEX . . . . . . . . . . 146
AT . . . . . . . . . . . . . 146
HASINDEX . . . . . . . . . . 146
HASITEM . . . . . . . . . . . 146
INDEX . . . . . . . . . . . . 146
ITEMS . . . . . . . . . . . . 147
MAKEARRAY. . . . . . . . . . 147
PUT . . . . . . . . . . . . . 147
REMOVE . . . . . . . . . . . 147
REMOVEITEM . . . . . . . . . 147
SUPPLIER . . . . . . . . . . . 148
DIFFERENCE . . . . . . . . . . 148

iv Object REXX Reference



INTERSECTION . . . . . . . . . 148
SUBSET . . . . . . . . . . . . 148
UNION . . . . . . . . . . . . 149
XOR . . . . . . . . . . . . . 149
Examples . . . . . . . . . . . 149

The Set Class . . . . . . . . . . . 150
OF (Class Method) . . . . . . . . 151
[] . . . . . . . . . . . . . . 151
[]= . . . . . . . . . . . . . 151
AT . . . . . . . . . . . . . 151
HASINDEX . . . . . . . . . . 152
ITEMS . . . . . . . . . . . . 152
MAKEARRAY. . . . . . . . . . 152
PUT . . . . . . . . . . . . . 152
REMOVE . . . . . . . . . . . 152
SUPPLIER . . . . . . . . . . . 153

The Table Class . . . . . . . . . . 153
[] . . . . . . . . . . . . . . 154
[]= . . . . . . . . . . . . . 154
AT . . . . . . . . . . . . . 154
HASINDEX . . . . . . . . . . 154
ITEMS . . . . . . . . . . . . 155
MAKEARRAY. . . . . . . . . . 155
PUT . . . . . . . . . . . . . 155
REMOVE . . . . . . . . . . . 155
SUPPLIER . . . . . . . . . . . 155
DIFFERENCE . . . . . . . . . . 156
INTERSECTION . . . . . . . . . 156
SUBSET . . . . . . . . . . . . 156
UNION . . . . . . . . . . . . 156
XOR . . . . . . . . . . . . . 157

The Concept of Set Operations . . . . . 157
The Principles of Operation . . . . . 158
Determining the Identity of an Item . . 160
The Argument Collection Classes . . . 160
The Receiver Collection Classes . . . . 161
Classifying Collections . . . . . . . 161

Chapter 6. Other Classes . . . . . . 163
The Alarm Class . . . . . . . . . . 163

CANCEL . . . . . . . . . . . 164
INIT . . . . . . . . . . . . . 164
Examples . . . . . . . . . . . 164

The Class Class . . . . . . . . . . 165
BASECLASS . . . . . . . . . . 166
DEFAULTNAME. . . . . . . . . 166
DEFINE . . . . . . . . . . . . 166
DELETE. . . . . . . . . . . . 167
ENHANCED . . . . . . . . . . 167
ID. . . . . . . . . . . . . . 168

INHERIT . . . . . . . . . . . 168
INIT . . . . . . . . . . . . . 169
METACLASS . . . . . . . . . . 169
METHOD . . . . . . . . . . . 170
METHODS. . . . . . . . . . . 170
MIXINCLASS . . . . . . . . . . 171
NEW. . . . . . . . . . . . . 172
QUERYMIXINCLASS . . . . . . . 172
SUBCLASS . . . . . . . . . . . 172
SUBCLASSES . . . . . . . . . . 173
SUPERCLASSES . . . . . . . . . 173
UNINHERIT . . . . . . . . . . 174

The Message Class . . . . . . . . . 174
COMPLETED . . . . . . . . . . 175
INIT . . . . . . . . . . . . . 175
NOTIFY. . . . . . . . . . . . 176
RESULT . . . . . . . . . . . . 176
SEND . . . . . . . . . . . . 177
START . . . . . . . . . . . . 177
Example . . . . . . . . . . . 178

The Method Class . . . . . . . . . 178
NEW (Class Method) . . . . . . . 179
NEWFILE (Class Method) . . . . . . 179
SETGUARDED . . . . . . . . . 180
SETPRIVATE . . . . . . . . . . 180
SETPROTECTED. . . . . . . . . 180
SETSECURITYMANAGER . . . . . 180
SETUNGUARDED . . . . . . . . 180
SOURCE . . . . . . . . . . . 181

The Monitor Class . . . . . . . . . 181
CURRENT . . . . . . . . . . . 182
DESTINATION . . . . . . . . . 182
INIT . . . . . . . . . . . . . 182
UNKNOWN . . . . . . . . . . 182
Examples . . . . . . . . . . . 182

The Object Class . . . . . . . . . . 183
NEW (Class Method) . . . . . . . 183
Operator Methods . . . . . . . . 183
CLASS . . . . . . . . . . . . 184
COPY . . . . . . . . . . . . 184
DEFAULTNAME. . . . . . . . . 184
HASMETHOD . . . . . . . . . 185
INIT . . . . . . . . . . . . . 185
OBJECTNAME . . . . . . . . . 185
OBJECTNAME= . . . . . . . . . 185
REQUEST . . . . . . . . . . . 186
RUN . . . . . . . . . . . . . 186
SETMETHOD . . . . . . . . . . 187
START . . . . . . . . . . . . 188
STRING . . . . . . . . . . . . 188

Contents v



UNSETMETHOD . . . . . . . . 189
The Stem Class . . . . . . . . . . 189

NEW (Class Method) . . . . . . . 190
[] . . . . . . . . . . . . . . 191
[]= . . . . . . . . . . . . . 191
MAKEARRAY. . . . . . . . . . 191
REQUEST . . . . . . . . . . . 192
UNKNOWN . . . . . . . . . . 192

The Stream Class. . . . . . . . . . 192
ARRAYIN . . . . . . . . . . . 193
ARRAYOUT . . . . . . . . . . 194
CHARIN . . . . . . . . . . . 194
CHAROUT. . . . . . . . . . . 194
CHARS . . . . . . . . . . . . 195
CLOSE . . . . . . . . . . . . 195
COMMAND . . . . . . . . . . 195
DESCRIPTION . . . . . . . . . 202
FLUSH . . . . . . . . . . . . 202
INIT . . . . . . . . . . . . . 202
LINEIN . . . . . . . . . . . . 202
LINEOUT . . . . . . . . . . . 203
LINES . . . . . . . . . . . . 203
MAKEARRAY. . . . . . . . . . 204
OPEN . . . . . . . . . . . . 204
POSITION . . . . . . . . . . . 206
QUALIFY . . . . . . . . . . . 206
QUERY . . . . . . . . . . . . 206
SEEK. . . . . . . . . . . . . 208
STATE . . . . . . . . . . . . 209
SUPPLIER . . . . . . . . . . . 210

The String Class . . . . . . . . . . 210
NEW (Class Method) . . . . . . . 212
Arithmetic Methods . . . . . . . . 212
Comparison Methods . . . . . . . 213
Logical Methods . . . . . . . . . 215
Concatenation Methods . . . . . . 216
ABBREV . . . . . . . . . . . 216
ABS . . . . . . . . . . . . . 217
BITAND . . . . . . . . . . . 217
BITOR . . . . . . . . . . . . 218
BITXOR . . . . . . . . . . . . 218
B2X . . . . . . . . . . . . . 219
CENTER/CENTRE . . . . . . . . 220
CHANGESTR . . . . . . . . . . 220
COMPARE . . . . . . . . . . . 221
COPIES . . . . . . . . . . . . 221
COUNTSTR . . . . . . . . . . 221
C2D . . . . . . . . . . . . . 222
C2X . . . . . . . . . . . . . 223
DATATYPE . . . . . . . . . . 223

DELSTR. . . . . . . . . . . . 225
DELWORD. . . . . . . . . . . 225
D2C . . . . . . . . . . . . . 226
D2X . . . . . . . . . . . . . 227
FORMAT . . . . . . . . . . . 228
INSERT . . . . . . . . . . . . 229
LASTPOS . . . . . . . . . . . 230
LEFT . . . . . . . . . . . . . 230
LENGTH . . . . . . . . . . . 231
MAKESTRING . . . . . . . . . 231
MAX . . . . . . . . . . . . . 231
MIN . . . . . . . . . . . . . 232
OVERLAY . . . . . . . . . . . 232
POS . . . . . . . . . . . . . 233
REVERSE . . . . . . . . . . . 233
RIGHT . . . . . . . . . . . . 233
SIGN. . . . . . . . . . . . . 234
SPACE . . . . . . . . . . . . 234
STRING . . . . . . . . . . . . 235
STRIP . . . . . . . . . . . . 235
SUBSTR . . . . . . . . . . . . 236
SUBWORD. . . . . . . . . . . 236
TRANSLATE . . . . . . . . . . 237
TRUNC . . . . . . . . . . . . 238
VERIFY . . . . . . . . . . . . 238
WORD . . . . . . . . . . . . 239
WORDINDEX. . . . . . . . . . 240
WORDLENGTH . . . . . . . . . 240
WORDPOS. . . . . . . . . . . 240
WORDS. . . . . . . . . . . . 241
X2B . . . . . . . . . . . . . 241
X2C . . . . . . . . . . . . . 242
X2D . . . . . . . . . . . . . 243

The Supplier Class . . . . . . . . . 244
NEW (Class Method) . . . . . . . 244
AVAILABLE . . . . . . . . . . 245
INDEX . . . . . . . . . . . . 245
ITEM. . . . . . . . . . . . . 245
NEXT . . . . . . . . . . . . 245
Examples . . . . . . . . . . . 246

Chapter 7. Other Objects . . . . . . 247
The Environment Object . . . . . . . 247
The NIL Object . . . . . . . . . . 248

The Local Environment Object (.LOCAL) 248
The Error Object . . . . . . . . . . 249
The Input Object . . . . . . . . . . 249
The Output Object . . . . . . . . . 250

Chapter 8. Functions . . . . . . . . 251

vi Object REXX Reference



Syntax . . . . . . . . . . . . . 251
Functions and Subroutines . . . . . . 252

Search Order . . . . . . . . . . 253
Errors during Execution . . . . . . 254

Return Values . . . . . . . . . . . 256
Built-in Functions . . . . . . . . . 257

ABBREV (Abbreviation) . . . . . . 258
ABS (Absolute Value) . . . . . . . 258
ADDRESS . . . . . . . . . . . 259
ARG (Argument). . . . . . . . . 259
BEEP. . . . . . . . . . . . . 260
BITAND (Bit by Bit AND). . . . . . 261
BITOR (Bit by Bit OR) . . . . . . . 261
BITXOR (Bit by Bit Exclusive OR) . . . 262
B2X (Binary to Hexadecimal) . . . . . 262
CENTER (or CENTRE) . . . . . . . 263
CHANGESTR . . . . . . . . . . 263
CHARIN (Character Input) . . . . . 264
CHAROUT (Character Output) . . . . 265
CHARS (Characters Remaining) . . . . 266
COMPARE . . . . . . . . . . . 267
CONDITION . . . . . . . . . . 267
COPIES . . . . . . . . . . . . 269
COUNTSTR . . . . . . . . . . 269
C2D (Character to Decimal) . . . . . 269
C2X (Character to Hexadecimal) . . . 270
DATATYPE . . . . . . . . . . 270
DATE . . . . . . . . . . . . 272
DELSTR (Delete String) . . . . . . 275
DELWORD (Delete Word) . . . . . . 275
DIGITS . . . . . . . . . . . . 276
DIRECTORY . . . . . . . . . . 276
D2C (Decimal to Character) . . . . . 276
D2X (Decimal to Hexadecimal) . . . . 277
ENDLOCAL . . . . . . . . . . 278
ERRORTEXT . . . . . . . . . . 278
FILESPEC . . . . . . . . . . . 279
FORM . . . . . . . . . . . . 279
FORMAT . . . . . . . . . . . 279
FUZZ . . . . . . . . . . . . 281
INSERT . . . . . . . . . . . . 281
LASTPOS (Last Position) . . . . . . 282
LEFT . . . . . . . . . . . . . 282
LENGTH . . . . . . . . . . . 282
LINEIN (Line Input) . . . . . . . 283
LINEOUT (Line Output) . . . . . . 284
LINES (Lines Remaining) . . . . . . 286
MAX (Maximum) . . . . . . . . 286
MIN (Minimum) . . . . . . . . . 287
OVERLAY . . . . . . . . . . . 287

POS (Position). . . . . . . . . . 287
QUEUED . . . . . . . . . . . 288
RANDOM . . . . . . . . . . . 288
REVERSE . . . . . . . . . . . 289
RIGHT . . . . . . . . . . . . 289
SETLOCAL . . . . . . . . . . 290
SIGN. . . . . . . . . . . . . 290
SOURCELINE. . . . . . . . . . 291
SPACE . . . . . . . . . . . . 291
STREAM . . . . . . . . . . . 291
STRIP . . . . . . . . . . . . 299
SUBSTR (Substring) . . . . . . . . 299
SUBWORD. . . . . . . . . . . 300
SYMBOL . . . . . . . . . . . 300
TIME. . . . . . . . . . . . . 301
TRACE . . . . . . . . . . . . 303
TRANSLATE . . . . . . . . . . 304
TRUNC (Truncate) . . . . . . . . 305
VALUE . . . . . . . . . . . . 305
VAR . . . . . . . . . . . . . 308
VERIFY . . . . . . . . . . . . 308
WORD . . . . . . . . . . . . 309
WORDINDEX. . . . . . . . . . 309
WORDLENGTH . . . . . . . . . 309
WORDPOS (Word Position) . . . . . 310
WORDS. . . . . . . . . . . . 310
XRANGE (Hexadecimal Range) . . . . 310
X2B (Hexadecimal to Binary) . . . . . 311
X2C (Hexadecimal to Character) . . . 311
X2D (Hexadecimal to Decimal) . . . . 312

Linux Application Programming Interface
Functions . . . . . . . . . . . . 313

RXFUNCADD . . . . . . . . . 313
RXFUNCDROP . . . . . . . . . 313
RXFUNCQUERY . . . . . . . . . 313
RXQUEUE . . . . . . . . . . . 314

Chapter 9. REXX Utilities (RexxUtil) . . . 317
SysAddRexxMacro . . . . . . . . . 317
SysClearRexxMacroSpace . . . . . . . 318
SysCloseEventSem . . . . . . . . . 318
SysCloseMutexSem . . . . . . . . . 318
SysCls . . . . . . . . . . . . . 319
SysCreateEventSem . . . . . . . . . 319
SysCreateMutexSem. . . . . . . . . 320
SysDropFuncs . . . . . . . . . . . 320
SysDropRexxMacro . . . . . . . . . 320
SysFileDelete . . . . . . . . . . . 320
SysFileSearch . . . . . . . . . . . 321
SysFileTree . . . . . . . . . . . . 322

Contents vii



SysGetKey . . . . . . . . . . . . 323
SysGetMessage . . . . . . . . . . 324
SysGetMessageX . . . . . . . . . . 325
SysLoadFuncs . . . . . . . . . . . 325
SysLoadRexxMacroSpace . . . . . . . 326
SysMkDir . . . . . . . . . . . . 326
SysOpenEventSem . . . . . . . . . 327
SysOpenMutexSem . . . . . . . . . 327
SysPostEventSem. . . . . . . . . . 327
SysQueryRexxMacro . . . . . . . . 328
SysReleaseMutexSem . . . . . . . . 328
SysReorderRexxMacro . . . . . . . . 328
SysRequestMutexSem . . . . . . . . 329
SysResetEventSem . . . . . . . . . 329
SysRmDir . . . . . . . . . . . . 330
SysSaveRexxMacroSpace . . . . . . . 330
SysSearchPath. . . . . . . . . . . 331
SysSetPriority . . . . . . . . . . . 331
SysSleep . . . . . . . . . . . . 332
SysTempFileName . . . . . . . . . 332
SysWaitEventSem . . . . . . . . . 333
SysVersion . . . . . . . . . . . . 333

Chapter 10. Parsing . . . . . . . . 335
Simple Templates for Parsing into Words 335

The Period as a Placeholder . . . . . 337
Templates Containing String Patterns . . . 337
Templates Containing Positional (Numeric)
Patterns . . . . . . . . . . . . . 339

Combining Patterns and Parsing into
Words . . . . . . . . . . . . 342

Parsing with Variable Patterns . . . . . 343
Using UPPER, LOWER, and CASELESS 344
Parsing Instructions Summary . . . . . 345
Parsing Instructions Examples . . . . . 345
Advanced Topics in Parsing . . . . . . 346

Parsing Several Strings . . . . . . . 347
Combining String and Positional Patterns 347
Conceptual Overview of Parsing . . . 348

Chapter 11. Numbers and Arithmetic . . 353
Precision . . . . . . . . . . . . 354
Arithmetic Operators . . . . . . . . 354

Power . . . . . . . . . . . . 355
Integer Division . . . . . . . . . 355
Remainder . . . . . . . . . . . 355
Operator Examples . . . . . . . . 356

Exponential Notation . . . . . . . . 356
Numeric Comparisons . . . . . . . . 358

Limits and Errors when REXX Uses
Numbers Directly . . . . . . . . . 359

Chapter 12. Conditions and Condition
Traps . . . . . . . . . . . . . 361
Action Taken when a Condition Is Not
Trapped . . . . . . . . . . . . . 364
Action Taken when a Condition Is Trapped 365
Condition Information . . . . . . . . 367

Descriptive Strings . . . . . . . . 367
Additional Object Information . . . . 368
The Special Variable RC . . . . . . 368
The Special Variable SIGL . . . . . . 369
Condition Objects . . . . . . . . 369

Chapter 13. Concurrency . . . . . . 371
Early Reply . . . . . . . . . . . 371
Message Objects . . . . . . . . . . 373
Default Concurrency . . . . . . . . 374

Sending Messages within an Activity 376
Using Additional Concurrency Mechanisms 377

SETUNGUARDED Method and
UNGUARDED Option . . . . . . . 377
GUARD ON and GUARD OFF . . . . 378
Guarded Methods . . . . . . . . 378
Additional Examples . . . . . . . 379

Chapter 14. Built-in Objects . . . . . 387
.METHODS . . . . . . . . . . . 387
.RS . . . . . . . . . . . . . . 387

Chapter 15. The Security Manager . . . 389
Calls to the Security Manager . . . . . 389

Example . . . . . . . . . . . 392

Chapter 16. Input and Output Streams 395
The Input and Output Model . . . . . 396

Input Streams . . . . . . . . . . 396
Output Streams . . . . . . . . . 397
External Data Queue . . . . . . . 397
Default Stream Names . . . . . . . 400
Line versus Character Positioning . . . 401

Implementation . . . . . . . . . . 402
Operating-System Specifics . . . . . . 403
Examples of Input and Output . . . . . 403
Errors during Input and Output. . . . . 404
Summary of REXX I/O Instructions and
Methods . . . . . . . . . . . . 405

Chapter 17. Debugging Aids . . . . . 407

viii Object REXX Reference



Interactive Debugging of Programs. . . . 407
RXTRACE Variable . . . . . . . . . 409

Chapter 18. Reserved Keywords . . . . 411

Chapter 19. Special Variables . . . . . 413

Chapter 20. Useful Services . . . . . 417
Linux Commands . . . . . . . . . 417
Subcommand Handler Services . . . . . 417

The RXSUBCOM Command . . . . . 417
The RXQUEUE Filter . . . . . . . 420

Distributing Programs without Source. . . 422

Appendix A. Using the DO Keyword. . . 423
Simple DO Group . . . . . . . . . 423
Repetitive DO Loops . . . . . . . . 423

Simple Repetitive Loops . . . . . . 423
Controlled Repetitive Loops . . . . . 424

Repetitive Loops over Collections . . . . 425
Conditional Phrases (WHILE and UNTIL) 426

Appendix B. Migration . . . . . . . 431
Error Codes and Return Codes . . . . . 431
Error Detection and Reporting . . . . . 431

File Name Extensions . . . . . . . . 431
Environment Variables . . . . . . . . 431
Stems versus Collections . . . . . . . 432
Input and Output Using Functions and
Methods . . . . . . . . . . . . 432
SEEK and POSITION Options of the
STREAM Function . . . . . . . . . 432
.Environment . . . . . . . . . . . 432
Deleting Environment Variables . . . . . 433
Queuing . . . . . . . . . . . . 433

Appendix C. Error Numbers and
Messages . . . . . . . . . . . . 435
Error List . . . . . . . . . . . . 435
RXSUBCOM Utility Program. . . . . . 451
RXQUEUE Utility Program . . . . . . 452
REXXC Utility Program . . . . . . . 453

Appendix D. Notices . . . . . . . . 455
Trademarks and Service Marks . . . . . 456

Index . . . . . . . . . . . . . 459

Readers’ Comments — We’d Like to Hear
from You . . . . . . . . . . . . 479

Contents ix



x Object REXX Reference



About This Book

This book describes the Object REXX Interpreter, called interpreter or
language processor in the following, and the Object-Oriented REstructured
eXtended eXecutor (REXX) language.

This book is intended for people who plan to develop applications using
REXX. Its users range from the novice, who might have experience in some
programming language but no REXX experience, to the experienced
application developer, who might have had some experience with Object
REXX.

This book is a reference rather than a tutorial. It assumes you are already
familiar with object-oriented programming concepts.

Descriptions include the use and syntax of the language and explain how the
language processor “interprets” the language as a program is running.

Related Information

Object REXX for Linux: Programming Guide

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any
other REXX documentation:
v Visit our home page at http://www2.hursley.ibm.com/orexx. There you

will find the feedback page where you can enter comments and send them.
v Send your comments by e-mail to swsdid@de.ibm.com, or to the IBMMAIL

address DEIBM3P3@IBMMAIL. Be sure to include the name of the book,
the part number of the book, the version of REXX, and, if applicable, the
specific location of the text you are commenting on (for example, a page
number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by
fax, or by giving it to an IBM representative. The mailing address is on the
back of the Readers’ Comments form. The fax number is
+49-(0)7031-16-6901.

© Copyright IBM Corp. 1999 xi

http://www2.hursley.ibm.com/orexx


How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right, from top to bottom, following

the path of the line.
The ÊÊ─── symbol indicates the beginning of a statement.
The ───Ê symbol indicates that the statement syntax is continued on the
next line.
The Ê─── symbol indicates that a statement is continued from the previous
line.
The ───ÊÍ symbol indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the
Ê─── symbol and end with the ───Ê symbol.

v Required items appear on the horizontal line (the main path).

ÊÊ STATEMENT required_item ÊÍ

v Optional items appear below the main path.

ÊÊ STATEMENT
optional_item

ÊÍ

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

ÊÊ STATEMENT required_choice1
required_choice2

ÊÍ

v If choosing one of the items is optional, the entire stack appears below the
main path.

ÊÊ STATEMENT
optional_choice1
optional_choice2

ÊÍ

v If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

xii Object REXX Reference



ÊÊ STATEMENT
default_choice

optional_choice
optional_choice

ÊÍ

v An arrow returning to the left above the main line indicates an item that
can be repeated.

ÊÊ STATEMENT · repeatable_item ÊÍ

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v A set of vertical bars around an item indicates that the item is a fragment, a
part of the syntax diagram that appears in greater detail below the main
diagram.

ÊÊ STATEMENT fragment ÊÍ

fragment:

expansion_provides_greater_detail

v Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown but you can type them in upper, lower, or mixed case.
Variables appear in all lowercase letters (for example, parmx). They
represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or such symbols
are shown, you must enter them as part of the syntax.

The following example shows how the syntax is described:

ÊÊ MAX( ·

,

number ) ÊÍ

About This Book xiii



xiv Object REXX Reference



Chapter 1. REXX General Concepts

The REXX language is particularly suitable for:
v Application scripting
v Command procedures
v Application front ends
v User-defined macros (such as editor subcommands)
v Prototyping
v Personal computing

As an object-oriented language, REXX provides, for example, data
encapsulation, polymorphism, an object class hierarchy, class-based
inheritance of methods, and concurrency. Object REXX is compatible with
earlier REXX versions. It has the usual structured-programming instructions,
for example IF, SELECT, DO WHILE, and LEAVE, and a number of useful
built-in functions.

The language imposes few restrictions on the program format. There can be
more than one clause on a line, or a single clause can occupy more than one
line. Indentation is allowed. You can, therefore, code programs in a format
that emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all
variables fit into the storage available. There are no restrictions on the types of
data that variables can contain.

The limit on the length of symbols (variable names) is 250 characters. You can
use compound symbols, such as
NAME.Y.Z

where Y and Z can be the names of variables or can be constant symbols, for
constructing arrays and for other purposes.

A language processor (interpreter) runs REXX programs. That is, the program
runs line by line and word by word, without first being translated to another
form (compiled). The advantage of this is that you can fix the error and rerun
the program faster than with a compiler.

© Copyright IBM Corp. 1999 1



What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by
focusing not on the instructions and operations a program uses to manipulate
data, but on the data itself. First, the program simulates, or models, objects in
the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company’s employees, money in a bank account,
or a report, are stored as data so the computer can act upon it. For example,
when you print a report, print is the action and report is the object acted
upon. Often several actions apply; you could also send or erase the report.

Modularizing Data

In conventional, structured programming, actions like print are often isolated
from the data by placing them in subroutines or modules. A module typically
contains an operation for implementing one simple action. You might have a
PRINT module, a SEND module, an ERASE module. These actions are
independent of the data they operate on.

But with object-oriented programming, it is the data that is modularized. And
each data module includes its own operations for performing actions directly
related to its data.

REXX General Concepts

2 Object REXX Reference



In the case of report, the report object would contain its own built-in PRINT,
SEND, ERASE, and FILE operations.

Object-oriented programming lets you model real-world objects—even very
complex ones—precisely and elegantly. As a result, object manipulation
becomes easier and computer instructions become simpler and can be
modified later with minimal effort.

Object-oriented programming hides any information that is not important for
acting on an object, thereby concealing the object’s complexities. Complex
tasks can then be initiated simply, at a very high level.

Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A
real-world object has actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown,
bounced, caught. But it also has its own physical characteristics—size, shape,
composition, weight, color, speed, position. An accurate data model of a real
ball would define not only the physical characteristics but all related actions
and characteristics in one package:

Figure 1. Modular Data—a Report Object

REXX General Concepts

Chapter 1. REXX General Concepts 3



In object-oriented programming, objects are the basic building blocks—the
fundamental units of data.

There are many kinds of objects; for example, character strings, collections,
and input and output streams. An object—such as a character string—always
consists of two parts: the possible actions or operations related to it, and its
characteristics or variables. A variable has a variable name, and an associated
data value that can change over time. These actions and characteristics are so
closely associated that they cannot be separated:

To access an object’s data, you must always specify an action. For example,
suppose the object is the number 5. Its actions might include addition,
subtraction, multiplication, and division. Each of these actions is an interface
to the object’s data. The data is said to be encapsulated because the only way to
access it is through one of these surrounding actions. The encapsulated
internal characteristics of an object are its variables. Variables are associated
with an object and exist for the lifetime of that object:

Figure 2. A Ball Object

Figure 3. Ball Object with Variable Names and Values

REXX General Concepts

4 Object REXX Reference



REXX comes with a basic set of classes for creating objects (see “Chapter 4.
Objects and Classes” on page 95). Therefore, you can create objects that exactly
match the needs of a particular application.

How Objects Interact

The actions within an object are its only interface to other objects. Actions
form a kind of “wall” that encapsulates the object, and shields its internal
information from outside objects. This shielding is called information hiding.
Information hiding protects an object’s data from corruption by outside
objects, and also protects outside objects from relying on another object’s
private data, which can change without warning.

One object can act upon another (or cause it to act) only by calling that
object’s actions, namely by sending messages. Objects respond to these
messages by performing an action, returning data, or both. A message to an
object must specify:
v A receiving object
v The “message send” symbol, ∼, which is called the twiddle

v The action and, optionally in parentheses, any parameters required

So the message format looks like this:
object∼action(parameters)

Assume that the object is the string !iH. Sending it a message to use its
REVERSE action:
'!iH'∼reverse

returns the string object Hi!.

Figure 4. Encapsulated 5 Object

REXX General Concepts

Chapter 1. REXX General Concepts 5



Methods

Sending a message to an object results in performing some action; that is, it
results in running some underlying code. The action-generating code is called
a method. When you send a message to an object, you specify its method name
in the message. Method names are character strings like REVERSE. In the
preceding example, sending the reverse message to the !iH object causes it to
run the REVERSE method. Most objects are capable of more than one action,
and so have a number of available methods.

The classes REXX provides include their own predefined methods. The
Message class, for example, has the COMPLETED, INIT, NOTIFY, RESULT,
SEND, and START methods. When you create your own classes, you can
write new methods for them in REXX code. Much of the object programming
in REXX is writing the code for the methods you create.

Polymorphism

REXX lets you send the same message to objects that are different:
'!iH'∼reverse /* Reverses the characters "!iH" to form "Hi!" */
pen∼reverse /* Reverses the direction of a plotter pen */
ball∼reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if
the programming implementation is different for each object. This ability to
hide different functions behind a common interface is called polymorphism. As
a result of information hiding, each object in the previous example knows
only its own version of REVERSE. And even though the objects are different,
each reverses itself as dictated by its own code.

Although the !iH object’s REVERSE code is different from the plotter pen’s,
the method name can be the same because REXX keeps track of the methods
each object owns. The ability to reuse the same method name so that one
message can initiate more than one function is another feature of
polymorphism. You do not need to have several message names like
REVERSE_STRING, REVERSE_PEN, REVERSE_BALL. This keeps
method-naming schemes simple and makes complex programs easy to follow
and modify.

The ability to hide the various implementations of a method while leaving the
interface the same illustrates polymorphism at its lowest level. On a higher
level, polymorphism permits extensive code reuse.

REXX General Concepts

6 Object REXX Reference



Classes and Instances

In REXX, objects are organized into classes. Classes are like templates; they
define the methods and variables that a group of similar objects have in
common and store them in one place.

If you write a program to manipulate some screen icons, for example, you
might create an Icon class. In that Icon class you can include all the icon
objects with similar actions and characteristics:

All the icon objects might use common methods like DRAW or ERASE. They
might contain common variables like position, color, or size. What makes each
icon object different from one another is the data assigned to its variables. For
the Linux system icon, it might be position='20,20', while for the shredder it is
'20,30' and for information it is '20,40':

Objects that belong to a class are called instances of that class. As instances of
the Icon class, the Linux system icon, shredder icon, and information icon
acquire the methods and variables of that class. Instances behave as if they
each had their own methods and variables of the same name. All instances,
however, have their own unique properties—the data associated with the
variables. Everything else can be stored at the class level.

Figure 5. A Simple Class

Figure 6. Icon Class

REXX General Concepts

Chapter 1. REXX General Concepts 7



If you must update or change a particular method, you only have to change it
at one place, at the class level. This single update is then acquired by every
new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon
class is an object class you can use to create other objects with similar
properties, such as an application icon.

An object class is like a factory for producing instances of the objects.

Data Abstraction

The ability to create new, high-level data types and organize them into a
meaningful class structure is called data abstraction. Data abstraction is at the
core of object-oriented programming. Once you model objects with real-world
properties from the basic data types, you can continue creating, assembling,
and combining them into increasingly complex objects. Then you can use
these objects as if they were part of the original programming language.

Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin
your real-world modeling from scratch. REXX provides predefined classes and
methods. From there you can create additional classes and methods of your
own, according to your needs.

REXX classes are hierarchical. Any subclass (a class below another class in the
hierarchy) inherits the methods and variables of one or more superclasses
(classes above a class in the hierarchy):

Figure 7. Instances of the Icon Class

REXX General Concepts

8 Object REXX Reference



You can add a class to an existing superclass. For example, you might add the
Icon class to the Screen-Object superclass:

In this way, the subclass inherits additional methods from the superclass. A
class can have more than one superclass, for example, subclass Bitmap might
have the superclasses Screen-Object and Art-Object. Acquiring methods and
variables from more than one superclass is known as multiple inheritance:

Structure and General Syntax

On LINUX, REXX programs are not required to start with a standard
comment. If you use the adapted bash the shell tests all executable files
whether they start with REXX comment in the first row and column and
invokes the REXX interpreter. However, for portability reasons start each
REXX program with a standard comment that begins in the first column of
the first line. For more information on comments, refer to “Comments” on
page 10.

A REXX program is built from a series of clauses that are composed of:

v Zero or more blanks (which are ignored)
v A sequence of tokens (see “Tokens” on page 12)

v Zero or more blanks (again ignored)
v A semicolon (;) delimiter that the line end, certain keywords, or the colon (:)

implies.

Figure 8. Superclass and Subclasses

Figure 9. The Screen-Object Superclass

Figure 10. Multiple Inheritance

REXX General Concepts

Chapter 1. REXX General Concepts 9



Conceptually, each clause is scanned from left to right before processing, and
the tokens composing it are identified. Instruction keywords are recognized at
this stage, comments are removed, and several blanks (except within literal
strings) are converted to single blanks. Blanks adjacent to operator characters
and special characters are also removed.

Characters

A character is a member of a defined set of elements that is used for the
control or representation of data. You can usually enter a character with a
single keystroke. The coded representation of a character is its representation
in digital form. A character, the letter A, for example, differs from its coded
representation or encoding. Various coded character sets (such as ASCII and
EBCDIC) use different encodings for the letter A (decimal values 65 and 193,
respectively). This book uses characters to convey meanings and not to imply
a specific character code, except where otherwise stated. The exceptions are
certain built-in functions that convert between characters and their
representations. The functions C2D, C2X, D2C, X2C, and XRANGE depend on
the character set used.

A code page specifies the encodings for each character in a set. Be aware that:
v Some code pages do not contain all characters that REXX defines as valid

(for example, the logical NOT character).
v Some characters that REXX defines as valid have different encodings in

different code pages, for example the exclamation mark (!).

Comments

A comment is a sequence of characters delimited by specific characters. It is
ignored by the program but acts as a separator. For example, a token
containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:
v A line comment, where the comment is limited to one line
v The standard REXX comment, where the comment can cover several lines

A line comment is started by two subsequent minus signs (−−) and ends at the
end of a line. Example:
'Fred'
"Don't Panic!"
'You shouldn''t' −− Same as "You shouldn't"
''

In this example, the language processor processes the statements from 'Fred'
to 'You shouldn't', ignores the words following the line comment, and
continues to process the statement ''.

REXX General Concepts

10 Object REXX Reference



A standard comment is a sequence of characters (on one or more lines)
delimited by /* and */. Within these delimiters any characters are allowed.
Standard comments can contain other standard comments, as long as each
begins and ends with the necessary delimiters. They are called nested
comments. Standard comments can be anywhere and of any length.
/* This is an example of a valid REXX comment */

Take special care when commenting out lines of code containing /* or */ as
part of a literal string. Consider the following program segment:
01 parse pull input
02 if substr(input,1,5) = '/*123'
03 then call process
04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:
01 parse pull input
02 /* if substr(input,1,5) = '/*123'
03 then call process
04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is
part of the literal string /*123 as the start of a nested standard comment. It
would not process the rest of the program because it would be looking for a
matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings
containing /* or */; line 2 would be:
if substr(input,1,5) = '/' || '*123'

You could comment out lines 2 and 3 correctly as follows:
01 parse pull input
02 /* if substr(input,1,5) = '/' || '*123'
03 then call process
04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest
the two types, the type of comment that comes first takes precedence over the
one nested. Here is an example:
'Fred'
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't"
'' −− The null string */

In this example, the language processor ignores everything after 'You
shouldn''t' up to the end of the last line. In this case, the standard comment
has precedence over the line comment.

REXX General Concepts

Chapter 1. REXX General Concepts 11



When nesting the two comment types, make sure that the start delimiter of
the standard comment /* is not in the line commented out with the line
comment signs.

Example:
'Fred'
"Don't Panic!"
'You shouldn''t' −− Same as /* "You shouldn't"
'' The null string */

This example can produce an error because the language processor ignores the
start delimiter of the standard comment, which is commented out using the
line comment.

Tokens

A token is the unit of low-level syntax from which clauses are built. Programs
written in REXX are composed of tokens. Tokens can be of any length, up to
an implementation-restricted maximum. They are separated by blanks or
comments, or by the nature of the tokens themselves. The classes of tokens
are:
v Literal strings
v Hexadecimal strings
v Binary strings
v Symbols
v Numbers
v Operator characters
v Special characters

Literal Strings

A literal string is a sequence including any characters except line feed (X'10')
and delimited by a single quotation mark (') or a double quotation mark (").
You use two consecutive double quotation marks ("") to represent one double
quotation mark (") within a string delimited by double quotation marks.
Similarly, you use two consecutive single quotation marks ('') to represent
one single quotation mark (') within a string delimited by single quotation
marks. A literal string is a constant and its contents are never modified when
it is processed. Literal strings must be complete on a single line. This means
that unmatched quotation marks can be detected on the line where they occur.

A literal string with no characters (that is, a string of length 0) is called a null
string.

These are valid strings:

REXX General Concepts

12 Object REXX Reference



'Fred'
"Don't Panic!"
'You shouldn't' /* Same as "You shouldn't" */
'' /* The null string */

Implementation maximum: A literal string can contain up to 250 characters.
The length of the evaluated result of an expression, however, is limited only
by the available virtual storage of your computer, with an additional limit of
512MB maximum per process.

Note that a string immediately followed by a right bracket is considered to be
the name of a function. If immediately followed by the symbol X or x, it is
considered to be a hexadecimal string. If followed immediately by the symbol
B or b, it is considered to be a binary string.

Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal
notation of its encoding. It is any sequence of zero or more hexadecimal digits
(0–9, a–f, A–F), grouped in pairs. A single leading 0 is assumed, if necessary, at
the beginning of the string to make an even number of hexadecimal digits.
The groups of digits are optionally separated by one or more blanks, and the
whole sequence is delimited by single or double quotation marks and
immediately followed by the symbol X or x. Neither x nor X can be part of a
longer symbol. The blanks, which can only be byte boundaries (and not at the
beginning or end of the string), are to improve readability. The language
processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal
digits given. Packing the hexadecimal digits removes blanks and converts
each pair of hexadecimal digits into its equivalent character, for example, '41'X
to A.

Hexadecimal strings let you include characters in a program even if you
cannot directly enter the characters themselves. These are valid hexadecimal
strings:
'ABCD'x
"1d ec f8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number. It is an escape
mechanism that lets a user describe a character in terms of its encoding
(and, therefore, is machine-dependent). In ASCII, '20'X is the encoding
for a blank. In every case, a string of the form '.....'x is an alternative to
a straightforward string. In ASCII '41'x and 'A' are identical, as are '20'x
and a blank, and must be treated identically.

REXX General Concepts

Chapter 1. REXX General Concepts 13



Implementation maximum: The packed length of a hexadecimal string (the
string with blanks removed) can be up to 250 bytes.

Binary Strings

A binary string is a literal string, expressed using a binary representation of
its encoding. It is any sequence of zero or more binary digits (0 or 1) in
groups of 8 (bytes) or 4 (nibbles). The first group can have less than four
digits; in this case, up to three 0 digits are assumed to the left of the first
digit, making a total of four digits. The groups of digits are optionally
separated by one or more blanks, and the whole sequence is delimited by
matching single or double quotation marks and immediately followed by the
symbol b or B. Neither b nor B can be part of a longer symbol. The blanks,
which can only be byte or nibble boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores
them.

A binary string is a literal string formed by packing the binary digits given. If
the number of binary digits is not a multiple of 8, leading zeros are added on
the left to make a multiple of 8 before packing. Binary strings allow you to
specify characters explicitly, bit by bit. These are valid binary strings:
'11110000'b /* == 'f0'x */
"101 1101"b /* == '5d'x */
'1'b /* == '00000001'b and '01'x */
'10000 10101010'b /* == '0001 0000 1010 1010'b */
''b /* == '' */

Implementation maximum: The packed length of a binary-literal string can be
up to 250 bytes.

Symbols

Symbols are groups of characters, selected from the:
v English alphabetic characters (A–Z and a–z)1

v Numeric characters (0–9)
v Characters . !2 ? and underscore (_).

Any lowercase alphabetic character in a symbol is translated to uppercase
(that is, lowercase a–z to uppercase A–Z) before use.

These are valid symbols:

1. Note that some code pages do not include lowercase English characters a–z.

2. The encoding of the exclamation mark depends on the code page used.

REXX General Concepts

14 Object REXX Reference



Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a
variable and can assign it a value. If you have not assigned a value to it, its
value is the characters of the symbol itself, translated to uppercase (that is,
lowercase a–z to uppercase A–Z). Symbols that begin with a number or a
period are constant symbols and cannot directly be assigned a value. (See
“Environment Symbols” on page 36.)

One other form of symbol is allowed to support the representation of
numbers in exponential format. The symbol starts with a digit (0–9) or a
period, and it can end with the sequence E or e, followed immediately by an
optional sign (- or +), followed immediately by one or more digits (which
cannot be followed by any other symbol characters). The sign in this context
is part of the symbol and is not an operator.

These are valid numbers in exponential notation:
17.3E-12
.03e+9

Numbers

Numbers are character strings consisting of one or more decimal digits, with
an optional prefix of a plus (+) or minus (-) sign, and optionally including a
single period (.) that represents a decimal point. A number can also have a
power of 10 suffixed in conventional exponential notation: an E (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one
or more decimal digits defining the power of 10. Whenever a character string
is used as a number, rounding can occur to a precision specified by the
NUMERIC DIGITS instruction (the default is nine digits). See “Chapter 11.
Numbers and Arithmetic” on page 353 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign) and trailing
blanks. Blanks cannot be embedded among the digits of a number or in the
exponential part. Note that a symbol or a literal string can be a number. A
number cannot be the name of a variable.

These are valid numbers:
12
'-17.9'
127.0650
73e+128
' + 7.9E5 '

REXX General Concepts

Chapter 1. REXX General Concepts 15



You can specify numbers with or without quotation marks around them. Note
that the sequence −17.9 (without quotation marks) in an expression is not
simply a number. It is a minus operator (which can be prefix minus if no term
is to the left of it) followed by a positive number. The result of the operation
is a number.

A whole number is a number that has a no decimal part and that the language
processor would not usually express in exponential notation. That is, it has no
more digits before the decimal point than the current setting of NUMERIC
DIGITS (the default is nine).

Implementation maximum: The exponent of a number expressed in
exponential notation can have up to nine digits.

Operator Characters

The characters + - \ / % * | | & = ¬ > < and the sequences >= <= \> \< \=
>< <> == \== // && || ** ¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<=
indicate operations (see “Operators” on page 19). (The || can also be used as
the concatenation symbol.) A few of these are also used in parsing templates,
and the equal sign is also used to indicate assignment. Blanks adjacent to
operator characters are removed. Therefore, the following are identical in
meaning:
345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters (and some special characters—see the next section)
might not be available in all character sets. In this case, appropriate
translations can be used. In particular, the vertical bar (|) is often shown as a
split vertical bar (¦).

Throughout the language, the NOT (¬) character is synonymous with the
backslash (\). You can use the two characters interchangeably according to
availability and personal preference.

Note: The REXX interpreter uses ASCII character 124 in the concatenation
operator and as the logical OR operator. Depending on the code page
or keyboard for your particular country, ASCII 124 can be shown as a
solid vertical bar (|) or a split vertical bar (¦). The character on the
screen might not match the character engraved on the key. If you
receive error 13, Invalid character in program, on an instruction
including a vertical bar character, make sure this character is ASCII 124.

REXX General Concepts

16 Object REXX Reference



The REXX interpreter uses ASCII character 170 for the logical NOT
operator. Depending on your country, the ¬ might not appear on your
keyboard. If the character is not available, you can use the backslash (\)
in place of ¬.

Special Characters

The following characters, together with the operator characters, have special
significance when found outside of literal strings:
, ; : ( ) [ ] ∼

These characters constitute the set of special characters. They all act as token
delimiters, and blanks adjacent to any of these are removed. There is an
exception: a blank adjacent to the outside of a parenthesis or bracket is
deleted only if it is also adjacent to another special character (unless the
character is a parenthesis or bracket and the blank is outside it, too). For
example, the language processor does not remove the blank in A (Z). This is a
concatenation that is not equivalent to A(Z), a function call. The language
processor removes the blanks in (A) + (Z) because this is equivalent to
(A)+(Z).

Example

The following example shows how a clause is composed of tokens:
'REPEAT' A + 3;

This example is composed of six tokens—a literal string ('REPEAT'), a blank
operator, a symbol (A, which can have an assigned value), an operator (+), a
second symbol (3, which is a number and a symbol), and the clause delimiter
(;). The blanks between the A and the + and between the + and the 3 are
removed. However, one of the blanks between the 'REPEAT' and the A remains
as an operator. Thus, this clause is treated as though written:
'REPEAT' A+3;

Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language
processor implies the semicolon at a line end, after certain keywords, and
after a colon if it follows a single symbol. This means that you need to
include semicolons only when there is more than one clause on a line or to
end an instruction whose last character is a comma.

A line end usually marks the end of a clause and, thus, REXX implies a
semicolon at most end of lines. However, there are the following exceptions:
v The line ends in the middle of a comment. The clause continues on to the

next line.

REXX General Concepts

Chapter 1. REXX General Concepts 17



v The last token was the continuation character (a comma) and the line does
not end in the middle of a comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single
symbol, a label) and after certain keywords when they are in the correct
context. The keywords that have this effect are ELSE, OTHERWISE, and
THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and */, must
not be split by a line end (that is, / and * should not appear on
different lines) because they could not then be recognized correctly; an
implied semicolon would be added. The two consecutive characters
forming a literal quotation mark within a string are also subject to this
line-end ruling.

Continuations

One way to continue a clause on the next line is to use the comma or the
minus sign (−), which is referred to as the continuation character. The
continuation character is functionally replaced by a blank, and, thus, no
semicolon is implied. One or more comments can follow the continuation
character before the end of the line.

The following examples show how to use the continuation character to
continue a clause:
say 'You can use a comma', −− this line is continued
'to continue this clause.'

or
say 'You can use a minus'− −− this line is continued
'to continue this clause.'

Terms, Expressions, and Operators

Expressions in REXX are a general mechanism for combining one or more
pieces of data in various ways to produce a result, usually different from the
original data. All expressions evaluate to objects.

Everything in REXX is an object. REXX provides some objects, which are
described in later sections. You can also define and create objects that are
useful in particular applications—for example, a menu object for user
interaction. See “Modeling Objects” on page 3 for more information.

REXX General Concepts

18 Object REXX Reference



Terms and Expressions

Terms are literal strings, symbols, message terms, function calls, or
subexpressions interspersed with zero or more operators that denote
operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does
not begin with a digit or a period can be the name of a variable; in this case
the value of that variable is used. A symbol that begins with a period can
identify an object that the current environment provides; in this case, that
object is used. Otherwise a symbol is treated as a constant string. A symbol
can also be compound.

Message terms are described in “Message Terms” on page 25.

Function calls (see “Chapter 8. Functions” on page 251), which are of the
following form:

ÊÊ symbolorstring( ·

,

expression
) ÊÍ

The symbolorstring is a symbol or literal string.

An expression consists of one or more terms. A subexpression is a term in an
expression surrounded with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and
operator precedence in the usual algebraic manner (see “Parentheses and
Operator Precedence” on page 23). Expressions are wholly evaluated, unless
an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The
result is an object. Consequently, the result of evaluating any expression is
itself an object (such as a character string).

Operators

An operator is a representation of an operation, such as an addition, to be
carried out on one or two terms. Each operator, except for the prefix
operators, acts on two terms, which can be symbols, strings, function calls,
message terms, intermediate results, or subexpressions. Each prefix operator

REXX General Concepts

Chapter 1. REXX General Concepts 19



acts on the term or subexpression that follows it. Blanks (and comments)
adjacent to operator characters have no effect on the operator; thus, operators
constructed from more than one character can have embedded blanks and
comments. In addition, one or more blanks, if they occur in expressions but
are not adjacent to another operator, also act as an operator. The language
processor functionally translates operators into message terms. For dyadic
operators, which operate on two terms, the language processor sends the
operator as a message to the term on the left, passing the term on the right as
an argument. For example, the sequence
say 1+2

is functionally equivalent to:
say 1∼'+'(2)

The blank concatenation operator sends the message “ ” (a single blank), and
the abuttal concatenation operator sends the "" message (a null string). When
the ¬ character is used in an operator, it is changed to a \. That is, the
operators ¬= and \= both send the message \= to the target object.

For an operator that works on a single term (for example, the prefix − and
prefix + operators), REXX sends a message to the operand, with no
arguments. This means -z has the same effect as z∼'-'.

See “Operator Methods” on page 183 for operator methods of the Object class
and “Arithmetic Methods” on page 212 for operator methods of the String
class.

There are four types of operators:

v Concatenation
v Arithmetic
v Comparison
v Logical

String Concatenation

The concatenation operators combine two strings to form one string by
appending the second string to the right-hand end of the first string. The
concatenation may occur with or without an intervening blank. The
concatenation operators are:

(blank) Concatenate terms with one blank in between

|| Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

REXX General Concepts

20 Object REXX Reference



You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by
another operator. This can occur when two terms are syntactically distinct,
such as a literal string and a symbol, or when they are only separated by a
comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then
Fred'%' evaluates to 37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

The two adjoining strings, one hexadecimal and one literal, '4a 4b'x'LMN'
evaluate to JKLMN.

In the case of
Fred/* The NOT operator precedes Peter. */¬Peter

there is no abuttal operator implied, and the expression is not valid. However,
(Fred)/* The NOT operator precedes Peter. */(¬Peter)

results in an abuttal, and evaluates to 37.40.

Arithmetic

You can combine character strings that are valid numbers (see “Numbers” on
page 15) using the following arithmetic operators:

+ Add

− Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo,
because the result can be negative)

** Power (raise a number to a whole-number power)

Prefix − Same as the subtraction: 0 - number

Prefix + Same as the addition: 0 + number

REXX General Concepts

Chapter 1. REXX General Concepts 21



See “Chapter 11. Numbers and Arithmetic” on page 353 for details about
precision, the format of valid numbers, and the operation rules for arithmetic.
Note that if an arithmetic result is shown in exponential notation, it is likely
that rounding has occurred.

Comparison

The comparison operators compare two terms and return the value 1 if the
result of the comparison is true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the
operator doubled. The ==, \==, and ¬== operators test for an exact match
between two strings. The two strings must be identical (character by
character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple
character-by-character comparison, with no padding of either of the strings
being compared. The comparison of the two strings is from left to right. If one
string is shorter than the other and is a leading substring of another, then it is
smaller than (less than) the other. The strict comparison operators also do not
attempt to perform a numeric comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a
numeric comparison (see “Numeric Comparisons” on page 358) is effected.
Otherwise, both terms are treated as character strings, leading and trailing
blanks are ignored, and the shorter string is padded with blanks on the right.

Character comparison and strict comparison operations are both
case-sensitive, and the exact collating order might depend on the character set
used for the implementation. In an ASCII environment, such as Linux, the
ASCII character value of digits is lower than that of the alphabetic characters,
and that of lowercase alphabetic characters is higher than that of uppercase
alphabetic characters.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded)

\=, ¬= True if the terms are not equal (inverse of =)

> Greater than

< Less than

>< Greater than or less than (same as not equal)

<> Greater than or less than (same as not equal)

>= Greater than or equal to

\<, ¬< Not less than

REXX General Concepts

22 Object REXX Reference



<= Less than or equal to

\>, ¬> Not greater than

== True if terms are strictly equal (identical)

\==, ¬== True if the terms are not strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<<, ¬<< Strictly not less than

<<= Strictly less than or equal to

\>>, ¬>> Strictly not greater than

Note: Throughout the language, the NOT (¬) character is synonymous with
the backslash (\). You can use the two characters interchangeably,
according to availability and personal preference. The backslash can
appear in the following operators: \ (prefix not), \=, \==, \<, \>, \<<,
and \>>.

Logical (Boolean)

A character string has the value false if it is 0, and true if it is 1. A logical
operator can take at least two values and return 0 or 1 as appropriate:

& AND — returns 1 if both terms are true.

| Inclusive OR — returns 1 if either term or both terms are true.

&& Exclusive OR — returns 1 if either term, but not both terms, is
true.

Prefix \,¬ Logical NOT— negates; 1 becomes 0, and 0 becomes 1.

Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator
precedence modify this:
v When parentheses are encountered—other than those that identify the

arguments on messages (see “Message Terms” on page 25) and function
calls—the entire subexpression between the parentheses is evaluated
immediately when the term is required.

v When the sequence
term1 operator1 term2 operator2 term3

REXX General Concepts

Chapter 1. REXX General Concepts 23



is encountered, and operator2 has precedence over operator1, the
subexpression (term2 operator2 term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). The precedence rules
affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5
evaluates to 13 (rather than the 25 that would result if a strict left-to-right
evaluation occurred). To force the addition to occur before the multiplication,
you could rewrite the expression as (3+2)*5. Adding the parentheses makes
the first three tokens a subexpression. Similarly, the expression -3**2 evaluates
to 9 (instead of -9) because the prefix minus operator has a higher priority
than the power operator.

The order of precedence of the operators is (highest at the top):

+ - ¬ \ (prefix operators)

** (power)

* / % // (multiply and divide)

+ - (add and subtract)

(blank) || (abuttal)
(concatenation with or without blank)

= > < (comparison operators)

== >> <<

\= ¬=

>< <>

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

& (and)

| && (or, exclusive or)

Examples:

REXX General Concepts

24 Object REXX Reference



Suppose the symbol A is a variable whose value is 3, DAY is a variable whose
value is Monday, and other variables are uninitialized. Then:
A+5 -> '8'
A-4*2 -> '-5'
A/2 -> '1.5'
0.5**2 -> '0.25'
(A+1)>7 -> '0' /* that is, False */
' '='' -> '1' /* that is, True */
' '=='' -> '0' /* that is, False */
' '¬=='' -> '1' /* that is, True */
(A+1)*3=12 -> '1' /* that is, True */
'077'>'11' -> '1' /* that is, True */
'077' >> '11' -> '0' /* that is, False */
'abc' >> 'ab' -> '1' /* that is, True */
'abc' << 'abd' -> '1' /* that is, True */
'ab ' << 'abd' -> '1' /* that is, True */
Today is Day -> 'TODAY IS Monday'
'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> 'ond' /* Substr is a function */
'!'xxx'!' -> '!XXX!'

Note: The REXX order of precedence usually causes no difficulty because it is
the same as in conventional algebra and other computer languages.
There are two differences from common notations:
v The prefix minus operator always has a higher priority than the

power operator.
v Power operators (like other operators) are evaluated from left to

right.

For example:
-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

Message Terms

You can include messages to objects in an expression wherever a term, such as
a literal string, is valid. A message can be sent to an object to perform an
action, obtain a result, or both.

A message term can have one of the following forms:

REXX General Concepts

Chapter 1. REXX General Concepts 25



The receiver is a term (see “Terms and Expressions” on page 19 for a definition
of term). It receives the message. The ∼ or ∼∼ indicates sending a message. The
messagename is a literal string or a symbol that is taken as a constant. The
expressions (separated by commas) between the parentheses or brackets are the
arguments for the message. The receiver and the argument expressions can
themselves include message terms. If the message has no arguments, you can
omit the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename
or symbol) with no blank in between them. Otherwise, only the first part of
the construct is recognized as a message term. (A blank operator would be
assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number of expressions, separated by commas. The expressions
are evaluated from left to right and form the argument during the execution
of the routine. Any ARG, PARSE ARG, or USE ARG instruction or ARG
built-in function in the called routine accesses these objects while the called
routine is running. You can omit expressions, if appropriate, by including extra
commas.

The receiver is evaluated, followed by one or more expression arguments. The
message name (in uppercase) and the resulting argument objects are then sent
to the receiver object. The receiver object selects a method to be run based on
the message name (see Table 1 on page 109), and runs the selected method
with the specified argument objects. The receiver eventually returns, allowing
processing to continue.

If the message term uses ∼, the receiver must return a result object. This object
is included in the original expression as if the entire message term had been
replaced by the name of a variable whose value is the returned object.

For example, the message POS is valid for strings, and you could code:

ÊÊ receiver ∼ messagename
∼∼ :symbol

·

( )
,

expression

ÊÍ

ÊÊ receiver[

·

,

expression

] ÊÍ

REXX General Concepts

26 Object REXX Reference



c='escape'
a="Position of 'e' is:" c∼pos('e',3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ∼∼, the receiver needs not return a result object. Any
result object is discarded, and the receiver object is included in the original
expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see
“The Class Class” on page 165) and, assuming the existence of the Persistent
class, you could code:
account = .object∼subclass('Account')∼∼inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object.
(The expressions within the brackets are available to the receiver object as
arguments.) The effect is the same as for the corresponding ∼ form of the
message term. Thus, a[b] is the same as a∼'[]'(b).

For example, the message [] is valid for arrays (see “The Array Class” on
page 120) and you could code:
a = .array∼of(10,20)
say "Second item is" a[2] /* Same as: a∼at(2) */
/* or a∼'[]'(2) */
/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify
only those required. For example, 'ESCAPE'∼POS('E') returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol
must be the name of a variable (usually the special variable SUPER—see page
413) or an environment symbol (see “Environment Symbols” on page 36). The
resulting value changes the usual method selection. For more information, see
“Changing the Search Order for Methods” on page 103.

Message Sequences

The ∼ and ∼∼ forms of message terms differ only in their treatment of the
result object. Using ∼ returns the result of the method. Using ∼∼ returns the
object that received the message. Here is an example:
/* Two ways to use the INSERT method to add items to a list */
/* Using only ∼ */
team = .list∼of('Bob','Mary')
team∼insert('Jane')
team∼insert('Joe')
team∼insert('Steve')

REXX General Concepts

Chapter 1. REXX General Concepts 27



say 'First on the team is:' team∼firstitem /* Bob */
say 'Last on the team is:' team∼lastitem /* Steve */
/* Do the same thing using ∼∼ */
team=.list∼of('Bob','Mary')
/* Because ∼∼ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team∼∼insert('Jane')∼∼insert('Joe')∼∼insert('Steve')
say 'First on the team is:' team∼firstitem /* Bob */
say 'Last on the team is:' team∼lastitem /* Steve */

Thus, you would use ∼ when you want the returned result to incorporate the
methods included in each stage of the message.

Clauses and Instructions

Clauses can be subdivided into the following types:
v Null clauses
v Directives
v Labels
v Instructions
v Assignments
v Message instructions
v Keyword instructions
v Commands

Null Clauses

A clause consisting only of blanks, comments, or both is a null clause. It is
completely ignored.

Note: A null clause is not an instruction; for example, putting an extra
semicolon after the THEN or ELSE in an IF instruction is not equivalent
to using a dummy instruction (as it would be in the C language). The
NOP instruction is provided for this purpose.

Directives

A clause that begins with two colons is a directive. Directives are
nonexecutable code and can start in any column. They divide a program into
separate executable units (methods and routines) and supply information
about the program or its executable units. Directives perform various
functions, such as associating methods with a particular class (::CLASS
directive) or defining a method (::METHOD directive). See “Chapter 3.
Directives” on page 87 for more information about directives.

REXX General Concepts

28 Object REXX Reference



Labels

A clause that consists of a single symbol or string followed by a colon is a
label. The colon in this context implies a semicolon (clause separator), so no
semicolon is required.

The label's name is taken from the string or symbol part of the label. If the
label uses a symbol for the name, the label's name is in uppercase. If a label
uses a string, the name can contain mixed-case characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and
internal function calls. Label searches for CALL, SIGNAL, and internal
function calls are case-sensitive. Label-search targets specified as symbols
cannot match labels with lowercase characters. Literal-string or
computed-label searches can locate labels with lowercase characters. More
than one label can precede an instruction. Labels are treated as null clauses
and can be traced selectively to aid debugging.

Labels can be any number of successive clauses. Several labels can precede
other clauses. Duplicate labels are permitted, but control is only passed to the
first of any duplicates in a program. The duplicate labels occurring later can
be traced but cannot be used as a target of a CALL, SIGNAL, or function
invocation.

Instructions

An instruction consists of one or more clauses describing some course of
action for the language processor to take. Instructions can be assignments,
message instructions, keyword instructions, or commands.

Assignments

A single clause of the form symbol=expression is an instruction known as an
assignment. An assignment gives a (new) value to a variable. See
“Assignments and Symbols” on page 30.

Message Instructions

A message instruction is a single clause in the form of a message term (see
“Message Terms” on page 25) or in the form messageterm=expression. A
message is sent to an object, which responds by performing some action. See
“Message Instructions” on page 37.

REXX General Concepts

Chapter 1. REXX General Concepts 29



Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Keyword instructions control, for
example, the external interfaces and the flow of control. Some keyword
instructions can include nested instructions. In the following example, the DO
construct (DO, the group of instructions that follow it, and its associated END
keyword) is considered a single keyword instruction.
DO

instruction
instruction
instruction

END

A subkeyword is a keyword that is reserved within the context of a particular
instruction, for example, the symbols TO and WHILE in the DO instruction.

Commands

A command is a clause consisting of an expression only. The expression is
evaluated and the result is passed as a command string to an external
environment.

Assignments and Symbols

A variable is an object whose value can change during the running of a REXX
program. The process of changing the value of a variable is called assigning a
new value to it. The value of a variable is a single object.3

You can assign a new value to a variable with the ARG, PARSE, PULL, or
USE instructions, the VALUE built-in function, or the variable pool interface,
but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause in the form

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value
of the variable named by the symbol to the left of the equal sign.

Example:
/* Next line gives FRED the value "Frederic" */
Fred='Frederic'

3. An object can be composed of other objects, such as an array or directory object.

REXX General Concepts

30 Object REXX Reference



The symbol naming the variable cannot begin with a digit (0–9) or a period.
However, you can redefine a number, for example 3=4; would give a variable
called 3 the value 4.

You can use a symbol in an expression even if you have not assigned a value
to it, because a symbol has a defined value at all times. A variable to which
you have not assigned a value is uninitialized. Its value is the characters of the
symbol itself, translated to uppercase (that is, lowercase a–z to uppercase A–Z).
However, if it is a compound symbol (described under “Compound Symbols”
on page 34), its value is the derived name of the symbol.

Example:
/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in REXX varies according to its context. As a term
in an expression, a symbol belongs to one of the following groups: constant
symbols, simple symbols, compound symbols, environment symbols, and
stems. Constant symbols cannot be assigned new values. You can use simple
symbols for variables where the name corresponds to a single value. You can
use compound symbols and stems for more complex collections of variables
although the collection classes might be preferable in many cases. See
“Chapter 5. The Collection Classes” on page 119.

Constant Symbols

A constant symbol starts with a digit (0–9) or a period.

You cannot change the value of a constant symbol. It is simply the string
consisting of the characters of the symbol (that is, with any lowercase
alphabetic characters translated to uppercase).

These are constant symbols:
77
827.53
.12345
12e5 /* Same as 12E5 */
3D
17E-3

Symbols where the first character is a period and the second character is
alphabetic are environment symbols.

REXX General Concepts

Chapter 1. REXX General Concepts 31



Simple Symbols

A simple symbol does not contain any periods and does not start with a digit
(0–9).

By default, its value is the characters of the symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and
its value is the value of that variable.

These are simple symbols:
FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12

Stems

A stem is a symbol that contains a period as the last character. It cannot start
with a digit or a period.

These are stems:
FRED.
A.

By default, the value of a stem is a Stem object. (See “The Stem Class” on
page 189.) The stem variable's Stem object is automatically created the first
time you use the stem variable or a compound variable (see “Compound
Symbols” on page 34) containing the stem variable name. The Stem object's
assigned name is the name of the stem variable (with the characters translated
to uppercase). If the stem variable has been assigned a value, or the Stem
object has been given a default value, a reference to the stem variable returns
the assigned default value.

Further, when a stem is the target of an assignment, a new Stem object is
created and assigned to the stem variable. The new value assigned to the stem
variable is given to the new Stem object as a default value. Following the
assignment, a reference to any compound symbol with that stem variable
returns the new value until another value is assigned to the stem, the Stem
object, or the individual compound variable.

Example:
hole. = "empty"
hole.19 = "full"
say hole.1 hole.mouse hole.19
/* says "empty empty full" */

Thus, you can give a whole collection of variables the same value.

REXX General Concepts

32 Object REXX Reference



If the object assigned to a stem variable is already a Stem object, then a new
Stem object is not created. The assignment updates the stem variable to refer
to the existing Stem object.

Example:
hole. = "empty"
hole.19 = "full"
say hole.1 hole.mouse hole.19
/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */

say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

You can pass stem collections as function, subroutine, or method arguments.

Example:
/* CALL RANDOMIZE count, stem. calls routine */
Randomize: Use Arg count, stem.
do i = 1 to count

stem.i = random(1,100)
end
return

Note: USE ARG must be used to access the stem variable as a collection.
PARSE and PARSE ARG force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results.

Example:
/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i = 1 to count

stem.i = random(1,100)
end
return stem.

Note: The value that has been assigned to the whole collection of variables
can always be obtained by using the stem. However, this is not the
same as using a compound variable whose derived name is the null
string.

Example:
total. = 0
null = ''
total.null = total.null + 5
say total. total.null /* says "0 5" */

REXX General Concepts

Chapter 1. REXX General Concepts 33



You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate
collections of variables, referred to by their stems. DROP FRED. assigns a new
Stem object to the specified stem. (See “DROP” on page 50.) EXPOSE FRED. and
PROCEDURE EXPOSE FRED. expose all possible variables with that stem (see
“EXPOSE” on page 52 and “PROCEDURE” on page 66).

The DO instruction can also iterate over all of the values assigned to a stem
variable. See “DO” on page 49 for more details.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in
function, or the variable pool interface changes a variable, the effect is
identical with an assignment. Wherever a value can be assigned, using a
stem sets an entire collection of variables.

2. Any clause that starts with a symbol and whose second token is (or starts
with) an equal sign (=) is an assignment, rather than an expression (or a
keyword instruction). This is not a restriction, because you can ensure that
the clause is processed as a command, such as by putting a null string
before the first name, or by enclosing the first part of the expression in
parentheses.
If you unintentionally use a REXX keyword as the variable name in an
assignment, this should not cause confusion. For example, the following
clause is an assignment, not an ADDRESS instruction:
Address='10 Downing Street';

3. You can use the VAR function (see “VAR” on page 308) to test whether a
symbol has been assigned a value. In addition, you can set SIGNAL ON
NOVALUE to trap the use of any uninitialized variables (except when they
are tails in compound variables—see page 363–or stems).

Compound Symbols

A compound symbol contains at least one period and two other characters. It
cannot start with a digit or a period, and if there is only one period it cannot
be the last character.

The name begins with a stem (that part of the symbol up to and including the
first period) and is followed by a tail, which are parts of the name (delimited
by periods) that are constant symbols4, simple symbols, or null.

These are compound symbols:

4. You cannot use constant symbols with embedded signs (for example, 12.3E+5) after a stem; in this case the whole
symbol would not be valid.

REXX General Concepts

34 Object REXX Reference



FRED.3
Array.I.J
AMESSY..One.2.

Before the symbol is used, that is, at the time of reference, the language
processor substitutes in the compound symbol the character string values of
any simple symbols in the tail (I, J, and One in the examples), thus generating
a new, derived name. The value of a compound symbol is, by default, its
derived name (used exactly as is) or, if it has been used as the target of an
assignment, the value of the variable named by the derived name.

The substitution in the symbol permits arbitrary indexing (subscripting) of
collections of variables that have a common stem. Note that the values
substituted can contain any characters (including periods and blanks).
Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by
the symbol
s0.s1.s2. --- .sn

is given by
d0.v1.v2. --- .vn

where d0 is the name of the Stem object associated with the stem variable s0
and v1 to vn are the values of the constant or simple symbols s1 through sn.
Any of the symbols s1 to sn can be null. The values v1 to vn can also be null
and can contain any characters. Lowercase characters are not translated to
uppercase, blanks are not removed, and periods have no special significance.
There is no limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a
small extract from a REXX program:
a=3 /* assigns '3' to the variable A */
z=4 /* '4' to Z */
c='Fred' /* 'Fred' to C */
a.z='Fred' /* 'Fred' to A.4 */
a.fred=5 /* '5' to A.FRED */
a.c='Bill' /* 'Bill' to A.Fred */
c.c=a.fred /* '5' to C.Fred */
y.a.z='Annie' /* 'Annie' to Y.3.4 */
say a z c a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in
which the subscript is not necessarily numeric, thus offering a great scope for
the creative programmer. A useful application is to set up an array in which

REXX General Concepts

Chapter 1. REXX General Concepts 35



the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

Evaluated Compound Variables

The value of a stem variable is always a Stem object (see “The Stem Class” on
page 189 for details). A Stem object is a type of collection that supports the []
and []= methods used by other collection classes. The [] provides an alternate
means of accessing compound variables that also allows embedded
subexpressions.

Examples:
a=3 /* assigns '3' to the variable A */
z=4 /* '4' to Z */
c='Fred' /* 'Fred' to C */
a.[z]='Fred' /* 'Fred' to A.4 */
a.[z+1]='Rick' /* 'Rick' to A.5 */
a.[fred]=5 /* '5' to A.FRED */
a.[c]='Bill' /* 'Bill' to A.Fred */
c.[c]=a.fred /* '5' to C.Fred */
y.[a,z]='Annie' /* 'Annie' to Y.3.4 */
say a z c a.[a] a.[z] a.[z+1] a.[c] c.[a] a.[fred] y.[a,z]
/* displays the string: */
/* "3 4 Fred A.3 Fred Rick Bill C.3 5 Annie" */

Environment Symbols

An environment symbol starts with a period and has at least one other
character. This character must not be a digit. By default the value of an
environment symbol is the string consisting of the characters of the symbol
(translated to uppercase). If the symbol identifies an object in the current
environment, its value is that object.

These are environment symbols:
.method /* Same as .METHOD */
.true

When you use an environment symbol, the language processor performs a
series of searches to see if the environment symbol has an assigned value. The
search locations and their ordering are:
1. The directory of classes declared on ::CLASS directives (see “::CLASS” on

page 87) within the current program file.

2. The directory of PUBLIC classes declared on ::CLASS directives of other
files included with a ::REQUIRES directive.

3. The local environment directory. The local environment includes
process-specific objects such as the .INPUT and .OUTPUT objects. You can

REXX General Concepts

36 Object REXX Reference



directly access the local environment directory by using the .LOCAL
environment symbol. (See “The Local Environment Object (.LOCAL)” on
page 248.)

4. The global environment directory. The global environment includes all
permanent REXX objects such as the REXX supplied classes (.ARRAY and
so on) and constants such as .TRUE and .FALSE. You can directly access
the global environment by using the .ENVIRONMENT environment
symbol (see “The Environment Object” on page 247) or the VALUE built-in
function (see “VALUE” on page 305) with a null string for the selector
argument.

5. REXX defined symbols. Other simple environment symbols are reserved
for use by REXX built-in objects. The currently defined built-in objects are
.RS and .METHODS.

If an entry is not found for an environment symbol, then the default character
string value is used.

Note: You can place entries in both the .LOCAL and the .ENVIRONMENT
directories for programs to use. To avoid conflicts with future REXX
defined entries, it is recommended that the entries that you place in
either directory include at least one period in the entry name.

Example:
/* establish settings directory */
.local∼setentry('MyProgram.settings', .directory∼new)

Message Instructions

You can send a message to an object to perform an action, obtain a result, or
both. You use a message instruction if the main purpose of the message is to
perform an action. You use a message term (see “Message Terms” on page 25)
if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

ÊÊ messageterm
=expression

; ÊÍ

If there is only a messageterm, the message is sent in exactly the same way as
for a message term (see “Message Terms” on page 25). If the message yields a
result object, it is assigned to the sender’s special variable RESULT. If you use
the ∼∼ form of message term, the receiver object is used as the result. If there
is no result object, the variable RESULT is dropped (becomes uninitialized).

REXX General Concepts

Chapter 1. REXX General Concepts 37



Example:
mytable∼add('John',123)

This sends the message ADD to the object MYTABLE. The ADD method need
not return a result. If ADD returns a result, the result is assigned to the
variable RESULT.

The equal sign (=) sets a value. If =expression follows the message term, a
message is sent to the receiver object with an = concatenated to the end of the
message name. The result of evaluating the expression is passed as the first
argument of the message.

Examples:
person∼age = 39 /* Same as person∼'AGE='(39) */
table[i] = 5 /* Same as table∼'[]='(5,i) */

The expressions are evaluated in the order in which the arguments are passed
to the method. That is, the language processor evaluates the =expression first.
Then it evaluates the argument expressions within any [] pairs from left to
right.

Commands to External Environments

Issuing commands to the surrounding environment is an integral part of
REXX.

Environment

The base system for the language processor is assumed to include at least one
environment for processing commands. An environment is selected by default
on entry to a REXX program. You can change the environment by using the
ADDRESS instruction. You can find out the name of the current environment
by using the ADDRESS built-in function. The underlying operating system
defines environments external to the REXX program. The environments
selected depend on the caller. Normally the default environment is the used
shell, mostly 'bash' on Linux systems. If called from an editor that accepts
subcommands from the language processor, the default environment can be
that editor.

A REXX program can issue commands—called subcommands—to other
application programs. For example, a REXX program written for a text editor
can inspect a file being edited, issue subcommands to make changes, test
return codes to check that the subcommands have been processed as expected,
and display messages to the user when appropriate.

REXX General Concepts

38 Object REXX Reference



An application that uses REXX as a macro language must register its
environment with the REXX language processor. See the Object REXX for
Linux: Programming Guide for a discussion of this mechanism.

Commands

To send a command to the currently addressed environment, use a clause of
the form:
expression;

The expression (which must not be an expression that forms a valid message
instruction—see “Message Instructions” on page 37) is evaluated, resulting in
a character string value (which can be the null string), which is then prepared
as appropriate and submitted to the underlying system. Any part of the
expression not to be evaluated must be enclosed in quotation marks.

The environment then processes the command and returns control to the
language processor after setting a return code. A return code is a string,
typically a number, that returns some information about the command
processed. A return code usually indicates if a command was successful but
can also represent other information. The language processor places this
return code in the REXX special variable RC. See “Chapter 19. Special
Variables” on page 413.

In addition to setting a return code, the underlying system can also indicate to
the language processor if an error or failure occurred. An error is a condition
raised by a command to which a program that uses that command can
respond. For example, a locate command to an editing system might report
requested string not found as an error. A failure is a condition raised by a
command to which a program that uses that command cannot respond, for
example, a command that is not executable or cannot be found.

Errors and failures in commands can affect REXX processing if a condition
trap for ERROR or FAILURE is ON (see “Chapter 12. Conditions and
Condition Traps” on page 361). They can also cause the command to be traced
if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is the
default—see “TRACE” on page 79.

The .RS environment symbol can also be used to detect command failures and
errors. When the command environment indicates that a command failure has
occurred, the REXX environment symbol .RS has the value -1. When a
command error occurs, .RS has a value of 1. If the command did not have a
FAILURE or ERROR condition, .RS is 0.

REXX General Concepts

Chapter 1. REXX General Concepts 39



Here is an example of submitting a command. Where the default environment
is ’bash’, the sequence:
fname = "Cheshire"
exten = "cat"
"more" fname"."exten

would result in passing the string more Cheshire.cat to the command
processor. The simpler expression:
"more Cheshire.cat"

has the same effect.

On return, the return code placed in RC has the value 0 if the file Cheshire.cat
was displayed, or a nonzero value if the file could not be found in the current
directory.

Note: Remember that the expression is evaluated before it is passed to the
environment. Enclose in quotation marks any part of the expression
that is not to be evaluated.

Examples:
rm "*".lst /* not "multiplied by" */
var.003 = anyvalue
cat "var.003" /* not a compound symbol */
w = any
ls "/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message
result to be used as a command. Any clause that is a message instruction is
not treated as a command. Thus, for example, the clause
myfile∼linein

causes the returned line to be assigned to the variable RESULT, not to be used
as a command to an external environment.

Using REXX on Linux

REXX programs can call other REXX programs as external functions or
subroutines.

When REXX programs call other REXX programs as commands, the return
code of the command is the exit value of the called program provided that
this value is a whole number in the range -32768 to 32767. Otherwise, the exit
value is ignored and the called program is given a return code of 0.

REXX General Concepts

40 Object REXX Reference



Chapter 2. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some keyword instructions affect the
flow of control, while others provide services to the programmer. Some
keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals
denote keywords or subkeywords. Other words, such as expression, denote a
collection of tokens as defined previously. Note, however, that the keywords
and subkeywords are not case-dependent. The symbols if, If, and iF all have
the same effect. Note also that you can usually omit most of the clause
delimiters (;) shown because the end of a line implies them.

A keyword instruction is recognized only if its keyword is the first token in a
clause and if the second token does not start with an equal (=) character
(implying an assignment) or a colon (implying a label). The keywords ELSE,
END, OTHERWISE, THEN, and WHEN are treated in the same way. Note
that any clause that starts with a keyword defined by REXX cannot be a
command. Therefore,
arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the
ARG built-in function. A syntax error results if the keywords are not in their
correct positions in a DO, IF, or SELECT instruction. The keyword THEN is
also recognized in the body of an IF or WHEN clause. In other contexts,
keywords are not reserved and can be used as labels or as the names of
variables (though this is generally not recommended).

Subkeywords are reserved within the clauses of individual instructions. For
example, the symbols VALUE and WITH are subkeywords in the ADDRESS
and PARSE instructions, respectively. For details, see the description of each
instruction.

Blanks adjacent to keywords separate the keyword from the subsequent token.
One or more blanks following VALUE are required to separate the expression
from the subkeyword in the example following:
ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following
example, although it would improve readability:
ADDRESS VALUE'ENVIR'||number

© Copyright IBM Corp. 1999 41



ADDRESS

ÊÊ ADDRESS
environment

expression
expression1

VALUE

; ÊÍ

ADDRESS temporarily or permanently changes the destination of commands.
Commands are strings sent to an external environment. You can send
commands by specifying clauses consisting of only an expression or by using
the ADDRESS instruction. (See “Commands to External Environments” on
page 38.)

To send a single command to a specified environment, code an environment, a
literal string or a single symbol, which is taken to be a constant, followed by
an expression. The environment name is the name of an external procedure or
process that can process commands. The expression is evaluated to produce a
character string value, and this string is routed to the environment to be
processed as a command. (Enclose in quotation marks any part of the
expression you do not want to be evaluated.) After execution of the
command, environment is set back to its original state, thus temporarily
changing the destination for a single command. The special variable RC and
the environment symbol .RS are set and errors and failures in commands
processed in this way are trapped or traced.

Example:
ADDRESS 'bash' "ls /usr/lib"

If you specify only environment, a lasting change of destination occurs: all
commands (see “Commands” on page 39) that follow are routed to the
specified command environment, until the next ADDRESS instruction is
processed. The previously selected environment is saved.

Examples:

Assume that the environment for a text editor is registered by the name EDIT:
address 'bash'
'ls ∼/.profile'
if rc=0 then 'cp /etc/profile ∼/.profile.'
address 'EDIT'

Subsequent commands are passed to the editor until the next ADDRESS
instruction.

Keyword Instructions

42 Object REXX Reference



Similarly, you can use the VALUE form to make a lasting change to the
environment. Here expression1, which can be a variable name, is evaluated,
and the resulting character string value forms the name of the environment.
You can omit the subkeyword VALUE if expression1 does not begin with a
literal string or symbol, that is, if it starts with a special character such as an
operator character or parenthesis.

Example:
ADDRESS ('ENVIR'||number) /* Same as ADDRESS VALUE 'ENVIR'||number */

With no arguments, commands are routed back to the environment that was
selected before the previous change of the environment, and the current
environment name is saved. After changing the environment, repeated
execution of ADDRESS alone, therefore, switches the command destination
between two environments. Using a null string for the environment name ("")
is the same as using the default environment.

The two environment names are automatically saved across internal and
external subroutine and function calls. See the CALL instruction (“CALL” on
page 45) for more details.

The address setting is the currently selected environment name. You can
retrieve the current address setting by using the ADDRESS built-in function.
(See “ADDRESS” on page 259.) The Object REXX for Linux: Programming Guide
describes the registration of alternative subcommand environments.

ARG

ÊÊ ARG
template_list

; ÊÍ

ARG retrieves the argument strings provided to a program, internal routine,
or method and assigns them to variables. It is a short form of the instruction:

ÊÊ PARSE UPPER ARG
template_list

; ÊÍ

The template_list can be a single template or list of templates separated by
commas. Each template consists of one or more symbols separated by blanks,
patterns, or both.

Keyword Instructions

Chapter 2. Keyword Instructions 43



Unless a subroutine, internal function, or method is processed, the objects
passed as parameters to the program are converted to string values and
parsed into variables according to the rules described in “Chapter 10. Parsing”
on page 335.

If a subroutine, internal function, or method is processed, the data used are
the argument objects that the caller passes to the routine.

The language processor converts the objects to strings and translates the
strings to uppercase (that is, lowercase a–z to uppercase A–Z) before
processing them. Use the PARSE ARG instruction if you do not want
uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same
source objects (typically with different templates). The source objects do not
change. The only restrictions on the length or content of the data parsed are
those the caller imposes.

Example:
/* String passed is "Easy Rider" */
Arg adjective noun .

