
hapter 1
C

Writing Printer and
Device Definition
Databases
W
riting P

rinter and D
evice D

efinition
D

atabases
Overview
The printer and device definition databases are ASCII text files that
describe the printer capabalites. The text file is compiled into a binary
format using the ddigest" command. The primary purpose of
compiling the text file is to minimize any problems that may be
caused in the future such as when running the markvision utility or at
print time, due to problems in syntax or logical description of the
printer options and menus flow.

The PDDs serve the following two functions:

Information base for the user interface

The PDD files provide all the text for displaying while prompting for
selection of queue data stream or printer capabilities. While doing
queue management option 5 thru 8 in the lexprt utility, the
information and the flow control of the user interface is driven by the
PDD file starting at the screen for dData Stream Options". All the
information on the following screens comes from the PDD files.

Database for Printer Codes

The PDD files provide all the printer codes for all the supported
options and their management to be sent to the printer at print time.
The dformatter" program is called at print time by the printer sub-
system backend, which reads the virtual queue definition file created
by the user-interface when managing the queue, i.e. creating/
Chapter 1: Writing Printer and Device Definition Databases 1

2

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
changing. The formatter than refrences the compiled version of the
PDD in the /etc/marknet/etc/pdd/bin directory to obtain the
printer codes for that printer and that queue.

Rules for writing PDDs and DDDs
There are many rules applied when writing the PDDs. A certain
grammer has been used to define the printer defintion databases. The
following section describes these rules using examples.

These are the data types recognized by the compiler

String
Strings are defined as a sequence of ASCII characters enclosed by
double-quotes ('"'). Two consecutive double-quotes are invalid. For
example

label "" /* <-- Invalid */

label " " /* <-- Valid */

The newline character '\n' in a string will produce syntax errors. A
STRING should NOT have any new line characters. In some fields the
word "none" is allowed to point out an empty field in the pdd_block.

Integer
INTEGERs are defined as a series of numerics (integer). Floats or any
other non-integer numeric data is not supported.

KEYWORDS STRING INTEGER
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
Keywords
There are a number of words which are considered as keywords by
the compiler. The following is a list of these words :

Block Types
 There are a few "block types" defined for the PDD files. These types
are descibed as the logical blocks for the file. These types are:

banner_init_sequence ddd_block

ddd_file decimal

default_value desc

end_string help

init_modes init_sequence

item label

list max

max_length menus

next_ptr number

option_type option_value

p_code pdd_block

pdd_file prompt

special_char1 special_char2

special_char3 special_string1

special_string2 special_string3

string sub_list

sub_menu sub_number

sub_string tag

title transport

valid_type

PDD_BLOCK LIST

STRING NUMBER

MENU
3Chapter 1: Writing Printer and Device Definition Databases

4

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
Block Headings
All blocks (pdd_block, list, number, string, menu) have a common
header section that describes the block as follows:

Line #1 thru #3 define the block header. The "title" and the "prompt"
fields describe the field for use by the user-interface. The "help" field
provides a help tag
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
PDD_BLOCK
The "pdd_block" defines the first few blocks in the PDD file. This block
provides the information needed by the "formatter" program at print
time. It has the following fields:

init_modes

Some printers require an initialization sequence to set it in a certain
emulation mode. The STRING field that follows this keyword contains
that initialization sequence. The word "none" sends NO initialization
sequence. This field is the FIRST one the "formatter" processess if
active.

An Exmaple of an active field:

init_modes "${27}%-12345X@PJL ENTER LANGUAGE =PCL"

To disable sending any codes for printer initialization :

init_modes "none"

init_sequence

This field is of type STRING (refere to the section on data types). This
field sets up the printer codes and sends them before the data. It has
the list of all tags defined later in the file. For example, in the printer
defintion file for the IBM_LaserPrinter_4039_16L this field is as
follows:

FORMAT: init_sequence STRING

Example:

init_sequeuce banner_init_sequence

init_modes end_string

special_string1 special_string2

special_string3 special_char1

special_char2 special_char3
5Chapter 1: Writing Printer and Device Definition Databases

