

© Copyright IBM Corporation, 2014. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders

IBM DB2 for i porting guide
Oracle to IBM i platform

.

Database technology team
ISV Business Strategy and Enablement

October 2014
Version 8.1

DB2 for i porting guide: Oracle to IBM i platform

Table of contents
Abstract .. 1

Introduction ... 1
The audience for this document .. 1

Assumptions .. 1

Preparing to port ... 1
Porting approaches ... 2

Design trade-offs ... 2

Misused porting approach .. 3

Porting tools ... 3

Sizing the port ... 4
Architecture .. 4

Brief history ... 4

Interfaces and packaging ... 5

Storage model .. 5

Metadata ... 6

Data types ... 6

Null indicators .. 7

DATE and TIME .. 7

NUMBER ... 7

Character types (including variable-length types) ... 7

ROWID .. 8

XML considerations .. 9

SQL language elements .. 9

Identifiers ... 9
Naming conventions and formats ... 10
Three-part names ... 10
Synonyms .. 10

Functions ... 11
UDF performance ... 11
NVL .. 11
DECODE .. 11
INSTR .. 11
TO_CHAR .. 12
ROWNUM .. 12
Considerations for null and empty strings .. 12

Case-sensitivity considerations .. 13

Joins ... 13

MINUS set operator ... 14

CONNECT BY ... 14

Stored procedures... 15
Result set differences ... 17
Exception processing ... 17
PUT_LINE .. 19

DB2 for i porting guide: Oracle to IBM i platform

Triggers .. 19

Constraints ... 20
Referential integrity .. 20

Sequence .. 20

Miscellaneous differences .. 20
SYS.DUAL ... 20
Date and time arithmetic .. 20
TO_DATE and TO_CHAR .. 21

Unsupported features.. 21

Application development .. 21

Dynamic SQL ... 21

Embedded SQL .. 22
Oracle Forms ... 22

Cursors ... 22

Blocked inserts, fetches and updates ... 23

Error handling .. 24

Concurrency and recovery ... 24

Concurrency and locks ... 24

Isolation levels ... 25

AutoCommit ... 27

Optimistic locking ... 27

Journaling and recovery ... 28

After the port ... 28
Functional testing .. 28

Performance tuning and sizing .. 28

Administrative tasks .. 29

System i Navigator .. 29

Utilities .. 30
Load and import ... 30
ALTER TABLE ... 31

Constraint administration ... 31

Summary .. 32

Appendix A: Rough sizing estimates for conversions .. 33

Appendix B: PUT_LINE ... 34

Appendix C: Mapping of Oracle OCI to DB2 CLI .. 35

Appendix D: Resources .. 38

Trademarks and special notices ... 40

DB2 for i porting guide: Oracle to IBM i platform

1

Abstract
This paper explains various processes and considerations regarding porting an Oracle
database application to the IBM i platform to run with DB2 for i. Discussions include: assessing
the differences between the source and target databases, porting approaches and
administrative differences.

Introduction
This is a working document; new topics will be added as they appear in more and more porting situations.
Meanwhile, depending on the type of application, not all topics discussed in this paper are relevant to a
particular situation.

The audience for this document

This document is written for application developers and database administrators who want to convert an
Oracle® application to IBM® DB2 for i®. The document covers the most common issues and
inconsistencies encountered by developers when porting from Oracle to DB2 for i. It also covers DB2

support and administration topics that are relevant to database administrators.

This document concentrates primarily on the database differences between the Oracle and DB2 for i
database servers. It does not focus on the differences between the underlying operating systems.

Application development issues are also only covered from a database perspective.

Assumptions

The paper assumes readers are working with Oracle 11g Release and are porting to the DB2 for i 7.2
release. For simplicity, this paper uses DB2 to represent DB2 for i.

The document also assumes readers are familiar with the concepts of RDBMS and with Oracle SQL and
PL/SQL. It is also assumed that readers have easy access to DB2 for i documentation. Refer to that
documentation for detailed information about the actual SQL statement syntax. DB2 for i documentation

can be found online at: ibm.com/systems/power/software/i/db2/docs/books.html.

Preparing to port
Before diving into a detailed comparison of DB2 and Oracle, the first step in considering a port to DB2 is
reviewing the source database. A firm understanding of the technologies and interfaces used by your

Oracle application makes you more productive as you use this document to assess the port to DB2. Here
are some questions that you need to be able to answer about your application and database:

 Does the application use standard or proprietary SQL such as the Connect By statement?

 What programming interfaces does the application use for data access?
 Does the application rely on any platform-specific middleware or technology?
 Are there any known performance bottlenecks?

 Is the business logic in procedural database objects (triggers and procedures) or the application?

To request a formal DB2 porting assessment document, send an e-mail to: rchudb@us.ibm.com

DB2 for i porting guide: Oracle to IBM i platform

2

Porting approaches

After you have a thorough understanding of the source database, it is time to consider the approach that
you want to take when porting your application to DB2. Any solution can be ported, given enough time

and money. However, the question to ask is: “What is the end goal for the application being ported? Does
it need to be a portable solution that can easily support multiple DBMS products or a solution that is
tightly integrated and tuned for DB2?” This porting issue needs to be discussed before the database

porting project starts to make sure that all of the parties on both sides agree on the priority. If the solution
already supports multiple DBMS products, then this is a relatively easy question to answer. With its
support for industry-standard interfaces, DB2 allows this application design with minor changes.

Design trade-offs

However, if your application currently supports just a single DBMS product, you have some application
design issues to investigate further. The first alternative to consider is redesigning your application with
an abstraction layer to support database servers more easily with a single code base. This design

approach requires more effort and investment, but also better positions your application for expansion to
other platforms and databases in the future. In addition, as you enhance your core application, this design
makes if faster to deploy these enhancements to all of your supported platforms.

If it is important to maintain the source code to remain portable, a good application design is to isolate all
database runtime calls from the application. This is usually accomplished by having the application create
its own set of database methods or calls to pass to a single procedure or module. That procedure or

module then turns the application database request into the specific format or API (ODBC, JDBC or other
interfaces) supported by the target database.

Another alternative is to create a separate version of your application specifically for DB2 for i. Although

this can require less up-front investment than the previous approach, the long-term expenses are greater
because of having a second code base to maintain, enhance and test. The benefit of this approach is that
the best performance is usually obtained by changing the application and database to exploit the target

server. However, the more changes you make to exploit the target, the harder it is to have a single set of
application source code that can run against multiple database servers. If the goal is to have a common
set of single-source code, then avoid platform-specific features in the conversion. Performance is usually

the tradeoff when you code to the lowest common denominator. For example, Oracle has a scalar
function called X and DB2 has an equivalent function called Y. The developer who is converting to DB2
has two choices: change the application to call function Y (which yields the best performance) or code a

DB2 user-defined function (UDF), called X, that does nothing other than call function Y. (This allows the
application code to remain unchanged, but results in slower performance.)

This tradeoff is especially critical with DB2 for i because its implementation of dynamic SQL prepare and

execute statements has some nuances. Many times, an application designed for other database servers
blindly prepares and runs the same SQL statement repeatedly within a single program call, even though it
is more efficient to prepare that SQL statement only one time. Or the application uses the ODBC

SQLExecDirect function or the JDBC statement class to run the same SQL request multiple times within
a connection. DB2 is not suited for either of these inefficient program models. If the application cannot be
changed to a model where an SQL statement is prepared once and run many times, then most likely, that

application will not perform well on the IBM i platform.

DB2 for i porting guide: Oracle to IBM i platform

3

On the performance topic, it is strongly recommended that database administrators or SQL developers
who are new to the IBM i platform attend the DB2 for i SQL Performance Workshop

(ibm.com/systems/power/software/i/db2/education/performance.html). This course teaches the developer
the proper way to design and implement a high-performing DB2 solution.

Misused porting approach

Because DB2 is also available for Linux™ and Microsoft® Windows® workstations, many developers

wonder if they can perform their porting and associated testing on the workstation and then move it to the
IBM i platform after the testing on the workstation has been completed. Does that work? The short
answer is, “Probably not.” Although DB2 for i does belong to DB2 Family, there are differences in the SQL

syntax and features supported by each DB2 product. There is not a master version of DB2 and each
product has features that are not supported by one of the other database products. In addition, DB2 for i
does not include support for the Oracle Compatibility Mode first delivered with the DB2 9.7 release.

This approach only works if, prior to using any SQL statement on the workstation version, the developer
first verifies that the SQL statement and syntax is supported by DB2 for i. An online white paper can be
referenced for a high-level examination of DB2 for i and the IBM DB2 Family at the IBM PartnerWorld®

(ibm.com/partnerworld/wps/servlet/ContentHandler/SROY-6UZDN4).

Porting tools

Porting tools are available from IBM and other providers to automate some of the porting process.

The IBM DB2 Migration Toolkit for Oracle is designed to automate many of the steps involved in porting

of a database from Oracle to DB2 for i. This no-charge download automates the migration of tables,
views, indexes, triggers and stored procedures, as well as other Oracle objects. This toolkit can be
accessed at the following web site: ibm.com/i/partnerworld/db2porting.

Although the DB2 Migration Toolkit can greatly reduce the amount of time it takes to convert from Oracle
to DB2, it does not completely automate the database conversion process. For example, the toolkit does
not convert references to the Oracle catalogs to the corresponding DB2 catalog references. The

programmer has to perform some manual work. However, the toolkit does flag items that have to be
converted manually by the programmer. The converted programming objects (triggers, functions and
stored procedures) need to be reviewed to ensure they are semantically equivalent. In addition, the SQL

code generated by the DB2 Migration Toolkit might not result in the best-performing SQL statements.
This means that some performance tuning also needs to be done after using the toolkit.

There are also a couple of tools that can be purchased from other software providers (SwisSQL and

Ispirer) online at: www.swissql.com and www.ispirer.com. These conversion tools might not generate
SQL that is specifically supported by DB2 for i.

If your application depends on proprietary features that are not supported by existing migration tools, then

it can be prudent to consider building your own migration tool. This approach involves a significant up-
front investment and require an in-depth knowledge of both the source and target databases.

DB2 for i porting guide: Oracle to IBM i platform

4

Sizing the port

Although the design approach and usage of porting tools definitely affect the costs required to complete
the port, the effort is also dependent on the features used in the source database. This section highlights

and compares some of the key differences encountered between Oracle and DB2 databases during
application ports to help assess the difficulty of your porting project.

Architecture

This section provides an overview of the DB2 architecture and a comparison of that architecture with the

Oracle database product. In addition, the interfaces used with Oracle and DB2 databases are compared.

Brief history

An integrated, fully relational database has shipped with every IBM i machine as far back as the

inception of the IBM AS/400® systems in the late 1980s. Many users did not realize they had a
database because this integrated relational database originally had no name. In 1995, the database
joined the DB2 brand by adopting the name DB2/400. Then, in 1999, the DB2 Universal Database

branding was added. DB2 for i is still running on the original database engine; it has more features
and functions with each new release of the IBM i operating system. In fact, the database is integrated
so well that some IBM i users say that they are not using DB2.

Because the AS/400 family of systems was developed before SQL was widely used, a proprietary
language and high-level language extensions (think of them as APIs) were made available for
relational database creation and data access. Data Definition Specification (DDS) is the language

used for creating DB2 objects. The language extensions (or APIs). known as the record level I/O
interfaces. are available in most of the languages supported by the IBM i platform with the most
usage in RPG and COBOL programs. These extensions and DDS are also known as the native

database interface and are quite similar to indexed sequential access method (ISAM).