/* Now: ADJECTIVE contains 'EASY' */
/* NOUN contains 'RIDER' */

If you expect more than one object to be available to the program or routine,
you can use a comma in the parsing template_list so each template is selected
in turn.

Example:
/* Function is called by FRED('data X',1,5) */
Fred: Arg string, num1, num2

/* Now: STRING contains 'DATA X' */
/* NUM1 contains '1' */
/* NUM2 contains '5' */

Notes:

1. The ARG built-in function can also retrieve or check the arguments. See
“ARG (Argument)” on page 259.

2. The USE ARG instruction (see “USE” on page 84) is an alternative way of
retrieving arguments. USE ARG performs a direct, one-to-one assignment
of argument objects to REXX variables. You should use this when your
program needs a direct reference to the argument object, without string
conversion or parsing. USE ARG also allows access to both string and
non-string argument objects. ARG and PARSE ARG produce string values
from the arguments, and the language processor then parses these.

Keyword Instructions

44 Object REXX Reference



CALL

ÊÊ CALL ·

,

name
(var) expression

OFF ANY
ERROR
FAILURE
HALT
NOTREADY
USER usercondition

ON ANY
ERROR NAME trapname
FAILURE
HALT
NOTREADY
USER usercondition

; ÊÍ

CALL calls a routine (if you specify name) or controls the trapping of certain
conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to
trap. OFF turns off the specified condition trap. ON turns on the specified
condition trap. All information on condition traps is contained in “Chapter 12.
Conditions and Condition Traps” on page 361.

To call a routine, specify name, which must be a literal string or symbol that is
taken as a constant. The usercondition is a single symbol that is taken as a
constant. The trapname is a symbol or string taken as a constant. The routine
called can be:

An internal routine
A function or subroutine that is in the same program as the CALL
instruction or function call that calls it.

A built-in routine
A function or subroutine that is defined as part of the REXX language.

An external routine
A function or subroutine that is neither built-in nor in the same
program as the CALL instruction or function call that calls it.

If name is a string in which case you specify it in quotation marks, the search
for internal routines is bypassed, and only a built-in function or an external
routine is called. Note that the names of built-in functions and external
routines are in uppercase. Therefore, write the name in the literal string in
uppercase characters.

Keyword Instructions

Chapter 2. Keyword Instructions 45



File names can be in uppercase, lowercase, or mixed case. The search for files
is case-sensitive. Therefore, when you use CALL to run a REXX subroutine
contained on a disk file (external routine), specify the file name that contains
lowercase or mixed-case characters in quotes, for example, 'myprogram'.
Otherwise, the file name is translated into uppercase characters and the call
fails.

You can also specify (var), a single variable name enclosed in parentheses. The
variable is evaluated before any of the argument expressions, and the value is
the target of the CALL instruction. The language processor does not translate
the variable value into uppercase, so the evaluated name must exactly match
any label name. (See “Labels” on page 29 for a description of label names.)

The called routine can optionally return a result. In this case, the CALL
instruction is functionally identical with the clause:

ÊÊ result=name( ·

,

expression
) ; ÊÍ

If the called routine does not return a result, you get an error if you call it as
a function.

You can use any number of expressions, separated by commas. The expressions
are evaluated from left to right and form the arguments during execution of
the routine. Any ARG, PARSE ARG, or USE ARG instruction or ARG built-in
function in the called routine accesses these objects while the called routine is
running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same
mechanism as function calls. See “Chapter 8. Functions” on page 251. The
search order is as follows:

Internal routines
These are sequences of instructions inside the same program, starting
at the label that matches name in the CALL instruction. If you specify
the routine name in quotation marks, then an internal routine is not
considered for that search order. The RETURN instruction completes
the execution of an internal routine.

Built-in routines
These are routines built into the language processor for providing
various functions. They always return an object that is the result of
the routine. (See “ARG (Argument)” on page 259.)

Keyword Instructions

46 Object REXX Reference



Note: You can call any built-in function as a subroutine. Any result is
stored in RESULT. Simply specify CALL, the function name (with
no parenthesis) and any arguments:
call length "string" /* Same as length("string") */
say result /* Produces: 6 */

However, if you include a trailing comma, you must include
the semicolon to prevent the interpretation of the last comma as
a continuation character.

External routines
Users can write or use routines that are external to the language
processor and the calling program. You can code an external routine
in REXX or in any language that supports the system-dependent
interfaces. If the CALL instruction calls an external routine written in
REXX as a subroutine, you can retrieve any argument strings with the
ARG, PARSE ARG, or USE ARG instructions or the ARG built-in
function.

For more information on the search order, see “Search Order” on page 253.

During execution of an internal routine, all variables previously known are
generally accessible. However, the PROCEDURE instruction can set up a local
variables environment to protect the subroutine and caller from each other.
The EXPOSE option on the PROCEDURE instruction can expose selected
variables to a routine.

Calling an external program as a subroutine is similar to calling an internal
routine. The external routine, however, is an implicit PROCEDURE in that all
the caller’s variables are always hidden. The status of internal values, for
example NUMERIC settings, start with their defaults (rather than inheriting
those of the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine but not a built-in function or
external routine, the line number of the CALL instruction is available in the
variable SIGL (in the caller’s variable environment). This can be used as a
debug aid because it is possible to find out how control reached a routine.
Note that if the internal routine uses the PROCEDURE instruction, it needs to
EXPOSE SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the
clause following the original CALL. If the RETURN instruction specified an
expression, the variable RESULT is set to the value of that expression.
Otherwise, the variable RESULT is dropped (becomes uninitialized).

Keyword Instructions

Chapter 2. Keyword Instructions 47



An internal routine can include calls to other internal routines, as well as
recursive calls to itself.

Example:
/* Recursive subroutine execution... */
arg z
call factorial z
say z'! =' result
exit
factorial: procedure /* Calculate factorial by */

arg n /* recursive invocation. */
if n=0 then return 1
call factorial n-1
return result * n

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and then restored upon return from the
routine. These are:

v The status of DO loops and other structures: Executing a SIGNAL within
a subroutine is safe because DO loops and other structures that were active
when the subroutine was called are not ended. However, those currently
active within the subroutine are ended.

v Trace action: After a subroutine is debugged, you can insert a TRACE Off
at the beginning of it without affecting the tracing of the caller. If you want
to debug a subroutine, you can insert a TRACE Results at the start and
tracing is automatically restored to the conditions at entry (for example,
Off) upon return. Similarly, ? (interactive debug) is saved across routines.

v NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic
operations (in “NUMERIC” on page 62) are saved and then restored on
return. A subroutine can, therefore, set the precision, for example, that it
needs to use without affecting the caller.

v ADDRESS settings: The current and previous destinations for commands
(see “ADDRESS” on page 42) are saved and then restored on return.

v Condition traps: CALL ON and SIGNAL ON are saved and then restored
on return. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions
the caller set up.

v Condition information: This information describes the state and origin of
the current trapped condition. The CONDITION built-in function returns
this information. See “CONDITION” on page 267.

v .RS value: The value of the .RS environment symbol. (See “.RS” on
page 387.)

v Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its
caller (see “TIME” on page 301), but because the time clock is saved across

Keyword Instructions

48 Object REXX Reference



routine calls, a subroutine or internal function can independently restart
and use the clock without affecting its caller. For the same reason, a clock
started within an internal routine is not available to the caller.

v OPTIONS settings: ETMODE and EXMODE are saved and then restored
on return.

DO

ÊÊ DO ;
repetitor conditional

· instruction

END Ê

Ê
name

; ÊÍ

repetitor:

control1=expri
TO exprt BY exprb FOR exprf

control2 OVER collection
FOREVER
exprr

conditional:

WHILE exprw
UNTIL expru

DO groups instructions and optionally processes them repetitively. During
repetitive execution, a control variable (control1 or control2) can be stepped
through some range of values.

Notes:

1. The exprr, expri, exprb, exprt, and exprf options, if present, are any
expressions that evaluate to a number. The exprr and exprf options are
further restricted to result in a positive whole number or zero. If necessary,
the numbers are rounded according to the setting of NUMERIC DIGITS.

2. The exprw or expru options, if present, can be any expression that evaluates
to 1 or 0.

3. The TO, BY, and FOR phrases can be in any order, if used, and are
evaluated in the order in which they are written.

Keyword Instructions

Chapter 2. Keyword Instructions 49



4. The instruction can be any instruction, including assignments, commands,
message instructions, and keyword instructions (including any of the more
complex constructs such as IF, SELECT, and the DO instruction itself).

5. The subkeywords WHILE and UNTIL are reserved within a DO
instruction in that they cannot be used as symbols in any of the
expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt,
exprb, or exprf. FOREVER is also reserved, but only if it immediately
follows the keyword DO and is not followed by an equal sign.

6. The exprb option defaults to 1, if relevant.
7. The collection can be any expression that evaluates to an object that

supports a MAKEARRAY method.

For more information, refer to “Appendix A. Using the DO Keyword” on
page 423.

DROP

ÊÊ DROP · name
(name)

; ÊÍ

DROP “unassigns” variables, that is, restores them to their original
uninitialized state. If name is not enclosed in parentheses, it identifies a
variable you want to drop and must be a symbol that is a valid variable
name, separated from any other name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list
of variables to drop. Blanks are not necessary inside or outside the
parentheses, but you can add them if desired. This subsidiary list must follow
the same rules as the original list, that is, be valid character strings separated
by blanks, except that no parentheses are allowed. The list needs not contain
any names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name
more than once or to drop a variable that is not known. If an exposed variable
is named (see “EXPOSE” on page 52 and “PROCEDURE” on page 66), then
the original variable is dropped.

Example:

Keyword Instructions

50 Object REXX Reference



j=4
Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example:
mylist='c d e'
drop (mylist) f
/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period as the last
character) assigns the stem variable to a new, empty stem object.

Example:
Drop z.
/* Assigns stem variable z. to a new empty stem object */

EXIT

ÊÊ EXIT
expression

; ÊÍ

EXIT leaves a program unconditionally. Optionally, EXIT returns a result
object to the caller. The program is stopped immediately, even if an internal
routine is being run. If no internal routine is active, RETURN (see “RETURN”
on page 75) and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the
evaluation is passed back to the caller when the program stops.

Example:
j=3
Exit j*4
/* Would exit with the string '12' */

If you do not specify expression, no data is passed back to the caller. If the
program was called as an external function, this is detected as an error—either
immediately (if RETURN was used), or on return to the caller (if EXIT was
used).

You can also use EXIT within a method. The method is stopped immediately,
and the result object, if specified, is returned to the sender. If the method has

Keyword Instructions

Chapter 2. Keyword Instructions 51



previously issued a REPLY instruction (see “REPLY” on page 74), the EXIT
instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is
made to convert the returned value to a return code acceptable by the
underlying operating system. The returned string must be a whole number
whose value fits in a 16-bit signed integer (within the range -(2**15) to
(2**15-1). If the conversion fails, no error is raised, and a return code of 0
is returned.

2. If you do not specify EXIT, EXIT is implied but no result string is
returned.

EXPOSE

ÊÊ EXPOSE · name
(name)

; ÊÍ

EXPOSE causes the object variables identified in name to be exposed to a
method. References to exposed variables, including assigning and dropping,
access variables in the current object's variable pool.5 Therefore, the values of
existing variables are accessible, and any changes are persistent even after
RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately
visible to any other methods that share the same object variable pool. All
other variables that a method uses are local to the method and are dropped
on RETURN or EXIT. If an EXPOSE instruction is included, it must be the first
instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed,
the character string value of name is immediately used as a subsidiary list of
variables. Blanks are not necessary inside or outside the parentheses, but you
can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no
parentheses are allowed.

5. An object variable pool is a collection of variables that is associated with an object rather than with any individual
method.

Keyword Instructions

52 Object REXX Reference



Variables are exposed in sequence from left to right. It is not an error to
specify a name more than once, or to specify a name that has not been used
as a variable.

Example:
/* Example of exposing object variables */
myobj = .myclass∼new
myobj∼c
myobj∼d /* Would display "Z is: 120" */

::class myclass /* The ::CLASS directive */
/* (see “::CLASS” on page 87) */

::method c /* The ::METHOD directive */
/* (see “::METHOD” on page 89) */

expose z
z = 100 /* Would assign 100 to the object variable z */
return

::method d
expose z
z=z+20 /* Would add 20 to the same object variable z */
say 'Z is:' z
return

You can expose an entire collection of compound variables (see “Compound
Symbols” on page 34) by specifying their stem in the variable list or a
subsidiary list. The variables are exposed for all operations.

Example:
expose j k c. d.
/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1='7.' /* This sets "C.1" in the object */

/* variable pool, even if it did not */
/* previously exist. */

FORWARD

ÊÊ FORWARD
CONTINUE

·

ARGUMENTS expra
,

ARRAY ( expri )

MESSAGE exprm
Ê

Ê
CLASS exprs TO exprt

ÊÍ

Keyword Instructions

Chapter 2. Keyword Instructions 53



Note: You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to
begin running. The FORWARD instruction can change parts of the forwarded
message, such as the target object, the message name, the arguments, and the
superclass override.

If you specify the TO option, the language processor evaluates exprt to
produce a new target object for the forwarded message. The exprt is a literal
string, constant symbol, or expression enclosed in parentheses. If you do not
specify the TO option, the initial value of the REXX special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates
expra to produce an array object that supplies the set of arguments for the
forwarded message. The expra can be a literal string, constant symbol, or
expression enclosed in parentheses. The ARGUMENTS value must evaluate to
a REXX array object.

If you specify the ARRAY option, each expri is an expression (use commas to
separate the expressions). The language processor evaluates the expression list
to produce a set of arguments for the forwarded message. It is an error to use
both the ARRAY and the ARGUMENTS options on the same FORWARD
instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor does
not change the arguments used to call the method.

If you specify the MESSAGE option, the exprm is a literal string, a constant
symbol, or an expression enclosed in parentheses. If you specify an expression
enclosed in parentheses, the language processor evaluates the expression to
obtain its value. The uppercase character string value of the MESSAGE option
is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to
call the currently active method.

If you specify the CLASS option, the exprs is a literal string, a constant
symbol, or an expression enclosed in parentheses. This is the class object used
as a superclass specifier on the forwarded message.

If you do not specify CLASS, the message is forwarded without a superclass
override.

If you do not specify the CONTINUE option, the language processor
immediately exits the current method before forwarding the message. Results

Keyword Instructions

54 Object REXX Reference



returned from the forwarded message are the return value from the original
message that called the active method (the caller of the method that issued
the FORWARD instruction). Any conditions the forwarded message raises are
raised in the calling program (without raising a condition in the method
issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and
continues with the next instruction when the forwarded message completes. If
the forwarded message returns a result, the language processor assigns it to
the special variable RESULT. If the message does not return a result, the
language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message
invocation to another method. For example, the FORWARD instruction can
forward a message to a different target object, using the same message name
and arguments.

Example:
::method substr
forward to (self∼string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another
object the message that the UNKNOWN method traps.

Example:
::method unknown
use arg msg, args
/* Forward to the string value */
/* passing along the arguments */
forward to (self∼string) message (msg) arguments (args)

You can use FORWARD in a method to forward a message to a superclass's
methods, passing the same arguments. This is very common usage in object
INIT methods.

Example:
::class savings subclass account
::method init
expose type penalty
forward class (super) continue /* Send to the superclass */
type = 'Savings' /* Now complete initialization */
penalty = '1% for balance under 500'

In the preceding example, the CONTINUE option causes the FORWARD
message to continue with the next instruction, rather than exiting the Savings
class INIT method.

Keyword Instructions

Chapter 2. Keyword Instructions 55



GUARD

ÊÊ GUARD ON
WHEN expression

OFF
WHEN expression

; ÊÍ

GUARD controls a method's exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable
pool. This prevents other methods that also require exclusive use of the same
variable pool from running on the same object. If another method has already
acquired exclusive access, the GUARD instruction causes the issuing method
to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods
that require exclusive use of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression
evaluates to 1 (true). If the expression evaluates to 0 (false), GUARD waits until
another method assigns or drops an object variable (that is, a variable named
on an EXPOSE instruction) used in the WHEN expression. When an object
variable changes, GUARD reevaluates the WHEN expression. If the expression
evaluates to true, the method resumes running. If the expression evaluates to
false, GUARD resumes waiting.

Example:
::method c
expose y
if y>0 then

return 1
else
return 0

::method d
expose z
guard on when z>0 self∼c /* Reevaluated when Z changes */
say 'Method D'

If you specify WHEN and the method has exclusive access to the object's
variable pool, then the exclusive access is released while GUARD is waiting
for an object variable to change. Exclusive access is reacquired before the
WHEN expression is evaluated. Once the WHEN expression evaluates to 1
(true), exclusive access is either retained (for GUARD ON WHEN) or released
(for GUARD OFF WHEN), and the method resumes running.

Keyword Instructions

56 Object REXX Reference



Note: If the condition expression cannot be met, GUARD ON WHEN puts the
program in a continuous wait condition. This can occur in particular
when several activities run concurrently. See “Guarded Methods” on
page 378 for more information.

IF

ÊÊ IF expression
;

THEN
;

instruction
ELSE instruction

;

ÊÍ

IF conditionally processes an instruction or group of instructions depending
on the evaluation of the expression. The expression is evaluated and must result
in 0 or 1.

The instruction after the THEN is processed only if the result is 1 (true). If
you specify an ELSE, the instruction after ELSE is processed only if the result
of the evaluation is 0 (false).

Example:
if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon before ELSE.

Example:
if answer='YES' then say 'OK!'; else say 'Why not?'

ELSE binds to the nearest IF at the same level. You can use the NOP
instruction to eliminate errors and possible confusion when IF constructs are
nested, as in the following example.

Example:
If answer = 'YES' Then
If name = 'FRED' Then
say 'OK, Fred.'

Else
nop

Else
say 'Why not?'

Keyword Instructions

Chapter 2. Keyword Instructions 57



Notes:

1. The instruction can be any assignment, message instruction, command, or
keyword instruction, including any of the more complex constructs such as
DO, SELECT, or the IF instruction itself. A null clause is not an instruction,
so putting an extra semicolon (or label) after THEN or ELSE is not
equivalent to putting a dummy instruction (as it would be in C). The NOP
instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently in that it need not start a clause. This allows
the expression on the IF clause to be ended by THEN, without a semicolon
(;) being required.

INTERPRET

ÊÊ INTERPRET expression ; ÊÍ

INTERPRET processes instructions that have been built dynamically by
evaluating expression.

The expression is evaluated to produce a character string, and is then
processed (interpreted) just as though the resulting string were a line inserted
into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note
that constructions such as DO...END and SELECT...END must be complete.
For example, a string of instructions being interpreted cannot contain a
LEAVE or ITERATE instruction (valid only within a repetitive DO loop)
unless it also contains the whole repetitive DO...END construct.

A semicolon is implied at the end of the expression during execution, if one
was not supplied.

Examples:
/* INTERPRET example */
data='FRED'
interpret data '= 4'
/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */
data='do 3; say "Hello there!"; end'
interpret data /* Displays: */

/* Hello there! */
/* Hello there! */
/* Hello there! */

Keyword Instructions

58 Object REXX Reference



Notes:

1. Labels within the interpreted string are not permanent and are, therefore,
an error.

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be
helpful in interpreting the results you get.
Example:
/* Here is a small REXX program. */
Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:
[∼/]REXXC kitty
3 *-* name='Kitty'
>L> "Kitty"

4 *-* indirect='name'
>L> "name"

5 *-* interpret 'say "Hello"' indirect'"!"'
>L> "say "Hello""
>V> "name"
>O> "say "Hello" name"
>L> ""!""
>O> "say "Hello" name"!""
*-* say "Hello" name"!"
>L> "Hello"
>V> "Kitty"
>O> "Hello Kitty"
>L> "!"
>O> "Hello Kitty!"

Hello Kitty!
[∼/]

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using
a literal string, a variable (INDIRECT), and another literal string. The
resulting pure character string is then interpreted, just as though it were
actually part of the original program. Because it is a new clause, it is
traced as such (the second *-* trace flag under line 5) and is then
processed. Again a literal string is concatenated to the value of a variable
(NAME) and another literal, and the final result (Hello Kitty!) is then
displayed.

3. For many purposes, you can use the VALUE function (see “VALUE” on
page 305) instead of the INTERPRET instruction. The following line could,
therefore, have replaced line 5 in the previous example:
say "Hello" value(indirect)"!"

Keyword Instructions

Chapter 2. Keyword Instructions 59



INTERPRET is usually required only in special cases, such as when two or
more statements are to be interpreted together, or when an expression is to
be evaluated dynamically.

4. You cannot use a directive (see “Chapter 3. Directives” on page 87) within
an INTERPRET instruction.

ITERATE

ÊÊ ITERATE
name

; ÊÍ

ITERATE alters the flow within a repetitive DO loop (that is, any DO
construct other than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the END clause had been encountered. The control
variable, if any, is incremented and tested, as usual, and the group of
instructions is processed again, unless the DO instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE
continues with the current repetitive loop. If name is specified, it must be the
name of the control variable of a currently active loop, which can be the
innermost, and this is the loop that is stepped. Any active loops inside the one
selected for iteration are ended (as though by a LEAVE instruction).

Example:
do i=1 to 4

if i=2 then iterate
say i

end
/* Displays the numbers: "1" "3" "4" */

Notes:

1. If specified, name must match the symbol naming the control variable in
the DO clause in all respects except the case. No substitution for
compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called,
or an INTERPRET instruction is processed, during the execution of a loop,
the loop becomes inactive until the subroutine has returned or the
INTERPRET instruction has completed. ITERATE cannot be used to
continue with an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE
selects the innermost loop.

Keyword Instructions

60 Object REXX Reference



LEAVE

ÊÊ LEAVE
name

; ÊÍ

LEAVE causes an immediate exit from one or more repetitive DO loops, that
is, any DO construct other than a simple DO.

Processing of the group of instructions is ended, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met. However, on exit,
the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE
ends the innermost active repetitive loop. If name is specified, it must be the
name of the control variable of a currently active loop, which can be the
innermost, and that loop, and any active loops inside it, are then ended.
Control then passes to the clause following the END that matches the DO
clause of the selected loop.

Example:
do i=1 to 5
say i
if i=3 then leave

end
/* Displays the numbers: "1" "2" "3" */

Notes:

1. If specified, name must match the symbol naming the control variable in
the DO clause in all respects except the case. No substitution for
compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called,
or an INTERPRET instruction is processed, during execution of a loop, the
loop becomes inactive until the subroutine has returned or the
INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects
the innermost loop.

NOP

ÊÊ NOP; ÊÍ

Keyword Instructions

Chapter 2. Keyword Instructions 61



NOP is a dummy instruction that has no effect. It can be useful as the target
of a THEN or ELSE clause.

Example:
Select

when a=c then nop /* Do nothing */
when a>c then say 'A > C'
otherwise say 'A < C'

end

Note: Putting an extra semicolon instead of the NOP would merely insert a
null clause, which would be ignored. The second WHEN clause would
be seen as the first instruction expected after the THEN, and would,
therefore, be treated as a syntax error. NOP is a true instruction,
however, and is, therefore, a valid target for the THEN clause.

NUMERIC

ÊÊ NUMERIC DIGITS
expression1

SCIENTIFIC
FORM

ENGINEERING
expression2

VALUE
FUZZ

expression3

; ÊÍ

NUMERIC changes the way in which a program carries out arithmetic
operations. The options of this instruction are described in detail in
“Chapter 11. Numbers and Arithmetic” on page 353.

NUMERIC DIGITS
controls the precision to which arithmetic operations and built-in
functions are evaluated. If you omit expression1, the precision defaults to 9
digits. Otherwise, the character string value result of expression1 must
evaluate to a positive whole number and must be larger than the current
NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but high precisions are likely to require a great amount of
processing time. It is recommended that you use the default value
whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS
built-in function. See “DIGITS” on page 276.

Keyword Instructions

62 Object REXX Reference



NUMERIC FORM
controls the form of exponential notation for the result of arithmetic
operations and built-in functions. This can be either SCIENTIFIC (in
which case only one, nonzero digit appears before the decimal point) or
ENGINEERING (in which case the power of 10 is always a multiple of 3).
The default is SCIENTIFIC. The subkeywords SCIENTIFIC or
ENGINEERING set the FORM directly, or it is taken from the character
string result of evaluating the expression (expression2) that follows VALUE.
The result in this case must be either SCIENTIFIC or ENGINEERING. You can
omit the subkeyword VALUE if expression2 does not begin with a symbol
or a literal string, that is, if it starts with a special character, such as an
operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM
built-in function. See “FORM” on page 279.

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric
comparison operation. (See “Numeric Comparisons” on page 358.) If you
omit expression3, the default is 0 digits. Otherwise, the character string
value result of expression3 must evaluate to 0 or a positive whole number
rounded, if necessary, according to the current NUMERIC DIGITS setting,
and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by
the NUMERIC FUZZ value during every numeric comparison. The
numbers are subtracted under a precision of DIGITS minus FUZZ digits
during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ
built-in function. See “FUZZ” on page 281.

Note: The three numeric settings are automatically saved across internal
subroutine and function calls. See the CALL instruction (“CALL” on
page 45) for more details.

PARSE

ÊÊ PARSE
UPPER
LOWER

CASELESS
ARG
LINEIN
PULL
SOURCE
VALUE WITH

expression
VAR name
VERSION

Ê

Keyword Instructions

Chapter 2. Keyword Instructions 63



Ê
template_list

; ÊÍ

Note: You can specify UPPER and CASELESS or LOWER and CASELESS in
either order.

PARSE assigns data from various sources to one or more variables according
to the rules of parsing. (See “Chapter 10. Parsing” on page 335.)

If you specify UPPER or LOWER, any character strings to be parsed are first
translated. Otherwise no translation takes place during the parsing. If you
specify UPPER, the strings are translated to uppercase. If you specify LOWER,
the strings are translated to lowercase.

If you specify CASELESS, character string matches during parsing are made
independent of the case. This means a letter in uppercase is equal to the same
letter in lowercase.

The template_list can be a single template or list of templates separated by
commas. Each template consists of one or more symbols separated by blanks,
patterns, or both.

Each template is applied to a single source string. Specifying several templates
is not a syntax error, but only the PARSE ARG variant can supply more than
one non-null source string. See “Parsing Several Strings” on page 347 for
information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared
for parsing, if necessary. Thus for PARSE PULL, a data string is removed from
the current data queue, for PARSE LINEIN (and PARSE PULL if the queue is
empty), a line is taken from the default input stream, and for PARSE VALUE,
expression is evaluated. For PARSE VAR, the specified variable is accessed. If it
does not have a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the strings passed to a program or internal routine as input
arguments. (See the ARG instruction in “ARG” on page 43 for details and
examples.)

Note: Parsing uses the argument string values. The USE ARG instruction
provides access to string and non-string argument objects. You can

Keyword Instructions

64 Object REXX Reference



also retrieve or check the argument objects to a REXX program or
internal routine with the ARG built-in function (see “ARG
(Argument)” on page 259).

PARSE LINEIN
parses the next line of the default input stream. (See “Chapter 16. Input
and Output Streams” on page 395 for a discussion of REXX input and
output.) PARSE LINEIN is a shorter form of the following instruction:

ÊÊ PARSE VALUE LINEIN()WITH
template_list

; ÊÍ

If no line is available, program execution usually pauses until a line is
complete. Use PARSE LINEIN only when direct access to the character
input stream is necessary. Use the PULL or PARSE PULL instructions for
the usual line-by-line dialog with the user to maintain generality.
To check if any lines are available in the default input stream, use the
built-in function LINES. See “LINES (Lines Remaining)” on page 286 and
“LINEIN (Line Input)” on page 283.

PARSE PULL
parses the next string of the external data queue. If the external data
queue is empty, PARSE PULL reads a line of the default input stream (the
user’s terminal), and the program pauses, if necessary, until a line is
complete. You can add data to the head or tail of the queue by using the
PUSH and QUEUE instructions, respectively. You can find the number of
lines currently in the queue with the QUEUED built-in function. (See
“QUEUED” on page 288.) The queue remains active as long as the
language processor is active. Other programs in the system can alter the
queue and use it to communicate with programs written in REXX. See
also the PULL instruction in “PULL” on page 69.

Note: PULL and PARSE PULL read the current data queue. If the queue
is empty, they read the default input stream, STDIN (typically, the
keyboard).

PARSE SOURCE
parses data describing the source of the program running. The language
processor returns a string that does not change while the program is
running.

The source string contains the characters LINUX, followed by either
COMMAND, FUNCTION, METHOD, or SUBROUTINE, depending on whether the
program was called as a host command or from a function call in an
expression or as a method of an object or using the CALL instruction.
These two tokens are followed by the complete path specification of the
program file.

Keyword Instructions

Chapter 2. Keyword Instructions 65



The string parsed might, therefore, look like this:
LINUX COMMAND /usr/local/orexx/bin/rexxtry.cmd

PARSE VALUE
parses the data, a character string, that is the result of evaluating
expression. If you specify no expression, the null string is used. Note that
WITH is a subkeyword in this context and cannot be used as a symbol
within expression.

Thus, for example:
PARSE VALUE time() WITH hours ':' mins ':' secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the character string value of the variable name. The name must be a
symbol that is valid as a variable name, which means it cannot start with
a period or a digit. Note that the variable name is not changed unless it
appears in the template, so that, for example:
PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and
assigns the remainder back to string.
PARSE UPPER VAR string word1 string

also translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the
language processor. This information consists of five blank-delimited
words:

v The string OBJREXX

v The language level description, for example 6.00.
v Three tokens that describe the language processor release date in the

same format as the default for the DATE built-in function (see “DATE”
on page 272), for example, “27 Sep 1997”.

PROCEDURE

ÊÊ PROCEDURE

·EXPOSE name
(name)

; ÊÍ

Keyword Instructions

66 Object REXX Reference



PROCEDURE, within an internal routine (subroutine or function), protects the
caller's variables by making them unknown to the instructions that follow it.
After a RETURN instruction is processed, the original variables environment
is restored and any variables used in the routine (that were not exposed) are
dropped. (An exposed variable is one belonging the caller of a routine that the
PROCEDURE instruction has exposed. When the routine refers to, or alters,
the variable, the original (caller's) copy of the variable is used.) An internal
routine need not include a PROCEDURE instruction. In this case the variables
it is manipulating are those the caller owns. If the PROCEDURE instruction is
used, it must be the first instruction processed after the CALL or function
invocation; that is, it must be the first instruction following the label.

If you use the EXPOSE option, any variable specified by the name is exposed.
Any reference to it (including setting and dropping) is made to the variables
environment the caller owns. Hence, the values of existing variables are
accessible, and any changes are persistent even on RETURN from the routine.
If the name is not enclosed in parentheses, it identifies a variable you want to
expose and must be a symbol that is a valid variable name, separated from
any other name with one or more blanks.

If parentheses enclose a single name, then, after the variable name is exposed,
the character string value of name is immediately used as a subsidiary list of
variables. Blanks are not necessary inside or outside the parentheses, but you
can add them if desired. This subsidiary list must follow the same rules as the
original list, that is, valid variable names separated by blanks, except that no
parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name
more than once, or to specify a name that the caller has not used as a
variable.

Any variables in the main program that are not exposed are still protected.
Therefore, some of the caller's variables can be made accessible and can be
changed, or new variables can be created. All these changes are visible to the
caller upon RETURN from the routine.

Example:
/* This is the main REXX program */
j=1; z.1='a'
call toft
say j k m /* Displays "1 7 M" */
exit
/* This is a subroutine */
toft: procedure expose j k z.j
say j k z.j /* Displays "1 K a" */
k=7; m=3 /* Note: M is not exposed */

return

Keyword Instructions

Chapter 2. Keyword Instructions 67



Note that if Z.J in the EXPOSE list is placed before J, the caller's value of J is
not visible, so Z.1 is not exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:
/* This is the main REXX program */
j=1;k=6;m=9
a ='j k m'
call test
exit

/* This is a subroutine */
test: procedure expose (a) /* Exposes A, J, K, and M */

say a j k m /* Displays "j k m 1 6 9" */
return

You can use subsidiary lists to more easily expose a number of variables at a
time or, with the VALUE built-in function, to manipulate dynamically named
variables.

Example:
/* This is the main REXX program */
c=11; d=12; e=13
Showlist='c d' /* but not E */
call Playvars
say c d e f /* Displays "11 New 13 9" */
exit

/* This is a subroutine */
Playvars: procedure expose (showlist) f
say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),'New') /* Displays "12" and sets new value */
say value(word(showlist,2)) /* Displays "New" */
e=8 /* E is not exposed */
f=9 /* F was explicitly exposed */
return

Specifying a stem as name exposes this stem and all possible compound
variables whose names begin with that stem. (See “Stems” on page 32.)

Example:
/* This is the main REXX program */
a.=11; i=13; j=15
i = i + 1
C.5 = 'FRED'
call lucky7
say a. a.1 i j c. c.5
say 'You should see 11 7 14 15 C. FRED'
exit
lucky7:Procedure Expose i j a. c.

Keyword Instructions

68 Object REXX Reference



/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1='7' /* This sets A.1 in the caller's */

/* environment, even if it did not */
/* previously exist. */

return

Note: Variables can be exposed through several generations of routines if they
are included in all intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions in “CALL” on
page 45 and “Chapter 8. Functions” on page 251 for details and
examples of how routines are called.

PULL

ÊÊ PULL
template_list

; ÊÍ

PULL reads a string from the head of the external data queue. (See
“Chapter 16. Input and Output Streams” on page 395 for a discussion of REXX
input and output.) It is a short form of the following instruction:

ÊÊ PARSE UPPER PULL
template_list

; ÊÍ

The current head of the queue is read as one string. Without a template_list
specified, no further action is taken and the string is thus effectively
discarded. The template_list can be a single template or list of templates
separated by commas, but PULL parses only one source string. Each template
consists of one or more symbols separated by blanks, patterns, or both.

If you specify several comma-separated templates, variables in templates other
than the first one are assigned the null string. The string is translated to
uppercase (that is, lowercase a–z to uppercase A–Z) and then parsed into
variables according to the rules described in “Chapter 10. Parsing” on
page 335. Use the PARSE PULL instruction if you do not desire uppercase
translation.

Note: If the current data queue is empty, PULL reads from the standard input
(typically, the keyboard). If there is a PULL from the standard input,

Keyword Instructions

Chapter 2. Keyword Instructions 69



the program waits for keyboard input with no prompt. The length of
data read by the PULL instruction is restricted to the length of strings
contained by variables.

Example:
Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used in the template to isolate
the first word the user enters.

If the external data queue is empty, a line is read from the default input
stream and the program pauses, if necessary, until a line is complete. (This is
as though PARSE UPPER LINEIN had been processed. See page 65.)

The QUEUED built-in function (see page “QUEUED” on page 288) returns the
number of lines currently in the external data queue.

PUSH

ÊÊ PUSH
expression

; ÊÍ

PUSH stacks the string resulting from the evaluation of expression LIFO (Last
In, First Out) into the external data queue. (See “Chapter 16. Input and
Output Streams” on page 395 for a discussion of REXX input and output.)

If you do not specify expression, a null string is stacked.

Example:
a='Fred'
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described in “QUEUED” on page 288) returns
the number of lines currently in the external data queue.

Keyword Instructions

70 Object REXX Reference



QUEUE

ÊÊ QUEUE
expression

; ÊÍ

QUEUE appends the string resulting from expression to the tail of the external
data queue. That is, it is added FIFO (First In, First Out). (See “Chapter 16.
Input and Output Streams” on page 395 for a discussion of REXX input and
output.)

If you do not specify expression, a null string is queued.

Example:
a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

The QUEUED built-in function (described in “QUEUED” on page 288) returns
the number of lines currently in the external data queue.

RAISE

ÊÊ RAISE condition
ERROR errorcode
FAILURE failurecode
SYNTAX number
USER usercondition
PROPAGATE

;
options

ÊÍ

options:

·

ADDITIONAL expra
,

ARRAY ( expri )

DESCRIPTION exprd

EXIT

RETURN
exprr

EXIT:

EXIT
expre

Keyword Instructions

Chapter 2. Keyword Instructions 71



Note: You can specify the options ADDITIONAL, ARRAY, DESCRIPTION,
RETURN, and EXIT in any order. However, if you specify EXIT without
expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and
raises a condition in the caller (for a routine) or sender (for a method). See
“Chapter 12. Conditions and Condition Traps” on page 361 for details of the
actions taken when conditions are raised. The RAISE instruction can raise all
conditions that can be trapped.

If you specify condition, it is a single symbol that is taken as a constant.

If the ERROR or FAILURE condition is raised, you must supply the associated
return code as errorcode or failurecode, respectively. These can be literal strings,
constant symbols, or expressions enclosed in parentheses. If you specify an
expression enclosed in parentheses, a subexpression, the language processor
evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated REXX
error number as number. This error number can be either a REXX major error
code or a REXX detailed error code in the form nn.nnn. The number can be a
literal string, a constant symbol, or an expression enclosed in parentheses. If
you specify an expression enclosed in parentheses, the language processor
evaluates the expression to obtain its character string value.

If a USER condition is raised, you must supply the associated user condition
name as usercondition. This can be a literal string or a symbol that is taken as a
constant.

If you specify the ADDITIONAL option, the language processor evaluates
expra to produce an object that supplies additional object information
associated with the condition. The expra can be a literal string, constant
symbol, or expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the “A” option of the CONDITION built-in function
return this additional object information. For SYNTAX conditions, the
ADDITIONAL value must evaluate to a REXX array object.

If you specify the ARRAY option, each expri is an expression (use commas to
separate the expressions). The language processor evaluates the expression list
to produce an array object that supplies additional object information
associated with the condition. The ADDITIONAL entry of the condition object
and the “A” option of the CONDITION built-in function return this additional
object information as an array of values. It is an error to use both the ARRAY
option and the ADDITIONAL option on the same RAISE instruction.

Keyword Instructions

72 Object REXX Reference



The content of expra or expri is used as the contents of the secondary error
message produced for a condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object
information associated with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a
constant symbol, or an expression enclosed in parentheses. If you specify an
expression enclosed in parentheses, the language processor evaluates the
expression to obtain its character string value. This is the description
associated with the condition. The “D” option of the CONDITION built-in
function and the DESCRIPTION entry of the condition object return this
string.

If you do not specify DESCRIPTION, the language processor uses a null
string as the descriptive string.

If you specify the RETURN or EXIT option, the language processor evaluates
the expression exprr or expre, respectively, to produce a result object that is
passed back to the caller or sender as if it were a RETURN or EXIT result. The
expre or exprr is a literal string, constant symbol, or expression enclosed in
parentheses. If you specify an expression enclosed in parentheses, the
language processor evaluates the expression to obtain its character string
value. If you do not specify exprr or expre, no result is passed back to the
caller or sender. In either case, the effect is the same as that of the RETURN or
EXIT instruction (see “RETURN” on page 75). Following the return or exit, the
appropriate action is taken in the caller or sender (see “Action Taken when a
Condition Is Not Trapped” on page 364). If specified, the result value can be
obtained from the RESULT entry of the condition object.

Examples:
raise syntax 40 /* Raises syntax error 40 */
raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12 */

/* Passing two substitution values */
raise syntax (errnum) /* Uses the value of the variable ERRNUM */

/* as the syntax error number */
raise user badvalue /* Raises user condition BADVALUE */

If you specify PROPAGATE, and there is a currently trapped condition, this
condition is raised again in the caller (for a routine) or sender (for a method).
Any ADDITIONAL, DESCRIPTION, ARRAY, RETURN, or EXIT information
specified on the RAISE instruction replaces the corresponding values for the
currently trapped condition. A SYNTAX error occurs if no condition is
currently trapped.

Example:

Keyword Instructions

Chapter 2. Keyword Instructions 73



signal on syntax
a = 'xyz'
c = a+2 /* Raises the SYNTAX condition */...
exit
syntax:
raise propagate /* Propagates SYNTAX information to caller */

REPLY

ÊÊ REPLY
expression

; ÊÍ

REPLY sends an early reply from a method to its caller. The method issuing
REPLY returns control, and possibly a result, to its caller to the point from
which the message was sent; meanwhile, the method issuing REPLY continues
running.

If you specify expression, it is evaluated and the object resulting from the
evaluation is passed back. If you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after
the REPLY until it issues an EXIT or RETURN instruction. The EXIT or
RETURN must not specify a result expression.

Example:
reply 42 /* Returns control and a result */
call tidyup /* Can run in parallel with sender */
return

Notes:

1. You can use REPLY only in a method.
2. A method can execute only one REPLY instruction.
3. When the method issuing the REPLY instruction is the only method on the

current activity with exclusive access to the object's variable pool, the
method retains exclusive access on the new activity. When the other
methods on the activity also have access, the method issuing REPLY
releases its access and reacquires the access on the new activity. This might
force the method to wait until the original activity has released its access.

See “Chapter 13. Concurrency” on page 371 for a complete description of
concurrency.

Keyword Instructions

74 Object REXX Reference



RETURN

ÊÊ RETURN
expression

; ÊÍ

RETURN returns control, and possibly a result, from a REXX program,
method, or internal routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are
identical in their effect on the program that is run. (See “EXIT” on page 51.)

If a subroutine is run, expression (if any) is evaluated, control is passed back to
the caller, and the REXX special variable RESULT is set to the value of
expression. If you omit expression, the special variable RESULT is dropped
(becomes uninitialized). The various settings saved at the time of the CALL
(for example, tracing and addresses) are also restored. (See “CALL” on
page 45.)

If a function is processed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then
used in the original expression at the point where the function was called. See
the description of functions in “Chapter 8. Functions” on page 251 for more
details.

If a method is processed, the language processor evaluates expression (if any)
and returns control to the point from which the method's activating message
was sent. If called as a term of an expression, expression is required. If called
as a message instruction, expression is optional and is assigned to the REXX
special variable RESULT if you specify it. If the method has previously issued
a REPLY instruction, the RETURN instruction must not include a result
expression.

If a PROCEDURE instruction was processed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and
those of the previous generation are exposed) after expression is evaluated and
before the result is used or assigned to RESULT.

SAY

ÊÊ SAY ;
expression

ÊÍ

Keyword Instructions

Chapter 2. Keyword Instructions 75



SAY writes a line to the default output stream, which displays it to the user.
However, the output destination can depend on the implementation. See
“Chapter 16. Input and Output Streams” on page 395 for a discussion of REXX
input and output. The string value of the expression result is written to the
default character output stream. The resulting string can be of any length. If
you omit expression, the null string is written.

The SAY instruction is a shorter form of the following instruction:

ÊÊ CALL LINEOUT,
expression

; ÊÍ

except that:

v SAY does not affect the special variable RESULT.
v If you use SAY and omit expression, a null string is used.
v CALL LINEOUT can raise NOTREADY; SAY cannot.

See “LINEOUT (Line Output)” on page 284 for details of the LINEOUT
function.

Example:
data=100
Say data 'divided by 4 =>' data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream
(STDOUT). However, the standard rules for redirecting output apply to
the SAY output.

2. The SAY instruction does not format data; the operating system and the
hardware handle line wrapping. However, formatting is accomplished, the
output data remains a single logical line.

SELECT

ÊÊ SELECT; · WHEN expression THEN instruction
; ;

Ê

Keyword Instructions

76 Object REXX Reference



Ê

·

OTHERWISE
;

instruction

END ; ÊÍ

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If
the result is 1, the instruction following the associated THEN (which can be a
complex instruction such as IF, DO, or SELECT) is processed and control is
then passed to the END. If the result is 0, control is passed to the next WHEN
clause.

If none of the WHEN expressions evaluates to 1, control is passed to the
instructions, if any, after OTHERWISE. In this situation, the absence of an
OTHERWISE produces an error, however, you can omit the instruction list
that follows OTHERWISE.

Example:
balance=100
check=50
balance = balance - check
Select
when balance > 0 then
say 'Congratulations! You still have' balance 'dollars left.'

when balance = 0 then do
say 'Warning, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."
end

Otherwise
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."

end /* Select */

Notes:

1. The instruction can be any assignment, command, message instruction, or
keyword instruction, including any of the more complex constructs, such
as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label)
after a THEN clause is not equivalent to putting a dummy instruction. The
NOP instruction is provided for this purpose.

Keyword Instructions

Chapter 2. Keyword Instructions 77



3. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently in that it need not start a clause. This allows
the expression on the WHEN clause to be ended by the THEN without a
semicolon (;).

SIGNAL

ÊÊ SIGNAL labelname
expression

VALUE
OFF ANY

ERROR
FAILURE
HALT
LOSTDIGITS
NOMETHOD
NOSTRING
NOTREADY
NOVALUE
SYNTAX
USER usercondition

ON ANY
ERROR NAME trapname
FAILURE
HALT
LOSTDIGITS
NOMETHOD
NOSTRING
NOTREADY
NOVALUE
SYNTAX
USER usercondition

; ÊÍ

SIGNAL causes an unusual change in the flow of control (if you specify
labelname or VALUE expression), or controls the trapping of certain conditions
(if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to
trap. OFF turns off the specified condition trap. ON turns on the specified
condition trap. All information on condition traps is contained in “Chapter 12.
Conditions and Condition Traps” on page 361.

To change the flow of control, a label name is derived from labelname or taken
from the character string result of evaluating the expression after VALUE. The
labelname you specify must be a literal string or symbol that is taken as a
constant. If you specify a symbol for labelname, the search looks for a label
with uppercase characters. If you specify a literal string, the search uses the
literal string directly. You can locate label names with lowercase letters only if

Keyword Instructions

78 Object REXX Reference



you specify the label as a literal string with the same case. Similarly, for
SIGNAL VALUE, the lettercase of labelname must match exactly. You can omit
the subkeyword VALUE if expression does not begin with a symbol or literal
string, that is, if it starts with a special character, such as an operator character
or parenthesis. All active pending DO, IF, SELECT, and INTERPRET
instructions in the current routine are then ended and cannot be resumed.
Control is then passed to the first label in the program that matches the given
name, as though the search had started at the beginning of the program.

The labelname and usercondition are single symbols, which are taken as
constants. The trapname is a string or symbol taken as a constant.

Example:
Signal fred; /* Transfer control to label FRED below */
....
....
Fred: say 'Hi!'

If there are duplicates, control is always passed to the first occurrence of the
label in the program.

When control reaches the specified label, the line number of the SIGNAL
instruction is assigned to the special variable SIGL. This can aid debugging
because you can use SIGL to determine the source of a transfer of control to a
label.

TRACE

ÊÊ TRACE

·

number
Normal

All
Commands

? Error
Failure
Intermediates
Labels
Off
Results

; ÊÍ

Or, alternatively:

Keyword Instructions

Chapter 2. Keyword Instructions 79



ÊÊ TRACE
string
symbol

expression
VALUE

; ÊÍ

TRACE controls the tracing action (that is, how much is displayed to the user)
during the processing of a REXX program. Tracing describes some or all of the
clauses in a program, producing descriptions of clauses as they are processed.
TRACE is mainly used for debugging. Its syntax is more concise than that of
other REXX instructions because TRACE is usually entered manually during
interactive debugging. (This is a form of tracing in which the user can interact
with the language processor while the program is running.)

If specified, the number must be a whole number.

The string or expression evaluates to:
v A numeric option
v One of the valid prefix or alphabetic character (word) options described in

“Alphabetic Character (Word) Options”

v Null

The symbol is taken as a constant and is therefore:
v A numeric option
v One of the valid prefix or alphabetic character (word) options described in

“Alphabetic Character (Word) Options”

The option that follows TRACE or the character string that is the result of
evaluating expression determines the tracing action. You can omit the
subkeyword VALUE if expression does not begin with a symbol or a literal
string, that is, if it starts with a special character, such as an operator or
parenthesis.

Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is
needed; all following characters are ignored. That is why these are referred to
as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All Traces (that is, displays) all clauses before execution.

CommandsF
Traces all commands before execution. If the command results in an

Keyword Instructions

80 Object REXX Reference



error or failure (see “Commands” on page 39), tracing also displays
the return code from the command.

Error Traces any command resulting in an error or failure after execution
(see “Commands” on page 39), together with the return code from the
command.

Failure
Traces any command resulting in a failure after execution (see
“Commands” on page 39), together with the return code from the
command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results
during the evaluation of expressions and substituted names.

Labels Traces only labels passed during execution. This is especially useful
with debug mode, when the language processor pauses after each
label. It also helps the user to note all internal subroutine calls and
transfers of control because of the SIGNAL instruction.

Normal
Traces any failing command after execution, together with the return
code from the command. This is the default setting.

For the default Linux command processor, an attempt to enter an
unknown command raises a FAILURE condition. The CMD return
code for an unknown command is 1. An attempt to enter a command
in an unknown command environment also raises a FAILURE
condition; in such a case, the variable RC is set to 30.

Off Traces nothing and resets the special prefix option (described later) to
OFF.

Results
Traces all clauses before execution. Displays the final results (in
contrast with Intermediates option) of the expression evaluation. Also
displays values assigned during PULL, ARG, PARSE, and USE
instructions. This setting is recommended for general debugging.

Prefix Option

The prefix ? is valid alone or with one of the alphabetic character options. You
can specify the prefix more than once, if desired. Each occurrence of a prefix
on an instruction reverses the action of the previous prefix. The prefix must
immediately precede the option (no intervening blanks).

The prefix ? controls interactive debugging. During normal execution, a
TRACE option with a prefix of ? causes interactive debugging to be switched
on. (See “Chapter 17. Debugging Aids” on page 407 for full details of this

Keyword Instructions

Chapter 2. Keyword Instructions 81



facility.) When interactive debugging is on, interpretation pauses after most
clauses that are traced. For example, the instruction TRACE ?E makes the
language processor pause for input after executing any command that returns
an error, that is, a nonzero return code or explicit setting of the error condition
by the command handler.

Any TRACE instructions in the program being traced are ignored to ensure
that you are not taken out of interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

v Entering TRACE O turns off all tracing.
v Entering TRACE with no options restores the defaults—it turns off interactive

debugging but continues tracing with TRACE Normal (which traces any
failing command after execution).

v Entering TRACE ? turns off interactive debugging and continues tracing with
the current option.

v Entering a TRACE instruction with a ? prefix before the option turns off
interactive debugging and continues tracing with the new option.

Using the ? prefix, therefore, switches you in or out of interactive debugging.
Because the language processor ignores any further TRACE statements in
your program after you are in interactive debug mode, use CALL TRACE '?' to
turn off interactive debugging.

Numeric Options

If interactive debugging is active and the option specified is a positive whole
number (or an expression that evaluates to a positive whole number), that
number indicates the number of debug pauses to be skipped. (See
“Chapter 17. Debugging Aids” on page 407 for further information.) However,
if the option is a negative whole number (or an expression that evaluates to a
negative whole number), all tracing, including debug pauses, is temporarily
inhibited for the specified number of clauses. For example, TRACE -100 means
that the next 100 clauses that would usually be traced are not displayed. After
that, tracing resumes as before.

Tracing Tips:

v When a loop is traced, the DO clause itself is traced on every iteration of
the loop.

v You can retrieve the trace actions currently in effect by using the TRACE
built-in function (see “TRACE” on page 303).

v The trace output of commands traced before execution always contains the
final value of the command, that is, the string passed to the environment,
and the clause generating it.

Keyword Instructions

82 Object REXX Reference



v Trace actions are automatically saved across subroutine, function, and
method calls. See “CALL” on page 45 for more details.

Example: One of the most common traces you will use is:
TRACE ?R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

The Format of Trace Output: Every clause traced appears with automatic
formatting (indentation) according to its logical depth of nesting, for example.
Results, if requested, are indented by two extra spaces and are enclosed in
double quotation marks so that leading and trailing blanks are apparent. Any
control codes in the data encoding (ASCII values less than '20'x) are replaced
by a question mark (?) to avoid screen interference. Results other than strings
appear in the string representation obtained by sending them a STRING
message. The resulting string is enclosed in parentheses. The line number in
the program precedes the first clause traced on any line. All lines displayed
during tracing have a three-character prefix to identify the type of data being
traced. These can be:

*-* Identifies the source of a single clause, that is, the data actually in the
program.

+++ Identifies a trace message. This can be the nonzero return code from a
command, the prompt message when interactive debugging is
entered, an indication of a syntax error when in interactive debugging.

>>> Identifies the result of an expression (for TRACE R) or the value
assigned to a variable during parsing, the value returned from a
subroutine call, or a value evaluated by execution of a DO loop.

>.> Identifies the value assigned to a placeholder during parsing (see
“The Period as a Placeholder” on page 337).

The following prefixes are used only if TRACE Intermediates is in effect:

>C> The data traced is the name of a compound variable, after the name
has been replaced by the value of the variable but before the variable
is used. If no value was assigned to the variable, the trace shows the
variable in uppercase characters.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>M> The data traced is the result of a message.

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

Keyword Instructions

Chapter 2. Keyword Instructions 83



>V> The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating
the expression is null, the default tracing actions are restored. The defaults are
TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause
in error is always traced.

USE

ÊÊ USE ARG ·

,

name
ÊÍ

USE ARG retrieves the argument objects provided in a program, routine,
function, or method and assigns them to variables.

Each name must be a valid variable name. The names are assigned from left to
right. For each name you specify, the language processor assigns it a
corresponding argument from the program, routine, function, or method call.
If there is no corresponding argument, name is dropped.

A USE ARG instruction can be processed repeatedly and it always accesses
the same current argument data.

Examples:
/* USE Example */
/* FRED('Ogof X',1,5) calls function */
Fred: use arg string, num1, num2

/* Now: STRING contains 'Ogof X' */
/* NUM1 contains '1' */
/* NUM2 contains '5' */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */
stem.1 = 'Value'
array = .array∼of('Item')
say 'Before subroutine:' stem.1 array[1] /* Shows "Value Item" */
Call Change_First stem. , array
say 'After subroutine:' stem.1 array[1] /* Shows "NewValue NewItem" */
Exit
Change_First: Procedure

Keyword Instructions

84 Object REXX Reference



Use Arg substem., subarray
substem.1 = 'NewValue'
subarray[1] = 'NewItem'
Return

You can retrieve or check the arguments by using the ARG built-in function
(see “ARG (Argument)” on page 259). The ARG and PARSE ARG instructions
are alternative ways of retrieving arguments. ARG and PARSE ARG access the
string values of arguments. USE ARG performs a direct, one-to-one
assignment of arguments to REXX variables. This is preferable when you need
an exact copy of the argument, without translation or parsing. USE ARG also
allows access to both string and non-string argument objects; ARG and PARSE
ARG parse the string values of the arguments.

Keyword Instructions

Chapter 2. Keyword Instructions 85



86 Object REXX Reference



Chapter 3. Directives

A REXX program contains one or more executable code units. Directive
instructions separate these executable units. A directive begins with a double
colon (::) and is a nonexecutable instruction. For example, it cannot appear in
a string for the INTERPRET instruction to be interpreted. The first directive
instruction in a program marks the end of the main executable section of the
program.

For a program containing directives, all directives are processed first to set up
the program’s classes, methods, and routines. Then any program code in the
main code unit (preceding the first directive) is processed. This code can use
any classes, methods, and routines that the directives established.

::CLASS

ÊÊ ::CLASS classname
EXTERNAL

extname
METACLASS metaclass

Ê

Ê
SUBCLASS Object

MIXINCLASS mclass
SUBCLASS sclass

PUBLIC INHERIT iclasses
; ÊÍ

Notes:

1. You can specify the options EXTERNAL, METACLASS, MIXINCLASS,
SUBCLASS, and PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.

The ::CLASS directive creates a REXX class named classname. The classname is
a literal string or symbol that is taken as a constant. The created class is
available to programs through the REXX environment symbol .classname. The
classname acquires all methods defined by subsequent ::METHOD directives
until the end of the program or another ::CLASS directive is found. Only null
clauses (comments or blank lines) can appear between a ::CLASS directive and
any following directive instruction or the end of the program. Only one
::CLASS directive can appear for classname in a program.

If you specify the EXTERNAL option, the class is created using information
derived from an external source named extname. The extname is a literal string.

© Copyright IBM Corp. 1999 87



If you specify the METACLASS option, the instance methods of the metaclass
class become class methods of the classname class. (See “Chapter 4. Objects and
Classes” on page 95.) The metaclass and classname are literal strings or symbols
that are taken as constants. In the search order for methods, the metaclass
methods precede inherited class methods and follow any class methods
defined by ::METHOD directives with the CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing
REXX program to any other program that references this program with a
::REQUIRES directive. (See “::REQUIRES” on page 91.) If you do not specify
the PUBLIC option, the class is visible only within its containing REXX
program. All public classes defined within a program are used before PUBLIC
classes created with the same name.

If you specify the SUBCLASS option, the class becomes a subclass of the class
sclass for inheritance of instance and class methods. The sclass is a literal string
or symbol that is taken as a constant.

If you specify the MIXINCLASS option, the class becomes a subclass of the
class mclass for inheritance of instance and class methods. You can add the
new class instance and class methods to existing classes by using the
INHERIT option on a ::CLASS directive or by sending an INHERIT message
to an existing class. If you specify neither the SUBCLASS nor the
MIXINCLASS option, the class becomes a non-mixin subclass of the Object
class.

If you specify the INHERIT option, the class inherits instance methods and
class methods from the classes iclasses in their order of appearance (leftmost
first). This is equivalent to sending a series of INHERIT messages to the class
object, with each INHERIT message (except the first) specifying the preceding
class in iclasses as the classpos argument. (See “INHERIT” on page 168.) As
with the INHERIT message, each of the classes in iclasses must be a mixin
class. The iclasses is a blank-separated list of literal strings or symbols that are
taken as constants. If you omit the INHERIT option, the class inherits only
from sclass.

Example:
::class rectangle
::method area /* defined for the RECTANGLE class */
expose width height
return width*height

::class triangle
::method area /* defined for the TRIANGLE class */
expose width height
return width*height/2

Directives

88 Object REXX Reference



The ::CLASS directives in a program are processed in the order in which they
appear. If a ::CLASS directive has a dependency on ::CLASS directives that
appear later in the program, processing of the directive is deferred until all of
the class's dependencies have been processed.

Example:
::class savings subclass account /* requires the ACCOUNT class */
::method type
return "a Savings Account"

::class account
::method type
return "an Account"

The Savings class in the preceding example is not created until the Account
class that appears later in the program has been created.

Note: If you specify the same ::CLASS classname more than once in different
programs, the last one is used. Using more than one ::CLASS classname
in the same program produces an error.

::METHOD

ÊÊ ::METHOD methodname
CLASS ATTRIBUTE PRIVATE GUARDED

UNGUARDED

Ê

Ê
PROTECTED

; ÊÍ

Note: You can specify all options in any order.

The ::METHOD directive creates a method object and defines the method
attributes.

A ::METHOD directive starts a method, which is ended by another directive
or the end of the program. The ::METHOD is not included in the method
source.

The methodname is a literal string or a symbol that is taken as a constant. The
method is defined as methodname in the class specified in the most recent
::CLASS directive. Only one ::METHOD directive can appear for any
methodname in a class.

Directives

Chapter 3. Directives 89



A ::CLASS directive is not required before a ::METHOD directive. If no
::CLASS directive precedes ::METHOD, the method is not associated with a
class but is accessible to the main (executable) part of a program through the
.METHODS built-in object. Only one ::METHOD directive can appear for any
method name not associated with a class. See “.METHODS” on page 387 for
more details.

If you specify the CLASS option, the method is a class method. See “Chapter 4.
Objects and Classes” on page 95. The method is associated with the class
specified on the most recent ::CLASS directive. The ::CLASS directive is
required in this case.

If you specify the PRIVATE option, the method is a private method. (Only a
message the same object sends can activate the method.) If you omit the
PRIVATE option, the method is a public method that any sender can activate.

If you specify the UNGUARDED option, the method can be called while other
methods are active on the same object. If you do not specify UNGUARDED,
the method requires exclusive use of the object variable pool; it can run only
if no other method that requires exclusive use of the object variable pool is
active on the same object.

If you specify the ATTRIBUTE option, in addition to having a method created
as methodname in the class specified in the most recent ::CLASS directive,
another method is also automatically created in that same class as
methodname=.

For example, the directive
::method name attribute

creates two methods, NAME and NAME=. The NAME and NAME= methods
are equivalent to the following code sequences:
::method 'NAME='
expose name
use arg name

::method name
expose name
return name

If you specify the PROTECTED option, the method is a protected method.
(See “Chapter 15. The Security Manager” on page 389 for more information.) If
you omit the PROTECTED option, the method is not protected.

If you specify ATTRIBUTE, another directive (or the end of the program) must
follow the ::METHOD directive.

Directives

90 Object REXX Reference



Example:
r = .rectangle∼new(20,10)
say 'Area is' r∼area /* Produces "Area is 200" */

::class rectangle

::method area
expose width height
return width*height

::method init
expose width height
use arg width, height

::method perimeter
expose width height
return (width+height)*2

Note: It is an error to specify ::METHOD more than once within the same
class and use the same methodname.

::REQUIRES

ÊÊ ::REQUIRES ’programname’ ; ÊÍ

The ::REQUIRES directive specifies that the program requires access to the
classes and objects of the REXX program programname. All public classes and
routines defined in the named program are made available to the executing
program. The programname is a literal string or a symbol that is taken as a
constant. The string or symbol programname can be any string or symbol that
is valid as the target of a CALL instruction. The program programname is
called as an external routine with no arguments. The main program code,
which precedes the first directive instruction, is run.

Any ::REQUIRES directive must precede all ::CLASS, ::METHOD, and
::ROUTINE directives. The order of ::REQUIRES directives determines the
search order for classes and routines defined in the named programs.

The following example illustrates that two programs, ProgramA and
ProgramB, can both access classes and routines that another program,
ProgramC, contains. (The code at the beginning of ProgramC runs.)

Directives

Chapter 3. Directives 91



The language processor uses local routine definitions within a program in
preference to routines of the same name accessed through ::REQUIRES
directives. Local class definitions within a program override classes of the
same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES
directive. Only null clauses can appear between them.

::ROUTINE

ÊÊ ::ROUTINE routinename
PUBLIC

; ÊÍ

The ::ROUTINE directive creates named routines within a program. The
routinename is a literal string or a symbol that is taken as a constant. Only one
::ROUTINE directive can appear for any routinename in a program.

A ::ROUTINE directive starts a routine, which is ended by another directive or
the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing
REXX program to any other program that references this program with a
::REQUIRES directive. If you do not specify the PUBLIC option, the routine is
visible only within its containing REXX program.

Routines you define with the ::ROUTINE directive behave like external
routines. In the search order for routines, they follow internal routines and
built-in functions but precede all other external routines.

Example:

Directives

92 Object REXX Reference



::class c
::method a
call r 'A' /* displays "In method A" */

::method b
call r 'B' /* displays "In method B" */

::routine r
use arg name
say 'In method' name

Notes:

1. It is an error to specify ::ROUTINE with the same routine name more than
once in the same program. It is not an error to have a local ::ROUTINE
with the same name as another ::ROUTINE in another program that the
::REQUIRES directive accesses. The language processor uses the local
::ROUTINE definition in this case.

2. Calling an external REXX program as a function is similar to calling an
internal routine. For an external routine, however, the caller's variables are
hidden and the internal values (NUMERIC settings, for example) start
with their defaults.

Directives

Chapter 3. Directives 93



Directives

94 Object REXX Reference



Chapter 4. Objects and Classes

This chapter provides an overview of the REXX class structure.

A REXX object consists of object methods and object variables. Sending a
message to an object causes the object to perform some action; a method
whose name matches the message name defines the action that is performed.
Only an object's methods can access the object variables belonging to an
object. EXPOSE instructions within an object's methods specify object
variables. Any variables not exposed are dropped on return from a method.

You can create an object by sending a message to a class object. An object
created from a class is an instance of that class. Classes define the methods
and method names for their instances. The methods a class defines for its
instances are called the instance methods of that class. These are the object
methods for the instances. Classes can also define class methods, which are a
class's own object methods.6

Types of Classes

There are three kinds of classes:
v Object classes
v Mixin classes
v Abstract classes

The following sections explain these.

Object Classes

An object class is like a factory for producing objects. An object class creates
objects (instances) and provides methods that these objects can use. An object
acquires the instance methods of the class to which it belongs at the time of
its creation. If a class gains additional methods, objects created before the
definition of these methods do not acquire these methods.

Because the object methods also define the object variables, object classes are
factories for creating REXX objects. The Array class (see “The Array Class” on
page 120) is an example of an object class.

6. When referring to object methods (for objects other than classes) or instance methods (for classes), this book uses
the term methods when the meaning is clear from the context. When referring to object methods and class methods
of classes, this book uses the qualified terms to avoid possible confusion.

© Copyright IBM Corp. 1999 95



Mixin Classes

Classes can inherit from more than the single superclass from which they
were created. This is called multiple inheritance. Classes designed to add a set
of instance and class methods to other classes are called mixin classes, or
simply mixins.

You can add mixin methods to an existing class by sending an INHERIT
message or using the INHERIT option on the ::CLASS directive. (See
“Chapter 3. Directives” on page 87.) In either case, the class to be inherited
must be a mixin. During both class creation and multiple inheritance,
subclasses inherit both class and instance methods from their superclasses.

Mixins are always associated with a base class, which is the mixin’s first
non-mixin superclass. Any subclass of the mixin’s base class can (directly or
indirectly) inherit a mixin; other classes cannot.

To create a new mixin class, you send a MIXINCLASS message to an existing
class or use the ::CLASS directive with the MIXINCLASS option. A mixin class
is also an object class and can create instances of the class.

Abstract Classes

Abstract classes provide definitions for instance methods and class methods but
are not intended to create instances. Abstract classes often define the message
interfaces that subclasses should implement.

You create an abstract class like object or mixin classes. No extra messages or
keywords on the ::CLASS directive are necessary. REXX does not prevent
users from creating instances of abstract classes.

Metaclasses

A metaclass is a class you can use to create another class. The only metaclass
that REXX provides is .class, the Class class. The Class class is the metaclass
of all the classes REXX provides. This means that instances of .class are
themselves classes. The Class class is like a factory for producing the factories
that produce objects.

To change the behavior of an object that is an instance, you generally use
subclassing. For example, you can create Statarray, a subclass of the Array
class (see “The Array Class” on page 120). The Statarray class can include a
method for computing a total of all the numeric elements of an array.
/* Creating an array subclass for statistics */

::class statarray subclass array public

Objects and Classes

96 Object REXX Reference



::method init /* Initialize running total and forward to superclass */
expose total
total = 0
/* “INIT” on page 175 describes the INIT method. */
forward class (super)

::method put /* Modify to increment running total */
expose total
use arg value
total = total + value /* Should verify that value is numeric!!! */
forward class (super)

::method '[]=' /* Modify to increment running total */
forward message 'PUT'

::method remove /* Modify to decrement running total */
expose total
use arg index
forward message 'AT' continue
total = total - result
forward class (super)

::method average /* Return the average of the array elements */
expose total
return total / self∼items

::method total /* Return the running total of the array elements */
expose total
return total

You can use this method on the individual array instances, so it is an instance
method.

However, if you want to change the behavior of the factory producing the
arrays, you need a new class method. One way to do this is to use the
::METHOD directive with the CLASS option. Another way to add a class
method is to create a new metaclass that changes the behavior of the Statarray
class. A new metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS
message or on a ::CLASS directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a
particular class, use the ::METHOD directive with the CLASS option.
However, if you are adding a class method that would be useful for many
classes, such as an instance counter that counts how many instances a class
creates, you use a metaclass.

Objects and Classes

Chapter 4. Objects and Classes 97



The following examples add a class method that keeps a running total of
instances created. The first version uses the ::METHOD directive with the
CLASS option. The second version uses a metaclass.
/* Adding a class method using ::METHOD */

a = .point∼new(1,1) /* Create some point instances */
say 'Created point instance' a
b = .point∼new(2,2)
say 'Created point instance' b
c = .point∼new(3,3)
say 'Created point instance' c

/* Ask the point class how many */
/* instances it has created */

say 'The point class has created' .point∼instances 'instances.'

class point public /* Create Point class */

::method init class
expose instanceCount
instanceCount = 0 /* Initialize instanceCount */
forward class (super) /* Forward INIT to superclass */

::method new class
expose instanceCount /* Creating a new instance */
instanceCount = instanceCount + 1 /* Bump the count */
forward class (super) /* Forward NEW to superclass */

::method instances class
expose instanceCount /* Return the instance count */
return instanceCount

::method init
expose xVal yVal /* Set object variables */
use arg xVal, yVal /* as passed on NEW */

::method string
expose xVal yVal /* Use object variables */
return '('xVal','yVal')' /* to return string value */

/* Adding a class method using a metaclass */

a = .point∼new(1,1) /* Create some point instances */
say 'Created point instance' a
b = .point∼new(2,2)
say 'Created point instance' b
c = .point∼new(3,3)
say 'Created point instance' c

/* Ask the point class how many */
/* instances it has created */

say 'The point class has created' .point∼instances 'instances.'

Objects and Classes

98 Object REXX Reference



::class InstanceCounter subclass class /* Create a new metaclass that */
/* will count its instances */

::method init
expose instanceCount
instanceCount = 0 /* Initialize instanceCount */
forward class (super) /* Forward INIT to superclass */

::method new
expose instanceCount /* Creating a new instance */
instanceCount = instanceCount + 1 /* Bump the count */
forward class (super) /* Forward NEW to superclass */

::method instances
expose instanceCount /* Return the instance count */
return instanceCount

::class point public metaclass InstanceCounter /* Create Point class */
/* using InstanceCounter metaclass */

::method init
expose xVal yVal /* Set object variables */
use arg xVal, yVal /* as passed on NEW */

::method string
expose xVal yVal /* Use object variables */
return '('xVal','yVal')' /* to return string value */

Creating Classes and Methods

You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive at the end of
your source program:
::class 'Account'

This creates an Account class that is a subclass of the Object class. (See “The
Object Class” on page 183 for a description of the Object class.) The string
“Account” is a string identifier for the new class.

Now you can use ::METHOD directives to add methods to your new class.
The ::METHOD directives must immediately follow the ::CLASS directive that
creates the class.
::method type
return "an account"

::method 'name='
expose name
use arg name

Objects and Classes

Chapter 4. Objects and Classes 99



::method name
expose name
return name

This adds the methods TYPE, NAME, and NAME= to the Account class.

You can create a subclass of the Account class and define a method for it:
::class 'Savings' subclass account
::method type
return "a savings account"

Now you can create an instance of the Savings class with the NEW method
(see “NEW” on page 172) and send TYPE, NAME, and NAME= messages to
that instance:
asav = .savings∼new
say asav∼type
asav∼name = 'John Smith'

The Account class methods NAME and NAME= create a pair of access
methods to the account object variable NAME. The following directive
sequence creates the NAME and NAME= methods:
::method 'name='
expose name
use arg name

::method name
expose name
return name

You can replace this with a single ::METHOD directive with the ATTRIBUTE
option. For example, the directive
::method name attribute

adds two methods, NAME and NAME= to a class. These methods perform
the same function as the NAME and NAME= methods in the original
example. The NAME method returns the current value of the object variable
NAME; the NAME= method assigns a new value to the object variable
NAME.

Using Classes

When you create a new class, it is always a subclass of an existing class. You
can create new classes with the ::CLASS directive or by sending the
SUBCLASS or MIXINCLASS message to an existing class. If you specify
neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive,
the superclass for the new class is the Object class, and it is not a mixin class.

Objects and Classes

100 Object REXX Reference



Example of creating a new class using a message:
persistence = .object∼mixinclass('Persistence')
myarray=.array∼subclass('myarray')∼∼inherit(persistence)

Example of creating a new class using the directive:
::class persistence mixinclass object
::class myarray subclass array inherit persistence

Scope

A scope is the methods and object variables defined in a single class. Only
methods defined in a particular scope can access object variables within that
scope. This means that object variables in a subclass can have the same names
as object variables in a superclass, because the object variables are at different
scopes.

Defining Instance Methods with SETMETHOD or ENHANCED

In REXX, methods are usually associated with instances using classes, but it is
also possible to add methods directly to an instance using the SETMETHOD
(see “SETMETHOD” on page 187) or ENHANCED (see “ENHANCED” on
page 167) method.

All subclasses of the Object class inherit SETMETHOD. You can use
SETMETHOD to create one-off objects, objects that must be absolutely unique
so that a class that is capable of creating other instances is not necessary. The
Class class also provides an ENHANCED method that lets you create new
instances of a class with additional methods. The methods and the object
variables defined on an object with SETMETHOD or ENHANCED form a
separate scope, like the scopes the class hierarchy defines.

Method Names

A method name can be any string. When an object receives a message, the
language processor searches for a method whose name matches the message
name in uppercase.

Note: The language processor also translates the specified name of all
methods added to objects into uppercase characters.

You must surround a method name with quotation marks when it contains
characters that are not allowed in a symbol (for example, the operator
characters). The following example creates a new class (the Cost class), defines
a new method (%), creates an instance of the Cost class (mycost), and sends a
% message to mycost:

Objects and Classes

Chapter 4. Objects and Classes 101



cost=.object∼subclass('A cost')
cost∼define('%', 'expose p; say "Enter a price."; pull p; say p*1.07;')
mycost=cost∼new
mycost∼'%' /* Produces: Enter a price. */

/* If the user specifies a price of 100, */
/* produces: 107.00 */

Default Search Order for Method Selection

The search order for a method name matching the message is for:
1. A method the object itself defines with SETMETHOD or ENHANCED.

(See “SETMETHOD” on page 187.)

2. A method the object's class defines. (Note that an object acquires the
instance methods of the class to which it belongs at the time of its
creation. If a class gains additional methods, objects created before the
definition of these methods do not acquire these methods.)

3. A method that a superclass of the object's class defines. This is also limited
to methods that were available when the object was created. The order of
the INHERIT (see “INHERIT” on page 168) messages sent to an object's
class determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses
so that a class can supplement or override inherited methods.

If the language processor does not find a match for the message name, the
language processor checks the object for a method name UNKNOWN. If it
exists, the language processor calls the UNKNOWN method and returns as
the message result any result the UNKNOWN method returns. The
UNKNOWN method arguments are the original message name and a REXX
array containing the original message arguments.

If the object does not have an UNKNOWN method, the language processor
raises a NOMETHOD condition.

Defining an UNKNOWN Method

When an object that receives a message does not have a matching message
name, the language processor checks if the object has a method named
UNKNOWN. If the object has an UNKNOWN method, the language
processor calls UNKNOWN, passing two arguments. The first argument is the
name of the method that was not located. The second argument is an array
containing the arguments passed with the original message.

If you define an UNKNOWN method, you can use the following syntax:

Objects and Classes

102 Object REXX Reference



ÊÊ UNKNOWN(messagename,messageargs) ÊÍ

Changing the Search Order for Methods

You can change the usual search order for methods by:
1. Ensuring that the receiver object is the sender object. (You usually do this

by specifying the special variable SELF—see page 413.)

2. Specifying a colon and a class symbol after the message name. The class
symbol can be a variable name or an environment symbol. It identifies the
class object to be used as the starting point for the method search.
The class object must be a superclass of the class defining the active
method, or, if you used SETMETHOD to define the active method, the
object's own class. The class symbol is usually the special variable SUPER
(see page 413) but it can be any environment symbol or variable name
whose value is a valid class.

Suppose you create an Account class that is a subclass of the Object class,
define a TYPE method for the Account class, and create the Savings class that
is a subclass of Account. You could define a TYPE method for the Savings
class as follows:
savings∼define('TYPE', 'return "a savings account"')

You could change the search order by using the following line:
savings∼define('TYPE', 'return self∼type:super "(savings)"')

This changes the search order so that the language processor searches for the
TYPE method first in the Account superclass (rather than in the Savings
subclass). When you create an instance of the Savings class (asav) and send a
TYPE message to asav:
say asav∼type

an account (savings) is displayed. The TYPE method of the Savings class
calls the TYPE method of the Account class, and adds the string (savings) to
the results.

Public and Private Methods

A method can be public or private. Any object can send a message that runs a
public method. A private method runs only when an object sends a message to
itself (that is, using the variable SELF as the message receiver). Private
methods include methods at different scopes within the same object.
(Superclasses can make private methods available to their subclasses while

Objects and Classes

Chapter 4. Objects and Classes 103



hiding those methods from other objects.) A private method is like an internal
subroutine. It provides common functions to the object methods but is hidden
from other programs.

The Class Hierarchy

REXX provides the following classes belonging to the object class:7

v Alarm class
v Class class
v Array class
v List class
v Queue class
v Table class

– Set class
v Directory class
v Relation class

– Bag class
v Message class
v Method class
v Monitor class
v Stem class
v Stream class
v String class
v Supplier class

(The classes are in a class hierarchy with subclasses indented below their
superclasses.)

Initialization

Any object requiring initialization at creation time must define an INIT
method. If this method is defined, the class object runs the INIT method after
the object is created. If an object has more than one INIT method (for
example, it is defined in several classes), each INIT method must forward the
INIT message up the hierarchy to complete the object's initialization.

Example:
asav = .savings∼new(1000.00, 6.25)
say asav∼type
asav∼name = 'John Smith'

7. There might be other classes in the system.

Objects and Classes

104 Object REXX Reference



::class Account

::method INIT
expose balance
use arg balance

::method TYPE
return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self∼init:super(balance)

::method type
return "a savings account"

The NEW method of the Savings class object creates a new Savings object and
calls the INIT method of the new object. The INIT method arguments are the
arguments specified on the NEW method. In the Savings INIT method, the
line:
self∼init:super(balance)

calls the INIT method of the Account class, using just the balance argument
specified on the NEW message.

Object Destruction and Uninitialization

Object destruction is implicit. When an object is no longer in use, REXX
automatically reclaims its storage. If the object has allocated other system
resources, you must release them at this time. (REXX cannot release these
resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a
message object holding an unreported error. An object requiring
uninitialization should define an UNINIT method. If this method is defined,
REXX runs it before reclaiming the object’s storage. If an object has more than
one UNINIT method (defined in several classes), each UNINIT method is
responsible for sending the UNINIT method up the object hierarchy.

Required String Values

REXX requires a string value in a number of contexts within instructions and
built-in function calls.

Objects and Classes

Chapter 4. Objects and Classes 105



v DO statements containing exprr or exprf

v Substituted values in compound variable names
v Commands to external environments
v Commands and environment names on ADDRESS instructions
v Strings for ARG, PARSE, and PULL instructions to be parsed
v Parenthesized targets on CALL instructions
v Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions
v Instruction strings on INTERPRET instructions
v DIGITS, FORM, and FUZZ values on NUMERIC instructions
v Options strings on OPTIONS instructions
v Data queue strings on PUSH and QUEUE instructions
v Label names on SIGNAL VALUE instructions
v Trace settings on TRACE VALUE instructions
v Arguments to built-in functions
v Variable references in parsing templates
v Data for PUSH and QUEUE instructions to be processed
v Data for the SAY instruction to be displayed
v REXX dyadic operators when the receiving object (the object to the left of

the operator) is a string

If you supply an object other than a string in these contexts, by default the
language processor converts it to some string representation and uses this.
However, the programmer can cause the language processor to raise the
NOSTRING condition when the supplied object does not have an equivalent
string value.

To obtain a string value, the language processor sends a REQUEST('STRING')
message to the object. Strings and other objects that have string values return
the appropriate string value for REXX to use. (This happens automatically for
strings and for subclasses of the String class because they inherit a suitable
MAKESTRING method from the String class.) For this mechanism to work
correctly, you must provide a MAKESTRING method for any other objects
with string values.

For other objects without string values (that is, without a MAKESTRING
method), the action taken depends on the setting of the NOSTRING condition
trap. If the NOSTRING condition is being trapped (see “Chapter 12.
Conditions and Condition Traps” on page 361), the language processor raises
the NOSTRING condition. If the NOSTRING condition is not being trapped,
the language processor sends a STRING message to the object to obtain its
readable string representation (see the STRING method of the Object class
“STRING” on page 188 ) and uses this string.

Objects and Classes

106 Object REXX Reference



Example:
d = .directory∼new
say substr(d,5,7) /* Produces "rectory" from "a Directory" */
signal on nostring
say substr(d,5,7) /* Raises the NOSTRING condition */
say substr(d∼string,3,6) /* Displays "Direct" */

For arguments to REXX object methods, different rules apply. When a method
expects a string as an argument, the argument object is sent the
REQUEST(’STRING’) message. If REQUEST returns the NIL object, then the
method raises an error.

Concurrency

REXX supports concurrency, multiple methods running simultaneously on a
single object. See “Chapter 13. Concurrency” on page 371 for a full description
of concurrency.

Classes and Methods Provided by REXX

The following figure shows all the classes and their methods.

Objects and Classes

Chapter 4. Objects and Classes 107



Figure 11. Classes and Inheritance of Methods (Part 1 of 2)

Objects and Classes

108 Object REXX Reference



Summary of Methods by Class

The following table lists all the methods and the classes that define them. All
methods are instance methods except where noted.