6

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
init_sequence="pcl_resolution,pcl_crlf,
pcl_text_wrap,pcl_duplex,
pcl_paper_size,pcl_paper_tray,
pcl_orientation,pcl_symbol_set,pcl_font,
pcl_pl66,pcl_top_margin,
pcl_page_length,pcl_indentation,
pcl_page_width"

The above is the sequence in which the printer options will be
processed by the formatter. This STRING is a "comma" separated list
of printer options for the data strem "pcl". The idea of using the pre-
fixed name"pcl" with every option is to make the name uniq for every
data strem. The formatter will run a loop at print time and will fetch
the appropriate printer codes from the PDD binary file first for the
"pcl_resolution", than for the "pcl_crlf" option and so on. Therefor, if
for some reason you want the ignore a certain option at print time
ONLY, take that option out of this list to disable sending the related
codes for that option to the printer at print time.

A good example, of the above description is the fonts in PCL5 on all
the supported printers. The output of the font depends on the point
size or pitch selected.

For example, the following is the "p_code" for a Courier font:

p_code "${27}(s0p$${pcl_pitch}h12v0s0b3T"

This example shows the "p_code" for CG Times font:

p_code "${27}(s1p$${pcl_point_size}v0s0b4101T"

The dependency of the font on point size or pitch can be seen from the
above example. The impact of this dependency is the option for point
size and pitch is displayed for user selection in the user interface, but
when printing only the "pcl_font" option is part of the "init_sequence"
above. There is no "pcl_point_size" or "pcl_pitch" field in the
"init_sequence" field. The fact that the value for the pcl_point_size/or
pcl_pitch is a part of the pcl_font, we don't need these two options as a
part of the "init_sequence".
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
banner_init_sequence

 This field is of type STRING. This field sets up the printer codes and
sends them before the banner page (if enabled). It has the list of all
tags defined later in the file. The field controls the options for the
banner page.

For example, assume the following scenario of providing control for
the following three options for the banner page: pcl_banner_tray,
pcl_banner_resolution, pcl_banner_paper_size.

The "banner_init_sequece" field should be as follows:

banner_init_sequece "pcl_banner_resolution,
pcl_banner_tray, pcl_banner_paper_size"

The above mentioned three (3) fields should be defined in the file.
From the user interface point of view the "menu" block which will be
discussed later in more detail, should look as follows:

menu "pcl_banner_options" {
title "PCL Banner Options"
prompt "PCL Banner Options"
help "PCL_Banner_Options_Menu_Help"
next_ptr "install_queue()"

sub_list pcl_banner_page <--- line #1 sub_list
pcl_execute_banner <--- line #2

sub_list pcl_banner_tray <--- line #3
sub_list pcl_banner_resolution<--- line #4
sub_list pcl_banner_paper_size<--- line #5

}

Line #3 through line #5 represent the options specified in the
"banner_init_sequece" field. Line #1 and line #2 are special tags which
control the printing of the banner page.
7Chapter 1: Writing Printer and Device Definition Databases

8

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
<data_stream>_banner_page

Enables or disables printing of the banner page. If it is disabled (i.e ==
no) the "formatter" program ignores printing the banner page and any
related options. If this is enabled (i.e == yes) the "formatter" will print
the banner page and will process all the options in the
"banner_init_sequence" field.

<data_stream>_execute_banner

This tag controls handling of how the banner page program is used.
By default, the banner program is an executable, which will take five
(5) arguments in the following sequence

banner_program <title> <user> <host> <queue>
<printer_des> <paper- siz<letter_size>

Normally the banner program defined by the

<data_stream>_banner_file

The "formatter" will execute that file if it has execute permissions set
and this tag (i.e <data_stream>_execute_banner set to "yes"). If this
tag is set to "no", the formatter will print (i.e. cat) the banner_file
instead of running it. This way we have the option of either running
the banner program with the supplied options or simply sending the
file to the printer.

The compiler will check at compile time for the existance of the tags
associated with the pdd_block later as one of the options in the first
(special case) list block. For example, for the IBM LaserPrinter 4039
PDD file, the pdd_blocks are as follows:

pdd_block "pcl" { <----- line #1
.
.
.