Because of this native, non-SQL interface, some IBM i users and consultants use terminology that is
unfamiliar to those coming from an SQL background. Table 1 provides a mapping of that terminology:

SQL terms IBM i terms
TABLE PHYSICAL FILE
ROW RECORD
COLUMN FIELD
INDEX KEYED LOGICAL FILE, ACCESS PATH
VIEW NON-KEYED LOGICAL FILE
SCHEMA LIBRARY, COLLECTION, SCHEMA
LOG JOURNAL
ISOLATION LEVEL COMMITMENT CONTROL LEVEL

Table 1: Mapping of SQL and IBM i terms

Because of the integrated nature of the IBM i database, both the native and SQL interfaces are
almost completely interchangeable. Objects created with DDS can be accessed with SQL

statements. And, objects created with SQL can be accessed with the native record level access APIs.
The DB2 SQL interface is compliant with the core level of the SQL 2011 standard.

DB2 for i porting guide: Oracle to IBM i platform

5

Interfaces and packaging

Because DB2 is integrated, most SQL-based applications run on any IBM i hardware without

requiring additional products to be purchased for the client or server. The following DB2 capabilities
are included with the IBM i operating system at no additional charge:

 SQL parser and runtime support

 SQL interfaces (server side)
 Call level interface (CLI)
 Native JDBC driver (Version 4.0)

 SQLJ
 IBM i Access for Windows (formerly IBM Client Access Express and IBM iSeries Access)

 ODBC (Version 3.5)

 JDBC (Version 4.0)
 OLE DB provider
 .NET provider (Version 2.0)

 Open Group™ DRDA application requester and server
 PHP ibm_db2 extension
 SQL Statement Processors (RUNSQLSTM & RUNSQL CL command)

 Qshell DB2 utility
 Performance tuning tools
 System i Navigator

The DB2 for i SQL Development Kit and Query Manager (5722-ST1) product must be purchased if
you need to embed SQL in a high-level language (C, C++, RPG, or COBOL). This product only needs
to be installed on your development system.

If an application already supports DB2 access through DB2 Connect middleware, another option is DB2
Connect Unlimited Edition for System i (ibm.com/software/data/db2/db2connect/edition-uei.html). This
product is not included with the base operating system; it must be purchased separately.

Many vendors prefer a native database interface (for example, Oracle Call Interface [OCI]) instead of
an industry-standard interface, such as ODBC or CLI, to improve performance. DB2 does not really
have a native SQL-based interface, instead the ODBC and CLI interfaces are treated as such for DB2

for I, providing performance similar to the native interfaces offered by other database products.

The one SQL-based interface similar to a native interface for DB2 is the Extended Dynamic interface
(through the QSQPRCED API or XDA API set). However, this interface is proprietary and is used

effectively only by thoroughly understanding the DB2 for i SQL engine. That knowledge is obtained
from the DB2 for i SQL Performance Workshop
(ibm.com/systems/power/software/i/db2/education/performance.html).

Storage model

The physical storage model for DB2 and Oracle differ drastically. With DB2, all storage allocation and
management is handled by the database manager and operating system. Thus, there are no

tablespaces to create or manage on the IBM i platform. In addition, the data for a DB2 object is
automatically partitioned (or striped) across the disk devices to eliminate contention.

DB2 for i porting guide: Oracle to IBM i platform

6

DB2 does support the notion of independent, isolated databases. However, its default configuration is
as a single, system-wide database. If developers want to create independent, isolated databases on

the IBM i platform, they must configure a new, independent auxiliary storage group.

DB2 for i supports partitioned tables. However, partitioned tables should only be used when the row
count or size limit for a single table is about to be exceeded. For more details on the DB2 for i

partitioned table implementation, consult the white papers listed on the IBM i Education Curriculum
at ibm.com/partnerworld/wps/whitepaper/i5os.

Metadata

Metadata provides the roadmap to interpret information stored in the database. In Oracle, metadata is

stored in the Data Dictionary; in DB2, metadata is stored in the System Catalog. The preferred way to
reference metadata in DB2 is with catalog views, such as SYSIBM.TABLES, not the underlying tables.
The structure and names of these views are different from the Oracle metadata tables, so you must

understand the views to map the system information from Oracle to DB2. Catalog-view descriptions are in
an appendix of the DB2 for i SQL Reference Guide. DB2 for Linux, UNIX and Windows, as well as DB2
for i support a common set of catalog views for ODBC and JDBC clients in the SYSIBM schema.

Data types

The following table (Table 2) summarizes the mapping from the Oracle data types to corresponding DB2
data types. The mapping is one-to-many and depends on the actual usage of the data.

Oracle data
type

Notes DB2 data type Notes

DATE TIMESTAMP(0)
— Use Oracle TO_CHAR() function to format a
DATE for subsequent DB2 load. Note that the
Oracle default DATE format is DD-MON-YY

TIMESTAMP TIMESTAMP
VARCHAR2(n) n <= 4000 CHAR(n)

VARCHAR(n)
n <= 32766, CHAR
n <= 32740, VARCHAR

LONG n <= 2 GB VARCHAR (n)
CLOB(n)

— if n <= ~32KB, use CHAR or VARCHAR
—if 32 KB <= n <= 2 GB, use CLOB

RAW and
LONG RAW

n <= 255 BINARY(n)
VARBINARY(n)
BLOB(n)

— if n <= 32 KB, use CHAR(n) for BIT DATA or
VARCHAR(n) for BIT DATA
— if n<= 2 GB, use BLOB(n)

BLOB n <= 4 GB BLOB(n) — if n <= 2 GB, use BLOB(n)
CLOB n <= 4 GB CLOB(n) — if n <= 2 GB, use CLOB(n)
NCLOB n <= 4 GB NCLOB DBCLOB can also be used
NUMBER SMALLINT / INTEGER /

BIGINT

DECIMAL(p,s)/NUMERIC(p,s)
DECFLOAT

— if Oracle decl is NUMBER(p) or NUMBER(p,0),
use SMALLINT, INTEGER, or BIGINT
— if Oracle decl is NUMBER(p,s), use
DECIMAL(p,s)
—if Oracle decl is NUMBER, use DECFLOAT

XMLType XML See the XML considerations that follow next

Table 2: Mapping of Oracle data types to DB2

DB2 for i porting guide: Oracle to IBM i platform

7

Null indicators

Null indicators are defined as SMALLINT or short in C/C++. When fetching null values from a column,

the column’s host variable is unchanged and the null-indicator variable is set to a negative value.

DATE and TIME

The Oracle DATE data type indicates year, month, day, hour, minute and second. It does not

correspond to the DB2 DATE data type, which contains only the year, month and day. In DB2, the
TIMESTAMP data type by default contains information from the year through to the seconds and
microseconds. Specifying a precision of 0 for a DB2 TIMESTAMP column will result in a value that

matches an Oracle DATE value. The Oracle sysdate data type is equivalent to the DB2 CURRENT
TIMESTAMP special register.

NUMBER

The Oracle NUMBER data type can be mapped to many DB2 types, depending on whether the
NUMBER data type is used to store an integer or a real number with a decimal portion. Another
consideration is the space usage. Each DB2 type requires a different amount of space: the

SMALLINT data type uses two bytes, the INTEGER data type uses four bytes, and the BIGINT data
type uses eight bytes. The space usage for the Oracle NUMBER type depends on the parameter
used in the declaration. The NUMBER data type, with the default precision of 38 significant digits,

uses 20 bytes of storage. Mapping the NUMBER data type to the SMALLINT data type, for example,
can save 18 bytes per column. An Oracle NUMBER data type with nonzero scale (decimal places)
can be mapped to the DB2 DECIMAL or NUMERIC data types. The DECIMAL data type is stored as

packed decimal in DB2, and the NUMERIC data type is stored in a zoned-decimal format. If no
precision or scale is specified with the Oracle NUMBER data type, then DB2 DECFLOAT data type
should be used.

Character types (including variable-length types)

DB2 supports the CHAR and VARCHAR data types for single-byte character strings and the
NCHAR, NVARCHAR, b, GRAPHIC and VARGRAPHIC data types for double-byte character

strings. Unicode data is supported with the GRAPHIC and VARGRAPHIC data types with a CCSID
value of 1200 for the UTF-16 encoding. As of IBM i V6R1, the national-character data types (NCHAR,
NVARCHAR and NCLOB) are also used to create a column with UTF-16 encoding. UTF-8 Unicode

encoding is also available with the CHAR and VARCHAR data types with a CCSID value of 1208.

Many Oracle applications use the VARCHAR2 data type for very small character strings. In these
circumstances, it is better to port it to the fixed-length DB2 data type CHAR(n), which is more efficient

and takes less storage than VARCHAR. A general guideline is to use the CHAR data type for
columns of 40 bytes or fewer. Before deciding on the column type based on performance, carefully
read the DB2 for i paging and I/O behaviors for variable-length and LOB columns described in this

section.

In general, the DB2 variable-length data types (VARCHAR and VARGRAPHIC) should only be used
for long memo or text description columns that are not referenced very frequently. DB2 variable-

length types usually cause additional disk I/O because they can be stored in a different data segment
(auxiliary overflow storage) from the rest of the columns.

DB2 for i porting guide: Oracle to IBM i platform

8

If it is not possible to change the column definition from a variable-length column to a fixed-length

column, the ALLOCATE keyword can be used to improve performance. ALLOCATE(0) is the default

and causes column value to be stored in the auxiliary overflow part of the row; this is the best value if

the goal is to save space. The ALLOCATE(N) keyword allocates n bytes in the fixed portion of the

row and only stores the column in the overflow area when the column value exceeds N. Setting N so

that almost all of the column values are stored in the fixed portion of the row can improve

performance by avoiding the extra I/O operation from the auxiliary overflow area.

Here is an example of changing the ALLOCATE value in an effort to improve performance. An

address column is initially defined as VARCHAR(60) with the default ALLOCATE value of 0,

meaning that the data is stored in the auxiliary overflow section. Performance analysis has shown

that this address column is retrieved frequently, so you want to move most of the address values

back into the fixed portion of the row. If most of the address values are 40 bytes or less in length,

then you can use the ALTER TABLE statement to change the ALLOCATE value to 40. Now, all

address values that are 40 bytes or less are stored in the fixed portion of the row, thus, eliminating

the extra I/O operation on the auxiliary overflow area.

The problem is further magnified when both LOB and VARCHAR values are stored in the auxiliary

overflow area. LOB storage is almost identical to VARCHAR column storage, so it is possible for

both large LOB values and smaller VARCHAR columns to share the same overflow area. The

sharing is not a problem, but when a single VARCHAR column that sits in the overflow area is

referenced, the entire overflow area for that row is paged into main memory, including all BLOB and

VARCHAR values. The application might only retrieve a VARCHAR(50) column, but if that column is

in the same overflow storage area as three 2-megabyte BLOB values, then the application waits until

the VARCHAR and all three large BLOB values are paged into memory. If a row contains both

BLOB and VARCHAR columns, then most likely, the VARCHAR column’s ALLOCATE value should

be set to the maximum to ensure that the value is always stored in the fixed portion of the row.

To simulate the older Oracle RAW and LONG RAW data types, DB2 provides the BINARY and

VARBINARY data types.

Oracle also supports three types of large objects: BLOB, CLOB and NCLOB. The Oracle BLOB and

CLOB data types can store up to four gigabytes of data and map directly to the DB2 BLOB and

CLOB types, which have a maximum size of two gigabytes. The DB2 DBCLOB type maps to the

Oracle NCLOB data type for double-byte character sets.

The Oracle BFILE data type lets you manage binary data stored outside the database. A table in the

database has a pointer to the externally stored BFILE. This is useful if data stored elsewhere must be

shared with another system. DB2 has similar function with its DATALINK type.