Table 1. Summary of Methods and the Classes Defining Them

Method Name Class(es) and Page(s)

[] Array, “[]” on page 122 Bag, “[]” on page 127
Directory, “[]” on page 130 List, “[]” on
page 137 Queue, “[]” on page 142 Relation,
“[]” on page 145 Set, “[]” on page 151 Stem,
“[]” on page 191 Table, “[]” on page 154

Figure 11. Classes and Inheritance of Methods (Part 2 of 2)

Objects and Classes

Chapter 4. Objects and Classes 109



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

[]= Array “[]=” on page 122 Bag, “[]=” on
page 127 Directory, “[]=” on page 130 List,
“[]=” on page 137 Queue, “[]=” on page 142
Relation, “[]=” on page 145 Set, “[]=” on
page 151 Stem, “[]=” on page 191 Table, “[]=”
on page 154

ABBREV String, “ABBREV” on page 216

ABS String, “ABS” on page 217

ALLAT Relation, “ALLAT” on page 145

ALLINDEX Relation, “ALLINDEX” on page 146

ARRAYIN Stream, “ARRAYIN” on page 193

ARRAYOUT Stream, “ARRAYOUT” on page 194

AT Array, “AT” on page 122 Directory, “AT” on
page 130 List, “AT” on page 137 Queue, “AT”
on page 142 Relation, “AT” on page 146 Set,
“AT” on page 151 Table, “AT” on page 154

AVAILABLE Supplier, “AVAILABLE” on page 245

BASECLASS Class, “BASECLASS” on page 166

BITAND String, “BITAND” on page 217

BITOR String, “BITOR” on page 218

BITXOR String, “BITXOR” on page 218

B2X String, “B2X” on page 219

CANCEL Alarm, “CANCEL” on page 164

CENTER String, “CENTER/CENTRE” on page 220

CHANGESTR String, “CHANGESTR” on page 220

CHARIN Stream, “CHARIN” on page 194

CHAROUT Stream, “CHAROUT” on page 194

CHARS Stream, “CHARS” on page 195

CLASS Object, “CLASS” on page 184

CLOSE Stream, “CLOSE” on page 195

COMMAND Stream, “COMMAND” on page 195

COMPARE String, “COMPARE” on page 221

COMPLETED Message, “COMPLETED” on page 175

COPIES String, “COPIES” on page 221

COPY Object, “COPY” on page 184

Objects and Classes

110 Object REXX Reference



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

COUNTSTR String, “COUNTSTR” on page 221

CURRENT Monitor, “CURRENT” on page 182

C2D String, “C2D” on page 222

C2X String, “C2X” on page 223

DATATYPE String, “DATATYPE” on page 223

DEFAULTNAME Class, “DEFAULTNAME” on page 166 Object,
“DEFAULTNAME” on page 184

DEFINE Class (class and instance method), “DEFINE”
on page 166

DELETE Class (class and instance method), “DELETE”
on page 167

DELSTR String, “DELSTR” on page 225

DELWORD String, “DELWORD” on page 225

DESCRIPTION Stream, “DESCRIPTION” on page 202

DESTINATION Monitor, “DESTINATION” on page 182

DIFFERENCE Directory, “DIFFERENCE” on page 133
Relation, “DIFFERENCE” on page 148 Table,
“DIFFERENCE” on page 156

DIMENSION Array, “DIMENSION” on page 122

D2C String, “D2C” on page 226

D2X String, “D2X” on page 227

ENHANCED Class (class and instance method),
“ENHANCED” on page 167

ENTRY Directory, “ENTRY” on page 130

FIRST Array, “FIRST” on page 123 List, “FIRST” on
page 137

FIRSTITEM List, “FIRSTITEM” on page 138

FLUSH Stream, “FLUSH” on page 202

FORMAT String, “FORMAT” on page 228

HASENTRY Directory, “HASENTRY” on page 131

Objects and Classes

Chapter 4. Objects and Classes 111



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

HASINDEX Array, “HASINDEX” on page 123 Bag,
“HASINDEX” on page 128 Directory,
“HASINDEX” on page 131 List, “HASINDEX”
on page 138 Queue, “HASINDEX” on
page 142 Relation, “HASINDEX” on page 146
Set, “HASINDEX” on page 152 Table,
“HASINDEX” on page 154

HASITEM Relation, “HASITEM” on page 146

HASMETHOD Object, “HASMETHOD” on page 185

ID Class (class and instance method), “ID” on
page 168

INDEX Relation, “INDEX” on page 146 Supplier,
“INDEX” on page 245

INHERIT Class (class and instance method), “INHERIT”
on page 168

INIT Alarm, “INIT” on page 164 Class, “INIT” on
page 169 Message, “INIT” on page 175
Monitor, “INIT” on page 182 Object, “INIT”
on page 185 Stream, “INIT” on page 202

INSERT List, “INSERT” on page 138 String, “INSERT”
on page 229

INTERSECTION Directory, “INTERSECTION” on page 133
Relation, “INTERSECTION” on page 148
Table, “INTERSECTION” on page 156

ITEM Supplier, “ITEM” on page 245

ITEMS Array, “ITEMS” on page 123 Directory,
“ITEMS” on page 131 List, “ITEMS” on
page 139 Queue, “ITEMS” on page 142
Relation, “ITEMS” on page 147 Set, “ITEMS”
on page 152 Table, “ITEMS” on page 155

LAST Array, “LAST” on page 123 List, “LAST” on
page 139

LASTITEM List, “LASTITEM” on page 139

LASTPOS String, “LASTPOS” on page 230

LEFT String, “LEFT” on page 230

LENGTH String, “LENGTH” on page 231

LINEIN Stream, “LINEIN” on page 202

LINEOUT Stream, “LINEOUT” on page 203

Objects and Classes

112 Object REXX Reference



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

LINES Stream, “LINES” on page 203

MAKEARRAY Array, “MAKEARRAY” on page 123 Bag,
“MAKEARRAY” on page 128 Directory,
“MAKEARRAY” on page 131 List,
“MAKEARRAY” on page 139 Queue,
“MAKEARRAY” on page 142 Relation,
“MAKEARRAY” on page 147 Set,
“MAKEARRAY” on page 152 Stem,
“MAKEARRAY” on page 191 Stream,
“MAKEARRAY” on page 204 Table,
“MAKEARRAY” on page 155

MAKESTRING String, “MAKESTRING” on page 231

MAX String, “MAX” on page 231

METACLASS Class, “METACLASS” on page 169

METHOD Class (class and instance method),
“METHOD” on page 170

METHODS Class (class and instance method),
“METHODS” on page 170

MIN String, “MIN” on page 232

MIXINCLASS Class, “MIXINCLASS” on page 171

NEW Array (class method), “NEW (Class Method)”
on page 121 Class (class and instance
method), “NEW” on page 172 Method, “NEW
(Class Method)” on page 179 Object, “NEW
(Class Method)” on page 183 Stem (class
method), “NEW (Class Method)” on page 190
String (class method), “NEW (Class Method)”
on page 212 Supplier (class method), “NEW
(Class Method)” on page 244

NEWFILE Method, “NEWFILE (Class Method)” on
page 179

NEXT Array, “NEXT” on page 123 List, “NEXT” on
page 139 Supplier, “NEXT” on page 245

NOTIFY Message, “NOTIFY” on page 176

OBJECTNAME Object, “OBJECTNAME” on page 185

OBJECTNAME= Object, “OBJECTNAME=” on page 185

Objects and Classes

Chapter 4. Objects and Classes 113



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

OF Array (class method), “OF (Class Method)” on
page 121 Bag (class method), “OF (Class
Method)” on page 127 List (class method),
“OF (Class Method)” on page 137 Set (class
method), “OF (Class Method)” on page 151

OPEN Stream, “OPEN” on page 204

Operator Methods (Arithmetic): +, −,
*, /, %, //, **, prefix +, prefix −

String, “Arithmetic Methods” on page 212

Operator Methods (Comparison): =,
\=, ><, <>, ==, and \==

Object, “Operator Methods” on page 183
String, 213

Operator Methods (Comparison): >,
<, >=, \<, <=, \>, >>, <<, >>=, \<<,
<<=, and \>>

String, page 215

Operator Methods (Concatenation): ""
(abuttal), ||, and " " (blank)

String, page 216

Operator Methods (Logical): &, |,
&&, and prefix \

String, page 215

Operator Methods (Other): ==
(unary)

Object, “Operator Methods” on page 183

OVERLAY String, “OVERLAY” on page 232

PEEK Queue, “PEEK” on page 143

POS String, “POS” on page 233

POSITION Stream, “POSITION” on page 206

PREVIOUS Array, “PREVIOUS” on page 124 List,
“PREVIOUS” on page 139

PULL Queue, “PULL” on page 143

PUSH Queue, “PUSH” on page 143

PUT Array, “PUT” on page 124 Bag, “PUT” on
page 128 Directory, “PUT” on page 131 List,
“PUT” on page 140 Queue, “PUT” on
page 143 Relation, “PUT” on page 147 Set,
“PUT” on page 152 Table, “PUT” on page 155

QUALIFY Stream, “QUALIFY” on page 206

QUERY Stream, “QUERY” on page 206

QUERYMIXINCLASS Class, “QUERYMIXINCLASS” on page 172

QUEUE Queue, “QUEUE” on page 143

Objects and Classes

114 Object REXX Reference



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

REMOVE Array, “REMOVE” on page 124 Directory,
“REMOVE” on page 132 List, “REMOVE” on
page 140 Queue, “REMOVE” on page 143
Relation, “REMOVE” on page 147 Set,
“REMOVE” on page 152 Table, “REMOVE” on
page 155

REMOVEITEM Relation, “REMOVEITEM” on page 147

REQUEST Object, “REQUEST” on page 186 Stem,
“REQUEST” on page 192

RESULT Message, “RESULT” on page 176

REVERSE String, “REVERSE” on page 233

RIGHT String, “RIGHT” on page 233

RUN Object, “RUN” on page 186

SECTION Array, “SECTION” on page 124 List,
“SECTION” on page 140

SEEK Stream, “SEEK” on page 208

SEND Message, “SEND” on page 177

SETENTRY Directory, “SETENTRY” on page 132

SETGUARDED Method, “SETGUARDED” on page 180

SETMETHOD Directory, “SETMETHOD” on page 132
Object, “SETMETHOD” on page 187

SETPRIVATE Method, “SETPRIVATE” on page 180

SETPROTECTED Method, “SETPROTECTED” on page 180

SETSECURITYMANAGER Method, “SETSECURITYMANAGER” on
page 180

SETUNGUARDED Method, “SETUNGUARDED” on page 180

SIGN String, “SIGN” on page 234

SIZE Array, “SIZE” on page 125

SOURCE Method, “SOURCE” on page 181

SPACE String, “SPACE” on page 234

START Message, “START” on page 177 Object,
“START” on page 188

STATE Stream, “STATE” on page 209

STRING Object, “STRING” on page 188 String,
“STRING” on page 235

STRIP String, “STRIP” on page 235

Objects and Classes

Chapter 4. Objects and Classes 115



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

SUBCLASS Class (class and instance method),
“SUBCLASS” on page 172

SUBCLASSES Class (class and instance method),
“SUBCLASSES” on page 173

SUBSET Directory, “SUBSET” on page 134 Relation,
“SUBSET” on page 148 Table, “SUBSET” on
page 156

SUBSTR String, “SUBSTR” on page 236

SUBWORD String, “SUBWORD” on page 236

SUPERCLASSES Class (class and instance method),
“SUPERCLASSES” on page 173

SUPPLIER Array, “SUPPLIER” on page 125 Bag,
“SUPPLIER” on page 128 Directory,
“SUPPLIER” on page 133 List, “SUPPLIER”
on page 140 Queue, “SUPPLIER” on page 144
Relation, “SUPPLIER” on page 148 Set,
“SUPPLIER” on page 153 Stream,
“SUPPLIER” on page 210 Table, “SUPPLIER”
on page 155

TRANSLATE String, “TRANSLATE” on page 237

TRUNC String, “TRUNC” on page 238

UNINHERIT Class (class and instance method),
“UNINHERIT” on page 174

UNION Directory, “UNION” on page 134 Relation,
“UNION” on page 149 Table, “UNION” on
page 156

UNKNOWN Directory, “UNKNOWN” on page 133
Monitor, “UNKNOWN” on page 182 Stem,
“UNKNOWN” on page 192

UNSETMETHOD Object, “UNSETMETHOD” on page 189

VERIFY String, “VERIFY” on page 238

WORD String, “WORD” on page 239

WORDINDEX String, “WORDINDEX” on page 240

WORDLENGTH String, “WORDLENGTH” on page 240

WORDPOS String, “WORDPOS” on page 240

WORDS String, “WORDS” on page 241

XOR Directory, “XOR” on page 134 Relation,
“XOR” on page 149 Table, “XOR” on page 157

Objects and Classes

116 Object REXX Reference



Table 1. Summary of Methods and the Classes Defining Them (continued)

Method Name Class(es) and Page(s)

X2B String, “X2B” on page 241

X2C String, “X2C” on page 242

X2D String, “X2D” on page 243

The chapters that follow describe the classes and other objects that REXX
provides and their available methods. REXX provides the objects listed in
these sections and they are generally available to all methods through
environment symbols (see “Environment Symbols” on page 36).

Notes:

1. In the method descriptions in the chapters that follow, methods that return
a result begin with the word ‘returns’.

2. For [] and []= methods, the syntax diagrams include the index or indexes
within the brackets. These diagrams are intended to show how you can
use these methods. For example, to retrieve the first element of a
one-dimensional array named Array1, you would typically use the syntax:
Array1[1]

rather than:
Array1∼“[]”(1)

even though the latter is valid and equivalent. For more information, see
“Message Terms” on page 25 and “Message Instructions” on page 29.

3. When the argument of a method must be a specific kind of object (such as
array, class, method, or string) the variable you specify must be of the
same class as the required object or be able to produce an object of the
required kind in response to a conversion message. In particular,
subclasses are acceptable in place of superclasses (unless overridden in a
way that changes superclass behavior), because they inherit a suitable
conversion method from their REXX superclass.
The REQUEST method of the Object class (see “REQUEST” on page 186 )
can perform this validation.

Objects and Classes

Chapter 4. Objects and Classes 117



Objects and Classes

118 Object REXX Reference



Chapter 5. The Collection Classes

A collection is an object that contains a number of items, which can be any
objects. Every item stored in a REXX collection has an associated index that
you can use to retrieve the item from the collection with the AT or [] methods.

Each collection defines its own acceptable index types. REXX provides the
following collection classes:

Collections that do not have set operations:

Array A sequenced collection of objects ordered by whole-number
indexes. See “The Array Class” on page 120 for details.

List A sequenced collection that lets you add new items at any
position in the sequence. A list generates and returns an index
value for each item placed in the list. The returned index
remains valid until the item is removed from the list. See “The
List Class” on page 136 for details.

Queue A sequenced collection with the items ordered as a queue. You
can remove items from the head of the queue and add items
at either its tail or its head. Queues index the items with
whole-number indexes, in the order in which the items would
be removed. The current head of the queue has index 1, the
item after the head item has index 2, up to the number of
items in the queue. See “The Queue Class” on page 141 for
details.

Collections that have set operations:

Table A collection with indexes that can be any object. For example,
string objects, array objects, alarm objects, or any user-created
object can be a table index. The table class determines the
index match by using the == comparison method. A table
contains no duplicate indexes. See “The Table Class” on
page 153 for details.

Directory A collection with character string indexes. Index comparisons
are performed using the string == comparison method. See
“The Directory Class” on page 129 for details.

Relation A collection with indexes that can be any object (as with the
table class). A relation can contain duplicate indexes. See “The
Relation Class” on page 144 for details.

Set A collection where the index and the item are the same object.

© Copyright IBM Corp. 1999 119



Set indexes can be any object (as with the table class) and
each index is unique. See “The Set Class” on page 150 for
details.

Bag A collection where the index and the item are the same object.
Bag indexes can be any object (as with the table class) and
each index can appear more than once. See “The Bag Class”
on page 126 for details.

The following sections describe the individual collection classes in
alphabetical order and the methods that they define and inherit. It also
describes the concept of set operations.

The Array Class

An array is a collection with indexes that are positive whole numbers. You can
reference array items by using one or more indexes. The number of indexes is
the same as the number of dimensions of the array. This number is called the
dimensionality of the array.

Array objects are variable-sized. The dimensionality of an array is fixed, but
the size of each dimension is variable. When you create an array, you can
specify a hint about how many elements you expect to put into the array or
the array's dimensionality. However, you do not need to specify a size or
dimensionality of an array when you are creating it. You can use any
whole-number indexes to reference items in an array.

Methods the Array class defines:

NEW (Class method. Overrides Object class method.)
OF (Class method)
[]
[]=
AT
DIMENSION
FIRST
HASINDEX
ITEMS
LAST
MAKEARRAY
NEXT
PREVIOUS
PUT
REMOVE

Collection Classes

120 Object REXX Reference



SECTION
SIZE
SUPPLIER

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Array class also has available class methods that its metaclass, the
Class class, defines.

NEW (Class Method)

ÊÊ

·

NEW
,

( size )

ÊÍ

Returns a new empty array. If you specify any size, the size is taken as a hint
about how big each dimension should be. The language processor uses this
only to allocate the array object initially. For multiple dimension arrays, you
can also specify how much space is to be allocated initially for each
dimension of the array.

Each size argument must be 0 or a positive whole number. If it is 0, the
corresponding dimension is initially empty.

OF (Class Method)

ÊÊ

·

OF
,

( item )

ÊÍ

Array Class

Chapter 5. The Collection Classes 121



Returns a newly created single-index array containing the specified item
objects. The first item has index 1, the second has index 2, and so on.

If you use the OF method and omit any argument items, the returned array
does not include the indexes corresponding to those you omitted.

[]

ÊÊ ·

,

[ index ] ÊÍ

Returns the same value as the AT method, which follows. See “AT”.

[]=

ÊÊ ·

,

[ index ]=value ÊÍ

This method is the same as the PUT method, which follows. See “PUT” on
page 124.

AT

ÊÊ ·

,

AT( index ) ÊÍ

Returns the item associated with the specified index or indexes. If the array has
no item associated with the specified index or indexes, this method returns the
NIL object.

DIMENSION

ÊÊ DIMENSION
(n)

ÊÍ

Returns the current size (upper bound) of dimension n (a positive whole
number). If you omit n, this method returns the dimensionality (number of
dimensions) of the array. If the number of dimensions has not been
determined, DIMENSION returns 0.

Array Class

122 Object REXX Reference



FIRST

ÊÊ FIRST ÊÍ

Returns the index of the first item in the array or the NIL object if the array is
empty. The FIRST method is valid only for single-index arrays.

HASINDEX

ÊÊ ·

,

HASINDEX( index ) ÊÍ

Returns 1 (true) if the array contains an item associated with the specified
index or indexes. Returns 0 (false) otherwise.

ITEMS

ÊÊ ITEMS ÊÍ

Returns the number of items in the collection.

LAST

ÊÊ LAST ÊÍ

Returns the index of the last item in the array or the NIL object if the array is
empty. The LAST method is valid only for single-index arrays.

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Returns a single-index array with the same number of items as the receiver
object. Any index with no associated item is omitted from the new array.

NEXT

ÊÊ NEXT(index) ÊÍ

Array Class

Chapter 5. The Collection Classes 123



Returns the index of the item that follows the array item having index index
or returns the NIL object if the item having that index is last in the array. The
NEXT method is valid only for single-index arrays.

PREVIOUS

ÊÊ PREVIOUS(index) ÊÍ

Returns the index of the item that precedes the array item having index index
or the NIL object if the item having that index is first in the array. The
PREVIOUS method is valid only for single-index arrays.

PUT

ÊÊ ·PUT(item ,index ) ÊÍ

Makes the object item a member item of the array and associates it with the
specified index or indexes. This replaces any existing item associated with the
specified index or indexes with the new item. If the index for a particular
dimension is greater than the current size of that dimension, the array is
expanded to the new dimension size.

REMOVE

ÊÊ ·

,

REMOVE( index ) ÊÍ

Returns and removes the member item with the specified index or indexes
from the array. If there is no item with the specified index or indexes, the NIL
object is returned and no item is removed.

SECTION

ÊÊ SECTION(start )
,items

ÊÍ

Returns a new array (of the same class as the receiver) containing selected
items from the receiver array. The first item in the new array is the item
corresponding to index start in the receiver array. Subsequent items in the
new array correspond to those in the receiver array (in the same sequence). If

Array Class

124 Object REXX Reference



you specify the whole number items, the new array contains only this number
of items (or the number of subsequent items in the receiver array, if this is less
than items). If you do not specify items, the new array contains all subsequent
items of the receiver array. The receiver array remains unchanged. The
SECTION method is valid only for single-index arrays.

SIZE

ÊÊ SIZE ÊÍ

Returns the number of items that can be placed in the array before it needs to
be extended. This value is the same as the product of the sizes of the
dimensions in the array.

SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 244) to
enumerate all the items that were in the array at the time of the supplier’s
creation. The supplier enumerates the array items in their sequenced order.

Examples
array1=.array∼of(1,2,3,4) /* Loads the array */

/* Alternative way to create and load an array */
array2=.array∼new(4) /* Creates array2, containing 4 items */
do i=1 to 4 /* Loads the array */
array2[i]=i

end

You can produce the elements loaded into an array, for example:
do i=1 to 4
say array1[i]

end

If you omit any argument values before arguments you supply, the
corresponding indexes are skipped in the returned array:
directions=.array∼of('North','South',,'West')
do i=1 to 4 /* Produces: North */

say directions[i] /* South */
/* The NIL object */

end /* West */

Array Class

Chapter 5. The Collection Classes 125



Here is an example using the ∼∼:
z=.array∼of(1,2,3)∼∼put(4,4)
do i = 1 to z∼size

say z[i] /* Produces: 1 2 3 4 */
end

The Bag Class

A bag is a collection that restricts the elements to having an item that is the
same as the index. Any object can be placed in a bag, and the same object can
be placed in a bag several times.

The Bag class is a subclass of the Relation class. In addition to its own
methods, it inherits the methods of the Object class and the Relation class.

Methods the Bag class defines:

OF (Class method)
[]
[]= (Overrides Relation class method)
HASINDEX
MAKEARRAY
PUT (Overrides Relation class method)
SUPPLIER

Methods inherited from the Relation class:

ALLAT
ALLINDEX
AT
HASITEM
INDEX
ITEMS
REMOVE
REMOVEITEM

Set-operator methods inherited from the Relation class:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

Array Class

126 Object REXX Reference



NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Bag class also has available class methods that its metaclass, the
Class class, defines.

OF (Class Method)

ÊÊ ·

,

OF( item ) ÊÍ

Returns a newly created bag containing the specified item objects.

[]

ÊÊ [index] ÊÍ

Returns the same value as the AT method in the Relation class. See “AT” on
page 146.

[]=

ÊÊ [index]=item ÊÍ

This method is the same as the PUT method. See “PUT” on page 128.

Bag Class

Chapter 5. The Collection Classes 127



HASINDEX

ÊÊ HASINDEX(index) ÊÍ

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

ÊÊ PUT(item )
,index

ÊÍ

Makes the object item a member item of the collection and associates it with
index index. If you specify index, it must be the same as item.

SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 244) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

Examples
/* Create a bag of fruit */
fruit = .bag∼of('Apple', 'Orange', 'Apple', 'Pear')
say fruit∼items /* How many pieces? (4) */
say fruit∼items('Apple') /* How many apples? (2) */
fruit∼remove('Apple') /* Remove one of the apples. */
fruit∼∼put('Banana')∼put('Orange') /* Add a couple. */
say fruit∼items /* How many pieces? (5) */

Bag Class

128 Object REXX Reference



The Directory Class

A directory is a collection with unique indexes that are character strings
representing names.

Directories let you refer to objects by name, for example:
.environment∼array

For directories, items are often referred to as entries.

Methods the Directory class defines:

[]
[]=
AT
ENTRY
HASENTRY
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SETENTRY
SETMETHOD (Overrides Object class method)
SUPPLIER
UNKNOWN

Set-operator methods the Directory class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods Inherited from the Object Class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME

Directory Class

Chapter 5. The Collection Classes 129



OBJECTNAME=
REQUEST
RUN
START
STRING
UNSETMETHOD

Note: The Directory class also has available class methods that its metaclass,
the Class class, defines.

[]

ÊÊ [name] ÊÍ

Returns the same item as the AT method, which follows. See “AT”.

[]=

ÊÊ [name]=item ÊÍ

This method is the same as the PUT method. See “PUT” on page 131.

AT

ÊÊ AT(name) ÊÍ

Returns the item associated with index name. If a method that SETMETHOD
supplies is associated with index name, the result of running this method is
returned. If the collection has no item or method associated with index name,
this method returns the NIL object.

Example:
say .environment∼AT('OBJECT') /* Produces: 'The Object class' */

ENTRY

ÊÊ ENTRY(name) ÊÍ

Returns the directory entry with name name (translated to uppercase). If there
is no such entry, name returns the item for any method that SETMETHOD

Directory Class

130 Object REXX Reference



supplied. If there is neither an entry nor a method for name or for
UNKNOWN, the language processor raises an error.

HASENTRY

ÊÊ HASENTRY(name) ÊÍ

Returns 1 (true) if the directory has an entry or a method for name name
(translated to uppercase), or 0 (false).

HASINDEX

ÊÊ HASINDEX(name) ÊÍ

Returns 1 (true) if the collection contains any item associated with index name,
or 0 (false).

ITEMS

ÊÊ ITEMS ÊÍ

Returns the number of items in the collection.

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

ÊÊ PUT(item,name) ÊÍ

Makes the object item a member item of the collection and associates it with
index name. The new item replaces any existing item or method associated
with index name.

Directory Class

Chapter 5. The Collection Classes 131



REMOVE

ÊÊ REMOVE(name) ÊÍ

Returns and removes the member item with index name from a collection. If a
method is associated with SETMETHOD for index name, REMOVE removes
the method and returns the result of running it. If there is no item or method
with index name, the UNKNOWN method returns the NIL object and removes
nothing.

SETENTRY

ÊÊ SETENTRY(name )
,entry

ÊÍ

Sets the directory entry with name name (translated to uppercase) to the object
entry, replacing any existing entry or method for name. If you omit entry, this
method removes any entry or method with this name.

SETMETHOD

ÊÊ SETMETHOD(name )
,method

ÊÍ

Associates entry name name (translated to uppercase) with method method.
Thus, the language processor returns the result of running method when you
access this entry. This occurs when you specify name on the AT, ENTRY, or
REMOVE method. This method replaces any existing item or method for
name.

You can specify the name UNKNOWN as name. Doing so supplies a method
to run whenever an AT or ENTRY message specifies a name for which no
item or method exists in the collection. This method's first argument is the
specified directory index. This method has no effect on the action of any
HASENTRY, HASINDEX, ITEMS, REMOVE, or SUPPLIER message sent to the
collection.

The method can be a string containing a method source line instead of a
method object. Alternatively, an array of strings containing individual method
lines can be passed. In either case, SETMETHOD creates an equivalent
method object.

If you omit method, SETMETHOD removes the entry with the specified name.

Directory Class

132 Object REXX Reference



SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 244) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

UNKNOWN

ÊÊ UNKNOWN(messagename,messageargs) ÊÍ

Runs either the ENTRY or SETENTRY method, depending on whether
messagename ends with an equal sign. If messagename does not end with an
equal sign, this method runs the ENTRY method, passing messagename as its
argument. The language processor ignores any arguments specified in the
array messageargs. In this case, UNKNOWN returns the result of the ENTRY
method.

If messagename does end with an equal sign, this method runs the SETENTRY
method, passing the first part of messagename (up to, but not including, the
final equal sign) as its first argument, and the first item in the array
messageargs as its second argument. In this case, UNKNOWN returns no
result.

DIFFERENCE

ÊÊ DIFFERENCE(argument) ÊÍ

Returns a new collection (of the same class as the receiver) containing only
those items from the receiver whose indexes the argument collection does not
contain. The argument can be any object described in “The Argument
Collection Classes” on page 160. The argument must also allow all of the index
values in the receiver collection.

INTERSECTION

ÊÊ INTERSECTION(argument) ÊÍ

Directory Class

Chapter 5. The Collection Classes 133



Returns a new collection (of the same class as the receiver) containing only
those items from the receiver whose indexes are in both the receiver collection
and the argument collection. The argument can be any object described in “The
Argument Collection Classes” on page 160. The argument must also allow all
of the index values in the receiver collection.

SUBSET

ÊÊ SUBSET(argument) ÊÍ

Returns 1 (true) if all indexes in the receiver collection are also contained in
the argument collection; returns 0 (false) otherwise. The argument can be any
object described in “The Argument Collection Classes” on page 160. The
argument must also allow all of the index values in the receiver collection.

UNION

ÊÊ UNION(argument) ÊÍ

Returns a new collection of the same class as the receiver that contains all the
items from the receiver collection and selected items from the argument
collection. This method includes an item from argument in the new collection
only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same
index. The order in which this method selects items in argument is
unspecified. (The program should not rely on any order.) See also the UNION
method of the Table (“UNION” on page 156) and Relation (“UNION” on
page 149) classes. The argument can be any object described in “The Argument
Collection Classes” on page 160. The argument must also allow all of the index
values in the receiver collection.

XOR

ÊÊ XOR(argument) ÊÍ

Returns a new collection of the same class as the receiver that contains all
items from the receiver collection and the argument collection; all indexes that
appear in both collections are removed. The argument can be any object
described in “The Argument Collection Classes” on page 160. The argument
must also allow all of the index values in the receiver collection.

Directory Class

134 Object REXX Reference



Examples
/******************************************************************************/
/* A Phone Book Directory program */
/* This program demonstrates use of the directory class. */
/******************************************************************************/

/* Define an UNKNOWN method that adds an abbreviation lookup feature. */
/* Directories do not have to have an UNKNOWN method. */
book = .directory∼new∼∼setmethod('UNKNOWN', .methods['UNKNOWN'])

book['ANN' ] = 'Ann B. ....... 555-6220'
book['ann' ] = 'Little annie . 555-1234'
book['JEFF'] = 'Jeff G. ...... 555-5115'
book['MARK'] = 'Mark C. ...... 555-5017'
book['MIKE'] = 'Mike H. ...... 555-6123'
book∼Rick = 'Rick M. ...... 555-5110' /* Same as book['RICK'] = ... */

Do i over book /* Iterate over the collection */
Say book[i]

end i

Say '' /* Index lookup is case sensitive... */
Say book∼entry('Mike') /* ENTRY method uppercases before lookup */
Say book['ANN'] /* Exact match */
Say book∼ann /* Message sends uppercase before lookup */
Say book['ann'] /* Exact match with lowercase index */

Say ''
Say book['M'] /* Uses UNKNOWN method for lookup */
Say book['Z']
Exit

/* Define an unknown method to handle indexes not found. */
/* Check for abbreviations or indicate listing not found */
::Method UNKNOWN
Parse arg at_index
value = ''
Do i over self
If abbrev(i, at_index) then do
If value <> '' then value = value', '
value = value || self∼at(i)

end
end i
If value = '' then value = 'No listing found for' at_index
Return value

Directory Class

Chapter 5. The Collection Classes 135



The List Class

A list is a sequenced collection to which you can add new items at any
position in the sequence. The collection supplies the list indexes at the time
items are added with the INSERT method. The FIRST, LAST, and NEXT
methods can also retrieve list indexes. Only indexes the list object generates
are valid.

Methods the List class defines:

OF (Class method)
[]
[]=
AT
FIRST
FIRSTITEM
HASINDEX
INSERT
ITEMS
LAST
LASTITEM
MAKEARRAY
NEXT
PREVIOUS
PUT
REMOVE
SECTION
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

List Class

136 Object REXX Reference



Note: The List class also has available class methods that its metaclass, the
Class class, defines.

OF (Class Method)

ÊÊ ·

,

OF( item ) ÊÍ

Returns a newly created list containing the specified item objects in the order
specified.

[]

ÊÊ [index] ÊÍ

Returns the same item as the AT method. See “AT”.

[]=

ÊÊ [index]=item ÊÍ

This method is the same as the PUT method. See “PUT” on page 140.

AT

ÊÊ AT(index) ÊÍ

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

FIRST

ÊÊ FIRST ÊÍ

Returns the index of the first item in the list or the NIL object if the list is
empty. The example for INSERT (see “INSERT” on page 138) includes FIRST.

List Class

Chapter 5. The Collection Classes 137



FIRSTITEM

ÊÊ FIRSTITEM ÊÍ

Returns the first item in the list or the NIL object if the list is empty.

Example:
musketeers=.list∼of(Porthos,Athos,Aramis) /* Creates list MUSKETEERS */
item=musketeers∼firstitem /* Gives first item in list */

/* (Assigns "Porthos" to item) */

HASINDEX

ÊÊ HASINDEX(index) ÊÍ

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

INSERT

ÊÊ INSERT(item )
,index

ÊÍ

Returns a list-supplied index for a new item item, which is added to the list.
The new item follows the existing item with index index in the list ordering. If
index is the NIL object, the new item becomes the first item in the list. If you
omit index, the new item becomes the last item in the list.
musketeers=.list∼of(Porthos,Athos,Aramis) /* Creates list MUSKETEERS */

/* consisting of: Porthos */
/* Athos */
/* Aramis */

index=musketeers∼first /* Gives index of first item */
musketeers∼insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos */

/* List is now: Porthos */
/* D'Artagnan */
/* Athos */
/* Aramis */

/* Alternately, you could use */
musketeers∼insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */

/* List is now: D'Artagnan */
/* Porthos */
/* Athos */
/* Aramis */

/* Alternately, you could use */
musketeers∼insert("D'Artagnan") /* Adds D'Artagnan after Aramis */

/* List is now: Porthos */

List Class

138 Object REXX Reference



/* Athos */
/* Aramis */
/* D'Artagnan */

ITEMS

ÊÊ ITEMS ÊÍ

Returns the number of items in the collection.

LAST

ÊÊ LAST ÊÍ

Returns the index of the last item in the list or the NIL object if the list is
empty.

LASTITEM

ÊÊ LASTITEM ÊÍ

Returns the last item in the list or the NIL object if the list is empty.

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Returns a single-index array containing the receiver collection items. The array
indexes range from 1 to the number of items. The order in which the
collection items appear in the array is the same as their sequence in the list
collection.

NEXT

ÊÊ NEXT(index) ÊÍ

Returns the index of the item that follows the list item having index index or
returns the NIL object if the item having that index is last in the list.

PREVIOUS

List Class

Chapter 5. The Collection Classes 139



ÊÊ PREVIOUS(index) ÊÍ

Returns the index of the item that precedes the list item having index index or
the NIL object if the item having that index is first in the list.

PUT

ÊÊ PUT(item,index) ÊÍ

Replaces any existing item associated with the specified index with the new
item item. If the index does not exist in the list, an error is raised.

REMOVE

ÊÊ REMOVE(index) ÊÍ

Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SECTION

ÊÊ SECTION(start )
,items

ÊÍ

Returns a new list (of the same class as the receiver) containing selected items
from the receiver list. The first item in the new list is the item corresponding
to index start in the receiver list. Subsequent items in the new list correspond
to those in the receiver list (in the same sequence). If you specify the whole
number items, the new list contains only this number of items (or the number
of subsequent items in the receiver list, if this is less than items). If you do not
specify items, the new list contains all subsequent items from the receiver list.
The receiver list remains unchanged.

SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the list. If you send appropriate messages to the
supplier (see “The Supplier Class” on page 244), the supplier enumerates all

List Class

140 Object REXX Reference



the items in the list at the time of the supplier's creation. The supplier
enumerates the items in their sequenced order.

The Queue Class

A queue is a sequenced collection with whole-number indexes. The indexes
specify the position of an item relative to the head (first item) of the queue.
Adding or removing an item changes the association of an index to its queue
item. You can add items at either the tail or the head of the queue.

Methods the Queue class defines:

[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PEEK
PULL
PUSH
PUT
QUEUE
REMOVE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

List Class

Chapter 5. The Collection Classes 141



Note: The Queue class also has available class methods that its metaclass, the
Class class, defines.

[]

ÊÊ [index] ÊÍ

Returns the same value as the AT method. See “AT”.

[]=

ÊÊ [index]=item ÊÍ

This method is the same as the PUT method. See “PUT” on page 143.

AT

ÊÊ AT(index) ÊÍ

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

HASINDEX

ÊÊ HASINDEX(index) ÊÍ

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

ITEMS

ÊÊ ITEMS ÊÍ

Returns the number of items in the collection.

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Queue Class

142 Object REXX Reference



Returns a single-index array containing the receiver queue items. The array
indexes range from 1 to the number of items. The order in which the queue
items appear in the array is the same as their queuing order, with the head of
the queue as index 1.

PEEK

ÊÊ PEEK ÊÍ

Returns the item at the head of the queue. The collection remains unchanged.

PULL

ÊÊ PULL ÊÍ

Returns and removes the item at the head of the queue.

PUSH

ÊÊ PUSH(item) ÊÍ

Adds the object item to the head of the queue.

PUT

ÊÊ PUT(item,index) ÊÍ

Replaces any existing item associated with the specified index with the new
item. If the index does not exist in the queue, an error is raised.

QUEUE

ÊÊ QUEUE(item) ÊÍ

Adds the object item to the tail of the queue.

REMOVE

ÊÊ REMOVE(index) ÊÍ

Queue Class

Chapter 5. The Collection Classes 143



Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 244) to
enumerate all the items that were in the queue at the time of the supplier's
creation. The supplier enumerates the items in their queuing order, with the
head of the queue first.

The Relation Class

A relation is a collection with indexes that can be any objects the user supplies.
In a relation, each item is associated with a single index, but there can be
more than one item with the same index (unlike a table, which can contain
only one item for any index).

Methods the Relation class defines:

[]
[]=
ALLAT
ALLINDEX
AT
HASINDEX
HASITEM
INDEX
ITEMS
MAKEARRAY
PUT
REMOVE
REMOVEITEM
SUPPLIER

Set-operator methods the Relation class defines:

DIFFERENCE
INTERSECTION

Queue Class

144 Object REXX Reference



SUBSET
UNION
XOR

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Relation class also has available class methods that its metaclass,
the Class class, defines.

[]

ÊÊ [index] ÊÍ

Returns the same item as the AT method. See “AT” on page 146.

[]=

ÊÊ [index]=item ÊÍ

This method is the same as the PUT method. See “PUT” on page 147.

ALLAT

ÊÊ ALLAT(index) ÊÍ

Relation Class

Chapter 5. The Collection Classes 145



Returns a single-index array containing all the items associated with index
index. The indexes of the returned array range from 1 to the number of items.
Items in the array appear in an unspecified order.

ALLINDEX

ÊÊ ALLINDEX(item) ÊÍ

Returns a single-index array containing all indexes for item item, in an
unspecified order. (The program should not rely on any order.)

AT

ÊÊ AT(index) ÊÍ

Returns the item associated with index index. If the relation contains more
than one item associated with index index, the item returned is unspecified.
(The program should not rely on any particular item being returned.) If the
relation has no item associated with index index, this method returns the NIL
object.

HASINDEX

ÊÊ HASINDEX(index) ÊÍ

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

HASITEM

ÊÊ HASITEM(item,index) ÊÍ

Returns 1 (true) if the relation contains the member item item (associated with
index index, or 0 (false).

INDEX

ÊÊ INDEX(item) ÊÍ

Returns the index for item item. If there is more than one index associated
with item item, the one this method returns is not defined.

Relation Class

146 Object REXX Reference



ITEMS

ÊÊ ITEMS
(index)

ÊÍ

Returns the number of relation items with index index. If you specify no index,
this method returns the total number of items associated with all indexes in
the relation.

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

ÊÊ PUT(item,index) ÊÍ

Makes the object item a member item of the relation and associates it with
index index. If the relation already contains any items with index index, this
method adds a new member item item with the same index, without
removing any existing member items.

REMOVE

ÊÊ REMOVE(index) ÊÍ

Returns and removes from a relation the member item with index index. If the
relation contains more than one item associated with index index, the item
returned and removed is unspecified. If no item has index index, this method
returns the NIL object and removes nothing.

REMOVEITEM

ÊÊ REMOVEITEM(item,index) ÊÍ

Relation Class

Chapter 5. The Collection Classes 147



Returns and removes from a relation the member item item (associated with
index index). If value is not a member item associated with index index, this
method returns the NIL object and removes no item.

SUPPLIER

ÊÊ SUPPLIER
(index)

ÊÍ

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 244) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.) If you specify index, the supplier
enumerates all of the items in the relation with the specified index.

DIFFERENCE

ÊÊ DIFFERENCE(argument) ÊÍ

Returns a new collection (of the same class as the receiver) containing only
those items that the argument collection does not contain (with the same
associated index). The argument can be any object described in “The Argument
Collection Classes” on page 160.

INTERSECTION

ÊÊ INTERSECTION(argument) ÊÍ

Returns a new collection (of the same class as the receiver) containing only
those items that are in both the receiver collection and the argument collection
with the same associated index. The argument can be any object described in
“The Argument Collection Classes” on page 160.

SUBSET

ÊÊ SUBSET(argument) ÊÍ

Relation Class

148 Object REXX Reference



Returns 1 (true) if all items in the receiver collection are also contained in the
argument collection with the same associated index; returns 0 (false) otherwise.
The argument can be any object described in “The Argument Collection
Classes” on page 160.

UNION

ÊÊ UNION(argument) ÊÍ

Returns a new collection containing all items from the receiver collection and
the argument collection. The argument can be any object described in “The
Argument Collection Classes” on page 160.

XOR

ÊÊ XOR(argument) ÊÍ

Returns a new collection of the same class as the receiver that contains all
items from the receiver collection and the argument collection. All index-item
pairs that appear in both collections are removed. The argument can be any
object described in “The Argument Collection Classes” on page 160.

Examples
/* Use a relation to express parent-child relationships */
family = .relation∼new
family['Henry'] = 'Peter' /* Peter is Henry's child */
family['Peter'] = 'Bridget' /* Bridget is Peter's child */
family['Henry'] = 'Jane' /* Jane is Henry's child */

/* Show all children of Henry recorded in the family relation */
henrys_kids = family∼allat('Henry')
Say 'Here are all the listed children of Henry:'
Do kid Over henrys_kids

Say ' 'kid
End

/* Show all parents of Bridget recorded in the family relation */
bridgets_parents = family∼allindex('Bridget')
Say 'Here are all the listed parents of Bridget:'
Do parent Over bridgets_parents

Say ' 'parent
End

/* Display all the grandparent relationships we know about. */
checked_for_grandkids = .set∼new /* Records those we have checked */
Do grandparent Over family /* Iterate for each index in family */

Relation Class

Chapter 5. The Collection Classes 149



If checked_for_grandkids∼hasindex(grandparent)
Then Iterate /* Already checked this one */

kids = family∼allat(grandparent) /* Current grandparent's children */
Do kid Over kids /* Iterate for each item in kids */
grandkids = family∼allat(kid) /* Current kid's children */
Do grandkid Over grandkids /* Iterate for each item in grandkids */
Say grandparent 'has a grandchild named' grandkid'.'

End
End
checked_for_grandkids∼put(grandparent) /* Add to already-checked set */

End

The Set Class

A set is a collection containing the member items where the index is the same
as the item. Any object can be placed in a set. There can be only one
occurrence of any object in a set.

The Set class is a subclass of the Table class. In addition to its own methods, it
inherits the methods of the Object class (see “The Object Class” on page 183)
and the Table class.

Methods the Set class defines:

OF (Class method)
[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

Set-operator methods inherited from the Table class:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

Relation Class

150 Object REXX Reference



NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Set class also has available class methods that its metaclass, the
Class class, defines.

OF (Class Method)

ÊÊ ·

,

OF( item ) ÊÍ

Returns a newly created set containing the specified item objects.

[]

ÊÊ [index] ÊÍ

Returns the same item as the AT method. See “AT”.

[]=

ÊÊ [index]=item ÊÍ

This method is the same as the PUT method. See “PUT” on page 152.

AT

Set Class

Chapter 5. The Collection Classes 151



ÊÊ AT(index) ÊÍ

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

HASINDEX

ÊÊ HASINDEX(index) ÊÍ

Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

ITEMS

ÊÊ ITEMS ÊÍ

Returns the number of items in the collection.

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

ÊÊ PUT(item )
,index

ÊÍ

Makes the object item a member item of the collection and associates it with
index index. If you specify index, it must be the same as item.

REMOVE

ÊÊ REMOVE(index) ÊÍ

Set Class

152 Object REXX Reference



Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 244) to
enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

The Table Class

A table is a collection with indexes that can be any object the user supplies. In
a table, each item is associated with a single index, and there can be only one
item for each index (unlike a relation, which can contain more than one item
with the same index).

Methods the Table class defines:

[]
[]=
AT
HASINDEX
ITEMS
MAKEARRAY
PUT
REMOVE
SUPPLIER

Set-operator methods the Table class defines:

DIFFERENCE
INTERSECTION
SUBSET
UNION
XOR

Methods inherited from the Object class:

Set Class

Chapter 5. The Collection Classes 153



NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Table class also has available class methods that its metaclass, the
Class class, defines.

[]

ÊÊ [index] ÊÍ

Returns the same item as the AT method. See “AT”.

[]=

ÊÊ [index]=item ÊÍ

This method is the same as the PUT method. See “PUT” on page 155.

AT

ÊÊ AT(index) ÊÍ

Returns the item associated with index index. If the collection has no item
associated with index, this method returns the NIL object.

HASINDEX

ÊÊ HASINDEX(index) ÊÍ

Table Class

154 Object REXX Reference



Returns 1 (true) if the collection contains any item associated with index index,
or 0 (false).

ITEMS

ÊÊ ITEMS ÊÍ

Returns the number of items in the collection.

MAKEARRAY

ÊÊ MAKEARRAY ÊÍ

Returns a single-index array containing the index objects. The array indexes
range from 1 to the number of items. The collection items appear in the array
in an unspecified order. (The program should not rely on any order.)

PUT

ÊÊ PUT(item,index) ÊÍ

Makes the object item a member item of the collection and associates it with
index index. The new item replaces any existing items associated with index
index.

REMOVE

ÊÊ REMOVE(index) ÊÍ

Returns and removes from a collection the member item with index index. If
no item has index index, this method returns the NIL object and removes no
item.

SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the collection. After you have obtained a
supplier, you can send it messages (see “The Supplier Class” on page 244) to

Table Class

Chapter 5. The Collection Classes 155



enumerate all the items that were in the collection at the time of the supplier's
creation. The supplier enumerates the items in an unspecified order. (The
program should not rely on any order.)

DIFFERENCE

ÊÊ DIFFERENCE(argument) ÊÍ

Returns a new collection (of the same class as the receiver) containing only
those index-item pairs of the receiver whose indexes the argument collection
does not contain. The argument can be any object described in “The Argument
Collection Classes” on page 160. The argument must also allow all of the index
values in the receiver collection.

INTERSECTION

ÊÊ INTERSECTION(argument) ÊÍ

Returns a new collection (of the same class as the receiver) containing only
those index-item pairs of the receiver whose indexes are in both the receiver
collection and the argument collection. The argument can be any object
described in “The Argument Collection Classes” on page 160. The argument
must also allow all of the index values in the receiver collection.

SUBSET

ÊÊ SUBSET(argument) ÊÍ

Returns 1 (true) if all indexes in the receiver collection are also contained in
the argument collection; returns 0 (false) otherwise. The argument can be any
object described in “The Argument Collection Classes” on page 160. The
argument must also allow all of the index values in the receiver collection.

UNION

ÊÊ UNION(argument) ÊÍ

Returns a new collection of the same class as the receiver that contains all the
items from the receiver collection and selected items from the argument
collection. This method includes an item from argument in the new collection

Table Class

156 Object REXX Reference



only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same
index. The order in which this method selects items in argument is
unspecified. (The program should not rely on any order.) See also the UNION
method of the Directory (see “UNION” on page 134) and Relation (see
“UNION” on page 149) classes. The other can be any object described in “The
Argument Collection Classes” on page 160. The argument must also allow all
of the index values in the receiver collection.

XOR

ÊÊ XOR(argument) ÊÍ

Returns a new collection of the same class as the receiver that contains all
items from the receiver collection and the argument collection; all indexes that
appear in both collections are removed. The argument can be any object
described in “The Argument Collection Classes” on page 160. The argument
must also allow all of the index values in the receiver collection.

The Concept of Set Operations

The following sections describe the concept of set operations to help you work
with set operators, in particular if the receiver collection class differs from the
argument collection class.

REXX provides the following set-operator methods:
v DIFFERENCE
v INTERSECTION
v SUBSET
v UNION
v XOR

These methods are only available to instances of the following collection
classes:
v Directory
v Table and its subclass Set
v Relation and its subclass Bag

The collection classes Array, List, and Queue do not have set-operator
methods but their instances can be used as the argument collections.

Table Class

Chapter 5. The Collection Classes 157



Set operations have the following form:
result = receiver∼setoperator(argument)

where:

receiver
is the collection receiving the set-operator message. It can be an instance
of the Directory, Relation, Table, Set, or Bag collection class.

setoperator
is the set-operator method used.

argument
is the argument collection supplied to the method. It can be an instance of
one of the receiver collection classes or of a collection class that does not
have set-operator methods, namely Array, List, or Queue.

The resulting collection is of the same class as the receiver collection.

The Principles of Operation

A set operation is performed by iterating over the elements of the receiver
collection to compare each element of the receiver collection with each
element of the argument collection. The element is defined as the tuple
<index,item> (see “Determining the Identity of an Item” on page 160).
Depending on the set-operator method and the result of the comparison, an
element of the receiver collection is, or is not, included in the resulting
collection. A receiver collection that allows for duplicate elements can,
depending on the set-operator method, also accept elements of the argument
collection after they have been coerced to the type of the receiver collection.

The following examples are to help you understand the semantics of set
operations. The collections are represented as a list of elements enclosed in
curly brackets. The list elements are separated by a comma.

Set Operations on Collections without Duplicates

Assume that the example sets are A={a,b} and B={b,c,d}. The result of a set
operation is another set. The only exception is a subset resulting in a Boolean
.true or .false. Using the collection A and B, the different set operators produce
the following:

UNION operation
All elements of A and B are united:
A UNION B = {a,b,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first set except for

Set-Operator Methods

158 Object REXX Reference



those that also appear in the second set. The system iterates over the
elements of the second set and removes them from the first set one by
one.
A DIFFERENCE B = {a}
B DIFFERENCE A = {c,d}

XOR operation
The resulting collection contains all elements of the first set that are
not in the second set and all elements of the second set that are not in
the first set:
A XOR B = {a,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both sets:
A INTERSECTION B = {b}

SUBSET operation
Returns .true if the first set contains only elements that also appear
in the second set, otherwise it returns .false:
A SUBSET B = .false
B SUBSET A = .false

Set-Like Operations on Collections with Duplicates

Assume that the example bags are A={a,b,b} and B={b,b,c,c,d}. The result of
any set-like operation is a collection, in this case a bag. The only exception is
SUBSET resulting in a Boolean .true or .false. Using the collections A and B,
the different set-like operators produce the following:

UNION operation
All elements of A and B are united:
A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first bag except for
those that also appear in the second bag. The system iterates over the
elements of the second bag and removes them from the first bag one
by one.
A DIFFERENCE B = {a}
B DIFFERENCE A = {c,c,d}

XOR operation
The resulting collection contains all elements of the first bag that are
not in the second bag and all elements of the second bag that are not
in the second bag:
A XOR B = {a,c,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both bags:

Set-Operator Methods

Chapter 5. The Collection Classes 159



A INTERSECTION B = {b,b}

SUBSET operation
Returns .true if the first set contains only elements that also appear
in the second set, otherwise it returns .false:
A SUBSET B = .false
B SUBSET A = .false

Determining the Identity of an Item

Set operations require the definition of the identity of an element to determine
whether a certain element exists in the receiver collection. The element of a
collection is conceived as the tuple <index,item>. The index is used as the
identification tag associated with the item. Depending on the collection class,
the index is an instance of a particular class, for example, the string class for a
directory element, an integer for an array, or any arbitrary class for a relation.
The Array class is an exception because it can be multidimensional having
more than one index. However, as a collection, it is conceptionally linearized
by the set operator.

For collections of collection classes that require unique indexes, namely the
Set, Table, and Directory classes, an item is identified by its index. For
collections of collection classes that allow several items to have the same
index, namely the Relation class, an item is identified by both its index and its
item. For the Bag and the Set subclasses, where several items can have the
same index but index and item must be identical, the item is identified by its
index. According to this concept, an item of a collection is identified as
follows:
v HASINDEX(index) for Bag, Directory, Set, and Table collections
v HASITEM(item,index) for the Relation collections

Items of the Array, List, and Queue collections are identified by the item, not
the index. The index is only used as a means to access the item but carries no
semantics. In a Queue collection class, for example, the index of a particular
item changes when another item is added to the queue and therefore is not a
permanent identification of an item.

The Argument Collection Classes

A argument collection can be an instance of any collection class, including the
Array, List, and Queue classes, which do not have set-operator methods.

If the collection does not contain a UNION method, the following must apply:
v The collection must support the MAKEARRAY method so that the set or

set-like operator can iterate over the supplied elements.

Set-Operator Methods

160 Object REXX Reference



v The collection must conceptionally be coerced into a bag-like collection
before the set operation. Conceptionally, sparse arrays are condensed and
multidimensional arrays are linearized.

Collections having the UNION method must support the SUPPLIER method.

The Receiver Collection Classes

In addition to the set and set-like methods, a collection must support the
following methods to qualify as a receiver collection:
v Methods for collections not allowing elements with duplicate indexes:

HASINDEX
PUT or []=
REMOVE
ITEMS

v Methods for collections allowing elements with duplicate indexes:
HASITEM; for bags, HASINDEX is sufficient
AT or []
PUT or []=
REMOVEITEM; for bags, REMOVE is sufficient
ITEMS

Classifying Collections

To determine whether the items in a collection class can be used in a set
operation, check the following criteria:
v Is an object a collection?

To answer this question, send the HASMETHOD method with parameter
“hasindex” to object:
::ROUTINE isCollection
use arg object
return object∼hasmethod("hasindex")

This function returns TRUE if the object is an instance of the Array, List,
Queue, Set, Bag, Relation, or Table collection class.

v Does the collection class have set-operator methods?
To answer this question, send the HASMETHOD method with parameter
“union” to object:
::ROUTINE hasSetOperators
use arg object
return object∼hasmethod("union")

Set-Operator Methods

Chapter 5. The Collection Classes 161



This function returns TRUE if the object is an instance of the Set, Bag,
Relation, or Table collection class.

Set-Operator Methods

162 Object REXX Reference



Chapter 6. Other Classes

This chapter describes the following classes:
v Alarm class
v Class class
v Message class
v Method class
v Monitor class
v Object class
v Stem class
v Stream class
v String class
v Supplier class

The Alarm Class

An alarm object provides timing and notification capability by supplying a
facility to send any message to any object at a given time. You can cancel an
alarm before it sends its message.

The Alarm class is a subclass of the Object class.

Methods the Alarm class defines:

CANCEL
INIT (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class Method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD

© Copyright IBM Corp. 1999 163



START
STRING
UNSETMETHOD

Note: The Alarm class also has available class methods that its metaclass, the
Class class, defines.

CANCEL

ÊÊ CANCEL ÊÍ

Cancels the pending alarm request represented by the receiver. This method
takes no action if the specified time has already been reached.

INIT

ÊÊ INIT(atime,message) ÊÍ

Sets up an alarm for a future time atime. At this time, the alarm object sends
the message that message, a message object, specifies. (See “The Message
Class” on page 174.) The atime is a string. You can specify this in the default
format ('hh:mm:ss') or as a number of seconds starting at the present time. If
you use the default format, you can specify a date in the default format ('dd
Mmm yyyy') after the time with a single blank separating the time and date.
Leading and trailing blanks are not allowed in the atime. If you do not specify
a date, the language processor uses the first future occurrence of the specified
time. You can use the CANCEL method to cancel a pending alarm. See
“Initialization” on page 104 for more information.

Examples

The following code sets up an alarm at 5:10 p.m. on October 8, 1996. (Assume
today's date is October 5, 1996.)
/* Alarm Examples */

PersonalMessage=.MyMessageClass∼new('Call the Bank')
msg=.message∼new(PersonalMessage,'RemindMe')

a=.alarm∼new('17:10:00 8 Oct 1996', msg)
exit
/* “::CLASS” on page 87 describes the ::CLASS directive */
/* “::METHOD” on page 89 describes the ::METHOD directive */
::CLASS MyMessageClass public
::Method init
expose inmsg
use arg inmsg

Alarm Class

164 Object REXX Reference



::Method RemindMe
expose inmsg
say 'It is now' 'TIME'('C')'.Please 'inmsg
/* On the specified data and time, displays the following message: */
/* 'It is now 5:10pm. Please Call the Bank' */

For the following example, the user uses the same code as in the preceding
example to define msg, a message object to run at the specified time. The
following code sets up an alarm to run the msg message object in 30 seconds
from the current time:
a=.alarm∼new(30,msg)

The Class Class

The Class class is like a factory producing the factories that produce objects. It
is a subclass of the Object class. The instance methods of the Class class are
also the class methods of all classes.

Methods the Class class defines: (They are all both class and instance
methods.)

BASECLASS
DEFAULTNAME (Overrides Object class method)
DEFINE
DELETE
ENHANCED
ID
INHERIT
INIT (Overrides Object class method)
METACLASS
METHOD
METHODS
MIXINCLASS
NEW (Overrides Object class method)
QUERYMIXINCLASS
SUBCLASS
SUBCLASSES
SUPERCLASSES
UNINHERIT

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
HASMETHOD

Alarm Class

Chapter 6. Other Classes 165



OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

BASECLASS

ÊÊ BASECLASS ÊÍ

Returns the base class associated with the class. If the class is a mixin class,
the base class is the first superclass that is not also a mixin class. If the class is
not a mixin class, the base class is the class receiving the BASECLASS
message.

DEFAULTNAME

ÊÊ DEFAULTNAME ÊÍ

Returns a short human-readable string representation of the class. The string
returned is of the form
The id class

where id is the identifier assigned to the class when it was created.

Examples:
say .array∼defaultname /* Displays "The Array class" */
say .account∼defaultname /* Displays "The ACCOUNT class" */
say .savings∼defaultname /* Displays "The Savings class" */

::class account /* Name is all upper case */
::class 'Savings' /* String name is mixed case */

DEFINE

ÊÊ DEFINE(methodname )
,method

ÊÍ

Incorporates the method object method in the receiver class’s collection of
instance methods. The language processor translates the method name

Class Class

166 Object REXX Reference



methodname to uppercase. Using the DEFINE method replaces any existing
definition for methodname in the receiver class.

If you omit method, the method name methodname is made unavailable for the
receiver class. Sending a message of that name to an instance of the class
causes the UNKNOWN method (if any) to be run.

The method argument can be a string containing a method source line instead
of a method object. Alternatively, you can pass an array of strings containing
individual method lines. Either way, DEFINE creates an equivalent method
object.

Notes:

1. The classes REXX provides do not permit changes or additions to their
method definitions.

2. The DEFINE method is a protected method.

Example:
bank_account=.object∼subclass('Account')
bank_account∼define('TYPE','return "a bank account"')

DELETE

ÊÊ DELETE(methodname) ÊÍ

Removes the receiver class's definition for the method name methodname. If the
receiver class defined methodname as unavailable with the DEFINE method,
this definition is nullified. If the receiver class had no definition for
methodname, no action is taken.

Notes:

1. The classes REXX provides do not permit changes or additions to their
method definitions.

2. DELETE deletes only methods the target class defines. You cannot delete
inherited methods the target's superclasses define.

3. The DELETE method is a protected method.

Example:
myclass=.object∼subclass('Myclass') /* After creating a class */
myclass∼define('TYPE','return "my class"') /* and defining a method */
myclass∼delete('TYPE') /* this deletes the method */

ENHANCED

Class Class

Chapter 6. Other Classes 167



ÊÊ

·

ENHANCED(methods )

,argument

ÊÍ

Returns an enhanced new instance of the receiver class, with object methods
that are the instance methods of the class, enhanced by the methods in the
collection methods. The collection indexes are the names of the enhancing
methods, and the items are the method objects (or strings or arrays of strings
containing method code). (See the description of DEFINE in “DEFINE” on
page 166.) You can use any collection that supports a SUPPLIER method.

ENHANCED sends an INIT message to the created object, passing the
arguments specified on the ENHANCED method.

Example:
/* Set up rclass with class method or methods you want in your */
/* remote class */
rclassmeths = .directory∼new

rclassmeths['DISPATCH']=d_source /* d_source must have code for a */
/* DISPATCH method. */

/* The following sends INIT('Remote Class') to a new instance */
rclass=.class∼enhanced(rclassmeths,'Remote Class')

ID

ÊÊ ID ÊÍ

Returns the class identity (instance) string. (This is the string that is an
argument on the SUBCLASS and MIXINCLASS methods.) The string
representations of the class and its instances contain the class identity.

Example:
myobject=.object∼subclass('my object') /* Creates a subclass */
say myobject∼id /* Produces: 'my object' */

INHERIT

ÊÊ INHERIT(classobj )
,classpos

ÊÍ

Class Class

168 Object REXX Reference



Causes the receiver class to inherit the instance and class methods of the class
object classobj. The classpos is a class object that specifies the position of the
new superclass in the list of superclasses. (You can use the SUPERCLASSES
method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If
the classpos class is not found in the set of superclasses, an error is raised. If
you do not specify classpos, the new superclass is added to the end of the
superclasses list.

Inherited methods can take precedence only over methods defined at or above
the base class of the classobj in the class hierarchy. Any subsequent change to
the instance methods of classobj takes immediate effect for all the classes that
inherit from it.

The new superclass classobj must be created with the MIXINCLASS option of
the ::CLASS directive or the MIXINCLASS method and the base class of the
classobj must be a direct superclass of the receiver object. The receiver must
not already descend from classobj in the class hierarchy and vice versa.

The method search order of the receiver class after INHERIT is the same as
before INHERIT, with the addition of classobj and its superclasses (if not
already present).

Notes:

1. You cannot change the classes that REXX provides by sending INHERIT
messages.

2. The INHERIT method is a protected method.

Example:
room∼inherit(.location)

INIT

ÊÊ INIT(classid) ÊÍ

Sets the receiver class identity to the string classid. You can use the ID method
(described previously) to return this string, which is the class identity. See
“Initialization” on page 104 for more information.

METACLASS

ÊÊ METACLASS ÊÍ

Class Class

Chapter 6. Other Classes 169



Returns the receiver class's default metaclass. This is the class used to create
subclasses of this class when you send SUBCLASS or MIXINCLASS messages
(with no metaclass arguments). If the receiver class is an object class (see
“Object Classes” on page 95), this is also the class used to create the receiver
class. The instance methods of the default metaclass are the class methods of
the receiver class. For more information about class methods, see “Object
Classes” on page 95. See also the description of the SUBCLASS method in
“SUBCLASS” on page 172.

METHOD

ÊÊ METHOD(methodname) ÊÍ

Returns the method object for the receiver class's definition for the method
name methodname. If the receiver class defined methodname as unavailable, this
method returns the NIL object. If the receiver class did not define methodname,
the language processor raises an error.

Example:
/* Create and retrieve the method definition of a class */
myclass=.object∼subclass('My class') /* Create a class */
mymethod=.method∼new(' ','Say arg(1)') /* Create a method object */
myclass∼define('ECHO',mymethod) /* Define it in the class */
method_source = myclass∼method('ECHO')∼source /* Extract it */
say method_source /* Says 'an Array' */
say method_source[1] /* Shows the method source code */

METHODS

ÊÊ METHODS
(class_object)

ÊÍ

Returns a supplier object for all the instance methods of the receiver class and
its superclasses, if you specify no argument. If class_object is the NIL object,
METHODS returns a supplier object for only the instance methods of the
receiver class. If you specify a class_object, this method returns a supplier
object containing only the instance methods that class_object defines. If you
send appropriate messages to a supplier object, the supplier enumerates all
the instance methods existing at the time of the supplier's creation. (See “The
Supplier Class” on page 244 for details.)

Note: Methods that have been hidden with a SETMETHOD or DEFINE
method are included with the other methods that METHODS returns.
The hidden methods have the NIL object for the associated method.

Class Class

170 Object REXX Reference



Example:
objsupp=.object∼methods
do while objsupp∼available
say objsupp∼index /* Says all instance methods */
objsupp∼next /* of the Object class */
end

MIXINCLASS

ÊÊ MIXINCLASS(classid )
,metaclass

,methods

ÊÍ

Returns a new mixin subclass of the receiver class. You can use this method to
create a new mixin class that is a subclass of the superclass to which you send
the message. The classid is a string that identifies the new mixin subclass. You
can use the ID method to retrieve this string.

The metaclass is a class object. If you specify metaclass, the new subclass is an
instance of metaclass. (A metaclass is a class that you can use to create a class,
that is, a class whose instances are classes. The Class class and its subclasses
are metaclasses.)

If you do not specify a metaclass, the new mixin subclass is an instance of the
default metaclass of the receiver class. For subclasses of the Object class, the
default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and
whose items are method objects (or strings or arrays of strings containing
method code). If you specify methods, the new class is enhanced with class
methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the
receiver class, with the addition of the new subclass at the start of the order.

Example:
buyable=.object∼mixinclass('Buyable') /* New subclass is buyable */

/* Superclass is Object class */

Class Class

Chapter 6. Other Classes 171



NEW

ÊÊ

·

NEW
,

( arg )

ÊÍ

Returns a new instance of the receiver class, whose object methods are the
instance methods of the class. This method initializes a new instance by
running its INIT methods. (See “Initialization” on page 104.) NEW also sends
an INIT message. If you specify args, NEW passes these arguments on the
INIT message.

Example:
/* NEW method example */
a = .account∼new /* -> Object variable balance=0 */
y = .account∼new(340.78) /* -> Object variable balance=340.78 */

/* plus free toaster oven */
::class account subclass object
::method INIT /* Report time each account created */

/* plus free toaster when more than $100 */
Expose balance
Arg opening_balance
Say 'Creating' self∼objectname 'at time' time()
If datatype(opening_balance, 'N') then balance = opening_balance
else balance = 0
If balance > 100 then Say ' You win a free toaster oven'

QUERYMIXINCLASS

ÊÊ QUERYMIXINCLASS ÊÍ

Returns 1 (true) if the class is a mixin class, or 0 (false).

SUBCLASS

ÊÊ SUBCLASS(classid )
,metaclass

,methods

ÊÍ

Returns a new subclass of the receiver class. You can use this method to create
a new class that is a subclass of the superclass to which you send the
message. The classid is a string that identifies the subclass. (You can use the ID
method to retrieve this string.)

Class Class

172 Object REXX Reference



The metaclass is a class object. If you specify metaclass, the new subclass is an
instance of metaclass. (A metaclass is a class that you can use to create a class,
that is, a class whose instances are classes. The Class class and its subclasses
are metaclasses.)

If you do not specify a metaclass, the new subclass is an instance of the default
metaclass of the receiver class. For subclasses of the Object class, the default
metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and
whose items are method objects (or strings or arrays of strings containing
method code). If you specify methods, the new class is enhanced with class
methods from this collection. (The metaclass of the new class is not affected.)

The METACLASS method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the
receiver class, with the addition of the new subclass at the start of the order.

Example:
room=.object∼xsubclass('Room') /* Superclass is .object */

/* Subclass is room */
/* Subclass identity is Room */

SUBCLASSES

ÊÊ SUBCLASSES ÊÍ

Returns the immediate subclasses of the receiver class in the form of a
single-index array of the required size, in an unspecified order. (The program
should not rely on any order.) The array indexes range from 1 to the number
of subclasses.

SUPERCLASSES

ÊÊ SUPERCLASSES ÊÍ

Returns the immediate superclasses of the receiver class in the form of a
single-index array of the required size. The immediate superclasses are the
original class used on a SUBCLASS or a MIXINCLASS method, plus any
additional superclasses defined with the INHERIT method. The array is in the
order in which the class has inherited the classes. The original class used on a
SUBCLASS or MIXINCLASS method is the first item of the array. The array
indexes range from 1 to the number of superclasses.

Class Class

Chapter 6. Other Classes 173



Example:
z=.class∼superclasses
/* To obtain the information this returns, you could use: */
do i over z
say i

end

UNINHERIT

ÊÊ UNINHERIT(classobj) ÊÍ

Nullifies the effect of any previous INHERIT message sent to the receiver for
the class classobj.

Note: You cannot change the classes that REXX provides by sending
UNINHERIT messages.

Example:
location=.object∼mixinclass('Location')
room=.object∼subclass('Room')∼∼inherit(location) /* Creates subclass */
/* and specifies inheritance */
room∼UNINHERIT(location)

The Message Class

A message object provides for the deferred or asynchronous sending of a
message. You can create a message object by using the NEW or ENHANCED
method of the Message class or the START method of the Object class (see
“START” on page 188). The Message class is a subclass of the Object class.

Methods the Message class defines:

COMPLETED
INIT (Overrides Object class method)
NOTIFY
RESULT
SEND
START (Overrides Object class method)

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY

Class Class

174 Object REXX Reference



DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
STRING
UNSETMETHOD

Note: The Message class also has available class methods that its metaclass,
the Class class, defines.

COMPLETED

ÊÊ COMPLETED ÊÍ

Returns 1 if the message object has completed its message, or 0. You can use
this method instead of sending RESULT and waiting for the message to
complete.

INIT

ÊÊ

·

INIT(target,messagename )

,Individual
,argument

,Array,argument

ÊÍ

Initializes the message object for sending the message name messagename to
object target.

The messagename can be a string or an array. If messagename is an array object,
its first item is the name of the message and its second item is a class object to
use as the starting point for the method search. For more information, see
Table 1 on page 109.

If you specify the Individual or Array option, any remaining arguments are
arguments for the message. (You need to specify only the first letter; the
language processor ignores all characters following it.)

Individual
If you specify this option, specifying argument is optional. The

Message Class

Chapter 6. Other Classes 175



language processor passes any arguments as message arguments to
target in the order you specify them.

Array If you specify this option, you must specify an argument, which is an
array object. (See “The Array Class” on page 120.) The language
processor then passes the member items of the array to target. When
the language processor passes the arguments taken from the array, the
first argument is at index 1, the second argument at index 2, and so
on. If you omitted any indexes when creating the array, the language
processor omits their corresponding message arguments when passing
the arguments.

If you specify neither Individual nor Array, the message sent has no
arguments.

Note: This method does not send the message messagename to object target.
The SEND or START method (described later) sends the message.

NOTIFY

ÊÊ NOTIFY(message) ÊÍ

Requests notification about the completion of processing of the message SEND
or START. The message object message is sent as the notification. You can use
NOTIFY to request any number of notifications. After the notification
message, you can use the RESULT method to obtain any result from the
messages SEND or START.

Example:
/* Event-driven greetings */
.prompter∼new∼prompt(.nil)
::class prompter
::method prompt
use arg msg
if msg \= .nil then
say 'Hello,' msg∼result
say 'Enter your name:'
msg=.message∼new(.input,'LINEIN')∼∼start
/* Sends .INPUT a LINEIN message asynchronously */
msg∼notify(.message∼new(self,'PROMPT','I',msg))
/* Sends self∼prompt(msg) when data available */

RESULT

ÊÊ RESULT ÊÍ

Message Class

176 Object REXX Reference



Returns the result of the message SEND or START. If message processing is
not yet complete, this method waits until it completes. If the message SEND
or START raises an error condition, this method also raises an error condition.

Example:
/* Example using RESULT method */
string='700' /* Create a new string object, string */
bond=string∼start('REVERSE') /* Create a message object, bond, and */

/* start it. This sends a REVERSE */
/* message to string, giving bond */
/* the result. */

/* Ask bond for the result of the message */
say 'The result of message was' bond∼result /* Result is 007 */

SEND

ÊÊ SEND
(target)

ÊÍ

Returns the result (if any) of sending the message. If you specify target, this
method sends the message to target. Otherwise, this method sends the
message to the target you specified when the message object was created.
SEND does not return until message processing is complete.

You can use the NOTIFY method to request notification that message
processing is complete. You can use the RESULT method to obtain any result
from the message.

START

ÊÊ START
(target)

ÊÍ

Sends the message to start processing at a specific target whereas the sender
continues processing. If you specify target, this method sends the message to
target. Otherwise, this method sends the message to the target that you
specified when the message object was created. This method returns as soon
as possible and does not wait until message processing is complete. When
message processing is complete, the message object retains any result and
holds it until the sender requests it by sending a RESULT message. You can
use the NOTIFY method to request notification that message processing is
complete.

Message Class

Chapter 6. Other Classes 177



Example
/* Using Message class methods */
/* Note: In the following example, ::METHOD directives define class Testclass */

/* with method SHOWMSG */

ez=.testclass∼new /* Creates a new instance of Testclass */
mymsg=ezxstart('SHOWMSG','Hello, Ollie!',5) /* Creates and starts */

/* message mymsg to send */
/* SHOWMSG to ez */

/* Continue with main processing while SHOWMSG runs concurrently */
do 5
say 'Hello, Stan!'

end

/* Get final result of the SHOWMSG method from the mymsg message object */
say mymsg∼result
say 'Goodbye, Stan...'
exit

::class testclass public /* Directive defines Testclass */

::method showmsg /* Directive creates new method SHOWMSG */
use arg text,reps /* class Testclass */
do reps
say text

end
reply 'Bye Bye, Ollie...'
return

The following output is possible:
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Bye Bye, Ollie...
Goodbye, Stan...

The Method Class

The Method class creates method objects from REXX source code. It is a
subclass of the Object class.

Methods the Method class defines:

Message Class

178 Object REXX Reference



NEW (Class method. Overrides Object class method.)
NEWFILE (Class method)
SETGUARDED
SETPRIVATE
SETPROTECTED
SETSECURITYMANAGER
SETUNGUARDED
SOURCE

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Method class also has available class methods that its metaclass,
the Class class, defines.

NEW (Class Method)

ÊÊ NEW(name,source) ÊÍ

Returns a new instance of method class, which is an executable representation
of the code contained in the source. The name is a string. The source can be a
single string or an array of strings containing individual method lines.

NEWFILE (Class Method)

ÊÊ NEWFILE(filename) ÊÍ

Returns a new instance of method class, which is an executable representation
of the code contained in the file filename. The filename is a string.

Method Class

Chapter 6. Other Classes 179



SETGUARDED

ÊÊ SETGUARDED ÊÍ

Reverses any previous SETUNGUARDED messages, restoring the receiver to
the default guarded status. If the receiver is already guarded, a
SETGUARDED message has no effect.

SETPRIVATE

ÊÊ SETPRIVATE ÊÍ

Specifies that a method is a private method. Only a message that an object
sends to itself can run a private method. If a method object does not receive a
SETPRIVATE message, the method is a public method. (Any object can send a
message to run a public method. See “Public and Private Methods” on
page 103 for details.)

SETPROTECTED

ÊÊ SETPROTECTED ÊÍ

Specifies that a method is a protected method. If a method object does not
receive a SETPROTECTED message, the method is not protected. (See
“Chapter 15. The Security Manager” on page 389 for details.)

SETSECURITYMANAGER

ÊÊ SETSECURITYMANAGER
(security_manager_object)

ÊÍ

Replaces the existing security manager with the specified
security_manager_object. If security_manager_object is omitted, any existing
security manager is removed.

SETUNGUARDED

ÊÊ SETUNGUARDED ÊÍ

Method Class

180 Object REXX Reference



Lets an object run a method even when another method is active on the same
object. If a method object does not receive a SETUNGUARDED message, it
requires exclusive use of its object variable pool. A method can be active for
an object only when no other method requiring exclusive access to the object's
variable pool is active in the same object. This restriction does not apply if an
object sends itself a message to run a method and it already has exclusive use
of the same object variable pool. In this case, the method runs immediately
and has exclusive use of its object variable pool, regardless of whether it
received a SETUNGUARDED message.

SOURCE

ÊÊ SOURCE ÊÍ

Returns the method source code as a single-index array of source lines. If the
source code is not available, SOURCE returns an array of zero items.

The Monitor Class

The Monitor class forwards messages to a destination object. It is a subclass of
the Object class.

Methods the Monitor class defines:

CURRENT
DESTINATION
INIT (Overrides Object class method)
UNKNOWN

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD

Method Class

Chapter 6. Other Classes 181



START
STRING
UNSETMETHOD

Note: The Monitor class also has available class methods that its metaclass,
the Class class, defines.

CURRENT

ÊÊ CURRENT ÊÍ

Returns the current destination object.

DESTINATION

ÊÊ DESTINATION
(destination)

ÊÍ

Returns a new destination object. If you specify destination, this becomes the
new destination for any forwarded messages. If you omit destination, the
previous destination object becomes the new destination for any forwarded
messages.

INIT

ÊÊ INIT
(destination)

ÊÍ

Initializes the newly created monitor object.

UNKNOWN

ÊÊ UNKNOWN(messagename,messageargs) ÊÍ

Reissues or forwards to the current monitor destination all unknown
messages sent to a monitor object. For additional information, see “Defining
an UNKNOWN Method” on page 102.

Examples
.local∼setentry('output',.monitor∼new(.stream∼new('my.new')∼∼command('open nobuffer')))

/* The following sets the destination */
previous_destination=.output∼destination(.stream∼new('my.out')∼∼command('open write'))

Monitor Class

182 Object REXX Reference



/* The following resets the destination */
.output∼destination

.output∼destination(.STDOUT)
current_output_destination_stream_object=.output∼current

The Object Class

The Object class is the root of the class hierarchy. The instance methods of the
Object class are, therefore, available on all objects.

Methods the Object class defines:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Object class also has available class methods that its metaclass, the
Class class, defines.

NEW (Class Method)

ÊÊ NEW ÊÍ

Returns a new instance of the receiver class.

Operator Methods

ÊÊ comparison_operator(argument) ÊÍ

Note: The argument is optional for the == operator.

Monitor Class

Chapter 6. Other Classes 183



Returns 1 (true) or 0 (false), the result of performing a specified comparison
operation. If you specify the == operator and omit argument, a string
representation is returned representing a hash value for Set, Bag, Table,
Relation, and Directory.

For the Object class, the arguments must match the receiver object. If they do
not match the receiver object, you can define subclasses of the Object class to
match the arguments.

The comparison operators you can use in a message are:

=, == True if the terms are the same object.

\=, ><, <>, \==
True if the terms are not the same object (inverse of =).

CLASS

ÊÊ CLASS ÊÍ

Returns the class object that received the message that created the object.

COPY

ÊÊ COPY ÊÍ

Returns a copy of the receiver object. The copied object has the same methods
as the receiver object and an equivalent set of object variables, with the same
values.

Example:
myarray=.array∼of('N','S','E','W')
directions=myarray∼copy /* Copies array myarray to array directions */

DEFAULTNAME

ÊÊ DEFAULTNAME ÊÍ

Returns a short human-readable string representation of the object. The exact
form of this representation depends on the object and might not alone be
sufficient to reconstruct the object. All objects must be able to produce a short
string representation of themselves in this way, even if the object does not
have a string value. See “Required String Values” on page 105 for more
information. The DEFAULTNAME method of the Object class returns a string

Object Class

184 Object REXX Reference



that identifies the class of the object, for example, an Array or a Directory. See
also “OBJECTNAME” and “STRING” on page 188. See “OBJECTNAME=” for
an example using DEFAULTNAME.

HASMETHOD

ÊÊ HASMETHOD(methodname) ÊÍ

Returns 1 (true) if the receiver object has a method named methodname
(translated to uppercase) or if the target method is a private method.
Otherwise, it returns 0 (false).

Note: If you call the methodname method although it is private, you receive
error 97 Object method not found although HASMETHOD returns 1
(true).

INIT

ÊÊ INIT ÊÍ

Performs any required object initialization. Subclasses of the Object class can
override this method.

OBJECTNAME

ÊÊ OBJECTNAME ÊÍ

Returns the receiver object’s name that the OBJECTNAME= method sets. If
the receiver object does not have a name, this method returns the result of the
DEFAULTNAME method. See “Required String Values” on page 105 for more
information. See the OBJECTNAME= method for an example using
OBJECTNAME.

OBJECTNAME=

ÊÊ OBJECTNAME=(newname) ÊÍ

Sets the receiver object’s name to the string newname.

Example:

Object Class

Chapter 6. Other Classes 185



points=.array∼of('N','S','E','W')
say points∼objectname /* (no change yet) Says: "an Array" */
points∼objectname=('compass') /* Changes obj name POINTS to "compass"*/
say points∼objectname /* Shows new obj name. Says: "compass" */
say points∼defaultname /* Default is still available. */

/* Says "an Array" */
say points /* Says string representation of */

/* points "compass" */
say points[3] /* Says: "E"Points is still an array */

/* of 4 items */

REQUEST

ÊÊ REQUEST(classid) ÊÍ

Returns an object of the classid class, or the NIL object if the request cannot be
satisfied.

This method first compares the identity of the object's class (see the ID
method of the Class class in “ID” on page 168) to classid. If they are the same,
the receiver object is returned as the result. Otherwise, REQUEST tries to
obtain and return an object satisfying classid by sending the receiver object the
conversion message MAKE with the string classid appended (converted to
uppercase). For example, a REQUEST('string') message causes a
MAKESTRING message to be sent. If the object does not have the required
conversion method, REQUEST returns the NIL object.