}

pdd_block "ps" { <------ line #2
.
.

Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
.
}

list "ds_list" {

title "Data Stream Options"
prompt "Data Stream Options"
help "DS_LIST_Help"

option_type list {

label "PCL Data Stream"
desc " "
value "pcl" <-------- line #3
next_ptr "pcl_options"
label "PS Data Stream"
desc " "

}

As we can see that line #1 and #3 are describing "pcl", similarly line #2
and #4 are describing "ps". If the "value" STRING value STRING (e.g.
value "pcl" was not defined as the tag for one of the pdd_blocks above
in the begining of the file, an error message is displayed as :

Checking syntax ...

63: Missing predefined Initialization Block at
"pcl_options"

Compilation aborted.
9Chapter 1: Writing Printer and Device Definition Databases

10

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
LIST Block
The "list" block is defines a set of pre-defined valid options for any
printer emulation. For example, in PCL5 emulation on the IBM
LaserPrinter 4049 (Optra family) "Resolution has 3 resolution options
300 dpi, 600 dpi and 1200 dpi.

Therefore, the "Resolution" would be a perfect option to be setup as a
"list" block. In other words, "list" block is used for options that have
a LIST of options the user can choose from. When the user selects this
option, another list of options is displayed for selection. There is
always one option, which is the default item. In order to change the
default item in the list the "default_item" keyword should be moved
to the top of the new option as follows:

For PCL orientation, the following example shows the default item to
be "Portrait"

list "pcl_orientation" {

 title "Orientation"
 prompt "Orientation"
 help "PCL_Orientation_Help"

 option_type list {

default_item <---- line #1
label "Portrait"
desc "Set orientation to portrait"
value "portrait"
p_code "${27}&l0O"

label "Landscape"
desc "Set orientation to landscape"
value "landscape"
p_code "${27}&l1O"

.

.

.
 }
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
}

Now to change the default item to be "Landscape" move line #1
(default_item) to the next option as follows:

list "pcl_orientation" {<--- line #2
 title "Orientation"
 prompt "Orientation"
 help "PCL_Orientation_Help"

 option_type list {

label "Portrait"
desc "Set orientation to portrait"
value "portrait"
p_code "${27}&l0O"

default_item <---- line #1 (new)
label "Landscape"
desc "Set orientation to landscape"
value "landscape"
p_code "${27}&l1O"

.

.

.
 }
}

 Once a change is made to a printer defintion file, it should be re-
compiled. Refer to the section on re-compiling PDDs.

The STRING following the keyword "list" as in line #2 is the tag name
and should be uniq in the PDD file. The "label" and the "desc"
keywords are followed by a string for displaying by the user-
interface. The "value" field, is the identifier which is placed in the
virtual queue definition (vqd) file when a queue is created. For
exmaple, if the user selects "Landscape" for orientation in pcl for the
4049 printer, the following line is placed in the vqd file:
11Chapter 1: Writing Printer and Device Definition Databases

12

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
pcl_orientation=landscape

 The same is done for all LIST block tags. The vqd file is text file that
describes the queue setup with tag=value pairs for all supported
options.

 The "p_code" stands for the printer code, which is actually sent to the
printer for that option. It is a STRING, which has a special format. This
string is parsed at print time, by the "formatter" program. There are
two important translations done while sending this string to the
printer.

Any number from 0 to 255 starting with '${' and ending with '}' is
translated to its decimal equivalent before sending to the printer.
Therefore, in order to send an ESCAPE we place ${27}. To send the
equivalent of decimal 10 (new line), we place ${10}.

Refer to the ascii man page for a list of all characters.