ROWID

The Oracle ROWID pseudocolumn lets you uniquely identify or locate a row in the table. DB2 does

support a ROWID data type that allows you to create a column with similar function to the Oracle

ROWID pseudo column. The DB2 ROWID type stores a 40-byte unique value that does not contain

any information about the data file, block, or row. Although DB2 allows direct access to a row through

its ROWID value, the access of this row is no faster than a WHERE clause that is implemented with

DB2 for i porting guide: Oracle to IBM i platform

9

an index scan. DB2 automatically creates a unique constraint over ROWID columns. Some DB2 for i
solutions can also be used the RRN scalar function to simulate the ROWID value.

XML considerations

As of the 7.1 release, DB2 for i provides an XML data type similar to the Oracle XMLtype data type
using the unstructured storage model. The DB2 for i XML functionality in 7.1 does not include an

XQuery search interface. As an alternative, applications can employ the IBM OmniFind Text Search
Server to index and search the stored XML values. (Note: For details on available XML support in
prior IBM i releases, see this IBM Redbooks® document: The Ins and Outs of XML and DB2 for i

(SG24-7258).

SQL language elements

This section covers the most common differences with SQL syntax and semantics.

Identifiers

DB2 for i supports two types of SQL identifiers: ordinary and delimited. Ordinary identifiers begin with
an uppercase letter and are converted to all uppercase. A delimited identifier is a sequence of one or
more characters enclosed within SQL escape characters (..). With delimited identifiers, leading blanks

are significant and letters in the identifier are not converted to uppercase. The length of a delimited
identifier includes the two SQL escape characters for column names, but not for other SQL names.

It is recommended that you not use variant characters (such as $, @, #, ^ and ~) in SQL identifiers.

This is because of the fact that the underlying code points of these characters can vary depending on
the CCSID or language that is active on the system. If variant characters are used in your identifiers,
then unpredictable results can occur when using these characters, especially on systems with

nonEnglish CCSID values. The _ (underscore) character is not considered a variant character.

In general, the DB2 for i SQL identifier-length maximums are no problem when porting databases.
DB2 supports identifiers with up to 128 characters for columns, tables, indexes, procedures and

constraints. Authorization names, with a maximum length of 10 characters, are probably the only
identifier that might cause issues. All SQL limits are explained in the DB2 for i SQL Reference.

Although DB2 supports long SQL identifiers, the commands and interfaces native to the IBM i

operating system, there is a hard maximum of 10 characters for object names. For example, the
Save commands that are used to back up database objects such as tables and indexes only support
a 10-character identifier. Therefore, how do you back up an SQL object that has an identifier longer

than 10 characters? When an SQL identifier longer than 10 characters is specified, DB2 automatically
generates a short identifier of 10 characters that can be used with operating system commands and
native interfaces. This short name is generated for all SQL object names, including column identifiers.

These shorter SQL identifiers with the 10-character maximum are also known as system names.

The system-generated short names do have a downside because they are generated by the system.
First, they are not user-friendly. DB2 appends a five-digit unique number to the first five characters of

the SQL identifier. For instance, CUSTOMER_MASTER has a short name of CUSTO00001. Second
and more importantly, these short names are not guaranteed to be consistent across systems or
repeated creations of the same SQL object because of the dependencies on creation order and other

DB2 for i porting guide: Oracle to IBM i platform

10

identifiers that share the same first five characters. Thus, special SQL syntax was added that allows
the short name to be controlled by the developer.

The SQL FOR SYSTEM NAME clause was recently made available to allow a short name to be
assigned to tables, indexes and views. The FOR COLUMN clause can be used on the CREATE
TABLE and ALTER TABLE statements to assign a short column name. The SPECIFIC clause can

be used to assign a short name when creating procedures and functions. Here are some examples of
using this special SQL syntax to assign your own short system names:

CREATE TABLE dbtest/customer_master
 FOR SYSTEM NAME cusmst
 (customer_name FOR COLUMN cusnam CHAR (20),
 customer_city FOR COLUMN cuscty CHAR(40))

To overwrite the system-generated name for customer_master (CUSTO0001), the FOR SYSTEM
NAME clause instead assigns a short name of cusmst. After running this statement, the SQL table

name is customer_master and the system table name is cusmst. Either name can be referenced on
other SQL statements.

The FOR SCHEMA clause can be used on the CREATE SCHEMA statement to assign a short

system name for schema names that are longer than 10 characters.

Naming conventions and formats

Almost all DB2 for i SQL interfaces allow you to specify an SQL Naming Mode or Format. This

option controls the syntax when qualifying an object with a schema (or library) name as well as
defining the default search path used when unqualified SQL object names have been referenced.

*SYS (System naming) mode is based on native-database access on the IBM i platform. This

mode dictates using the traditional OS/400 slash (/) to explicitly qualify SQL objects with a
schema name (for example, mylib/mytablename). Also, if a schema is unspecified, system
naming searches the libraries defined in the job’s library list looking for the unqualified object.

*SQL (SQL naming) is based on the SQL standard and requires a period (.) to separate the
schema and object name (for example, mylib.mytablename). With this convention, the only
library (or schema) searched for unqualified objects is the library matching the name of the

current SQL authorization name (or user-profile name). If the authorization name is JOHNDOE
and an unqualified object is referenced, DB2 expects to find the object in a JOHNDOE schema.

Other settings can impact the default search path, but this section describes the default behavior

of each of the naming conventions. Consult the SQL Reference Guide for a full explanation.

Three-part names

The SQL naming convention on DB2 for i does support full three-part names (for example,

myschema.mytable.mycolumn) for those applications referencing columns in that manner. These
full names cannot be used with the system naming convention (*SYS).

Synonyms

In Oracle, you can create a synonym as an alternative name for an object. This includes a table,
view, sequence, procedure, stored function, package, snapshot or another synonym. DB2

DB2 for i porting guide: Oracle to IBM i platform

11

supports this concept with an ALIAS, but with some differences. You can only create an ALIAS
on a table or view and the Oracle public keyword is not supported.

Functions

Many Oracle functions are supplied with DB2 with the same name and behavior, requiring no porting
effort. Other Oracle functions have a different DB2 name but the same purpose and are also easily

ported as sourced UDFs (see next section). The remaining functions have no DB2 equivalent or are
user-written. Both are converted as UDFs on DB2. There are several scalar and table UDF types in
DB2, all created with the CREATE FUNCTION statement. The basic UDF types are:
 Sourced UDF: This is a reuse of the implementation of an existing function, usually with

some attributes changed, such as input data types. A sourced UDF is also used as an alias.
If there is a function in Oracle, such as ORAFUNC, that has an equivalent called DB2FUNC

in DB2, then a sourced UDF, called ORAFUNC, can be created in DB2, invoking the
DB2FUNC function, and Oracle statements calling ORAFUNC need not be changed.

 SQL-bodied UDF: This can be fully implemented with the SQL procedural language (PSM).

 External UDF: This is used when it is easier to implement the function with any high-level
programming language supported on IBM i, including Java™.

UDF performance

If performance is more critical than a single code base, avoid DB2 UDFs (if the same function
can be performed inline with calls to IBM i functions). UDFs on IBM i are implemented with
external program calls, and more performance overhead than system-supplied calls. Using the

NOT FENCED and DETERMINISTIC attributes when creating functions inhances performance.
See UDF examples at: ibm.com/developerworks/db2/library/samples/db2/0205udfs/index.html.
(Note: Not all these UDF examples work on DB2 for i.)

NVL

The Oracle proprietary NVL function converts null fields to specified values. NVL(MANAGER_ID,
‘No Manager’) converts null values in the manager_id column to the string No Manager. In DB2,

use the COALESCE function to convert nulls, as in COALESCE(MANAGER_ID,’No Manager’).

DECODE

DB2 does not provide the DECODE function. Instead, it supports the CASE expression. The

mapping of DECODE to a CASE expression is very direct:
DECODE (condition, case1, assign1, case2, assign 2....,default)

Is equivalent to:
CASE condition
WHEN case1 THEN assign 1
WHEN case2 THEN assign 2
....
ELSE default
END

INSTR

DB2 for i porting guide: Oracle to IBM i platform

12

The Oracle INSTR function maps most closely to the DB2 LOCATE function. If the INSTR
function is used to look for the nth occurrence of a string instead of the first occurrence, the start

position parameter needs to be used iteratively on the DB2 LOCATE function.

TO_CHAR

Here is a DB2 user-defined function that simulates the Oracle TO_CHAR function:

CREATE FUNCTION to_char (t1 TIMESTAMP, format VARCHAR(32))
 RETURNS VARCHAR(26)
 LANGUAGE SQL
 READS SQL DATA
 DETERMINISTIC
 NOT FENCED
 NO EXTERNAL ACTION
BEGIN
DECLARE chs_tmstmp CHAR(26);
DECLARE retval VARCHAR(26);

SET chs_tmstmp = CHAR(t1);
CASE TRIM(format)
 WHEN 'DD'
 THEN SET RETVAL = SUBSTR(chs_tmstmp, 9, 2);
 WHEN 'MM'
 THEN SET RETVAL = SUBSTR(chs_tmstmp, 6, 2);
 WHEN 'YYYY'
 THEN SET RETVAL = SUBSTR(chs_tmstmp, 1, 4);
 WHEN 'YYYY-MM-DD'
 THEN SET RETVAL = SUBSTR(chs_tmstmp, 1, 10);
 ELSE SIGNAL SQLSTATE '38Z01'
 SET MESSAGE_TEXT = 'INVALID FORMAT SPECIFIED.';
 END CASE;
 RETURN retval;
 END;

Figure 1.

ROWNUM

The Oracle ROWNUM function has different syntax on DB2. Here are two examples of the DB2
RowNumber OLAP expression that provide capabilities similar to the Oracle ROWNUM function.

SELECT ROW_NUMBER() OVER() as rownum, name, dept
FROM employee

SELECT id_range, name, dept
FROM (SELECT ROWNUMBER() OVER(ORDER BY id) as id_range,
 name, dept FROM staff) as id_list
WHERE id_range > 10 AND id_range < 20

Figure 2.

Considerations for null and empty strings

Oracle Database treats empty strings (zero-length character strings) as NULL values. This
proprietary Oracle behavior can cause equivalent DB2 for i functions to return different values

then the Oracle application expects. Here are the circumventions for some of the DB2 functions
that behave differently than Oracle when empty-string and null values are processed.

 Concat(arg1,arg2) circumvention: NULLIF(CONCAT(coalesce(arg1,''), coalesce(arg2,'')), '')

 Trim(arg1) circumvention (also use for LTRIM and RTRIM): NULLIF(TRIM(arg1) , '')

DB2 for i porting guide: Oracle to IBM i platform

13

 Substr(arg1,start,length) circumvention:
 CASE LENGTH(SUBSTRING(arg1,start,length)) WHEN 0

 THEN NULL ELSE SUBSTRING(arg1,start,length) END

Case-sensitivity considerations

Oracle applications also sometimes contain an expression on the ORDER BY clause [for example,

ORDER BY UPPER(col2)] that is used merely to enforce an uppercase sorting of the data. If that is
true of the application being ported, then one might consider employing a sort sequence to override
the EBCDIC-based ordering of the data. This is done when creating tables (and indexes) by

specifying *LANGIDSHR for the Sort Sequence parameter and ENU (English upper case) for the
Language Identifier parameter. All of the IBM i SQL programming interfaces have connection
attributes and parameters for specifying these settings.