The conversion methods cause objects to produce different representations of
themselves. The presence or absence of a conversion method defines an
object's capability to produce the corresponding representations. For example,
lists can represent themselves as arrays, because they have a MAKEARRAY
method, but they cannot represent themselves as directories, because they do
not have a MAKEDIRECTORY method. Any conversion method must return
an object of the requested class. For example, MAKEARRAY must return an
array. The language processor uses the MAKESTRING method to obtain string
values in certain contexts; see “Required String Values” on page 105.

RUN

ÊÊ

·

RUN(method )

,Individual
,argument

,Array,argument

ÊÍ

Object Class

186 Object REXX Reference



Runs the method object method (see “The Method Class” on page 178). The
method has access to the object variables of the receiver object, as if the
receiver object had defined the method by using SETMETHOD.

If you specify the Individual or Array option, any remaining arguments are
arguments for the method. (You need to specify only the first letter; the
language processor ignores all characters following it.)

Individual
Passes any remaining arguments to the method as arguments in the
order you specify them.

Array Requires argument, which is an array object. (See “The Array Class” on
page 120.) The language processor passes the member items of the
array to the method as arguments. The first argument is at index 1,
the second argument at index 2, and so on. If you omitted any
indexes when creating the array, the language processor omits their
corresponding arguments when passing the arguments.

If you specify neither Individual nor Array, the method runs without
arguments.

The method argument can be a string containing a method source line instead
of a method object. Alternatively, you can pass an array of strings containing
individual method lines. In either case, RUN creates an equivalent method
object.

Notes:

1. The RUN method is a private method. See the SETPRIVATE method in
“SETPRIVATE” on page 180 for details.

2. The RUN method is a protected method.

SETMETHOD

ÊÊ SETMETHOD(methodname )
,method

ÊÍ

Adds a method to the receiver object's collection of object methods. The
methodname is the name of the new method. (The language processor
translates this name to uppercase.) If you previously defined a method with
the same name using SETMETHOD, the new method replaces the earlier one.
If you omit method, SETMETHOD makes the method name methodname
unavailable for the receiver object. In this case, sending a message of that
name to the receiver object runs the UNKNOWN method (if any).

Object Class

Chapter 6. Other Classes 187



The method can be a string containing a method source line instead of a
method object. Or it can be an array of strings containing individual method
lines. In either case, SETMETHOD creates an equivalent method object.

Notes:

1. The SETMETHOD method is a private method. See the SETPRIVATE
method in “SETPRIVATE” on page 180 for details.

2. The SETMETHOD method is a protected method.

START

ÊÊ ·START(messagename )
,argument

ÊÍ

Returns a message object (see “The Message Class” on page 174) and sends it
a START message to start concurrent processing. The object receiving the
message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object,
its first item is the name of the message and its second item is a class object to
use as the starting point for the method search. For more information, see
Table 1 on page 109.

The language processor passes any arguments to the receiver as arguments for
messagename in the order you specify them.

When the receiver object has finished processing the message, the message
object retains its result and holds it until the sender requests it by sending a
RESULT message. For further details, see “START” on page 177.

Example:
world=.object∼new
msg=world∼start('HELLO') /* same as next line */
msg=.message∼new(world,'HELLO')∼∼start /* same as previous line */

STRING

ÊÊ STRING ÊÍ

Returns a human-readable string representation of the object. The exact form
of this representation depends on the object and might not alone be sufficient

Object Class

188 Object REXX Reference



to reconstruct the object. All objects must be able to produce a string
representation of themselves in this way.

The object's string representation is obtained from the OBJECTNAME method
(which can in turn use the DEFAULTNAME method). See also the
OBJECTNAME method (“OBJECTNAME” on page 185) and the
DEFAULTNAME method (“DEFAULTNAME” on page 184).

The distinction between this method, the MAKESTRING method (which
obtains string values—see “MAKESTRING” on page 231) and the REQUEST
method (see “REQUEST” on page 186) is important. All objects have a
STRING method, which returns a string representation (human-readable form)
of the object. This form is useful in tracing and debugging. Only those objects
that have information with a meaningful string form have a MAKESTRING
method to return this value. For example, directory objects have a readable
string representation (a Directory), but no string value, and, therefore, no
MAKESTRING method.

Of the classes that REXX provides, only the String class has a MAKESTRING
method. Any subclasses of the String class inherit this method by default, so
these subclasses also have string values. Any other class can also provide a
string value by defining a MAKESTRING method.

UNSETMETHOD

ÊÊ UNSETMETHOD(methodname) ÊÍ

Cancels the effect of all previous SETMETHODs for method methodname. It
also removes any method methodname introduced with ENHANCED when the
object was created. If the object has received no SETMETHOD method, no
action is taken.

Notes:

1. The UNSETMETHOD method is a private method. See the SETPRIVATE
method in “SETPRIVATE” on page 180 for details.

2. The UNSETMETHOD method is a protected method.

The Stem Class

A stem object is a collection with unique indexes that are character strings.

Object Class

Chapter 6. Other Classes 189



Stems are automatically created whenever a REXX stem variable or REXX
compound variable is used. For example:
a.1 = 2

creates a new stem collection and assigns it to the REXX variable A.; it also
assigns the value 2 to entry 1 in the collection.

In addition to the items assigned to the collection indexes, a stem also has a
default value that is used for all uninitialized indexes of the collection. You
can assign a default value to the stem with the []= method and retrieve the
default value with the [] method.

In addition to the methods defined in the following, the Stem class removes
the methods =, ==, \=, \==, <>, and >< using the DEFINE method.

Methods the Stem class defines:

NEW (Class method. Overrides Object class method.)
[]
[]=
MAKEARRAY
REQUEST (Overrides Object class method)
UNKNOWN

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Stem class also has available class methods that its metaclass, the
Class class, defines.

NEW (Class Method)

Stem Class

190 Object REXX Reference



ÊÊ NEW
(name)

ÊÍ

Returns a new stem object. If you specify a string name, this value is used to
create the derived name of compound variables. The default stem name is a
null string.

[]

ÊÊ ·

,

[ ]
index

ÊÍ

Returns the item associated with the specified indexes. Each index is an
expression; use commas to separate the expressions. The language processor
concatenates the index expression string values, separating them with a period
(.), to create a derived index. A null string ("") is used for any omitted
expressions. The resulting string references the stem item. If the stem has no
item associated with the specified final index, the stem default value is
returned. If a default value has not been set, the stem name concatenated with
the final index string is returned.

If you do not specify index, the stem default value is returned. If no default
value has been assigned, the stem name is returned.

Note: You cannot use the [] method in a DROP or PROCEDURE instruction
or in a parsing template.

[]=

ÊÊ ·

,

[ ]=value
index

ÊÍ

Makes the value a member item of the stem collection and associates it with
the specified index. If you specify no index expressions, a new default stem
value is assigned. Assigning a new default value will re-initialize the stem
and remove all existing assigned indexes.

MAKEARRAY

Stem Class

Chapter 6. Other Classes 191



ÊÊ MAKEARRAY ÊÍ

Returns an array of all stem indexes that currently have an associated value.
The items appear in the array in an unspecified order. (The program should
not rely on any order.)

REQUEST

ÊÊ REQUEST(classid) ÊÍ

Returns the result of the Stem class MAKEARRAY method, if the requested
class is ARRAY. For all other classes, REQUEST forwards the message to the
default value of the stem and returns this result. This method requests
conversion to a specific class. All conversion requests except ARRAY are
forwarded to the current stem default value.

UNKNOWN

ÊÊ UNKNOWN (messagename,messageargs) ÊÍ

Reissues or forwards to the current stem default value all unknown messages
sent to a stem collection. For additional information, see “Defining an
UNKNOWN Method” on page 102.

The Stream Class

A stream object allows external communication from REXX. (See “Chapter 16.
Input and Output Streams” on page 395 for a discussion of REXX input and
output.)

The Stream class is a subclass of the Object class.

Methods the Stream class defines:

ARRAYIN
ARRAYOUT
CHARIN
CHAROUT
CHARS
CLOSE
COMMAND

Stem Class

192 Object REXX Reference



DESCRIPTION
FLUSH
INIT (Overrides Object class method)
LINEIN
LINEOUT
LINES
MAKEARRAY
OPEN
POSITION
QUALIFY
QUERY>
SEEK
STATE
SUPPLIER

Methods inherited from the Object class:

NEW (Class method)
Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME>
HASMETHOD
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Stream class also has available class methods that its metaclass, the
Class class, defines.

ARRAYIN

ÊÊ ARRAYIN
(LINE)

(CHAR)
ÊÍ

Returns a fixed array that contains the data of the stream in line or character
format, starting from the current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

Stream Class

Chapter 6. Other Classes 193



ARRAYOUT

ÊÊ
LINE

ARRAYOUT(array )
CHAR

ÊÍ

Returns a stream object that contains the data from array.

CHARIN

ÊÊ CHARIN
( )

start ,length

ÊÍ

Returns a string of up to length characters from the character input stream
receiving the message. The language processor advances the read pointer. If
you omit length, it defaults to 1. If you specify start, this positions the read
pointer before reading. If the stream is not already open, the language
processor tries to open the stream for reading and writing. If that fails, the
language processor opens the stream for read only. (See “CHARIN (Character
Input)” on page 264 for information about the CHARIN built-in function.)

CHAROUT

ÊÊ CHAROUT
( )

string ,start

ÊÍ

Returns the count of characters remaining after trying to write string to the
character output stream receiving the message. The language processor
advances the write pointer.

The string can be the null string. In this case, CHAROUT writes no characters
to the stream and returns 0. If you omit string, CHAROUT writes no
characters to the stream and returns 0. The language processor closes the
stream.

If you specify start, this positions the write pointer before writing. If the
stream is not already open, the language processor tries to open the stream for
reading and writing. If that fails, the language processor opens the stream for
write only. (See “CHAROUT (Character Output)” on page 265 for information
about the CHAROUT built-in function.)

Stream Class

194 Object REXX Reference



CHARS

ÊÊ CHARS ÊÍ

Returns the total number of characters remaining in the character input
stream receiving the message. The default input stream is STDIN. The count
includes any line separator characters, if these are defined for the stream. In
the case of persistent streams, it is the count of characters from the current
read position. (See “Chapter 16. Input and Output Streams” on page 395 for a
discussion of REXX input and output.) The total number of characters
remaining cannot be determined for some streams (for example, STDIN). For
these streams. the CHARS method returns 1 to indicate that data is present, or
0 if no data is present. For Linux devices, CHARS always returns 1. (See
“CHARS (Characters Remaining)” on page 266 for information about the
CHARS built-in function.)

CLOSE

ÊÊ CLOSE ÊÍ

Closes the stream that receives the message. CLOSE returns READY: if closing
the stream is successful, or an appropriate error message. If you have tried to
close an unopened file, then the CLOSE method returns a null string ("").

COMMAND

ÊÊ COMMAND(stream_command) ÊÍ

Returns a string after performing the specified stream_command. The returned
string depends on the stream_command performed and can be the null string.
The following stream_commands:
v Open a stream for reading, writing, or both
v Close a stream at the end of an operation
v Move the line read or write position within a persistent stream (for

example, a file)
v Get information about a stream

If the method is unsuccessful, it returns an error message string in the same
form that the DESCRIPTION method uses.

Stream Class

Chapter 6. Other Classes 195



For most error conditions, the additional information is in the form of a
numeric return code. This return code is the value of ERRNO that is set
whenever one of the file system primitives returns with a -1.

Command Strings

The argument stream_command can be any expression that the language
processor evaluates to a command string that corresponds to the following
diagram:

ÊÊ
BOTH Write Options

OPEN
READ Options
WRITE

APPEND
REPLACE

CLOSE
FLUSH

= CHAR
SEEK offset READ
POSITION < WRITE LINE

+
−

QUERY DATETIME
EXISTS
HANDLE

CHAR
SEEK READ
POSITION LINE

CHAR
WRITE

LINE
SYS

SIZE
STREAMTYPE
TIMESTAMP

ÊÍ

Write Options:

APPEND
REPLACE

Options:

Stream Class

196 Object REXX Reference



SHARED
SHAREDREAD
SHAREDWRITE

· NOBUFFER
BINARY

RECLENGTH length

OPEN Opens the stream object receiving the message and returns
READY:. (If unsuccessful, the previous information about return
codes applies.) The default for OPEN is to open the stream for
both reading and writing data, for example: 'OPEN BOTH'. To
specify that the stream_name receiving the message can be only
read or written to, add READ or WRITE, to the command
string.

The following is a description of the options for OPEN:

READ Opens the stream only for reading.

WRITE Opens the stream only for writing.

BOTH Opens the stream for both reading and
writing. (This is the default.) The language
processor maintains separate read and write
pointers.

APPEND Positions the write pointer at the end of the
stream. The write pointer cannot be moved
anywhere within the extent of the file as it
existed when the file was opened.

REPLACE Sets the write pointer to the beginning of the
stream and truncates the file. In other words,
this option deletes all data that was in the
stream when opened.

SHARED Enables another process to work with the
stream in a shared mode. This mode must be
compatible with the shared mode (SHARED,
SHAREDREAD, or SHAREDWRITE) used by
the process that opened the stream.

SHAREDREAD
Enables another process to read the stream in
a shared mode.

SHAREDWRITE
Enables another process to write the stream in
a shared mode.

NOBUFFER Turns off buffering of the stream. All data

Stream Class

Chapter 6. Other Classes 197



written to the stream is flushed immediately
to the operating system for writing. This
option can have a severe impact on output
performance. Use it only when data integrity
is a concern, or to force interleaved output to
a stream to appear in the exact order in which
it was written.

BINARY Opens the stream in binary mode. This means
that line end characters are ignored; they are
treated like any other byte of data. This is
intended to force file operations that are
compatible with other REXX language
processors that run on record-based systems,
or to process binary data using the line
operations.

Note: Specifying the BINARY option for a
stream that does not exist but is opened
for writing also requires the
RECLENGTH option to be specified.
Omitting the RECLENGTH option in
this case raises an error condition.

RECLENGTH length
Allows the specification of an exact length for
each line in a stream. This allows line
operations on binary-mode streams to operate
on individual fixed-length records. Without
this option, line operations on binary-mode
files operate on the entire file (for example, as
if you specified the RECLENGTH option with a
length equal to that of the file). The length
must be 1 or greater.

Examples:
stream_name∼Command('open')
stream_name∼Command('open write')
stream_name∼Command('open read')
stream_name∼Command('open read shared')

CLOSE closes the stream object receiving the message. The
COMMAND method with the CLOSE option returns READY: if
the receiving stream object is successfully closed or an
appropriate error message otherwise. If an attempt to close an
unopened file occurs, then the COMMAND method with the
CLOSE option returns a null string ("").

Stream Class

198 Object REXX Reference



FLUSH forces any data currently buffered for writing to be written to
this stream.

SEEK offset sets the read or write position to a given number (offset)
within a persistent stream. If the stream is open for both
reading and writing and you do not specify READ or WRITE,
you receive an error message. Otherwise, the read or write
position is set.

Note: See “Chapter 16. Input and Output Streams” on
page 395 for a discussion of read and write positions in
a persistent stream.

To use this command, you must first open the receiving
stream object (with the OPEN stream command described
previously or implicitly with an input or output operation).
One of the following characters can precede the offset number.

= explicitly specifies the offset from the beginning of the
stream. This is the default if you supply no prefix. For
example, an offset of 1 with the LINE option means the
beginning of the stream.

< specifies offset from the end of the stream.

+ specifies offset forward from the current read or write
position.

- specifies offset backward from the current read or write
position.

The COMMAND method with the SEEK option returns the
new position in the stream if the read or write position is
successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ specifies that this command sets the read
position.

WRITE specifies that this command sets the write
position.

CHAR specifies the positioning in terms of characters.
This is the default.

LINE specifies the positioning in terms of lines. For
non-binary streams, this is potentially an
operation that can take a long time to
complete because, in most cases, the file must

Stream Class

Chapter 6. Other Classes 199



be scanned from the top to count the line-end
characters. However, for binary streams with a
specified record length, the new resulting line
number is simply multiplied by the record
length before character positioning. See “Line
versus Character Positioning” on page 401 for
a detailed discussion of this issue.

Note: If you do line positioning in a file open
only for writing, you receive an error
message.

Examples:
stream_name∼Command('seek =2 read')
stream_name∼Command('seek +15 read')
stream_name∼Command('seek -7 write line')
fromend = 125
stream_name∼Command('seek <'fromend read)

POSITION is a synonym for SEEK.

Used with these stream_commands, the COMMAND method returns specific
information about a stream. Except for QUERY HANDLE and QUERY
POSITION, the language processor returns the query information even if the
stream is not open. The language processor returns the null string for
nonexistent streams.

QUERY DATETIME
Returns the date and time stamps of a stream in US format. For
example:
stream_name∼Command('query datetime')

A sample output might be:
11-12-95 03:29:12

QUERY EXISTS
Returns the full path specification of the stream object receiving the
message, if it exists, or a null string. For example:
stream_name∼Command('query exists')

A sample output might be:
/home/user/files/file.txt

QUERY HANDLE
Returns the handle associated with the open stream that is the
receiving stream object. For example:
stream_name∼Command('query handle')

Stream Class

200 Object REXX Reference



A sample output might be:
3

QUERY POSITION
Returns the current read or write position for the receiving stream
object, as qualified by the following options:

READ Returns the current read position.

WRITE Returns the current write position.

Note: If the stream is open for both reading and
writing, this returns the read position by
default. Otherwise, this returns the appropriate
position by default.

CHAR Returns the position in terms of characters. This is the
default.

LINE Returns the position in terms of lines. For non-binary
streams, this operation can take a long time to
complete. This is because the language processor
starts tracking the current line number if not already
doing so, and, thus, might require a scan of the stream
from the top to count the line-end characters. See
“Line versus Character Positioning” on page 401 for a
detailed discussion of this issue. For example:
stream_name∼Command('query position write')

A sample output might be:
247

SYS Returns the operating system stream position in terms
of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE
Returns the size in bytes of a persistent stream that is the receiving
stream object. For example:
stream_name∼Command('query size')

A sample output might be:
1305

QUERY STREAMTYPE
Returns a string indicating whether the receiving stream object is
PERSISTENT, TRANSIENT, or UNKNOWN.

Stream Class

Chapter 6. Other Classes 201



QUERY TIMESTAMP
Returns the date and time stamps of the receiving stream object in an
international format. This is the preferred method of getting date and
time because it provides the full 4-digit year. For example:
stream_name∼Command('query timestamp')

A sample output might be:
1995-11-12 03:29:12

DESCRIPTION

ÊÊ DESCRIPTION ÊÍ

Returns any descriptive string associated with the current state of the stream
or the NIL object if no descriptive string is available. The DESCRIPTION
method is identical with the STATE method except that the string that
DESCRIPTION returns is followed by a colon and, if available, additional
information about ERROR or NOTREADY states. (The STATE method in
“STATE” on page 209 describes these states.)

FLUSH

ÊÊ FLUSH ÊÍ

Returns READY:. It forces any data currently buffered for writing to be written
to the stream receiving the message.

INIT

ÊÊ INIT(name) ÊÍ

Initializes a stream object for a stream named name, but does not open the
stream. See “Initialization” on page 104 for more information.

LINEIN

ÊÊ LINEIN
( )

line ,count

ÊÍ

Stream Class

202 Object REXX Reference



Returns the next count lines. The count must be 0 or 1. The language
processor advances the read pointer. If you omit count, it defaults to 1. If you
specify line, this positions the read pointer before reading. If the stream is not
already open, the language processor tries to open the stream for reading and
writing. If that fails, the language processor opens the stream for read-only.
(See “LINEIN (Line Input)” on page 283 for information about the LINEIN
built-in function.)

LINEOUT

ÊÊ LINEOUT
( )

string ,line

ÊÍ

Returns 0 if successful in writing string to the character output stream
receiving the message or 1 if an error occurs while writing the line. The
language processor advances the write pointer. If you omit string, the
language processor closes the stream. If you specify line, this positions the
write pointer before writing. If the stream is not already open, the language
processor tries to open the stream for reading and writing. If that fails, the
language processor opens the stream for write-only. (See “LINEOUT (Line
Output)” on page 284 for information about the LINEOUT built-in function.)

LINES

ÊÊ LINES ÊÍ

Returns the number of completed lines that remain in the character input
stream receiving the message. If the stream has already been read with
CHARIN, this can include an initial partial line. For persistent streams the
count starts at the current read position. In effect, LINES reports whether a
read action of CHARIN (see “CHARIN” on page 194) or LINEIN (see
“LINEIN” on page 202) will succeed. (For an explanation of input and output,
see “Chapter 16. Input and Output Streams” on page 395.)

For QUEUE, LINES returns the actual number of lines. (See “LINES (Lines
Remaining)” on page 286 for information about the LINES built-in function.)

Note: The CHARS method returns the number of characters in a persistent
stream or the presence of data in a transient stream. The LINES method
determines the actual number of lines by scanning the stream starting
at the current position and counting the lines. For large streams, this
can be a time-consuming operation. Therefore, avoid the use of the

Stream Class

Chapter 6. Other Classes 203



LINES method in the condition of a loop reading a stream. It is
recommended that you use the CHARS method (see “CHARS” on
page 195) or the LINES built-in function for this purpose.

MAKEARRAY

ÊÊ MAKEARRAY
(LINE)

(CHAR)
ÊÍ

Returns a fixed array that contains the data of the stream in line or character
format, starting from the current read position. The line format is the default.

If you have used the CHARIN method, the first line can be a partial line.

OPEN

ÊÊ OPEN
(BOTH Default Options

(READ
(WRITE Default Options

·

NOBUFFER
BINARY

RECLENGTH length

Ê

Ê
)

ÊÍ

Default Options:

·

APPEND
REPLACE

Opens the stream to which you send the message and returns READY:. If the
method is unsuccessful, it returns an error message string in the same form
that the DESCRIPTION method uses.

For most error conditions, the additional information is in the form of a
numeric return code. This return code is the value of ERRNO, which is set
whenever one of the file system primitives returns with a -1.

Stream Class

204 Object REXX Reference



By default, OPEN opens the stream for both reading and writing data, for
example: 'OPEN BOTH'. To specify that the stream receiving the message can be
only read or only written to, specify READ or WRITE.

The options for the OPEN method are:

READ Opens the stream only for reading.

WRITE Opens the stream only for writing.

BOTH Opens the stream for both reading and writing. (This is the
default.) The language processor maintains separate read and
write pointers.

APPEND Positions the write pointer at the end of the stream. The write
pointer cannot be moved anywhere within the extent of the
file as it existed when the file was opened.

REPLACE Sets the write pointer to the beginning of the stream and
truncates the file. In other words, this option deletes all data
that was in the stream when opened.

NOBUFFER Turns off buffering of the stream. All data written to the
stream is flushed immediately to the operating system for
writing. This option can have a severe impact on output
performance. Use it only when data integrity is a concern, or
to force interleaved output to a stream to appear in the exact
order in which it was written.

BINARY Opens the stream in binary mode. This means that line-end
characters are ignored; they are treated like any other byte of
data. This is intended to force file operations that are
compatible with other REXX language processors that run on
record-based systems, or to process binary data using the line
operations.

Note: Specifying the BINARY option for a stream that does
not exist but is opened for writing also requires the
RECLENGTH option to be specified. Omitting the
RECLENGTH option in this case raises an error
condition.

RECLENGTH length
Allows the specification of an exact length for each line in a
stream. This allows line operations on binary-mode streams to
operate on individual fixed-length records. Without this
option, line operations on binary-mode files operate on the
entire file (for example, as if you specified the RECLENGTH
option with a length equal to that of the file). The length must
be 1 or greater.

Stream Class

Chapter 6. Other Classes 205



Examples:
stream_name∼OPEN
stream_name∼OPEN('write')
stream_name∼OPEN('read')

POSITION

ÊÊ
= CHAR

POSITION( offset READ )
< WRITE LINE
+
−

ÊÍ

POSITION is a synonym for SEEK. (See “SEEK” on page 208.)

QUALIFY

ÊÊ QUALIFY ÊÍ

Returns the stream's fully qualified name. The stream need not be open.

QUERY

ÊÊ QUERY( DATETIME )
EXISTS
HANDLE

CHAR
SEEK READ
POSITION LINE

CHAR
WRITE

LINE
SYS

SIZE
STREAMTYPE
TIMESTAMP

ÊÍ

Used with these options, the QUERY method returns specific information
about a stream. Except for QUERY HANDLE and QUERY POSITION, the
language processor returns the query information even if the stream is not
open. The language processor returns the null string for nonexistent streams.

DATETIME
returns the date and time stamps of the receiving stream object in US
format. For example:
stream_name∼query('datetime')

Stream Class

206 Object REXX Reference



A sample output might be:
11-12-98 03:29:12

EXISTS
returns the full path specification of the receiving stream object, if it
exists, or a null string. For example:
stream_name∼query('exists')

A sample output might be:
/home/user/files/file.txt

HANDLE
returns the handle associated with the open stream that is the
receiving stream object. For example:
stream_name∼query('handle')

A sample output might be:
3

POSITION
returns the current read or write position for the receiving stream
object, as qualified by the following options:

READ returns the current read position.

WRITE returns the current write position.

Note: If the stream is open for both reading and
writing, this returns the read position by
default. Otherwise, this returns the appropriate
position by default.

CHAR returns the position in terms of characters. This is the
default.

LINE returns the position in terms of lines. For non-binary
streams, this operation can take a long time to
complete. This is because the language processor
starts tracking the current line number if not already
doing so, and, thus, might require a scan of the stream
from the top to count the line-end characters. See
“Line versus Character Positioning” on page 401 for a
detailed discussion of this issue. For example:
stream_name∼query('position write')

A sample output might be:
247

Stream Class

Chapter 6. Other Classes 207



SYS returns the operating system stream position in terms
of characters.

SIZE returns the size, in bytes, of a persistent stream that is the receiving
stream object. For example:
stream_name∼query('size')

A sample output might be:
1305

STREAMTYPE
returns a string indicating whether the receiving stream object is
PERSISTENT, TRANSIENT, or UNKNOWN.

TIMESTAMP
returns the date and time stamps of the receiving stream object in an
international format. This is the preferred method of getting the date
and time because it provides the full 4-digit year. For example:
stream_name∼query('timestamp')

A sample output might be:
1998-11-12 03:29:12

SEEK

ÊÊ
= CHAR

SEEK( offset READ )
< WRITE LINE
+
−

ÊÍ

Sets the read or write position to a given number (offset) within a persistent
stream. If the stream is open for both reading and writing and you do not
specify READ or WRITE, you receive an error message. Otherwise, the read or
write position is set.

Note: See “Chapter 16. Input and Output Streams” on page 395 for a
discussion of read and write positions in a persistent stream.

To use this method, you must first open the receiving stream object (with the
OPEN method described previously or implicitly with an input or output
operation). One of the following characters can precede the offset number:

= Explicitly specifies the offset from the beginning of the stream. This is
the default if you supply no prefix. For example, an offset of 1 means
the beginning of the stream.

< Specifies offset from the end of the stream.

Stream Class

208 Object REXX Reference



+ Specifies offset forward from the current read or write position.

- Specifies offset backward from the current read or write position.

The SEEK method returns the new position in the stream if the read or write
position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ specifies that the read position be set.

WRITE specifies that the write position be set.

CHAR specifies that positioning be done in terms of characters. This
is the default.

LINE specifies that the positioning be done in terms of lines. For
non-binary streams, this is potentially an operation that can
take a long time to complete because, in most cases, the file
must be scanned from the top to count the line-end characters.
However, for binary streams with a specified record length,
the new resulting line number is simply multiplied by the
record length before character positioning. See “Line versus
Character Positioning” on page 401 for a detailed discussion of
this issue.

Note: If you do line positioning in a file open only for
writing, you receive an error message.

Examples:
stream_name∼seek('=2 read')
stream_name∼seek('+15 read')
stream_name∼seek('-7 write line')
fromend = 125
stream_name∼seek('<'fromend read)

STATE

ÊÊ STATE ÊÍ

Returns a string that indicates the current state of the specified stream.

The returned strings are as follows:

ERROR The stream has been subject to an erroneous operation
(possibly during input, output, or through the STREAM
function). See “Errors during Input and Output” on page 404.
You might be able to obtain additional information about the

Stream Class

Chapter 6. Other Classes 209



error with the DESCRIPTION method or by calling the
STREAM function with a request for the description.

NOTREADY The stream is known to be in such a state that the usual input
or output operations attempted upon would raise the
NOTREADY condition. (See “Errors during Input and
Output” on page 404.) For example, a simple input stream can
have a defined length. An attempt to read that stream (with
CHARIN or LINEIN, perhaps) beyond that limit can make the
stream unavailable until the stream has been closed (for
example, with LINEOUT(name)) and then reopened.

READY The stream is known to be in such a state that the usual input
or output operations might be attempted. This is the usual
state for a stream, although it does not guarantee that any
particular operation will succeed.

UNKNOWN The state of the stream is unknown. This generally means that
the stream is closed or has not yet been opened.

SUPPLIER

ÊÊ SUPPLIER ÊÍ

Returns a supplier object for the stream. When you send appropriate
messages to the supplier object (see “The Supplier Class” on page 244), it
enumerates all the lines in the stream object. The supplier enumerates the
items in their line order.

The String Class

String objects represent character-string data values. A character string value
can have any length and contain any characters. If you are familiar with
earlier versions of REXX you might find the notation for functions more
convenient than the notation for methods. See “Chapter 8. Functions” on
page 251 for function descriptions.

The String class is a subclass of the Object class.

Methods the String class defines:

NEW (Class method. Overrides Object class method)
Arithmetic methods: +, -, *, /, %, //, **
Comparison methods: =, \=, <>, ><, ==, \== (Override Object class methods)

Stream Class

210 Object REXX Reference



Comparison methods: >, <, >=, \<, <=, \>, >>, <<, >>=, \<<, <<=, \>>
Logical methods: &, |, &&, \
Concatenation methods: "" (abuttal), " " (blank), ||
ABBREV
ABS
BITAND
BITOR
BITXOR
B2X
CENTER (or CENTRE)
CHANGESTR
COMPARE
COPIES
COUNTSTR
C2D
C2X
DATATYPE
DELSTR
DELWORD
D2C
D2X
FORMAT
INSERT
LASTPOS
LEFT
LENGTH
MAKESTRING
MAX
MIN
OVERLAY
POS
REVERSE
RIGHT
SIGN
SPACE
STRING (Overrides Object class method)
STRIP
SUBSTR
SUBWORD
TRANSLATE
TRUNC
VERIFY
WORD
WORDINDEX
WORDLENGTH
WORDPOS

String Class

Chapter 6. Other Classes 211



WORDS
X2B
X2C
X2D

Methods inherited from the Object class:

CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
UNSETMETHOD

Note: The String class also has available class methods that its metaclass, the
Class class, defines.

NEW (Class Method)

ÊÊ NEW(stringvalue) ÊÍ

Returns a new string object initialized with the characters in stringvalue.

Arithmetic Methods

ÊÊ arithmetic_operator(argument) ÊÍ

Note: For the prefix - and prefix + operators, omit the parentheses and
argument.

Returns the result of performing the specified arithmetic operation on the
receiver object. The receiver object and the argument must be valid numbers
(see “Numbers” on page 15). The arithmetic_operator can be:

+ Addition

− Subtraction

* Multiplication

String Class

212 Object REXX Reference



/ Division

% Integer division (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo, because
the result can be negative)

** Exponentiation (raise a number to a whole-number power)

Prefix −
Same as the subtraction: 0 - number

Prefix +
Same as the addition: 0 + number

See “Chapter 11. Numbers and Arithmetic” on page 353 for details about
precision, the format of valid numbers, and the operation rules for arithmetic.
Note that if an arithmetic result is shown in exponential notation, it might
have been rounded.

Examples:
5+5 -> 10
8-5 -> 3
5*2 -> 10
6/2 -> 3
9//4 -> 1
9%4 -> 2
2**3 -> 8
+5 -> 5 /* Prefix + */
-5 -> -5 /* Prefix − */

Comparison Methods

ÊÊ comparison_operator(argument) ÊÍ

Returns 1 (true) or 0 (false), the result of performing the specified comparison
operation. The receiver object and the argument are the terms compared. Both
must be string objects.

The comparison operators you can use in a message are:

= True if the terms are equal (for example, numerically or when
padded)

\=, ><, <>
True if the terms are not equal (inverse of =)

> Greater than

< Less than

String Class

Chapter 6. Other Classes 213



>= Greater than or equal to

\< Not less than

<= Less than or equal to

\> Not greater than

Examples:
5=5 -> 1 /* equal */

42\=41 -> 1 /* All of these are */
42><41 -> 1 /* "not equal" */
42<>41 -> 1

13>12 -> 1 /* Variations of */
12<13 -> 1 /* less than and */
13>=12 -> 1 /* greater than */
12\<13 -> 0
12<=13 -> 1
12\>13 -> 1

All strict comparison operations have one of the characters doubled that
define the operator. The == and \== operators check whether two strings
match exactly . The two strings must be identical (character by character) and
of the same length to be considered strictly equal.

The strict comparison operators such as >> or << carry out a simple
character-by-character comparison. There is no padding of either of the strings
being compared. The comparison of the two strings is from left to right. If one
string is shorter than and a leading substring of another, then it is smaller
than (less than) the other. The strict comparison operators do not attempt to
perform a numeric comparison on the two operands.

For all the other comparison operators, if both terms are numeric, the language
processor does a numeric comparison (ignoring, for example, leading
zeros—see “Numeric Comparisons” on page 358). Otherwise, it treats both
terms as character strings, ignoring leading and trailing blanks and padding
the shorter string on the right with blanks.

Character comparison and strict comparison operations are both
case-sensitive, and for both the exact collating order can depend on the
character set. In an ASCII environment, the digits are lower than the
alphabetic characters, and lowercase alphabetic characters are higher than
uppercase alphabetic characters.

The strict comparison operators you can use in a message are:

== True if terms are strictly equal (identical)

String Class

214 Object REXX Reference



\== True if the terms are NOT strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<< Strictly NOT less than

<<= Strictly less than or equal to

\>> Strictly NOT greater than

Examples:
'space'=='space' -> 1 /* Strictly equal */

'space'\==' space' -> 1 /* Strictly not equal */

'space'>>' space' -> 1 /* Variations of */
' space'<<'space' -> 1 /* strictly greater */
'space'>>=' space' -> 1 /* than and less than */
'space'\<<' space' -> 1
' space'<<='space' -> 1
' space'\>>'space' -> 1

Logical Methods

ÊÊ logical_operator(argument) ÊÍ

Note: For NOT (prefix \), omit the parentheses and argument.

Returns 1 (true) or 0 (false), the result of performing the specified logical
operation. The receiver object and the argument are character strings that
evaluate to 1 or 0.

The logical_operator can be:

& AND (Returns 1 if both terms are true.)

| Inclusive OR (Returns 1 if either term or both terms are true.)

&& Exclusive OR (Returns 1 if either term, but not both terms, is
true.)

Prefix \ Logical NOT (Negates; 1 becomes 0, and 0 becomes 1.)

Examples:
1&0 -> 0
1|0 -> 1
1&&0 -> 1
\1 -> 0

String Class

Chapter 6. Other Classes 215



Concatenation Methods

ÊÊ concatenation_operator(argument) ÊÍ

Concatenates the receiver object with argument. (See “String Concatenation” on
page 20 .) The concatenation_operator can be:

"" concatenates without an intervening blank. The abuttal operator "" is
the null string. The language processor uses the abuttal to concatenate
two terms that another operator does not separate.

|| concatenates without an intervening blank.

“ ” concatenates with one blank between the receiver object and the
argument. (The operator “ ” is a blank.)

Examples:
num=33
say num"%" -> 33% /* abuttal */
say num∼''('%') -> 33%

say "R"||"EXX" -> REXX /* || */

say object rexx -> OBJECT REXX /* blank */
say 'OBJECT'∼' '('REXX') -> OBJECT REXX

ABBREV

ÊÊ ABBREV(info )
,length

ÊÍ

Returns 1 if info is equal to the leading characters of the receiving string and
the length of info is not less than length. Returns 0 if either of these conditions
is not met.

If you specify length, it must be a positive whole number or zero. The default
for length is the number of characters in info.

Examples:
'Print'∼ABBREV('Pri') -> 1
'PRINT'∼ABBREV('Pri') -> 0
'PRINT'∼ABBREV('PRI',4) -> 0
'PRINT'∼ABBREV('PRY') -> 0
'PRINT'∼ABBREV('') -> 1
'PRINT'∼ABBREV('',1) -> 0

String Class

216 Object REXX Reference



Note: A null string always matches if a length of 0, or the default, is used.
This allows a default keyword to be selected automatically if desired.

Example:
say 'Enter option:'; pull option .
select /* keyword1 is to be the default */
when 'keyword1'∼abbrev(option) then ...
when 'keyword2'∼abbrev(option) then ...

...
otherwise nop;

end;

(See “ABBREV (Abbreviation)” on page 258 for information about the
ABBREV built-in function.)

ABS

ÊÊ ABS ÊÍ

Returns the absolute value of the receiving string. The result has no sign and
is formatted according to the current NUMERIC settings.

Examples:
12.3∼abs -> 12.3
'-0.307'∼abs -> 0.307

(See “ABS (Absolute Value)” on page 258 for information about the ABS
built-in function.)

BITAND

ÊÊ BITAND
(string )

,pad

ÊÍ

Returns a string composed of the receiver string and the argument string
logically ANDed together, bit by bit. (The encodings of the strings are used in
the logical operation.) The length of the result is the length of the longer of
the two strings. If you omit the pad character, the AND operation stops when
the shorter of the two strings is exhausted, and the unprocessed portion of the
longer string is appended to the partial result. If you provide pad, it extends
the shorter of the two strings on the right before the logical operation. The
default for string is the zero-length (null) string.

String Class

Chapter 6. Other Classes 217



Examples:
'12'x∼BITAND -> '12'x
'73'x∼BITAND('27'x) -> '23'x
'13'x∼BITAND('5555'x) -> '1155'x
'13'x∼BITAND('5555'x,'74'x) -> '1154'x
'pQrS'∼BITAND(,'DF'x) -> 'PQRS' /* ASCII */

(See “BITAND (Bit by Bit AND)” on page 261 for information about the
BITAND built-in function.)

BITOR

ÊÊ BITOR
(string )

,pad

ÊÍ

Returns a string composed of the receiver string and the argument string
logically inclusive-ORed, bit by bit. The encodings of the strings are used in
the logical operation. The length of the result is the length of the longer of the
two strings. If you omit the pad character, the OR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the
longer string is appended to the partial result. If you provide pad, it extends
the shorter of the two strings on the right before the logical operation. The
default for string is the zero-length (null) string.

Examples:
'12'x∼BITOR -> '12'x
'15'x∼BITOR('24'x) -> '35'x
'15'x∼BITOR('2456'x) -> '3556'x
'15'x∼BITOR('2456'x,'F0'x) -> '35F6'x
'1111'x∼BITOR(,'4D'x) -> '5D5D'x
'pQrS'∼BITOR(,'20'x) -> 'pqrs' /* ASCII */

(See “BITOR (Bit by Bit OR)” on page 261 for information about the BITOR
built-in function.)

BITXOR

ÊÊ BITXOR
(string )

,pad

ÊÍ

Returns a string composed of the receiver string and the argument string
logically eXclusive-ORed, bit by bit. The encodings of the strings are used in

String Class

218 Object REXX Reference



the logical operation. The length of the result is the length of the longer of the
two strings. If you omit the pad character, the XOR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the
longer string is appended to the partial result. If you provide pad, it extends
the shorter of the two strings on the right before carrying out the logical
operation. The default for string is the zero-length (null) string.

Examples:
'12'x∼BITXOR -> '12'x
'12'x∼BITXOR('22'x) -> '30'x
'1211'x∼BITXOR('22'x) -> '3011'x
'1111'x∼BITXOR('444444'x) -> '555544'x
'1111'x∼BITXOR('444444'x,'40'x) -> '555504'x
'1111'x∼BITXOR(,'4D'x) -> '5C5C'x
'C711'x∼BITXOR('222222'x,' ') -> 'E53302'x /* ASCII */

(See “BITXOR (Bit by Bit Exclusive OR)” on page 262 for information about
the BITXOR built-in function.)

B2X

ÊÊ B2X ÊÍ

Returns a string, in character format, that represents the receiving binary
string converted to hexadecimal.

The receiving string is a string of binary (0 or 1) digits. It can be of any
length. It can optionally include blanks (at 4-digit boundaries only, not leading
or trailing). These are to improve readability; the language processor ignores
them.

The returned string uses uppercase alphabetic characters for the values A–F
and does not include blanks.

If the receiving binary string is a null string, B2X returns a null string. If the
number of binary digits in the receiving string is not a multiple of four, the
language processor adds up to three 0 digits on the left before the conversion
to make a total that is a multiple of four.

Examples:
'11000011'∼B2X -> 'C3'
'10111'∼B2X -> '17'
'101'∼B2X -> '5'
'1 1111 0000'∼B2X -> '1F0'

String Class

Chapter 6. Other Classes 219



You can combine B2X with the methods X2D and X2C to convert a binary
number into other forms.

Example:
'10111'∼B2X∼X2D -> '23' /* decimal 23 */

(See “B2X (Binary to Hexadecimal)” on page 262 for information about the
B2X built-in function.)

CENTER/CENTRE

ÊÊ CENTER( length )
CENTRE( , pad

ÊÍ

Returns a string of length length with the receiving string centered in it. The
language processor adds pad characters as necessary to make up length. The
length must be a positive whole number or zero. The default pad character is
blank. If the receiving string is longer than length, it is truncated at both ends
to fit. If an odd number of characters are truncated or added, the right-hand
end loses or gains one more character than the left-hand end.

Note: To avoid errors because of the difference between British and American
spellings, this method can be called either CENTRE or CENTER.

Examples:
abc∼CENTER(7) -> ' ABC '
abc∼CENTER(8,'-') -> '--ABC---'
'The blue sky'∼CENTRE(8) -> 'e blue s'
'The blue sky'∼CENTRE(7) -> 'e blue '

(See “CENTER (or CENTRE)” on page 263 for information about the CENTER
built-in function.)

CHANGESTR

ÊÊ CHANGESTR(needle,newneedle) ÊÍ

Returns a copy of the receiver object in which newneedle replaces all
occurrences of needle.

Here are some examples:
101100∼CHANGESTR('1','') -> '000'
101100∼CHANGESTR('1','X') -> 'X0XX00'

String Class

220 Object REXX Reference



(See “CHANGESTR” on page 263 for information about the CHANGESTR
built-in function.)

COMPARE

ÊÊ COMPARE(string )
,pad

ÊÍ

Returns 0 if the argument string is identical to the receiving string. Otherwise,
returns the position of the first character that does not match. The shorter
string is padded on the right with pad if necessary. The default pad character is
a blank.

Examples:
'abc'∼COMPARE('abc') -> 0
'abc'∼COMPARE('ak') -> 2
'ab '∼COMPARE('ab') -> 0
'ab '∼COMPARE('ab',' ') -> 0
'ab '∼COMPARE('ab','x') -> 3
'ab-- '∼COMPARE('ab','-') -> 5

(See “COMPARE” on page 267 for information about the COMPARE built-in
function.)

COPIES

ÊÊ COPIES(n) ÊÍ

Returns n concatenated copies of the receiving string. The n must be a
positive whole number or zero.

Examples:
'abc'∼COPIES(3) -> 'abcabcabc'
'abc'∼COPIES(0) -> ''

(See “COPIES” on page 269 for information about the COPIES built-in
function.)

COUNTSTR

ÊÊ COUNTSTR(needle) ÊÍ

String Class

Chapter 6. Other Classes 221



Returns a count of the occurrences of needle in the receiving string that do not
overlap.

Here are some examples:
'101101'∼COUNTSTR('1') -> 4
'J0KKK0'∼COUNTSTR('KK') -> 1

(See “COUNTSTR” on page 269 for information about the COUNTSTR built-in
function.)

C2D

ÊÊ C2D
(n)

ÊÍ

Returns the decimal value of the binary representation of the receiving string.
If the result cannot be expressed as a whole number, an error results. That is,
the result must not have more digits than the current setting of NUMERIC
DIGITS. If you specify n, it is the length of the returned result. If you do not
specify n, the receiving string is processed as an unsigned binary number. If
the receiving string is null, C2D returns 0.

Examples:
'09'X∼C2D -> 9
'81'X∼C2D -> 129
'FF81'X∼C2D -> 65409
''∼C2D -> 0
'a'∼C2D -> 97 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in
n characters. The number is positive if the leftmost bit is off, and negative if
the leftmost bit is on. In both cases, it is converted to a whole number, which
can therefore be negative. The receiving string is padded on the left with '00'x
characters (not “sign-extended”), or truncated on the left to n characters. This
padding or truncation is as though receiving_string∼RIGHT(n,'00'x) had
been processed. If n is 0, C2D always returns 0.

Examples:
'81'X∼C2D(1) -> -127
'81'X∼C2D(2) -> 129
'FF81'X∼C2D(2) -> -127
'FF81'X∼C2D(1) -> -127
'FF7F'X∼C2D(1) -> 127
'F081'X∼C2D(2) -> -3967
'F081'X∼C2D(1) -> -127
'0031'X∼C2D(0) -> 0

String Class

222 Object REXX Reference



(See “C2D (Character to Decimal)” on page 269 for information about the C2D
built-in function.)

C2X

ÊÊ C2X ÊÍ

Returns a string, in character format, that represents the receiving string
converted to hexadecimal. The returned string contains twice as many bytes
as the receiving string. On an ASCII system, sending a C2X message to the
receiving string 1 returns 31 because '31'X is the ASCII representation of 1.

The returned string has uppercase alphabetic characters for the values A–F and
does not include blanks. The receiving string can be of any length. If the
receiving string is null, C2X returns a null string.

Examples:
'0123'X∼C2X -> '0123' /* '30313233'X in ASCII */
'ZD8'∼C2X -> '5A4438' /* '354134343338'X in ASCII */

(See “C2X (Character to Hexadecimal)” on page 270 for information about the
C2X built-in function.)

DATATYPE

ÊÊ DATATYPE
(type)

ÊÍ

Returns NUM if you specify no argument and the receiving string is a valid
REXX number that can be added to 0 without error. It returns CHAR if the
receiving string is not a valid number.

If you specify type, it returns 1 if the receiving string matches the type.
Otherwise, it returns 0. If the receiving string is null, the method returns 0
(except when the type is X or B, for which DATATYPE returns 1 for a null
string). The following are valid types. (You need to specify only the capitalized
letter, or the number of the last type listed. The language processor ignores all
characters following it.

Alphanumeric returns 1 if the receiving string contains only characters from
the ranges a–z, A–Z, and 0–9.

Binary returns 1 if the receiving string contains only the characters 0

String Class

Chapter 6. Other Classes 223



or 1, or a blank. Blanks can appear only between groups of 4
binary characters. It also returns 1 if string is a null string,
which is a valid binary string.

Lowercase returns 1 if the receiving string contains only characters from
the range a–z.

Mixed case returns 1 if the receiving string contains only characters from
the ranges a–z and A–Z.

Number returns 1 if receiving_string∼DATATYPE returns NUM.

Symbol returns 1 if the receiving string is a valid symbol, that is, if
SYMBOL(string) does not return BAD. (See “Symbols” on
page 14.) Note that both uppercase and lowercase alphabetic
characters are permitted.

Uppercase returns 1 if the receiving string contains only characters from
the range A–Z.

Variable returns 1 if the receiving string could appear on the left-hand
side of an assignment without causing a SYNTAX condition.

Whole number
returns 1 if the receiving string is a whole number under the
current setting of NUMERIC DIGITS.

heXadecimal returns 1 if the receiving string contains only characters from
the ranges a–f, A–F, 0–9, and blank (as long as blanks appear
only between pairs of hexadecimal characters). Also returns 1
if the receiving string is a null string.

9 Digits returns 1 if receiving_string∼DATATYPE('W') returns 1 when
NUMERIC DIGITS is set to 9.

Examples:
' 12 '∼DATATYPE -> 'NUM'
'∼DATATYPE -> 'CHAR'
'123*'∼DATATYPE -> 'CHAR'
'12.3'∼DATATYPE('N') -> 1
'12.3'∼DATATYPE('W') -> 0
'Fred'∼DATATYPE('M') -> 1
'∼DATATYPE('M') -> 0
'Fred'∼DATATYPE('L') -> 0
'?20K'∼DATATYPE('s') -> 1
'BCd3'∼DATATYPE('X') -> 1
'BC d3'∼DATATYPE('X') -> 1

Note: The DATATYPE method tests the meaning or type of characters in a
string, independent of the encoding of those characters (for example,
ASCII or EBCDIC).

String Class

224 Object REXX Reference



(See “DATATYPE” on page 270 for information about the DATATYPE built-in
function.)

DELSTR

ÊÊ DELSTR(n
,length

) ÊÍ

Returns a copy of the receiving string after deleting the substring that begins
at the nth character and is of length characters. If you omit length, or if length
is greater than the number of characters from n to the end of string, the
method deletes the rest of string (including the nth character). The length must
be a positive whole number or zero. The n must be a positive whole number.
If n is greater than the length of the receiving string, the method returns the
receiving string unchanged.

Examples:
'abcd'∼DELSTR(3) -> 'ab'
'abcde'∼DELSTR(3,2) -> 'abe'
'abcde'∼DELSTR(6) -> 'abcde'

(See “DELSTR (Delete String)” on page 275 for information about the DELSTR
built-in function.)

DELWORD

ÊÊ DELWORD(n
,length

) ÊÍ

Returns a copy of the receiving string after deleting the substring that starts at
the nth word and is of length blank-delimited words. If you omit length, or if
length is greater than the number of words from n to the end of the receiving
string, the method deletes the remaining words in the receiving string
(including the nth word). The length must be a positive whole number or zero.
The n must be a positive whole number. If n is greater than the number of
words in the receiving string, the method returns the receiving string
unchanged. The string deleted includes any blanks following the final word
involved but none of the blanks preceding the first word involved.

Examples:

String Class

Chapter 6. Other Classes 225



'Now is the time'∼DELWORD(2,2) -> 'Now time'
'Now is the time '∼DELWORD(3) -> 'Now is '
'Now is the time'∼DELWORD(5) -> 'Now is the time'
'Now is the time'∼DELWORD(3,1) -> 'Now is time'

(See “DELWORD (Delete Word)” on page 275 for information about the
DELWORD built-in function.)

D2C

ÊÊ D2C
(n)

ÊÍ

Returns a string, in character format, that is the ASCII representation of the
receiving string, a decimal number. If you specify n, it is the length of the
final result in characters; leading blanks are added to the returned string. The
n must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of
NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero,
and the result length is as needed. Therefore, the returned result has no
leading '00'x characters.

Examples:
'65'∼D2C -> 'A' /* '41'x is an ASCII 'A' */
'65'∼D2C(1) -> 'A'
'65'∼D2C(2) -> ' A'
'65'∼D2C(5) -> ' A'
'109'∼D2C -> 'm' /* '6D'x is an ASCII 'm' */
'-109'∼D2C(1) -> 'ô' /* '93'x is an ASCII 'ô' */
'76'∼D2C(2) -> ' L' /* '4C'x is an ASCII ' L' */
'-180'∼D2C(2) -> ' L'

Implementation maximum: The returned string must not have more than 250
significant characters, although a longer result is possible if it has additional
leading sign characters ('00'x and 'FF'x).

(See “D2C (Decimal to Character)” on page 276 for information about the D2C
built-in function.)

String Class

226 Object REXX Reference



D2X

ÊÊ D2X
(n)

ÊÍ

Returns a string, in character format, that represents the receiving string, a
decimal number converted to hexadecimal. The returned string uses
uppercase alphabetic characters for the values A–F and does not include
blanks.

The receiving string must not have more digits than the current setting of
NUMERIC DIGITS.

If you specify n, it is the length of the final result in characters. After
conversion the returned string is sign-extended to the required length. If the
number is too big to fit into n characters, it is truncated on the left. If you
specify n, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero,
and the returned result has no leading zeros.

Examples:
'9'∼D2X -> '9'
'129'∼D2X -> '81'
'129'∼D2X(1) -> '1'
'129'∼D2X(2) -> '81'
'129'∼D2X(4) -> '0081'
'257'∼D2X(2) -> '01'
'-127'∼D2X(2) -> '81'
'-127'∼D2X(4) -> 'FF81'
'12'∼D2X(0) -> ''

Implementation maximum: The returned string must not have more than 500
significant hexadecimal characters, although a longer result is possible if it has
additional leading sign characters (0 and F).

(See “D2X (Decimal to Hexadecimal)” on page 277 for information about the
D2X built-in function.)

String Class

Chapter 6. Other Classes 227



FORMAT

ÊÊ FORMAT
( before )

,
after ,

expp ,expt

ÊÍ

Returns the receiving string, a number, rounded and formatted.

The number is first rounded according to standard REXX rules, as though the
operation receiving_string+0 had been carried out. If you specify no
arguments the result of the method is the same as the result of this operation.
If you specify any options, the number is formatted as described in the
following.

The before and after options describe how many characters are to be used for
the integer and decimal parts of the result. If you omit either or both of them,
the number of characters for that part is as needed.

If before is not large enough to contain the integer part of the number (plus the
sign for a negative number), an error results. If before is larger than needed for
that part, the number is padded on the left with blanks. If after is not the
same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to
an integer.

Examples:
'3'∼FORMAT(4) -> ' 3'
'1.73'∼FORMAT(4,0) -> ' 2'
'1.73'∼FORMAT(4,3) -> ' 1.730'
'-.76'∼FORMAT(4,1) -> ' -0.8'
'3.03'∼FORMAT(4) -> ' 3.03'
' - 12.73'∼FORMAT(,4) -> '-12.7300'
' - 12.73'∼FORMAT -> '-12.73'
'0.000'∼FORMAT -> '0'

expp and expt control the exponent part of the result, which, by default, is
formatted according to the current NUMERIC settings of DIGITS and FORM.
expp sets the number of places for the exponent part; the default is to use as
many as needed (which can be zero). expt specifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If expp is 0, the number is not an exponential expression. If expp is not large
enough to contain the exponent, an error results.

String Class

228 Object REXX Reference



If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, exponential notation is used. If expt is 0, exponential
notation is always used unless the exponent would be 0. (If expp is 0, this
overrides a 0 value of expt.) If the exponent would be 0 when a nonzero expp
is specified, then expp+2 blanks are supplied for the exponent part of the
result. If the exponent would be 0 and expp is not specified, the number is not
an exponential expression.

Examples:
'12345.73'∼FORMAT(,,2,2) -> '1.234573E+04'
'12345.73'∼FORMAT(,3,,0) -> '1.235E+4'
'1.234573'∼FORMAT(,3,,0) -> '1.235'
'12345.73'∼FORMAT(,,3,6) -> '12345.73'
'1234567e5'∼FORMAT(,3,0) -> '123456700000.000'

(See “FORMAT” on page 279 for information about the FORMAT built-in
function.)

INSERT

ÊÊ INSERT(new )
,

n ,
length ,pad

ÊÍ

Inserts the string new, padded or truncated to length length, into the receiving
string. after the nth character. The default value for n is 0, which means
insertion at the beginning of the string. If specified, n and length must be
positive whole numbers or zero. If n is greater than the length of the receiving
string, the string new is padded at the beginning. The default value for length
is the length of new. If length is less than the length of the string new, then
INSERT truncates new to length length. The default pad character is a blank.

Examples:
'abc'∼INSERT('123') -> '123abc'
'abcdef'∼INSERT(' ',3) -> 'abc def'
'abc'∼INSERT('123',5,6) -> 'abc 123 '
'abc'∼INSERT('123',5,6,'+') -> 'abc++123+++'
'abc'∼INSERT('123',,5,'-') -> '123--abc'

(See “INSERT” on page 281 for information about the INSERT built-in
function.)

String Class

Chapter 6. Other Classes 229



LASTPOS

ÊÊ LASTPOS(needle )

,start

ÊÍ

Returns the position of the last occurrence of a string, needle, in the receiving
string. (See also “POS” on page 233.) It returns 0 if needle is the null string or
not found. By default, the search starts at the last character of the receiving
string and scans backward. You can override this by specifying start, the point
at which the backward scan starts. The start must be a positive whole number
and defaults to receiving_string∼length if larger than that value or omitted.

Examples:
'abc def ghi'∼LASTPOS(' ') -> 8
'abcdefghi'∼LASTPOS(' ') -> 0
'efgxyz'∼LASTPOS('xy') -> 4
'abc def ghi'∼LASTPOS(' ',7) -> 4

(See “LASTPOS (Last Position)” on page 282 for information about the
LASTPOS built-in function.)

LEFT

ÊÊ LEFT(length )
,pad

ÊÍ

Returns a string of length length, containing the leftmost length characters of
the receiving string. The string returned is padded with pad characters (or
truncated) on the right as needed. The default pad character is a blank. The
length must be a positive whole number or zero. The LEFT method is exactly
equivalent to:

ÊÊ SUBSTR(string,1,length )
,pad

ÊÍ

Examples:
'abc d'∼LEFT(8) -> 'abc d '
'abc d'∼LEFT(8,'.') -> 'abc d...'
'abc def'∼LEFT(7) -> 'abc de'

(See “LEFT” on page 282 for information about the LEFT built-in function.)

String Class

230 Object REXX Reference



LENGTH

ÊÊ LENGTH ÊÍ

Returns the length of the receiving string.

Examples:
'abcdefgh'∼LENGTH -> 8
'abc defg'∼LENGTH -> 8
''∼LENGTH -> 0

(See “LENGTH” on page 282 for information about the LENGTH built-in
function.)

MAKESTRING

ÊÊ MAKESTRING ÊÍ

Returns a string with the same string value as the receiver object. If the
receiver is an instance of a subclass of the String class, this method returns an
equivalent string object. If the receiver is a string object (not an instance of a
subclass of the String class), this method returns the receiver object. See
“Required String Values” on page 105.

MAX

ÊÊ

·

MAX
,

( number )

ÊÍ

Returns the largest number from among the receiver and any arguments. The
number that MAX returns is formatted according to the current NUMERIC
settings. You can specify any number of numbers.

Examples:
12∼MAX(6,7,9) -> 12
17.3∼MAX(19,17.03) -> 19
'-7'∼MAX('-3','-4.3') -> -3
1∼MAX(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

String Class

Chapter 6. Other Classes 231



(See “MAX (Maximum)” on page 286 for information about the MAX built-in
function.)

MIN

ÊÊ

·

MIN
,

( number )

ÊÍ

Returns the smallest number from among the receiver and any arguments.
The number that MIN returns is formatted according to the current
NUMERIC settings. You can specify any number of numbers.

Examples:
12∼MIN(6,7,9) -> 6
17.3∼MIN(19,17.03) -> 17.03
'-7'∼MIN('-3','-4.3') -> -7
21∼MIN(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

(See “MIN (Minimum)” on page 287 for information about the MIN built-in
function.)

OVERLAY

ÊÊ OVERLAY(new )
,

n ,
length ,pad

ÊÍ

Returns the receiving string, which, starting at the nth character, is overlaid
with the string new, padded or truncated to length length. The overlay can
extend beyond the end of the receiving string. If you specify length, it must be
a positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the receiving string, padding is added
before the new string. The default pad character is a blank, and the default
value for n is 1. If you specify n, it must be a positive whole number.

Examples:
'abcdef'∼OVERLAY(' ',3) -> 'ab def'
'abcdef'∼OVERLAY('.',3,2) -> 'ab. ef'
'abcd'∼OVERLAY('qq') -> 'qqcd'
'abcd'∼OVERLAY('qq',4) -> 'abcqq'
'abc'∼OVERLAY('123',5,6,'+') -> 'abc+123+++'

String Class

232 Object REXX Reference



(See “OVERLAY” on page 287 for information about the OVERLAY built-in
function.)

POS

ÊÊ POS(needle )
,start

ÊÍ

Returns the position in the receiving string of another string, needle. (See also
“LASTPOS” on page 230.) It returns 0 if needle is the null string or is not
found or if start is greater than the length of the receiving string. By default,
the search starts at the first character of the receiving string (that is, the value
of start is 1). You can override this by specifying start (which must be a
positive whole number), the point at which the search starts.

Examples:
'Saturday'∼POS('day') -> 6
'abc def ghi'∼POS('x') -> 0
'abc def ghi'∼POS(' ') -> 4
'abc def ghi'∼POS(' ',5) -> 8

(See “POS (Position)” on page 287 for information about the POS built-in
function.)

REVERSE

ÊÊ REVERSE ÊÍ

Returns the receiving string reversed.

Examples:
'ABc.'∼REVERSE -> '.cBA'
'XYZ '∼REVERSE -> ' ZYX'

(See “REVERSE” on page 289 for information about the REVERSE built-in
function.)

RIGHT

ÊÊ RIGHT(length )
,pad

ÊÍ

String Class

Chapter 6. Other Classes 233



Returns a string of length length containing the rightmost length characters of
the receiving string. The string returned is padded with pad characters, or
truncated, on the left as needed. The default pad character is a blank. The
length must be a positive whole number or zero.

Examples:
'abc d'∼RIGHT(8) -> ' abc d'
'abc def'∼RIGHT(5) -> 'c def'
'12'∼RIGHT(5,'0') -> '00012'

(See “RIGHT” on page 289 for information about the RIGHT built-in function.)

SIGN

ÊÊ SIGN ÊÍ

Returns a number that indicates the sign of the receiving string, which is a
number. The receiving string is first rounded according to standard REXX
rules, as though the operation receiving_string+0 had been carried out. It
returns -1 if the receiving string is less than 0, 0 if it is 0, and 1 if it is greater
than 0.

Examples:
'12.3'∼SIGN -> 1
' -0.307'∼SIGN -> -1
0.0∼SIGN -> 0

(See “SIGN” on page 290 for information about the SIGN built-in function.)

SPACE

ÊÊ SPACE
(n )

,pad

ÊÍ

Returns the blank-delimited words in the receiving string, with n pad
characters between each word. If you specify n, it must be a positive whole
number or zero. If it is 0, all blanks are removed. Leading and trailing blanks
are always removed. The default for n is 1, and the default pad character is a
blank.

Examples:

String Class

234 Object REXX Reference



'abc def '∼SPACE -> 'abc def'
' abc def'∼SPACE(3) -> 'abc def'
'abc def '∼SPACE(1) -> 'abc def'
'abc def '∼SPACE(0) -> 'abcdef'
'abc def '∼SPACE(2,'+') -> 'abc++def'

(See “SPACE” on page 291 for information about the SPACE built-in function.)

STRING

ÊÊ STRING ÊÍ

Returns a string with the same string value as the receiver object. If the
receiver is an instance of a subclass of the String class, this method returns a
string having an equivalent value. If the receiver is a string (but is not an
instance of a subclass of the String class), this method returns the receiver
object. See also the STRING method of the Object class in “STRING” on
page 188.

STRIP

ÊÊ STRIP
(option )

,char

ÊÍ

Returns the receiving string with leading characters, trailing characters, or
both, removed, based on the option you specify. The following are valid
options. (You need to specify only the first capitalized letter; the language
processor ignores all characters following it.)

Both Removes both leading and trailing characters. This is the
default.

Leading Removes leading characters.

Trailing Removes trailing characters.

The char specifies the character to be removed, and the default is a blank. If
you specify char, it must be exactly one character long.

Examples:
' ab c '∼STRIP -> 'ab c'
' ab c '∼STRIP('L') -> 'ab c '
' ab c '∼STRIP('t') -> ' ab c'
'12.7000'∼STRIP(,0) -> '12.7'
'0012.700'∼STRIP(,0) -> '12.7'

String Class

Chapter 6. Other Classes 235



(See “STRIP” on page 299 for information about the STRIP built-in function.)

SUBSTR

ÊÊ SUBSTR(n )
,

length ,pad

ÊÍ

Returns the substring of the receiving string that begins at the nth character
and is of length length, padded with pad if necessary. The n must be a positive
whole number. If n is greater than receiving_string∼LENGTH, only pad
characters are returned.

If you omit length, the rest of the string is returned. The default pad character
is a blank.

Examples:
'abc'∼SUBSTR(2) -> 'bc'
'abc'∼SUBSTR(2,4) -> 'bc '
'abc'∼SUBSTR(2,6,'.') -> 'bc....'

Note: In some situations the positional (numeric) patterns of parsing
templates are more convenient for selecting substrings, in particular if
you need to extract more than one substring from a string. See
also“LEFT” on page 230 and “RIGHT” on page 233.

(See “SUBSTR (Substring)” on page 299 for information about the SUBSTR
built-in function.)

SUBWORD

ÊÊ SUBWORD(n )
,length

ÊÍ

Returns the substring of the receiving string that starts at the nth word and is
up to length blank-delimited words. The n must be a positive whole number.
If you omit length, it defaults to the number of remaining words in the
receiving string. The returned string never has leading or trailing blanks, but
includes all blanks between the selected words.

Examples:

String Class

236 Object REXX Reference



'Now is the time'∼SUBWORD(2,2) -> 'is the'
'Now is the time'∼SUBWORD(3) -> 'the time'
'Now is the time'∼SUBWORD(5) -> ''

(See “SUBWORD” on page 300 for information about the SUBWORD built-in
function.)

TRANSLATE

ÊÊ TRANSLATE
( )

tableo
,

tablei ,pad

ÊÍ

Returns the receiving string with each character translated to another
character or unchanged. You can also use this method to reorder the
characters in the receiving string.

The output table is tableo and the input translation table is tablei. TRANSLATE
searches tablei for each character in the receiving string. If the character is
found, the corresponding character in tableo is used in the result string. If
there are duplicates in tablei, the first (leftmost) occurrence is used. If the
character is not found, the original character in the receiving string is used.
The result string is always of the same length as the receiving string.

The tables can be of any length. If you specify translation table and omit pad,
the receiving string is translated to uppercase (that is, lowercase a–z to
uppercase A–Z), but if you include pad the language processor translates the
entire string to pad characters. tablei defaults to XRANGE('00'x,'FF'x), and
tableo defaults to the null string and is padded with pad or truncated as
necessary. The default pad is a blank.

Examples:
'abcdef'∼TRANSLATE -> 'ABCDEF'
'abcdef'∼TRANSLATE('12','ec') -> 'ab2d1f'
'abcdef'∼TRANSLATE('12','abcd','.') -> '12..ef'
'APQRV'∼TRANSLATE(,'PR') -> 'A Q V'
'APQRV'∼TRANSLATE(XRANGE('00'X,'Q')) -> 'APQ '
'4123'∼TRANSLATE('abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE method to
reorder the characters in a string. In the example, the last character of
any 4-character string specified as the first argument would be moved
to the beginning of the string.

String Class

Chapter 6. Other Classes 237



(See “TRANSLATE” on page 304 for information about the TRANSLATE
built-in function.)

TRUNC

ÊÊ TRUNC
(n)

ÊÍ

Returns the integer part the receiving string, which is a number, and n
decimal places. The default n is 0 and returns an integer with no decimal
point. If you specify n, it must be a positive whole number or zero. The
receiving string is first rounded according to standard REXX rules, as though
the operation receiving_string+0 had been carried out. This number is then
truncated to n decimal places or trailing zeros are added if needed to reach
the specified length. The result is never in exponential form. If there are no
nonzero digits in the result, any minus sign is removed.

Examples:
12.3∼TRUNC -> 12
127.09782∼TRUNC(3) -> 127.097
127.1∼TRUNC(3) -> 127.100
127∼TRUNC(2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC
DIGITS if necessary, before the method processes it.

(See “TRUNC (Truncate)” on page 305 for information about the TRUNC
built-in function.)

VERIFY

ÊÊ VERIFY(reference )
,

option ,start

ÊÍ

Returns a number that, by default, indicates whether the receiving string is
composed only of characters from reference. It returns 0 if all characters in the
receiving string are in reference or returns the position of the first character in
the receiving string not in reference.

String Class

238 Object REXX Reference



The option can be either Nomatch (the default) or Match. (You need to specify
only the first capitalized and highlighted letter; the language processor ignores
all characters following the first character, which can be in uppercase or
lowercase.)

If you specify Match, the method returns the position of the first character in
the receiving string that is in reference, or returns 0 if none of the characters
are found.

The default for start is 1. Thus, the search starts at the first character of the
receiving string. You can override this by specifying a different start point,
which must be a positive whole number.

If the receiving string is null, the method returns 0, regardless of the value of
the option. Similarly, if start is greater than receiving_string∼LENGTH, the
method returns 0. If reference is null, the method returns 0 if you specify
Match. Otherwise, the method returns the start value.

Examples:
'123'∼VERIFY('1234567890') -> 0
'1Z3'∼VERIFY('1234567890') -> 2
'AB4T'∼VERIFY('1234567890') -> 1
'AB4T'∼VERIFY('1234567890','M') -> 3
'AB4T'∼VERIFY('1234567890','N') -> 1
'1P3Q4'∼VERIFY('1234567890',,3) -> 4
'123'∼VERIFY('',N,2) -> 2
'ABCDE'∼VERIFY('',,3) -> 3
'AB3CD5'∼VERIFY('1234567890','M',4) -> 6

(See “VERIFY” on page 308 for information about the VERIFY built-in
function.)

WORD

ÊÊ WORD(n) ÊÍ

Returns the nth blank-delimited word in the receiving string or the null string
if the receiving string has fewer than n words. The n must be a positive whole
number. This method is exactly equivalent to receiving_string∼SUBWORD(n,1).

Examples:
'Now is the time'∼WORD(3) -> 'the'
'Now is the time'∼WORD(5) -> ''

(See “WORD” on page 309 for information about the WORD built-in function.)

String Class

Chapter 6. Other Classes 239



WORDINDEX

ÊÊ WORDINDEX(n) ÊÍ

Returns the position of the first character in the nth blank-delimited word in
the receiving string. It returns 0 if the receiving string has fewer than n words.
The n must be a positive whole number.

Examples:
'Now is the time'∼WORDINDEX(3) -> 8
'Now is the time'∼WORDINDEX(6) -> 0

(See “WORDINDEX” on page 309 for information about the WORDINDEX
built-in function.)

WORDLENGTH

ÊÊ WORDLENGTH(n) ÊÍ

Returns the length of the nth blank-delimited word in the receiving string or 0
if the receiving string has fewer than n words. The n must be a positive whole
number.

Examples:
'Now is the time'∼WORDLENGTH(2) -> 2
'Now comes the time'∼WORDLENGTH(2) -> 5
'Now is the time'∼WORDLENGTH(6) -> 0

(See “WORDLENGTH” on page 309 for information about the
WORDLENGTH built-in function.)

WORDPOS

ÊÊ WORDPOS(phrase )
,start

ÊÍ

Returns the word number of the first word of phrase found in the receiving
string, or 0 if phrase contains no words or if phrase is not found. Several blanks
between words in either phrase or the receiving string are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

String Class

240 Object REXX Reference



By default the search starts at the first word in the receiving string. You can
override this by specifying start (which must be positive), the word at which
the search is to be started.

Examples:
'now is the time'∼WORDPOS('the') -> 3
'now is the time'∼WORDPOS('The') -> 0
'now is the time'∼WORDPOS('is the') -> 2
'now is the time'∼WORDPOS('is the') -> 2
'now is the time'∼WORDPOS('is time ') -> 0
'To be or not to be'∼WORDPOS('be') -> 2
'To be or not to be'∼WORDPOS('be',3) -> 6

(See “WORDPOS (Word Position)” on page 310 for information about the
WORDPOS built-in function.)

WORDS

ÊÊ WORDS ÊÍ

Returns the number of blank-delimited words in the receiving string.

Examples:
'Now is the time'∼WORDS -> 4
' '∼WORDS -> 0

(See “WORDS” on page 310 for information about the WORDS built-in
function.)

X2B

ÊÊ X2B ÊÍ

Returns a string, in character format, that represents the receiving string,
which is a string of hexadecimal characters converted to binary. The receiving
string can be of any length. Each hexadecimal character is converted to a
string of 4 binary digits. The receiving string can optionally include blanks (at
byte boundaries only, not leading or trailing) to improve readability; they are
ignored.

The returned string has a length that is a multiple of four, and does not
include any blanks.

String Class

Chapter 6. Other Classes 241



If the receiving string is null, the method returns a null string.

Examples:
'C3'∼X2B -> '11000011'
'7'∼X2B -> '0111'
'1 C1'∼X2B -> '000111000001'

You can combine X2B with the methods D2X and C2X to convert numbers or
character strings into binary form.

Examples:
'C3'x∼C2X∼X2B -> '11000011'
'129'∼D2X∼X2B -> '10000001'
'12'∼D2X∼X2B -> '1100'

(See “X2B (Hexadecimal to Binary)” on page 311 for information about the
X2B built-in function.)

X2C

ÊÊ X2C ÊÍ

Returns a string, in character format, that represents the receiving string,
which is a hexadecimal string converted to character. The returned string is
half as many bytes as the receiving string. The receiving string can be any
length. If necessary, it is padded with a leading 0 to make an even number of
hexadecimal digits.

You can optionally include blanks in the receiving string (at byte boundaries
only, not leading or trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.

Examples:
'4865 6c6c 6f'∼X2C -> 'Hello' /* ASCII */
'3732 73'∼X2C -> '72s' /* ASCII */

(See “X2C (Hexadecimal to Character)” on page 311 for information about the
X2C built-in function.)

String Class

242 Object REXX Reference



X2D

ÊÊ X2D
(n)

ÊÍ

Returns the decimal representation of the receiving string, which is a string of
hexadecimal characters. If the result cannot be expressed as a whole number,
an error results. That is, the result must not have more digits than the current
setting of NUMERIC DIGITS.

You can optionally include blanks in the receiving string (at byte boundaries
only, not leading or trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns 0.

If you do not specify n, the receiving string is processed as an unsigned
binary number.

Examples:
'0E'∼X2D -> 14
'81'∼X2D -> 129
'F81'∼X2D -> 3969
'FF81'∼X2D -> 65409
'46 30'X∼X2D -> 240 /* ASCII */
'66 30'X∼X2D -> 240 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in
n hexadecimal digits. If the leftmost bit is off, then the number is positive;
otherwise, it is a negative number. In both cases it is converted to a whole
number, which can be negative. If n is 0, the method returns 0.

If necessary, the receiving string is padded on the left with 0 characters (note,
not “sign-extended”), or truncated on the left to n characters.

Examples:
'81'∼X2D(2) -> -127
'81'∼X2D(4) -> 129
'F081'∼X2D(4) -> -3967
'F081'∼X2D(3) -> 129
'F081'∼X2D(2) -> -127
'F081'∼X2D(1) -> 1
'0031'∼X2D(0) -> 0

(See “X2D (Hexadecimal to Decimal)” on page 312 for information about the
X2D built-in function.)

String Class

Chapter 6. Other Classes 243



The Supplier Class

You can use a supplier object to enumerate the items a collection contained at
the time of the supplier's creation. The following methods return a supplier
object:
v The SUPPLIER methods of the Array, Bag, Directory, List, Queue, Relation,

Set, Table, and Stream classes
v The METHODS method of the Class class

The Supplier class is a subclass of the Object class.

Methods the Supplier class defines:

NEW (Class method. Overrides Object class method.)
AVAILABLE
INDEX
ITEM
NEXT

Methods inherited from the Object class:

Operator methods: =, ==, \=, ><, <>, \==
CLASS
COPY
DEFAULTNAME
HASMETHOD
INIT
OBJECTNAME
OBJECTNAME=
REQUEST
RUN
SETMETHOD
START
STRING
UNSETMETHOD

Note: The Supplier class also has available class methods that its metaclass,
the Class class, defines.

NEW (Class Method)

ÊÊ NEW(values,indexes) ÊÍ

Supplier Class

244 Object REXX Reference



Returns a new supplier object. The values argument must be an array of
values over which the supplier iterates. The indexes argument is an array of
index values with a one-to-one correspondence to the objects contained in the
values array. The created supplier iterates over the arrays, returning elements
of the values array in response to ITEM messages, and elements of the
indexes array in response to INDEX messages. The supplier iterates for the
number of items contained in the values array, returning the NIL object for
any nonexistent items in either array.

AVAILABLE

ÊÊ AVAILABLE ÊÍ

Returns 1 (true) if an item is available from the supplier (that is, if the ITEM
method would return a value). It returns 0 (false) if the collection is empty or
the supplier has already enumerated the entire collection.

INDEX

ÊÊ INDEX ÊÍ

Returns the index of the current item in the collection. If no item is available,
that is, if AVAILABLE would return false, the language processor raises an
error.

ITEM

ÊÊ ITEM ÊÍ

Returns the current item in the collection. If no item is available, that is, if
AVAILABLE would return false, the language processor raises an error.

NEXT

ÊÊ NEXT ÊÍ

Moves to the next item in the collection. By repeatedly sending NEXT to the
supplier (as long as AVAILABLE returns true), you can enumerate all items in
the collection. If no item is available, that is, if AVAILABLE would return
false, the language processor raises an error.

Supplier Class

Chapter 6. Other Classes 245



Examples
desserts=.array∼of(apples, peaches, pumpkins, 3.14159) /* Creates array */
say "The desserts we have are:"
baker=desserts∼supplier /* Creates supplier object named BAKER */
do while baker∼available /* Array suppliers are sequenced */

if baker∼index=4
then say baker∼item "is pi, not pie!!!"
else say baker∼item
baker∼next

end

/* Produces: */
/* The desserts we have are: */
/* APPLES */
/* PEACHES */
/* PUMPKINS */
/* 3.14159 is pi, not pie!!! */

Supplier Class

246 Object REXX Reference



Chapter 7. Other Objects

In addition to the class objects described in the previous chapter, REXX also
provides the following objects:
v The Environment object
v The NIL object
v The Local environment object
v The Error object
v The Input object
v The Output object

The Environment Object

The Environment object is a directory of public objects that are always
accessible. To access the entries of the Environment object, you can use
environment symbols. An environment symbol starts with a period and has at
least one other character, which cannot be a digit. For example, the term:
.method /* Same as .METHOD */

refers to the Method class.

Note: All environment objects that REXX provides are single symbols. Users
are recommended to use compound symbols when creating
environment objects.

(See “Environment Symbols” on page 36 for details about environment
symbols.) REXX provides the following public objects:

.ALARM The Alarm class. See “The Alarm Class” on page 163.

.ARRAY The Array class. See “The Array Class” on page 120.

.BAG The Bag class. See “The Bag Class” on page 126.

.CLASS The Class class. See “The Class Class” on page 165.

.DIRECTORY The Directory class. See “The Directory Class” on page 129.

.ENVIRONMENT
The Environment directory.

.FALSE The FALSE object (the value 0).

.LIST The List class. See “The List Class” on page 136.

© Copyright IBM Corp. 1999 247



.LOCAL The Local environment directory. See “The Local Environment
Object (.LOCAL)”.

.MESSAGE The Message class. See “The Message Class” on page 174.

.METHOD The Method class. See “The Method Class” on page 178.

.MONITOR The Monitor class. See “The Monitor Class” on page 181.

.NIL The NIL object. See “The NIL Object”.

.OBJECT The Object class. See “The Object Class” on page 183.

.QUEUE The Queue class. See “The Queue Class” on page 141.

.RELATION The Relation class. See “The Relation Class” on page 144.

.SET The Set class. See “The Set Class” on page 150.

.STEM The Stem class. See “The Stem Class” on page 189.

.STREAM The Stream class. See “The Stream Class” on page 192.

.STRING The String class. See “The String Class” on page 210.

.SUPPLIER The Supplier class. See “The Supplier Class” on page 244.

.TABLE The Table class. See “The Table Class” on page 153.

.TRUE The TRUE object (the value 1).

The NIL Object

The NIL object is a special object that does not contain data. It usually
represents the absence of an object, as a null string represents a string with no
characters. It has only the methods of the Object class. Note that you use the
.NIL object (rather than the null string ("")) to test for the absence of data in
an array entry:
if .nil = board[row,col] /* .NIL rather than "" */
then ...

The Local Environment Object (.LOCAL)

The Local environment object is a directory of process-specific objects that are
always accessible. You can access objects in the Local environment object in
the same way as objects in the Environment object. REXX provides the
following objects in the Local environment object:

.ERROR The Error object (default error stream). See “The Error Object”
on page 249. This is the object to which REXX error messages

and trace output are written.

Other Objects

248 Object REXX Reference



.INPUT The Input object (default input stream). See “The Input
Object”.

.OUTPUT The Output object (default output stream). See “The Output
Object” on page 250.

Objects in the Environment object and objects in the Local environment object
are available only to programs running within the same process.

Because both of these environment objects are directory objects, you can place
objects into, or retrieve objects from, these environments by using any of the
directory messages ([],[]=, PUT, AT, SETENTRY, ENTRY, or SETMETHOD). To
avoid potential name clashes with built-in objects and public objects that
REXX provides, each object that your programs add to these environments
should have a period in its index.