An example of this translation is as follows:

p_code "${27}F3n${10}${12}${13}"
 ^^^^ ^^^^ ^^^^ ^^^^
 | | | |
 | | | |
 ESC NL NP CR

If a printer code can use a variable numeric field as a part of the printer
code STRING, we delimit that part with '$${' as the begining delimiter,
and '}' as the ending delimiter. For example, in PCL5 for "indentation"

EXAMPLE :

 At print time, anything inside the $${ } is processed so that it is
evaluated and variable substitution is done. Therefore, in the above
example, say pcl_indentation was equal to 5 than the sequense sent to
the printer will be
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
STRING "${27}&a$${pcl_indentation}L"

DECIMAL 27 38 97 53 76

HEX 1B 26 61 35 4C

Here is the translation:

The sequence in between '$${' and '}' is evaluated. Therefore, any
complex mathematical expression can be substituted in between these
delimiter fields. For example, say the page width is dependent on
more than one variable is calculated on the fly :

EXAMPLE 1:

Take the example of the p_code field for pcl_page_width

p_code "${27}&a$${pcl_page_width + pcl_indentation -1}M"

if pcl_page_width = 70

 pcl_indentation = 5

the expression evaluates as:

pcl_page_width + pcl_indentation -1 = 70 + 5 -1 = 74

Therefore the hexadecimal string sent to the printer is :

HEX 1B 26 61 37 34 4D

DECIMAL 27 38 97 55 52 77

More complex calculations can be done:

STRING DECIMAL HEX

${27} 27 1B

& 38 26

a 97 61

$${pcl_indentation} 53 35

L 76 4C
13Chapter 1: Writing Printer and Device Definition Databases

14

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
p_code "${27}&a$${(((pcl_page_width -1)/3)+(pcl_indentation*4))}"

if pcl_page_width = 70
 pcl_indentation = 5

(((pcl_page_width -1)/3)+(pcl_indentation*4)) =
 (((70 -1)/3)+(5*4)) = ((69 /3) + (20))= (23 + 20)= 53

Therefore:

HEX 35 33

DECIMAL 53 51

is sent to the printer. All rules of operator precedence are applied.

Order of LIST block fields:

The syntax of the LIST block (and all other blocks) is very rigid. All the
field should be in the same sequence. The only field which is
interchangable is the "default_item" field. It can be placed on the TOP
of any option to make it the default item by default.

The LIST block can appear inside a MENU block (discussed later), or it
can be the first LIST block. The "p_code" field and "next_ptr" field can
be used as appropriate. The fact that the first LIST block is a special
list block and the tag is "ds_list". This tag should always be the tag for
the first LIST block in a PDD. The user interface displays this first
LIST block as the starting point. This first LIST block displays the
available emulations options and upon user selection will point to the
appropriate printer options menu using the "next_ptr" field. For
example, the following is an example of the 4039 PDD:

list "ds_list" {

title "Data Stream Options"
prompt "Data Stream Options"
help "DS_LIST_Help"

option_type list {

label "PCL Data Stream"
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
desc " "
value "pcl"
next_ptr "pcl_options"<--- line #1

label "PS Data Stream"
desc " "
value "ps"
next_ptr "ps_options"<--- line #2

default_item
label "AUTO"
desc "(select auto sniffing data stream)"
next_ptr "auto_options"<--- line #3

label "Passthru"
desc "(send raw data to the printer)"
value "passthrough"
next_ptr "install_queue()"<--- line #4

}
}

Line #1: uses the "next_ptr" field to point to the NODE with tag name
of "pcl_options".

Line #2: uses the "next_ptr" field to point to the NODE with tag name
of "ps_options".

Line #4: uses the "next_ptr" field to point to the FUNCTION with the
name "install_queue()"

The compiler in the first pass creates an internal table of all the items
associated with the "next_ptr" field. In the second pass the items in
this list are checked against all nodes (list, string, number and menu).
If any "next_ptr" is missing or not defined in the PDD an error
message is returned.