The SET OPTION statement can also be used within the source of a program with embedded SQL.
Usage of an uppercase sort sequence also makes all character comparisons case-insensitive for the
specified table. When an application is run with a sort sequence, that sequence is applied to the

ordering of the data (that is, ORDER BY) and to all character-value comparisons. These comparisons
include basic predicates (=, < and others) as well as the MIN and MAX functions. Consult the SQL
Reference Guide for additional details on sort sequences.

If case-sensitivity searches are implemented by specifying the UPPER function, then creating an
index with a specific sort (or translate) table is an alternative to sort sequences. For instance, an
index created with the QUSRSYS/Q037 table maps lowercase English letters into uppercase. This

translation allows the index to be used on a search condition such as WHERE UPPER(col2)=’ABC’
to implement an index scan instead of a full-table scan.

SQL-derived indexes are an alternative to sort sequences that also allow the query optimizer to use

index scans. The derived SQL-index support added in the IBM i 6.1 release enables SQL functions,
such as Upper, to be included in the key definition on an index, as shown in the following example:
 CREATE INDEX ixcol2 ON tab1(UPPER(col2))

Joins

Oracle supports a proprietary syntax for three types of outer joins: right, left and full. DB2 supports
the standard SQL syntax for Right and Left Outer Joins. (See Table 3.)

Oracle Outer Join DB2 Outer Join
SELECT A.last_name, A_id,B.name
 FROM emp A, Customer B
 WHERE A.id (+) = B.sales_rep_id;

SELECT A.last_name,A.id,B.name
 FROM emp A RIGHT OUTER JOIN customer B
 ON A.id = B.sales_rep_id;

SELECT A.last_name, A_id,B.name
 FROM emp A, Customer B
 WHERE A.id = B.sales_rep_id (+);

SELECT A.last_name,A.id,B.name
 FROM emp A LEFT OUTER JOIN customer B
 ON A.id = B.sales_rep_id;

Table 3: Oracle and DB2 Joins

The proprietary outer join syntax is also used in Oracle to replace the NOT IN predicate as follows:
SELECT Tbl1.col1 FROM Tbl1, Tbl2
WHERE Tbl1.col1 = Tbl2.col2(+) AND 'CHAR' = Tbl2.col2(+)

The DB2 equivalent of that statement is:
 SELECT Tbl1.col1 FROM Tbl1

DB2 for i porting guide: Oracle to IBM i platform

14

 WHERE Tbl1.col1 NOT IN
 (SELECT Tbl2.col2 FROM Tbl2 WHERE 'CHAR' = Tbl2.col2)

MINUS set operator

Oracle supports a non-standard set operator that returns the difference of two sets. Here is an
example of an SQL request utilizing the Oracle MINUS operator:

SELECT b.order_step_id, b.cust_orderid FROM event a, wrkcntrct b
WHERE a.cntrct_id = b.cntrct_id AND qty_type='D' AND qty > 0
 MINUS
SELECT b.order_step_id, b.cust_orderid FROM wrkordr a, wrkcntrct b
WHERE a.step_id = b.step_id AND status = 'D'

Here is the equivalent ported request on DB2 by employing the standard EXCEPT set operator:
SELECT b.order_step_id, b.cust_orderid FROM event a, wrkcntrct b
WHERE a.cntrct_id = b.cntrct_id AND qty_type='D' AND qty > 0
 EXCEPT DISTINCT
SELECT b.order_step_id, b.cust_orderid FROM wrkordr a, wrkcntrct b
WHERE a.step_id = b.step_id AND status = 'D'

CONNECT BY

Starting with the IBM i 7.1 release, DB2 for i includes support for the CONNECT BY clause which is

used in SELECT statements to select rows from a table with hierarchical data (such as tree
navigation).

DB2 for i porting guide: Oracle to IBM i platform

15

Stored procedures

In Oracle, stored procedures must be programmed in PL/SQL. In DB2, SQL stored procedures can
be written. The language used for them is a subset of the ANSI/ISO Persistent Stored Modules

(PSM) specification, and is similar to PL/SQL and other stored procedure languages. This same PSM
language is available for the development of SQL triggers and SQL UDFs on DB2.

DB2 also allows stored procedures to be written in any language supported by the DB2 precompilers;

including Java, C, C++, RPG and COBOL. Stored procedures can use any database interface the
IBM i platform supports (embedded SQL, CLI, JDBC and others). Regardless of language, a DB2
stored procedure is treated and behaves the same as any IBM i program object. SQL procedures are

automatically converted to C code and compiled when the Create Procedure statement runs.

When Oracle stored procedures are migrated to DB2, the most appropriate approach is to use SQL
procedures, because of their similarity to PL/SQL. SQL procedures are automatically converted to C

code and compiled when the Create Procedure statement runs. Because the SQL procedures are
implemented with generated C code, there are cases where the generated C does not perform as
efficiently as a C program created by an application developer. In some porting exercises, because of

performance requirements, the Oracle PL/SQL stored procedures have been implemented as
external stored procedures (C with embedded SQL) on the IBM i platform. The performance of PSM
stored procedures improved significantly with IBM i V5R4. Tips and techniques for coding procedural

SQL with good performance are documented in the Improving SQL Procedural Performance white
paper (ibm.com/partnerworld/wps/whitepaper/ibmi/sql_sql_v6r1/procedure).

The Oracle package object that allows multiple procedures to be stored in the same object and share

global variables is not supported on DB2. One alternative is to create a schema and then place all of
the procedures from the Oracle package into that schema. DB2 does include support for global
variables to allow variable values to be shared across function and procedure calls.

With Oracle, unqualified names in both static and dynamic statements within procedures are, by
default, resolved to the creator's authorization ID (user profile). The DB2 default behavior is different
for static and dynamic SQL with *SQL naming. The DYNDFTCOL and DFTRDBCOL attributes can

be specified on the SET OPTION clause of a DB2 SQL procedure to mimic the Oracle authorization
behavior. To learn more about this approach, you can reference the article, Improve Your
Productivity with Significant Enhancements in DB2 SQL, which is found in the Resources

section. In addition, the IBM Redbooks document, Stored Procedures, Triggers and User-Defined
Functions on DB2 for i can be referenced for more details.

DB2 for i porting guide: Oracle to IBM i platform

16

You can see some of the PL/SQL constructs compared to the SQL procedural language in Table 4:

PL/SQL statement SQL procedure language statement

CREATE PROCEDURE OR REPLACE p1
 (v1 IN VARCHAR2(8), v2 IN OUT NUMBER(3))
AS BEGIN
 INSERT INTO t1 VALUES(v1,v2);
 END

CREATE OR REPLACE PROCEDURE p1
 (IN v1 VARCHAR(8), INOUT v2 INTEGER)
BEGIN
 INSERT INTO t1 VALUES(v1,v2);
END

DECLARE
 rowtype1 table1%ROWTYPE; [columns a,b,c];
 Variable9 datatype9 := value9;
BEGIN
 SELECT * INTO rowtype1 FROM table1
 WHERE c = xxxx;
END;

BEGIN
 DECLARE variablea datatype1;
 DECLARE variableb datatype2;
 DECLARE variablec datatype3;
 DECLARE variable9 datatype9 DEFAULT value9;
SELECT a, b, c INTO variablea, variableb, variablec
 FROM table1 WHERE c = xxxx;
END;

variable1 := value1; set variable1 = value1;
SELECT a INTO variable1 FROM table1
 WHERE b=yyyy;

set variable1 = (SELECT a FROM table1
 WHERE b=yyyy);

IF condition1
THEN
 statement1; statement2;
ELSIF condition2
 THEN
 statement3; statement4;
 ELSE
 statement5;
END IF;

IF condition1
THEN
 statement1; statement2;
ELSEIF condition2
 THEN
 statement3; statement4;
 ELSE
 statement5;
END IF;

LOOP
 statement1; statement2;
EXIT WHEN condition; [or: if condition then exit;
end if;]
END LOOP;

myloop1: LOOP
 statement1; statement2;
 IF condition
 THEN LEAVE myloop1;
END LOOP myloop1;

WHILE condition
LOOP
 statement1; statement2;
END LOOP;

WHILE condition
DO
 statement1; statement2;
END WHILE;

FOR index IN lower_bound..upper_bound
LOOP
 statement1; statement2;
END LOOP;

SET index = lower_bound;
WHILE index <= upper_bound DO
 statement1; statement2;
 SET index = index + 1;
END WHILE;

DECLARE CURSOR mycursor IS
 SELECT a, b FROM table1 WHERE b=yyyy;
BEGIN
 FOR table1_rec IN mycursor LOOP
 a_total := a_total + table1_rec.a;
 END LOOP;

FOR my_loop AS
 SELECT a, b FROM table1 WHERE b=yyyy DO
 set a_total = a_total + a;
END FOR;

Table 4: PL/SQL constructs compared to the SQL procedural language

DB2 for i porting guide: Oracle to IBM i platform

17

Result set differences

Both Oracle and DB2 stored procedures can return result sets, but the syntax for doing this in a

procedure is quite different. Here is a comparison of the Oracle and DB2 result set constructs.

Oracle:
CREATE OR REPLACE PROCEDURE sp_listemp RETURN types.cursortype
 As l_cursor types.cursorType;
 BEGIN
 OPEN l_cursor FOR SELECT ename, empno FROM emp ORDER by ename;
 RETURN l_cursor;
 END;

DB2:

CREATE OR REPLACE PROCEDURE sp_listemp ()
 RESULT SET 1
 LANGUAGE SQL
 BEGIN
 DECLARE l_cursor CURSOR WITH RETURN TO CALLER FOR
 SELECT ename, empno FROM emp ORDER BY ename;
 OPEN l_cursor;
 END;

In more recent versions of Oracle, support for cursor variables was added. These cursor

variables can then be specified in the procedure parameter list as the following example shows.

DB2 and the SQL standard do not allow cursors to be passed as parameters. Thus, this type of

Oracle procedure has to be changed to return result sets using the DB2 constructs shown in the

previous example.

Oracle:
CREATE PACKAGE Department AS
 TYPE cursor_type IS REF CURSOR;
 PROCEDURE get_emps(l_cursor CURSOR_TYPE);
END;

CREATE PACKAGE BODY department AS
 PROCEDURE get_emps(l_cursor CURSOR_TYPE)
 AS BEGIN
 OPEN l_cursor FOR SELECT ename, empno FROM emp ORDER BY ename;
 END;

DB2:

CREATE PROCEDURE get_emps()
 RESULT SET 1
 LANGUAGE SQL
 BEGIN
 DECLARE l_cursor CURSOR WITH RETURN TO CLIENT FOR
 SELECT ename, empno FROM emp ORDER BY ename;
 OPEN l_cursor;
 END;

Exception processing

Exception handling is an area where the SQL and PL/SQL have some significant differences.

PL/SQL can use a single EXCEPTION statement to catch multiple exceptions. However, the DB2

DB2 for i porting guide: Oracle to IBM i platform

18

for i SQL procedural language requires a handler for each exception type. The following is an

example of transforming the PL/SQL EXCEPTION block into handlers.