Examples:
/* .LOCAL example--places something in the Local environment directory */
.local∼my.alarm = theAlarm
/* To retrieve it */
say .local∼my.alarm

/* Another .LOCAL example */
.environment['MYAPP.PASSWORD'] = 'topsecret'
.environment['MYAPP.UID'] = 200

/* Create a local directory for */
/* my stuff. */

.local['MYAPP.LOCAL'] = .directory∼new
/* Add log file for my local directory */
.myapp.local['LOG'] = .stream∼new('MYAPP.LOG')
say .myapp.password /* Displays "topsecret" */
say .myapp.uid /* Displays "200" */
/* Write a line to the log file */
.myapp.local∼log∼lineout('Logon at 'time()' on 'date())

The Error Object

This monitor object (see “The Monitor Class” on page 181) holds the trace
stream object. You can redirect the trace output in the same way as with the
output object in the Monitor class example.

The Input Object

This monitor object (see “The Monitor Class” on page 181) holds the default
input stream object (see “Chapter 16. Input and Output Streams” on page 395).
This input stream is the source for the PARSE LINEIN instruction, the LINEIN
method of the Stream class, and, if you specify no stream name, the LINEIN

Other Objects

Chapter 7. Other Objects 249



built-in function. It is also the source for the PULL and PARSE PULL
instructions if the external data queue is empty.

The Output Object

This monitor object (see “The Monitor Class” on page 181) holds the default
output stream object (see “Chapter 16. Input and Output Streams” on
page 395). This is the destination for output from the SAY instruction, the
LINEOUT method (.OUTPUT∼LINEOUT), and, if you specify no stream
name, the LINEOUT built-in function. You can replace this object in the
environment to direct such output elsewhere (for example, to a transcript
window).

Other Objects

250 Object REXX Reference



Chapter 8. Functions

A function is an internal, built-in, or external routine that returns a single
result object. (A subroutine is a function that is an internal, built-in, or external
routine that might return a result and is called with the CALL instruction.)

Syntax

A function call is a term in an expression calling a routine that carries out
some procedures and returns an object. This object replaces the function call
in the continuing evaluation of the expression. You can include function calls
to internal and external routines in an expression anywhere that a data term
(such as a string) would be valid, using the following notation:

ÊÊ function_name( ·

,

expression
) ÊÍ

The function_name is a literal string or a single symbol, which is taken to be a
constant.

There can be any number of expressions, separated by commas, between the
parentheses. These expressions are called the arguments to the function. Each
argument expression can include further function calls.

Note that the left parenthesis must be adjacent to the name of the function,
with no blank in between. (A blank operator would be assumed at this point
instead.) Only a comment can appear between the name and the left
parenthesis.

The arguments are evaluated in turn from left to right and the resulting
objects are then all passed to the function. This function then runs some
operation (usually dependent on the argument objects passed, though
arguments are not mandatory) and eventually returns a single object. This
object is then included in the original expression as though the entire function
reference had been replaced by the name of a variable whose value is the
returned object.

For example, the function SUBSTR is built into the language processor and
could be used as:

© Copyright IBM Corp. 1999 251



N1='abcdefghijk'
Z1='Part of N1 is: 'substr(N1,2,7)
/* Sets Z1 to 'Part of N1 is: bcdefgh' */

A function can have a variable number of arguments. You need to specify
only those required. For example, SUBSTR('ABCDEF',4) would return DEF.

Functions and Subroutines

Functions and subroutines are called in the same way. The only difference
between functions and subroutines is that functions must return data, whereas
subroutines need not.

The following types of routines can be called as functions:

Internal If the routine name exists as a label in the program, the
current processing status is saved for a later return to the
point of invocation to resume execution. Control is then
passed to the first label in the program that matches the name.
As with a routine called by the CALL instruction, status
information, such as TRACE and NUMERIC settings, is saved
too. See the CALL instruction (“CALL” on page 45) for details.

If you call an internal routine as a function, you must specify
an expression in any RETURN instruction so that the routine
can return. This is not necessary if it is called as a subroutine.

Example:
/* Recursive internal function execution... */
arg x
say x'! =' factorial(x)
exit
factorial: procedure /* Calculate factorial by */
arg n /* recursive invocation. */
if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive
invocation). The PROCEDURE instruction ensures that a new
variable n is created for each invocation.

Built-in These functions are always available and are defined in
“Built-in Functions” on page 257.

External You can write or use functions that are external to your
program and to the language processor. An external routine
can be written in any language, including REXX, that supports
the system-dependent interfaces the language processor uses

Functions

252 Object REXX Reference



to call it. You can call a REXX program as a function and, in
this case, pass more than one argument string. The ARG,
PARSE ARG, or USE ARG instruction or the ARG built-in
function can retrieve these argument strings. When called as a
function, a program must return data to the caller.

Notes:

1. Calling an external REXX program as a function is similar
to calling an internal routine. For an external routine,
however, the caller’s variables are hidden. To leave the
called REXX program, you can use either EXIT or
RETURN. In either case, you must specify an expression.

2. You can use the INTERPRET instruction to process a
function with a variable function name. However, avoid
this if possible because it reduces the clarity of the
program.

Search Order

Functions are searched in the following sequence: internal routines, built-in
functions, external functions.

The name of internal routines must not be specified as a literal string, that is,
in quotation marks, whereas the name of built-in functions or external
routines must be specified in quotation marks. Be aware of this when you
want to extend the capabilities of an existing internal function, for example,
and call it as a built-in function or external routine under the same name as
the existing internal function. In this case, you must specify the name in
quotation marks.

Example:
/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure
arg in
if in='' then in='Standard'
return 'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal string
must be in uppercase for the search to succeed. File names can be in
uppercase, lowercase, or mixed case. The operating system uses a
case-insensitive search for files. When calling a REXX subroutine, the case of
the name does not matter.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:

Functions

Chapter 8. Functions 253



1. Functions defined on ::ROUTINE directives within the program.
2. Public functions defined on ::ROUTINE directives of programs referenced

with ::REQUIRES.
3. Functions that have been loaded into the macrospace for preorder

execution. (See the Object REXX for Linux: Programming Guide for details.)
4. Functions that are part of a function package. (See the Object REXX for

Linux: Programming Guide for details.)
5. REXX functions in the current directory, with the current extension.
6. REXX functions along environment PATH, with the current extension.
7. REXX functions in the current directory, with the default extension (.rex or

.cmd).
8. REXX functions along environment PATH, with the default extension (.rex

or .cmd).
9. Functions that have been loaded into the macrospace for postorder

execution.

The full search pattern for functions and routines is shown in Figure 12 on
page 255.

Errors during Execution

If an external or built-in function detects an error, the language processor is
informed, and a syntax error results. Execution of the clause that included the
function call is, therefore, ended. Similarly, if an external function fails to
return data correctly, the language processor detects this and reports it as an
error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery might then be possible. If
the error is not trapped, the program is ended.

Functions

254 Object REXX Reference



Figure 12. Function and Routine Resolution and Execution

Functions

Chapter 8. Functions 255



Return Values

A function usually returns a value that is substituted for the function call
when the expression is evaluated.

How the value returned by a function (or any REXX routine) is handled
depends on whether it is called by a function call or as a subroutine with the
CALL instruction.

A routine called as a subroutine: If the routine returns a value, that value
is stored in the special variable named RESULT. Otherwise, the RESULT
variable is dropped, and its value is the string RESULT.
A routine called as a function: If the function returns a value, that value is
substituted in the expression at the position where the function was called.
Otherwise, the language processor stops with an error message.

Here are some examples of how to call a REXX procedure:
call Beep 500, 100 /* Example 1: a subroutine call */

The built-in function BEEP is called as a REXX subroutine. The return value
from BEEP is placed in the REXX special variable RESULT.
bc = Beep(500, 100) /* Example 2: a function call */

BEEP is called as a REXX function. The return value from the function is
substituted for the function call. The clause itself is an assignment instruction;
the return value from the BEEP function is placed in the variable bc.
Beep(500, 100) /* Example 3: result passed as */

/* a command */

The BEEP function is processed and its return value is substituted in the
expression for the function call, like in the preceding example. In this case,
however, the clause as a whole evaluates to a single expression. Therefore, the
evaluated expression is passed to the current default environment as a
command.

Note: Many other languages, such as C, throw away the return value of a
function if it is not assigned to a variable. In REXX, however, a value
returned like in the third example is passed on to the current
environment or subcommand handler. If that environment is the
default, the operating system performs a disk search for what seems to
be a command.

Functions

256 Object REXX Reference



Built-in Functions

REXX provides a set of built-in functions, including character manipulation,
conversion, and information functions. The following are general notes on the
built-in functions:
v The parentheses in a function are always needed, even if no arguments are

required. The first parenthesis must follow the name of the function with
no space in between.

v The built-in functions internally work with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC
settings, except where stated. Any argument named as a number is rounded,
if necessary, according to the current setting of NUMERIC DIGITS (as
though the number had been added to 0) and checked for validity before
use. This occurs in the following functions: ABS, FORMAT, MAX, MIN,
SIGN, and TRUNC, and for certain options of DATATYPE.

v Any argument named as a string can be a null string.
v If an argument specifies a length, it must be a positive whole number or

zero. If it specifies a start character or word in a string, it must be a positive
whole number, unless otherwise stated.

v If the last argument is optional, you can always include a comma to
indicate that you have omitted it. For example, DATATYPE(1,), like
DATATYPE(1), would return NUM. You can include any number of trailing
commas; they are ignored. If there are actual parameters, the default values
apply.

v If you specify a pad character, it must be exactly one character long. A pad
character extends a string, usually on the right. For an example, see the
LEFT built-in function “LEFT” on page 282.

v If a function has an option that you can select by specifying the first
character of a string, that character can be in uppercase or lowercase.

v Many of the built-in functions send messages the String class defines (see
“The String Class” on page 210). For the functions ABBREV, ABS, BITAND,
BITOR, BITXOR, B2X, CENTER, CENTRE, CHANGESTR, COMPARE,
COPIES, COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD, D2C,
D2X, FORMAT, LEFT, LENGTH, MAX, MIN, REVERSE, RIGHT, SIGN,
SPACE, STRIP, SUBSTR, SUBWORD, TRANSLATE, TRUNC, VERIFY,
WORD, WORDINDEX, WORDLENGTH, WORDS, X2B, X2C, and X2D, the
first argument to the built-in function is used as the receiver object for the
message sent, and the remaining arguments are used in the same order as
the message arguments. For example, SUBSTR(‘ABCDE’,3,2) is equivalent to
‘ABCDE’∼SUBSTR(3,2).
For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the
second argument to the built-in functions is used as the receiver object for

Functions

Chapter 8. Functions 257



the message sent, and the other arguments are used in the same order as
the message arguments. For example, POS('a','Haystack',3) is equivalent
to 'Haystack'∼POS('a',3).

v The language processor evaluates all built-in function arguments to produce
character strings.

ABBREV (Abbreviation)

ÊÊ ABBREV(information,info
,length

) ÊÍ

Returns 1 if info is equal to the leading characters of information and the length
of info is not less than length. It returns 0 if either of these conditions is not
met.

If you specify length, it must be a positive whole number or zero. The default
for length is the number of characters in info.

Here are some examples:
ABBREV('Print','Pri') -Ê 1
ABBREV('PRINT','Pri') -Ê 0
ABBREV('PRINT','PRI',4) -Ê 0
ABBREV('PRINT','PRY') -Ê 0
ABBREV('PRINT','') -Ê 1
ABBREV('PRINT','',1) -Ê 0

Note: A null string always matches if a length of 0, or the default, is used.
This allows a default keyword to be selected automatically if desired;
for example:
say 'Enter option:'; pull option .
select /* keyword1 is to be the default */
when abbrev('keyword1',option) then ...
when abbrev('keyword2',option) then ...
...
otherwise nop;

end;

ABS (Absolute Value)

ÊÊ ABS(number) ÊÍ

Returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

Functions

258 Object REXX Reference



ABS('12.3') -Ê 12.3
ABS(' -0.307') -Ê 0.307

ADDRESS

ÊÊ ADDRESS() ÊÍ

Returns the name of the environment to which commands are currently
submitted. See the ADDRESS instruction (“ADDRESS” on page 42) for more
information. Trailing blanks are removed from the result.

Here is an example:
ADDRESS() -Ê 'bash' /* default under LINUX */

ARG (Argument)

ÊÊ ARG(
n

,option

) ÊÍ

Returns one or more arguments, or information about the arguments to a
program, internal routine, or method.

If you do not specify n, the number of arguments passed to the program or
internal routine is returned.

If you specify only n, the nth argument string is returned. If the argument
string does not exist, the null string is returned. n must be a positive whole
number.

If you specify option, the value returned depends on the value of option. The
following are valid options. (Only the capitalized letter is needed; all
characters following it are ignored.)

Array returns a single-index array containing the arguments, starting
with the nth argument. The array indexes correspond to the
argument positions, so that the nth argument is at index 1, the
following argument at index 2, and so on. If any arguments
are omitted, their corresponding indexes are absent.

Exists returns 1 if the nth argument exists; that is, if it was explicitly
specified when the routine was called. Otherwise, it returns 0.

Normal returns the nth argument, if it exists, or a null string.

Functions

Chapter 8. Functions 259



Omitted returns 1 if the nth argument was omitted; that is, if it was not
explicitly specified when the routine was called. Otherwise, it
returns 0.

Here are some examples:
/* following "Call name;" (no arguments) */
ARG() -Ê 0
ARG(1) -Ê ''
ARG(2) -Ê ''
ARG(1,'e') -Ê 0
ARG(1,'O') -Ê 1
ARG(1,'a') -Ê .array∼of()

/* following "Call name 'a',,'b';" */
ARG() -Ê 3
ARG(1) -Ê 'a'
ARG(2) -Ê ''
ARG(3) -Ê 'b'
ARG(n) -Ê '' /* for n>=4 */
ARG(1,'e') -Ê 1
ARG(2,'E') -Ê 0
ARG(2,'O') -Ê 1
ARG(3,'o') -Ê 0
ARG(4,'o') -Ê 1
ARG(1,'A') -Ê .array∼of(a,,b)
ARG(3,'a') -Ê .array∼of(b)

Notes:

1. The number of argument strings is the largest number n for which
ARG(n,'e') returns 1 or 0 if there are no explicit argument strings. That is,
it is the position of the last explicitly specified argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The
program has 0 argument strings if it is called with the name only and has
1 argument string if anything else (including blanks) is included in the
command.

3. Programs called by the RexxStart entry point can have several argument
strings. (See the Object REXX for Linux: Programming Guide for information
about RexxStart.)

4. You can access the argument objects of a program with the USE
instruction. See “USE” on page 84 for more information.

5. You can retrieve and directly parse the argument strings of a program or
internal routine with the ARG or PARSE ARG instructions.

BEEP

ÊÊ BEEP(frequency,duration) ÊÍ

Functions

260 Object REXX Reference



Sends a beep to the terminal. frequency (Hertz) and duration are ignored but
have been added to ensure compatibility with other environments. For these
variables, you can enter any number.

This routine is most useful when called as a subroutine. A null string is
returned.

Here are some examples:
call beep
call beep 0
call beep ,100
call beep 440,42

BITAND (Bit by Bit AND)

ÊÊ BITAND(string1
,

string2 ,pad

) ÊÍ

Returns a string composed of the two input strings logically ANDed, bit by
bit. (The encodings of the strings are used in the logical operation.) The length
of the result is the length of the longer of the two strings. If no pad character
is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it extends the shorter of the two strings
on the right before carrying out the logical operation. The default for string2 is
the zero-length (null) string.

Here are some examples:
BITAND('12'x) -Ê '12'x
BITAND('73'x,'27'x) -Ê '23'x
BITAND('13'x,'5555'x) -Ê '1155'x
BITAND('13'x,'5555'x,'74'x) -Ê '1154'x
BITAND('pQrS',,'DF'x) -Ê 'PQRS' /* ASCII */

BITOR (Bit by Bit OR)

ÊÊ BITOR(string1
,

string2 ,pad

) ÊÍ

Returns a string composed of the two input strings logically inclusive-ORed,
bit by bit. (The encodings of the strings are used in the logical operation.) The
length of the result is the length of the longer of the two strings. If no pad
character is provided, the OR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is

Functions

Chapter 8. Functions 261



appended to the partial result. If pad is provided, it extends the shorter of the
two strings on the right before carrying out the logical operation. The default
for string2 is the zero-length (null) string.

Here are some examples:
BITOR('12'x) -Ê '12'x
BITOR('15'x,'24'x) -Ê '35'x
BITOR('15'x,'2456'x) -Ê '3556'x
BITOR('15'x,'2456'x,'F0'x) -Ê '35F6'x
BITOR('1111'x,,'4D'x) -Ê '5D5D'x
BITOR('pQrS',,'20'x) -Ê 'pqrs' /* ASCII */

BITXOR (Bit by Bit Exclusive OR)

ÊÊ BITXOR(string1
,

string2 ,pad

) ÊÍ

Returns a string composed of the two input strings logically eXclusive-ORed,
bit by bit. (The encodings of the strings are used in the logical operation.) The
length of the result is the length of the longer of the two strings. If no pad
character is provided, the XOR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it extends the shorter of the
two strings on the right before carrying out the logical operation. The default
for string2 is the zero-length (null) string.

Here are some examples:
BITXOR('12'x) -Ê '12'x
BITXOR('12'x,'22'x) -Ê '30'x
BITXOR('1211'x,'22'x) -Ê '3011'x
BITXOR('1111'x,'444444'x) -Ê '555544'x
BITXOR('1111'x,'444444'x,'40'x) -Ê '555504'x
BITXOR('1111'x,,'4D'x) -Ê '5C5C'x
BITXOR('C711'x,'222222'x,' ') -Ê 'E53302'x /* ASCII */

B2X (Binary to Hexadecimal)

ÊÊ B2X(binary_string) ÊÍ

Returns a string, in character format, that represents binary_string converted to
hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length.
You can optionally include blanks in binary_string (at 4-digit boundaries only,
not leading or trailing) to improve readability; they are ignored.

Functions

262 Object REXX Reference



The returned string uses uppercase alphabetical characters for the values A–F,
and does not include blanks.

If binary_string is the null string, B2X returns a null string. If the number of
binary digits in binary_string is not a multiple of 4, then up to three 0 digits
are added on the left before the conversion to make a total that is a multiple
of 4.

Here are some examples:
B2X('11000011') -Ê 'C3'
B2X('10111') -Ê '17'
B2X('101') -Ê '5'
B2X('1 1111 0000') -Ê '1F0'

You can combine B2X with the functions X2D and X2C to convert a binary
number into other forms. For example:
X2D(B2X('10111')) -Ê '23' /* decimal 23 */

CENTER (or CENTRE)

ÊÊ CENTER(
CENTRE(

string,length
,pad

) ÊÍ

Returns a string of length length with string centered in it and with pad
characters added as necessary to make up length. The length must be a
positive whole number or zero. The default pad character is blank. If the string
is longer than length, it is truncated at both ends to fit. If an odd number of
characters is truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

Here are some examples:
CENTER(abc,7) -Ê ' ABC '
CENTER(abc,8,'-') -Ê '--ABC---'
CENTRE('The blue sky',8) -Ê 'e blue s'
CENTRE('The blue sky',7) -Ê 'e blue '

Note: To avoid errors because of the difference between British and American
spellings, this function can be called either CENTRE or CENTER.

CHANGESTR

ÊÊ CHANGESTR(needle,haystack,newneedle) ÊÍ

Returns a copy of haystack in which newneedle replaces all occurrences of
needle. The following defines the effect:

Functions

Chapter 8. Functions 263



result=''
$tempx=1;
do forever
$tempy=pos(needle,haystack,$tempx)
if $tempy=0 then leave
result=result||substr(haystack,$tempx,$tempy-$tempx)||newneedle
$tempx=$tempy+length(needle)
end
result=result||substr(haystack,$tempx)

Here are some examples:
CHANGESTR('1','101100','') -Ê '000'
CHANGESTR('1','101100','X') -Ê 'X0XX00'

CHARIN (Character Input)

ÊÊ CHARIN(
name ,

start ,length

) ÊÍ

Returns a string of up to length characters read from the character input
stream name. (To understand the input and output functions, see “Chapter 16.
Input and Output Streams” on page 395.) If you omit name, characters are read
from STDIN, which is the default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. Any
read from the stream starts at the current read position by default. When the
language processor completes reading, the read position is increased by the
number of characters read. You can give a start value to specify an explicit
read position. This read position must be positive and within the bounds of
the stream, and must not be specified for a transient stream. A value of 1 for
start refers to the first character in the stream.

If you specify a length of 0, then the read position is set to the value of start,
but no characters are read and the null string is returned.

In a transient stream, if there are fewer than length characters available, the
execution of the program generally stops until sufficient characters become
available. If, however, it is impossible for those characters to become available
because of an error or another problem, the NOTREADY condition is raised
(see “Errors during Input and Output” on page 404) and CHARIN returns
with fewer than the requested number of characters.

Here are some examples:
CHARIN(myfile,1,3) -Ê 'MFC' /* the first 3 */

/* characters */
CHARIN(myfile,1,0) -Ê '' /* now at start */

Functions

264 Object REXX Reference



CHARIN(myfile) -Ê 'M' /* after last call */
CHARIN(myfile,,2) -Ê 'FC' /* after last call */

/* Reading from the default input (here, the keyboard) */
/* User types 'abcd efg' */
CHARIN() -Ê 'a' /* default is */

/* 1 character */
CHARIN(,,5) -Ê 'bcd e'

Notes:

1. CHARIN returns all characters that appear in the stream, including control
characters such as line feed, carriage return, and end of file.

2. When CHARIN reads from the keyboard, program execution stops until
you press the Enter key.

CHAROUT (Character Output)

ÊÊ CHAROUT(
name ,

string ,start

) ÊÍ

Returns the count of characters remaining after attempting to write string to
the character output stream name. (To understand the input and output
functions, see “Chapter 16. Input and Output Streams” on page 395.) If you
omit name, characters in string are written to STDOUT (generally the display),
which is the default output stream. The string can be a null string, in which
case no characters are written to the stream, and 0 is always returned.

For persistent streams, a write position is maintained for each stream. Any
write to the stream starts at the current write position by default. When the
language processor completes writing, the write position is increased by the
number of characters written. When the stream is first opened, the write
position is at the end of the stream so that calls to CHAROUT append
characters to the end of the stream.

You can give a start value to specify an explicit write position for a persistent
stream. This write position must be a positive whole number. A value of 1 for
start refers to the first character in the stream.

You can omit the string for persistent streams. In this case, the write position
is set to the value of start that was given, no characters are written to the
stream, and 0 is returned. If you do not specify start or string, the stream is
closed and 0 is returned.

Execution of the program usually stops until the output operation is complete.

Functions

Chapter 8. Functions 265



For example, when data is sent to a printer, the system accepts the data and
returns control to REXX, even though the output data might not have been
printed. REXX considers this to be complete, even though the data has not
been printed. If, however, it is impossible for all the characters to be written,
the NOTREADY condition is raised (see “Errors during Input and Output” on
page 404) and CHAROUT returns with the number of characters that could
not be written (the residual count).

Here are some examples:
CHAROUT(myfile,'Hi') -Ê 0 /* typically */
CHAROUT(myfile,'Hi',5) -Ê 0 /* typically */
CHAROUT(myfile,,6) -Ê 0 /* now at char 6 */
CHAROUT(myfile) -Ê 0 /* at end of stream */
CHAROUT(,'Hi') -Ê 0 /* typically */
CHAROUT(,'Hello') -Ê 2 /* maybe */

Note: This routine is often best called as a subroutine. The residual count is
then available in the variable RESULT.

For example:
Call CHAROUT myfile,'Hello'
Call CHAROUT myfile,'Hi',6
Call CHAROUT myfile

CHARS (Characters Remaining)

ÊÊ CHARS(
name

) ÊÍ

Returns the total number of characters remaining in the character input
stream name. The count includes any line separator characters, if these are
defined for the stream. In the case of persistent streams, it is the count of
characters from the current read position. (See “Chapter 16. Input and Output
Streams” on page 395 for a discussion of REXX input and output.) If you omit
name, the number of characters available in the default input stream (STDIN)
is returned.

The total number of characters remaining cannot be determined for some
streams (for example, STDIN). For these streams, the CHARS function returns
1 to indicate that data is present, or 0 if no data is present. For Linux devices,
CHARS always returns 1.

Here are some examples:

Functions

266 Object REXX Reference



CHARS(myfile) -Ê 42 /* perhaps */
CHARS(nonfile) -Ê 0
CHARS() -Ê 1 /* perhaps */

COMPARE

ÊÊ COMPARE(string1,string2
,pad

) ÊÍ

Returns 0 if the strings string1 and string2 are identical. Otherwise, it returns
the position of the first character that does not match. The shorter string is
padded on the right with pad if necessary. The default pad character is a blank.

Here are some examples:
COMPARE('abc','abc') -Ê 0
COMPARE('abc','ak') -Ê 2
COMPARE('ab ','ab') -Ê 0
COMPARE('ab ','ab',' ') -Ê 0
COMPARE('ab ','ab','x') -Ê 3
COMPARE('ab-- ','ab','-') -Ê 5

CONDITION

ÊÊ CONDITION(
option

) ÊÍ

Returns the condition information associated with the current trapped
condition. (See “Chapter 12. Conditions and Condition Traps” on page 361 for
a description of condition traps.) You can request the following pieces of
information:

v The name of the current trapped condition
v Any descriptive string associated with that condition
v Any condition-specific information associated with the current trapped

condition
v The instruction processed as a result of the condition trap (CALL or

SIGNAL)
v The status of the trapped condition

In addition, you can request a condition object containing all of the preceding
information.

To select the information to be returned, use the following options. (Only the
capitalized letter is needed; all characters following it are ignored.)

Additional returns any additional object information associated with the

Functions

Chapter 8. Functions 267



current trapped condition. See “Additional Object
Information” on page 368 for a list of possible values. If no
additional object information is available or no condition has
been trapped, the language processor returns the NIL object.

Condition name
returns the name of the current trapped condition. For user
conditions, the returned string is a concatenation of the word
USER and the user condition name, separated by a blank.

Description returns any descriptive string associated with the current
trapped condition. See “Descriptive Strings” on page 367 for
the list of possible values. If no description is available or no
condition has been trapped, it returns a null string.

Instruction returns either CALL or SIGNAL, the keyword for the instruction
processed when the current condition was trapped. This is the
default if you omit option. If no condition has been trapped, it
returns a null string.

Object returns an object that contains all the information about the
current trapped condition. See “Chapter 12. Conditions and
Condition Traps” on page 361 for more information. If no
condition has been trapped, it returns the NIL object.

Status returns the status of the current trapped condition. This can
change during processing, and is one of the following:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed or
ignored

If no condition has been trapped, a null string is returned.

Here are some examples:
CONDITION() -Ê 'CALL' /* perhaps */
CONDITION('C') -Ê 'FAILURE'
CONDITION('I') -Ê 'CALL'
CONDITION('D') -Ê 'FailureTest'
CONDITION('S') -Ê 'OFF' /* perhaps */

Note: The CONDITION function returns condition information that is saved
and restored across subroutine calls (including those a CALL ON
condition trap causes). Therefore, after a subroutine called with CALL
ON trapname has returned, the current trapped condition reverts to the
condition that was current before the CALL took place (which can be
none). CONDITION returns the values it returned before the condition
was trapped.

Functions

268 Object REXX Reference



COPIES

ÊÊ COPIES(string,n) ÊÍ

Returns n concatenated copies of string. The n must be a positive whole
number or zero.

Here are some examples:
COPIES('abc',3) -Ê 'abcabcabc'
COPIES('abc',0) -Ê ''

COUNTSTR

ÊÊ COUNTSTR(needle,haystack) ÊÍ

Returns a count of the occurrences of needle in haystack that do not overlap.
The following defines the effect:
result=0
$tempx=pos(needle,haystack)
do while $temp > 0
result=result+1
$temp=pos(needle,haystack,$temp+length(needle))
end

Here are some examples:
COUNTSTR('1','101101') -Ê 4
COUNTSTR('KK','J0KKK0') -Ê 1

C2D (Character to Decimal)

ÊÊ C2D(string
,n

) ÊÍ

Returns the decimal value of the binary representation of string. If the result
cannot be expressed as a whole number, an error results. That is, the result
must not have more digits than the current setting of NUMERIC DIGITS. If
you specify n, it is the length of the returned result. If you do not specify n,
string is processed as an unsigned binary number.

If string is null, 0 is returned.

Here are some examples:

Functions

Chapter 8. Functions 269



C2D('09'X) -Ê 9
C2D('81'X) -Ê 129
C2D('FF81'X) -Ê 65409
C2D('') -Ê 0
C2D('a') -Ê 97 /* ASCII */

If you specify n, the string is taken as a signed number expressed in n
characters. The number is positive if the leftmost bit is off, and negative if the
leftmost bit is on. In both cases, it is converted to a whole number, which can
be negative. The string is padded on the left with '00'x characters (not
“sign-extended”), or truncated on the left to n characters. This padding or
truncation is as though RIGHT(string,n,'00'x) had been processed. If n is 0,
C2D always returns 0.

Here are some examples:
C2D('81'X,1) -Ê -127
C2D('81'X,2) -Ê 129
C2D('FF81'X,2) -Ê -127
C2D('FF81'X,1) -Ê -127
C2D('FF7F'X,1) -Ê 127
C2D('F081'X,2) -Ê -3967
C2D('F081'X,1) -Ê -127
C2D('0031'X,0) -Ê 0

C2X (Character to Hexadecimal)

ÊÊ C2X(string) ÊÍ

Returns a string, in character format, that represents string converted to
hexadecimal. The returned string contains twice as many bytes as the input
string. On an ASCII system, C2X(1) returns 31 because the ASCII
representation of the character 1 is '31'X.

The string returned uses uppercase alphabetical characters for the values A–F
and does not include blanks. The string can be of any length. If string is null, a
null string is returned.

Here are some examples:
C2X('0123'X) -Ê '0123' /* '30313233'X in ASCII */
C2X('ZD8') -Ê '5A4438' /* '354134343338'X in ASCII */

DATATYPE

ÊÊ DATATYPE(string
,type

) ÊÍ

Functions

270 Object REXX Reference



Returns NUM if you specify only string and if string is a valid REXX number
that can be added to 0 without error; returns CHAR if string is not a valid
number.

If you specify type, it returns 1 if string matches the type. Otherwise, it returns
0. If string is null, the function returns 0 (except when the type is X or B, for
which DATATYPE returns 1 for a null string). The following are valid types.
(Only the capitalized letter, or the number of the last type listed, is needed; all
characters following it are ignored. Note that for the hexadecimal option, you
must start your string specifying the name of the option with x rather than h.)

Alphanumeric returns 1 if string contains only characters from the ranges
a–z, A–Z, and 0–9.

Binary returns 1 if string contains only the character 0 or 1, or a
blank. Blanks can appear only between groups of 4 binary
characters. It also returns 1 if string is a null string, which is a
valid binary string.

Lowercase returns 1 if string contains only characters from the range a–z.

Mixed case returns 1 if string contains only characters from the ranges a–z
and A–Z.

Number returns 1 if DATATYPE(string) returns NUM.

Symbol returns 1 if string is a valid symbol, that is, if SYMBOL(string)
does not return BAD. (See “Symbols” on page 14.) Note that
both uppercase and lowercase alphabetics are permitted.

Uppercase returns 1 if string contains only characters from the range A–Z.

Variable returns 1 if string could appear on the left-hand side of an
assignment without causing a SYNTAX condition.

Whole number
returns 1 if string is a REXX whole number under the current
setting of NUMERIC DIGITS.

heXadecimal returns 1 if string contains only characters from the ranges
a–f, A–F, 0–9, and blank (as long as blanks appear only
between pairs of hexadecimal characters). It also returns 1 if
string is a null string, which is a valid hexadecimal string.

9 digits returns 1 if DATATYPE(string,'W') returns 1 when NUMERIC
DIGITS is set to 9.

Here are some examples:
DATATYPE(' 12 ') -Ê 'NUM'
DATATYPE('') -Ê 'CHAR'
DATATYPE('123*') -Ê 'CHAR'
DATATYPE('12.3','N') -Ê 1

Functions

Chapter 8. Functions 271



DATATYPE('12.3','W') -Ê 0
DATATYPE('Fred','M') -Ê 1
DATATYPE(','M') -Ê 0
DATATYPE('Fred','L') -Ê 0
DATATYPE('?20K','s') -Ê 1
DATATYPE('BCd3','X') -Ê 1
DATATYPE('BC d3','X') -Ê 1

Note: The DATATYPE function tests the meaning or type of characters in a
string, independent of the encoding of those characters (for example,
ASCII or EBCDIC).

DATE

ÊÊ DATE(
option

,string
,option2

, , ,osep
,string ,option2 ,osep ,isep

, ,

) ÊÍ

Returns, by default, the local date in the format: dd mon yyyy (day month
year—for example, 13 Nov 1998), with no leading zero or blank on the day.
The first three characters of the English name of the month are used.

You can use the following options to obtain specific formats. (Only the
capitalized letter is needed; all characters following it are ignored.)

Base returns the number of complete days (that is, not including
the current day) since and including the base date, 1 January
0001, in the format: dddddd (no leading zeros or blanks). The
expression DATE('B')//7 returns a number in the range 0–6
that corresponds to the current day of the week, where 0 is
Monday and 6 is Sunday.

Note: The base date of 1 January 0001 is determined by
extending the current Gregorian calendar backward
(365 days each year, with an extra day every year that
is divisible by 4 except century years that are not
divisible by 400). It does not take into account any
errors in the calendar system that created the Gregorian
calendar originally.

Days returns the number of days, including the current day, that
have passed this year in the format ddd (no leading zeros or
blanks).

European returns the date in the format dd/mm/yy.

Functions

272 Object REXX Reference



Language returns the date in an implementation- and
language-dependent, or local, date format. The format is dd
month yyyy. The name of the month is according to the
national language installed on the system. If no local date
format is available, the default format is returned.

Note: This format is intended to be used as a whole; REXX
programs must not make any assumptions about the
form or content of the returned string.

Month returns the full English name of the current month, for
example, August.

Normal returns the date in the format dd mon yyyy. This is the default.

Ordered returns the date in the format yy/mm/dd (suitable for sorting,
for example).

Standard returns the date in the format yyyymmdd (suitable for sorting,
for example).

Usa returns the date in the format mm/dd/yy.

Weekday returns the English name for the day of the week, in mixed
case, for example, Tuesday.

Here are some examples, assuming today is 13 November 1996:
DATE() -Ê '13 Nov 1996'
DATE('B') -Ê 728609
DATE('D') -Ê 317
DATE('E') -Ê '13/11/96'
DATE('L') -Ê '13 November 1996'
DATE('M') -Ê 'November'
DATE('N') -Ê '13 Nov 1996'
DATE('O') -Ê '96/11/13'
DATE('S') -Ê '19961113'
DATE('U') -Ê '11/13/96'
DATE('W') -Ê 'Monday'

Note: The first call to DATE or TIME in one clause causes a time stamp to be
made that is then used for all calls to these functions in that clause.
Therefore, several calls to any of the DATE or TIME functions, or both,
in a single expression or clause are consistent with each other.

If you specify string, DATE returns the date corresponding to string in the
format option. The string must be supplied in the format option2. The option2
format must specify day, month, and year (that is, not 'D', 'L', 'M', or 'W'). The
default for option2 is 'N', so you need to specify option2 if string is not in the
Normal format. Here are some examples:

Functions

Chapter 8. Functions 273



DATE('O','13 Feb 1923') -Ê '23/02/13'
DATE('O','06/01/50','U') -Ê '50/06/01'

If you specify an output separator character osep, the days, month, and year
returned are separated by this character. Any nonalphanumeric character or
an empty string can be used. A separator character is only valid for the
formats 'E', 'N', 'O', 'S', and 'U'. Here are some examples:
DATE('S','13 Feb 1996','N','-') -Ê '1996-02-13'
DATE('N','13 Feb 1996','N','') -Ê '13Feb1996'
DATE('N','13 Feb 1996','N','-') -Ê '13-Feb-1996'
DATE('O','06/01/50','U','') -Ê '500601'
DATE('E','02/13/96','U','.') -Ê '13.02.96'
DATE('N',,,'_') -Ê '26_Mar_1998' (today)

In this way, formats can be created that are derived from their respective
default format, which is the format associated with option using its default
separator character. The default separator character for each of these formats
is:
Option Default separator

European '/'
Normal ' '
Ordered '/'
Standard '' (empty string)
Usa '/'

If you specify a string containing a separator that is different from the default
separator character of option2, you must also specify isep to indicate which
separator character is valid for string. Basically, any date format that can be
generated with any valid separator character can be used as input date string
as long as its format has the generalized form specified by option2 and its
separator character matches the character specified by isep.

Here are some examples:
DATE('S','1996-11-13','S',,'','-') -Ê '19961113'
DATE('S','13-Nov-1996','N','','-') -Ê '19961113'
DATE('O','06*01*50','U','','*') -Ê '500601'
DATE('U','13.Feb.1996','N',,'.') -Ê '02/13/96'

You can determine the number of days between two dates; for example:
say date('B','12/25/96','U')-date('B') " shopping days till Christmas!"

If string does not include the century but option defines that the century be
returned as part of the date, the century is determined depending on whether
the year to be returned is within the past 50 years or the next 49 years.
Assume, for example, that you specify 10/15/43 for string and today’s date is

Functions

274 Object REXX Reference



10/27/1998. In this case, 1943 would be 55 years ago and 2043 would be 45
years in the future. So, 10/15/2043 would be the returned date.8

DELSTR (Delete String)

ÊÊ DELSTR(string,n
,length

) ÊÍ

Returns string after deleting the substring that begins at the nth character and
is of length characters. If you omit length, or if length is greater than the
number of characters from n to the end of string, the function deletes the rest
of string (including the nth character). The length must be a positive whole
number or zero. n must be a positive whole number. If n is greater than the
length of string, the function returns string unchanged.

Here are some examples:
DELSTR('abcd',3) -Ê 'ab'
DELSTR('abcde',3,2) -Ê 'abe'
DELSTR('abcde',6) -Ê 'abcde'

DELWORD (Delete Word)

ÊÊ DELWORD(string,n
,length

) ÊÍ

Returns string after deleting the substring that starts at the nth word and is of
length blank-delimited words. If you omit length, or if length is greater than the
number of words from n to the end of string, the function deletes the
remaining words in string (including the nth word). The length must be a
positive whole number or zero. n must be a positive whole number. If n is
greater than the number of words in string, the function returns string
unchanged. The string deleted includes any blanks following the final word
involved but none of the blanks preceding the first word involved.

Here are some examples:
DELWORD('Now is the time',2,2) -Ê 'Now time'
DELWORD('Now is the time ',3) -Ê 'Now is '
DELWORD('Now is the time',5) -Ê 'Now is the time'
DELWORD('Now is the time',3,1) -Ê 'Now is time'

8. This rule is suitable for dates that are close to today’s date. However, when working with birth dates, it is
recommended that you explicitly provide the century.

Functions

Chapter 8. Functions 275



DIGITS

ÊÊ DIGITS() ÊÍ

Returns the current setting of NUMERIC DIGITS. See “NUMERIC” on page 62
for more information.

Here is an example:
DIGITS() -Ê 9 /* by default */

DIRECTORY

ÊÊ DIRECTORY(
newdirectory

) ÊÍ

Returns the current directory, changing it to newdirectory if an argument is
supplied and the named directory exists. If newdirectory is not specified, the
name of the current directory is returned. Otherwise, an attempt is made to
change to the specified newdirectory. If successful, the name of the newdirectory
is returned; if an error occurred, null is returned.

For example, the following program fragment saves the current directory and
switches to a new directory; it performs an operation there, and then returns
to the former directory.
/* get current directory */
curdir = directory()
/* go play a game */
newdir = directory("/usr/bin")
if newdir = "/usr/games" then

do
fortune /* tell a fortune */

/* return to former directory */
call directory curdir

end
else
say 'Can't find /usr/games'

D2C (Decimal to Character)

ÊÊ D2C(wholenumber
,n

) ÊÍ

Functions

276 Object REXX Reference



Returns a string, in character format, that is the ASCII representation of the
decimal number. If you specify n, it is the length of the final result in
characters; leading blanks are added to the output character. n must be a
positive whole number or zero.

Wholenumber must not have more digits than the current setting of NUMERIC
DIGITS.

If you omit n, wholenumber must be a positive whole number or zero, and the
result length is as needed. Therefore, the returned result has no leading '00'x
characters.

Here are some examples:
D2C(65) -Ê 'A' /* '41'x is an ASCII 'A' */
D2C(65,1) -Ê 'A'
D2C(65,2) -Ê ' A'
D2C(65,5) -Ê ' A'
D2C(109) -Ê 'm' /* '6D'x is an ASCII 'm' */
D2C(-109,1) -Ê 'ô' /* '93'x is an ASCII 'ô' */
D2C(76,2) -Ê ' L' /* '4C'x is an ASCII ' L' */
D2C(-180,2) -Ê ' L'

Implementation maximum: The output string must not have more than 250
significant characters, although it can be longer if it contains leading sign
characters ('00'x and 'FF'x).

D2X (Decimal to Hexadecimal)

ÊÊ D2X(wholenumber
,n

) ÊÍ

Returns a string, in character format, that represents wholenumber, a decimal
number, converted to hexadecimal. The returned string uses uppercase
alphabetics for the values A–F and does not include blanks.

Wholenumber must not have more digits than the current setting of NUMERIC
DIGITS.

If you specify n, it is the length of the final result in characters. After
conversion the input string is sign-extended to the required length. If the
number is too big to fit n characters, it is truncated on the left. n must be a
positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the
returned result has no leading zeros.

Functions

Chapter 8. Functions 277



Here are some examples:
D2X(9) -Ê '9'
D2X(129) -Ê '81'
D2X(129,1) -Ê '1'
D2X(129,2) -Ê '81'
D2X(129,4) -Ê '0081'
D2X(257,2) -Ê '01'
D2X(-127,2) -Ê '81'
D2X(-127,4) -Ê 'FF81'
D2X(12,0) -Ê ''

Implementation maximum: The output string must not have more than 500
significant hexadecimal characters, although it can be longer if it contains
leading sign characters (0 and F).

ENDLOCAL

ÊÊ ENDLOCAL() ÊÍ

Restores the directory and environment variables in effect before the last
SETLOCAL function (“SETLOCAL” on page 290) was run. If ENDLOCAL is
not included in a procedure, the initial environment saved by SETLOCAL is
restored upon exiting the procedure.

ENDLOCAL returns a value of 1 if the initial environment is successfully
restored and a value of 0 if no SETLOCAL was issued or the action is
otherwise unsuccessful.

Here is an example:
n = SETLOCAL() /* saves the current environment */

/*
The program can now change environment variables
(with the VALUE function) and then work in the
changed environment.
*/

n = ENDLOCAL() /* restores the initial environment */

For additional examples, see “SETLOCAL” on page 290.

ERRORTEXT

ÊÊ ERRORTEXT(n) ÊÍ

Returns the REXX error message associated with error number n. n must be in
the range 0–99. It returns the null string if n is in the allowed range but is not

Functions

278 Object REXX Reference



a defined REXX error number. See “Appendix C. Error Numbers and
Messages” on page 435 for a complete description of error numbers and
messages.

Here are some examples:
ERRORTEXT(16) -Ê 'Label not found'
ERRORTEXT(60) -Ê ''

FILESPEC

ÊÊ FILESPEC(option,filespec) ÊÍ

Returns a selected element of filespec, a given file specification, identified by
one of the following strings for option:

Path The directory path of the given filespec.

Name The file name of the given filespec.

If the requested string is not found, then FILESPEC returns a null string ("").

Note: Only the initial letter of option is needed.

Here are some examples:
thisfile = "/usr/local/orexx/README"
say FILESPEC("path",thisfile) /* says "/usr/local/orexx" */
say FILESPEC("name",thisfile) /* says "README" */
part = "name"
say FILESPEC(part,thisfile) /* says "README" */

FORM

ÊÊ FORM() ÊÍ

Returns the current setting of NUMERIC FORM. See “NUMERIC” on page 62
for more information.

Here is an example:
FORM() -Ê 'SCIENTIFIC' /* by default */

FORMAT

ÊÊ FORMAT(number Ê

Functions

Chapter 8. Functions 279



Ê
,

before ,
after ,

expp ,expt

) ÊÍ

Returns number, rounded and formatted.

The number is first rounded according to standard REXX rules, as though the
operation number+0 had been carried out. The result is precisely that of this
operation if you specify only number. If you specify any other options, the
number is formatted as described in the following.

The before and after options describe how many characters are used for the
integer and decimal parts of the result, respectively. If you omit either or both
of them, the number of characters used for that part is as needed.

If before is not large enough to contain the integer part of the number (plus the
sign for a negative number), an error results. If before is larger than needed for
that part, the number is padded on the left with blanks. If after is not the
same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to
an integer.

Here are some examples:
FORMAT('3',4) -Ê ' 3'
FORMAT('1.73',4,0) -Ê ' 2'
FORMAT('1.73',4,3) -Ê ' 1.730'
FORMAT('-.76',4,1) -Ê ' -0.8'
FORMAT('3.03',4) -Ê ' 3.03'
FORMAT(' - 12.73',,4) -Ê '-12.7300'
FORMAT(' - 12.73') -Ê '-12.73'
FORMAT('0.000') -Ê '0'

The first three arguments are as described previously. In addition, expp and
expt control the exponent part of the result, which, by default, is formatted
according to the current NUMERIC settings of DIGITS and FORM. expp sets
the number of places for the exponent part; the default is to use as many as
needed (which can be zero). expt specifies when the exponential expression is
used. The default is the current setting of NUMERIC DIGITS.

If expp is 0, the number is not in exponential notation. If expp is not large
enough to contain the exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, the exponential notation is used. If expt is 0, the

Functions

280 Object REXX Reference



exponential notation is always used unless the exponent would be 0. (If expp
is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a
nonzero expp is specified, then expp+2 blanks are supplied for the exponent
part of the result. If the exponent would be 0 and expp is not specified, the
number is not an exponential expression.

Here are some examples:
FORMAT('12345.73',,,2,2) -Ê '1.234573E+04'
FORMAT('12345.73',,3,,0) -Ê '1.235E+4'
FORMAT('1.234573',,3,,0) -Ê '1.235'
FORMAT('12345.73',,,3,6) -Ê '12345.73'
FORMAT('1234567e5',,3,0) -Ê '123456700000.000'

FUZZ

ÊÊ FUZZ() ÊÍ

Returns the current setting of NUMERIC FUZZ. See “NUMERIC” on page 62
for more information.

Here is an example:
FUZZ() -Ê 0 /* by default */

INSERT

ÊÊ INSERT(new,target
,

n ,
length ,pad

) ÊÍ

Inserts the string new, padded or truncated to length length, into the string
target after the nth character. The default value for n is 0, which means
insertion before the beginning of the string. If specified, n and length must be
positive whole numbers or zero. If n is greater than the length of the target
string, the string new is padded at the beginning. The default value for length
is the length of new. If length is less than the length of the string new, then
INSERT truncates new to length length. The default pad character is a blank.

Here are some examples:
INSERT(' ','abcdef',3) -Ê 'abc def'
INSERT('123','abc',5,6) -Ê 'abc 123 '
INSERT('123','abc',5,6,'+') -Ê 'abc++123+++'
INSERT('123','abc') -Ê '123abc'
INSERT('123','abc',,5,'-') -Ê '123--abc'

Functions

Chapter 8. Functions 281



LASTPOS (Last Position)

ÊÊ LASTPOS(needle,haystack
,start

) ÊÍ

Returns the position of the last occurrence of one string, needle, in another,
haystack. (See also “POS (Position)” on page 287.) It returns 0 if needle is a null
string or not found. By default, the search starts at the last character of
haystack and scans backward. You can override this by specifying start, the
point at which the backward scan starts. start must be a positive whole
number and defaults to LENGTH(haystack) if larger than that value or omitted.

Here are some examples:
LASTPOS(' ','abc def ghi') -Ê 8
LASTPOS(' ','abcdefghi') -Ê 0
LASTPOS('xy','efgxyz') -Ê 4
LASTPOS(' ','abc def ghi',7) -Ê 4

LEFT

ÊÊ LEFT(string,length
,pad

) ÊÍ

Returns a string of length length, containing the leftmost length characters of
string. The string returned is padded with pad characters, or truncated, on the
right as needed. The default pad character is a blank. length must be a positive
whole number or zero. The LEFT function is exactly equivalent to:

ÊÊ SUBSTR(string,1,length
,pad

) ÊÍ

Here are some examples:
LEFT('abc d',8) -Ê 'abc d '
LEFT('abc d',8,'.') -Ê 'abc d...'
LEFT('abc def',7) -Ê 'abc de'

LENGTH

ÊÊ LENGTH(string) ÊÍ

Returns the length of string.

Here are some examples:

Functions

282 Object REXX Reference



LENGTH('abcdefgh') -Ê 8
LENGTH('abc defg') -Ê 8
LENGTH('') -Ê 0

LINEIN (Line Input)

ÊÊ LINEIN(
name ,

line ,count

) ÊÍ

Returns count lines read from the character input stream name. The count must
be 1 or 0. (To understand the input and output functions, see “Chapter 16.
Input and Output Streams” on page 395.) If you omit name, the line is read
from the default input stream, STDIN. The default count is 1.

For persistent streams, a read position is maintained for each stream. Any
read from the stream starts at the current read position by default. Under
certain circumstances, a call to LINEIN returns a partial line. This can happen
if the stream has already been read with the CHARIN function, and part but
not all of a line (and its termination, if any) has already been read. When the
language processor completes reading, the read position is moved to the
beginning of the next line. The read position can be set to the beginning of the
stream by giving line a value of 1.

If you give a count of 0, then no characters are read and a null string is
returned.

For transient streams, if a complete line is not available in the stream, then
execution of the program usually stops until the line is complete. If, however,
it is impossible for a line to be completed because of an error or another
problem, the NOTREADY condition is raised (see “Errors during Input and
Output” on page 404) and LINEIN returns whatever characters are available.

Here are some examples:
LINEIN() /* Reads one line from the */

/* default input stream; */
/* usually this is an entry */
/* typed at the keyboard */

myfile = 'ANYFILE.TXT'
LINEIN(myfile) -Ê 'Current line' /* Reads one line from */

/* ANYFILE.TXT, beginning */
/* at the current read */
/* position. (If first call, */
/* file is opened and the */
/* first line is read.) */

LINEIN(myfile,1,1) -Ê 'first line' /* Opens and reads the first */
/* line of ANYFILE.TXT (if */

Functions

Chapter 8. Functions 283



/* the file is already open, */
/* reads first line); sets */
/* read position on the */
/* second line. */

LINEIN(myfile,1,0) -Ê '' /* No read; opens ANYFILE.TXT */
/* (if file is already open, */
/* sets the read position to */
/* the first line). */

LINEIN(myfile,,0) -Ê '' /* No read; opens ANYFILE.TXT */
/* (no action if the file is */
/* already open). */

LINEIN("QUEUE:") -Ê 'Queue line' /* Read a line from the queue. */
/* If the queue is empty, the */
/* program waits until a line */
/* is put on the queue. */

Note: If you want to read complete lines from the default input stream, as in
a dialog with a user, use the PULL or PARSE PULL instruction.

The PARSE LINEIN instruction is also useful in certain cases. (See page 65.)

LINEOUT (Line Output)

ÊÊ LINEOUT(
name ,

string ,line

) ÊÍ

Returns 0 if successful in writing string to the character output stream name,
or 1 if an error occurs while writing the line. (To understand the input and
output functions, see “Chapter 16. Input and Output Streams” on page 395.) If
you omit string but include line, only the write position is repositioned. If
string is a null string, LINEOUT repositions the write position (if you include
line) and does a carriage return. Otherwise, the stream is closed. LINEOUT
adds a line-feed and a carriage-return character to the end of string.

If you omit name, the line is written to the default output stream STDOUT
(usually the display).

For persistent streams, a write position is maintained for each stream. Any
write to the stream starts at the current write position by default. (Under
certain circumstances the characters written by a call to LINEOUT can be
added to a partial line previously written to the stream with the CHAROUT
routine. LINEOUT stops a line at the end of each call.) When the language
processor completes writing, the write position is set to the beginning of the

Functions

284 Object REXX Reference



line following the one just written. When the stream is first opened, the write
position is at the end of the stream, so that calls to LINEOUT append lines to
the end of the stream.

You can specify a line number to set the write position to the start of a
particular line in a persistent stream. This line number must be positive and
within the bounds of the stream unless it is a binary stream (though it can
specify the line number immediately after the end of the stream). A value of 1
for line refers to the first line in the stream. Note that, unlike CHAROUT, you
cannot specify a position beyond the end of the stream for non-binary
streams.

You can omit the string for persistent streams. If you specify line, the write
position is set to the start of the line that was given, nothing is written to the
stream, and the function returns 0. If you specify neither line nor string, the
stream is closed. Again, the function returns 0.

Execution of the program usually stops until the output operation is
effectively complete. For example, when data is sent to a printer, the system
accepts the data and returns control to REXX, even though the output data
might not have been printed. REXX considers this to be complete, even
though the data has not been printed. If, however, it is impossible for a line to
be written, the NOTREADY condition is raised (see “Errors during Input and
Output” on page 404), and LINEOUT returns a result of 1, that is, the residual
count of lines written.

Here are some examples:
LINEOUT(,'Display this') /* Writes string to the default */

/* output stream (usually, the */
/* display); returns 0 if */
/* successful */

myfile = 'ANYFILE.TXT'
LINEOUT(myfile,'A new line') /* Opens the file ANYFILE.TXT and */

/* appends the string to the end. */
/* If the file is already open, */
/* the string is written at the */
/* current write position. */
/* Returns 0 if successful. */

LINEOUT(myfile,'A new start',1) /* Opens the file (if not already */
/* open); overwrites first line */
/* with a new line. */
/* Returns 0 if successful. */

LINEOUT(myfile,,1) /* Opens the file (if not already */
/* open). No write; sets write */

Functions

Chapter 8. Functions 285



/* position at first character. */

LINEOUT(myfile) /* Closes ANYFILE.TXT */

LINEOUT is often most useful when called as a subroutine. The return value
is then available in the variable RESULT. For example:
Call LINEOUT 'rexx.bat','Shell',1
Call LINEOUT ,'Hello'

Note: If the lines are to be written to the default output stream without the
possibility of error, use the SAY instruction instead.

LINES (Lines Remaining)

ÊÊ LINES(
name

) ÊÍ

Returns 1 if any data remains between the current read position and the end
of the character input stream name. It returns 0 if no data remains. In effect,
LINES reports whether a read action that CHARIN (see “CHARIN (Character
Input)” on page 264) or LINEIN (see “LINEIN (Line Input)” on page 283)
performs will succeed. (To understand the input and output functions, see
“Chapter 16. Input and Output Streams” on page 395.)

Here are some examples:
LINES(myfile) -Ê 0 /* at end of the file */
LINES() -Ê 1 /* data remains in the */

/* default input stream */
/* STDIN: */

Note: The CHARS function returns the number of characters in a persistent
stream or the presence of data in a transient stream.

MAX (Maximum)

ÊÊ MAX( ·

,

number ) ÊÍ

Returns the largest number of the list specified, formatted according to the
current NUMERIC settings. You can specify any number of numbers.

Here are some examples:

Functions

286 Object REXX Reference



MAX(12,6,7,9) -Ê 12
MAX(17.3,19,17.03) -Ê 19
MAX(-7,-3,-4.3) -Ê -3
MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -Ê 21

MIN (Minimum)

ÊÊ MIN( ·

,

number ) ÊÍ

Returns the smallest number of the list specified, formatted according to the
current NUMERIC settings. You can specify any number of numbers.

Here are some examples:
MIN(12,6,7,9) -Ê 6
MIN(17.3,19,17.03) -Ê 17.03
MIN(-7,-3,-4.3) -Ê -7
MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -Ê 1

OVERLAY

ÊÊ OVERLAY(new,target
,

n ,
length ,pad

) ÊÍ

Returns the string target, which, starting at the nth character, is overlaid with
the string new, padded or truncated to length length. The overlay must extend
beyond the end of the original target string. If you specify length, it must be a
positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the target string, the string new is
padded at the beginning. The default pad character is a blank, and the default
value for n is 1. If you specify n, it must be a positive whole number.

Here are some examples:
OVERLAY(' ','abcdef',3) -Ê 'ab def'
OVERLAY('.','abcdef',3,2) -Ê 'ab. ef'
OVERLAY('qq','abcd') -Ê 'qqcd'
OVERLAY('qq','abcd',4) -Ê 'abcqq'
OVERLAY('123','abc',5,6,'+') -Ê 'abc+123+++'

POS (Position)

ÊÊ POS(needle,haystack
,start

) ÊÍ

Functions

Chapter 8. Functions 287



Returns the position of one string, needle, in another, haystack. (See also
“LASTPOS (Last Position)” on page 282.) It returns 0 if needle is a null string
or not found or if start is greater than the length of haystack. By default, the
search starts at the first character of haystack, that is, the value of start is 1.
You can override this by specifying start (which must be a positive whole
number), the point at which the search starts.

Here are some examples:
POS('day','Saturday') -Ê 6
POS('x','abc def ghi') -Ê 0
POS(' ','abc def ghi') -Ê 4
POS(' ','abc def ghi',5) -Ê 8

QUEUED

ÊÊ QUEUED() ÊÍ

Returns the number of lines remaining in the external data queue when the
function is called. (See “Chapter 16. Input and Output Streams” on page 395
for a discussion of REXX input and output.)

Here is an example:
QUEUED() -Ê 5 /* Perhaps */

RANDOM

ÊÊ RANDOM(
,
min, ,seed
max

) ÊÍ

Returns a quasi-random nonnegative whole number in the range min to max
inclusive. If you specify max or min,max, then max minus min cannot exceed
100000. min and max default to 0 and 999, respectively. To start a repeatable
sequence of results, use a specific seed as the third argument, as described in
Note 1. This seed must be a positive whole number from 0 to 999999999.

Here are some examples:
RANDOM() -Ê 305
RANDOM(5,8) -Ê 7
RANDOM(2) -Ê 0 /* 0 to 2 */
RANDOM(,,1983) -Ê 123 /* reproducible */

Functions

288 Object REXX Reference



Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM
a number of times, but specify a seed only the first time. For example, to
simulate 40 throws of a 6-sided, unbiased die:
sequence = RANDOM(1,6,12345) /* any number would */

/* do for a seed */
do 39
sequence = sequence RANDOM(1,6)
end
say sequence

The numbers are generated mathematically, using the initial seed, so that as
far as possible they appear to be random. Running the program again
produces the same sequence; using a different initial seed almost certainly
produces a different sequence. If you do not supply a seed, the first time
RANDOM is called, an arbitrary seed is used. Hence, your program
usually gives different results each time it is run.

2. The random number generator is global for an entire program; the current
seed is not saved across internal routine calls.

REVERSE

ÊÊ REVERSE(string) ÊÍ

Returns string reversed.

Here are some examples:
REVERSE('ABc.') -Ê '.cBA'
REVERSE('XYZ ') -Ê ' ZYX'

RIGHT

ÊÊ RIGHT(string,length
,pad

) ÊÍ

Returns a string of length length containing the rightmost length characters of
string. The string returned is padded with pad character, or truncated, on the
left as needed. The default pad character is a blank. The length must be a
positive whole number or zero.

Here are some examples:
RIGHT('abc d',8) -Ê ' abc d'
RIGHT('abc def',5) -Ê 'c def'
RIGHT('12',5,'0') -Ê '00012'

Functions

Chapter 8. Functions 289



SETLOCAL

ÊÊ SETLOCAL() ÊÍ

Saves the current working directory and the current values of the
environment variables that are local to the current process.

For example, SETLOCAL can be used to save the current environment before
changing selected settings with the VALUE function (see “VALUE” on
page 305). To restore the directory and environment, use the ENDLOCAL
function (see “ENDLOCAL” on page 278).

SETLOCAL returns a value of 1 if the initial directory and environment are
successfully saved and a value of 0 if unsuccessful. If SETLOCAL is not
followed by an ENDLOCAL function in a procedure, the initial environment
saved by SETLOCAL is restored upon exiting the procedure.

Here is an example:
/* Current path is 'user/bin' */
n = SETLOCAL() /* saves all environment settings */

/* Now use the VALUE function to change the PATH variable */
p = VALUE('Path','home/user/bin'.'ENVIRONMENT')

/* Programs in directory home/user/bin can now be run */

n = ENDLOCAL() /* restores initial environment including */
/* the changed PATH variable, which is */
/* 'user/bin' */

SIGN

ÊÊ SIGN(number) ÊÍ

Returns a number that indicates the sign of number. The number is first
rounded according to standard REXX rules, as though the operation number+0
had been carried out. It returns -1 if number is less than 0, 0 if it is 0, and 1 if
it is greater than 0.

Here are some examples:
SIGN('12.3') -Ê 1
SIGN(' -0.307') -Ê -1
SIGN(0.0) -Ê 0

Functions

290 Object REXX Reference



SOURCELINE

ÊÊ SOURCELINE(
n

) ÊÍ

Returns the line number of the final line in the program if you omit n. If you
specify n, returns the nth line in the program if available at the time of
execution. Otherwise, it returns a null string. If specified, n must be a positive
whole number and must not exceed the number that a call to SOURCELINE
with no arguments returns.

Here are some examples:
SOURCELINE() -Ê 10
SOURCELINE(1) -Ê '/* This is a 10-line REXX program */'

SPACE

ÊÊ SPACE(string
,

n ,pad

) ÊÍ

Returns the blank-delimited words in string with n pad characters between
each word. If you specify n, it must be a positive whole number or zero. If it
is 0, all blanks are removed. Leading and trailing blanks are always removed.
The default for n is 1, and the default pad character is a blank.

Here are some examples:
SPACE('abc def ') -Ê 'abc def'
SPACE(' abc def',3) -Ê 'abc def'
SPACE('abc def ',1) -Ê 'abc def'
SPACE('abc def ',0) -Ê 'abcdef'
SPACE('abc def ',2,'+') -Ê 'abc++def'

STREAM

ÊÊ STREAM(name
State

,
Command , stream_command
Description

) ÊÍ

Returns a string describing the state of, or the result of an operation upon, the
character stream name. The result may depend on characteristics of the stream
that you have specified in other uses of the STREAM function. (To understand

Functions

Chapter 8. Functions 291



the input and output functions, see “Chapter 16. Input and Output Streams”
on page 395.) This function requests information on the state of an input or
output stream or carries out some specific operation on the stream.

The first argument, name, specifies the stream to be accessed. The second
argument can be one of the following strings that describe the action to be
carried out. (Only the capitalized letter is needed; all characters following it
are ignored.)

Command
an operation (specified by the stream_command given as the third
argument) is applied to the selected input or output stream. The
string that is returned depends on the command performed and can
be a null string. The possible input strings for the stream_command
argument are described later.

Description
returns any descriptive string associated with the current state of the
specified stream. It is identical to the State operation, except that the
returned string is followed by a colon and, if available, additional
information about the ERROR or NOTREADY states.

State returns a string that indicates the current state of the specified stream.
This is the default operation.

The returned strings are as described in “STATE” on page 209

Note: The state (and operation) of an input or output stream is global to a
REXX program; it is not saved and restored across internal function and
subroutine calls (including those calls that a CALL ON condition trap
causes).

Stream Commands: The following stream commands are used to:

v Open a stream for reading, writing, or both.
v Close a stream at the end of an operation.
v Position the read or write position within a persistent stream (for example,

a file).
v Get information about a stream (its existence, size, and last edit date).

The streamcommand argument must be used when—and only when—you
select the operation C (command). The syntax is:

ÊÊ STREAM(name,’C’,streamcommand) ÊÍ

Functions

292 Object REXX Reference



In this form, the STREAM function itself returns a string corresponding to the
given streamcommand if the command is successful. If the command is
unsuccessful, STREAM returns an error message string in the same form as
the D (Description) operation supplies.

For most error conditions, the additional information is in the form of a
numeric return code. This return code is the value of ERRNO that is set
whenever one of the file system primitives returns with a -1.

Command Strings: The argument streamcommand can be any expression that
the language processor evaluates to a command string that corresponds to the
following diagram:

ÊÊ
BOTH Write Options

OPEN
READ Options
WRITE Write Options

CLOSE
FLUSH

= CHAR
SEEK offset READ
POSITION < WRITE LINE

+
−

QUERY DATETIME
EXISTS
HANDLE

CHAR
SEEK READ
POSITION LINE

CHAR
WRITE

LINE
SYS

SIZE
STREAMTYPE
TIMESTAMP

ÊÍ

Write Options:

APPEND
REPLACE

Options:

Functions

Chapter 8. Functions 293



SHARED
SHAREDREAD
SHAREDWRITE

· NOBUFFER
BINARY

RECLENGTH length

OPEN opens the named stream. The default for OPEN is to open the
stream for both reading and writing data, for example, 'OPEN
BOTH'.

The STREAM function itself returns a description string
similar to the one that the D option provides, for example,
'READY:' if the named stream is successfully opened, or
'ERROR:' if the named stream is not found.

The following is a description of the options for OPEN:

READ opens the stream for reading only.

WRITE opens the stream for writing only.

BOTH opens the stream for both reading and
writing. (This is the default.) Separate read
and write pointers are maintained.

APPEND positions the write pointer at the end of the
stream. The write pointer cannot be moved
anywhere within the extent of the file as it
existed when the file was opened.

REPLACE sets the write pointer to the beginning of the
stream and truncates the file. In other words,
this option deletes all data that was in the
stream when opened.

SHARED Enables another process to work with the
stream in a shared mode. This mode must be
compatible with the shared mode (SHARED,
SHAREDREAD, or SHAREDWRITE) used by
the process that opened the stream.

SHAREDREAD
Enables another process to read the stream in
a shared mode.

SHAREDWRITE
Enables another process to write the stream in
a shared mode.

NOBUFFER turns off buffering of the stream. Thus, all data
written to the stream is flushed immediately

Functions

294 Object REXX Reference



to the operating system for writing. This
option can severely affect output performance.
Therefore, use it only when data integrity is a
concern, or to force interleaved output to a
stream to appear in the exact order in which it
was written.

BINARY causes the stream to be opened in binary
mode. This means that line end characters are
ignored and treated as another byte of data.
This is intended to force file operations that
are compatible with other REXX language
processors that run on record-based systems,
or to process binary data using the line
operations.

Note: Specifying the BINARY option for a
stream that does not exist but is opened
for writing also requires the
RECLENGTH option to be specified.
Omitting the RECLENGTH option in
this case raises an error condition.

RECLENGTH length
allows the specification of an exact length for
each line in a stream. This allows line
operations on binary-mode streams to operate
on individual fixed-length records. Without
this option, line operations on binary-mode
files operate on the entire file (for example, as
if the RECLENGTH option were specified with a
length equal to that of the file). length must be
1 or greater.

Examples:
stream(strout,'c','open')
stream(strout,'c','open write')
stream(strinp,'c','open read')
stream(strinp,'c','open read shared')

CLOSE closes the named stream. The STREAM function itself returns
READY: if the named stream is successfully closed, or an
appropriate error message. If an attempt is made to close an
unopened file, STREAM returns a null string ("").

Example:
stream('STRM.TXT','c','close')

Functions

Chapter 8. Functions 295



FLUSH forces any data currently buffered for writing to be written to
this stream.

SEEK offset sets the read or write position within a persistent stream. If
the stream is opened for both reading and writing and no
SEEK option is specified, an error message is given.
Otherwise, the applicable position is set.

Note: See “Chapter 16. Input and Output Streams” on
page 395 for a discussion of read and write positions in
a persistent stream.

To use this command, the named stream must first be opened
with the OPEN stream command or implicitly with an input
or output operation. One of the following characters can
precede the offset number:

= explicitly specifies the offset from the beginning of the
stream. This is the default if no prefix is supplied.
Line Offset=1 means the beginning of stream.

< specifies offset from the end of the stream.

+ specifies offset forward from the current read or write
position.

− specifies offset backward from the current read or write
position.

The STREAM function itself returns the new position in the
stream if the read or write position is successfully located or
an appropriate error message otherwise.

The following is a description of the options for SEEK:

READ specifies that the read position is to be set by
this command.

WRITE specifies that the write position is to be set by
this command.

CHAR specifies that the positioning is to be done in
terms of characters. This is the default.

LINE specifies that the positioning is to be done in
terms of lines. For non-binary streams, this is
an operation that can take a long time to
complete, because, in most cases, the file must
be scanned from the top to count line-end
characters. However, for binary streams with a

Functions

296 Object REXX Reference



specified record length, this results in a simple
multiplication of the new resulting line
number by the record length, and then a
simple character positioning. See “Line versus
Character Positioning” on page 401 for a
detailed discussion of this issue.

Note: If you do line positioning in a file open
only for writing, you receive an error
message.

Examples:
stream(name,'c','seek =2 read')
stream(name,'c','seek +15 read')
stream(name,'c','seek -7 write line')
fromend = 125
stream(name,'c','seek <'fromend read)

POSITION is a synonym for SEEK.

QUERY Stream Commands: Used with these stream commands, the STREAM
function returns specific information about a stream. Except for QUERY
HANDLE and QUERY POSITION, the language processor returns the query
information even if the stream is not open. The language processor returns the
null string for nonexistent streams.

QUERY DATETIME
returns the date and time stamps of a stream in US format. This is
included for compatibility with OS/2®.
stream('../file.txt','c','query datetime')

A sample output might be:
11-12-98 03:29:12

QUERY EXISTS
returns the full path specification of the named stream, if it exists, or a
null string.
stream('../file.txt','c','query exists')

A sample output might be:
/home/user/files/file.txt

QUERY HANDLE
returns the handle associated with the open stream.
stream('../file.txt','c','query handle')

A sample output might be:
3

Functions

Chapter 8. Functions 297



QUERY POSITION
returns the current read or write position for the stream, as qualified
by the following options:

READ returns the current read position.

WRITE returns the current write position.

Note: If the stream is open for both reading and
writing, the default is to return the read
position. Otherwise, it returns the appropriate
position by default.

CHAR returns the position in terms of characters. This is the
default.

LINE returns the position in terms of lines. For non-binary
streams, this operation can take a long time to
complete, because the language processor starts
tracking the current line number if not already doing
so. Thus, it might require a scan of the stream from
the top to count line-end characters. See “Line versus
Character Positioning” on page 401 for a detailed
discussion of this issue.
stream('myfile','c','query position write')

A sample output might be:
247

SYS returns the operating-system stream position in terms
of characters.

QUERY SIZE
returns the size, in bytes, of a persistent stream.
stream('../file.txt','c','query size')

A sample output might be:
1305

QUERY STREAMTYPE
returns a string indicating whether the stream is PERSISTENT,
TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP
returns the date and time stamps of a stream in an international
format. This is the preferred method of getting the date and time
because it provides the full 4-digit year.
stream('../file.txt','c','query timestamp')

Functions

298 Object REXX Reference



A sample output might be:
1998-11-12 03:29:12

STRIP

ÊÊ STRIP(string
,

option ,char

) ÊÍ

Returns string with leading characters, trailing characters, or both, removed,
based on the option you specify. The following are valid options. (Only the
capitalized letter is needed; all characters following it are ignored.)

Both removes both leading and trailing characters from string. This
is the default.

Leading removes leading characters from string.

Trailing removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the
default is a blank. If you specify char, it must be exactly one character long.

Here are some examples:
STRIP(' ab c ') -Ê 'ab c'
STRIP(' ab c ','L') -Ê 'ab c '
STRIP(' ab c ','t') -Ê ' ab c'
STRIP('12.7000',,0) -Ê '12.7'
STRIP('0012.700',,0) -Ê '12.7'

SUBSTR (Substring)

ÊÊ SUBSTR(string,n
,

length ,pad

) ÊÍ

Returns the substring of string that begins at the nth character and is of length
length, padded with pad if necessary. n must be a positive whole number. If n
is greater than LENGTH(string), only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character
is a blank.

Here are some examples:
SUBSTR('abc',2) -Ê 'bc'
SUBSTR('abc',2,4) -Ê 'bc '
SUBSTR('abc',2,6,'.') -Ê 'bc....'

Functions

Chapter 8. Functions 299



Note: In some situations the positional (numeric) patterns of parsing
templates are more convenient for selecting substrings, especially if
more than one substring is to be extracted from a string. See also
“LEFT” on page 282 and “RIGHT” on page 289.

SUBWORD

ÊÊ SUBWORD(string,n
,length

) ÊÍ

Returns the substring of string that starts at the nth word, and is up to length
blank-delimited words. n must be a positive whole number. If you omit length,
it defaults to the number of remaining words in string. The returned string
never has leading or trailing blanks, but includes all blanks between the
selected words.

Here are some examples:
SUBWORD('Now is the time',2,2) -Ê 'is the'
SUBWORD('Now is the time',3) -Ê 'the time'
SUBWORD('Now is the time',5) -Ê ''

SYMBOL

ÊÊ SYMBOL(name) ÊÍ

Returns the state of the symbol named by name. It returns BAD if name is not a
valid REXX symbol. It returns VAR if it is the name of a variable, that is, a
symbol that has been assigned a value. Otherwise, it returns LIT, indicating
that it is either a constant symbol or a symbol that has not yet been assigned
a value, that is, a literal.

As with symbols in REXX expressions, lowercase characters in name are
translated to uppercase and substitution in a compound name occurs if
possible.

Note: You should specify name as a literal string, or it should be derived from
an expression, to prevent substitution before it is passed to the
function.

Here are some examples:
/* following: Drop A.3; J=3 */
SYMBOL('J') -Ê 'VAR'
SYMBOL(J) -Ê 'LIT' /* has tested "3" */

Functions

300 Object REXX Reference



SYMBOL('a.j') -Ê 'LIT' /* has tested A.3 */
SYMBOL(2) -Ê 'LIT' /* a constant symbol */
SYMBOL('*') -Ê 'BAD' /* not a valid symbol */

TIME

ÊÊ TIME(
option

,string
,option2

) ÊÍ

Returns the local time in the 24-hour clock format hh:mm:ss (hours, minutes,
and seconds) by default, for example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain
access to the elapsed-time clock. (Only the capitalized letter is needed; all
characters following it are ignored.)

Civil returns the time in Civil format hh:mmxx. The hours can take
the values 1 through 12, and the minutes the values 00
through 59. The minutes are followed immediately by the
letters am or pm. This distinguishes times in the morning (12
midnight through 11:59 a.m.—appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59
p.m.—appearing as 12:00pm through 11:59pm). The hour has
no leading zero. The minute field shows the current minute
(rather than the nearest minute) for consistency with other
TIME results.

Elapsed returns sssssssss.uuuuuu, the number of seconds and
microseconds since the elapsed-time clock (described later)
was started or reset. The returned number has no leading
zeros or blanks, and the setting of NUMERIC DIGITS does
not affect it. The number has always four trailing zeros in the
decimal portion.

The language processor calculates elapsed time by subtracting
the time at which the elapsed-time clock was started or reset
from the current time. It is possible to change the system time
clock while the system is running. This means that the
calculated elapsed time value might not be a true elapsed
time. If the time is changed so that the system time is earlier
than when the REXX elapsed-time clock was started (so that
the elapsed time would appear negative), the language
processor raises an error and disables the elapsed-time clock.
To restart the elapsed-time clock, trap the error through
SIGNAL ON SYNTAX.

Functions

Chapter 8. Functions 301



The clock can also be changed by programs on the system.
Many LAN-attached programs synchronize the system time
clock with the system time clock of the server during startup.
This causes the REXX elapsed time function to be unreliable
during LAN initialization.

Hours returns up to two characters giving the number of hours since
midnight in the format hh (no leading zeros or blanks, except
for a result of 0).

Long returns time in the format hh:mm:ss.uuuuuu (where uuuuuu
are microseconds).

Minutes returns up to four characters giving the number of minutes
since midnight in the format mmmm (no leading zeros or
blanks, except for a result of 0).

Normal returns the time in the default format hh:mm:ss. The hours
can have the values 00 through 23, and minutes and seconds,
00 through 59. There are always two digits. Any fractions of
seconds are ignored (times are never rounded). This is the
default.

Reset returns sssssssss.uuuuuu, the number of seconds and
microseconds since the elapsed-time clock (described later)
was started or reset and also resets the elapsed-time clock to
zero. The returned number has no leading zeros or blanks,
and the setting of NUMERIC DIGITS does not affect it. The
number always has four trailing zeros in the decimal portion.

See the Elapsed option for more information on resetting the
system time clock.

Seconds returns up to five characters giving the number of seconds
since midnight in the format sssss (no leading zeros or blanks,
except for a result of 0).

Here are some examples, assuming that the time is 4:54 p.m.:
TIME() -Ê '16:54:22'
TIME('C') -Ê '4:54pm'
TIME('H') -Ê '16'
TIME('L') -Ê '16:54:22.120000' /* Perhaps */
TIME('M') -Ê '1014' /* 54 + 60*16 */
TIME('N') -Ê '16:54:22'
TIME('S') -Ê '60862' /* 22 + 60*(54+60*16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On
the first call in a program to TIME('E') or TIME('R'), the elapsed-time clock is

Functions

302 Object REXX Reference



started, and either call returns 0. From then on, calls to TIME('E') and
TIME('R') return the elapsed time since that first call or since the last call to
TIME('R').

The clock is saved across internal routine calls, which means that an internal
routine inherits the time clock that its caller started. Any timing the caller is
doing is not affected, even if an internal routine resets the clock. An example
of the elapsed-time clock:
time('E') -Ê 0 /* The first call */

/* pause of one second here */
time('E') -Ê 1.020000 /* or thereabouts */

/* pause of one second here */
time('R') -Ê 2.030000 /* or thereabouts */

/* pause of one second here */
time('R') -Ê 1.050000 /* or thereabouts */

Note: The elapsed-time clock is synchronized with the other calls to TIME
and DATE, so several calls to the elapsed-time clock in a single clause
always return the same result. For this reason, the interval between two
usual TIME/DATE results can be calculated exactly using the
elapsed-time clock.

If you specify string, TIME returns the time corresponding to string in the
format option. The string must be supplied in the format option2. The default
for option2 is 'N'. So you need to specify option2 only if string is not in the
Normal format. option2 must specify the current time, for example, not 'E' or
'R'. Here are some examples:
time('C','11:27:21') -Ê 11:27am
time('N','11:27am','C') -Ê 11:27:00

You can determine the difference between two times; for example:
If TIME('M','5:00pm','C')-TIME('M')<=0
then say "Time to go home"
else say "Keep working"

The TIME returned is the earliest time consistent with string. For example, if
the result requires components that are not specified in the source format,
then those components of the result are zero. If the source has components
that the result does not need, then those components of the source are
ignored.

Implementation maximum: If the number of seconds in the elapsed time
exceeds nine digits (equivalent to over 31.6 years), an error results.

TRACE

Functions

Chapter 8. Functions 303



ÊÊ TRACE(
option

) ÊÍ

Returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be the valid prefix ?,
one of the alphabetic character options associated with the TRACE instruction
(that is, starting with A, C, E, F, I, L, N, O, or R), or both. (See the TRACE
instruction in “Alphabetic Character (Word) Options” on page 80 for full
details.)

Unlike the TRACE instruction, the TRACE function alters the trace action
even if interactive debugging is active. Also unlike the TRACE instruction,
option cannot be a number.

Here are some examples:
TRACE() -Ê '?R' /* maybe */
TRACE('O') -Ê '?R' /* also sets tracing off */
TRACE('?I') -Ê 'O' /* now in interactive debugging */

TRANSLATE

ÊÊ TRANSLATE(string
,

tableo ,
tablei ,pad

) ÊÍ

Returns string with each character translated to another character or
unchanged. You can also use this function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE
searches tablei for each character in string. If the character is found, the
corresponding character in tableo is used in the result string; if there are
duplicates in tablei, the first (leftmost) occurrence is used. If the character is
not found, the original character in string is used. The result string is always
the same length as string.

The tables can be of any length. If you specify neither table and omit pad,
string is simply translated to uppercase (that is, lowercase a–z to uppercase
A–Z), but, if you include pad, the language processor translates the entire string
to pad characters. tablei defaults to XRANGE('00'x,'FF'x), and tableo defaults to
the null string and is padded with pad or truncated as necessary. The default
pad is a blank.

Functions

304 Object REXX Reference



Here are some examples:
TRANSLATE('abcdef') -Ê 'ABCDEF'
TRANSLATE('abcdef','12','ec') -Ê 'ab2d1f'
TRANSLATE('abcdef','12','abcd','.') -Ê '12..ef'
TRANSLATE('APQRV',,'PR') -Ê 'A Q V'
TRANSLATE('APQRV',XRANGE('00'X,'Q')) -Ê 'APQ '
TRANSLATE('4123','abcd','1234') -Ê 'dabc'

Note: The last example shows how to use the TRANSLATE function to
reorder the characters in a string. The last character of any
four-character string specified as the second argument is moved to the
beginning of the string.

TRUNC (Truncate)

ÊÊ TRUNC(number
,n

) ÊÍ

Returns the integer part of number and n decimal places. The default n is 0
and returns an integer with no decimal point. If you specify n, it must be a
positive whole number or zero. The number is rounded according to standard
REXX rules, as though the operation number+0 had been carried out. Then it is
truncated to n decimal places or trailing zeros are added to reach the specified
length. The result is never in exponential form. If there are no nonzero digits
in the result, any minus sign is removed.