The other LIST block fields should maintain the same format and
sequence as show above, i.e

default_item (optional)

label STRING (mandatory)

desc STRING (mandatory)
15Chapter 1: Writing Printer and Device Definition Databases

16

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
value STRING (mandatory)

next_ptr STRING ----

p_code STRING ----
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
STRING Block
STRING blocks are used for options that require user input in terms of
an ascii characters. For pure numeric inputs NUMBER nodes/blocks
should be used. For the sake of explanation, "nodes" and "blocks" are
used interchangebly in this document. The following is the syntax
for STRING blocks:

string "pcl_banner_file" {

title "Banner filename"
prompt "Absolute Path for the Banner File"
help "PCL_Banner_File_Help"

option_type string {

valid_type 1 2 3
default_string "banner_pcl"
exclude_chars_set ";!"
include_chars_set "/.-_,"
max_length 255
validation_function "valid_reg_path()"
p_code "none"

}
}

The keyword "string" at the begining of the block is the node type.
The string that follows i.e. "pcl_banner_file" is the node name/tag
name for the node. This should be a uniq node name.

 The header block that comprises of "title", "prompt" and "help" defines
the node. The node/block properties are defined in the section:

option_type STRING {
....
...

}

 The following sections describes these fields.
17Chapter 1: Writing Printer and Device Definition Databases

18

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
valid_type

This field defines the type of characters allowed for this node. The
numbers following this field are actually pointers to pre-defines
character classes. These numbers are ORed by the compiler and
interpreted accordingly by the user-interface. The following table
describes these masks:

STRING node fields

The above table describes the diffrent charcters that can be allowed.
The compiler internally OR these numbers to get the valid super set.
For example, if we want to allow DIGITs and PUNCT, the valid_type
field should be as:

valid_type 8

The compiler will perform (1 OR 8 = 9). This value is stored in the
binary file. Different combinations of these numbers can be placed to
allow a certain character set.

Number Mask Description

0 NONE No charcter is valid

1 DIGIT Only numeric digits are valid.

2 ALPHA Only alphabets are valid.

3 ALNUM Only numerics and alphabets are valid.

4 SPACE Only space and tabs are valid.

8 PUNCT Only punctuations are valid.

16 CNTRL Only Control characters are valid.

31 ALL All characters are valid.
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
default_strings STRING

This field holds the default string for this tag.

exclude_chars_set STRING

This field holds the list of characters to be excluded. This gives the
PDD better control for the inclusion of all possible characters using the
"valid_type" field and then excluding a certain number of

include_chars_set STRING

This field holds the list of characters to be included. This gives the
PDD better control for deciding which characters to include form the
list of excluded characters.

max_lengthNUMBER

This field holds the maximum length of this ascii string.

validation_function STRING

This field holds the name of the function to be used by the user
interface to validate the string entered by the user. If the name of the
function is "validate_file_path", the string should read:

validation_function "validate_file_path()"

The "()" round braces are important and should be there for the user
interface to locate the correct function.

p_code STRING

This is a reserved field. It is not used currently for string tags. It
should be placed in this location with STRING equals to "none".
19Chapter 1: Writing Printer and Device Definition Databases

20

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
NUMBER Blocks
NUMBER blocks are used for options that require user input in terms
of a numbers. The following is the syntax for NUMBER blocks:

number "ppds_top_margin" {
label "Top Margin"
prompt "Enter Top Margin :"
help "PPDS_Top_Margin_Help"

option_type number {

default_value 5
decimal 0
min 0
max 60
number_type 1
validation_function "test_range()"
p_code "${27}&l$${ppds_top_margin}E"

}
}

The keyword "number" at the begining of the block is the node type.
The string that follows i.e. "ppds_top_margin" is the node name/tag
name for the node. This should be a uniq node name. The header block
that comprises of "title", "prompt" and "help" defines the node. The
node/block properties are defined in the

"option_type" STRING { }

 section. The following sections describes these fields:

Description of NUMBER node fields

default_value NUMBER

This field holds the default value for this tag. This will be the value
substituted by the user interface to the virtual queue definition file.
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
decimal NUMBER

This field holds the number of decimal places that are allowed for this
tag if any. If the field is an integer, this will be "0". For one decimal
place it will be set to 1 and so on.

min NUMBER

This field holds the minimum range for this field. This is used by the
user interface to validate the range when a number is entered by the
user.

max NUMBER

This field holds the maximum range for this field. This is used by the
user interface to validate the range when a number is entered by the
user.

number_type NUMBER

This field holds the type of integer. Different data streams treat these
numbers diffrently. Conisder the following two examples for two
diffrent data streams.