Oracle PL/SQL:
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 ROLLBACK;
 WHEN OTHERS THEN
 ROLLBACK;

DB2:
DECLARE UNDO HANDLER FOR NOT FOUND, SQLEXCEPTION
 SET var=’DoNothing’;
DECLARE UNDO HANDLER FOR SQLEXCEPTION SET var=’DoNothing’;

The PL/SQL RAISE statement is not available, but the SQL does include the SIGNAL and RESIGNAL

statements for emulation of raised errors. The following examples contain a sample of that emulation, a

user-defined exception named out_of_stock is raised in a PL/SQL stored procedure:

Oracle PL/SQL:
...
DECLARE
out_of_stock EXCEPTION;
number_on_hand NUMBER(4);
BEGIN
...
IF number_on_hand < 1 THEN
RAISE out_of_stock;
END IF;

EXCEPTION
WHEN out_of_stock THEN ...
-- handle the error
END;

In the equivalent DB2 example, the SIGNAL statement returns a user-defined exception:

DB2:
...
DECLARE number_on_hand int;
DECLARE out_of_stock CONDITION FOR 'STK01';
DECLARE EXIT HANDLER FOR out_of_stock ...
-- handle the error

BEGIN
...
IF number_on_hand < 1 THEN
 SIGNAL SQLSTATE 'STK01';
END IF;

END

The Oracle exception handlers have the same behavior as the DB2 exit handlers, which means

that when the handler completes, the stored procedure terminates. Unlike Oracle, DB2 also

enables processing to continue after an exception is encountered. In this case, when the handler

is invoked, the execution continues with the next statement following the one that raised the

DB2 for i porting guide: Oracle to IBM i platform

19

exception. In Oracle, the programmer needs to emulate this behavior by placing the statement
along with its exception handlers in a PL/SQL sub-block.

PUT_LINE

Oracle supplies a range of proprietary packages that are quite frequently used by PL/SQL
developers. For instance, the dbms_output package contains a put_line() procedure that is

often used for debugging purposes. Calls to the put_line procedure are typically scattered
throughout a stored procedure body so that it is possible to trace which sections of code have
already been run. The output created by the put_line procedure is buffered and is not available

until the PL/SQL program completes. When used from a client utility such as SQL*Plus, the
content of the put_line buffer is typically displayed on a client workstation.

DB2 does not provide any built-in functions with capabilities similar to the put_line procedure.

One of the common workarounds is to use a temporary table to store debug messages. The
content of such a debug table can then be easily queried and displayed on a client workstation.
However, some applications require that the messages are saved in a stream file (rather than a

database table) to be subsequently processed by other application modules. Such applications
can take advantage of the DB2 put_line workaround that has been published on the IBM
developerWorks™ web site. For more information, refer to

ibm.com/developerworks/db2/library/techarticle/0302izuha/0302izuha.html.

NOTE: The version of the source available on the developerWorks site does not support DB2 for
i. Refer to APPENDIX B for a version of the workaround that works with DB2 for i.

The workaround allows you to write messages from a DB2 procedure directly into a stream file.
Note that the behavior of the put_line workaround differs in certain areas from Oracle’s
implementation, as explained here:

 The workaround has been implemented as a set of overloaded user defined functions
(UDFs) rather than procedures. For this reason, the invocation requires a function call.

 The output is not buffered and is immediately written to a stream file on the database

server rather than to a standard output device on the client workstation.

Triggers

DB2 supports SQL and external triggers (implemented in high-level languages). SQL triggers are the

most likely implementation because of the similarity with Oracle triggers. DB2 for i SQL triggers
support BEFORE ROW, AFTER STATEMENT and AFTER ROW triggers; the BEFORE
STATEMENT trigger is not supported. DB2 also supports transition variables. OLD and NEW column

values, as well as access to logical tables containing the affected rows with the OLD TABLE and
NEW TABLE clauses, are supported. As mentioned, PSM is available for implementing business
logic in the SQL trigger.

In general, the SQL trigger body can contain any SQL statement. However, BEFORE triggers can
alter data only with the SET statement; other SQL statements that insert, create or alter data are
prohibited. See the SQL Reference for details of the IBM i SQL CREATE TRIGGER statement.

Because DB2 does not have the Oracle concept of versioning, it is not possible cannot get mutating
errors with DB2 triggers; there is only one version of a row at any one time.

DB2 for i porting guide: Oracle to IBM i platform

20

In Oracle, the trigger body consists of an anonymous PL/SQL block. In DB2, the trigger body consists of
one or more SQL statements. If there is more than one SQL statement in a DB2 trigger, they must be

enclosed by BEGIN and END clauses. DB2 triggers can invoke both stored procedures and functions.

Constraints

Both DB2 and Oracle support primary key, foreign key (referential integrity), unique, NOT NULL

and check constraints. The constraint support is quite similar with some differences with referential
integrity constraints. Oracle constraint support has a proprietary behavior of allowing constraint
enforcement to be deferred until the end of the transaction. With DB2 for i, constraints are always

enforced at the end of each statement.

DB2 automatically creates an index for the database manager’s usage in enforcing the constraint
when the following types of constraints are created:

 Primary key
 Foreign key
 Unique key

Referential integrity

Both DB2 and Oracle support foreign keys where a parent table's primary key is referenced by
the child table. However, DB2 allows referential integrity (RI) to apply for any unique constraints,

not just the primary key. This can reduce checking in the application code to enforce more
complex dependencies between tables automatically.

DB2 provides the SET NULL, SET DEFAULT and NO ACTION options on a Delete operation, in

addition to the CASCADE and RESTRICT options that Oracle also provides. The default for
Oracle is DELETE RESTRICT and the default for DB2 and the SQL standard is DELETE NO
ACTION. These are virtually identical in meaning. The approach used in porting is to use the

same option in DB2 as is used in Oracle.

Sequence

An Oracle Sequence is a database object that can be used by multiple users to generate unique

integers. Typically, the numbers drawn from a Sequence object are used as a primary key. For
example, a Sequence object can be used to generate the next employee number or the next invoice
order number. DB2 also supports a Sequence object with the PREVIOUS VALUE and NEXT VALUE

operators mapping to the Oracle CURRVAL and NEXTVAL keywords respectively.

Miscellaneous differences

Here are a few additional SQL language differences between Oracle and DB2 for i.

SYS.DUAL

SYS.DUAL is a dummy table supplied by Oracle to let SQL requests get current IBM information.

The DB2 family also provides a dummy table with a different name, SYSIBM.SYSDUMMY1.

Date and time arithmetic

DB2 for i porting guide: Oracle to IBM i platform

21

Oracle allows you to add and subtract constants from dates without specifying a unit. For
example, DateCol + 2 adds two days to the value in that column. DB2 also supports a more

robust set of date and time arithmetic operations, but requires the unit to be specified. The
previous Oracle example must be coded as follows: DateCol + 2 DAYS

TO_DATE and TO_CHAR

DB2 does not have equivalent functions to Oracle TO_CHAR and TO_DATE, which will display
date values in different formats. The DB2 VARCHAR_FORMAT and TIMESTAMP_FORMAT
functions are the closest equivalents, but not all of the Oracle datetime formats are supported.

Unsupported features

Some Oracle capabilities are extremely difficult to support or come up with a DB2 circumvention. The
following features might require portions of the application to be rewritten totally or redesigned:

 Oracle forms

 Materialized views
 Object-oriented and object-relational support
 Optimizer hints (Note: The DB2 optimizer is cost-based and does not give programmers any

control. ISVs need to have someone attend the DB2 for i SQL Performance Workshop
(ibm.com/systems/i/db2/db2performance.html)

Application development

Most Oracle applications being ported are programmed in either PL/SQL, C, or C++ with a little bit of

COBOL. Most of the Oracle applications being ported by software vendors access the database with API-
based interfaces such as OCI; not many of the ported applications are using embedded SQL. As
discussed in earlier sections, the Oracle PL/SQL programming extension is the exclusive language for

development of procedures, functions and triggers.

DB2 implements two standards-based Java programming APIs: JDBC and SQLJ. Because the JDBC and
SQLJ implementations in DB2 are closely based on the standards, there is typically very little to do in

converting Java applications from Oracle to DB2. Stored procedures and user-defined functions can be
implemented with Java, as well.

Both DB2 and Oracle support dynamic SQL and embedded SQL interfaces.

Dynamic SQL

The Oracle Call Interface (OCI) is a proprietary Oracle programming interface for the C language.
DB2 does not have a direct mapping for OCI applications, but when ported to DB2, they are usually

converted to use ANSI and ISO standard CLI. This conversion is relatively straightforward and the
flow of execution is the same, but the OCI call names differ from the CLI function names. To assist
developers in the conversion, the most commonly used OCI calls are mapped to CLI in a table that is

provided in Appendix C.

DB2 for i porting guide: Oracle to IBM i platform

22

Embedded SQL

When porting Oracle applications with embedded SQL, it is helpful to use the flagging options on the

Oracle precompiler to identify ANSI extensions (that is, proprietary features). It is recommended that
the existing Oracle embedded SQL applications are precompiled with the following options
(FIPS=YES; MODE=ANSI; DBMS=V7; and ORACA=NO) to facilitate migration to DB2.

The syntax for static embedded SQL (in addition to the language element differences previously
discussed) is almost identical between DB2 and Oracle. Data is passed between the embedded SQL
and the host language through host variables. All DB2 embedded SQL, except SQLJ, must start with

the phrase EXEC SQL. DB2 supports C, C++, COBOL, RPG and Java as host languages for
embedded static SQL. It is also important to remember that the DB2 procedural SQL statements
cannot be embedded in a host language (only in the body of a stored procedure, function, or trigger).

After compilation, DB2 SQL programs do not need to be bound. DB2 automatically rebinds the
access plans for any SQL statement that is impacted by a server environment change or a change in
the table statistics.

The syntax and methodology for embedded dynamic SQL (Prepare, Execute or Execute
Immediate) is also very similar. The fundamental difference when embedding dynamic SQL between
corresponding Oracle and DB2 applications often is just the variation in the SQLDA structure.

Oracle Forms

Oracle Forms provide a GUI that is commonly used in Oracle applications, but there is no
equivalent in DB2. It is best to rework the application interface to use a Java framework. The

following companies provide conversion tools that can help with the conversion to a Java-based
solution: Quintessence, CipherSoft, Inc, Kumaran and InformatikAteleier.

Cursors

Cursors in embedded SQL are very similar in Oracle and DB2, as demonstrated in Table 5:

Oracle embedded SQL cursor DB2 embedded SQL cursor
EXEC SQL DECLARE cursor_name
 CURSOR FOR
 SELECT col1 FROM table
 WHERE col2=’123’;

EXEC SQL DECLARE cursor_name
 CURSOR FOR
 SELECT col1 FROM table
 WHERE col2=’123’;

EXEC SQL OPEN cursor_name EXEC SQL OPEN cursor_name;
EXEC SQL FETCH cursor_name
 INTO :host_var1;

EXEC SQL FETCH cursor_name
 INTO :host_var1;

EXEC SQL CLOSE cursor_name; EXEC SQL CLOSE cursor_name;

Table 5: Using cursors in embedded SQL

Oracle includes the concept of cursor attributes, which can be mapped to DB2 return codes. Another
option is using the GET DIAGNOSTICS statement. DB2 does not support the %ROWCOUNT
attribute. The application must have its own explicit indexing or use other methods, such as FETCH

FIRST N ROWS ONLY to control the number of rows returned. (See Table 6.)

DB2 for i porting guide: Oracle to IBM i platform

23

Oracle cursor
attribute

DB2 mapping Description

%ISOPEN EXEC SQL OPEN CURSOR cursor_name;
if (SQLCODE == -502) /* already open */
 OR
EXEC SQL FETCH cursor_name INTO var1;
if (SQLCODE == -501) /* not open */

Boolean attribute. Returns
TRUE if the cursor is already
open, but requires the (extra)
OPEN to be issued. Or, you
can assume the cursor is open,
and deal with the error if it is
not.

%NOTFOUND if (SQLCODE == 100) Boolean attribute. Returns
TRUE if the fetch did not return
a row.

%FOUND if (SQLCODE == 0) Boolean attribute. Returns
TRUE if the fetch returned a
row.