Here are some examples:
TRUNC(12.3) -Ê 12
TRUNC(127.09782,3) -Ê 127.097
TRUNC(127.1,3) -Ê 127.100
TRUNC(127,2) -Ê 127.00

Note: The number is rounded according to the current setting of NUMERIC
DIGITS, if necessary, before the function processes it.

VALUE

ÊÊ VALUE(name
,

newvalue ,selector

) ÊÍ

Returns the value of the symbol that name (often constructed dynamically)
represents and optionally assigns a new value to it. By default, VALUE refers
to the current REXX-variables environment, but other, external collections of
variables can be selected. If you use the function to refer to REXX variables,
name must be a valid REXX symbol. (You can confirm this by using the

Functions

Chapter 8. Functions 305



SYMBOL function.) Lowercase characters in name are translated to uppercase
for the local environment. For the global environment lowercase characters are
not translated because the global environment supports mixed-case identifiers.
Substitution in a compound name (see “Compound Symbols” on page 34)
occurs if possible.

If you specify newvalue, the named variable is assigned this new value. This
does not affect the result returned; that is, the function returns the value of
name as it was before the new assignment.

Here are some examples:
/* After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' */
VALUE('a'k) -Ê 'A3' /* looks up A3 */
VALUE('a'k||k) -Ê '7'
VALUE('fred') -Ê 'K' /* looks up FRED */
VALUE(fred) -Ê '3' /* looks up K */
VALUE(fred,5) -Ê '3' /* looks up K and */

/* then sets K=5 */
VALUE(fred) -Ê '5' /* looks up K */
VALUE('LIST.'k) -Ê 'Hi' /* looks up LIST.5 */

To use VALUE to manipulate environment variables, selector must be the
string “ENVIRONMENT” or an expression that evaluates to
“ENVIRONMENT”. In this case, the variable name need not be a valid REXX
symbol. Environment variables set by VALUE are not kept after program
termination.

Restriction: The values assigned to the variables must not contain any
character that is a hexadecimal zero ('00'X). For example:
Call VALUE 'MYVAR', 'FIRST' || '00'X || 'SECOND',
'ENVIRONMENT'

sets MYVAR to "FIRST", truncating '00'x and 'SECOND'.

Here are some more examples:
/* Given that an external variable FRED has a value of 4 */
share = 'ENVIRONMENT'
say VALUE('fred',7,share) /* says '4' and assigns */
/* FRED a new value of 7 */

say VALUE('fred',,share) /* says '7' */

/* Accessing and changing Linux environment entries given that */
/* PATH=/home/usr/bin */
env = 'ENVIRONMENT'
new = '/usr/bin'
say value('PATH',new,env) /* says '/home/usr/bin' (perhaps) */
/* and sets PATH = '/usr/bin' */

Functions

306 Object REXX Reference



say value('PATH',,env) /* says '/usr/bin' */

/* When this procedure ends, PATH = '/usr/bin' */

To delete an environment variable, use the .NIL object as the newvalue. To
delete the environment variable 'MYVAR', specify: value('MYVAR', .NIL,
'ENVIRONMENT').

You can use the VALUE function to return a value to the global environment
directory. To do so, omit newvalue and specify selector as the null string. The
language processor sends the message name (without arguments) to the
current environment object. The environment returns the object identified by
name. If there is no such object, it returns, by default, the string name with an
added initial period (an environment symbol—see “Environment Symbols” on
page 36).

Here are some examples:
/* Assume the environment name MYNAME identifies the string "Simon" */
name = value('MYNAME',,'') /* Sends MYNAME message to the environment */
name = .myname /* Same as previous instruction */
say 'Hello,' name /* Produces: "Hello, Simon" */
/* Assume the environment name NONAME does not exist. */
name = value('NONAME',,'') /* Sends NONAME message to the environment */
say 'Hello,' name /* Produces: "Hello, .NONAME" */

You can use the VALUE function to change a value in the REXX environment
directory. Include a newvalue and specify selector as the null string. The
language processor sends the message name (with = appended) and the single
argument newvalue to the current environment object. After receiving this
message, the environment identifies the object newvalue by the name name.

Here is an example:
name = value('MYNAME','David','') /* Sends "MYNAME=("David") message */
/* to the environment. */
/* You could also use: */
/* call value 'MYNAME','David','' */
say 'Hello,' .myname /* Produces: "Hello, David" */

Notes:

1. If the VALUE function refers to an uninitialized REXX variable, the default
value of the variable is always returned. The NOVALUE condition is not
raised because a reference to an external collection of variables never
raises NOVALUE.

2. The VALUE function is used when a variable contains the name of another
variable, or when a name is constructed dynamically. If you specify name
as a single literal string and omit newvalue and selector, the symbol is a
constant and the string between the quotation marks can usually replace

Functions

Chapter 8. Functions 307



the whole function call. For example, fred=VALUE('k'); is identical with
the assignment fred=k;, unless the NOVALUE condition is trapped. See
“Chapter 12. Conditions and Condition Traps” on page 361.

VAR

ÊÊ VAR(name) ÊÍ

Returns 1 if name is the name of a variable, that is, a symbol that has been
assigned a value), or 0.

Here are some examples:
/* Following: DROP A.3; J=3 */
VAR('J') -Ê 1
VAR(J) -Ê 0 /* has tested "3" */
VAR('a.j') -Ê 0 /* has tested "A.3" */
VAR(2) -Ê 0 /* a constant symbol */
VAR('*') -Ê 0 /* an invalid symbol */

VERIFY

ÊÊ VERIFY(string,reference
,

option ,start

) ÊÍ

Returns a number that, by default, indicates whether string is composed only
of characters from reference. It returns 0 if all characters in string are in
reference, or returns the position of the first character in string that is not in
reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized
and highlighted letter is needed. All characters following it are ignored, and it
can be in uppercase or lowercase characters.) If you specify Match, the
function returns the position of the first character in the string that is in
reference, or returns 0 if none of the characters are found.

The default for start is 1; thus, the search starts at the first character of string.
You can override this by specifying a different start point, which must be a
positive whole number.

If string is null, the function returns 0, regardless of the value of the third
argument. Similarly, if start is greater than LENGTH(string), the function
returns 0. If reference is null, the function returns 0 if you specify Match;
otherwise, the function returns the start value.

Functions

308 Object REXX Reference



Here are some examples:
VERIFY('123','1234567890') -Ê 0
VERIFY('1Z3','1234567890') -Ê 2
VERIFY('AB4T','1234567890') -Ê 1
VERIFY('AB4T','1234567890','M') -Ê 3
VERIFY('AB4T','1234567890','N') -Ê 1
VERIFY('1P3Q4','1234567890',,3) -Ê 4
VERIFY('123',',N,2) -Ê 2
VERIFY('ABCDE',',,3) -Ê 3
VERIFY('AB3CD5','1234567890','M',4) -Ê 6

WORD

ÊÊ WORD(string,n) ÊÍ

Returns the nth blank-delimited word in string or returns the null string if less
than n words are in string. n must be a positive whole number. This function
is equal to SUBWORD(string,n,1).

Here are some examples:
WORD('Now is the time',3) -Ê 'the'
WORD('Now is the time',5) -Ê ''

WORDINDEX

ÊÊ WORDINDEX(string,n) ÊÍ

Returns the position of the first character in the nth blank-delimited word in
string or returns 0 if less than n words are in string. n must be a positive
whole number.

Here are some examples:
WORDINDEX('Now is the time',3) -Ê 8
WORDINDEX('Now is the time',6) -Ê 0

WORDLENGTH

ÊÊ WORDLENGTH(string,n) ÊÍ

Returns the length of the nth blank-delimited word in the string or returns 0 if
less than n words are in the string. n must be a positive whole number.

Here are some examples:

Functions

Chapter 8. Functions 309



WORDLENGTH('Now is the time',2) -Ê 2
WORDLENGTH('Now comes the time',2) -Ê 5
WORDLENGTH('Now is the time',6) -Ê 0

WORDPOS (Word Position)

ÊÊ WORDPOS(phrase,string
,start

) ÊÍ

Returns the word number of the first word of phrase found in string or returns
0 if phrase contains no words or if phrase is not found. Several blanks between
words in either phrase or string are treated as a single blank for the
comparison, but otherwise the words must match exactly.

By default, the search starts at the first word in string. You can override this
by specifying start (which must be positive), the word at which to start the
search.

Here are some examples:
WORDPOS('the','now is the time') -Ê 3
WORDPOS('The','now is the time') -Ê 0
WORDPOS('is the','now is the time') -Ê 2
WORDPOS('is the','now is the time') -Ê 2
WORDPOS('is time ','now is the time') -Ê 0
WORDPOS('be','To be or not to be') -Ê 2
WORDPOS('be','To be or not to be',3) -Ê 6

WORDS

ÊÊ WORDS(string) ÊÍ

Returns the number of blank-delimited words in string.

Here are some examples:
WORDS('Now is the time') -Ê 4
WORDS(' ') -Ê 0

XRANGE (Hexadecimal Range)

ÊÊ XRANGE(
start ,end

) ÊÍ

Returns a string of all valid 1-byte encodings (in ascending order) between
and including the values start and end. The default value for start is '00'x,

Functions

310 Object REXX Reference



and the default value for end is 'FF'x. If start is greater than end, the values
wrap from 'FF'x to '00'x. If specified, start and end must be single characters.

Here are some examples:
XRANGE('a','f') -Ê 'abcdef'
XRANGE('03'x,'07'x) -Ê '0304050607'x
XRANGE(,'04'x) -Ê '0001020304'x
XRANGE('FE'x,'02'x) -Ê 'FEFF000102'x
XRANGE('i','j') -Ê 'ij' /* ASCII */

X2B (Hexadecimal to Binary)

ÊÊ X2B(hexstring) ÊÍ

Returns a string, in character format, that represents hexstring converted to
binary. The hexstring is a string of hexadecimal characters. It can be of any
length. Each hexadecimal character is converted to a string of 4 binary digits.
You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of 4, and does not include
any blanks.

If hexstring is null, the function returns a null string.

Here are some examples:
X2B('C3') -Ê '11000011'
X2B('7') -Ê '0111'
X2B('1 C1') -Ê '000111000001'

You can combine X2B with the functions D2X and C2X to convert numbers or
character strings into binary form.

Here are some examples:
X2B(C2X('C3'x)) -Ê '11000011'
X2B(D2X('129')) -Ê '10000001'
X2B(D2X('12')) -Ê '1100'

X2C (Hexadecimal to Character)

ÊÊ X2C(hexstring) ÊÍ

Returns a string, in character format, that represents hexstring converted to
character. The returned string has half as many bytes as the original hexstring.

Functions

Chapter 8. Functions 311



hexstring can be of any length. If necessary, it is padded with a leading zero to
make an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:
X2C('4865 6c6c 6f') -Ê 'Hello' /* ASCII */
X2C('3732 73') -Ê '72s' /* ASCII */

X2D (Hexadecimal to Decimal)

ÊÊ X2D(hexstring
,n

) ÊÍ

Returns the decimal representation of hexstring. The hexstring is a string of
hexadecimal characters. If the result cannot be expressed as a whole number,
an error occurs. That is, the result must not have more digits than the current
setting of NUMERIC DIGITS.

You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to aid readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, the hexstring is processed as an unsigned binary
number.

Here are some examples:
X2D('0E') -Ê 14
X2D('81') -Ê 129
X2D('F81') -Ê 3969
X2D('FF81') -Ê 65409
X2D('46 30'X) -Ê 240 /* ASCII */
X2D('66 30'X) -Ê 240 /* ASCII */

If you specify n, the string is taken as a signed number expressed in n
hexadecimal digits. If the leftmost bit is off, then the number is positive;
otherwise, it is a negative number. In both cases it is converted to a whole
number, which can be negative. If n is 0, the function returns 0.

If necessary, hexstring is padded on the left with 0 characters (not
“sign-extended”), or truncated on the left to n characters.

Functions

312 Object REXX Reference



Here are some examples:
X2D('81',2) -Ê -127
X2D('81',4) -Ê 129
X2D('F081',4) -Ê -3967
X2D('F081',3) -Ê 129
X2D('F081',2) -Ê -127
X2D('F081',1) -Ê 1
X2D('0031',0) -Ê 0

Linux Application Programming Interface Functions

You can use the following built-in REXX functions in a REXX program to
register, drop, or query external function packages and to create and
manipulate external data queues. See the Object REXX for Linux: Programming
Guide for a full discussion of the external-function interfaces.

RXFUNCADD

ÊÊ RXFUNCADD(name,module )
,procedure

ÊÍ

Registers the function name, making it available to REXX procedures. A zero
return value signifies successful registration.
rxfuncadd('SysCls','rexxutil', 'SysCls') -Ê 0 /* if not already registered */

RXFUNCDROP

ÊÊ RXFUNCDROP(name) ÊÍ

Removes (deregisters) the function name from the list of available functions. A
zero return value signifies successful removal.
rxfuncdrop('SysLoadFuncs') -Ê 0 /* if successfully removed */

RXFUNCQUERY

ÊÊ RXFUNCQUERY(name) ÊÍ

Queries the list of available functions for the function name. It returns a value
of 0 if the function is registered, and a value of 1 if it is not.
rxfuncquery('SysLoadFuncs') -Ê 0 /* if registered */

Functions

Chapter 8. Functions 313



RXQUEUE

ÊÊ RXQUEUE( ″Create″ )
,queuename

″Delete″,queuename
″Get″
″Set″,newqueuename

ÊÍ

Creates and deletes external data queues. It also sets and queries their names.

“Create” creates a queue with the name queuename if you specify
queuename and if no queue of that name exists already. You
must not use SESSION as a queuename. If you specify no
queuename, then the language processor provides a name. The
name of the queue is returned in either case.

The maximum length of queuename can be 1024 characters.

Many queues can exist at the same time, and most systems
have sufficient resources available to support several hundred
queues at a time. If a queue with the specified name exists
already, a queue is still created with a name assigned by the
language processor. The assigned name is then returned to
you.

“Delete” deletes the named queue. It returns 0 if successful or a
nonzero number if an error occurs. Possible return values are:

0 Queue has been deleted.

5 Not a valid queue name or tried to delete queue
named 'SESSION'.

9 Specified queue does not exist.

10 Queue is busy; wait is active.

12 A memory failure has occurred.

“Get” returns the name of the queue currently in use.

“Set” sets the name of the current queue to newqueuename and
returns the previously active queue name.

The first parameter determines the function. Only the first character of the
first parameter is significant. The parameter can be entered in any case. The
syntax for a valid queue name is the same as for a valid REXX symbol.

The second parameter specified for Create, Set, and Delete must follow the
same syntax rules as the REXX variable names. There is no connection,
however, between queue names and variable names. A program can have a

Linux API Functions

314 Object REXX Reference



variable and a queue with the same name. The actual name of the queue is
the uppercase value of the name requested.

Named queues prevent different REXX programs that are running in a single
session from interfering with each other. They allow REXX programs running
in different sessions to synchronize execution and pass data.
LINEIN('QUEUE:') is especially useful because the calling program stops
running until another program places a line on the queue.
/* default queue */
rxqueue('Get') -Ê 'SESSION'
/* assuming FRED does not already exist */
rxqueue('Create', 'Fred)' -Ê 'FRED'
/* assuming SESSION had been active */
rxqueue('Set', 'Fred') -Ê 'SESSION'
/* assuming FRED did not exist */
rxqueue('delete', 'Fred') -Ê '0'

Linux API Functions

Chapter 8. Functions 315



Linux API Functions

316 Object REXX Reference



Chapter 9. REXX Utilities (RexxUtil)

RexxUtil is a library package of Linux containing REXX functions. These
functions manipulate the files and directories of the operating system,
semaphores, and REXX macros.

To use a RexxUtil function, you must first register the function with the REXX
RxFuncAdd function:
call RxFuncAdd 'SysCls', 'rexxutil', 'SysCls'

This example registers the SysCls function, which can now be used in your
REXX programs.

The SysLoadFuncs RexxUtil function automatically loads the other RexxUtil
functions. The following instructions in a REXX program register all of the
RexxUtil functions:
call RxFuncAdd 'SysLoadFuncs', 'rexxutil', 'SysLoadFuncs'
call SysLoadFuncs

Once registered, the RexxUtil functions are available from all Linux operating
system sessions.

The SysDropFuncs RexxUtil function lets you drop all RexxUtil functions. The
following instruction in a REXX program deregisters all of the RexxUtil
functions:
call SysDropFuncs

SysAddRexxMacro

ÊÊ SysAddRexxMacro(name,file )
,order

ÊÍ

Adds a routine to the REXX macrospace. SysAddRexxMacro returns the
RexxAddMacro return code.

Parameters:

name The name of the function added to the macrospace.

file The file containing the REXX program.

© Copyright IBM Corp. 1999 317



order The macrospace search order. The order can be 'B' (Before) or 'A'
(After).

SysClearRexxMacroSpace

ÊÊ SysClearRexxMacroSpace() ÊÍ

Clears the REXX macrospace. SysClearRexxMacroSpace returns the
RexxClearMacroSpace return code.

SysCloseEventSem

ÊÊ SysCloseEventSem(handle) ÊÍ

Closes an event semaphore.

Parameter:

handle A handle returned from a previous SysCreateEventSem or
SysOpenEventSem call.

Return codes:

0 No errors.

6 Invalid handle.

301 Error semaphore busy.

SysCloseMutexSem

ÊÊ SysCloseMutexSem(handle) ÊÍ

Closes a mutex semaphore.

Parameter:

handle A handle returned from a previous SysCreateMutexSem call.

Return codes:

0 No errors.

REXX Utilities

318 Object REXX Reference



6 Invalid handle.

301 Error semaphore busy.

SysCls

ÊÊ Syscls() ÊÍ

Clears the screen.

Example:
/* Code */
call SysCls

SysCreateEventSem

ÊÊ SysCreateEventSem( )
name manual_reset

ÊÍ

Creates or opens an event semaphore. It returns an event semaphore handle
that can be used with SysCloseEventSem, SysOpenEventSem,
SysResetEventSem, SysPostEventSem, and SysWaitEventSem.
SysCreateEventSem returns a null string ("") if the semaphore cannot be
created or opened.

Parameters:

name The optional event semaphore name. If you omit name,
SysCreateEventSem creates an unnamed, shared event semaphore. If
you specify name, SysCreateEventSem opens the semaphore if the
semaphore has already been created. A semaphore name can be
MAX_PATH long, and can contain any character. Semaphore names
are case-sensitive.

manual_reset
A flag to indicate that the event semaphore must be reset manually by
SysResetEventSem. If this parameter is omitted, the event semaphore
is reset automatically by SysWaitEventSem.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 319



SysCreateMutexSem

ÊÊ SysCreateMutexSem( )
name

ÊÍ

Creates or opens a mutex semaphore. Returns a mutex semaphore handle that
can be used with SysCloseMutexSem, SysRequestMutexSem, and
SysReleaseMutexSem. SysCreateMutexSem returns a null string ("") if the
semaphore cannot be created or opened.

Parameter:

name The optional mutex semaphore name. If you omit name,
SysCreateMutexSem creates an unnamed, shared mutex semaphore. If
you specify name, SysCreateMutexSem opens the semaphore if the
mutex has already been created. The semaphore names cannot be
longer than 63 characters. Semaphore names are case-sensitive.

SysDropFuncs

ÊÊ SysDropFuncs ÊÍ

Drops all RexxUtil functions for the user who loaded the RexxUtil functions.

SysDropRexxMacro

ÊÊ SysDropRexxMacro(name) ÊÍ

Removes a routine from the REXX macrospace. SysDropRexxMacro returns
the RexxDropMacro return code.

Parameter:

name The name of the function removed from the macrospace.

SysFileDelete

ÊÊ SysFileDelete(file) ÊÍ

REXX Utilities

320 Object REXX Reference



Deletes a file. SysFileDelete does not support wildcard file specifications.

Parameter:

file The name of the file to be deleted.

Return codes:

0 File deleted successfully.

2 File not found.

3 Path not found.

5 Access denied or busy.

87 Does not exist.

108 Read-only file system.

Example:
/* Code */
parse arg InputFile OutputFile
call SysFileDelete OutputFile /* unconditionally erase output file */

SysFileSearch

ÊÊ SysFileSearch(target,file,stem
,options

) ÊÍ

Finds all file lines containing the target string and returns the file lines in a
REXX stem variable collection.

Parameters:

target The target search string.

file The searched file.

stem The result stem variable name. SysFileSearch sets REXX variable
stem.0 to the number of lines returned and stores the individual lines
in variables stem.1 to stem.n.

options Any combination of the following one-character options:

‘C’ Conducts a case-sensitive search.

‘N’ Returns the file line numbers.

The default is a case-insensitive search without line numbers.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 321



Return codes:

0 Successful.

2 Not enough memory.

3 Error opening file.

Example:
/* Find export statements in /etc/profile */
call SysFileSearch 'export', '/etc/profile', 'file.'
do i=1 to file.0

say file.i
end

/* Output */
export PATH
export INPUTRC
export WINDOWMANAGER
export TEXINPUTS

/* Find export statements in /etc/profile (along with */
/* line numbers) */
call SysFileSearch 'export', '/etc/profile', 'file.', 'N'
do i=1 to file.0
say file.i

end

/* Output */
26 export PATH
30 export INPUTRC
39 export WINDOWMANAGER
41 export TEXINPUTS

SysFileTree

ÊÊ SysFileTree(filespec,stem
,

options

) ÊÍ

Finds all files that match a file specification. SysFileTree returns the file
descriptions (date, time, size, attributes, and file specification) in a REXX stem
variable collection.

Parameters:

filespec The search file specification.

stem The name of a stem variable to be used for storing results. SysFileTree

REXX Utilities

322 Object REXX Reference



sets REXX variable stem.0 to the number of files and directories found
and stores individual file descriptions into variables stem.1 to stem.n.

options Any combination of the following:

‘F’ Search only for files.

‘D’ Search only for directories.

‘B’ Search for both files and directories. This is the default.

‘S’ Search subdirectories recursively.

‘T’ Return the time and date in the form YY/MM/DD/HH/MM.

‘L’ Return the time and date in the form YYYY-MM-DD
HH:MM:SS.

‘O’ Return only the fully-qualified file name. The default is to
return the date, time, size, attributes, and fully-qualified name
for each file found.

Return codes:

0 Successful.

2 Not enough memory.

Examples:
/* Find all subdirectories on / */
call SysFileTree '/', 'file', 'SD'

/****<< Sample Code and Output Example.>>********/

/* Code */
call SysFileTree '/usr/local/orexx/bin/r*', 'file', 'B'
do i=1 to file.0
say file.i

end

/* Actual Output */
9/24/97 11:46a 17175 -rwxr-xr-x /usr/local/orexx/bin/rexx
9/24/97 11:46a 265668 -rw-r--r-- /usr/local/orexx/bin/rexx.img
9/24/97 11:46a 31016 -rwxr-xr-x /usr/local/orexx/bin/rexxc
9/24/97 11:46a 10599 -rwxr-xr-x /usr/local/orexx/bin/rexxtry
9/24/97 11:46a 36121 -rwxr-xr-x /usr/local/orexx/bin/rxqueue
9/24/97 11:46a 30352 -rwxr-xr-x /usr/local/orexx/bin/rxsubcom

SysGetKey

ÊÊ SysGetKey( )
opt

ÊÍ

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 323



Reads and returns the next key from the keyboard buffer. If the keyboard
buffer is empty, SysGetKey waits until a key is pressed. Unlike the CHARIN
built-in function, SysGetKey does not wait until the Enter key is pressed.

Parameter:

opt An option controlling screen echoing. Allowed values are:

‘ECHO’ Echo the pressed key to the screen. This is the default.

‘NOECHO’ Do not echo the pressed key.

SysGetMessage

ÊÊ

·

·

SysGetMessage(num )
, filename

, str

, str

ÊÍ

Retrieves a message from a Linux catalog file and replaces the placeholders
%s with the text you specify. SysGetMessage can replace up to 9 placeholders.

To create catalog files, consult your system documentation.

Parameters:

num The message number.

filename
The name of the catalog file containing the message. The default
message catalog is rexx.cat. SysGetMessage searches along the
NLSPATH or uses the absolute path name.

str The text for a placeholder (%) in the message. A message can contain
up to 9 placeholders. You must specify as many strings as there are
placeholders in the message.

Example:
/* sample code segment using SysGetMessage */
msg = SysGetMessage(485,'rexx.cat','foo')
say msg
/*** Output **/
Class "foo" not found

REXX Utilities

324 Object REXX Reference



SysGetMessageX

ÊÊ

·

·

SysGetMessageX(set,num )
, filename

, str

, str

ÊÍ

Retrieves a message from a specific set of the Linux catalog file and replaces
the placeholders %s with the text you specify. SysGetMessageX can replace up
to 9 placeholders.

This utility is implemented for Linux only. Do not use it for
platform-independent programs.

For creating catalog files, consult your system documentation.

Parameters:

set The message set.

num The message number.

filename
The name of the catalog file containing the message sets. The default
message catalog is rexx.cat. SysGetMessageX searches along the
NLSPATH or uses the absolute path name.

str The text for a placeholder (%) in the message. A message can contain
up to 9 placeholders. You must specify as many strings as there are
placeholders in the message.

Examples:
/* sample code segment using SysGetMessageX and insertion text variables */
msg = SysGetMessageX(1,485,'rexx.cat','foo')
say msg
/*** Output **/
Class "foo" not found

SysLoadFuncs

ÊÊ SysLoadFuncs ÊÍ

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 325



Loads all RexxUtil functions. After a REXX program calls SysLoadFuncs, the
RexxUtil functions are available in all Linux operating system sessions to the
user who loaded the library.

SysLoadRexxMacroSpace

ÊÊ SysLoadRexxMacroSpace(file) ÊÍ

Loads functions from a saved macrospace file. SysLoadRexxMacroSpace
returns the RexxLoadMacroSpace return code.

Parameter:

file The file used to load functions into the REXX macrospace.
SysSaveRexxMacroSpace must have created the file.

SysMkDir

ÊÊ SysMkDir(dirspec) ÊÍ

Creates a specified directory.

Parameter:

dirspec The directory to be created.

Return codes:

0 Directory creation was successful.

2 File not found.

3 Path not found.

5 Access denied.

87 Already exists.

108 Read-only file system.

206 File name exceeds range or no space left on device.

Example:
/* Code */
call SysMkDir '∼/rexx'

REXX Utilities

326 Object REXX Reference



SysOpenEventSem

ÊÊ SysOpenEventSem(handle) ÊÍ

Opens an event semaphore.

Parameter:

handle The handle of the event semaphore created by SysCreateEventSem.

Return codes:

0 No errors.

6 Invalid handle.

291 Too many open semaphores.

SysOpenMutexSem

ÊÊ SysOpenMutexSem(handle) ÊÍ

Opens a mutex semaphore.

Parameter:

handle The handle of the mutex semaphore created by SysCreateEventSem.

Return codes:

0 No errors.

6 Invalid handle.

291 Too many open semaphores.

SysPostEventSem

ÊÊ SysPostEventSem(handle) ÊÍ

Posts an event semaphore.

Parameter:

handle A handle returned from a previous SysCreateEventSem call.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 327



Return codes:

0 No errors.

6 Invalid handle.

299 Already posted.

SysQueryRexxMacro

ÊÊ SysQueryRexxMacro(name) ÊÍ

Queries the existence of a macrospace function. SysQueryRexxMacro returns
the placement order of the macrospace function or a null string ("") if the
function does not exist in the macrospace.

Parameter:

name The name of a function in the REXX macrospace.

SysReleaseMutexSem

ÊÊ SysReleaseMutexSem(handle) ÊÍ

Releases a mutex semaphore.

Parameter:

handle A handle returned from a previous SysCreateMutexSem call.

Return codes:

0 No errors.

6 Invalid handle.

288 Not owner.

SysReorderRexxMacro

ÊÊ SysReorderRexxMacro(name,order) ÊÍ

Reorders a routine loaded in the REXX macrospace. SysReorderRexxMacro
returns the RexxReorderMacro return code.

REXX Utilities

328 Object REXX Reference



Parameters:

name The name of a function in the macrospace.

order The new macro search order. The order can be 'B' (Before) or 'A'
(After).

SysRequestMutexSem

ÊÊ SysRequestMutexSem(handle )
,timeout

ÊÍ

Requests a mutex semaphore.

Parameters:

handle A handle returned from a previous SysCreateMutexSem call.

timeout
The time, in milliseconds, to wait on the semaphore. The default
timeout is an infinite wait.

Return codes:

0 No errors.

6 Invalid handle.

95 Not enough memory

640 Error timeout.

SysResetEventSem

ÊÊ SysResetEventSem(handle) ÊÍ

Resets an event semaphore.

Parameter:

handle A handle returned from a previous SysCreateEventSem call.

Return codes:

0 No errors.

6 Invalid handle.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 329



300 Already reset.

SysRmDir

ÊÊ SysRmDir(dirspec) ÊÍ

Deletes a specified file directory without your confirmation. Using the '∼' for
home directory is possible.

Parameter:

dirspec The directory that should be deleted.

Return codes:

0 Directory removal was successful.

2 File not found.

3 Path not found.

5 Access denied or busy.

16 Current directory.

87 Does not exist.

108 Read-only file system.

Example:
/* Code */
call SysRmDir '∼/rexx'

SysSaveRexxMacroSpace

ÊÊ SysSaveRexxMacroSpace(file) ÊÍ

Saves the REXX macrospace. SysSaveRexxMacroSpace returns the
RexxSaveMacroSpace return code.

Parameter:

file The file used to save the functions in the REXX macrospace.

REXX Utilities

330 Object REXX Reference



SysSearchPath

ÊÊ SysSearchPath(path,filename) ÊÍ

Searches the specified file path for the specified file. If the file is found,
SysSearchPath returns the full file specification. Otherwise, it returns a null
string.

Parameters:

path An environment variable name. The environment variable must
contain a list of file directories. Examples are 'PATH' or 'MANPATH'.

filename
The file for which the path is to be searched.

Example:
/* Code */
fspec = SysSearchPath('PATH', 'xterm')
say "xterm is located at" fspec

/* Output */
xterm is located at /usr/X11R6/bin/xterm

SysSetPriority

ÊÊ SysSetPriority(class,delta) ÊÍ

Changes the priority of the current process.

Parameters:

class The new process priority class. The allowed classes are:

0 No changes

1 Change priority

2 Change priority

3 Change priority

delta The change applied to the process priority level. The delta must be in
the range -15 to +15.

Return codes:

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 331



0 No errors.

307 Invalid priority class.

SysSleep

ÊÊ SysSleep(secs) ÊÍ

Pauses a REXX program for a specified time interval.

Parameter:

secs The number of seconds to be paused.

SysTempFileName

ÊÊ SysTempFileName(template )
,filter

ÊÍ

Returns a unique name for a file or directory that does not currently exist. If
an error occurs or SysTempFileName cannot create a unique name from the
template, it returns a null string (""). SysTempFileName is useful when a
program requires a temporary file.

Parameters:

template
The location and base form of the temporary file or directory name.
The template is a valid file or directory specification with up to five
filter characters.

If the template contains no absolute path, the path specification is not
valid, or the path does not allow you to create a file, the default /tmp
path is used.

The file specified is either a null string or a string of up to five
characters that are used as the beginning of the file name.

filter The filter character used in template. SysTempFileName replaces each
filter character in template with a numeric value. The resulting string
represents a file or directory that does not exist. The default filter
character is ?.

Examples:

REXX Utilities

332 Object REXX Reference



/* Code */
say SysTempFileName('my?F?')
say SysTempFileName('/var/tmp/tmp??')
say SysTempFileName('@tmpxyzxyz', '@')

/* Possible Output */
/tmp/my3F7xxyyzz
/var/tmp/tmp59zZxXYy
/tmp/6tmpx37GfFc

SysWaitEventSem

ÊÊ SysWaitEventSem(handle )
,timeout

ÊÍ

Waits on an event semaphore.

Parameters:

handle A handle returned from a previous SysCreateEventSem call.

timeout
The time, in milliseconds, to wait on the semaphore. The default
timeout is an infinite wait.

Return codes:

0 No errors.

6 Invalid handle.

291 Too many open semaphores.

640 Invalid timeout. The value must be in the range of 1 to 2,147,482.

SysVersion

ÊÊ SysVersion() ÊÍ

Returns a string specifying the operating system version information in the
form linux x.x.xx.

REXX Utilities

Chapter 9. REXX Utilities (RexxUtil) 333



334 Object REXX Reference



Chapter 10. Parsing

The parsing instructions are ARG, PARSE, and PULL (see “ARG” on page 43,
“PARSE” on page 63, and “PULL” on page 69).

The data to be parsed is a source string. Parsing splits the data in a source
string and assigns pieces of it to the variables named in a template. A template
is a model specifying how to split the source string. The simplest kind of
template consists of a list of variable names. Here is an example:
variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words.
More complicated templates contain patterns in addition to variable names:

String patterns
Match the characters in the source string to specify where it is to be
split. (See “Templates Containing String Patterns” on page 337 for
details.)

Positional patterns
Indicate the character positions at which the source string is to be
split. (See “Templates Containing Positional (Numeric) Patterns” on
page 339 for details.)

Parsing is essentially a two-step process:

1. Parse the source string into appropriate substrings using patterns.
2. Parse each substring into words.

Simple Templates for Parsing into Words

Here is a parsing instruction:
parse value 'time and tide' with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to be parsed is
between the keywords PARSE VALUE and the keyword WITH, the source string
time and tide. Parsing divides the source string into blank-delimited words
and assigns them to the variables named in the template as follows:
var1='time'
var2='and'
var3='tide'

In this example, the source string to be parsed is a literal string, time and
tide. In the next example, the source string is a variable.

© Copyright IBM Corp. 1999 335



/* PARSE VALUE using a variable as the source string to parse */
string='time and tide'
parse value string with var1 var2 var3 /* same results */

PARSE VALUE does not convert lowercase a–z in the source string to
uppercase A–Z. If you want to convert characters to uppercase, use PARSE
UPPER VALUE. See “Using UPPER, LOWER, and CASELESS” on page 344 for
a summary of the effect of parsing instructions on the case.

Note that if you specify the CASELESS option on a PARSE instruction, the
string comparisons during the scanning operation are made independently of
the alphabetic case. That is, a letter in uppercase is equal to the same letter in
lowercase.

All of the parsing instructions assign the parts of a source string to the
variables named in a template. There are various parsing instructions because
of the differences in the nature or origin of source strings. For a summary of
all the parsing instructions, see “Parsing Instructions Summary” on page 345.

The PARSE VAR instruction is similar to PARSE VALUE except that the
source string to be parsed is always a variable. In PARSE VAR, the name of
the variable containing the source string follows the keywords PARSE VAR. In
the next example, the variable stars contains the source string. The template
is star1 star2 star3.
/* PARSE VAR example */
stars='Sirius Polaris Rigil'
parse var stars star1 star2 star3 /* star1='Sirius' */
/* star2='Polaris' */
/* star3='Rigil' */

All variables in a template receive new values. If there are more variables in
the template than words in the source string, the leftover variables receive
null (empty) values. This is true for the entire parsing: for parsing into words
with simple templates and for parsing with templates containing patterns.
Here is an example of parsing into words:
/* More variables in template than (words in) the source string */
satellite='moon'
parse var satellite Earth Mercury /* Earth='moon' */
/* Mercury='' */

If there are more words in the source string than variables in the template, the
last variable in the template receives all leftover data. Here is an example:
/* More (words in the) source string than variables in template */
satellites='moon Io Europa Callisto...'
parse var satellites Earth Jupiter /* Earth='moon' */
/* Jupiter='Io Europa Callisto...'*/

Parsing

336 Object REXX Reference



Parsing into words removes leading and trailing blanks from each word
before it is assigned to a variable. The exception to this is the word or group
of words assigned to the last variable. The last variable in a template receives
leftover data, preserving extra leading and trailing blanks. Here is an example:
/* Preserving extra blanks */
solar5='Mercury Venus Earth Mars Jupiter '
parse var solar5 var1 var2 var3 var4
/* var1 ='Mercury' */
/* var2 ='Venus' */
/* var3 ='Earth' */
/* var4 =' Mars Jupiter ' */

In the source string, Earth has two leading blanks. Parsing removes both of
them (the word-separator blank and the extra blank) before assigning
var3='Earth'. Mars has three leading blanks. Parsing removes one
word-separator blank and keeps the other two leading blanks. It also keeps all
five blanks between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For
example:
parse value ' Pluto ' with var1 /* var1=' Pluto '*/

The Period as a Placeholder

A period in a template is a placeholder. It is used instead of a variable name,
but it receives no data. It is useful as a “dummy variable” in a list of variables
or to collect unwanted information at the end of a string. And it saves the
overhead of unneeded variables.

The period in the first example is a placeholder. Be sure to separate adjacent
periods with spaces; otherwise, an error results.
/* Period as a placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars . . brightest . /* brightest='Sirius' */

/* Alternative to period as placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /* brightest='Sirius' */

Templates Containing String Patterns

A string pattern matches characters in the source string to indicate where to
split it. A string pattern can be either of the following:

Literal string pattern
One or more characters within quotation marks.

Parsing

Chapter 10. Parsing 337



Variable string pattern
A variable within parentheses with no plus (+), minus (-), or equal
sign (=) before the left parenthesis. (See “Parsing with Variable
Patterns” on page 343 for details.)

Here are two templates, a simple template and a template containing a literal
string pattern:
var1 var2 /* simple template */
var1 ', ' var2 /* template with literal string pattern */

The literal string pattern is: ', '. This template puts characters:

v From the start of the source string up to (but not including) the first
character of the match (the comma) into var1

v Starting with the character after the last character of the match (the
character after the blank that follows the comma) and ending with the end
of the string into var2

A template with a string pattern can omit some of the data in a source string
when assigning data to variables. The next two examples contrast simple
templates with templates containing literal string patterns.
/* Simple template */
name='Smith, John'
parse var name ln fn /* Assigns: ln='Smith,' */
/* fn='John' */

Notice that the comma remains (the variable ln contains 'Smith,'). In the
next example the template is ln ', ' fn. This removes the comma.
/* Template with literal string pattern */
name='Smith, John'
parse var name ln ', ' fn /* Assigns: ln='Smith' */

/* fn='John' */

First, the language processor scans the source string for ', '. It splits the source
string at that point. The variable ln receives data starting with the first
character of the source string and ending with the last character before the
match. The variable fn receives data starting with the first character after the
match and ending with the end of string.

A template with a string pattern omits data in the source string that matches
the pattern. (There is a special case (see “Combining String and Positional
Patterns” on page 347) in which a template with a string pattern does not omit
matching data in the source string.) The pattern ', ' (with a blank) is used
instead of ',' (no blank) because, without the blank in the pattern, the
variable fn receives ' John' (including a blank).

Parsing

338 Object REXX Reference



If the source string does not contain a match for a string pattern, any
variables preceding the unmatched string pattern get all the data in question.
Any variables after that pattern receive the null string.

A null string is never found. It always matches the end of the source string.

Templates Containing Positional (Numeric) Patterns

A positional pattern is a number that identifies the character position at which
the data in the source string is to be split. The number must be a whole
number.

An absolute positional pattern is:
v A number with no plus (+) or minus (-) sign preceding it or with an equal

sign (=) preceding it.
v A variable in parentheses with an equal sign before the left parenthesis.

(See “Parsing with Variable Patterns” on page 343 for details on variable
positional patterns.)

The number specifies the absolute character position at which the source
string is to be split.

Here is a template with absolute positional patterns:
variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers
to the 11th position in the input string, 21 to the 21st position. This template
puts characters:

v 1 through 10 of the source string into variable1

v 11 through 20 into variable2

v 21 to the end into variable3

Positional patterns are probably most useful for working with a file of records,
such as:

The following example uses this record structure:

Parsing

Chapter 10. Parsing 339



/* Parsing with absolute positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3

parse var record.n lastname 11 firstname 21 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /* Says 'By George!' after record 2 */

The source string is split at character position 11 and at position 21. The
language processor assigns characters 1 to 10 to lastname, characters 11 to 20
to firstname, and characters 21 to 40 to pseudonym.

The template could have been:
1 lastname 11 firstname 21 pseudonym

instead of
lastname 11 firstname 21 pseudonym

Specifying 1 is optional.

Optionally, you can put an equal sign before a number in a template. An
equal sign is the same as no sign before a number in a template. The number
refers to a particular character position in the source string. These two
templates are equal:
lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign
preceding it. It can also be a variable within parentheses, with a plus (+) or
minus (-) sign preceding the left parenthesis; for details see “Parsing with
Variable Patterns” on page 343.

The number specifies the relative character position at which the source string
is to be split. The plus or minus indicates movement right or left, respectively,
from the start of the string (for the first pattern) or from the position of the
last match. The position of the last match is the first character of the last
match. Here is the same example as for absolute positional patterns done with
relative positional patterns:
/* Parsing with relative positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3

parse var record.n lastname +10 firstname + 10 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /* same results */

Parsing

340 Object REXX Reference



Blanks between the sign and the number are insignificant. Therefore, +10 and
+ 10 have the same meaning. Note that +0 is a valid relative positional
pattern.

Absolute and relative positional patterns are interchangeable except in the
special case (“Combining String and Positional Patterns” on page 347) when a
string pattern precedes a variable name and a positional pattern follows the
variable name. The templates from the examples of absolute and relative
positional patterns give the same results.

With positional patterns, a matching operation can back up to an earlier
position in the source string. Here is an example using absolute positional
patterns:
/* Backing up to an earlier position (with absolute positional) */
string='astronomers'
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string 'study' var1||var2||var3||var4
/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source
string.

With relative positional patterns, a number preceded by a minus sign backs
up to an earlier position. Here is the same example using relative positional
patterns:
/* Backing up to an earlier position (with relative positional) */
string='astronomers'
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string 'study' var1||var2||var3||var4 /* same results */

In the previous example, the relative positional pattern -3 backs up to the first
character in the source string.

The templates in the previous two examples are equivalent.

Parsing

Chapter 10. Parsing 341



You can use templates with positional patterns to make several assignments:
/* Making several assignments */
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans. */

Combining Patterns and Parsing into Words

If a template contains patterns that divide the source string into sections
containing several words, string and positional patterns divide the source
string into substrings. The language processor then applies a section of the
template to each substring, following the rules for parsing into words.
/* Combining string pattern and parsing into words */
name=' John Q. Public'
parse var name fn init '.' ln /* Assigns: fn='John' */
/* init=' Q' */
/* ln=' Public' */

The pattern divides the template into two sections:
v fn init

v ln

The matching pattern splits the source string into two substrings:
v ' John Q'

v ' Public'

The language processor parses these substrings into words based on the
appropriate template section.

John has three leading blanks. All are removed because parsing into words
removes leading and trailing blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and
keeps the rest because init is the last variable in that section of the template.

Parsing

342 Object REXX Reference



For the substring ' Public', parsing assigns the entire string into ln without
removing any blanks. This is because ln is the only variable in this section of
the template. (For details about treatment of blanks, see “Simple Templates for
Parsing into Words” on page 335.)
/* Combining positional patterns with parsing into words */
string='R E X X'
parse var string var1 var2 4 var3 6 var4 /* Assigns: var1='R' */
/* var2='E' */
/* var3=' X' */
/* var4=' X' */

The pattern divides the template into three sections:

v var1 var2

v var3

v var4

The matching patterns split the source string into three substrings that are
individually parsed into words:
v 'R E'

v ' X'

v ' X'

The variable var1 receives 'R'; var2 receives 'E'. Both var3 and var4 receive
' X' (with a blank before the X) because each is the only variable in its section
of the template. (For details on treatment of blanks, see “Simple Templates for
Parsing into Words” on page 335.)

Parsing with Variable Patterns

You might want to specify a pattern by using the value of a variable instead
of a fixed string or number. You do this by placing the name of the variable in
parentheses. This is a variable reference. Blanks are not necessary inside or
outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal
string pattern '. '.
parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:
strngptrn='. '
parse var name fn init (strngptrn) ln

Parsing

Chapter 10. Parsing 343



If no equal, plus, or minus sign precedes the parenthesis that is before the
variable name, the character string value of the variable is then treated as a
string pattern. The variable can be one that has been set earlier in the same
template.

Example:
/* Using a variable as a string pattern */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/98 */
pull date
parse var date month 3 delim +1 day +2 (delim) year
/* Sets: month='11'; delim='/'; day='15'; year='98' */

If an equal, a plus, or a minus sign precedes the left parenthesis, the value of
the variable is treated as an absolute or relative positional pattern. The value
of the variable must be a positive whole number or zero.

The variable can be one that has been set earlier in the same template. In the
following example, the first two fields specify the starting-character positions
of the last two fields.

Example:
/* Using a variable as a positional pattern */
dataline = '12 26 .....Samuel ClemensMark Twain'
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/* Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' */

The positional pattern 6 is needed in the template for the following reason:
Word parsing occurs after the language processor divides the source string
into substrings using patterns. Therefore, the positional pattern =(pos1)
cannot be correctly interpreted as =12 until after the language processor has
split the string at column 6 and assigned the blank-delimited words 12 and 26
to pos1 and pos2, respectively.

Using UPPER, LOWER, and CASELESS

Specifying UPPER on any of the PARSE instructions converts lowercase a–z to
uppercase A–Z before parsing.

The ARG instruction is a short form of PARSE UPPER ARG. The PULL
instruction is a short form of PARSE UPPER PULL. If you do not desire
uppercase translation, use PARSE ARG instead of ARG or PARSE UPPER
ARG, and PARSE PULL instead of PULL or PARSE UPPER PULL.

Specifying LOWER on any of the PARSE instructions converts uppercase A–Z
to lowercase a–z before parsing.

Parsing

344 Object REXX Reference



Specifying CASELESS means the comparisons during parsing are independent
of the case—that is, a letter in uppercase is equal to the same letter in
lowercase.

Parsing Instructions Summary

All parsing instructions assign parts of the source string to the variables
named in the template. The following table summarizes where the source
string comes from.

Instruction Where the source string comes from

ARG

PARSE ARG

Arguments you list when you call the program or arguments
in the call to a subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL

PARSE PULL

The string at the head of the external data queue. (If the
queue is empty, it uses default input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about the
executing program.

PARSE VALUE Expression between the keywords VALUE and WITH in the
instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language, language
level, and (three-word) date.

Parsing Instructions Examples

All examples in this section parse source strings into words.

ARG
/* ARG with source string named in REXX program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */
/* red, blue) on call. Assume call is: palette red blue */
arg var1 var2 /* Assigns: var1='RED'; var2='BLUE' */
If var1<>'RED' & var1<>'YELLOW' & var1<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(var1)+length(var2)
SELECT;
When total=7 then new='purple'
When total=9 then new='orange'
When total=10 then new='green'

Otherwise new=var1 /* entered duplicates */
END
Say new; exit /* Displays: "purple" */

Parsing

Chapter 10. Parsing 345



Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example
of ARG with the arguments in the CALL to a subroutine is in “Parsing
Several Strings” on page 347.

PARSE ARG is similar to ARG except that PARSE ARG does not convert
alphabetic characters to uppercase before parsing.

PARSE LINEIN
parse linein 'a=' num1 'c=' num2 /* Assume: 8 and 9 */
sum=num1+num2 /* Enter: a=8 b=9 as input */
say sum /* Displays: "17" */

PARSE PULL
PUSH '80 7' /* Puts data on queue */
parse pull fourscore seven /* Assigns: fourscore='80'; seven='7' */
SAY fourscore+seven /* Displays: "87" */

PARSE SOURCE
parse source sysname .
Say sysname /* Displays: */

/* "Linux" */

PARSE VALUE example is on page 335.

PARSE VAR examples are throughout the chapter, starting with page 336.

PARSE VERSION
parse version . level .
say level /* Displays: "6.00" */

PULL is similar to PARSE PULL except that PULL converts alphabetic
characters to uppercase before parsing.

Advanced Topics in Parsing

This section includes parsing several strings and flow charts illustrating a
conceptual view of parsing.

Parsing

346 Object REXX Reference



Parsing Several Strings

Only ARG and PARSE ARG can have more than one source string. To parse
several strings, you can specify several comma-separated templates. Here is
an example:
parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three
comma-separated templates. For an ARG instruction, the source strings to be
parsed come from arguments you specify when you call a program or CALL a
subroutine or function. Each comma is an instruction to the parser to move on
to the next string.

Example:
/* Parsing several strings in a subroutine */
num='3'
musketeers="Porthos Athos Aramis D'Artagnan"
CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth /* Displays: "4" and " D'Artagnan" */
EXIT

Sub:
parse arg subtotal, . . . fourth
total=subtotal+1
RETURN

Note that when a REXX program is started as a command, only one argument
string is recognized. You can pass several argument strings for parsing if:
v One REXX program calls another REXX program with the CALL instruction

or a function call
v Programs written in other languages start a REXX program

If there are more templates than source strings, each variable in a leftover
template receives a null string. If there are more source strings than templates,
the language processor ignores leftover source strings. If a template is empty
(two subsequent commas) or contains no variable names, parsing proceeds to
the next template and source string.

Combining String and Positional Patterns

There is a special case in which absolute and relative positional patterns do
not work identically. Parsing with a template containing a string pattern skips
the data in the source string that matches the pattern (see “Templates
Containing String Patterns” on page 337). But a template containing the
sequence string pattern, variable name, and relative position pattern does not
skip the matching data. A relative positional pattern moves relative to the first

Parsing

Chapter 10. Parsing 347



character matching a string pattern. As a result, assignment includes the data
in the source string that matches the string pattern.
/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip any data. */
string='REstructured eXtended eXecutor'
parse var string var1 3 junk 'X' var2 +1 junk 'X' var3 +1 junk
say var1||var2||var3 /* Concatenates variables; displays: "REXX" */

Here is how this template works:

Conceptual Overview of Parsing

The following figures are to help you understand the concept of parsing.

The figures include the following terms:

string start
is the beginning of the source string (or substring).

string end
is the end of the source string (or substring).

length is the length of the source string.

match start
is in the source string and is the first character of the match.

match end
is in the source string. For a string pattern, it is the first character after
the end of the match. For a positional pattern, it is the same as match
start.

match position
is in the source string. For a string pattern, it is the first matching
character. For a positional pattern, it is the position of the matching
character.

Parsing

348 Object REXX Reference



token is a distinct syntactic element in a template, such as a variable, a
period, a pattern, or a comma.

value is the numeric value of a positional pattern. This can be either a
constant or the resolved value of a variable.

Figure 13. Conceptual Overview of Parsing

Parsing

Chapter 10. Parsing 349



Figure 14. Conceptual View of Finding Next Pattern

Parsing

350 Object REXX Reference



Note: The figures do not include error cases.

Figure 15. Conceptual View of Word Parsing

Parsing

Chapter 10. Parsing 351



Parsing

352 Object REXX Reference



Chapter 11. Numbers and Arithmetic

This chapter gives an overview of the arithmetic facilities of the REXX
language.

Numbers can be expressed flexibly. Leading and trailing blanks are permitted,
and exponential notation can be used. Valid numbers are, for example:
12 /* a whole number */
'-76' /* a signed whole number */
12.76 /* decimal places */
' + 0.003 ' /* blanks around the sign and so forth */
17. /* same as 17 */
.5 /* same as 0.5 */
4E9 /* exponential notation */
0.73e-7 /* exponential notation */

A number in REXX is defined as follows:

ÊÊ
blanks sign

blanks

digits
digits.digits
.digits
digits.

blanks
ÊÍ

blanks
are one or more spaces.

sign is either + or −.

digits are one or more of the decimal digits 0–9.

Note that a single period alone is not a valid number.

The arithmetic operators include addition (+), subtraction (-), multiplication (*),
power (**), division (/), prefix plus (+), and prefix minus (-). In addition, it
includes integer divide (%), which divides and returns the integer part, and
remainder (//), which divides and returns the remainder. For examples of the
arithmetic operators, see “Operator Examples” on page 356.

The result of an arithmetic operation is formatted as a character string
according to specific rules. The most important rules are:

v Results are calculated up to a maximum number of significant digits. The
default is 9, but you can alter it with the NUMERIC DIGITS instruction.
Thus, if a result requires more than 9 digits, it is rounded to 9 digits. For
example, the division of 2 by 3 results in 0.666666667.

© Copyright IBM Corp. 1999 353



v Except for division and power, trailing zeros are preserved. For example:
2.40 + 2 -> 4.40
2.40 - 2 -> 0.40
2.40 * 2 -> 4.80
2.40 / 2 -> 1.2

If necessary, you can remove trailing zeros with the STRIP method (see
“STRIP” on page 235), the STRIP function (see “STRIP” on page 299), or by
division by 1.

v A zero result is always expressed as the single digit 0.
v Exponential form is used for a result depending on its value and the setting

of NUMERIC DIGITS (the default is 9). If the number of places needed
before the decimal point exceeds the NUMERIC DIGITS setting, or the
number of places after the point exceeds twice the NUMERIC DIGITS
setting, the number is expressed in exponential notation:
1e6 * 1e6 -> 1E+12 /* not 1000000000000 */
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

Precision

Precision is the maximum number of significant digits that can result from an
operation. This is controlled by the instruction:

ÊÊ NUMERIC DIGITS
expression

; ÊÍ

The expression is evaluated and must result in a positive whole number. This
defines the precision (number of significant digits) of a calculation. Results are
rounded to that precision, if necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS
instruction has been processed since the start of a program, the default
precision is used. The REXX standard for the default precision is 9.

NUMERIC DIGITS can set values smaller than nine. However, use small
values with care because the loss of precision and rounding affects all REXX
computations, including, for example, the computation of new values for the
control variable in DO loops.

Arithmetic Operators

REXX arithmetic is performed by the operators +, -, *, /, %, //, and ** (add,
subtract, multiply, divide, integer divide, remainder, and power).

Numbers and Arithmetic

354 Object REXX Reference



Before every arithmetic operation, the terms operated upon have leading zeros
removed (noting the position of any decimal point, and leaving only one zero
if all the digits in the number are zeros). They are then truncated, if necessary,
to DIGITS + 1 significant digits before being used in the computation. The
extra digit improves accuracy because it is inspected at the end of an
operation, when a number is rounded to the required precision. When a
number is truncated, the LOSTDIGITS condition is raised if a SIGNAL ON
LOSTDIGITS condition trap is active. The operation is then carried out under
up to double that precision. When the operation is completed, the result is
rounded, if necessary, to the precision specified by the NUMERIC DIGITS
instruction.

The values are rounded as follows: 5 through 9 are rounded up, and 0
through 4 are rounded down.

Power

The ** (power) operator raises a number to a power, which can be positive,
negative, or 0. The power must be a whole number. The second term in the
operation must be a whole number and is rounded to DIGITS digits, if
necessary, as described under “Limits and Errors when REXX Uses Numbers
Directly” on page 359. If negative, the absolute value of the power is used,
and the result is inverted (divided into 1). For calculating the power, the
number is multiplied by itself for the number of times expressed by the
power. Trailing zeros are then removed as though the result were divided by
1.

Integer Division

The % (integer divide) operator divides two numbers and returns the integer
part of the result. The result is calculated by repeatedly subtracting the divisor
from the dividend as long as the dividend is larger than the divisor. During
this subtraction, the absolute values of both the dividend and the divisor are
used: the sign of the final result is the same as that which would result from
regular division.

If the result cannot be expressed as a whole number, the operation is in error
and fails—that is, the result must not have more digits than the current
setting of NUMERIC DIGITS. For example, 10000000000%3 requires 10 digits
for the result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were
in effect.

Remainder

The // (remainder) operator returns the remainder from an integer division and
is defined to be the residue of the dividend after integer division. The sign of
the remainder, if nonzero, is the same as that of the original dividend.

Numbers and Arithmetic

Chapter 11. Numbers and Arithmetic 355



This operation fails under the same conditions as integer division, that is, if
integer division on the same two terms fails, the remainder cannot be
calculated.

Operator Examples
/* With: NUMERIC DIGITS 5 */
12+7.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

Exponential Notation

For both large and small numbers, an exponential notation can be useful. For
example:
numeric digits 5
say 54321*54321

would display 2950800000 in the long form. Because this is misleading, the
result is expressed as 2.9508E+9 instead.

The definition of numbers is, therefore, extended as follows:

ÊÊ
blanks sign

blanks

digits
digits.digits
.digits
digits.

E digits
sign

Ê

Numbers and Arithmetic

356 Object REXX Reference



Ê
blanks

ÊÍ

The integer following the E represents a power of ten that is to be applied to
the number. The E can be in uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be
numeric, such as 0E123 (0 raised to the 123 power) and 1E342 (1 raised to the
342 power). Also, a comparison such as 0E123=0E567 gives a true result of 1 (0
is equal to 0). To prevent problems when comparing nonnumeric strings, use
the strict comparison operators.

Here are some examples:
12E7 = 120000000 /* Displays "1" */
12E-5 = 0.00012 /* Displays "1" */
-12e4 = -120000 /* Displays "1" */
0e123 = 0e456 /* Displays "1" */
0e123 == 0e456 /* Displays "0" */

The results of calculations are returned in either conventional or exponential
form, depending on the setting of NUMERIC DIGITS. If the number of places
needed before the decimal point exceeds DIGITS, or the number of places
after the point exceeds twice DIGITS, the exponential form is used. The
exponential form the language processor generates always has a sign
following the E to improve readability. If the exponent is 0, the exponential
part is omitted—that is, an exponential part of E+0 is not generated.

You can explicitly convert numbers to exponential form, or force them to be
displayed in the long form, by using the FORMAT built-in function (see
“FORMAT” on page 279).

Scientific notation is a form of exponential notation that adjusts the power of
ten so that the number contains only one nonzero digit before the decimal
point. Engineering notation is a form of exponential notation in which up to
three digits appear before the decimal point, and the power of ten is always a
multiple of three. The integer part can, therefore, range from 1 through 999.
You can control whether scientific or engineering notation is used with the
following instruction:

ÊÊ NUMERIC FORM
SCIENTIFIC

ENGINEERING
expression

VALUE

; ÊÍ

Numbers and Arithmetic

Chapter 11. Numbers and Arithmetic 357



Scientific notation is the default.
/* after the instruction */
Numeric form scientific

123.45 * 1e11 -> 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 * 1e11 -> 12.345E+12

Numeric Comparisons

The comparison operators are listed in “Comparison” on page 22. You can use
any of them for comparing numeric strings. However, you should not use ==,
\==, ¬==, >>, \>>, ¬>>, <<, \<<, and ¬<< for comparing numbers because leading
and trailing blanks and leading zeros are significant with these operators.

Numeric values are compared by subtracting the two numbers (calculating the
difference) and then comparing the result with 0. That is, the operation:
A ? Z

where ? is any numeric comparison operator, is identical with:
(A - Z) ? '0'

It is, therefore, the difference between two numbers, when subtracted under
REXX subtraction rules, that determines their equality.

Fuzz affects the comparison of two numbers. It controls how much two
numbers can differ and still be considered equal in a comparison. The FUZZ
value is set by the following instruction:

ÊÊ NUMERIC FUZZ
expression

; ÊÍ

expression must result in a positive whole number or zero. The default is 0.

Fuzz is to temporarily reduce the value of DIGITS. That is, the numbers are
subtracted with a precision of DIGITS minus FUZZ digits during the
comparison. The FUZZ setting must always be less than DIGITS.

If, for example, DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8
significant digits, just as though NUMERIC DIGITS 8 had been put in effect for
the duration of the operation.

Numbers and Arithmetic

358 Object REXX Reference



Example:
Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* Displays "0" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1
say 4.9999 = 5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

Limits and Errors when REXX Uses Numbers Directly

When REXX uses numbers directly, that is, numbers that have not been
involved in an arithmetic operation, they are rounded, if necessary, according
to the setting of NUMERIC DIGITS.

The following table shows which numbers must be whole numbers and what
their limits are:

Power values (right-hand operand of the
power operator)

999999999

Values of exprr and exprf in the DO
instruction

The current numeric precision (up to
999999999)

Values given for DIGITS or FUZZ in the
NUMERIC instruction

999999999 (Note: FUZZ must always be
less than DIGITS.)

Positional patterns in parsing templates 999999999

Number given for option in the TRACE
instruction

999999999

When REXX uses numbers directly, the following types of errors can occur:
v Overflow or underflow.

This error occurs if the exponential part of a result exceeds the range that
the language processor can handle, when the result is formatted according
to the current settings of NUMERIC DIGITS and NUMERIC FORM. The
language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default
precision. Because the default precision is 9, you can use exponents in the
range -999999999 through 999999999.
Because this allows for (very) large exponents, overflow or underflow is
treated as a syntax error.

v Insufficient storage.
Storage is needed for calculations and intermediate results, and if an
arithmetic operation fails because of lack of storage. This is considered as a
terminating error.

Numbers and Arithmetic

Chapter 11. Numbers and Arithmetic 359



Numbers and Arithmetic

360 Object REXX Reference



Chapter 12. Conditions and Condition Traps

A condition is an event or state that CALL ON or SIGNAL ON can trap. A
condition trap can modify the flow of execution in a REXX program.
Condition traps are turned on or off using the ON or OFF subkeywords of the
SIGNAL and CALL instructions (see “CALL” on page 45 and “SIGNAL” on
page 78).

ÊÊ CALL
SIGNAL

OFF condition
USER usercondition

ON condition
USER usercondition NAME trapname

; ÊÍ

condition, usercondition, and trapname are single symbols that are taken as
constants. Following one of these instructions, a condition trap is set to either
ON (enabled) or OFF (disabled). The initial setting for all condition traps is
OFF.

If a condition trap is enabled and the specified condition or usercondition
occurs, control passes to the routine or label trapname if you have specified
trapname. Otherwise, control passes to the routine or label usercondition or
condition. CALL or SIGNAL is used, depending on whether the most recent
trap for the condition was set using CALL ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in
function, or an external routine. If you use SIGNAL, the trapname can
only be an internal label.

The conditions and their corresponding events that can be trapped are:

ANY traps any condition that a more specific condition trap does not trap.
For example, if NOVALUE is raised and there is no NOVALUE trap
enabled, but there is a SIGNAL ON ANY trap, the ANY trap is called
for the NOVALUE condition. For example, a CALL ON ANY trap is
ignored if NOVALUE is raised because CALL ON NOVALUE is not
allowed.

ERROR
raised if a command indicates an error condition upon return. It is
also raised if any command indicates failure and none of the
following is active:

v CALL ON FAILURE
v SIGNAL ON FAILURE

© Copyright IBM Corp. 1999 361



v CALL ON ANY
v SIGNAL ON ANY

The condition is raised at the end of the clause that called the
command but is ignored if the ERROR condition trap is already in the
delayed state. The delayed state is the state of a condition trap when
the condition has been raised but the trap has not yet been reset to
the enabled (ON) or disabled (OFF) state.

FAILURE
raised if a command indicates a failure condition upon return. The
condition is raised at the end of the clause that called the command
but is ignored if the FAILURE condition trap is already in the delayed
state.

An attempt to enter a command to an unknown subcommand
environment also raises a FAILURE condition.

HALT
raised if an external attempt is made to interrupt and end execution of
the program. The condition is usually raised at the end of the clause
that was processed when the external interruption occurred. When a
REXX program is running in a full-screen or command prompt
session, the Ctrl+Break key sequence raises the halt condition.
However, if Ctrl+Break is pressed while a command or non-REXX
external function is processing, the command or function ends.

Notes:

1. Application programs that use the REXX language processor might
use the RXHALT exit or the RexxStart programming interface to
halt the execution of a REXX macro. (See the Object REXX for
Linux: Programming Guide for details about exits.)

2. Only SIGNAL ON HALT or CALL ON HALT can trap error 4,
described in “Appendix C. Error Numbers and Messages” on
page 435.

LOSTDIGITS
raised if a number used in an arithmetic operation has more digits
than the current setting of NUMERIC DIGITS. Leading zeros are not
counted in this comparison. You can specify the LOSTDIGITS
condition only for SIGNAL ON.

NOMETHOD
raised if an object receives a message for which it has no method
defined, and the object does not have an UNKNOWN method. You
can specify the NOMETHOD condition only for SIGNAL ON.

NOSTRING
raised when the language processor requires a string value from an

Conditions and Condition Traps

362 Object REXX Reference



object and the object does not directly provide a string value. See
“Required String Values” on page 105 for more information. You can
specify the NOSTRING condition only for SIGNAL ON.

NOTREADY
raised if an error occurs during an input or output operation. See
“Errors during Input and Output” on page 404. This condition is
ignored if the NOTREADY condition trap is already in the delayed
state.

NOVALUE
raised if an uninitialized variable is used as:

v A term in an expression
v The name following the VAR subkeyword of a PARSE instruction
v A variable reference in a parsing template, an EXPOSE instruction,

a PROCEDURE instruction, or a DROP instruction
v A method selection override specifier in a message term

Note: SIGNAL ON NOVALUE can trap any uninitialized variables
except tails in compound variables.
/* The following does not raise NOVALUE. */
signal on novalue
a.=0
say a.z
say 'NOVALUE is not raised.'
exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language-processing error is detected while the program
is running. This includes all kinds of processing errors:
v True syntax errors
v “Run-time” errors (such as attempting an arithmetic operation on

nonnumeric terms)
v Syntax errors propagated from higher call or method invocation

levels
v Untrapped HALT conditions
v Untrapped NOMETHOD conditions

You can specify this condition only for SIGNAL ON.

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 363



Notes:

1. SIGNAL ON SYNTAX cannot trap the errors 3 and 5.
2. SIGNAL ON SYNTAX can trap the errors 6 and 30 only if they

occur during the execution of an INTERPRET instruction.

For information on these errors, refer to “Appendix C. Error Numbers
and Messages” on page 435.

USER
raised if a condition specified on the USER option of CALL ON or
SIGNAL ON occurs. USER conditions are raised by a RAISE
instruction that specifies a USER option with the same usercondition
name. The specified usercondition can be any symbol, including those
specified as possible values for condition.

Any ON or OFF reference to a condition trap replaces the previous state (ON,
OFF, or DELAY, and any trapname) of that condition trap. Thus, a CALL ON
HALT replaces any current SIGNAL ON HALT (and a SIGNAL ON HALT
replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a
new trap name replaces any previous trap name, and any OFF reference
disables the trap for CALL or SIGNAL.

Action Taken when a Condition Is Not Trapped

When a condition trap is currently disabled (OFF) and the specified condition
occurs, the default action depends on the condition:
v For HALT and NOMETHOD, a SYNTAX condition is raised with the

appropriate REXX error number.
v For SYNTAX conditions, the clause in error is terminated, and a SYNTAX

condition is propagated to each CALL instruction, INTERPRET instruction,
message instruction, or clause with function or message invocations active
at the time of the error, terminating each instruction if a SYNTAX trap is
not active at the instruction level. If the SYNTAX condition is not trapped
at any of the higher levels, processing stops, and a message (see
“Appendix C. Error Numbers and Messages” on page 435) describing the
nature of the event that occurred usually indicates the condition.

v For all other conditions, the condition is ignored and its state remains OFF.

Conditions and Condition Traps

364 Object REXX Reference



Action Taken when a Condition Is Trapped

When a condition trap is currently enabled (ON) and the specified condition
occurs, a CALL trapname or SIGNAL trapname instruction is processed
automatically. You can specify the trapname after the NAME subkeyword of
the CALL ON or SIGNAL ON instruction. If you do not specify a trapname,
the name of the condition itself (for example, ERROR or FAILURE) is used.

For example, the instruction call on error enables the condition trap for the
ERROR condition. If the condition occurred, then a call to the routine
identified by the name ERROR is made. The instruction call on error name
commanderror would enable the trap and call the routine COMMANDERROR
if the condition occurred, and the caller usually receives an indication of
failure.

The sequence of events, after a condition has been trapped, varies depending
on whether a SIGNAL or CALL is processed:
v If the action taken is a SIGNAL, execution of the current instruction ceases

immediately, the condition is disabled (set to OFF), and SIGNAL proceeds
as usually (see “SIGNAL” on page 78).
If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to re-enable it when
the label is reached. For example, if SIGNAL ON SYNTAX is enabled when
a SYNTAX condition occurs, a usual syntax error termination occurs if the
SIGNAL ON SYNTAX label name is not found.

v If the action taken is a CALL, the CALL trapname proceeds in the usual way
(see “CALL” on page 45) when the instruction completes. The call does not
affect the special variable RESULT. If the routine should RETURN any data,
that data is ignored.
When the condition is raised, and before the CALL is made, the condition
trap is put into a delayed state. This state persists until the RETURN from
the CALL, or until an explicit CALL (or SIGNAL) ON (or OFF) is made for
the condition. This delayed state prevents a premature condition trap at the
start of the routine called to process a condition trap. When a condition
trap is in the delayed state, it remains enabled, but if the condition is raised
again, it is either ignored (for ERROR and FAILURE) or (for the other
conditions) any action (including the updating of the condition information)
is delayed until one of the following events occurs:

1. A CALL ON or SIGNAL ON for the delayed condition is processed. In
this case, a CALL or SIGNAL takes place immediately after the new
CALL ON or SIGNAL ON instruction has been processed.

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 365



2. A CALL OFF or SIGNAL OFF for the delayed condition is processed. In
this case, the condition trap is disabled and the default action for the
condition occurs at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case, the condition trap
is no longer delayed and the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed,
that is, the flow is not affected by the CALL.

Notes:

1. In all cases, the condition is raised immediately upon detection. If
SIGNAL ON traps the condition, the current instruction is ended, if
necessary. Therefore, the instruction during which an event occurs can
only be partly processed. For example, if SYNTAX is raised during the
evaluation of the expression in an assignment, the assignment does not
take place. Note that the CALL for traps for which CALL ON is enabled
can only occur at clause boundaries. If these conditions arise in the
middle of an INTERPRET instruction, execution of INTERPRET can be
interrupted and resumed later. Similarly, other instructions, for example
DO or SELECT, can be temporarily interrupted by a CALL at a clause
boundary.

2. The state (ON, OFF, or DELAY, and any trapname) of each condition trap
is saved on entry to a subroutine and is then restored on RETURN. This
means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can
be used in a subroutine without affecting the conditions set up by the
caller. See “CALL” on page 45 for details of other information that is
saved during a subroutine call.

3. The state of condition traps is not affected when an external routine is
called by a CALL, even if the external routine is a REXX program. On
entry to any REXX program, all condition traps have an initial setting of
OFF.

4. While user input is processed during interactive tracing, all condition
traps are temporarily set OFF. This prevents any unexpected transfer of
control—for example, should the user accidentally use an uninitialized
variable while SIGNAL ON NOVALUE is active. For the same reason, a
syntax error during interactive tracing does not cause the exit from the
program but is trapped specially and then ignored after a message is
given.

5. The system interface detects certain execution errors either before the
execution of the program starts or after the program has ended.
SIGNAL ON SYNTAX cannot trap these errors.

Conditions and Condition Traps

366 Object REXX Reference



Note that a label is a clause consisting of a single symbol followed by a
colon. Any number of successive clauses can be labels; therefore, several
labels are allowed before another type of clause.

Condition Information

When a condition is trapped and causes a SIGNAL or CALL, this becomes the
current trapped condition, and certain condition information associated with it
is recorded. You can inspect this information by using the CONDITION
built-in function (see “CONDITION” on page 267).

The condition information includes:

v The name of the current trapped condition
v The name of the instruction processed as a result of the condition trap

(CALL or SIGNAL)
v The status of the trapped condition
v A descriptive string (see “Descriptive Strings”) associated with that

condition

v Optional additional object information (see “Additional Object Information”
on page 368)

The current condition information is replaced when control is passed to a
label as the result of a condition trap (CALL ON or SIGNAL ON). Condition
information is saved and restored across subroutine or function calls,
including one because of a CALL ON trap and across method invocations.
Therefore, a routine called by CALL ON can access the appropriate condition
information. Any previous condition information is still available after the
routine returns.

Descriptive Strings

The descriptive string varies, depending on the condition trapped:

ERROR The string that was processed and resulted in the error
condition.

FAILURE The string that was processed and resulted in the failure
condition.

HALT Any string associated with the halt request. This can be the
null string if no string was provided.

LOSTDIGITS The number with excessive digits that caused the
LOSTDIGITS condition.

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 367



NOMETHOD The name of the method that could not be found.

NOSTRING The readable string representation of the object causing the
NOSTRING condition.

NOTREADY The name of the stream being manipulated when the error
occurred and the NOTREADY condition was raised. If the
stream was a default stream with no defined name, then the
null string might be returned.

NOVALUE The derived name of the variable whose attempted reference
caused the NOVALUE condition.

SYNTAX Any string the language processor associated with the error.
This can be the null string if you did not provide a specific
string. Note that the special variables RC and SIGL provide
information on the nature and position of the processing error.
You can enable the SYNTAX condition trap only by using
SIGNAL ON.

USER Any string specified by the DESCRIPTION option of the
RAISE instruction that raised the condition. If a description
string was not specified, a null string is used.

Additional Object Information

The language processor can provide additional information, depending on the
condition trapped:

NOMETHOD The object that raised the NOMETHOD condition.

NOSTRING The object that caused the NOSTRING condition.

NOTREADY The stream object that raised the NOTREADY condition.

SYNTAX An array containing the objects substituted into the secondary
error message (if any) for the syntax error. If the message did
not contain substitution values, a zero element array is used.

USER Any object specified by an ADDITIONAL or ARRAY option of
the RAISE instruction that raised the condition.

The Special Variable RC

When an ERROR or FAILURE condition is trapped, the REXX special variable
RC is set to the command return code before control is transferred to the
target label (whether by CALL or by SIGNAL).

Similarly, when SIGNAL ON SYNTAX traps a SYNTAX condition, the special
variable RC is set to the syntax error number before control is transferred to
the target label.

Conditions and Condition Traps

368 Object REXX Reference



The Special Variable SIGL

Following any transfer of control because of a CALL or SIGNAL, the program
line number of the clause causing the transfer of control is stored in the
special variable SIGL. If the transfer of control is because of a condition trap,
the line number assigned to SIGL is that of the last clause processed (at the
current subroutine level) before the CALL or SIGNAL took place. The setting
of SIGL is especially useful after a SIGNAL ON SYNTAX trap when the
number of the line in error can be used, for example, to control a text editor.
Typically, code following the SYNTAX label can PARSE SOURCE to find the
source of the data and then call an editor to edit the source file, positioned at
the line in error. Note that in this case you might have to run the program
again before any changes made in the editor can take effect.

Alternatively, SIGL can help determine the cause of an error (such as the
occasional failure of a function call) as in the following example:
signal on syntax
a = a + 1 /* This is to create a syntax error */
say 'SYNTAX error not raised'
exit

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(rc)
say "SOURCELINE"(sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then
displays the line in error, and finally drops into debug mode to let you inspect
the values of the variables used at the line in error.

Condition Objects

A condition object is a directory returned by the Object option of the
CONDITION built-in function. This directory contains all information
currently available on a trapped condition. The information varies with the
trapped condition. The NIL object is returned for any entry not available to
the condition. The following entries can be found in a condition object:

ADDITIONAL
The additional information object associated with the
condition. This is the same object that the Additional option of
the CONDITION built-in function returns. The ADDITIONAL
information may be specified with the ADDITIONAL or
ARRAY options of the RAISE instruction.

DESCRIPTION
The string describing the condition. The Description option of
the CONDITION built-in function also returns this value.

Conditions and Condition Traps

Chapter 12. Conditions and Condition Traps 369



INSTRUCTION
The keyword for the instruction executed when the condition
was trapped, either CALL or SIGNAL. The Instruction option of
the CONDITION built-in function also returns this value.

CONDITION The name of the trapped condition. The Condition name
option of the CONDITION built-in function also returns this
value.

RESULT Any result specified on the RETURN or EXIT options of a
RAISE instruction.

RC The major REXX error number for a SYNTAX condition. This
is the same error number assigned to the special variable RC.

CODE The detailed identification of the error that caused a SYNTAX
condition. This number is a nonnegative number in the form
nn.nnn. The integer portion is the REXX major error number
(the same value as the RC entry). The fractional portion is a
subcode that gives a precise indication of the error that
occurred.

ERRORTEXT The primary error message for a SYNTAX condition. This is
the same message available from the ERRORTEXT built-in
function.

MESSAGE The secondary error message for a SYNTAX condition. The
message also contains the content of the ADDITIONAL
information.

POSITION The line number in source code at which a SYNTAX condition
was raised.

PROGRAM The name of the program where a SYNTAX condition was
raised.

TRACEBACK A single-index list of formatted traceback lines.

PROPAGATED
The value 0 (false) if the condition was raised at the same
level as the condition trap or the value 1 (true) if the
condition was reraised with RAISE PROPAGATE.

Conditions and Condition Traps

370 Object REXX Reference



Chapter 13. Concurrency

Conceptually, each REXX object is like a small computer with its own
processor to run its methods, its memory for object and method variables, and
its communication links to other objects for sending and receiving messages.
This is object-based concurrency. It lets more than one method run at the same
time. Any number of objects can be active (running) at the same time,
exchanging messages to communicate with, and synchronize, each other.

Early Reply

Early reply provides concurrent processing. A running method returns control,
and possibly a result, to the point from which it was called; meanwhile it
continues running. The following figure illustrates this concept.

Method A includes a call to Method B. Method B contains a REPLY
instruction. This returns control and a result to method A, which continues
processing with the line after the call to Method B. Meanwhile, Method B also
continues running.

The chains of execution represented by method A and method B are called
activities. An activity is a thread of execution that can run methods
concurrently with methods on other activities.

An activity contains a stack of invocations that represent the REXX programs
running on the activity. An invocation can be a main program invocation, an
internal function or subroutine call, an external function or subroutine call, an
INTERPRET instruction, or a message invocation. An invocation is activated
when an executable unit is invoked and removed (popped) when execution
completes. In Figure 16, the programs begins with a single activity. The

Figure 16. Early Reply

© Copyright IBM Corp. 1999 371



activity contains a single invocation, method A. When method A invokes
method B, a second invocation is added to the activity.

When method B issues a REPLY, a new activity is created (activity 2). Method
B's invocation is removed from activity 1, and pushed on to activity 2.
Because activities can execute concurrently, both method A and method B
continue processing. The following figures illustrate this concept.

Here is an example of using early reply to run methods concurrently.
/* Example of early reply */

object1 = .example∼new
object2 = .example∼new

say object1∼repeat(10, 'Object 1 running')
say object2∼repeat(10, 'Object 2 running')

Figure 17. Before REPLY

Figure 18. After REPLY

Concurrency

372 Object REXX Reference



say 'Main ended.'
exit

::class example
::method repeat
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps
say msg

end

Message Objects

A message object (see “The Message Class” on page 174) is an intermediary
between two objects that enables concurrent processing. All objects inherit the
START method (page 177) from the object class. To obtain a message object,
an object sends a START message to the object to which the message object
will convey a message. The message is an argument to the START message as
in the following example:
a=p∼start('REVERSE')

This line of code creates a message object, A, and sends it a start message. The
message object then sends the REVERSE message to object P. Object P receives
the message, performs any needed processing, and returns a result to message
object A. Meanwhile the object that obtained message object A continues its
processing. When message object A returns, it does not interrupt the object
that obtained it. It waits until this object requests the information. Here is an
example of using a message object to run methods concurrently.
/* Example of using a message object */

object1 = .example∼new
object2 = .example∼new

a = object1∼start('REPEAT',10,'Object 1 running')
b = object2∼start('REPEAT',10,'Object 2 running')

say a∼result
say b∼result
say 'Main ended.'
exit

::class example
::method repeat
use arg reps,msg
do reps
say msg

end
return 'Repeated' msg',' reps 'times.'

Concurrency

Chapter 13. Concurrency 373



Default Concurrency

The instance methods of a class use the EXPOSE instruction to define a set of
object variables. This collection of variables belonging to an object is called its
object variable pool. The methods a class defines and the variables these
methods can access is called a scope. REXX’s default concurrency exploits the
idea of scope. The object variable pool is a set of object subpools, each
representing the set of variables at each scope of the inheritance chain of the
class from which the object was created. Only methods at the same scope can
access object variables at any particular scope. This prevents any name
conflicts between classes and subclasses, because the object variables for each
class are in different scopes.

If you do not change the defaults, only one method of a given scope can run
on a single object at a time. Once a method is running on an object, the
language processor blocks other methods on other activities from running in
the same object at the same scope until the method that is running completes.
Thus, if different activities send several messages within a single scope to an
object the methods run sequentially.

The next example shows how the default concurrency works.
/* Example of default concurrency for methods of different scopes */

object1 = .subexample∼new

say object1∼repeat(8, 'Object 1 running call 1') /* These calls run */
say object1∼repeater(8, 'Object 1 running call 2') /* concurrently */
say 'Main ended.'
exit

::class example
::method repeat
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps

say msg
end

::class subexample subclass example
::method repeater
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps
say msg

end

The preceding example produces output such as the following:

Concurrency

374 Object REXX Reference



Repeating Object 1 running call 1, 8 times.
Object 1 running call 1
Repeating Object 1 running call 2, 8 times.
Object 1 running call 1
Object 1 running call 2
Main ended.

Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 2

The following example shows that methods of the same scope do not run
concurrently by default.
/* Example of methods with the same scope not running concurrently*/

object1 = .example∼new

say object1∼repeat(10,'Object 1 running call 1') /* These calls */
say object1∼repeat(10,'Object 1 running call 2') /* cannot run */
say 'Main ended.' /* concurrently. */
exit

::class example
::method repeat
use arg reps,msg
reply 'Repeating' msg',' reps 'times.'
do reps

say msg
end

The REPEAT method includes a REPLY instruction, but the methods for the
two REPEAT messages in the example cannot run concurrently. This is
because REPEAT is called twice at the same scope and requires exclusive
access to the object variable pool. The REPLY instruction causes the first
REPEAT message to transfer its exclusive access to the object variable pool to
a new activity and continue execution. The second REPLY message also
requires exclusive access and waits until the first method completes.

If the original activity has more than one method active (nested method calls)
with exclusive variable access, the first REPLY instruction is unable to transfer
its exclusive access to the new activity and must wait until the exclusive

Concurrency

Chapter 13. Concurrency 375



access is again available. This may allow another method on the same object
to run while the first method waits for exclusive access.

Sending Messages within an Activity

Whenever a message is invoked on an object, the activity acquires exclusive
access (a lock) for the object’s scope. Other activities that send messages to the
same object that required the locked scope waits until the first activity releases
the lock.

Suppose object A is running method Y, which includes:
self∼z

Sequential processing does not allow method Z to begin until method Y has
completed. However, method Y cannot complete until method Z runs. A
similar situation occurs when a subclass's overriding method does some
processing and passes a message to its superclasses' overriding method. Both
cases require a special provision: If an invocation running on an activity sends
another message to the same object, this method is allowed to run because the
activity has already acquired the lock for the scope. This allows nested,
nonconcurrent method invocations on a single activity without causing a
deadlock situation. The language processor regards these additional messages
as subroutine calls.

Here is an example showing the special treatment of single activity messages.
The REPEATER and REPEAT methods have the same scope. REPEAT runs on
the same object at the same time as the REPEATER method because a
message to SELF runs the REPEAT method. The language processor treats this
as a subroutine call rather than as concurrently running two methods.
/* Example of sending message to SELF */

object1 = .example∼new
object2 = .example∼new

say object1∼repeater(10, 'Object 1 running')
say object2∼repeater(10, 'Object 2 running')

say 'Main ended.'
exit

::class example
::method repeater
use arg reps,msg
reply 'Entered repeater.'
say self∼repeat(reps,msg)
::method repeat
use arg reps,msg

Concurrency

376 Object REXX Reference



do reps
say msg

end
return 'Repeated' msg',' reps 'times.'

The activity locking rules also allow indirect object recursion. The following
figure illustrates indirect object recursion.

Method M in object A sends object B a message to run method N. Method N
sends a message to object A, asking it to run method O. Meanwhile, method
M is still running in object A and waiting for a result from method N. A
deadlock would result. Because the methods are all running on the same
activity, no deadlock occurs.

Using Additional Concurrency Mechanisms

REXX has additional concurrency mechanisms that can add full concurrency
so that more than one method of a given scope can run in an object at a time:
v The SETUNGUARDED method of the Method class and the UNGUARDED

option of the METHOD directive provide unconditional concurrency
v GUARD OFF and GUARD ON control a method’s exclusive access to an

object’s scope

SETUNGUARDED Method and UNGUARDED Option

The SETUNGUARDED method of the Method class and the UNGUARDED
option of the ::METHOD directive control locking of an object's scope when a
method is invoked. Both let a method run even if another method is active on
the same object.

Use the SETUNGUARDED method or UNGUARDED option only for
methods that do not need exclusive use of their object variable pool, that is,

Figure 19. Indirect Object Recursion

Concurrency

Chapter 13. Concurrency 377



methods whose execution can interleave with another method's execution
without affecting the object's integrity. Otherwise, concurrent methods can
produce unexpected results.

To use the SETUNGUARDED method for a method you have created with the
NEW method of the Method class, you specify:
methodname∼SETUNGUARDED

(See “SETUNGUARDED” on page 180 for details about SETUNGUARDED.)

Alternately, you can define a method with the ::METHOD directive, specifying
the UNGUARDED option:
::METHOD methodname UNGUARDED

GUARD ON and GUARD OFF

You might not be able to use the SETUNGUARDED method or
UNGUARDED option in all cases. A method might need exclusive use of its
object variables, then allow methods on other activities to run, and perhaps
later need exclusive use again. You can use GUARD ON and GUARD OFF to
alternate between exclusive use of an object’s scope and allowing other
activities to use the scope.

By default, a method must wait until a currently running method is finished
before it begins. GUARD OFF lets another method (running on a different
activity) that needs exclusive use of the same object variables become active
on the same object. See “GUARD” on page 56 for more information.

Guarded Methods

Concurrency requires the activities of concurrently running methods to be
synchronized. Critical data must be safeguarded so diverse methods on other
activities do not perform concurrent updates. Guarded methods satisfy both
these needs.

A guarded method combines the UNGUARDED option of the ::METHOD
directive or the SETUNGUARDED method of the Method class with the
GUARD instruction.

The UNGUARDED option and the SETUNGUARDED method both provide
unconditional concurrency. Including a GUARD instruction in a method
makes concurrency conditional:
GUARD ON WHEN expression

Concurrency

378 Object REXX Reference



If the expression on the GUARD instruction evaluates to 1 (true), the method
continues to run. If the expression on the GUARD instruction evaluates to 0
(false), the method does not continue running. GUARD reevaluates the
expression whenever the value of an exposed object variable changes. When
the expression evaluates to 1, the method resumes running. You can use
GUARD to block running any method when proceeding is not safe. (See
“GUARD” on page 56 for details about GUARD.)

Note: It is important to ensure that you use an expression that can be
fulfilled. If the condition expression cannot be met, GUARD ON
WHEN puts the program in a continuous wait condition. This can
occur in particular when several activities run concurrently. In this case,
a second activity can make the condition expression invalid before
GUARD ON WHEN can use it.

To avoid this, ensure that the GUARD ON WHEN statement is
executed before the condition is set to true. Keep in mind that the
sequence of running activities is not determined by the calling
sequence, so it is important to use a logic that is independent of the
activity sequence.

Additional Examples

The following example uses REPLY in a method for a write-back cache.
/* Method Write_Back */
use arg data /* Save data to be written */
reply 0 /* Tell the sender all was OK */
self∼disk_write(data) /* Now write the data */

The REPLY instruction returns control to the point at which method
Write_Back was called, returning the result 0. The caller of method Write_Back
continues processing from this point; meanwhile, method Write_Back also
continues processing.

The following example uses a message object. It reads a line asynchronously
into the variable nextline:
mymsg = infile∼start('READLINE') /* Gets message object to carry */
/* message to INFILE */
/* do other work */
nextline=mymsg∼result /* Gets result from message object */

This creates a message object that waits for the read to finish while the sender
continues with other work. When the line is read, the mymsg message object
obtains the result and holds it until the sender requests it.

Concurrency

Chapter 13. Concurrency 379



Semaphores and monitors (bounded buffers) synchronize concurrency
processes. Giving readers and writers concurrent access is a typical
concurrency problem. The following sections show how to use guarded
methods to code semaphore and monitor mechanisms and to provide
concurrency for readers and writers.

Semaphores

A semaphore is a mechanism that controls access to resources, for example,
preventing simultaneous access. Synchronization often uses semaphores. Here
is an example of a semaphore class:

Concurrency

380 Object REXX Reference



/*******************************************************************************/
/* A REXX Semaphore Class. */
/* */
/* This file implements a semaphore class in REXX. The class is defined to */
/* the Global REXX Environment. The following methods are defined for */
/* this class: */
/* init - Initializes a new semaphore. Accepts the following positional */
/* parameters: */
/* 'name' - global name for this semaphore */
/* if named default to set name in */
/* the class semDirectory */
/* noshare - do not define named semaphore */
/* in class semDirectory */
/* Initial state (0 or 1) */
/* setInitialState - Allow for subclass to have some post-initialization, */
/* and do setup based on initial state of semaphore */
/* Waiting - Is the number of objects waiting on this semaphore. */
/* Shared - Is this semaphore shared (Global). */
/* Named - Is this semaphore named. */
/* Name - Is the name of a named semaphore. */
/* setSem - Sets the semaphore and returns previous state. */
/* resetSem - Sets state to unSet. */
/* querySem - Returns current state of semaphore. */
/* */
/* SemaphoreMeta - Is the metaclass for the semaphore classes. This class is */
/* set up so that when a namedSemaphore is shared, it maintains these */
/* named/shared semaphores as part of its state. These semaphores are */
/* maintained in a directory, and an UNKNOWN method is installed on the */
/* class to forward unknown messages to the directory. In this way the */
/* class can function as a class and "like" a directory, so [] syntax can */
/* be used to retrieve a semaphore from the class. */
/* */
/* */
/* The following are in the subclass EventSemaphore. */
/* */
/* Post - Posts this semaphore. */
/* Query - Queries the number of posts since the last reset. */
/* Reset - Resets the semaphore. */
/* Wait - Waits on this semaphore. */
/* */
/* */
/* The following are in the subclass MutexSemaphore */
/* */
/* requestMutex - Gets exclusive use of semaphore. */
/* releaseMutex - Releases to allow someone else to use semaphore. */
/* NOTE: Currently anyone can issue a release (need not be the owner). */
/*******************************************************************************/

Figure 20. Example of a REXX Semaphore Class (Part 1 of 5)

Concurrency

Chapter 13. Concurrency 381



/* ============================================================================ */
/* === Start of Semaphore class. ===== */
/* ============================================================================ */
::class SemaphoreMeta subclass class
::method init
expose semDict

/* Be sure to initialize parent */
.message∼new(self, .array∼of('INIT', super), 'a', arg(1,'a'))∼send
semDict = .directory∼new

::method unknown
expose semDict
use arg msgName, args

/* Forward all unknown messages */
/* to the semaphore dictionary */

.message∼new(semDict, msgName, 'a', args)∼send
if var('RESULT') then
return result

else
return

::class Semaphore subclass object metaclass SemaphoreMeta

::method init
expose sem waits shared name
use arg semname, shr, state

waits = 0 /* No one waiting */
name = '' /* Assume unnamed */
shared = 0 /* Assume not shared */
sem = 0 /* Default to not posted */

if state = 1 Then /* Should initial state be set? */
sem = 1

/* Was a name specified? */
if VAR('SEMNAME') & semname \= '' Then Do
name = semname /* Yes, so set the name */

if shr \= 'NOSHARE' Then Do /* Do we want to share this sem? */
shared = 1 /* Yes, mark it shared */

/* Shared add to semDict */
self∼class[name] = self

End

End

Figure 20. Example of a REXX Semaphore Class (Part 2 of 5)

Concurrency

382 Object REXX Reference



self∼setInitialState(sem) /* Initialize initial state */

::method setInitialState
/* This method intended to be */

nop /* overridden by subclasses */
::method setSem
expose sem
oldState = sem
sem = 1 /* Set new state to 1 */
return oldState

::method resetSem
expose sem
sem = 0
return 0

::method querySem
expose sem
return sem

::method shared
expose shared
return shared /* Return true 1 or false 0 */

::method named
expose name

/* Does semaphore have a name? */
if name = '' Then return 0 /* No, not named */
Else return 1 /* Yes, it is named */

::method name
expose name
return name /* Return name or '' */

::method incWaits
expose waits
waits = waits + 1 /* One more object waiting */

::method decWaits
expose Waits
waits = waits - 1 /* One object less waiting */

::method Waiting
expose Waits
return waits /* Return number of objects waiting */

Figure 20. Example of a REXX Semaphore Class (Part 3 of 5)

Concurrency

Chapter 13. Concurrency 383



/* ========================================================================== */
/* === Start of EventSemaphore class. === */
/* ========================================================================== */

::class EventSemaphore subclass Semaphore public
::method setInitialState
expose posted posts
use arg posted

if posted then posts = 1
else posts = 0

::method post
expose posts posted

self∼setSem /* Set semaphore state */
posted = 1 /* Mark as posted */
reply
posts = posts + 1 /* Increase the number of posts */

::method wait
expose posted

self∼incWaits /* Increment number waiting */
guard off
guard on when posted /* Now wait until posted */
reply /* Return to caller */
self∼decWaits /* Cleanup, 1 less waiting */

::method reset
expose posts posted

posted = self∼resetSem /* Reset semaphore */
reply /* Do an early reply */
posts = 0 /* Reset number of posts */

::method query
expose posts

/* Return number of times */
return posts /* Semaphore has been posted */

Figure 20. Example of a REXX Semaphore Class (Part 4 of 5)

Concurrency

384 Object REXX Reference



Monitors (Bounded Buffer)

A monitor object consists of a number of client methods, WAIT and SIGNAL
methods for client methods to use, and one or more condition variables.
Guarded methods provide the functionality of monitors.
::method init
/* Initialize the bounded buffer */
expose size in out n
use arg size
in = 1
out = 1
n = 0

::method append unguarded
/* Add to the bounded buffer if not full */

/* ========================================================================== */
/* === Start of MutexSemaphore class. === */
/* ========================================================================== */

::class MutexSemaphore subclass Semaphore public

::method setInitialState
expose owned
use arg owned

::method requestMutex
expose Owned

Do forever /* Do until we get the semaphore */
owned = self∼setSem
if Owned = 0 /* Was semaphore already set? */
Then leave /* Wasn't owned; we now have it */

else Do
self∼incWaits
guard off /* Turn off guard status to let */

/* others come in */
guard on when \Owned /* Wait until not owned and get */

/* guard */
self∼decWaits /* One less waiting for MUTEX */

End
/* Go up and see if we can get it */

End

::method releaseMutex
expose owned
owned = self∼resetSem /* Reset semaphore */

Figure 20. Example of a REXX Semaphore Class (Part 5 of 5)

Concurrency

Chapter 13. Concurrency 385



expose n size b. in
guard on when n < size
use arg b.in
in = in//size+1
n = n+1

::method take
/* Remove from the bounded buffer if not empty */
expose n b. out size
guard on when n > 0
reply b.out
out = out//size+1
n = n-1

Readers and Writers

The concurrency problem of the readers and writers requires that writers
exclude writers and readers, whereas readers exclude only writers. The
UNGUARDED option is required to allow several concurrent readers.
::method init
expose readers writers
readers = 0
writers = 0

::method read unguarded
/* Read if no one is writing */
expose writers readers
guard on when writers = 0
readers = readers + 1
guard off

/* Read the data */
say 'Reading (writers:' writers', readers:' readers').'
guard on
readers = readers - 1

::method write unguarded
/* Write if no-one is writing or reading */
expose writers readers
guard on when writers + readers = 0
writers = writers + 1

/* Write the data */
say 'Writing (writers:' writers', readers:' readers').'
writers = writers - 1

Concurrency

386 Object REXX Reference



Chapter 14. Built-in Objects

REXX provides some objects that all programs can use. To access these built-in
objects, you use the special environment symbols, which start with a period (.).

.METHODS

The .METHODS environment symbol identifies a directory (see “The
Directory Class” on page 129) of methods that ::METHOD directives in the
currently running program define. The directory indexes are the method
names. The directory values are the method objects. See “The Method Class”
on page 178.

Only methods that are not preceded by a ::CLASS directive are in the
.METHODS directory. If there are no such methods, the .METHODS symbol
has the default value of .METHODS.

Example:
use arg class, methname
class∼define(methname,.methods['a'])
::method a
use arg text
say text

.RS

.RS is set to the return status from any executed command (including those
submitted with the ADDRESS instruction). The .RS environment symbol has a
value of -1 when a command returns a FAILURE condition, a value of 1
when a command returns an ERROR condition, and a value of 0 when a
command indicates successful completion. The value of .RS is also available
after trapping the ERROR or FAILURE condition.

Note: Commands executed manually during interactive tracing do not change
the value of .RS. The initial value of .RS is .RS.

© Copyright IBM Corp. 1999 387



Built-in Objects

388 Object REXX Reference



Chapter 15. The Security Manager

The security manager provides a special environment that is safe even if agent
programs try to perform unexpected actions. The security manager is called if
an agent program tries to:
v Call an external function
v Use a host command
v Use the ::REQUIRES directive
v Access the .LOCAL directory
v Access the .ENVIRONMENT directory
v Use a stream name in the input and output built-in functions (CHARIN,

CHAROUT, CHARS, LINEIN, LINEOUT, LINES, and STREAM)

Calls to the Security Manager

When the language processor reaches any of the defined security checkpoints,
it sends a message to the security manager for the particular checkpoint. The
message has a single argument, a directory of information that pertains to the
checkpoint. If the security manager chooses to handle the action instead of the
language processor, the security manager uses the checkpoint information
directory to pass information back to the language processor.

Security manager methods must return a value of either 0 or 1 to the
language processor. A value of 0 indicates that the program is authorized to
perform the indicated action. In this case, processing continues as usual. A
value of 1 indicates that the security manager performed the action itself. The
security manager sets entries in the information directory to pass results for
the action back to the language processor. The security manager can also use
the RAISE instruction to raise a program error for a prohibited access. Error
message 98.948 indicates authorization failures.

The defined checkpoints, with their arguments and return values, are:

CALL sent for all external function calls. The information directory contains
the following entries:

NAME The name of the invoked function.

ARGUMENTS
An array of the function arguments.

© Copyright IBM Corp. 1999 389



When the CALL method returns 1, indicating that it
handled the external call, the security manager places
the function result in the information directory as the
entry RESULT.

COMMAND
sent for all host command instructions. The information directory
contains the following entries:

COMMAND
The string that represents the host command.

ADDRESS
The name of the target ADDRESS environment for the
command.

When the COMMAND method returns 1, indicating that it
handled the command, the security manager uses the
following information directory entries to return the command
results:

RC The command return code. If the entry is not
set, a return code of 0 is used.

FAILURE If a FAILURE entry is added to the
information directory, a REXX FAILURE
condition is raised.

ERROR If an ERROR entry is added to the
information directory, a REXX ERROR
condition is raised. The ERROR condition is
raised only if the FAILURE entry is not set.

REQUIRES
sent whenever a ::REQUIRES directive in the file is processed. The
information directory contains the following entry:

NAME The name of the file specified on the ::REQUIRES
directive.

When the REQUIRES method returns 1, indicating that it handled the
request, the entry NAME in the information directory is replaced with
the name of the actual file to load for the request. The REQUIRES
method can also provide a security manager to be used for the
program loaded by the ::REQUIRES directive by setting the
information direction entry SECURITYMANAGER into the desired
security manager object.

LOCAL
sent whenever REXX is going to access an entry in the .LOCAL

390 Object REXX Reference



directory as part of the resolution of the environment symbol name.
The information directory contains the following entry:

NAME
The name of the target directory entry.

When the LOCAL method returns 1, indicating that it handled the
request, the information directory entry RESULT contains the
directory entry. When RESULT is not set and the method returns 1,
this is the same as a failure to find an entry in the .LOCAL directory.
REXX continues with the next step in the name resolution.

ENVIRONMENT
sent whenever REXX is going to access an entry in the
.ENVIRONMENT directory as part of the resolution of the
environment symbol name. The information directory contains the
following entry:

NAME The name of the target directory entry.

When the ENVIRONMENT method returns 1, indicating that it
handled the request, the information directory entry RESULT contains
the directory entry. When RESULT is not set and the method returns
1, this is the same as a failure to find an entry in the
.ENVIRONMENT directory. REXX continues with the next step in the
name resolution.

STREAM
sent whenever one of the REXX input and output built-in functions
(CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, LINES, or
STREAM) needs to resolve a stream name. The information directory
contains the following entry:

NAME The name of the target stream.

When the STREAM method returns 1, the information directory
STREAM must be set to an object to be used as the stream target. This
should be a stream object or another object that supports the Stream
class methods.

METHOD
sent whenever a secure program attempts to send a message for a
protected method (see the ::METHOD directive “::METHOD” on
page 89) to an object. The information directory contains the following
entries:

OBJECT The object the protected method is issued against.

NAME The name of the protected method.

Chapter 15. The Security Manager 391



ARGUMENTS
An array containing the method arguments.

When the METHOD method returns 1, indicating that it handled the
external call, the function result can be placed in the information
directory as the method RESULT.

Example

The following agent program includes all the actions for which the security
manager defines checkpoints (for example, by calling an external function).

The following server implements the security manager with three levels of
security. For each action the security manager must check (for example, by
calling an external routine):
1. The audit manager (Dumper class) writes a record of the event but then

permits the action.
2. The closed cell manager (noWay class) does not permit the action to take

place and raises an error.
3. The replacement execution environment (Replacer class, a subclass of the

noWay class) replaces the prohibited action with a different action.

/* Agent */
interpret 'echo Hello There'
'dir foo.bar'
call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs
say result
say syssleep(1)
say linein('∼/.profile')
say .array
.object∼setmethod('SETMETHOD')
::requires agent2.cmd

Figure 21. Agent Program

392 Object REXX Reference



/* Server implements security manager */
parse arg program
method = .method∼newfile(program)
say "Calling program" program "with an audit manager:"
pull
method∼setSecurityManager(.dumper∼new(.output))
.object∼new∼run(method)
say "Calling program" program "with a function replacement execution environment:"
pull
method∼setSecurityManager(.replacer∼new)
.object∼new∼run(method)
say "Calling program" program "with a closed cell manager:"
pull
signal on syntax
method∼setSecurityManager(.noWay∼new)
.object∼new∼run(method)
exit
syntax:
say "Agent program terminated with an authorization failure"
exit

::class dumper
::method init
expose stream /* target stream for output */
use arg stream /* hook up the output stream */

::method unknown /* generic unknown method */
expose stream /* need the global stream */
use arg name, args /* get the message and arguments */

/* write out the audit event */
stream∼lineout(time() date() 'Called for event' name)
stream∼lineout('Arguments are:') /* write out the arguments */
info = args[1] /* info directory is the first arg */
do name over info /* dump the info directory */
stream∼lineout('Item' name':' info[name])

end
return 0 /* allow this to proceed */

::class noWay
::method unknown /* everything trapped by unknown */

/* and everything is an error */
raise syntax 98.948 array("You didn't say the magic word!")

::class replacer subclass noWay /* inherit restrictive UNKNOWN method*/
::method command /* issuing commands */
use arg info /* access the directory */
info∼rc = 1234 /* set the command return code */
info∼failure = .true /* raise a FAILURE condition */
return 1 /* return "handled" return value */

Figure 22. Example of Server Implementing Security Manager (Part 1 of 2)

Chapter 15. The Security Manager 393



::method call /* external function/routine call */
use arg info /* access the directory */

/* all results are the same */
info∼result = "uh, uh, uh...you didn't say the magic word"
return 1 /* return "handled" return value */

::method stream /* I/O function stream lookup */
use arg info /* access the directory */

/* replace with a different stream */
info∼stream = .stream∼new('∼/sample.txt') return 1

/* return "handled" return value */
::method local /* .LOCAL variable lookup */

/* no value returned at all */
return 1 /* return "handled" return value */

::method environment /* .ENVIRONMENT variable lookup */
/* no value returned at all */

return 1 /* return "handled" return value */
::method method /* protected method invocation */
use arg info /* access the directory */

/* all results are the same */
info∼result = "uh, uh, uh...you didn't say the magic word"
return 1 /* return "handled" return value */

::method requires /* REQUIRES directive */
use arg info /* access the directory */

/* switch to load a different file */
info∼name = '∼/samples/agent.cmd'
info∼securitymanager = self /* load under this authority */
return 1 /* return "handled" return value */

Figure 22. Example of Server Implementing Security Manager (Part 2 of 2)

394 Object REXX Reference



Chapter 16. Input and Output Streams

REXX defines Stream class methods to handle input and output and maintains
the I/O functions for input and output externals. Using a mixture of REXX
I/O methods and REXX I/O functions can cause unpredictable results. For
example, using the LINEOUT method and the LINEOUT function on the
same persistent stream object can cause overlays.

When a REXX I/O function creates a stream object, the language processor
maintains the stream object. When a REXX I/O method creates a stream
object, it is returned to the program to be maintained. Because of this, when
REXX I/O methods and REXX I/O functions referring to the same stream are
in the same program, there are two separate stream objects with different read
and write pointers. The program needs to synchronize the read and write
pointers of both stream objects, or overlays occur.

To obtain a stream object (for example, MYFIL), you could use:
MyStream = .stream∼new('MYFIL')

You can manipulate stream objects with character or line methods:
nextchar = MyStream∼charin()
nextline = MyStream∼linein()

In addition to stream objects, the language processor defines an external data
queue object for interprogram communication. This queue object understands
line functions only.

A stream object can have a variety of sources or destinations including files,
serial interfaces, displays, or networks. It can be transient or dynamic, for
example, data sent or received over a serial interface, or persistent in a static
form, for example, a disk file.

Housekeeping for stream objects (opening and closing files, for example) is
not explicitly part of the language definition. However, REXX provides
methods, such as CHARIN and LINEIN, that are independent of the
operating system and include housekeeping. The COMMAND method
provides the stream_command argument for those situations that require more
granular access to operating system interfaces.

© Copyright IBM Corp. 1999 395



The Input and Output Model

The model of input and output for REXX consists of the following logically
distinct parts:
v One or more input stream objects
v One or more output stream objects
v One or more external data queue objects

The REXX methods, instructions, and built-in routines manipulate these
elements as follows.

Input Streams

Input to REXX programs is in the form of a serial character stream generated
by user interaction or has the characteristics of one generated this way. You
can add characters to the end of some stream objects asynchronously; other
stream objects might be static or synchronous.

The methods and instructions you can use on input stream objects are:
v CHARIN method—reads input stream objects as characters.
v LINEIN method—reads input stream objects as lines.
v PARSE PULL and PULL instructions—read the default input stream object

(.INPUT), if the external data queue is empty. PULL is the same as PARSE
UPPER PULL except that uppercase translation takes place for PULL.

v PARSE LINEIN instruction—reads lines from the default input stream
object regardless of the state of the external data queue. Usually, you can
use PULL or PARSE PULL to read the default input stream object.

In a persistent stream object, the REXX language processor maintains a
current read position. For a persistent stream:
v The CHARS method returns the number of characters currently available in

an input stream object from the read position through the end of the stream
(including any line-end characters).

v The LINES method determines if any data remains between the current
read position and the end of the input stream object.

v You can move the read position to an arbitrary point in the stream object
with:
– The SEEK or POSITION method of the Stream class
– The COMMAND method's SEEK or POSITION argument
– The start argument of the CHARIN method
– The line argument of the LINEIN method

When the stream object is opened, this position is the start of the stream.

Input and Output

396 Object REXX Reference



In a transient stream, no read position is available. For a transient stream:
v The CHARS and LINES methods attempt to determine if data is present in

the input stream object. These methods return the value 1 for a device if
data is waiting to be read or a determination cannot be made. Otherwise,
these methods return 0.

v The SEEK and POSITION methods of the Stream class and the COMMAND
method's SEEK and POSITION arguments are not applicable to transient
streams.

Output Streams

Output stream methods provide for output from a REXX program. Output
stream methods are:
v SAY instruction—writes to the default output stream object (.OUTPUT).
v CHAROUT method—writes in character form to either the default or a

specified output stream object.
v LINEOUT method—writes in lines to either the default or a specified

output stream object.

LINEOUT and SAY write the new-line character at the end of each line.
Depending on the operating system or hardware, other modifications or
formatting can be applied; however, the output data remains a single logical
line.

The REXX language processor maintains the current write position in a
stream. It is separate from the current read position. Write positioning is
usually at the end of the stream (for example, when the stream object is first
opened), so that data can be appended to the end of the stream. For persistent
stream objects, you can set the write position to the beginning of the stream to
overwrite existing data by giving a value of 1 for the CHAROUT start
argument or the LINEOUT line argument. You can also use the CHAROUT
start argument, the LINEOUT line argument, the SEEK or POSITION method,
or the COMMAND method's SEEK or POSITION stream_command to direct
sequential output to some arbitrary point in the stream.

Note: Once data is in a transient output stream object (for example, a network
or serial link), it is no longer accessible to REXX.

External Data Queue

REXX provides queuing services entirely separate from interprocess
communications queues.

The external data queue is a list of character strings that only line operations
can access. It is external to REXX programs in that other REXX programs can
have access to the queue.

Input and Output

Chapter 16. Input and Output Streams 397



The external data queue forms a REXX-defined channel of communication
between programs. Data in the queue is arbitrary; no characters have any
special meaning or effect.

Apart from the explicit REXX operations described here, no detectable change
to the queue occurs while a REXX program is running, except when control
leaves the program and is manipulated by external means (such as when an
external command or routine is called).

There are two kinds of queues in REXX. Both kinds are accessed and
processed by name.

Unnamed Queues

One unnamed queue is automatically provided for each REXX program in
operation. Its name is always “QUEUE:”, and the language processor creates
it when REXX is called and no queue is currently available. All processes that
are children of the process that created the queue can access it as long as the
process that created it is still running. However, other processes cannot share
the same unnamed queue. The queue is deleted when the process that created
it ends.

Named Queues

Your program creates (and deletes) named queues. You can name the queue
yourself or leave the naming to the language processor. Your program must
know the name of the queue to use a named queue. To obtain the name of the
queue, use the RXQUEUE function:
previous_queue=rxqueue("set",newqueuename)

This sets the new queue name and returns the name of the previous queue.

The following REXX instructions manipulate the queue:
v PULL or PARSE PULL—reads a string from the head of the queue. If the

queue is empty, these instructions take input from .INPUT.
v PUSH—stacks a line on top of the queue (LIFO).
v QUEUE—adds a string to the tail of the queue (FIFO).

REXX functions that manipulate QUEUE: as a device name are:
v LINEIN('QUEUE:')—reads a string from the head of the queue. If the queue

is empty, this takes input from .INPUT.
v LINEOUT('QUEUE:','string')—adds a string to the tail of the queue (FIFO).
v QUEUED—returns the number of items remaining in the queue.

Input and Output

398 Object REXX Reference



Here is an example of using a queue:

Special considerations:
v External programs that must communicate with a REXX procedure through

defined data queues can use the REXX-provided queue or the queue that
QUEUE: references (if the external program runs in a child process), or they
can receive the data queue name through some interprocess communication
technique, including argument passing, placement on a prearranged logical
queue, or the use of usual interprocess communication mechanisms (for
example, pipes, shared memory, or IPC queues).

v Named queues are available across the entire system. Therefore, the names
of queues must be unique within the system. If a queue named anyque
exists, using the following function:
newqueue = RXQUEUE('Create', 'ANYQUE')

results in an error.

Multiprogramming Considerations

The top-level REXX program in a process tree owns an unnamed queue.
However, any child process can modify the queue at any time. No specific
process or user owns a named queue. The operations that affect the queue are

/* */
/* push/pull WITHOUT multiprogramming support */
/* */
push date() time() /* push date and time */
do 1000 /* let's pass some time */
nop /* doing nothing */

end /* end of loop */
pull a b /* pull them */
say 'Pushed at ' a b ', Pulled at ' date() time() /* say now and then */

/* */
/* push/pull WITH multiprogramming support */
/* (no error recovery, or unsupported environment tests) */
/* */
newq = RXQUEUE('Create') /* create a unique queue */
oq = RXQUEUE('Set',newq) /* establish new queue */
push date() time() /* push date and time */
do 1000 /* let's spend some time */
nop /* doing nothing */

end /* end of loop */
pull a b /* get pushed information */
say 'Pushed at ' a b ', Pulled at ' date() time() /* tell user */
call RXQUEUE 'Delete',newq /* destroy unique queue created */
call RXQUEUE 'Set',oq /* reset to default queue (not required) */

Figure 23. Sample REXX Procedure Using a Queue

Input and Output

Chapter 16. Input and Output Streams 399



atomic—the subsystem serializes the resource so that no data integrity
problems can occur. However, you are responsible for the synchronization of
requests so that two processes accessing the same queue get the data in the
order it was placed on the queue.

A specific process owns (creates) an unnamed queue. When that process ends,
the language processor deletes the queue. Conversely, the named queues
created with RxQueue('Create', queuename) exist until you explicitly delete
them. The end of a program or procedure that created a named queue does
not force the deletion of the private queue. When the process that created a
queue ends, any data on the queue remains until the data is read or the queue
is deleted. (The function call RxQueue('Delete', queuename) deletes a queue.)

If a data queue is deleted by its creator, a procedure, or a program, the items
in the queue are also deleted.

Default Stream Names

A stream name can be a file, a queue, a pipe, or any device that supports
character-based input and output. If the stream is a file or device, the name
can be any valid file specification.

Linux defines three default streams:
v stdin (file descriptor 0) - standard input
v stdout (file descriptor 1) - standard output
v stderr (file descriptor 2) - standard error (output)

REXX provides .INPUT and .OUTPUT public objects. They default to the
default input and output streams of the operating system. The appropriate
default stream object is used when the call to a REXX I/O function includes
no stream name. The following REXX statements write a line to the default
output stream of the operating system:
Lineout(,'Hello World')
.Output∼lineout('Hello World')

REXX reserves the names STDIN, STDOUT, and STDERR to allow REXX functions
to refer to these stream objects. The checks for these names are not
case-sensitive; for example, STDIN, stdin, and sTdIn all refer to the standard
input stream object. If you need to access a file with one of these names,
qualify the name with a directory specification, for example, \stdin.

REXX also provides access to arbitrary file descriptors that are already open
when REXX is called. The stream name used to access the stream object is
HANDLE:x. x is the number of the file descriptor you wish to use. You can use

Input and Output

400 Object REXX Reference



HANDLE:x as any other stream name; it can be the receiver of a Stream class
method. If the value of x is not a valid file descriptor, the first I/O operation
to that object fails.

Notes:

1. Once you close a HANDLE:x stream object, you cannot reopen it.
2. HANDLE:x is reserved. If you wish to access a file or device with this name,

include a directory specification before the name. For example, \HANDLE:x
accesses the file HANDLE:x in the current directory.

3. Programs that use the .INPUT and .OUTPUT public objects are
independent of the operating environment.

Line versus Character Positioning

REXX lets you move the read or write position of a persistent stream object to
any location within the stream. You can specify this location in terms of
characters or lines.

Character positioning is based upon the view of a stream as a simple
collection of bytes of data. No special meaning is given to any single
character. Character positioning alone can move the stream pointer. For
example:
MyStream∼charin(10,0)

moves the stream pointer so that the tenth character in MyStream is the next
character read. But this does not return any data. If MyStream is opened for
reading or writing, any output that was previously written but is still buffered
is eliminated. Moving the write position always causes any buffered output to
be written.

Line positioning views a stream as a collection of lines of data. There are two
ways of positioning by lines. If you open a stream in binary mode and specify
a record length of x on the open, a line break occurs every x characters. Line
positioning in this case is an extension of character positioning. For example,
if you open a stream in binary mode with record length 80, then the following
two lines are exactly equivalent.
MyStream∼command(position 5 read line)
MyStream∼command(position 321 read char)

Remember that streams and other REXX objects are indexed starting with one
rather than zero.

The second way of positioning by lines is for non-binary streams. New-line
characters separate lines in non-binary streams. Because the line separator is
contained within the stream, ensure accurate line positioning. For example, it
is possible to change the line number of the current read position by writing

Input and Output

Chapter 16. Input and Output Streams 401



extra new-line characters ahead of the read position or by overwriting existing
new-line characters. Thus, line positioning in a non-binary stream object has
the following characteristics:
v To do line positioning, it is necessary to read the stream in circumstances

such as switching from character methods to line methods or positioning
from the end of the stream.

v If you rewrite a stream at a point prior to the read position, the line
number of the current read position could become inaccurate.

Note that for both character and line positioning, the index starts with one
rather than zero. Thus, character position 1 and line position 1 are equivalent,
and both point to the top of the persistent stream object. The REXX I/O
processing uses certain optimizations for positioning. These require that no
other process is writing to the stream concurrently and no other program uses
or manipulates the same low-level drive, directory specification, and file name
that the language processor uses to open the file. If you need to work with a
stream in these circumstances, use the system I/O functions.

Implementation

Usually, the dialog between a REXX program and you as the user takes place
on a line-by-line basis and is, therefore, carried out with the SAY, PULL, or
PARSE PULL instructions. This technique considerably enhances the usability
of many programs, because they can be converted to programmable dialogs
by using the external data queue to provide the input you generally type. Use
the PARSE LINEIN instruction only when it is necessary to bypass the
external data queue.

When a dialog is not on a line-by-line basis, use the serial interfaces the
CHARIN and CHAROUT methods provide. These methods are important for
input and output in transient stream objects, such as keyboards, printers, or
network environments.

Opening and closing of persistent stream objects, such as files, is largely
automatic. Generally the first CHARIN, CHAROUT, CHARS, LINEIN,
LINEOUT, or LINES message sent to a stream object opens that stream object.
It remains open until you explicitly close it with a CHAROUT or LINEOUT or
until the program ends. Using the LINEOUT method with only the name of a
stream object (and no output string or line) closes the named stream object.
The Stream class also provides OPEN and CLOSE methods and the
COMMAND method, which can explicitly open or close a stream object.

Input and Output

402 Object REXX Reference



If you open a stream with the CHARIN, CHAROUT, LINEIN, or LINEOUT
methods, it is opened for both reading and writing, if possible. You can use
the OPEN method or the COMMAND method to open a stream for read-only
or write-only operations.

Operating-System Specifics

The COMMAND method of the Stream class determines the state of an input
or output stream object and carries out specific operations (see “COMMAND”
on page 195). It allows REXX programs to open and close selected stream
objects for read-only, write-only, or read and write operations, to move the
read and write position within a stream object, to control the locking and
buffering characteristics, and to obtain information (such as the size and the
date of the last update).

Examples of Input and Output

In most circumstances, communication with a user running a REXX program
uses the default input and output stream objects. For a question and answer
dialog, the recommended technique is to use the SAY and PULL instructions
on the .INPUT and .OUTPUT objects. (You can use PARSE PULL if
case-sensitive input is needed.)

It is generally necessary to write to, or read from, stream objects other than
the default. For example, the following program copies the contents of one
stream to another.
/* filecopy.cmd */
/* This routine copies, as lines, the stream or */
/* file that the first argument names to the stream */
/* or file the second argument names. It is assumed */
/* that the name is not an object, as it could be */
/* if it is passed from another REXX program. */

parse arg inputname, outputname

inputobject = .stream∼new(inputname)
outputobject = .stream∼new(outputname)

signal on notready

do forever
outputobject∼lineout(inputobject∼linein)

end
exit

notready:
return

Input and Output

Chapter 16. Input and Output Streams 403



As long as lines remain in the named input stream, a line is read and is then
immediately written to the named output stream. This program is easy to
change so that it filters the lines before writing them.

The following example illustrates how character and line operations can be
mixed in a communications program. It converts a character stream into lines.
/* collect.cmd */
/* This routine collects characters from the stream */
/* the first argument names until a line is */
/* complete, and then places the line on the */
/* external data queue. */
/* The second argument is a single character that */
/* identifies the end of a line. */
parse arg inputname, lineendchar
inputobject = .stream∼new(inputname)

buffer='' /* zero-length character accumulator */
do forever
nextchar=inputobject∼charin
if nextchar=lineendchar then leave
buffer=buffer||nextchar /* add to buffer */
end

queue buffer /* place it on the external data queue */

Here each line is built up in a variable called BUFFER. When the line is
complete (for example, when the user presses the Enter key) the loop ends
and the language processor places the contents of BUFFER on the external data
queue. The program then ends.

Errors during Input and Output

The REXX language offers considerable flexibility in handling errors during
input or output. This is provided in the form of a NOTREADY condition that
the CALL ON and SIGNAL ON instructions can trap. The STATE and
DESCRIPTION methods can elicit further information.

When an error occurs during an input or output operation, the function or
method called usually continues without interruption (the output method
returns a nonzero count). Depending on the nature of the operation, a
program has the option of raising the NOTREADY condition. The
NOTREADY condition is similar to the ERROR and FAILURE conditions
associated with commands in that it does not cause a terminating error if the
condition is raised but is not trapped. After NOTREADY has been raised, the
following possibilities exist:
v If the NOTREADY condition is not trapped, processing continues without

interruption. The NOTREADY condition remains in the OFF state.

Input and Output

404 Object REXX Reference



v If SIGNAL ON NOTREADY traps the NOTREADY condition, the
NOTREADY condition is raised. Processing of the current clause stops
immediately, and the SIGNAL takes place as usual for condition traps.

v If CALL ON NOTREADY traps the NOTREADY condition, the
NOTREADY condition is raised, but execution of the current clause is not
halted. The NOTREADY condition is put into the delayed state, and
processing continues until the end of the current clause. While processing
continues, input methods that refer to the same stream can return the null
string and output methods can return an appropriate count, depending on
the form and timing of the error. At the end of the current clause, the CALL
takes place as usual for condition traps.

v If the NOTREADY condition is in the DELAY state (CALL ON NOTREADY
traps the NOTREADY condition, which has already been raised), processing
continues, and the NOTREADY condition remains in the DELAY state.

After the NOTREADY condition has been raised and is in DELAY state, the
“O” option of the CONDITION function returns the stream object being
processed when the stream error occurred.

The STATE method of the Stream class returns the stream object state as
ERROR, NOTREADY, or UNKNOWN. You can obtain additional information by using
the DESCRIPTION method of the Stream class.

Note: SAY .OUTPUT and PULL .INPUT never raise the NOTREADY condition.
However, the STATE and DESCRIPTION methods can return
NOTREADY.

Summary of REXX I/O Instructions and Methods

The following lists REXX I/O instructions and methods:
v CHARIN (see “CHARIN” on page 194)

v CHAROUT (see “CHAROUT” on page 194)

v CHARS (see “CHARS” on page 195)

v CLOSE (see “CLOSE” on page 195)

v COMMAND (see “COMMAND” on page 195)

v DESCRIPTION (see “DESCRIPTION” on page 202)

v FLUSH (see “FLUSH” on page 202)

v INIT (see “INIT” on page 202)

v LINEIN (see “LINEIN” on page 202)

v LINEOUT (see “LINEOUT” on page 203)

Input and Output

Chapter 16. Input and Output Streams 405



v LINES (see “LINES” on page 203)

v MAKEARRAY (see “MAKEARRAY” on page 204)

v OPEN (see “OPEN” on page 204)

v PARSE LINEIN (see “PARSE” on page 63)

v PARSE PULL (see “PARSE” on page 63)

v POSITION (see “POSITION” on page 206)

v PULL (see “PULL” on page 69)

v PUSH (see “PUSH” on page 70)

v QUALIFY (see “QUALIFY” on page 206)

v QUERY (see “QUERY” on page 206)

v QUEUE (see “QUEUE” on page 71)

v QUEUED (see “QUEUED” on page 288)

v SAY (see “SAY” on page 75)

v SEEK (see “SEEK” on page 208)

v STATE (see “STATE” on page 209)

Input and Output

406 Object REXX Reference



Chapter 17. Debugging Aids

In addition to the TRACE instruction described in “TRACE” on page 79, there
are the following debugging aids.

Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a program.
Adding the prefix character ? to the TRACE instruction or the TRACE
function (for example, TRACE ?I or TRACE(?I)) turns on interactive debugging
and indicates to the user that interactive debugging is active. Further TRACE
instructions in the program are ignored, and the language processor pauses
after nearly all instructions that are traced at the console (see page 408 for the
exceptions). When the language processor pauses, the following debug actions
are available:

v Entering a null line causes the language processor to continue with the
execution until the next pause for debugging input. Repeatedly entering a
null line, therefore, steps from pause point to pause point. For TRACE ?A, for
example, this is equivalent to single-stepping through the program.

v Entering an equal sign (=) with no blanks causes the language processor to
reexecute the clause last traced. For example, if an IF clause is about to take
the wrong branch, you can change the value of the variables on which it
depends, and then reexecute it.
Once the clause has been reexecuted, the language processor pauses again.

v Anything else entered is treated as a line of one or more clauses, and
processed immediately (that is, as though DO; line; END; had been inserted
in the program). The same rules apply as for the INTERPRET instruction
(for example, DO-END constructs must be complete). If an instruction
contains a syntax error, a standard message is displayed and you are
prompted for input again. Similarly, all other SIGNAL conditions are
disabled while the string is processed to prevent unintentional transfer of
control.
During interpretation of the string, no tracing takes place, except that
nonzero return codes from commands are displayed. The special variable
RC and the environment symbol .RS are not set by commands executed
from the string. Once the string has been processed, the language processor
pauses again for further debugging input.

Interactive debug is turned off in either of the following cases::
v A TRACE instruction uses the ? prefix while interactive debug is in effect

© Copyright IBM Corp. 1999 407



v At any time, if TRACE O or TRACE with no options is entered

The numeric form of the TRACE instruction can be used to allow sections of
the program to be executed without pause for debugging input. TRACE n (that
is, a positive result) allows execution to continue, skipping the next n pauses
(when interactive debugging is or becomes active). TRACE -n (that is, a
negative result) allows execution to continue without pause and with tracing
inhibited for n clauses that would otherwise be traced. The trace action a
TRACE instruction selects is saved and restored across subroutine calls. This
means that if you are stepping through a program (for example, after using
TRACE ?R to trace results) and then enter a subroutine in which you have no
interest, you can enter TRACE O to turn off tracing. No further instructions in
the subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing
is restored and, if tracing was off on entry to the subroutine, tracing and
interactive debugging are turned off until the next entry to the subroutine.

Because any instructions can be executed in interactive debugging you have
considerable control over the execution.

The following are some examples:
Say expr /* displays the result of evaluating the */

/* expression */

name=expr /* alters the value of a variable */

Trace O /* (or Trace with no options) turns off */
/* interactive debugging and all tracing */

Trace ?A /* turns off interactive debugging but */
/* continues tracing all clauses */

exit /* terminates execution of the program */

do i=1 to 10; say stem.i; end
/* displays ten elements of the array stem. */

Exceptions: Some clauses cannot safely be reexecuted, and therefore the
language processor does not pause after them, even if they are traced. These
are:
v Any repetitive DO clause, on the second or subsequent time around the

loop.
v All END clauses.
v All THEN, ELSE, OTHERWISE, or null clauses.
v All RETURN and EXIT clauses.

Debugging Aids

408 Object REXX Reference



v All SIGNAL clauses (but the language processor pauses after the target
label is traced).

v Any clause that causes a syntax error. They can be trapped by SIGNAL ON
SYNTAX, but cannot be reexecuted.

A pause occurs after a REPLY instruction, but the REPLY instruction cannot be
reexecuted.

RXTRACE Variable

When the interpreter starts the interpretation of a REXX procedure it checks
the setting of the special environment variable, RXTRACE. If RXTRACE has
been set to ON (not case-sensitive), the interpreter starts in interactive debug
mode as if the REXX instruction TRACE '?R' had been the first interpretable
instruction. All other settings of RXTRACE are ignored. RXTRACE is only
checked when starting a new REXX procedure.

To set an environment variable, use the export command. To query an
environment variable, use the echo command. To query all environment
variables, use the env command. To delete an environment variable, use the
unset command.

Debugging Aids

Chapter 17. Debugging Aids 409



410 Object REXX Reference



Chapter 18. Reserved Keywords

Keywords can be used as ordinary symbols in many unambiguous situations.
The precise rules are given in this chapter.

The free syntax of REXX implies that some symbols are reserved for use by
the language processor in certain contexts.

Within particular instructions, some symbols can be reserved to separate the
parts of the instruction. These symbols are referred to as keywords. Examples
of REXX keywords are the WHILE keyword in a DO instruction and the
THEN keyword, which acts as a clause terminator in this case, following an IF
or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a
clause and that are not followed by an “=” or “:” are checked to see if they
are instruction keywords. The symbols can be freely used elsewhere in clauses
without being understood as keywords.

Be careful with host commands or subcommands with the same name as
REXX keywords. To avoid problems, enclose the command or subcommand in
quotation marks. For example:
'rm' fn'.'ext

You can then also use the SIGNAL ON NOVALUE condition to check the
integrity of an executable.

© Copyright IBM Corp. 1999 411



412 Object REXX Reference



Chapter 19. Special Variables

A special variable can be set automatically during processing of a REXX
program. There are five special variables:

RC is set to the return code from any executed command
(including those submitted with the ADDRESS instruction).
After the trapping of ERROR or FAILURE conditions, it is also
set to the command return code. When the SYNTAX condition
is trapped, RC is set to the syntax error number (1–99). RC is
unchanged when any other condition is trapped.

Note: Commands executed manually during interactive
tracing do not change the value of RC.

RESULT is set by a RETURN instruction9 in a subroutine that has been
called, or a method that was activated by a message
instruction, if the RETURN instruction specifies an expression.
(See “EXIT” on page 51, “REPLY” on page 74, and “RETURN”
on page 75.) If the RETURN instruction has no expression,

RESULT is dropped (becomes uninitialized).

SELF is set when a method is activated. Its value is the object that
forms the execution context for the method (that is, the
receiver object of the activating message). You can use SELF
to:

v Run a method in an object in which a method is already
running. For example, a Find_Clues method is running in
an object called Mystery_Novel. When Find_Clues finds a
clue, it sends a Read_Last_Page message to Mystery_Novel:
self∼Read_Last_Page

v Pass references about an object to the methods of other
objects. For example, a Sing method is running in object
Song. The code Singer2∼Duet(self) would give the Duet
method access to the same Song.

SIGL is set to the line number of the last instruction that caused a
transfer of control to a label (that is, any SIGNAL, CALL,
internal function call, or trapped condition). See “The Special
Variable SIGL” on page 369.

SUPER is set when a method is activated. Its value is the class object

9. An EXIT or REPLY instruction also sets RESULT.

© Copyright IBM Corp. 1999 413



that is the usual starting point for a superclass method lookup
for the SELF object. This is the first immediate superclass of
the class that defined the method currently running. (See
“Classes and Instances” on page 7.)

The special variable SUPER lets you call a method in the
superclass of an object. For example, the following Savings
class has INIT methods that the Savings class, Account class,
and Object class define.
::class Account

::method INIT
expose balance
use arg balance
self∼init:super /* Forwards to the Object INIT method */

::method TYPE
return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self∼init:super(balance) /* Forwards to the Account INIT method */

::method type
return "a savings account"

When the INIT method of the Savings class is called, the
variable SUPER is set to the Account class object. The
instruction:
self∼init:super(balance) /* Forwards to the Account INIT method */

calls the INIT method of the Account class rather than
recursively calling the INIT method of the Savings class.
When the INIT method of the Account class is called, the
variable SUPER is assigned to the Object class.
self∼init:super /* Forwards to the Object INIT method */

calls the INIT method that the Object class defines.

You can alter these variables like any other variable, but the language
processor continues to set RC, RESULT, and SIGL automatically when
appropriate. The EXPOSE, PROCEDURE, USE and DROP instructions also
affect these variables.

Special Variables

414 Object REXX Reference



REXX also supplies functions that indirectly affect the execution of a program.
An example is the name that the program was called by and the source of the
program (which are available using the PARSE SOURCE instruction). In
addition, PARSE VERSION makes available the language version and date of
REXX implementation that is running. The built-in functions ADDRESS,
DIGITS, FUZZ, FORM, and TRACE return other settings that affect the
execution of a program.

Special Variables

Chapter 19. Special Variables 415



416 Object REXX Reference



Chapter 20. Useful Services

The following section describes useful commands and services.

Linux Commands

Most commonly used commands are:

cp copies files and directories.

mv moves files and directories.

rm deletes files and directories.

ls displays files and directories.

Any other Linux command can be used. For a description of these commands,
see the respective Linux documentation (for example, man—pages).

Subcommand Handler Services

For a complete subcommand handler description, see the Object REXX for
Linux: Programming Guide.

The RXSUBCOM Command

The RXSUBCOM command registers, drops, and queries REXX subcommand
handlers. A REXX procedure or script file can use RXSUBCOM to register
library subcommand handlers. Once the subcommand handler is registered, a
REXX program can send commands to the subcommand handler with the
REXX ADDRESS instruction. For example, REXX Dialog Manager programs
use RXSUBCOM to register the ISPCIR subcommand handler.
'rxsubcom REGISTER ISPCIR ISPCIR ISPCIR'
Address ispcir

See “ADDRESS” on page 42 for details of the ADDRESS instruction.

RXSUBCOM REGISTER

RXSUBCOM REGISTER registers a library subcommand handler. This
command makes a command environment available to REXX.

ÊÊ rxsubcom REGISTER envname libname procname ÊÍ

© Copyright IBM Corp. 1999 417



Parameters:

envname
The subcommand handler name. The REXX ADDRESS instruction uses
envname to send commands to the subcommand handler.

libname
The name of the library file containing the subcommand handler routine.

procname
The name of the library procedure within dllname that REXX calls as a
subcommand handler.

Return codes:

0 The command environment has been registered.

10 A duplicate registration has occurred. An envname subcommand
handler in a different library has already been registered. Both the
new subcommand handler and the existing subcommand handler can
be used.

30 The registration has failed. Subcommand handler envname in library
libname is already registered.

1002 RXSUBCOM was unable to obtain the memory necessary to register
the subcommand handler.

-1 A parameter is missing or incorrectly specified.

RXSUBCOM DROP

RXSUBCOM DROP deregisters a subcommand handler.

ÊÊ rxsubcom DROP envname
libname

ÊÍ

Parameters:

envname
The name of the subcommand handler.

libname
The name of the file containing the subcommand handler routine.

Return codes:

0 The subcommand handler was successfully deregistered.

30 The subcommand handler does not exist.

418 Object REXX Reference



40 The environment was registered by a different process as
RXSUBCOM_NONDROP.

-1 A parameter is missing or specified incorrectly.

RXSUBCOM QUERY

RXSUBCOM QUERY checks the existence of a subcommand handler. The
query result is returned.

ÊÊ rxsubcom QUERY envname
libname

ÊÍ

Parameters:

envname
The name of the subcommand handler.

libname
The name of the file containing the subcommand handler routine.

Return codes:

0 The subcommand handler is registered.

30 The subcommand handler is not registered.

-1 A parameter is missing or specified incorrectly.

RXSUBCOM LOAD

RXSUBCOM LOAD loads a subcommand handler library.

ÊÊ rxsubcom LOAD envname
libname

ÊÍ

Parameters:

envname
The name of the subcommand handler.

libname
The name of the file containing the subcommand handler routine.

Return codes:

0 The library was located and loaded successfully.

50 The library was not located or could not be loaded.

Chapter 20. Useful Services 419



-1 A parameter is missing or incorrectly specified.

The RXQUEUE Filter

ÊÊ rxqueue
queuename −FIFO

−LIFO
−CLEAR

ÊÍ

The RXQUEUE filter usually operates on the default queue named SESSION.
However, if an environment variable named RXQUEUE exists, the RXQUEUE
value is used for the queue name.

For a full description of REXX queue services for applications programming,
see “External Data Queue” on page 397.

Parameters:

queuename −LIFO
stacks items from STDIN last in, first out (LIFO) on a REXX queue.

queuename −FIFO
queues items from STDIN first in, first out (FIFO) on a REXX queue.

queuename −CLEAR
removes all lines from a REXX queue.

RXQUEUE takes output lines from another program and places them on a
REXX queue. A REXX procedure can use RXQUEUE to capture Linux
command and program output for processing. RXQUEUE can direct output to
any REXX queue, either FIFO (first in, first out) or LIFO (last in, first out).

RXQUEUE uses the environment variable RXQUEUE for the default queue
name. When RXQUEUE does not have a value, RXQUEUE uses SESSION for
the queue name.

The following example obtains the running processes stored in RXQUEUE
and displays them:
/* Sample program to show simple use of RXQUEUE */
/* Find out the running processes, using the */
/* 'ps' command. */

'ps |rxqueue' /* Put the data on the Queue */
do queued()
parse pull line
say line
end

420 Object REXX Reference



The following example processes output from the ls command:
/* Sample program to show how to use the RXQUEUE filter */
/* This program filters the output from an ls command, */
/* ignoring small files. It displays a list of the */
/* large files, and the total of the sizes of the large */
/* files. */

size_limit = 10000 /* The dividing line */
/* between large and small*/
size_total = 0 /* Sum of large file sizes*/
NUMERIC DIGITS 12 /* Set up to handle very */

/* large numbers */

/* Create a new queue so that this program cannot */
/* interfere with data placed on the queue by another */
/* program. */

queue_name = rxqueue('Create')
Call rxqueue 'Set', queue_name

'ls -l | rxqueue' queue_name

/* ls output starts with one header line */
Pull . /* discard header line */

/* Now all the lines are file or directory lines, */
/* except for one at the end. */

Do queued() - 1 /* loop for lines we want */
parse pull attr...size...name /* get one name and size */
/* If the attr field says "dxxx", we ignore this */
/* line. */
If size substr(attr,1,1)\='d' then
/* Now check size, and display */
If size > size_limit Then Do
Say format(size,12) name
size_total = size_total + size

End
End

Say 'The total size of those files is' size_total

/* Now we are done with the queue. We delete it, which */
/* discards the line remaining in it. */

Call rxqueue 'DELETE', queue_name

Chapter 20. Useful Services 421



Distributing Programs without Source

REXX supplies a utility called REXXC. You can use this utility to produce
versions of your programs that do not include the original program source.
You can then use these programs to replace any REXX program file that
includes the source, with the following restrictions:
1. The SOURCELINE built-in function returns 0 for the number of lines in

the program and raises an error for all attempts to retrieve a line.
2. A sourceless program cannot be traced. The TRACE instruction might run

without error, but instruction lines, expression results, or intermediate
expression values are not traced.

The syntax of the REXXC utility is:

ÊÊ rexxc inputfile
outputfile /s

ÊÍ

If you specify outputfile, the language processor processes the inputfile and
writes the executable version of the program to the outputfile. If the outputfile
already exists, it is replaced.

If the language processor detects a syntax error while processing the program,
it reports the error and stops processing without creating a new output file. If
you omit the outputfile, the language processor performs a syntax check on the
program without writing the executable version to a file.

You can use the /s option to suppress the display of the information about the
interpreter used.

Note: You can use the in-storage capabilities of the RexxStart programming
interface to process the file image of the output file.

422 Object REXX Reference



Appendix A. Using the DO Keyword

This appendix provides you with additional information about the DO
keyword.

Simple DO Group

If you specify neither repetitor nor conditional, the DO construct only groups a
number of instructions together. They are processed once. For example:
/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do
a=a+2
Say 'Smile!'
End

Repetitive DO Loops

If a DO instruction has a repetitor phrase, a conditional phrase, or both, the
group of instructions forms a repetitive DO loop. The instructions are processed
according to the repetitor phrase, optionally modified by the conditional
phrase. (See “Conditional Phrases (WHILE and UNTIL)” on page 426.)

Simple Repetitive Loops

A simple repetitive loop is a repetitive DO loop in which the repetitor phrase
is an expression that evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER,
the group of instructions is processed until the condition is satisfied or a
REXX instruction ends the loop (for example, LEAVE).

In the simple form of a repetitive loop, exprr is evaluated immediately (and
must result in a positive whole number or zero), and the loop is then
processed that many times.

Example:
/* This displays "Hello" five times */
Do 5
say 'Hello'
end

© Copyright IBM Corp. 1999 423



Note that, similar to the distinction between a command and an assignment, if
the first token of exprr is a symbol and the second token is (or starts with) =,
the controlled form of repetitor is expected.

Controlled Repetitive Loops

The controlled form specifies control1, a control variable that is assigned an
initial value (the result of expri, formatted as though 0 had been added) before
the first execution of the instruction list. The variable is then stepped by
adding the result of exprb before the second and subsequent times that the
instruction list is processed.

The instruction list is processed repeatedly as long as the end condition
(determined by the result of exprt) is not met. If exprb is positive or 0, the loop
is ended when control1 is greater than exprt. If negative, the loop is ended
when control1 is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
only once, before the loop begins and before the control variable is set to its
initial value. The default value for exprb is 1. If exprt is omitted, the loop runs
infinitely unless some other condition stops it.

Example:
Do I=3 to -2 by -1 /* Displays: */

say i /* 3 */
end /* 2 */

/* 1 */
/* 0 */
/* -1 */
/* -2 */

The numbers do not have to be whole numbers:

Example:
I=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */

say Y /* 1.0 */
end /* 1.7 */

/* 2.4 */
/* 3.1 */
/* 3.8 */

The control variable can be altered within the loop, and this can affect the
iteration of the loop. Altering the value of the control variable is not
considered good programming practice, though it can be appropriate in
certain circumstances.

Using the DO Keyword

424 Object REXX Reference



Note that the end condition is tested at the start of each iteration (and after
the control variable is stepped, on the second and subsequent iterations).
Therefore, if the end condition is met immediately, the group of instructions
can be skipped entirely. Note also that the control variable is referred to by
name. If, for example, the compound name A.I is used for the control
variable, altering I within the loop causes a change in the control variable.

The execution of a controlled loop can be limited further by a FOR phrase. In
this case, you must specify exprf, and it must evaluate to a positive whole
number or zero. This acts like the repetition count in a simple repetitive loop,
and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only
once—when the DO instruction is first processed and before the control
variable receives its initial value. Like the TO condition, the FOR condition is
checked at the start of each iteration.

Example:
Do Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */
say Y /* 0.3 */

end /* 1.0 */
/* 1.7 */

In a controlled loop, the control1 name describing the control variable can be
specified on the END clause. This name must match control1 in the DO clause
in all respects except the case (note that no substitution for compound
variables is carried out). Otherwise, a syntax error results. This enables the
nesting of loops to be checked automatically, with minimal overhead.

Example:
Do K=1 to 10
...
...
End k /* Checks that this is the END for K loop */

Note: The NUMERIC settings can affect the successive values of the control
variable because REXX arithmetic rules apply to the computation of
stepping the control variable.

Repetitive Loops over Collections

A collection loop specifies a control variable, control2, which receives a different
value on each repetition of the loop. These values are taken from successive
values of collection. The collection is any expression that evaluates to an object
that provides a MAKEARRAY method, including stem variables. The
collection returned determines the set of values and their order.

Using the DO Keyword

Appendix A. Using the DO Keyword 425



If the collection is a stem variable, the values are the tail names that have
been explicitly assigned to the given stem. The order of the tail names is
unspecified, and a program should not rely on any order.

For other collection objects, the MAKEARRAY method of the specific
collection class determines the values assigned to the control variable.

All values for the loop iteration are obtained at the beginning of the loop.
Therefore, changes to the target collection object do not affect the loop
iteration. For example, using DROP to change the set of tails associated with a
stem or using a new value as a tail does not change the number of loop
iterations or the values over which the loop iterates.

As with controlled repetition, you can specify the symbol that describes the
control variable on the END clause. The control variable is referenced by
name, and you can change it within the loop (although this would not usually
be useful). You can also specify the control variable name on an ITERATE or
LEAVE instruction.

Example:
Astem.=0
Astem.3='CCC'
Astem.24='XXX'
do k over Astem.
say k Astem.k
end k

This example can produce:
3 CCC
24 XXX

or:
24 XXX
3 CCC

See Figure 25 on page 429 for a diagram.

Conditional Phrases (WHILE and UNTIL)

A conditional phrase can modify the iteration of a repetitive DO loop. It can
cause the termination of a loop. It can follow any of the forms of repetitor
(none, FOREVER, simple, or controlled). If you specify WHILE or UNTIL,
exprw or expru, respectively, is evaluated after each loop using the latest
values of all variables, and the loop is ended if exprw evaluates to 0 or expru
evaluates to 1.

Using the DO Keyword

426 Object REXX Reference



For a WHILE loop, the condition is evaluated at the top of the group of
instructions. For an UNTIL loop, the condition is evaluated at the
bottom—before the control variable has been stepped.

Example:
Do I=1 to 10 by 2 until i>6
say i
end
/* Displays: "1" "3" "5" "7" */

Note: Using the LEAVE or ITERATE instructions can also modify the
execution of repetitive loops.

Using the DO Keyword

Appendix A. Using the DO Keyword 427



Figure 24. Concept of a DO Loop

Using the DO Keyword

428 Object REXX Reference



Figure 25. Concept of Repetitive Loop over Collection

Appendix A. Using the DO Keyword 429



430 Object REXX Reference



Appendix B. Migration

This appendix lists differences between Object REXX and earlier versions of
REXX, and between Object REXX for OS/2 and Object REXX for Linux.

Error Codes and Return Codes

Some error codes have changed and some have been added. Also, for most
errors you now receive two error messages. The first should be similar or
identical to the message you would have seen previously. The second
provides additional and more detailed information. So, for example, where
you formerly received “Invalid Call to Routine”, you now get further
information on what is wrong with the call.

Also, the return codes of host commands might be different.

Error Detection and Reporting

Some errors are now detected earlier. Formerly, REXX would wait until it
encountered an error during execution to report it to you. Now, some errors
are reported before the first instruction in your REXX script is executed. In
particular, syntax errors are reported after you have invoked the program, but
before it starts execution.

File Name Extensions

If you use the modified bash 2.01 you are able to use .cmd or .CMD files
directly. The command file must be executable. If you do not use the modified
bash you can start a command file with rexx filename. You can omit the rexx
call by adding #!/usr/local/orexx/bin/rexx in the first line of the command file.
In this case, the command file must be in executable mode. Remember,
however, that you then lose portability of the file to other environments.

Environment Variables

Environment variables set within an Object REXX program by the VALUE
function are not kept after the program termination.

You cannot use “export” to modify the environment.

© Copyright IBM Corp. 1999 431



Stems versus Collections

Stems are a general data structure that are powerful but abstract. In earlier
releases of REXX, you could use stems to create data structures of all types,
such as arrays, stacks, and queues. These data structures were semantically
neutral. Because stems were the basis for all of them, the code itself gave no
hint of which structure was implemented and for what purpose.

The best data structure job is not always the most powerful and abstract but
the most specific and restrictive. Object REXX provides a variety of data
structures in the collection classes. This helps reduce errors because you can
select the data structure that best meets your requirements. It also helps
eliminate the misuse of data structures and adds a semantic context that
makes programs easier to maintain.

Input and Output Using Functions and Methods

Do not use a mixture of methods and functions for input and output because
it can cause unpredictable results. For example, using the LINEOUT method
and the LINEOUT function on the same persistent stream object can cause
overlays.

When a REXX I/O function creates a stream object, the language processor
maintains the stream object. When an I/O method creates a stream object, it is
returned to the program to be maintained. Therefore, these two stream objects
are separate stream objects with different read and write pointers. The
program needs to synchronize the read and write pointers of both stream
objects. Otherwise, overlays would occur.

SEEK and POSITION Options of the STREAM Function

For the STREAM built-in function, the SEEK and POSITION options have
added a required parameter. You must specify READ or WRITE after offset.

.Environment

The .environment directory in Linux is local and not system-global as in
OS/2, whereas in Windows there is no difference in its scope.

432 Object REXX Reference



Deleting Environment Variables

Value(envvar,"","ENVIRONMENT") does not delete an environment variable
but sets the environment variable’s value to "". Use
Value(envvar,.nil,"ENVIRONMENT") to delete an environment variable.

Queuing

To improve performance it is recommended that you use the Queue class
instead of RXQUEUE whenever the queued data is not to be shared among
processes

Appendix B. Migration 433



434 Object REXX Reference



Appendix C. Error Numbers and Messages

The error numbers produced by syntax errors during the processing of REXX
programs are all in the range 1 to 99. Errors are raised in response to
conditions, for example, SYNTAX, NOMETHOD, and PROPAGATE. When the
condition is SYNTAX, the value of the error number is placed in the variable
RC when SIGNAL ON SYNTAX is trapped.

You can use the ERRORTEXT built-in function to return the text of an error
message.

Some errors have associated subcodes. A subcode is a one- to three-digit
decimal extension to the error number, for example, 115 in 40.115. When an
error subcode is available, additional information that further defines the
source of the error is given. The ERRORTEXT built-in function cannot retrieve
the secondary message, but it is available from the condition object created
when SIGNAL ON SYNTAX traps an error.

Some errors are only or not displayed under certain conditions:
v Errors 3 and 5 cannot be trapped by SIGNAL ON SYNTAX.
v Error 4 can only be trapped by SIGNAL ON HALT or CALL ON HALT.
v Errors 6 and 30 can only be trapped by SIGNAL ON SYNTAX if they occur

during the execution of an INTERPRET instruction.

Error List

Error 3 Failure during initialization

Explanation: The REXX program could not be
read from the disk.

The associated subcodes are:

1 Failure during initialization: File
“filename” is unreadable

901 Failure during initialization: Program
“program” was not found

902 Error writing output file “file”

903 Program “program_name” cannot be run
by this version of the REXX interpreter

Error 4 Program interrupted

Explanation: The system interrupted the
execution of your REXX program because of an
error or a user request.

The associated subcode is:

1 Program interrupted with condition
condition

Error 5 System resources exhausted

Explanation: While trying to execute a program,
the language processor was unable to get the
resources it needed to continue. For example, it
could not get the space needed for its work areas
or variables. The program that called the

© Copyright IBM Corp. 1999 435



language processor might itself have already
used up most of the available storage. Or a
request for storage might have been for more
than the implementation maximum.

Error 6 Unmatched “/*” or quote

Explanation: A comment or literal string was
started but never finished. This could be because
the language processor detected:

v The end of the program (or the end of the
string in an INTERPRET instruction) without
finding the ending “*/” for a comment or the
ending quotation mark for a literal string

v The end of the line for a literal string

The associated subcodes are:

1 Unmatched comment delimiter (“/*”)
on line line_number

2 Unmatched single quote (')

3 Unmatched double quote (")

Error 7 WHEN or OTHERWISE expected

Explanation: At least one WHEN construct (and
possibly an OTHERWISE clause) is expected
within a SELECT instruction. This message is
issued if any other instruction is found or there
is no WHEN construct before the OTHERWISE
or all WHEN expressions are false and an
OTHERWISE is not present. A common cause of
this error is if you forget the DO and END
around the list of instructions following a
WHEN. For example:

WRONG RIGHT

Select Select
When a=c then When a=c then DO
Say 'A equals C' Say 'A equals C'
exit exit
Otherwise nop end
end Otherwise nop
end

The associated subcodes are:

1 SELECT on line line_number requires
WHEN

2 SELECT on line line_number requires
WHEN, OTHERWISE, or END

3 All WHEN expressions of SELECT are
false; OTHERWISE expected

Error 8 Unexpected THEN or ELSE

Explanation: A THEN or an ELSE clause was
found that does not match a corresponding IF or
WHEN clause. This often occurs because of a
missing END or DO...END in the THEN part of
a complex IF...THEN...ELSE construction. For
example:

WRONG RIGHT

If a=c then do; If a=c then do;
Say EQUALS Say EQUALS
exit exit
else end
Say NOT EQUALS else
Say NOT EQUALS

The associated subcodes are:

1 THEN has no corresponding IF or
WHEN clause

2 ELSE has no corresponding THEN
clause

Error 9 Unexpected WHEN or
OTHERWISE

Explanation: A WHEN or OTHERWISE was
found outside of a SELECT construction. You
might have accidentally enclosed the instruction
in a DO...END construction by leaving out an
END, or you might have tried to branch to it
with a SIGNAL instruction (which does not work
because the SELECT is then ended).

The associated subcodes are:

1 WHEN has no corresponding SELECT

2 OTHERWISE has no corresponding
SELECT

Error 10 Unexpected or unmatched END

Explanation: More ENDs were found in your
program than DO or SELECT instructions, or the

436 Object REXX Reference



ENDs did not match the DO or SELECT
instructions.

This message also occurs if you try to transfer
control into the middle of a loop using SIGNAL.
In this case, the language processor does not
expect the END because it did not process the
previous DO instruction. Remember also that
SIGNAL deactivates any current loops, so it
cannot transfer control from one place inside a
loop to another.

Another cause for this message is placing an
END immediately after a THEN or ELSE
subkeyword or specifying a name on the END
keyword that does not match the name following
DO. Putting the name of the control variable on
ENDs that close repetitive loops can also help
locate this kind of error.

The associated subcodes are:

1 END has no corresponding DO or
SELECT

2 Symbol following END (“symbol”) must
either match control variable of DO
specification (“control_variable” on line
line_number) or be omitted

3 END corresponding to DO on line
line_number must not have a symbol
following it because there is no control
variable; found “symbol”

4 END corresponding to SELECT on line
line_number must not have a symbol
following; found “symbol”

5 END must not immediately follow
THEN

6 END must not immediately follow ELSE

Error 11 Control stack full

Explanation: Your program exceeds the nesting
level limit for control structures (for example,
DO...END and IF...THEN...ELSE).

This could be because of a looping INTERPRET
instruction, such as:

line='INTERPRET line'
INTERPRET line

These lines loop until they exceed the nesting
level limit and the language processor issues this
message. Similarly, a recursive subroutine or
internal function that does not end correctly can
loop until it causes this message.

The associated subcode is:

1 Insufficient control stack space; cannot
continue execution

Error 13 Invalid character in program

Explanation: A character was found outside a
literal (quoted) string that is not a blank or one
of the following:

(Alphanumeric Characters)
A through Z, a through z, 0 through 9

(Name Characters)
! _ ? .

(Special Characters)
& * ( ) - + = ¬ ' " ; : < , > / \ | % ∼ [ ]

The associated subcode is:

1 Incorrect character in program
“character” ('hex_character'X)

Error 14 Incomplete DO/SELECT/IF

Explanation: At the end of the program or the
string for an INTERPRET instruction, a DO or
SELECT instruction was found without a
matching END or an IF clause that is not
followed by a THEN clause. Putting the name of
the control variable on each END closing a
controlled loop can help locate this kind of error.

The associated subcodes are:

1 DO instruction on line line_number
requires matching END

2 SELECT instruction on line line_number
requires matching END

3 THEN on line line_number must be
followed by an instruction

4 ELSE on line line_number must be
followed by an instruction

Appendix C. Error Numbers and Messages 437



901 OTHERWISE on line line_number
requires matching END

Error 15 Invalid hexadecimal or binary
string

Explanation: Hexadecimal strings must not
have leading or trailing blanks and blanks can
only be embedded at byte boundaries. Only the
digits 0–9 and the letters a–f and A–F are
allowed. The following are valid hexadecimal
strings:

'13'x
'A3C2 1c34'x
'1de8'x

Binary strings can have blanks only at the
boundaries of groups of four binary digits. Only
the digits 0 and 1 are allowed. These are valid
binary strings:

'1011'b
'110 1101'b
'101101 11010011'b

You might have mistyped one of the digits, for
example, typing a letter O instead of the number
0. Or you might have used the one-character
symbol X or B (the name of the variable X or B,
respectively) after a literal string when the string
is not intended as a hexadecimal or binary
specification. In this case, use the explicit
concatenation operator (||) to concatenate the
string to the value of the symbol.

The associated subcodes are:

1 Incorrect location of blank in position
position in hexadecimal string

2 Incorrect location of blank in position
position in binary string

3 Only 0-9, a-f, A-F, and blank are valid in
a hexadecimal string; found “character”

4 Only 0, 1, and blank are valid in a
binary string; found “character”

Error 16 Label not found

Explanation: A SIGNAL instruction has been
executed or an event for which a trap was set
with SIGNAL ON has occurred, and the
language processor could not find the label
specified. You might have mistyped the label or
forgotten to include it.

The associated subcode is:

1 Label “label_name” not found

Error 17 Unexpected PROCEDURE

Explanation: A PROCEDURE instruction was
encountered at an incorrect position. This could
occur because no internal routines are active or
because the PROCEDURE instruction was not
the first instruction processed after the CALL
instruction or function call. One cause for this
error is dropping through to an internal routine,
rather than calling it with a CALL instruction or
a function call.

The associated subcodes are:

1 PROCEDURE is valid only when it is
the first instruction executed after an
internal CALL or function invocation

901 INTERPRET data must not contain
PROCEDURE

Error 18 THEN expected

Explanation: A THEN clause must follow each
REXX IF or WHEN clause. The language
processor found another clause before it found a
THEN clause.

The associated subcodes are:

1 IF instruction on line line_number
requires matching THEN clause

2 WHEN instruction on line line_number
requires matching THEN clause

Error 19 String or symbol expected

Explanation: A symbol or string was expected
after the CALL or SIGNAL keywords but none
was found. You might have omitted the string or

438 Object REXX Reference



symbol or inserted a special character (such as a
parenthesis).

The associated subcodes are:

1 String or symbol expected after
ADDRESS keyword

2 String or symbol expected after CALL
keyword

3 String or symbol expected after NAME
keyword

4 String or symbol expected after SIGNAL
keyword

6 String or symbol expected after TRACE
keyword

7 String or symbol expected after PARSE
keyword

901 String or symbol expected after ::CLASS
keyword

902 String or symbol expected after
::METHOD keyword

903 String or symbol expected after
::ROUTINE keyword

904 String or symbol expected after
::REQUIRES keyword

905 String or symbol expected after
EXTERNAL keyword

906 String or symbol expected after
METACLASS keyword

907 String or symbol expected after
SUBCLASS keyword

908 String or symbol expected after
INHERIT keyword

909 String or symbol expected after tilde (∼)

911 String or symbol expected after
superclass colon (:)

912 String or symbol expected after
STREAM keyword

913 String or symbol expected after
MIXINCLASS keyword

Error 20 Symbol expected

Explanation: A symbol is expected after CALL
ON, CALL OFF, END, ITERATE, LEAVE,
NUMERIC, PARSE, SIGNAL ON, or SIGNAL
OFF. Also, a list of symbols or variable references
is expected after DROP, EXPOSE, and
PROCEDURE EXPOSE. Either there was no
symbol when one was required or the language
processor found another token.

The associated subcodes are:

901 Symbol expected after DROP keyword

902 Symbol expected after EXPOSE keyword

903 Symbol expected after PARSE keyword

904 Symbol expected after PARSE VAR

905 NUMERIC must be followed by one of
the keywords DIGITS, FORM, or FUZZ;
found “symbol”

906 Symbol expected after “(” of a variable
reference

907 Symbol expected after LEAVE keyword

908 Symbol expected after ITERATE
keyword

909 Symbol expected after END keyword

911 Symbol expected after ON keyword

912 Symbol expected after OFF keyword

913 Symbol expected after USE ARG

914 Symbol expected after RAISE keyword

915 Symbol expected after USER keyword

916 Symbol expected after ::

917 Symbol expected after superclass colon
(:)

Error 21 Invalid data on end of clause

Explanation: A clause such as SELECT or NOP
is followed by a token other than a comment.

The associated subcodes are:

901 Data must not follow the NOP keyword;
found “data”

Appendix C. Error Numbers and Messages 439



902 Data must not follow the SELECT
keyword; found “data”

903 Data must not follow the NAME
keyword; found “data”

904 Data must not follow the condition
name; found “data”

905 Data must not follow the SIGNAL label
name; found “data”

906 Data must not follow the TRACE
setting; found “data”

907 Data must not follow the LEAVE control
variable name; found “data”

908 Data must not follow the ITERATE
control variable name; found “data”

909 Data must not follow the END control
variable name; found “data”

911 Data must not follow the NUMERIC
FORM specification; found “data”

912 Data must not follow the GUARD OFF
specification; found “data”

Error 22 Invalid character string

Explanation: A literal string contains character
codes that are not valid. This might be because
some characters are not possible, or because the
character set is extended and certain character
combinations are not allowed.

The associated subcode is:

1 Incorrect character string
“character_string” ('hex_string'X)

Error 23 Invalid data string

Explanation: A data string (that is, the result of
an expression) contains character codes that are
not valid. This might be because some characters
are not possible or because the character set is
extended and certain character combinations are
not allowed.

The associated subcode is:

1 Incorrect data string “string”
('hex_string'X)

Error 24 Invalid TRACE request

Explanation: This message is issued when:

v The option on a TRACE instruction or the
argument to the built-in function does not start
with A, C, E, F, I, L, N, O, or R.

v In interactive debugging, you entered a
number that is not a whole number.

The associated subcodes are:

1 TRACE request letter must be one of
“ACEFILNOR”; found “value”

901 Numeric TRACE requests are valid only
from interactive debugging

Error 25 Invalid subkeyword found

Explanation: An unexpected token was found
at this position of an instruction where a
particular subkeyword was expected. For
example, in a NUMERIC instruction, the second
token must be DIGITS, FUZZ, or FORM.