PCL

For example, to set the page length to 60 lines per page the following
command is sent to the printer:

Format ESC & l <page_width> F

ASCII ESC & l 6 0 F

DECIMAL 27 38 108 54 48 70

HEX 1B 26 6C 36 30 46

This shows that for a page length of 60 lines per page we send the ascii
characters "60" i.e. 0x36 0x30.
21Chapter 1: Writing Printer and Device Definition Databases

22

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
PPDS

For example, to set the page length to 60 lines per page the following
command is sent to the printer:

Format ESC C <lines>

DECIMAL 27 67 60

HEX 1B 43 3C

This shows that for a page length of 60 lines per page we send the the
byte value of 60 which is hex 3C.

This situation creates a distinction of how the "formatter" program is
going to handle these number fields. In order for the formatter to
know the difference, this field is used to flag the format of these
numbers (ASCII_TYPE of VALUE_TYPE). Currently only two formats
are supported. This can be extended to other types if needed in the
future. The following table describes the currently supported values
for this field.

validation_functionSTRING

This field holds the name of the function to be used by the user
interface to validate the number entered by the user. If the name of the
function is "test_range", the string should read:

validation_function "test_range()"

The "()" round braces are important and should be there for the user
interface to locate the correct function.

Number Representation Description

0 ASCII_TYPE This type is used to send characters with their
ascii representation as in PCL5

1 VALUE_TYPE This type is used to send integer values as in
the PPDS example
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
p_code STRING

This field holds the printer code for this tag. This STRING will
normally conatain the codes along with the tag surrounded by $${ and
}. For example, in PCL5 for page length:

p_code "ESC&l$${page_length}F"

The "formatter" will replace the '$${page_length} ' with the value
found for page_length in the virtual queue definition for the queue
in question. For example, if the VQD file is as follows:

.

.

.
pcl_indentation=5
pcl_page_length=40
pcl_banner_page=yes
.
.
.

If "number_type 0" is set p_code is substituted as follows :

ESC & l 4 0 F

27 38 108 52 48 70

If "number_type 1" is set p_code is substituted as follows

ESC & l (F

27 38 108 40 70
23Chapter 1: Writing Printer and Device Definition Databases

24

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
MENU Block
The menu block defines the combination section for all the above
refrenced types (i.e. LIST, STRING and NUMBER). Menus can be
nested to 10 levels. Nesting here, implies that sub_menus can be used
as an item within a menu and up to 10 levels deep.

For example, the automatic sniffing queue is a superset of the PCL and
PostScript menu blocks. The following section describes the format of
the menu blocks and their dependency on nesting.

Consider the PDD for the "IBM LaserPrinter 4039 16L":

menus "pcl_banner_options" {<-- line #1
title "PCL Banner Options"
prompt "Banner Options"

help "PCL_Banner_Options_Help"
next_ptr"none"

sub_list"pcl_banner_page"
.
.
.

sub_string"pcl_banner_file"
.
.
.

sub_number"pcl_banner_page_length"
.
.
.

}

menus "ps_banner_options" { <-- line #2
title "PS Banner Options"
prompt "Banner Options"
help "Banner_Options_Menu_Help"
next_ptr "none"

sub_list "ps_banner_page"
.
.
.

sub_string "ps_banner_file"
.
.
.

}

Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
menus "pcl_options" { <-- line #3
title "PCL Options"
prompt "PCL Options"
help "PCL_Options_Menu_Help"
next_ptr "install_queue()"

sub_list "pcl_duplex" <-- line #4
.
.
.
.
.

sub_menu "pcl_banner_options" <-- line #5
}

menus "ps_options" { <-- line #6
title "PS Options"
prompt "PS Options"
help "PS_Options_Menu_Help"
next_ptr "install_queue()"

sub_list "ps_resolution"
.
.
.