%ROWCOUNT Use a counter variable or FETCH FIRST N
ROWS ONLY

Numeric attribute. Returns the
number of rows returned so far.

Table 6: Oracle-to-DB2 cursor mapping

DB2 and Oracle handle cursor exit conditions identically, except for the variable and #DEFINE name

differences highlighted in Table 7:

Oracle embedded SQL return codes DB2 SQL return codes
status = SUCCESS;
while (status == SUCCESS)
{
 EXEC SQL FETCH cursor_name
 INTO :var1;
 status = ORC_CODE;
 if (status == SUCCESS)
 { ... }
 else if (status==NO_DATA_FOUND)
 {EXEC SQL CLOSE cursor_name}
}

status = SUCCESS;
while (status == SUCCESS)
{
 EXEC SQL FETCH cursor_name
 INTO :var1;
 status = SQLCODE;
 if (status == SUCCESS)
 {....}
 else if (status == SQL_NO_DATA_FOUND)
 { EXEC SQL CLOSE cursor_name}
}

Table 7: Oracle and DB2 return codes

DB2 supports scrollable cursors through all of its application interfaces (embedded SQL, ODBC and

other similar interfaces). It allows the cursor to scroll forward and backward.

Blocked inserts, fetches and updates

Blocked inserts and fetched with an array are supported on all of the DB2 application interfaces

(embedded SQL, CLI and other similar interfaces). Blocked updates are not yet supported.

DB2 blocked inserts can be performed with row-wise or column-wise binding. In addition, a

? ROWS clause is required by some interfaces when coding blocked inserts. Blocked insert coding

examples can be found at the following URL: ibm.com/systems/
power/software/i/db2/support/code/bi_odbc.html.

DB2 for i porting guide: Oracle to IBM i platform

24

Error handling

Part of porting from Oracle to DB2 involves mapping the error conditions. The mapping is not direct;

therefore, each application needs to map out the conversion from Oracle to DB2.

Oracle supports user-defined errors and an application can raise exceptions. DB2 embedded SQL

does not support user-defined errors in the SQL error handling structure. However, DB2 SQL

procedures, triggers and functions can define a user-defined SQLSTATE value, then use the

SIGNAL statement to indicate to the application that the condition has occurred.

DB2 exceptions are communicated through the SQLSTATE and SQLCODE values. The SQLSTATE

value is a more platform-independent diagnostic vehicle and must be used when possible. The DB2

GET DIAGNOSTIC statement can also be considered.

The EXEC SQL WHENEVER clause is used to indicate what action to take for each of the three

supported conditions: SQLERROR, SQLWARNING and NOT FOUND. The syntax is the same as for

Oracle embedded SQL. To map the handling of specific Oracle errors in DB2, use the WHENEVER

SQLERROR condition to pass control to an error routine that checks for and acts on specific errors.

Concurrency and recovery

One of the differences users notice when they port from Oracle to DB2 is the difference in concurrency

control between the two databases. This section addresses the locking behaviors of each database and

explains how to map from Oracle to DB2.

When ported to DB2, some Oracle applications appear to behave identically and the topic of concurrency

can be ignored. However, if the applications involve frequent accesses to the same tables, the

applications might behave differently.

To get the best results, it can be worth redesigning applications to achieve the best concurrency in DB2.

After you understand how concurrency control in DB2 works, it is obvious how to rework the application.

Concurrency and locks

For both Oracle and DB2, a transaction is an atomic unit of work, in which all changes are either

committed or rolled back. Both Oracle and DB2 also support savepoints. Although both DB2 and

Oracle have row-level locking as part of the transaction processing, there are differences in when the

locks are acquired.

DB2 typically only acquires row-level locks to ensure integrity. Generally, there are exclusive (update)

locks and share (read) locks. To update a row, the database server acquires an exclusive lock on that

row first. When a share lock is acquired for a table on behalf of an application, other applications can

also acquire a share lock on the table, but requests for exclusive locks are denied. However, an

exclusive lock blocks other applications from acquiring locks, even share locks, on the table object.

In Oracle, when an application requests a row to be fetched, no locks are acquired. In DB2, when an

application issues a read request, DB2 attempts to acquire a share lock on the row. Thus, a DB2

application might acquire more share locks based on the isolation level of the application and the

access plan of the query. For example, for a table scan, a share lock can be acquired for each row

touched by the table scan, which might contain more rows than the result set. These share row-level

locks obtained by DB2 guarantee that the data an application reads does not change under it. The

DB2 for i porting guide: Oracle to IBM i platform

25

application can trust the data it fetched. This behavior can simplify the application design. On the

other hand, because DB2 requests an exclusive lock on behalf of the application during an update,

no other applications can read the row. This can reduce concurrency in the system if many

applications are attempting to access the same data at the same time.

Because of these differences, ported applications that have updaters and readers accessing the

same data concurrently from the same table can experience slightly longer wait times, but with a

more consistent view of the data.

DB2 resolves deadlocks automatically, without any user intervention. A more detailed explanation of

the locking employed by DB2 can be found in the SQL Programming Concepts Guide.

Isolation levels

Prior to looking at how to improve the concurrency of ported applications, it is useful to have a quick

description of differences between the DB2 and Oracle implementation of concurrency control.

Oracle implements an optimistic view of locking. The Oracle assumption is that, in most cases, the

data fetched by an application is unlikely to be changed by another application. It is up to the

application to handle the situation in which the data is modified by another concurrent application.

For example, when an Oracle application starts an update transaction, the old data version is kept in

the rollback segment. When another application makes a read request for the data, it gets the version

from the rollback segment. After the update transaction commits, the rollback segment version is

erased and all other applications see the new version of the data. Different readers of the data can

hold a different value for the same row, depending on whether the data is fetched before or after the

update commits. Hence, it is also called the Oracle versioning technique. Applications dependent on

this behavior can use the USE CURRENTLY COMMITTED concurrent-access resolution support in

DB2 to mimic this behavior. To ensure read consistency in Oracle, the application must issue a

SELECT FOR UPDATE condition, which blocks all other readers and updaters.

DB2 has a suite of concurrency control schemes to suit the needs of applications. An application can

select the level of isolation to provide the proper level of concurrency. Here is a brief description of

each isolation level. For more details, consult the DB2 SQL Reference Guide.

The default isolation level used is interface-dependent; therefore, it is best for the application to set

the isolation level explicitly. The isolation level is specified as an attribute of an SQL program or SQL

package and applies to the activation groups that use the SQL package or SQL program. DB2

provides several ways to specify the isolation level:
 Use the COMMIT parameter on the CRTSQLxxx and RUNSQLSTM commands to specify

the default isolation level.

 Use the SET OPTION statement to specify the default isolation level within the source of a

module, program, SQL procedure or SQL function that contains embedded SQL.

 Use the SET TRANSACTION statement to override the default isolation level within a unit of

work temporarily. When the unit of work ends, the isolation level returns to the value it had at

the beginning of the unit of work.

 Use the isolation clause on the SELECT, SELECT INTO, INSERT, UPDATE, DELETE,

PREPARE and DECLARE CURSOR statements to override the default isolation level

temporarily for a specific statement or cursor.

DB2 for i porting guide: Oracle to IBM i platform

26

 Use the connection attributes or data source settings for ODBC, JDBC and CLI applications.

DB2 supports five isolation levels. In the following list, the DB2 isolation levels are highlighted in bold

and the ANSI and ISO term for that level is in italics.
 Repeatable Read/Serializable (RR): This is the highest level of isolation. It blocks other

applications from changing data that has been read in the RR transaction until the transaction

commits or rolls back. If you fetch from a cursor twice in the same transaction, you are

guaranteed to get the same answer set. This level is supported through the acquisition of

either an exclusive lock or shared-no update lock on the table containing rows that are read

or updated; therefore, it is not recommended that you use this isolation level with tables or

applications that need to support a high degree of concurrent access.

 Read Stability/Repeatable Read (RS): As with RR, this level of isolation guarantees that the

rows read by the application remain unchanged in a transaction. However, it does not prevent

the introduction of phantom rows.

 Cursor Stability/Read Committed (CS): This level guarantees only that a row of a table

cannot be changed by another application when your cursor is positioned on that row. This

means the application can trust the data it reads by fetching from the cursor and updating it.

 Uncommitted Read/Read Uncommitted (UR): This level is commonly known as dirty read.

When a UR transaction issues a read, it reads the only version of the data that DB2 has,

even through the data might have been read, inserted, or updated by another transaction.

The data is labeled as dirty because, if the updater rolls back, the UR transaction reads data

that has not yet been committed. Unlike Oracle, DB2 does not use the rollback segment to

store the old version of the data. Access to the data is controlled using locks.

 No Commit (NC): For all operations, the rules of the UR level apply except that commit and

rollback operations have no effect on SQL statements. Any changes are effectively

committed at the end of each successful change operation.

The Oracle implementation most resembles the Read Stability (RS) level of isolation in DB2 for

writers and most resembles the Uncommitted Read (UR) level of isolation for readers. Note that DB2

Uncommitted Read (UR) level is not the same as the Oracle versioning. The UR level of isolation

reads uncommitted data if there is a transaction in progress, as opposed to the last version of the

data read by Oracle. Suppose an application reads a column from a row that has been modified by

another transaction from a value of 3 to a value of 5. In Oracle, the application reads 3 and the DB2

UR level reads 5. If the update transaction commits, then DB2 has the right data. If the update

transaction rolls back, then Oracle has the right data.

As mentioned, applications running against DB2 can attempt to mimic the Oracle reader behavior

with the USE CURRENTLY COMMITTED support. Transactions using the CS isolation level can

specify a USE CURRENTLY COMMITTED behavior at a system, connection or statement level.

When a reader encounters a row locked for update or delete by another transaction, the

CURRENTLY COMMITTED concurrent access resolution behavior causes DB2 to attempt to find a

previously committed version of the row for the reader to use instead of waiting on the row-level lock.

DB2 scans the journal receiver associated with the table to find a previously committed version of the

row. If a previously committed version of the row is not found in the journal receiver, the reader must

wait for the update lock to be released. Rows in the process of being inserted by other transactions

are skipped when the CURRENTLY COMMITTED resolution is employed. ,

DB2 for i porting guide: Oracle to IBM i platform

27

DB2 also supports the SKIP LOCKED DATA concurrent-access resolution behavior to give
developers another method to increase the concurrency of their applications. When the SKIP

LOCKED DATA clause is specified, then DB2 skips over the candidate row instead of waiting for the
share-row lock to be acquired. The skipped row is not included in the final result set. The SKIP
LOCKED DATA support is available for isolation levels except for RR.

To increase the concurrency of the system, commit your transactions often, including read-only
transactions. For the best overall performance, use the lower isolation level settings whenever
possible. However, it is not recommended that you frequently change the isolation level in an effort to

improve performance and concurrency. One recommended performance technique is to use the No
Commit (NC) or Uncommitted Read (UR) level of isolation on lookup or work tables where
concurrency and recovery are not an issue because of their static nature.

AutoCommit

As with the isolation levels, the AutoCommit default setting is dependent on the application interface.

Optimistic locking

One locking situation that requires special treatment in DB2 is when an application reads a row from
a table, presents data from the row to a user, waits for the user to change values, then updates the
row. If two or more users process the same row at the same time, either of the following is possible:
 Both users can read the row in share mode (if the row is not read FOR UPDATE), and a

deadlock results when either tries to update it.
 One user’s read waits until the other user commits (if the row is read FOR UPDATE). If this

type of application must have minimal lock-wait time and the same locking behavior when
ported from Oracle, it can use the optimistic-locking scheme.