The associated subcodes are:

1 CALL ON must be followed by one of
the keywords ERROR, FAILURE, HALT,
NOTREADY, USER, or ANY; found
“word”

2 CALL OFF must be followed by one of
the keywords ERROR, FAILURE, HALT,
NOTREADY, USER, or ANY; found
“word”

3 SIGNAL ON must be followed by one
of the keywords ERROR, FAILURE,
HALT, LOSTDIGITS, NOTREADY,
NOMETHOD, NOSTRING, NOVALUE,
SYNTAX, USER, or ANY; found “word”

4 SIGNAL OFF must be followed by one
of the keywords ERROR, FAILURE,
HALT, LOSTDIGITS, NOTREADY,
NOMETHOD, NOSTRING, NOVALUE,
SYNTAX, USER, or ANY; found “word”

11 NUMERIC FORM must be followed by
one of the keywords SCIENTIFIC or
ENGINEERING; found “word”

12 PARSE must be followed by one of the

440 Object REXX Reference



keywords ARG, LINEIN, PULL,
SOURCE, VALUE, VAR, or VERSION;
found “word”

15 NUMERIC must be followed by one of
the keywords DIGITS, FORM, or FUZZ;
found “word”

17 PROCEDURE must be followed by the
keyword EXPOSE or nothing; found
“word”

901 Unknown keyword on ::CLASS
directive; found “word”

902 Unknown keyword on ::METHOD
directive; found “word”

903 Unknown keyword on ::ROUTINE
directive; found “word”

904 Unknown keyword on ::REQUIRES
directive; found “word”

905 USE must be followed by the keyword
ARG; found “word”

906 RAISE must be followed by one of the
keywords ERROR, FAILURE, HALT,
LOSTDIGITS, NOMETHOD,
NOSTRING, NOTREADY, NOVALUE,
or SYNTAX; found “word”

907 Unknown keyword on RAISE
instruction; found “word”

908 Duplicate DESCRIPTION keyword
found

909 Duplicate ADDITIONAL or ARRAY
keyword found

911 Duplicate RETURN or EXIT keyword
found

912 GUARD ON or GUARD OFF must be
followed by the keyword WHEN; found
“word”

913 GUARD must be followed by the
keyword ON or OFF; found “word”

914 CALL ON condition must be followed
by the keyword NAME; found “word”

915 SIGNAL ON condition must be
followed by the keyword NAME; found
“word”

916 Unknown keyword on FORWARD
instruction; found “keyword”

917 Duplicate TO keyword found

918 Duplicate ARGUMENTS or ARRAY
keyword found

919 Duplicate RETURN or CONTINUE
keyword found

921 Duplicate CLASS keyword found

922 Duplicate MESSAGE keyword found

Error 26 Invalid whole number

Explanation: An expression was found that did
not evaluate to a whole number or is greater
than the limit (the default is 999 999 999):

v Positional patterns in parsing templates
(including variable positional patterns)

v The operand to the right of the power (**)
operator

v The values of exprr and exprf in the DO
instruction

v The values given for DIGITS or FUZZ in the
NUMERIC instruction

v Any number used in the option of the TRACE
instruction.

This error is also raised if the value is not
permitted (for example, a negative repetition
count in a DO instruction), or the division
performed during an integer divide or remainder
operation does not result in a whole number.

The associated subcodes are:

2 Value of repetition count expression in
DO instruction must be zero or a
positive whole number; found “value”

3 Value of FOR expression in DO
instruction must be zero or a positive
whole number; found “value”

4 Positional pattern of PARSE template
must be a whole number; found “value”

Appendix C. Error Numbers and Messages 441



5 NUMERIC DIGITS value must be a
positive whole number; found “value”

6 NUMERIC FUZZ value must be zero or
a positive whole number; found “value”

7 Number used in TRACE setting must be
a whole number; found “value”

8 Operand to the right of the power
operator (**) must be a whole number;
found “value”

11 Result of % operation did not result in a
whole number

12 Result of // operation did not result in
a whole number

Error 27 Invalid DO syntax

Explanation: A syntax error was found in the
DO instruction. You probably used BY, TO, FOR,
WHILE, or UNTIL twice, used a WHILE and an
UTIL, or used BY, TO, or FOR when there is no
control variable specified.

The associated subcodes are:

1 WHILE and UNTIL keywords cannot be
used on the same DO loop

901 Incorrect data following FOREVER
keyword on the DO loop; found “data”

902 DO keyword keyword can be specified
only once

Error 28 Invalid LEAVE or ITERATE

Explanation: A LEAVE or ITERATE instruction
was found at an incorrect position. Either no
loop was active, or the name specified on the
instruction did not match the control variable of
any active loop.

Note that internal routine calls and the
INTERPRET instruction protect DO loops by
making them inactive. Therefore, for example, a
LEAVE instruction in a subroutine cannot affect a
DO loop in the calling routine.

You probably tried to use the SIGNAL
instruction to transfer control within or into a
loop. Because a SIGNAL instruction ends all

active loops, any ITERATE or LEAVE instruction
causes this message.

The associated subcodes are:

1 LEAVE is valid only within a repetitive
DO loop

2 ITERATE is valid only within a
repetitive DO loop

3 Symbol following LEAVE (“symbol”)
must either match the control variable
of a current DO loop or be omitted

4 Symbol following ITERATE (“symbol”)
must either match the control variable
of a current DO loop or be omitted

Error 29 Environment name too long

Explanation: The environment name specified
on the ADDRESS instruction is longer than
permitted for the system under which the
interpreter is running.

The associated subcode is:

1 Environment name exceeds limit
characters; found “environment_name”

Error 30 Name or string too long

Explanation: A variable name, label name,
literal (quoted) string has exceeded the allowed
limit of 250 characters.

The limit for names includes any substitutions. A
possible cause of this error is if you use a period
(.) in a name, causing an unexpected
substitution.

Leaving off an ending quotation mark for a
literal string, or putting a single quotation mark
in a string, can cause this error because several
clauses can be included in the string. For
example, write the string 'don't' as 'don't' or
"don't".

The associated subcodes are:

1 Name exceeds 250 characters: “name”

2 Literal string exceeds 250 characters:
“string”

442 Object REXX Reference



901 Hexadecimal literal string exceeds 250
characters: “string”

902 Binary literal string exceeds 250
characters: “string”

Error 31 Name starts with number or “.”

Explanation: A variable was found whose name
begins with a numeric digit or a period. You
cannot assign a value to such a variable because
you could then redefine numeric constants.

The associated subcodes are:

1 A value cannot be assigned to a
number; found “number”

2 Variable symbol must not start with a
number; found “symbol”

3 Variable symbol must not start with a
“.”; found “symbol”

Error 33 Invalid expression result

Explanation: The result of an expression was
found not to be valid in the context in which it
was used. Check for an illegal FUZZ or DIGITS
value in a NUMERIC instruction. FUZZ must not
become larger than DIGITS.

The associated subcodes are:

1 Value of NUMERIC DIGITS (“value”)
must exceed value of NUMERIC FUZZ
(“value”)

2 Value of NUMERIC DIGITS (“value”)
must not exceed value

901 Incorrect expression result following
VALUE keyword of ADDRESS
instruction

902 Incorrect expression result following
VALUE keyword of SIGNAL instruction

903 Incorrect expression result following
VALUE keyword of TRACE instruction

904 Incorrect expression result following
SYNTAX keyword of RAISE instruction

Error 34 Logical value not 0 or 1

Explanation: An expression was found in an IF,
WHEN, DO WHILE, or DO UNTIL phrase that
did not result in a 0 or 1. Any value operated on
by a logical operator (¬, |, &, or &&) must result
in a 0 or 1. For example, the phrase

If result then exit rc

fails if result has a value other than 0 or 1.
Thus, it would be better to write the phrase:

If result¬=0 then exit rc

The associated subcodes are:

1 Value of expression following IF
keyword must be exactly “0” or “1”;
found “value”

2 Value of expression following WHEN
keyword must be exactly “0” or “1”;
found “value”

3 Value of expression following WHILE
keyword must be exactly “0” or “1”;
found “value”

4 Value of expression following UNTIL
keyword must be exactly “0” or “1”;
found “value”

5 Value of expression to the left of the
logical operator “operator” must be
exactly “0” or “1”; found “value”

901 Logical value must be exactly “0” or
“1”; found “value”

902 Value of expression following GUARD
keyword must be exactly “0” or “1”;
found “value”

903 Authorization return value must be
exactly “0” or “1”; found “value”

Error 35 Invalid expression

Explanation: An expression contains a
grammatical error. Possible causes:

v An expression is missing when one is required

v You ended an expression with an operator

Appendix C. Error Numbers and Messages 443



v You specified, in an expression, two operators
next to one another with nothing in between
them

v You did not specify a right parenthesis when
one was required

v You used special characters (such as operators)
in an intended character expression without
enclosing them in quotation marks.

The associated subcodes are:

1 Invalid expression detected at “token”

901 Prefix operator “operator” is not
followed by an expression term

902 Missing conditional expression
following IF keyword

903 Missing conditional expression
following WHEN keyword

904 Missing initial expression for DO control
variable

905 Missing expression following BY
keyword

906 Missing expression following TO
keyword

907 Missing expression following FOR
keyword

908 Missing expression following WHILE
keyword

909 Missing expression following UNTIL
keyword

911 Missing expression following OVER
keyword

912 Missing expression following
INTERPRET keyword

913 Missing expression following OPTIONS
keyword

914 Missing expression following VALUE
keyword of an ADDRESS instruction

915 Missing expression following VALUE
keyword of a SIGNAL instruction

916 Missing expression following VALUE
keyword of a TRACE instruction

917 Missing expression following VALUE
keyword of a NUMERIC FORM
instruction

918 Missing expression following
assignment instruction

919 Operator “operator” is not followed by
an expression term

921 Missing expression following GUARD
keyword

922 Missing expression following
DESCRIPTION keyword of a RAISE
instruction

923 Missing expression following
ADDITIONAL keyword of a RAISE
instruction

924 Missing “(” on expression list of the
ARRAY keyword

925 Missing expression following TO
keyword of a FORWARD instruction

926 Missing expression following
ARGUMENTS keyword of a FORWARD
instruction

927 Missing expression following MESSAGE
keyword of a FORWARD instruction

928 Missing expression following CLASS
keyword of a FORWARD instruction

Error 36 Unmatched “(” or “[” in
expression

Explanation: A matched parenthesis or bracket
was found within an expression. There are more
left parentheses than right parentheses or more
left brackets than right brackets. To include a
single parenthesis in a command, enclose it in
quotation marks.

The associated subcodes are:

901 Left parenthesis “(” in position position
on line line_number requires a
corresponding right parenthesis “)”

902 Square bracket “[” in position position
on line line_number requires a
corresponding right square bracket “]”

444 Object REXX Reference



Error 37 Unexpected “,”, “)”, or “]”

Explanation: Either a comma was found outside
a function invocation, or there are too many right
parentheses or right square brackets in an
expression. To include a comma in a character
expression, enclose it in quotation marks. For
example, write the instruction:

Say Enter A, B, or C

as follows:

Say 'Enter A, B, or C'

The associated subcodes are:

1 Unexpected “,”

2 Unexpected “)” in expression

901 Unmatched “]” in expression

Error 38 Invalid template or pattern

Explanation: A special character that is not
allowed within a parsing template (for example,
%) has been found, or the syntax of a variable
pattern is incorrect (that is, no symbol was found
after a left parenthesis). This message is also
issued if you omit the WITH subkeyword in a
PARSE VALUE instruction.

The associated subcodes are:

1 Incorrect PARSE template detected at
“column_position”

2 Incorrect PARSE position detected at
“column_position”

3 PARSE VALUE instruction requires
WITH keyword

901 Missing PARSE relative position

Error 40 Incorrect call to routine

Explanation: An incorrect call to a routine was
found. Possible causes are:

v You passed incorrect data (arguments) to the
built-in or external routine.

v You passed too many arguments to the
built-in, external, or internal routine.

v The external routine called was not compatible
with the language processor.

If you did not try to call a routine, you might
have a symbol or a string adjacent to a “(” when
you meant it to be separated by a blank or other
operator. The language processor would treat
this as a function call. For example, write
TIME(4+5) as follows: TIME*(4+5).

The associated subcodes are:

1 External routine “routine” failed

3 Not enough arguments in invocation of
routine; minimum expected is number

4 Too many arguments in invocation of
routine; maximum expected is number

5 Missing argument in invocation of
routine; argument argument_number is
required

11 function_name argument
argument_number must be a number;
found “value”

12 function_name argument
argument_number must be a whole
number; found “value”

13 function_name argument
argument_number must be zero or
positive; found “value”

14 function_name argument
argument_number must be positive;
found “value”

19 function_name argument 2, “value”, is not
in the format described by argument 3,
“value”

21 function_name argument
argument_number must not be null

22 function_name argument
argument_number must be a single
character or null; found “value”

23 function_name argument
argument_number must be a single
character; found “value”

24 function_name argument

Appendix C. Error Numbers and Messages 445



argument_number must be a binary
string; found “value”

25 function_name argument
argument_number must be a hexadecimal
string; found “value”

26 function_name argument
argument_number must be a valid
symbol; found “value”

27 STREAM argument 1 must be a valid
stream name; found “value”

29 function_name conversion to format
“value” is not allowed

32 RANDOM difference between argument
1 (“argument”) and argument 2
(“argument”) must not exceed 100000

33 RANDOM argument 1 (“argument”)
must be less than or equal to argument
2 (“argument”)

34 SOURCELINE argument 1 (“argument”)
must be less than or equal to the
number of lines in the program
(program_lines)

35 X2D argument 1 cannot be expressed as
a whole number; found “value”

43 function_name argument
argument_number must be a single
non-alphanumeric character or the null
string; found “value”

44 function_name argument
argument_number, “value”, is a format
incompatible with the separator
specified in argument argument_number

901 Result returned by routine is longer than
length: “value”

902 function_name argument
argument_number must not exceed
999,999,999

903 function_name argument
argument_number must be in the range
0-99; found “value”

904 function_name argument
argument_number must be one of
“values”; found “value”

905 TRACE setting letter must be one of
ACEFILNOR; found “value”

912 function_name argument
argument_number must be a
single-dimensional array; found “value”

913 function_name argument
argument_number must have a string
value; found “value”

914 Unknown VALUE function variable
environment selector; found “value”

915 Program “program_name” cannot be used
with QUEUE:

Error 41 Bad arithmetic conversion

Explanation: A term in an arithmetic expression
is not a valid number or has an exponent outside
the allowed range of -999 999 999 to
+999 999 999.

You might have mistyped a variable name, or
included an arithmetic operator in a character
expression without putting it in quotation marks.

The associated subcodes are:

1 Nonnumeric value (“value”) used in
arithmetic operation

3 Nonnumeric value (“value”) used with
prefix operator

4 Value of TO expression in DO
instruction must be numeric; found
“value”

5 Value of BY expression in DO
instruction must be numeric; found
“value”

6 Value of control variable expression in
DO instruction must be numeric; found
“value”

7 Exponent exceeds number digits; found
“value”

901 Value of RAISE SYNTAX expression of
DO instruction must be numeric; found
“value”

446 Object REXX Reference



Error 42 Arithmetic overflow/underflow

Explanation: The result of an arithmetic
operation requires an exponent that is greater
than the limit of nine digits (more than
999 999 999 or less than -999 999 999).

This error can occur during the evaluation of an
expression (often as a result of trying to divide a
number by 0) or while stepping a DO loop
control variable.

The associated subcodes are:

1 Arithmetic overflow detected at: “value
operator value”

2 Arithmetic underflow detected at: “value
operator value”

3 Arithmetic overflow; divisor must not
be zero

901 Arithmetic overflow; exponent
(“exponent”) exceeds number digits

902 Arithmetic underflow; exponent
(“exponent”) exceeds number digits

903 Arithmetic underflow; zero raised to a
negative power

Error 43 Routine not found

Explanation: A function has been invoked
within an expression or a subroutine has been
invoked by a CALL, but it cannot be found.
Possible reasons:

v The specified label is not in the program

v It is not the name of a built-in function

v The language processor could not locate it
externally

Check if you mistyped the name.

If you did not try to call a routine, you might
have put a symbol or string adjacent to a ( when
you meant it to be separated by a blank or
another operator. The language processor then
treats it as a function call. For example, write the
string 3(4+5) as 3*(4+5).

The associated subcodes are:

1 Could not find routine “routine”

901 Could not find routine “routine” for
::REQUIRES

Error 44 Function or message did not
return data

Explanation: The language processor called an
external routine within an expression. The
routine seemed to end without error, but it did
not return data for use in the expression.

You might have specified the name of a program
that is not intended for use as a REXX function.
Call it as a command or subroutine instead.

The associated subcode is:

1 No data returned from function
“function”

Error 45 No data specified on function
RETURN

Explanation: A REXX program has been called
as a function, but returned without passing back
any data.

The associated subcode is:

1 Data expected on RETURN instruction
because routine “routine” was called as a
function

Error 46 Invalid variable reference

Explanation: Within an ARG, DROP, EXPOSE,
PARSE, PULL, or PROCEDURE instruction, the
syntax of a variable reference (a variable whose
value is to be used, indicated by its name being
enclosed in parentheses) is incorrect. The right
parenthesis that must immediately follow the
variable name might be missing or the variable
name might be misspelled.

The associated subcodes are:

1 Extra token (“token”) found in variable
reference list; “)” expected

901 Missing “)” in variable reference

Appendix C. Error Numbers and Messages 447



902 Extra token (“token”) found in USE ARG
variable reference; “,” or end of
instruction expected

Error 47 Unexpected label

Explanation: A label was used in the expression
being evaluated for an INTERPRET instruction
or in an expression entered during interactive
debugging. Remove the label from the
interpreted data.

The associated subcode is:

1 INTERPRET data must not contain
labels; found “label”

Error 48 Failure in system service

Explanation: The language processor stopped
processing the program because a system service,
such as stream input or output or the
manipulation of the external data queue, has
failed to work correctly.

The associated subcode is:

1 Failure in system service: service

Error 49 Interpretation error

Explanation: A severe error was detected in the
language processor or execution process during
internal self-consistency checks.

The associated subcode is:

1 Interpretation error: unexpected failure
initializing the interpreter

Error 90 External name not found

Explanation: An external class, method, or
routine (specified with the EXTERNAL option on
a ::CLASS, ::METHOD, or ::ROUTINE directive,
or as a second argument on a NEW message to
the Method class) cannot be found.

The associated subcodes are:

997 Unable to find external class “class”

998 Unable to find external method
“method”

999 Unable to find external routine “routine”

Error 91 No result object

Explanation: A message term requires a result
object, but the method did not return one.

The associated subcode is:

999 Message “message” did not return a
result object

Error 93 Incorrect call to method

Explanation: The specified method or built-in or
external routine exists, but you used it
incorrectly.

The associated subcodes are:

901 Not enough arguments in method;
number expected

902 Too many arguments in invocation of
method; number expected

903 Missing argument in method; argument
argument is required

904 Method argument argument must be a
number; found “value”

905 Method argument argument must be a
whole number; found “value”

906 Method argument argument must be
zero or a positive whole number; found
value

907 Method argument argument must be a
positive whole number; found “value”

908 Method argument argument must not
exceed limit; found “value”

909 Method argument argument must be in
the range 0-99; found “value”

911 Method argument argument must not be
null

912 Method argument argument must be a
hexadecimal string; found “value”

913 Method argument argument must be a
valid symbol; found “value”

448 Object REXX Reference



914 Method argument argument must be one
of arguments; found “value”

915 Method option must be one of
arguments; found “value”

916 Method argument argument must have a
string value

917 Method method does not exist

918 Incorrect list index “index”

919 Incorrect array position “position”

921 Argument missing on binary operator

922 Incorrect pad or character argument
specified; found “value”

923 Incorrect length argument specified;
found “value”

924 Incorrect position argument specified;
found “value”

925 Not enough subscripts for array; number
expected

926 Too many subscripts for array; number
expected

927 Length must be specified to convert a
negative value

928 D2X value must be a valid whole
number; found “value”

929 D2C value must be a valid whole
number; found “value”

931 Incorrect location of blank in position
position in hexadecimal string

932 Incorrect location of blank in position
position in binary string

933 Only 0-9, a-f, A-F, and blank are valid in
a hexadecimal string; character found
“character”

934 Only 0, 1, and blank are valid in a
binary string; character found
“character”

935 X2D result is not a valid whole number
with NUMERIC DIGITS digits

936 C2D result is not a valid whole number
with NUMERIC DIGITS digits

937 No more supplier items available

938 Method argument argument must have a
string value

939 Method argument argument must have a
single-dimensional array value

941 Exponent exponent is too large for
number spaces

942 Integer part integer is too large for
number spaces

943 method method target must be a number;
found “value”

944 Method argument argument must be a
message object

945 Missing argument in message array;
argument argument is required

946 A message array must be a
single-dimensional array with 2
elements

947 Method SECTION can be used only on
single-dimensional arrays

948 Method argument argument must be of
the class class

949 The index and value objects must be the
same for PUT to an index-only
collection

951 Incorrect alarm time; found “time”

952 Method argument argument is an array
and does not contain all string values

953 Method argument argument could not be
converted to type type

954 Method “method” can be used only on a
single-dimensional array

956 Element element of the array must be a
string

957 Element element of the array must be a
subclass of the target object

958 Positioning of transient streams is not
valid

Appendix C. Error Numbers and Messages 449



959 An array cannot contain more than
99,999,999 elements

961 Method argument argument must have a
string value or an array value

Error 97 Object method not found

Explanation: The object does not have a method
with the given name. A frequent cause of this
error is an uninitialized variable.

The associated subcode is:

1 Object “object” does not understand
message “message”

Error 98 Execution error

Explanation: The language processor detected a
specific error during execution.

The associated subcodes are:

902 Unable to convert object “object” to a
double-float value

903 Unable to load library “name”

904 Abnormal termination occurred

905 Deadlock detected on a guarded method

906 Incorrect object reference detected

907 Object of type “type” was required

908 Metaclass “metaclass” not found

909 Class “class” not found

911 Cyclic inheritance in program “program”

913 Unable to convert object “object” to a
single-dimensional array value

914 Unable to convert object “object” to a
string value

915 A message object cannot be sent more
than one SEND or START message

916 Message object “object” received an error
from message “message”

917 Incorrect condition object received for
RAISE OBJECT; found “value”

918 No active condition available for
PROPAGATE

919 Unable to convert object “object” to a
method

921 Could not retrieve “value” information
for method “method”

931 No method description information for
method “method” on class “class”

934 The number of OUT or INOUT type
arguments cannot exceed number

935 REPLY can be issued only once per
method invocation

936 RETURN cannot return a value after a
REPLY

937 EXIT cannot return a value after a
REPLY

938 Message search overrides can be used
only from methods of the target object

939 Additional information for SYNTAX
errors must be a single-dimensional
array of values

941 Unknown error number specified on
RAISE SYNTAX; found “number”

942 Class “class” must be a MIXINCLASS
for INHERIT

943 Class “class” is not a subclass of “class”
base class “class”

944 Class “class” cannot inherit from itself, a
superclass, or a subclass (“class”)

945 Class “class” has not inherited class
“class”

946 FORWARD arguments must be a
single-dimensional array of values

947 FORWARD can only be issued in an
object method invocation

948 Authorization failure: value

951 Concurrency not supported

952 servername class server not installed

450 Object REXX Reference



Error 99 Translation error

Explanation: An error was detected in the
language syntax.

The associated subcodes are:

901 Duplicate ::CLASS directive instruction

902 Duplicate ::METHOD directive
instruction

903 Duplicate ::ROUTINE directive
instruction

904 Duplicate ::REQUIRES directive
instruction

905 CLASS keyword on ::METHOD
directive requires a matching ::CLASS
directive

907 EXPOSE must be the first instruction
executed after a method invocation

908 INTERPRET data must not contain
EXPOSE

909 GUARD must be the first instruction
executed after EXPOSE or USE

911 GUARD can only be issued in an object
method invocation

912 INTERPRET data must not contain
GUARD

913 GUARD instruction did not include
references to exposed variables

914 INTERPRET data must not contain
directive instructions

915 INTERPRET data must not contain USE

916 Unrecognized directive instruction

917 Incorrect external directive name
“method”

918 USE ARG requires a “,” between
variable names; found “token”

919 REPLY can only be issued in an object
method invocation

921 Incorrect program line in method source
array

922 ::REQUIRES directives must appear
before other directive instructions

923 INTERPRET data must not contain
FORWARD

924 INTERPRET data must not contain
REPLY

925 An ATTRIBUTE method name must be
a valid variable name; found “name”

926 Incorrect class external; too many
parameters

927 “classname” is not a valid metaclass

928 Incorrect class external; class name
missing or invalid

929 Incorrect class external; invalid class
server “servername”

RXSUBCOM Utility Program

RXSUBCOM issues the following errors:

Error 115 The RXSUBCOM parameters are
incorrect.

Explanation: You can use RXSUBCOM as
follows:

RXSUBCOM REGISTER
Registers a library subcommand
handler. (See “RXSUBCOM REGISTER”
on page 417.)

RXSUBCOM DROP
Deregisters a subcommand handler. (See
“RXSUBCOM DROP” on page 418.)

RXSUBCOM QUERY
Checks the existence of a subcommand
handler. (See “RXSUBCOM QUERY” on
page 419.)

Appendix C. Error Numbers and Messages 451



RXSUBCOM LOAD
Loads a subcommand handler library.
(See “RXSUBCOM LOAD” on page 419.)

Check the RXSUBCOM parameters and retry the
command.

Error 116 The RXSUBCOM parameter
REGISTER is incorrect.

Explanation: Check the parameters (see
“RXSUBCOM REGISTER” on page 417) and retry
the command.

Error 117 The RXSUBCOM parameter
DROP is incorrect.

Explanation: Check the parameters (see
“RXSUBCOM DROP” on page 418) and retry the
command.

Error 118 The RXSUBCOM parameter
LOAD is incorrect.

Explanation: Check the parameters (see
“RXSUBCOM LOAD” on page 419) and retry the
command.

Error 125 The RXSUBCOM parameter
QUERY is incorrect.

Explanation: RXSUBCOM QUERY requires the
environment name to be specified. Check the
RXSUBCOM (see “RXSUBCOM QUERY” on
page 419) and retry the command.

RXQUEUE Utility Program

RXQUEUE issues the following errors:

Error 119 The REXX queuing system is not
initialized.

Explanation: The queuing system requires a
housekeeping program to run. This program
usually runs under the Presentation Manager®
shell. The program is not running.

Report this message to your IBM service
representative.

Error 120 The size of the data is incorrect.

Explanation: The data supplied to the
RXQUEUE command is too long.

The RXQUEUE program accepts data records
containing 0 - 65472 bytes. A record exceeded the
allowable limits.

Use shorter data records.

Error 121 Storage for data queues is
exhausted.

Explanation: The queuing system is out of
memory. No more storage is available to store
queued data.

Delete some queues or remove queued data from
the system. Then retry your request.

Error 122 The name name is not a valid
queue name.

Explanation: The queue name contains an
invalid character. Only the following characters
can appear in queue names:

'A'..'Z', '0'..'9', '.', '!', '?', '_'

Change the queue name and retry the command.

Error 123 The queue access mode is not
correct.

Explanation: An internal error occurred in
RXQUEUE.

452 Object REXX Reference



The RXQUEUE program tried to access a queue
with an incorrect access mode. Correct access
modes are LIFO and FIFO.

Report this message to your IBM service
representative.

Error 124 The queue name does not exist.

Explanation: The command attempted to access
a nonexistent queue.

Create the queue and try again, or use a queue
that has been created.

REXXC Utility Program

REXXC issues the following invocation error:

Error 127 The REXXC command parameters
are incorrect.

Explanation: The REXXC utility was invoked
with zero or more than two parameters. REXXC
accepts the following parameters:

v To check the syntax of a REXX program:

rexxc

v To convert a REXX program into a sourceless
executable file:

rexxc InProgramName [OutProgramName] [/s]

For more details, refer to REXXC command
(“Distributing Programs without Source” on
page 422.)

Error 128 Output file name must be
different from input file name.

Appendix C. Error Numbers and Messages 453



454 Object REXX Reference



Appendix D. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1999 455



improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement or any equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

Trademarks and Service Marks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

AIX
IBM
OS/2
Presentation Manager

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries..

456 Object REXX Reference



UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service
marks of others.

Appendix D. Notices 457



458 Object REXX Reference



Index

Special Characters
[]= method

of Array class 122
of Bag class 127
of Directory class 130
of List class 137
of Queue class 142
of Relation class 145
of Set class 151
of Stem class 191
of Table class 154

\== (strictly not equal operator) 22
[] method

of Array class 122
of Bag class 127
of Directory class 130
of List class 137
of Queue class 142
of Relation class 145
of Set class 151
of Stem class 191
of Table class 154

\= (not equal operator) 22
&& (exclusive OR operator) 23
% (integer division operator) 21,

355
\= method

of Object class 184
of String class 213

\==method
of Object class 184
of String class 215

\ (NOT operator) 23
** (power operator) 21, 355
// (remainder operator) 21, 355
== (strictly equal operator) 21, 22,

23, 354
*-* tracing flag 83
+++ tracing flag 83
+ (addition operator) 21, 354
& (AND logical operator) 23
: (colon)

as a special character 17
in a label 29

, (comma)
as continuation character 18
in CALL instruction 46
in function calls 251
in parsing template list 44, 347

, (comma) (continued)
separator of arguments 18, 251

/ (division operator) 21, 354
= (equal sign)

assignment indicator 30
equal operator 22
immediate debug command 407
in DO instruction 49
in parsing template 340

\> (not greater than operator) 23
\>> (strictly not greater than

operator) 23
\>> method 215
\> method 214
\< (not less than operator) 22
\<< (strictly not less than

operator) 23
\<< method 215
\< method 214
// method 213
** method 213
\ method 215
% method 213
&& method 215
== method

of Object class 184
of String class 214

* (multiplication operator) 21, 354
. (period)

as placeholder in parsing 337
causing substitution in variable

names 34
in numbers 353

- (subtraction operator) 21
::CLASS directive 87
- method 212
/ method 213
* method 212
& method 215
+ method 212
= method

of Object class 184
of String class 213

::METHOD directive 89
? prefix on TRACE option 81
::REQUIRES directive 91
::ROUTINE directive 92
>= (greater than or equal

operator) 22

>.> tracing flag 83
> (greater than operator) 22
>= method 214
>>= (strictly greater than or equal

operator) 23
>>= method 215
>> (strictly greater than

operator) 22, 23
>>> tracing flag 83
>> method 215
>< (greater than or less than

operator) 22
>< method

of Object class 184
of String class 213

> method 213
>C> tracing flag 83
>F> tracing flag 83
>L> tracing flag 83
>M> tracing flag 83
>O> tracing flag 83
>P> tracing flag 83
>V> tracing flag 83
<= (less than or equal operator) 23
< (less than operator) 22
<= method 214
<> (less than or greater than

operator) 22
<> method

of Object class 184
of String class 213

<<= (strictly less than or equal
operator) 23

<<= method 215
<< (strictly less than operator) 22,

23
<< method 215
< method 213
¬== (strictly not equal operator) 22,

23
¬= (not equal operator) 22
¬ (NOT operator) 23
¬> (not greater than operator) 23
¬>> (strictly not greater than

operator) 23
¬< (not less than operator) 22
¬<< (strictly not less than

operator) 23
.METHODS symbol 387

© Copyright IBM Corp. 1999 459



.RS symbol 387
∼ (tilde, or twiddle) 5
∼ (tilde or twiddle) 27
∼∼ 27
| (inclusive OR operator) 23
| method 215
|| concatenation operator 20
|| method 216

A
ABBREV function

description 258
example 258
testing abbreviations 258
using to select a default 258

ABBREV method 216
abbreviations

testing with ABBREV
function 258

testing with ABBREV
method 216

ABS function
description 258
example 258

ABS method 217
absolute value

finding using ABS function 258
finding using ABS method 217
used with power 355

abstract class, definition 96
abuttal 20
action taken when a condition is not

trapped 364
action taken when a condition is

trapped 365
active loops 60
activity 371
add external function 313
addition

operator 21
ADDRESS command

issuing commands to 42
ADDRESS function

description 259
determining current

environment 259
example 259

ADDRESS instruction
description 42
example 42
settings saved during subroutine

calls 48
address setting 43, 48
advanced topics in parsing 346
Alarm class 163
algebraic precedence 23

ALLAT method 146
ALLINDEX method 146
alphabetic character word options in

TRACE 80
alphabetics

checking with DATATYPE 223,
271

used as symbols 14
alphanumeric checking with

DATATYPE 223, 271
altering

flow within a repetitive DO
loop 60

special variables 39
TRACE setting 304

alternating exclusive scope
access 378

AND, logical operator 23
ANDing character strings

together 217, 261
ANY condition of SIGNAL and

CALL instructions 361
ARG function

description 259
example 260

ARG instruction
description 43
example 44

ARG option of PARSE
instruction 64

arguments
checking with ARG

function 259
of functions 43, 251
of programs 43
of subroutines 43, 45
passing in messages 27
passing to functions 251, 252
retrieving with ARG

function 259
retrieving with ARG

instruction 43
retrieving with the PARSE ARG

instruction 64
arithmetic

basic operator examples 356
comparisons 358
errors 359
exponential notation

example 357
numeric comparisons,

example 359
NUMERIC settings 62
operator examples 356
operators 21, 353, 354

arithmetic (continued)
overflow 356
precision 354
underflow 359

array
initialization of 32
setting up 34

Array class 120
ARRAYIN method 193
ARRAYOUT method 194
assigning data to variables 63
assignment

description 30
indicator (=) 30
of compound variables 35
of stem variables 32
several assignments 342

associative storage 34
AT method

of Array class 122
of Directory class 130
of List class 137
of Queue class 142
of Relation class 146
of Set class 151
of Table class 154

AVAILABLE method 245

B
B2X function

description 262
example 263

B2X method 219
backslash, use of 16, 23
Bag class 126
base class for mixins 96
Base option of DATE function 272
BASECLASS method 166
basic operator examples 356
BEEP function 261
binary

digits 14
strings

description 14
implementation

maximum 14
nibbles 14

to hexadecimal conversion 219,
262

BITAND function
description 261
example 261
logical bit operations 261

BITAND method 217
BITANDM function

logical bit operations 217

460 Object REXX Reference



BITOR function
description 261
example 262
logical bit operations,

BITOR 261
BITOR method 218
bits checked using DATATYPE 223,

271
BITXOR function

description 262
example 262
logical bit operations,

BITXOR 218, 262
BITXOR method 218
blanks

adjacent to special character 10
as concatenation operator 20
in parsing, treatment of 337
removal with STRIP

function 299
removal with STRIP method 235

boolean operations 23
bottom of program reached during

execution 51
bounded buffer 385
built-in functions

ABBREV 258
ABS 258
ADDRESS 259
ARG 259
B2X 262
BEEP 261
BITAND 261
BITOR 261
BITXOR 262
C2D 269
C2X 270
calling 45
CENTER 263
CENTRE 263
CHANGESTR 263
CHARIN 264
CHAROUT 265
CHARS 266
COMPARE 267
CONDITION 267
COPIES 269
COUNTSTR 269
D2C 277
D2X 277
DATATYPE 271
DATE 272
definition 45
DELSTR 275
DELWORD 275

built-in functions (continued)
description 258
DIGITS 276
DIRECTORY 276
ERRORTEXT 278
FILESPEC 279
FORM 279
FORMAT 280
FUZZ 281
INSERT 281
LASTPOS 282
LEFT 282
LENGTH 282
LINEIN 283
LINEOUT 284
LINES 286
MAX 286
MIN 287
OVERLAY 287
POS 288
QUEUED 288
RANDOM 288
REVERSE 289
RIGHT 289
SIGN 290
SPACE 291
STREAM 291
STRIP 299
SUBSTR 299
SUBWORD 300
SYMBOL 300
TIME 301
TRACE 304
TRANSLATE 304
TRUNC 305
VALUE 305
VAR 308
VERIFY 308
WORD 309
WORDINDEX 309
WORDLENGTH 309
WORDPOS 310
WORDS 310
X2B 311
X2C 311
X2D 312
XRANGE 310

built-in object 387
BY phrase of DO instruction 49

C
C2D function

description 269
example 269

C2D method 222

C2X function
description 270
example 270

C2X method 223
CALL instruction

description 45
example 48

calls
recursive 48

CANCEL method 164
CASELESS option in PARSE 64, 345
CENTER function

description 263
example 263

CENTER method 220
centering a string using

CENTER function 263
CENTER method 220

CENTRE method 220
change search order for

methods 103
changestr

description 263
example 264

CHANGESTR method 220
changing destination of

commands 42
character

definition 10
position of a string 230, 282
removal with STRIP

function 299
removal with STRIP method 235
strings, ANDing 217, 261
strings, exclusive-ORing 218,

262
strings, ORing 218, 261
to decimal conversion 222, 269
to hexadecimal conversion 223,

270
word options, alphabetic in

TRACE 80
character input and output 395, 407
character output streams 397
CHARIN function

description 264
example 264

CHARIN method
description 194
role in input and output 396

CHAROUT function
description 265
example 266

CHAROUT method
description 194

Index 461



CHAROUT method (continued)
role in input and output 194

CHARS function
description 266
example 266

CHARS method
description 195
role in input and output 396

checking arguments with ARG
function 259

class
Alarm 163
Array 120
Bag 126
Class 165
definition 7
Directory 129
List 136
Message 174
metaclasses 96
Method 178
Monitor 181
Object 183
object classes 95
Queue 141
Relation 144
Set 150
Stem 189
Stream 192
String 210
subclasses 8
superclasses 8
Supplier 244
Table 153
types

abstract 96
mixin 96
object 95

Class class 165
CLASS method 184
class methods 95
clauses

assignment 29, 30
commands 30
continuation of 18
description 9, 28
instructions 29
keyword instructions 30
labels 29
message instructions 29
null 28

CLOSE method 195
CMD command environment 42
code page 10
codes, error 435

collating sequence using
XRANGE 310

collection classes 119
collections of variables 306
COLLECTOR example

program 404
colon

as a special character 17
as label terminators 29
in a label 29

combining string and positional
patterns 347

comma
as continuation character 18
in CALL instruction 46
in function calls 251
in parsing template list 44, 347
separator of arguments 46, 251

command
alternative destinations 38
clause 30
destination of 42
errors, trapping 361
issuing to host 38

COMMAND method 195, 395
comments

line comment 10
standard comment 11

COMPARE function
description 267
example 267

COMPARE method 221
comparisons

description 22
numeric, example 359
of numbers 22, 358
of strings 221, 267

COMPLETED method 175
compound

symbols 34
variable

description 34
setting new value 32

concatenation
of strings 20
operator

|| 16, 20
abuttal 20
blank 20

conceptual overview of parsing 349
concurrency

alternating exclusive scope
access 378

conditional 378
default 374

concurrency (continued)
early reply 378
GUARD instruction 56, 378
guarded methods 378
message objects 373
object-based 371
SETUNGUARDED method 181,

377
UNGUARDED option 378

condition
action taken when not

trapped 364
action taken when trapped 365
ANY 361
definition 361
ERROR 361
FAILURE 362
HALT 362
information

described 367
saved 48

LOSTDIGITS 362
NOMETHOD 362
NOSTRING 362
NOTREADY 363
NOVALUE 363
saved during subroutine

calls 48
SYNTAX 363
trap information using

CONDITION 267
trapping of 361
traps, notes 366
USER 364

CONDITION function
description 267
example 268

conditional
loops 49
phrase 426

conditional concurrency 378
conditions

raising of 71
console

reading from with PULL 69
writing to with SAY 75

constant symbols 31
content addressable storage 34
continuation

character 18
clauses 18
example 18
of data for display 75

control variable 424
controlled loops 424

462 Object REXX Reference



conversion
binary to hexadecimal 219, 262
character to decimal 222, 269
character to hexadecimal 223,

270
conversion functions 257
decimal to character 226, 277
decimal to hexadecimal 227, 277
formatting numbers 228, 280
functions 313
hexadecimal to binary 241, 311
hexadecimal to character 242,

311
hexadecimal to decimal 243, 312

COPIES function
description 269
example 269

COPIES method 221
COPY method 184
copying a string using COPIES 221,

269
count from stream 265
counting

words in a string 241, 310
COUNTSTR function

description 269
example 269

COUNTSTR method 222
create external data queue 313
CURRENT method 182

D
D2C function

description 277
example 277
implementation maximum 277

D2C method 226
D2X function

description 277
example 278
implementation maximum 278

D2X method 227
data

abstraction 8
encapsulation 4
modularization 2
objects 18
size 19
terms 19

DATATYPE function
description 271
example 271

DATATYPE method 223
date and version of the language

processor 66

DATE function
description 272
example 273

debug interactive
interactive 79

decimal
arithmetic 353
to character conversion 226, 277
to hexadecimal conversion 227,

277
default

character streams 395
concurrency 374
environment 38
search order for methods 102
selecting with ABBREV

function 258
selecting with ABBREV

method 216
DEFAULTNAME method

of Class class 166
of Object class 184

DEFINE method 166
delayed state

description 362
of NOTREADY condition 405

DELETE method 167
deleting

part of a string 225, 275
words from a string 225, 275

DELSTR function
description 275
example 275

DELSTR method 225
DELWORD function

description 275
example 275

DELWORD method 225
derived names of variables 34
DESCRIPTION method 202
DESTINATION method 182
DIFFERENCE method

of Directory class 133
of Relation class 148
of Table class 156

DIGITS function
description 276
example 276

DIGITS option of NUMERIC
instruction 62, 354

DIMENSION method 122
directives

::CLASS 87
::METHOD 89
::REQUIRES 91

directives (continued)
::ROUTINE 87

Directory class 129
DIRECTORY function 276
division operator 21
DO instruction

description 49
example 425

drop external function 313
DROP instruction

description 50
example 50

dyadic operator 20

E
early reply 74, 371
elapsed-time clock

measuring intervals with 301
saved during subroutine

calls 48
encapsulation of data 4
END clause

specifying control variable 424
ENDLOCAL function 278
engineering notation 357
ENHANCED method 168
ENTRY method 130
environment

addressing of 42
default 43, 65
determining current using

ADDRESS function 259
name, definition 42
temporary change of 42

environment object 247
environment symbols 36, 247

.RS 387
equal

operator 22
sign

in parsing template 339, 340
to indicate assignment 16, 30

equality, testing of 22
error

definition 39
during execution of

functions 254
during stream input and

output 404
from commands 39
messages

list 435
retrieving with

ERRORTEXT 278
syntax 435
traceback after 84

Index 463



error (continued)
trapping 39

error codes 435
ERROR condition of SIGNAL and

CALL instructions 367
error messages and codes 435
ERRORTEXT function

description 278
example 279

European option of DATE
function 272

evaluation of expressions 19
example

[] 38
::CLASS directive 88
::METHOD directive 91
::ROUTINE directive 92
ABBREV function 258
ABBREV method 216
ABS function 258
ABS method 217
ADDRESS function 259
ADDRESS instruction 42
Alarm class 164
ARG function 260
ARG instruction 44
arithmetic methods of String

class 213
Array class 125
B2X function 263
B2X method 219
basic arithmetic operators 356
BITAND function 261
BITAND method 218
BITOR function 262
BITOR method 218
BITXOR function 262
BITXOR method 219
C2D function 269
C2D method 222
C2X function 270
C2X method 223
CALL instruction 48
CENTER function 263
CENTER method 220
CENTRE function 263
CENTRE method 220
CHANGESTR function 264
CHANGESTR method 220
character 18
CHARIN function 264
CHAROUT function 266
CHARS function 266
clauses 18

example (continued)
combining positional pattern and

parsing into words 38
combining string and positional

patterns 348
combining string pattern and

parsing into words 342
COMMAND method

Open option 198
Query option 200
Seek option 200

COMPARE function 267
COMPARE method 221
comparison methods of String

class 214
concatenation methods of String

class 216
CONDITION function 268
continuation 18
COPIES function 269
COPIES method 221
COPY method 184
COUNTSTR function 269
COUNTSTR method 222
D2C function 277
D2C method 226
D2X function 278
D2X method 227
DATATYPE function 271
DATATYPE method 224
DATE function 273
DEFAULTNAME method 166
DEFINE method 167
DELETE method 167
DELSTR function 275
DELSTR method 225
DELWORD function 275
DELWORD method 225
DIGITS function 276
Directory class 135
DO instruction 425
DROP instruction 50
ENHANCED method 168
ERRORTEXT function 279
example 220, 221
EXIT instruction 51
exponential notation 357
EXPOSE instruction 53
expressions 25
FORM function 279
FORMAT function 280
FORMAT method 228
FORWARD instruction 55
FUZZ function 281
GUARD instruction 56

example (continued)
ID method 38
IF instruction 57
INHERIT method 169
INSERT function 281
INSERT method

of List class 138
of String class 229

INTERPRET instruction 58, 59
ITERATE instruction 60
LASTPOS function 282
LASTPOS method 230
LEAVE instruction 61
LEFT function 282
LEFT method 230
LENGTH function 282
LENGTH method 231
line comments 10
LINEIN function 283
LINEOUT function 285
LINES function 286
logical methods of String

class 215
MAX function 286
MAX method 231
Message class 178
message instruction 38
metaclass 98
METHOD method 170
METHODS method 171
MIN function 287
MIN method 232
MIXINCLASS method 171
Monitor class 182
NEW method 172
NOP instruction 62
NOTIFY method 176
numeric comparisons 359
OBJECTNAME= method 185
OPEN method 206
OVERLAY function 287
OVERLAY method 232
parsing instructions 345
parsing multiple strings in a

subroutine 347
period as a placeholder 337
POS function 288
POS method 233
PROCEDURE instruction 67
PULL instruction 70
PUSH instruction 70
QUERY method 206
QUEUE instruction 71
QUEUED function 288
RAISE instruction 73

464 Object REXX Reference



example (continued)
RANDOM function 38
REPLY instruction 74
RESULT method 177
REVERSE function 289
REVERSE method 233
RIGHT function 289
RIGHT method 234
SAY instruction 76
SEEK method 209
SELECT instruction 77
SIGL, special variable 369
SIGN function 290
SIGN method 234
SIGNAL instruction 79
simple templates, parsing 335
SOURCELINE function 291
SPACE function 291
SPACE method 234
special characters 17
standard comments 11
START method 188
STREAM function 292
STRIP function 299
STRIP method 235
SUBCLASS method 173
SUBSTR function 299
SUBSTR method 236
SUBWORD function 300
SUBWORD method 236
SUPERCLASSES method 174
Supplier class 246
SYMBOL function 300
templates containing positional

patterns 339
templates containing string

patterns 338
TIME function 302
TRACE function 304
TRACE instruction 83
TRANSLATE function 305
TRANSLATE method 237
TRUNC function 305
TRUNC method 238
UNINHERIT method 174
USE instruction 84
using a variable as a positional

pattern 344
using a variable as a string

pattern 344
VALUE function 306
VAR function 308
VERIFY function 309
VERIFY method 239
WORD function 309

example (continued)
WORD method 38
WORDINDEX function 309
WORDINDEX method 240
WORDLENGTH function 309
WORDLENGTH method 240
WORDPOS function 310
WORDPOS method 241
WORDS function 310
WORDS method 241
X2B function 311
X2B method 242
X2C function 312
X2C method 242
X2D function 312
X2D method 243
XRANGE function 311

examples of programs 403
exception conditions saved during

subroutine calls 48
exclusive OR operator 23
exclusive-ORing character strings

together 218, 262
execution

by language processor 1
of data 58

EXIT instruction
description 51
example 51

exponential notation
description 356
example 357
usage 15

exponentiation
description 356
operator 21

EXPOSE instruction
description 52
example 53

EXPOSE option of PROCEDURE
instruction 66

exposed variable 67
expressions

evaluation 19
examples 25
parsing of 66
results of 19
tracing results of 81

external character streams 395
external data queue

counting lines in 288
creating and deleting

queues 314
description 397

external data queue (continued)
naming and querying

queues 288
reading from with PULL 69
RXQUEUE function 314
writing to with PUSH 70
writing to with QUEUE 71

external functions
description 252
search order 253

external routine
calling 45
definition 45

external subroutines
description 252

external variables
access with VALUE

function 306
extracting

substring 236, 299
word from a string 239, 309
words from a string 236, 300

F
failure, definition 39
FAILURE condition of SIGNAL and

CALL instructions 362, 367
FIFO (first-in/first-out) stacking 71
file name, extension, path of

program 65
FILECOPY example program 403
files 395
FILESPEC function 279
finding

mismatch using COMPARE 221,
267

string in another string 233, 288
string length 231, 282
word length 240, 309

FIRST method
of Array class 123
of List class 137

FIRSTITEM method 138
flags, tracing

*-* 83
+++ 83
>.> 83
>>> 83
>C> 83
>F> 83
>L> 83
>M> 83
>O> 83
>P> 83
>V> 83

Index 465



flow of control
unusual, with CALL 361
unusual, with SIGNAL 361
with CALL and RETURN 45
with DO construct 49
with IF construct 57
with SELECT construct 76

FLUSH method 202
FOR phrase of DO instruction 49
FOREVER repetitor on DO

instruction 49
FORM function

description 279
example 279

FORM option of NUMERIC
instruction 62, 358

FORMAT function
description 280
example 280

FORMAT method 228
formatting

numbers for display 280
numbers with TRUNC 238, 305
of output during tracing 83
text centering 220, 263
text left justification 230, 282
text right justification 234, 289
text spacing 234, 291

FORWARD instruction
description 53
example 55

functions 251, 313, 317
ABS 258
ADDRESS 259
ARG 259
B2X 262
BITAND 261
BITOR 261
BITXOR 262
built-in 258, 312
built-in, description 257
C2D 269
C2X 270
call, definition 251
calling 251
CENTER 263
CENTRE 263
CHANGESTR 263
COMPARE 267
CONDITION 267
COPIES 269
COUNTSTR 269
D2C 277
D2X 277
DATATYPE 271

functions 272, 313, 317 (continued)
DATE 258
definition 251
DELSTR 275
DELWORD 275
description 251
DIGITS 276
ENDLOCAL 278
ERRORTEXT 278
external 252
forcing built-in or external

reference 253
FORM 279
FORMAT 280
FUZZ 281
INSERT 281
internal 252
LASTPOS 282
LEFT 282
LENGTH 282
MAX 286
MIN 287
numeric arguments of 359
OVERLAY 287
POS 288
QUEUED 288
RANDOM 288
return from 75
REVERSE 289
RIGHT 289
SETLOCAL 290
SIGN 290
SOURCELINE 291
SPACE 291
STREAM 291
STRIP 299
SUBSTR 299
SUBWORD 300
SYMBOL 300
TIME 301
TRACE 304
TRANSLATE 304
TRUNC 305
VALUE 305
VAR 308
variables in 66
VERIFY 308
WORD 309
WORDINDEX 309
WORDLENGTH 309
WORDPOS 310
WORDS 310
X2B 311
X2C 311
X2D 312

functions 310, 313, 317 (continued)
XRANGE 258

FUZZ
controlling numeric

comparison 358
option of NUMERIC

instruction 62, 358
FUZZ function

description 281
example 281

G
general concepts 1, 40
global variables

access with VALUE
function 306

GOTO, unusual 361
greater than operator 22
greater than or equal operator

(>=) 22
greater than or less than operator

(><) 22
group, DO 423
grouping instructions to run

repetitively 49
GUARD instruction

description 56
example 56

guarded methods 378

H
halt, trapping 362
HALT condition of SIGNAL and

CALL instructions 362, 367
HASENTRY method 131
HASINDEX method

of Array class 123
of Bag class 128
of Directory class 131
of List class 138
of Queue class 142
of Relation class 146
of Set class 152
of Table class 154

HASITEM method 146
HASMETHOD method 185
hexadecimal

checking with DATATYPE 223,
271

digits 13
strings

description 13
implementation

maximum 14
to binary, converting with

X2B 241, 311

466 Object REXX Reference



hexadecimal (continued)
to character, converting with

X2C 223, 311
to decimal, converting with

X2D 243, 312
host commands

issuing commands to underlying
operating system 38

hours calculated from midnight 302

I
ID method 168
IF instruction

description 57
example 57

implementation maximum
binary strings 14
D2C function 277
D2C method 226
D2X function 278
D2X method 227
hexadecimal strings 14
literal strings 13
numbers 16
TIME function 303

implied semicolons 17
imprecise numeric comparison 358
inclusive OR operator 23
indentation during tracing 83
INDEX method

of Relation class 146
of Supplier class 245

indirect evaluation of data 58
inequality, testing of 22
infinite loops 49, 424
information hiding 5
INHERIT method 169
inheritance 8
INIT method

of Alarm class 164
of Class class 169
of Message class 175
of Monitor class 182
of Object class 185
of Stream class 202

initialization
of arrays 32
of compound variables 32

input, errors during 404
input and output

functions
CHARIN 264
CHAROUT 265
CHARS 266
LINEIN 283
LINEOUT 284

input and output (continued)
functions (continued)

LINES 264
STREAM 291

methods 193
model 395
streams 395

input from the user 395
input object 249
input streams 396
input to PULL from STDIN 69
input to PULL from the

keyboard 69
INSERT function

description 281
example 281

INSERT method
of List class 138
of String class 229

inserting a string into another 229,
281

instance methods 8, 95
instances

definition 7
instructions

ADDRESS 42
ARG 43
CALL 45
definition 29
DO 49
DROP 50
EXIT 51
EXPOSE 52
FORWARD 53
GUARD 56, 378
IF 57
INTERPRET 58
ITERATE 60
keyword 30

description 41
LEAVE 61
message 29, 37
NOP 61
NUMERIC 62
PARSE 63
parsing, summary 345
PROCEDURE 66
PULL 69
PUSH 70
QUEUE 71
RAISE 71
REPLY 74
RETURN 75
SAY 75
SELECT 76

instructions (continued)
SIGNAL 42
TRACE 79
USE 84

integer
arithmetic 353
division

description 353, 355
operator 21

interactive debug 79
internal

functions
description 252
return from 75
variables in 66

routine
calling 45
definition 45

INTERPRET instruction
description 58
example 58, 59

interpretive execution of data 58
INTERSECTION method

of Directory class 134
of Relation class 148
of Table class 156

invoking
built-in functions 45
routines 45

ITEM method 245
ITEMS method

of Array class 123
of Directory class 131
of List class 139
of Queue class 142
of Relation class 147
of Set class 152
of Table class 155

ITERATE instruction
description 60
example 60
use of variable on 60

J
justification, text right, RIGHT

function 289
justification, text right, RIGHT

method 234

K
keyword

conflict with commands 411
description 41
mixed case 41
reservation of 411

Index 467



L
label

as target of CALL 45
as target of SIGNAL 78
description 29
duplicate 79
in INTERPRET instruction 59
search algorithm 78

language
processor, execution 1
processor date and version 66
structure and syntax 9

Language (local) option of DATE
function 273

LAST method
of Array class 123
of List class 139

LASTITEM method 139
LASTPOS function

description 282
example 282

LASTPOS method 230
leading

blank removal with STRIP
function 299

blank removal with STRIP
method 235

zeros
adding with RIGHT

method 234
adding with the RIGHT

function 289
removing with STRIP

function 299
removing with STRIP

method 235
LEAVE instruction

description 61
example 61
use of variable on 61

leaving your program 51
LEFT function

description 282
example 282

LEFT method 230
LENGTH function

description 282
example 282

LENGTH method 231
less than operator (<) 22
less than or equal operator (<=) 23
less than or greater than operator

(<>) 22
LIFO (last-in, first-out) stacking 70
line input and output 395

LINEIN function
description 283
example 283

LINEIN method
description 203
role in input and output 396

LINEIN option of PARSE
instruction 65

LINEOUT function
description 284
example 285

LINEOUT method
description 203
role in input and output 397

lines
from stream 65

LINES function
description 286
example 286
from a program retrieved with

SOURCELINE 291
from stream 283
remaining in stream 286

LINES method
description 203
role in input and output 396

list, adding object to 138
List class 136
literal string

description 12
implementation maximum 13
patterns 338

locating
string in another string 233, 288
word in a string 240, 309

logical
bit operations

BITAND 217, 261
BITOR 218, 261
BITXOR 218, 262

operations 23
logical NOT character 16
logical OR operator 16
loops

active 60
execution model 427
modification of 60
over collection 425
repetitive 423
termination of 61

LOSTDIGITS condition of SIGNAL
instruction 362

LOWER option in PARSE 64, 344
lowercase symbols 14

M
MAKEARRAY method

of Array class 123
of Bag class 128
of Directory class 131
of List class 139
of Queue class 143
of Relation class 147
of Set class 152
of Stem class 192
of Stream class 204
of Table class 155

MAKESTRING method 231
manipulate external data queue 313
MAX function

description 286
example 286

MAX method 231
Message class 174
message instructions 29, 37
message-send operator (∼) 5
message sequence

instructions 37
messages 5
messages, error 435
messages to objects

∼, using 27
∼∼, using 27
operator as message 20

METACLASS method 170
metaclasses 96
method

- 212
/ 213
* 212
& 215
+ 212
=

of Object class 184
of String class 213

// 213
** 213
\ 215
% 213
&& 215
==

of Object class 184
of String class 214

\=
of Object class 184
of String class 213

\==
of Object class 184
of String class 215

468 Object REXX Reference



method (continued)
[]

of Array class 122
of Bag class 127
of Directory class 130
of List class 137
of Queue class 142
of Relation class 145
of Set class 151
of Stem class 191
of Table class 154

[]=
of Array class 122
of Bag class 127
of Directory class 130
of List class 137
of Queue class 142
of Relation class 145
of Set class 151
of Stem class 191
of Table class 154

\> 214
\>> 215
\< 214
\<< 215
> 213
>= 214
>> 215
>>= 215
><

of Object class 184
of String class 213

< 213
<= 214
<>

of Object class 184
of String class 213

<< 215
<<= 215
| 215
|| 216
ABBREV 216
ABS 217
ALLAT 146
ALLINDEX 146
ARRAYIN 193
ARRAYOUT 194
AT

of Array class 122
of Directory class 130
of List class 137
of Queue class 142
of Relation class 146
of Set class 151
of Table class 154

method (continued)
AVAILABLE 212
B2X 219
BASECLASS 166
BITAND 217
BITOR 218
BITXOR 218
C2D 222
C2X 223
CANCEL 164
CENTER 220
CENTRE 220
CHANGESTR 220
CHARIN 194
CHAROUT 194
CHARS 195
CLASS 184
CLOSE 195
COMMAND 195
COMPARE 221
COMPLETED 175
COPIES 221
COPY 184
COUNTSTR 222
creation 89
CURRENT 182
D2C 226
D2X 227
DATATYPE 223
DEFAULTNAME

of Class class 166
of Object class 184

DEFINE 166
definition 6
DELETE 167
DELSTR 225
DELWORD 225
DESCRIPTION 202
DESTINATION 182
DIFFERENCE

of Directory class 133
of Relation class 148
of Table class 156

DIMENSION 122
ENHANCED 168
ENTRY 130
FIRST

of Array class 123
of List class 137

FIRSTITEM 138
FLUSH 202
FORMAT 228
HASENTRY 131
HASINDEX

of Array class 123

method (continued)
HASINDEX (continued)

of Bag class 123
of Directory class 131
of List class 138
of Queue class 142
of Relation class 146
of Set class 152
of Table class 154

HASITEM 146
HASMETHOD 185
ID 168
INDEX

of Relation class 146
of Supplier class 245

INHERIT 169
INIT

of Alarm class 164
of Class class 169
of Message class 175
of Monitor class 182
of Object class 185
of Stream class 202

INSERT
of List class 138
of String class 229

instance 8
INTERSECTION

of Directory class 134
of Relation class 148
of Table class 156

ITEM 245
ITEMS

of Array class 123
of Directory class 131
of List class 139
of Queue class 142
of Relation class 147
of Set class 152
of Table class 155

LAST
of Array class 123
of List class 139

LASTITEM 139
LASTPOS 230
LEFT 230
LENGTH 231
LINEIN 203
LINEOUT 203
LINES 203
MAKEARRAY

of Array class 123
of Bag class 128
of Directory class 131
of List class 139

Index 469



method (continued)
of Queue class 212
of Relation class 147
of Set class 152
of Stem class 192
of Stream class 204
of Table class 155

MAKESTRING 231
MAX 231
METACLASS method 170
METHOD 170
METHODS 170
MIN 232
MIXINCLASS 171
NEW

of Array class 121
of Class class 172
of Method class 179
of Object class 183
of Stem class 191
of String class 212
of Supplier class 245

NEWFILE 179
NEXT

of Array class 124
of List class 139
of Supplier class 245

NOTIFY 176
OBJECTNAME 185
OBJECTNAME= 185
OPEN 204
OVERLAY 232
PEEK 143
POS 233
POSITION 206
prefix - 213
prefix + 213
PREVIOUS

of Array class 124
of List class 140

public 103
PULL 143
PUSH 143
PUT

of Array class 124
of Bag class 128
of Directory class 131
of List class 140
of Queue class 143
of Relation class 147
of Set class 152
of Table class 155

QUALIFY 206
QUERY 206
QUERYMIXINCLASS 172

method (continued)
QUEUE 212
REMOVE

of Array class 124
of Directory class 132
of List class 140
of Queue class 143
of Relation class 147
of Set class 152
of Table class 155

REMOVEITEM 148
RESULT 177
REVERSE 233
RIGHT 234
RUN 187
scope 101
search order 102

changing 103
SECTION

of Array class 124
of List class 140

SEEK 208
selection 101

search order 102
SEND 177
SETENTRY 132
SETGUARDED 180
SETMETHOD

of Directory class 132
of Object class 187

SETPRIVATE 180
SETPROTECTED 180
SETSECURITYMANAGER 180
SETUNGUARDED 181, 377
SIGN 234
SIZE 125
SOURCE 181
SPACE 234
START

of Message class 177
of Object class 188

STATE 209
STRING

of Object class 188
of String class 235

STRIP 235
SUBCLASS 172
SUBCLASSES 173
SUBSET

of Directory class 134
of Relation class 149
of Table class 156

SUBSTR 236
SUBWORD 236
SUPERCLASSES 173

method (continued)
SUPPLIER

of Array class 125
of Bag class 128
of Directory class 133
of List class 140
of Queue class 144
of Relation class 148
of Set class 153
of Stream class 210
of Table class 155

TRANSLATE 237
TRUNC 238
UNINHERIT 174
UNION

of Directory class 134
of Relation class 149
of Table class 156

UNKNOWN
of Directory class 133
of Monitor class 182
of Stem class 192

UNSETMETHOD 189
VERIFY 238
WORD 239
WORDINDEX 240
WORDLENGTH 240
WORDPOS 240
WORDS 241
X2B 241
X2C 242
X2D 243
XOR

of Directory class 134
of Relation class 149
of Table class 157

Method class 178
METHOD method 170
METHODS method 170
MIN function

description 287
example 287

MIN method 232
minutes calculated from

midnight 302
mixin 96
MIXINCLASS method 171
model of input and output 395
modularizing data 2
monitor 385
Monitor class 181
Month option of DATE

function 273
multiple inheritance 9
multiplication operator 21

470 Object REXX Reference



N
names

of functions 252
of programs 65
of subroutines 45
of variables 15

negation
of logical values 23
of numbers 21

NEWFILE method 179
NEWmethod

of Array class 121
of Class class 172
of Method class 179
of Object class 183
of Stem class 191
of String class 212
of Supplier class 245

NEXT method
of Array class 124
of List class 139
of Supplier class 245

nibbles 14
NIL object 248
NOMETHOD condition of SIGNAL

instruction 362
descriptive string 368

NOP instruction
description 61
example 62

Normal option of DATE
function 273

NOSTRING condition of SIGNAL
instruction 362

descriptive string 368
not equal operator 22
not greater than operator 23
not less than operator 22
NOT operator 16, 23
notation

engineering 357
exponential, example 357
scientific 357

Notices 455
NOTIFY method 176
NOTREADY condition

condition trapping 404
description 363
raised by stream errors 404
SIGNAL and CALL

instructions 368
NOVALUE condition

descriptive string 368
not raised by VALUE

function 307

NOVALUE condition (continued)
on SIGNAL instruction 368
use of 411

null
clauses 28
strings 12

numbers
arithmetic on 21, 353, 354
checking with DATATYPE 223,

271
comparison of 22, 358
description 15, 353
formatting for display 228, 280
implementation maximum 16
in DO instruction 49
truncating 238, 305
use in the language 359

numbers for display 228
numeric

comparisons, example 359
options in TRACE 82

NUMERIC instruction
description 62
DIGITS option 62
FORM option 63, 358
FUZZ option 63
settings saved during subroutine

calls 48

O
object 18

as data value 19
definition 4
kinds of 4

object-based concurrency 371
Object class 183
object classes 8, 95
object method 95
object-oriented programming 2
object variable pool 52, 374
OBJECTNAME= method 185
OBJECTNAME method 185
OF method

of Array class 122
of Bag class 127
of List class 137
of Set class 151

OPEN method 204
operations

tracing results 79
operator

arithmetic
description 19, 353, 354
list 21

as message 20

operator (continued)
as special characters 19
characters 16
comparison 22, 358
concatenation 20
examples 356
logical 23
precedence (priorities) of 23

options
alphabetic character word in

TRACE 80
numeric in TRACE 82

OR, logical 23
Ordered option of DATE

function 273
ORing character strings

together 218, 261
output

errors during 404
object 250
to the user 395

overflow, arithmetic 359
OVERLAY function

description 287
example 287

OVERLAY method 232
overlaying a string onto

another 232, 287
overview of parsing 349

P
packing a string with X2C 242, 311
pad character, definition 257
page, code 10
parentheses

adjacent to blanks 17
in expressions 23
in function calls 251
in parsing templates 343

PARSE instruction
description 63
examples 335
PARSE LINEIN, role in input and

output 395
PARSE PULL, role in input and

output 395
parsing

advanced topics 346
combining patterns and parsing

into words 342
combining string and positional

patterns 347
conceptual overview 349
description 335, 351
equal sign 340

Index 471



parsing (continued)
examples

combining positional pattern
and parsing into words 343

combining string and
positional patterns 348

combining string pattern and
parsing into words 342

parsing instructions 345
parsing multiple strings in a

subroutine 347
period as a placeholder 337
simple templates 335
templates containing

positional patterns 339
templates containing string

patterns 338
using a variable as a

positional pattern 344
using a variable as a string

pattern 344
into words 335
LOWER, use of 344
patterns

conceptual view 350
positional 335, 339
string 335, 337

period as placeholder 337
positional patterns 335

absolute 339
relative 340
variable 344

selecting words 335
several assignments 342
several strings 347
source string 335
special case 347
steps 348
string patterns 335

literal string patterns 337
variable string patterns 343

summary of instructions 345
templates

in ARG instruction 43
in PARSE instruction 63
in PULL instruction 69

treatment of blanks 337
UPPER, use of 344
variable patterns

positional 344
string 343

word parsing
conceptual view 351
description and

examples 335

patterns in parsing
combined with parsing into

words 342
conceptual view 350
positional 335, 339
string 335, 337

PEEK method 143
period

as placeholder in parsing 337
causing substitution in variable

names 34
in numbers 353

permanent command destination
change 42

persistent input and output 395
polymorphism 6
POS function

description 288
example 288

POS method 233
position

last occurrence of a string 230,
282

POSITION method 206
positional patterns

absolute 339
description 335
relative 340
variable 344

powers of ten in numbers 15
precedence of operators 23
precision of arithmetic 354
prefix

\ 23
operators 21, 23

prefix − method 213
prefix + method 213
presumed command

destinations 42
PREVIOUS method

of Array class 124
of List class 140

PROCEDURE instruction
description 66
example 67

programming restrictions 1
programs

arguments to 43
examples 403
retrieving lines with

SOURCELINE 291
retrieving name of 65

programs without source 422
protecting variables 66

pseudo random number function of
RANDOM 288

public method 103
public object 247

environment object 247
input object 249
NIL object 248
output object 250

PULL instruction
description 69
example 70
role in input and output 395

PULL method 143
PULL option of PARSE

instruction 65
PUSH instruction

description 70
example 70
role in input and output 395

PUSH method 143
PUT method

of Array class 124
of Bag class 128
of Directory class 131
of List class 140
of Queue class 143
of Relation class 147
of Set class 152
of Table class 155

Q
QUALIFY method 206
QUERY method 206
querying TRACE setting 304
QUERYMIXINCLASS method 172
queue

creating and deleting
queues 314

named 398
naming and querying 314
RXQUEUE function 314
session 398

Queue class 141
QUEUE instruction

description 71
example 71
role in input and output 395

Queue interface from REXX
programs 314

QUEUE method 143
QUEUED function

description 288
example 288
role in input and output 398

472 Object REXX Reference



R
RAISE instruction

description 71
example 73

RANDOM function
description 288
example 288

random number function of
RANDOM 288

RC (return code)
not set during interactive

debug 407
set by commands 39
special variable 368, 413

read position in a stream 396
readers and writers problem 386
recursive call 48
register external function 313
Relation class 144
relative positional patterns 340
remainder

description 355
operator 21

REMOVE method
of Array class 124
of Directory class 132
of List class 140
of Queue class 143
of Relation class 147
of Set class 152
of Table class 155

REMOVEITEM method 148
reordering data 237, 304
repeating a string with

COPIES 221, 269
repetitive loops

altering flow 61
controlled repetitive loops 424
exiting 61
simple DO group 423
simple repetitive loops 423

REPLY instruction
description 74
example 74

REQUEST method
of Object class 186
of Stem class 192
refid=method REQUEST

of Object class 186
of Stem class 192

reservation of keywords 411
restoring variables 50
restrictions

embedded blanks in
numbers 15

restrictions (continued)
first character of variable

name 15
in programming 1

RESULT method 177
RESULT special variable

description 413
return value from a routine 256
set by RETURN instruction 47,

75
retrieving

argument strings with ARG 43
arguments with ARG

function 259
lines with SOURCELINE 291

return
code

as set by commands 39
setting on exit 51

string
setting on exit 51

RETURN instruction
description 75

returning control from REXX
program 75

REVERSE function
description 289
example 289

REVERSE method 233
REXXC utility 422
rexxutil functions 317

SysAddRexxMacro 317
SysClearRexxMacroSpace 318
SysCloseEventSem 318
SysCloseMutexSem 318
SysCls 319
SysCreateEventSem 319
SysCreateMutexSem 320
SysDropFuncs 320
SysDropRexxMacro 320
SysFileDelete 320
SysFileSearch 321
SysFileTree 322
SysGetKey 323
SysGetMessage 324
SysGetMessageX 325
SysLoadFuncs 326
SysLoadRexxMacroSpace 326
SysMkDir 326
SysOpenEventSem 327
SysOpenMutexSem 327
SysPostEventSem 327
SysQueryRexxMacro 328
SysReleaseMutexSem 328
SysReorderRexxMacro 328

rexxutil functions 329 (continued)
SysRequestMutexSem 317
SysResetEventSem 329
SysRmDir 330
SysSaveRexxMacroSpace 330
SysSearchPath 331
SysSetPriority 331
SysSleep 332
SysTempFileName 332
SysVersion 333
SysWaitEventSem 333

RIGHT function
description 289
example 289

RIGHT method 234
rounding

using a character string as a
number 15

RUN method 187
running off the end of a

program 51
RXFUNCADD 313
RXFUNCDROP 313
RXFUNCQUERY 313
RXQUEUE filter 420
RXQUEUE function 314
RXSUBCOM command 417
RXTRACE environment

variable 409

S
SAY instruction

description 75
displaying data 75
example 76
role in input and output 395

scientific notation 357
scope

alternating exclusive access 378
description 101

search order
external functions 253
for functions 253
for methods

changing 103
default 102

for subroutines 46
seconds calculated from

midnight 302
SECTION method

of Array class 124
of List class 140

SEEK method 208
SELECT instruction

description 76
example 77

Index 473



selecting a default with ABBREV
function 258

selecting a default with ABBREV
method 216

SELF special variable 413
semaphore 380
semicolons

implied 17
omission of 41
within a clause 9

SEND method 177
sequence, collating using

XRANGE 310
serial input and output 395
Set class 150
set-operator methods 157
SETENTRY method 132
SETGUARDED method 180
SETLOCAL function 290
SETMETHOD method

of Directory class 132
of Object class 187

SETPRIVATE method 180
SETPROTECTED method 180
SETSECURITYMANAGER

method 180
SETUNGUARDED method 181,

377
SIGL

description 413
in condition trapping 369
set by CALL instruction 47
set by SIGNAL instruction 79

SIGN function
description 290
example 290

SIGN method 234
SIGNAL instruction

description 78
example 79
execution of in subroutines 48

significant digits in arithmetic 354
simple

repetitive loops 423
symbols 32

SIZE method 125
source

of program and retrieval of
information 65

string 335
SOURCE method 181
SOURCE option of PARSE

instruction 65
sourceless programs 422
SOURCELINE function 291

SPACE function
description 291
example 291

SPACE method 234
spacing, formatting, SPACE

function 291
spacing, formatting, SPACE

method 234
special

characters and example 17
parsing case 347
variables

RC 39, 368, 413
RESULT 47, 75, 256, 413
SELF 413
SIGL 47, 369, 413
SUPER 413

standard input and output 400
Standard option of DATE

function 273
START method

of Message class 177
of Object class 188

STATE method 209, 405
Stem class 189
stem of a variable

assignment to 32
description 34
used in DROP instruction 50
used in PROCEDURE

instruction 66
steps in parsing 348
stream 395

character positioning 401
function overview 402
line positioning 401

Stream class 192
stream errors 404
STREAM function

command option 292
description 291
description option 292
example 292
state option 292

strict comparison 22
strictly equal operator 22, 23
strictly greater than operator 22, 23
strictly greater than or equal

operator 23
strictly less than operator 22, 23
strictly less than or equal

operator 23
strictly not equal operator 22, 23
strictly not greater than operator 23
strictly not less than operator 23

string
as literal constant 12
as name of function 12
as name of subroutine 45
binary specification of 14
centering using CENTER

function 263
centering using CENTER

method 220
centering using CENTRE

function 263
centering using CENTRE

method 220
comparison of 22
concatenation of 20
copying using COPIES 221, 269
deleting part, DELSTR

function 275
deleting part, DELSTR

method 225
description 12
extracting words with

SUBWORD 236, 300
from stream 264
hexadecimal specification of 13
interpretation of 58
null 12
patterns

description 335
literal 337
variable 343

quotation marks in 12
repeating using COPIES 221,

269
verifying contents of 238, 308

String class 210
STRING method

of Object class 188
of String class 235

STRIP function
description 299
example 299

STRIP method 235
structure and syntax 9
SUBCLASS method 172
subclasses 8
SUBCLASSES method 173
subexpression 19
subkeyword 30
subroutines

calling of 45
definition 251
forcing built-in or external

reference 46
naming of 45

474 Object REXX Reference



subroutines (continued)
passing back values from 45
return from 75
use of labels 45
variables in 66

SUBSET method
of Directory class 134
of Relation class 149
of Table class 156

subsidiary list 50, 52, 67
substitution

in expressions 19
in variable names 34

SUBSTR function
description 299
example 299

SUBSTR method 236
substring, extracting with SUBSTR

function 299
substring, extracting with SUBSTR

method 236
subtraction operator 21
SUBWORD function

description 300
example 300

SUBWORD method 236
summary

methods 109
parsing instructions 345

SUPER special variable 413
superclasses 8
SUPERCLASSES method 173
Supplier class 244
SUPPLIER method

of Array class 125
of Bag class 128
of Directory class 133
of List class 140
of Queue class 144
of Relation class 148
of Set class 153
of Stream class 210
of Table class 155

symbol
assigning values to 30
classifying 31
compound 34
constant 31
description 14
simple 32
uppercase translation 14
use of 30
valid names 15

SYMBOL function
description 300

SYMBOL function (continued)
example 300

symbols
.METHODS 387
environment 36

syntax
error

traceback after 84
trapping with SIGNAL

instruction 361
general 9

SYNTAX condition of SIGNAL
instruction 363

SYNTAX condition of SIGNAL
instructions 368

SysAddRexxMacro 317
SysClearRexxMacroSpace 318
SysCloseEventSem 318
SysCloseMutexSem 318
SysCls 319
SysCreateEventSem 319
SysCreateMutexSem 320
SysDropFuncs 320
SysDropRexxMacro 320
SysFileDelete 320
SysFileSearch 321
SysFileTree 322
SysGetKey 323
SysGetMessage 324
SysGetMessageX 325
SysLoadFuncs 326
SysLoadRexxMacroSpace 326
SysMkDir 326
SysOpenEventSem 327
SysOpenMutexSem 327
SysPostEventSem 327
SysQueryRexxMacro 328
SysReleaseMutexSem 328
SysReorderRexxMacro 328
SysRequestMutexSem 329
SysResetEventSem 329
SysRmDir 330
SysSaveRexxMacroSpace 330
SysSearchPath 331
SysSetPriority 331
SysSleep 332
SysTempFileName 332
SysVersion 333
SysWaitEventSem 333

T
Table class 153
tail 34
template

definition 335

template (continued)
list

ARG instruction 43
PARSE instruction 64
PULL instruction 69

temporary command destination
change 42

ten, powers of 357
terminal

reading from with PULL 69
writing to with SAY 75

terms and data 19
testing

abbreviations with ABBREV
function 258

abbreviations with ABBREV
method 216

variable initialization 300
THEN

as free standing clause 41
following IF clause 57
following WHEN clause 76

tilde (∼) 5
TIME function

description 301
example 302
implementation maximum 303

tips, tracing 82
TO phrase of DO instruction 49
tokens

binary strings 14
description 12
hexadecimal strings 13
literal strings 12
numbers 15
operator characters 16
special characters 17
symbols 14

TRACE function
description 304
example 304

TRACE instruction
alphabetic character word

options 80
description 79
example 83

TRACE setting
altering with TRACE

function 304
altering with TRACE

instruction 79
querying 304

traceback, on syntax error 84

Index 475



tracing
action saved during subroutine

calls 48
by interactive debug 407
data identifiers 83
execution of programs 79
tips 82

tracing flags
*-* 83
+++ 83
>.> 83
>>> 83
>C> 83
>F> 83
>L> 83
>M> 83
>O> 83
>P> 83
>V> 83

trailing
blank removed using STRIP

function 299
blank removed using STRIP

method 235
transient input and output 395
TRANSLATE function

description 304
example 305

TRANSLATE method 237
translation

with TRANSLATE function 304
with TRANSLATE method 237

trap conditions
explanation 361
how to trap 361
information about trapped

condition 267
using CONDITION function 267

trapname 365
TRUNC function

description 305
example 305

TRUNC method 238
truncating numbers 238, 305
twiddle (∼) 5
type of data, checking with

DATATYPE 223, 271
typewriter input and output 395

U
unassigning variables 50
unconditionally leaving your

program 51
underflow, arithmetic 359
UNGUARDED option of

::METHOD 90, 378

UNINHERIT method 174
uninitialized variable 31
UNION method

of Directory class 134
of Relation class 149
of Table class 156

UNKNOWN method
of Directory class 133
of Monitor class 182
of Stem class 192

unpacking a string
with B2X 219, 262
with C2X 223, 270

UNSETMETHOD method 189
UNTIL phrase of DO instruction 49
unusual change in flow of

control 361
UPPER

in parsing 344
option of PARSE instruction 64

uppercase translation
during ARG instruction 43
during PULL instruction 69
of symbols 14
with PARSE UPPER 64
with TRANSLATE function 304
with TRANSLATE method 237

Usa option of DATE function 273
USE instruction

description 84
examples 84

USER condition of SIGNAL and
CALL instructions 364, 368

user input and output 395, 407

V
value 18
VALUE function

description 305
example 306

value of variable, getting with
VALUE 305

VALUE option of PARSE
instruction 66

VAR option of PARSE
instruction 66

variable
checking name 308
compound 34
controlling loops 424
description 30
dropping of 50
exposing to caller 66
external collections 306
getting value with VALUE 305
global 306

variable (continued)
in internal functions 308
in subroutines 66
names 15
new level of 66
parsing of 66
patterns, parsing with

positional 344
string 343

pool interface 30
positional patterns 344
reference 343
resetting of 50
setting new value 30
SIGL 369
simple 32
special

RC 39, 368, 413
RESULT 75, 256, 413
SELF 413
SIGL 47, 369, 413
SUPER 413

string patterns 343
testing for initialization 300
valid names 30

variables
acquiring 7, 9
in objects 4

VERIFY function
description 308
example 309

VERIFY method 238
verifying contents of a string 238,

308
VERSION option of PARSE

instruction 66

W
Weekday option of DATE

function 273
WHILE phrase of DO

instruction 49
whole numbers

checking with DATATYPE 223,
271

description 16
word

alphabetic character options in
TRACE 80

counting in a string 241, 310
deleting from a string 225, 275
extracting from a string 236,

239, 300, 309, 335
finding length of 240, 309
in parsing 335
locating in a string 240, 309

476 Object REXX Reference



word (continued)
parsing

conceptual view 351
description and

examples 335
WORD function

description 309
example 309

WORD method 239
WORDINDEX function

description 309
example 309

WORDINDEX method 240
WORDLENGTH function

description 309
example 309

WORDLENGTH method 240
WORDPOS function

description 310
example 310

WORDPOS method 240
WORDS function

description 310
example 310

WORDS method 241
write position in a stream 397
writing to external data queue

with PUSH 70
with QUEUE 71

X
X2B function

description 311
example 311

X2B method 241
X2C function

description 311
example 312

X2C method 242
X2D function

description 312
example 312

X2D method 243
XOR, logical 23
XOR method

of Directory class 134
of Relation class 149
of Table class 157

XORing character strings
together 218, 262

XRANGE function
description 310
example 311

Z
zeros

added on left with RIGHT
function 289

added on left with RIGHT
method 234

removal with STRIP
function 299

removal with STRIP method 235

Index 477



478 Object REXX Reference



Readers’ Comments — We’d Like to Hear from You

Object REXX for Linux

Reference

Version 1.2

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.



Readers’ Comments — We’d Like to Hear from You
IBMR

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Postfach 1380
71003 Boeblingen
Germany

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.