sub_menu "ps_banner_options" <-- line #7
}

menus "auto_options" {

title "Automatic Data Stream Sniffing Options"
prompt "This is automatic data stream options Menu"
help "Auto_Options_Menu_Help"
next_ptr "install_queue()"

sub_menu "pcl_options" <-- line #8
sub_menu "ps_options" <-- line #9

}

The above example describes the MENU blocks in good detail. The
keywords for this block are
25Chapter 1: Writing Printer and Device Definition Databases

26

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es

st of
erify
o not
sub_list STRING

sub_string STRING

sub_number STRING

sub_menu STRING

sub_<block_type> keywords are used to refer to the diffrent blocks
refrenced above in the PDD file. The compiler in the first pass makes a li
all these tags and tries to match it to the list of already parsed tags and v
the tag name and the tag type. If a tag is non-existant or its type seems t
match it will print out an error message.

 EXAMPLE:

sub_list "pcl_duplex"

On line #4, must have appeared as a valid LIST block in the file before
this line. If "pcl_duplex" was not a LIST block and according to line #4
it is a LIST block because of the keyword "sub_list", the compiler will
produce and error message stating that

Checking syntax ...

Warning: block 'pcl_duplex' seems to have incorrect
 TYPE, I think it should be: STRING

1583: Missing pre-defined STRING block at
 ’"pcl_duplex"’

Compilation aborted.

The above message displays the location of the error. The compiler
assumes that the entry in the menu block is correct, therefore, if the
entry in the menu block said

sub_string "pcl_duplex"

and the "pcl_duplex" was found to be a LIST block, the compiler as
shown above will assume that the menu block is correct and suggests
that
Chapter 1: Writing Printer and Device Definition Databases

W
riting P

rinter and D
evice D

efinition
D

atabases
I think it should be: STRING

This will indicate an error situation, which can be investigated by the
programmer and should be corrected before proceeding any further.
The line number of the error, is generally a close approximation of the
area of the error. Look over and below that line number to check the
other surrounding lines.

EXAMPLE:

Every sub_* should be defined before it is referenced in the MENU
block. If sub_* block is not found

Checking syntax ... Failed.

1907: Missing pre-defined NUMBER block at
 '"pcl_page_length'Compilation aborted.

This points at the missing NUMBER block which should exist before it
can be refrenced by

sub_number "pcl_page_length"

line in the MENU block.

 EXAMPLE:

Nesting of menus can be seen from the above example. Refere to line
#1

Miscellaneous Rules
• If a block is refrenced in the sub_menu, sub_list, sub_string or

sub_number field, it has to be defined before it is being called.

• The compiler will abort if the sub_* block is not found and/or
the type is not correct, i.e. STRING, LIST, etc.

• The sequence of fields in the option_type block is important. If
the sequence is not correct it will result in a syntax error.
27Chapter 1: Writing Printer and Device Definition Databases

28

W
rit

in
g

P
rin

te
r

an
d

D
ev

ic
e

D
ef

in
iti

on
D

at
ab

as
es
• The block referenced by the "next_ptr" field should be found at
the end of the parsing. There is no restriction of where it can be
placed in the file or what is the type (i.e. LIST, STRING,
NUMBER)

• A comment starts at the begining of the line with '#' character.
Anything after that on that line is considered as a comment
and is ignored.

• Tabs, spaces, and comments are ignored.

• Only the MENU can have multiple nesting levels.

• Data is written to the disk in the same sequence as it is read.
The structure is created when it is read from the binary file.

• The Printer Definition Database (PDD) is started with the
keyword "pdd_file".
Chapter 1: Writing Printer and Device Definition Databases

	Writing Printer and Device Definition Databases
	Overview
	Information base for the user interface
	Database for Printer Codes

	Rules for writing PDDs and DDDs
	String
	Integer
	Keywords
	Block Types
	Block Headings
	PDD_BLOCK
	init_modes
	init_sequence
	banner_init_sequence

	LIST Block
	Order of LIST block fields:

	STRING Block
	valid_type
	STRING node fields

	NUMBER Blocks
	Description of NUMBER node fields
	PCL
	PPDS

	MENU Block

	Miscellaneous Rules