This technique requires the table to have a column that can identify when the row’s last change took

place. A timestamp column is the most typical example. Read the row and commit right away to
release the lock. This allows other applications to have write access to the row (as in Oracle). When it
is time to update the row, the application can retrieve the row again to see if the row has changed. If

the timestamp column has not changed since the last fetch, the application can update the row. If the
timestamp has changed, which is relatively rare, the application must start the process again by
rereading the row and presenting the latest version of its contents to the user.

Optimistic locking pseudo-code example.

Fetch row, including the timestamp column
commit; (release the lock)

... think time when the user makes changes ...

[start transaction]
fetch the row again and compare its timestamp with the timestamp in the previous fetch
if timestamps match
 do the work; (update the row, including the timestamp column)
else
 handle the exception situation; (usually, go back to the start)
commit;

DB2 for i porting guide: Oracle to IBM i platform

28

Journaling and recovery

All RDBMSs require that changes to the database are logged to perform database recovery.

However, the implementations for DB2 and Oracle are quite different. Oracle uses redo logs and
rollback segments for database recovery. Redo logs record the transaction changes and rollback
segments are used to store the previous version of the data in a table when the table is being

updated or mutated.

DB2 implements write-ahead journaling (logging), in which the changed data is always written to the
journal before the change is committed. DB2 logs all changes in its journal and journal receiver

objects, including the old version of the data. It does not have rollback segments.

DB2 journals can be used to recover changes made to a specific table, a specific schema, or all of
the objects involved in the logged transaction. Database objects involved in a transaction can be

logged to a different journal. However, to facilitate easy recovery, it is recommended that all of the
objects in a transaction be logged to the same journal.

The system ENDJRNPF CL command can be used to turn off journaling for database objects that do

not need recovery capabilities. Turning off journaling does improve performance, but it is at the
expense of transaction recovery.

More detailed information on DB2 journaling and recovery can be found in the SQL Programming

Concepts and Backup and Recovery guides.

After the port
As with any software project, database porting is not complete merely because all the code has been
converted and compiled successfully. Thorough testing and performance tuning need to be done after the

database has been moved over to DB2 for i.

Functional testing

Functional testing needs to be performed to make sure that objects and requests on the source and
target are returning equivalent results. Even when the SQL syntax is exactly the same, the semantics and

run behavior of an SQL statement can be different.

This functional testing phase needs to include error-recovery testing. When comparing two DBMS
products, there are often subtle differences in the resolution of lock conflicts, the timing of when error

conditions arise, and the value of the error condition returned to the application.

IBM makes IBM Power Systems hardware available for IBM i functional testing to developers and
integrators through its Power Development Platform (ibm.com/partnerworld/pdp). Testing engagements

can also be performed remotely or onsite at one of the IBM Innovation Centers for those companies that
are members of IBM PartnerWorld®. Refer to ibm.com/isv/iic for more details.

Performance tuning and sizing

Many times, the biggest hurdle to overcome in database projects is the tuning of the application with the

new database. Each database engine has its strength and weaknesses from a performance point of view,
especially when comparing query optimizers. The Oracle query optimizer might work great with a specific

DB2 for i porting guide: Oracle to IBM i platform

29

set of indexes over the database; at the same time, the DB2 optimizer might require additional indexes to
be added to that base set of indexes. The opposite holds true, as well. The DB2 cost-based query

optimizer does not support hints or require the collection of database statistics (that is, Oracle Analyze).
The database manager automatically maintains and updates statistics (inside the table and index objects)
as changes are made to the objects. The optimizer also automatically collects stand-alone column

statistics for some SQL requests.

A common problem found in the design of applications ported from other databases is that the application
programs blindly prepare and run the same SQL statement repeatedly within a single program call, even

though it is more efficient to prepare that SQL statement one time. Or, the application uses the ODBC
SQLExecDirect function or the JDBC statement class to run the same SQL request multiple times within
a connection. DB2 typically does not perform well with either of these inefficient program models.

DB2 includes several database performance tools, including System i Navigator SQL Performance
Monitor and Visual Explain tools (see descriptions of these tools in the Administration section) of this
paper. However, in general, to use these tools effectively and to be efficient at tuning DB2, you must

attend the DB2 for i SQL Performance Workshop (information is found at ibm.com/systems/
power/software/i/db2/education/performance.html). Some performance tuning information can also be
found in the Database Performance and Query Optimization book.

A key factor in analyzing and tuning the performance of your application is making sure that you are using
a IBM i machine that is properly sized and configured for your application (in terms of processor, memory,
and the number of disk arms). To be successful with your solution in the marketplace, you need to know

the minimum server configuration required to deliver acceptable performance.

The IBM i Performance and Scalability Center is a great resource for helping performance test and size
the hardware required by your application. Visit the following web site for more details:

ibm.com/systems/ services/labservices/psscontact.html.

For general IBM i performance information, see: ibm.com/systems/i/solutions/perfmgmt. This online
resource does include information on sizing tools, but none of the sizing tools are specifically designed for

DB2 for i. An engagement with the Performance and Scalability Center is the safest and most accurate
approach.

Administrative tasks

As discussed in the Architecture section of this paper, many low-level database administration tasks are

automated on DB2. For example, no low-level performance tuning tasks need to be performed on the IBM
i platform. An administrator does not worry about striping tables across disk drives or configuring
bufferpools and caches. Thus, the database-administration tasks and tools are quite different.

System i Navigator

System i Navigator (formerly iSeries Navigator) is the DB2 GUI for database administrators and
application programmers. It is the rough equivalent to the Enterprise Manager in Oracle.

From the System i Navigator interface, almost all database administrative duties (from performance
tuning to journal management) can be performed. Here is a quick overview of some of the System i
Navigator capabilities:

DB2 for i porting guide: Oracle to IBM i platform

30

 SQL Script Center: Develop and run SQL scripts.

 SQL Performance Monitors: Collect and analyze database performance monitor data for

query optimization issues and performance of specific SQL requests.

 Visual Explain: Analyze a graphical representation of the access plan generated by query

optimizer.

 SQL Plan Cache: Provide a live analysis of the access plans for the most current and

frequently run SQL requests.

 Journal Management: Start and end logging and swapping of journal receivers.

 Database Navigator: Performa basic graphical modeling of existing database definitions.

The SQL*Plus utility provides Oracle command-line access to the database server. DB2 does not

have an analogous tool. Instead, it is recommended that you use the System i Navigator SQL Script

Center to perform some of the scripting and use the IBM i job scheduler for any scheduling activities.

The SQL Script center does not have any support for variables in the script. The db2 QSHELL

command does provide some variable support The STRSQL command can also be loaded, but it

does not have a graphical interface.

In addition to the IBM performance tools, more-advanced DB2 performance tuning and management

tools are available from Centerfield Technology® (www.insuresql.com).

Utilities

There are several utilities that can help with the porting process from Oracle to DB2 for i.

Load and import

DB2 imports are done with the CPYFRMIMPF CL command, which can import files containing

delimited data or fixed-format data. The command does not FTP the import file or create the

target table. In addition, it assumes that the target table is created and that the specified input file

does not contain any column-definition information.

Here is an example of the utility being used to load a stream-based flat file where the column data

is delimited with a comma:

CPYFRMIMPF FROMSTMF('~mydir/myimport.txt') TOFILE(MYLIB/MYTABLE) DTAFMT(*DLM) FLDDLM(',’)

If the database parallelism feature (DB2 SMP) has been installed and activated, the database

manager breaks the input file into logical partitions and load those partitions into the target table

in parallel.

The DB2 Migration Toolkit uses the CPYTOIMPF CL command for its data movement from an

Oracle database to DB2 for i.

Importing Oracle DATE values can be a challenge because the Oracle and DB2 default formats

are not the same. It is possible to use the Oracle TO_CHAR function to get the value into a

format supported by DB2 when writing data into the Oracle export file. Data exports to delimited

and fixed format files can be performed with the CPYTOIMPF CL command.

DB2 for i porting guide: Oracle to IBM i platform

31

ALTER TABLE

Although DB2 and Oracle support an ALTER TABLE statement, there are differences in what

can be changed. Table 8 gives a quick summary of these differences. (NOTE: Not all of the

Oracle and DB2 ALTER capabilities are shown.)

Table 8: ALTER TABLE functional differences

Constraint administration

The primary consideration for DB2 is always to ensure full data integrity. However, in certain

situations, preserving data integrity on a continuous basis can have a significant performance impact.

For example, bulk loading of data via the Load command is slower if, for every row, a detour is taken

to ensure that all of the pertinent constraints are satisfied for that row.

The mechanism that DB2 uses to balance integrity and performance is to place a table in the CHECK

PENDING state when an operation is performed that can lead to integrity exposures (for example,

during a Load task). When the table is in that state, only limited operations can be performed against

it (no Select operations, for example). To make the table fully accessible again (to take it out of the

CHECK PENDING state), DB2 must verify that all constraints are satisfied.

The CHGPFCST CL command is used both to put a table into the CHECK PENDING state and to

take it out again after an operation is performed. The CHGPFCST command is the DB2 equivalent of

the Oracle set constraint <name> deferred/immediate statement.

Function Oracle DB2
Add column yes yes
Drop column yes yes
Increase column size yes yes
Decrease column size yes yes
Change column type yes yes
Add NOT NULL constraints yes yes
Add/drop constraints yes yes
Enable/disable constraints yes no, see next section

DB2 for i porting guide: Oracle to IBM i platform

32

Summary
The purpose of this document is to highlight potential issues in porting databases and applications from

Oracle to DB2. This is a living document. As there is more experience with different porting situations, the

document will grow accordingly. If the reader encounters an issue that needs to be addressed but which

is not covered in this document, contact the owner, Kent Milligan, at rchudb@us.ibm.com. Future readers

will benefit from the new information. Thank you.

NOTE: The DB2 for i 7.1 version of this paper can be obtained by sending an e-mail request to:

rchudb@us.ibm.com.

DB2 for i porting guide: Oracle to IBM i platform

33

Appendix A: Rough sizing estimates for conversions
This appendix includes some rough conversion costs to help estimate (size) how long it might take to
convert an Oracle-based application to the IBM i platform. These estimates are provided AS IS without

warranty of any kind. The amount of time to perform the conversion varies widely based on the
experience level of the programmer and the complexity of the SQL.

 Join syntax changes: Five minutes to one hour for query

 MINUS: Ten minutes to two hours for query depending on complexity
 NVL: Five minutes for each query
 DECODE: Five minutes to one hour for each query

 Date/Time arithmetic changes: Five minutes to two hours
 Stored procedure Result Sets in Parameter list: One day
 Triggers and stored procedures: Difficult to estimate, depends on the complexity of the

procedure and trigger logic

These estimates do not take into account the usage of the DB2 Migration Toolkit.

DB2 for i porting guide: Oracle to IBM i platform

34

Appendix B: PUT_LINE
This appendix covers the implementation details of a solution for simulating the Oracle PUT_LINE
support. The application source code (put_line.c and crtfputlin.sql) can be downloaded at:
 ibm.com/partnerworld/wps/servlet/ContentHandler/pw_com_db2_oraclecode
The following procedure outlines the steps required to install the DB2 for i version of the put_line
procedure:

1. FTP put_line.c source to a source physical file on your IBM i hardware, for example:

put put_line.c /qsys.lib/mylib.lib/qcsrc.file/put_line.mbr

2. FTP crtfputlin.sql source to a source physical file on your IBM i hardware:

put crtfputlin.sql /qsys.lib/mylib.lib/qsqlsrc.file/crtfputlin.mbr

3. Compile the C source using the following CL command:

CRTCMOD MODULE(MYLIB/PUT_LINE) SRCFILE(MYLIB/QCSRC) DEFINE('os400')
SYSIFCOPT(*IFSIO)

4. Create an IBM i service program (a dynamic library) using the following CL command:

CRTSRVPGM SRVPGM(MYLIB/PUT_LINE) EXPORT(*ALL)

5. Register the UDFs using the Run SQL Statements utility:

RUNSQLSTM SRCFILE(MYLIB/QSQLSRC) SRCMBR(CRTFPUTLIN) COMMIT(*NONE) NAMING(*SQL)

Note: Because of the *SQL naming convention, the functions are registered in a schema that has the
same name as the user profile that runs the RUNSQLSTM command.

After successful compilation and registration, you can use the functions from any SQL interface. Here is

an example:

select put_line('Current user profile : ' || USER || ' Current Path : ' || CURRENT
PATH || ' current schema : ' || CURRENT SCHEMA)
from sysibm.sysdummy1;

On the first run, the statement creates a stream file in the /tmp directory named
sqlproc_debug_file.pid.txt where pid is the current process ID.

DB2 for i porting guide: Oracle to IBM i platform

35

Appendix C: Mapping of Oracle OCI to DB2 CLI
The purpose of this appendix is to give a mapping of the most important Oracle OCI (Oracle Call
Interface) calls to the closest DB2 CLI (call level interface) equivalents (Tables 9-14). Refer to the DB2

SQL Call Level Interface Guide and the online FAQs (ibm.com/eserver/iseries/db2/clifaq.htm) for details
on the CLI calls. Numbers in parentheses refer to the corresponding notes that follow the tables. N/A
means that the OCI call has no equivalent in CLI.

Connect / initialize / authorize
OCIInitialize N/A
OCIEnvInit SQLAllocHandle (1)
OCIServerAttach SQLConnect (2), (3)
OCIServerDetach SQLDisconnect
OCISessionBegin N/A (3)
OCISessionEnd N/A
OCILogon SQLConnect (2)
OCILogoff SQLDisconnect

Table 9: Connect, initialize and authorize mappings

Handles / descriptors

OCIHandleAlloc SQLAllocHandle (1)
OCIHandleFree SQLFreeHandle
OCIAttrGet SQLGet__Attr (4)
OCIParamGet N/A (5)
OCIParamSet N/A (6)
OCIAttrSet SQLSet__Attr (7)
OCIDescriptorAlloc SQLSetStmtAttr (5)
OCIDescriptorFree SQLFreeHandle (8)

Table 10: Handle and descriptor mappings

Bind / define / describe

OCIBindDynamic SQL__Data (11)
OCIBindByName SQLBindParameter
OCIBindByPos SQLBindParameter
OCIBindObject N/A (12)
OCIBindArrayOfStruct SQLBindParameter (13)
OCIStmtGetBindInfo N/A (14)
OCIDefineArrayOfStruct N/A (13)
OCIDefineDynamic N/A
OCIDefineByPos SQLBindCol (15)
OCIDefineObject N/A (12)
OCIDescribeAny (many) (16)

Table 11: Bind, define and describe mappings

DB2 for i porting guide: Oracle to IBM i platform

36

Prepare / execute / fetch

OCIStmtPrepare SQLPrepare
OCIStmtExecute SQLExecute
OCIStmtFetch SQLFetch (17)

Table 12: Prepare, run and fetch mappings

Transaction management
OCITransCommit SQLEndTran (9)
OCITransDetach N/A
OCITransRollback SQLEndTran (9)
OCITransStart N/A
OCITransPrepare N/A (10)
OCITransForget N/A (10)

Table 13:Transaction management mappings

Miscellaneous

OCIBreak SQLCancel
OCIServerVersion SQLGetInfo (18)
OCIPasswordChange N/A
OCIErrorGet SQLGetDiagRec
OCIStmtGetPieceInfo SQLGetData (11)
OCIStmtSetPieceInfo SQL__Data (11)
OCILdaToSvcCtx N/A
OCISvcCtxToLda N/A

Table 14: Miscellaneous mappings

Notes for Tables 9-14:

 SQLAllocHandle is passed the desired handle type: environment, connection, statement, or

descriptor.
 SQLDriverConnect is an alternative to SQLConnect, providing additional parameters.
 OCISessionBegin has no CLI equivalent. To establish multiple database connections in CLI, the

server mode must first be enabled and then multiple connection handles must be allocated.
OCIServerAttach calls are replaced by SQLConnect calls. More information can be found on
enabling DB2 server mode at: ibm.com/systems/i/db2/clifaq.htm

 OCIAttrGet can be replaced by SQLGetConnectAttr, SQLGetEnvAttr, or SQLGetStmtAttr,
depending on the type of handle that the attribute value is wanted for.

 SQLSetStmtAttr must be called with an Attribute value of SQL_ATTR_APP_PARAM_DESC or

SQL_ATTR_APP_ROW_DESC. However, descriptors can be allocated implicitly instead. The
function of OCIParamGet is performed by SQLSetStmtAttr (or implicitly).

 CLI does not have complex object retrieval (COR) descriptors or handles.

 OCIAttrSet can be replaced by SQLSetConnectAttr, SQLSetEnvAttr, or SQLSetStmtAttr,
depending on the type of handle for which an attribute value is to be set.

 SQLFreeHandle must be called with a HandleType of SQL_HANDLE_DESC (or the connection

can be freed).

DB2 for i porting guide: Oracle to IBM i platform

37

 SQLEndTran does either a Commit or a Rollback, depending on the completion type parameter
value.

 There are no CLI calls specifically for two-phase Commit, but it is supported.
 For piecewise operations, there is not a direct replacement for OCIBindDynamic, but for inserts,

SQLParamData and SQLPutData must be called, and for selects, SQLGetData must be called.

 CLI does not have any special support for user-defined types. CLI treats one as it does the
underlying built-in type.

 To use array inserts, SQLBindParameter must be called. SQLParamOptions need to be used

to set the number of rows in a array. OCIDefineArrayOfStruct calls can be ignored.
 There is no direct equivalent, but SQLDescribeParam is the closest.
 To use array fetches, SQLBindCol must be called. In addition, calls to SQLSetStmtAttr are

needed to set the following attributes: SQL_ATTR_ROWSET_SIZE (array size) and
SQL_ATTR_BIND_TYPE

 An OCIDescribeAny call needs to be replaced by the appropriate call from among

SQLColAttribute, SQLColumns, SQLDescribeCol, SQLForeignKeys, SQLGetFunctions,
SQLPrimaryKeys, SQLProcedures and other similar calls.

 SQLFetch fetches a single row. Use SQLExtendedFetch or SQLFetchScroll to return a rowset;

the simplest type of usage is a basic array fetch.
 SQLGetInfo provides much more than the server version. One call is needed per type of

information wanted. However, SQLGetInfo calls should be made sparingly.

Other notes:

Most OCI calls include an error handle, which does not exist in CLI. When porting OCI calls with an error
handle, the error handle parameter must be removed from the call, and a check of the return code from

the CLI call must be added. When a return code other than SQL_SUCCESS occurs, a call to
SQLGetDiagRec must be made.

The following classes of OCI functions do not have equivalents in DB2 CLI. The function must be

implemented either in SQL or in C (or C++) directly.

 Navigational functions: OCIObject__ and OCICache__
 Data type mapping and manipulation functions: OCIColl__, OCIDate__, OCINumber__,

OCIString__ and other similar functions. However, CLI performs conversion of data between
data types wherever possible.

 External procedure functions: OCIExtProc__

DB2 for i porting guide: Oracle to IBM i platform

38

Appendix D: Resources
These web sites provide useful references to supplement the information contained in this document:

 IBM i Knowledge Center

ibm.com/support/knowledgecenter/ssw_ibm_i_72

 IBM i on IBM PartnerWorld®
ibm.com/partnerworld/i

 DB2 for i online manuals
ibm.com/systems/power/software/i/db2/docs/books.html

 IBM Redbooks

ibm.com/redbooks

 Stored Procedures, Triggers and User-Defined Functions on DB2 for i, SG24-6503
 Advanced Database Functions and Administration on DB2 for i, SG24-4249-03

 Diagnosing SQL Performance on DB2 for i, SG24-6654
 The Ins and Outs of XML and DB2 for i (SG24-7258)
 OnDemand SQL Performance Analysis … in V5R4 (SG24-7326)

 DB2 for AS/400 Object Relational Support, SG24-5409

 DB2 for i home page
ibm.com/systems/i/db2

 DB2 for i Performance Workshop
ibm.com/systems/power/software/i/db2/education/performance.html

 Understanding DB2 for i and the DB2 Family

ibm.com/partnerworld/wps/servlet/ContentHandler/SROY-6UZDN4

 Improving SQL Procedural Performance white paper
ibm.com/partnerworld/wps/whitepaper/ibmi/sql_sql_v6r1/procedure

 DB2 online white papers
ibm.com/partnerworld/wps/whitepaper/i5os

 IBM DB2 Migration Toolkit

ibm.com/partnerworld/i/db2porting

 Sample UDFs for Migration
ibm.com/developerworks/db2/library/samples/db2/0205udfs/index.html

 DB2 Connect Unlimited Edition for System i
ibm.com/software/data/db2/db2connect/edition-uei.html

 Blocked Insert Coding examples

ibm.com/systems/power/software/i/db2/support/code/bi_odbc.html

 IBM i Benchmark Center
ibm.com/systems/services/labservices/psscontact.html

DB2 for i porting guide: Oracle to IBM i platform

39

 Performance Management for IBM i
ibm.com/systems/i/advantages/perfmgmt/

 IBM Power Development Platform
ibm.com/partnerworld/pdp

 IBM Innovation Center

ibm.com/isv/iic

 Education Resources (classroom and online)
ibm.com/systems/power/software/i/db2/education/index.htmlibm.com/partnerworld/wps/training/i

5os/courses

Online forum

 IBM developerWorks®
ibm.com/developerworks/forums/forum.jspa?forumID=292

Conversion services

 IBM Systems and Technology Group Lab Services
ibm.com/systems/services/labservices

Other publications

 SQL for DB2 for i by James Cooper and Paul Conte
(29th Street Press, ISBN 1-58304-123-0)

 SQL for eServer i5 and iSeries by Kevin Forsythe

(MC Press, ISBN 1-58347-048-4)

 SQL Built-In Functions and Stored Procedures by Mike Faust
(MC Press, ISBN 1-58347-054-9)

 Improve Your Productivity with Significant Enhancements in DB2 SQL Procedures
www.mcpressonline.com/database/db2/improve-your-productivity-with-significant-enhancements-
in-db2-sql.html

Other software providers

 Centerfield Technology
www.insuresql.com

 SwisSQL: Database Migration Solution
www.swissql.com

 Ispirer: Automated IT Migration

www.ispirer.com

DB2 for i porting guide: Oracle to IBM i platform

40

Trademarks and special notices
© Copyright IBM Corporation 2014. All rights Reserved.

References in this document to IBM products or services do not imply that IBM intends to make them

available in every country.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A

current list of IBM trademarks is available on the web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries or both.

Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material or other publicly available sources and does not constitute an endorsement of

such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability or any other claims

related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without

notice, and represent goals and objectives only. Contact your local IBM office or IBM authorized reseller
for the full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a

definitive statement of a commitment to specific levels of performance, function or delivery schedules with
respect to any future products. Such commitments are only made in IBM product announcements. The
information is presented here to communicate IBM's current investment and development activities as a

good faith effort to help with our customers' future planning.

Any references in this information to non-IBM web sites are provided for convenience only and do not in
any manner serve as an endorsement of those web sites. The materials at those web sites are not part of

the materials for this IBM product and use of those web sites is at your own risk.

