
Tuning garbage collection for Java and

WebSphere running classic JVM on

i5/OS

.

.

Jeremy Arnold

Scott Moore

IBM Business Strategy and Enablement

February 2006

© Copyright IBM Corporation, 2006. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders

Table of contents

Abstract..1

Introduction ...1

Understanding Java garbage collection ...2

Using tools to analyze and tune the GC..4

PEX TPROF trace.. 4

Verbose garbage collection ... 5

DMPJVM.. 6

Tuning the GC ...7

Modifying the GC tuning parameters ... 7

Reducing object creation ... 9

Summary..9

Resources..10

About the authors ...10

.

IBM White paper title here

Abstract

This paper provides performance tuning tips, techniques, and tools for Java applications that
run on the IBM System i (System i5, eServer i5, and iSeries) platform using the classic Java
Virtual Machine (JVM). In particular, this paper focuses on tuning methods that affect the JVM
heap management environment. Code and command examples, as well as screen captures
related to the tools discussed in this paper, are included for the reader’s better understanding.

Introduction
Well-performing Java™ applications tune the amount of overhead that the Java heap
management has on the Java Virtual Machine (JVM™). You can do many things to minimize this
overhead, from changing the application, adding additional memory, or modifying Java options.
This paper will focus primarily on modifying the Java options for the best performance. It will
focus on the following areas:

•	 Explaining what the garbage collector does inside a JVM and how it does it

•	 Examining the tools available to analyze your garbage collector performance

•	 Discussing the various ways to tune for the optimal use of CPU and memory

Very Important: Starting in IBM® i5/OS® Version 5 Release 4, two JVMs are available:

1. 	 The classic JVM, which IBM introduced in 1998 on the IBM AS/400® platform, is a 64-bit
JVM. The classic JVM includes support for the Java Software Development Kit (SDK™)
1.3, 1.4, and 1.5 (Java 5.0).

2. 	 An entirely new JVM, called IBM Technology for Java (32-bit) is also available to run on
i5/OS V5R4. The new JVM currently supports JDK 1.5 (Java 5.0) and offers significant
performance improvements for certain types of applications.

Tuning recommendations are dependent on which JVM you are using. This paper is intended for
use only if you are using the classic JVM. You can determine if you are running the classic JVM
by doing the following:

1. 	 If you are running on i5/OS V5R3 or earlier, you are running the classic JVM.

2. 	 If you are running on i5/OS V5R4, display the job log of the JVM by performing the i5/OS
Work with Active Jobs (WRKACTJOB) command and selecting 5 – Work with next to
the JVM. On the Work with Job screen, select 10 – Display job log. You will see a
screen that looks like Figure 1:

Tuning garbage collection for Java and WebSpere running classic JVM on i5/OS

1

Figure 1: The Java virtual machine is running classic JVM

The first line is an indication that the JVM is indeed running the classic JVM.

See the V5R4 Performance Capabilities Reference Manual for V5R4 to help decide if you can
use the classic JVM or the IBM Technology for Java JVM. If running IBM WebSphere® V6.0 and
earlier, you are definitely running the classic JVM.

Understanding Java garbage collection
When running in a JVM, many Java objects are created. During the normal flow of a program,
some of these objects will become unused. It is up to the garbage collector (GC) to free these
unused objects up, so that the JVM can reuse their memory.

The GC runs in cycles. For example, the garbage collector can run for two seconds, go idle for
30 seconds, and then will run again for two seconds. The idle time depends on how many
objects are being created within the JVM. The iSeries GC is asynchronous (runs in the
background), concurrent (runs at the same time as the rest of your application), and
multithreaded. While these features normally improve GC performance, they also make it more
difficult to determine if the garbage collector is not tuned properly. Though JVMs on other
platforms might experience long pause times with improper GC tuning, the iSeries collector does
not typically cause long pauses in your application threads. Therefore, you might not realize that
your application is experiencing problems with GC unless you specifically look for these
problems.

Because nearly all Java or WebSphere applications can benefit from tuning GC, examine GC
performance when deploying new applications or when the system load or hardware

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

configuration for existing applications change. It is also wise to examine the GC if your
applications are experiencing performance problems.

Two parameters influence the GC when running the classic JVM on the System i platform: the
initial heap size and the maximum heap size. You can set the initial heap size with the -Xms (or -
ms) variable on the Java command line. For example, the java -Xms256m MyClass command
will create a 256-megabit initial heap size. Similarly, you can set the maximum heap size with the
-Xmx or –mx variable. You should almost never change the maximum size from the *NOMAX
default value. In WebSphere Application Server V5.0 and beyond, you can set the initial heap
and max heap size using the administration console. Shown in Figure 2 is a screen capture of
the WebSphere V6.0 Administration Console. Notice where you can set the value:

Figure 2: Advanced JVM settings

(Note: The *NOMAX value for the maximum heap size in the WebSphere platform is represented
by 0 or a blank field.)

While other platforms also have these parameters, the behavior of running the classic JVM on
the System i5 platform is unique. For instance, the initial heap size is more accurately called the
GC threshold." After the new memory allocation of the JVM reaches this threshold, the garbage
collector will run. After reallocating the initial heap size amount, the GC runs again. Therefore,
increasing this value makes the GC run less frequently and allows the heap to grow larger
between collections. This, in turn, makes each GC cycle take longer, because it must scan more
memory. Setting the threshold to its optimal value involves finding the right balance between the
frequency that the collector runs and the heap size. If it is set too low, the GC runs too frequently,
resulting in wasted CPU cycles. Setting it too high allows the heap grow too large, which can
result in a higher cache miss ratio and increased paging. In some rare cases, the application can
even allocate memory faster than the GC can collect it. This can result in heap growth over time
until the JVM runs out of memory.

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

Using tools to analyze and tune the GC

A few tools are available that can give an indication of how well the GC is running in the JVM. In
this section, you will read about three of these tools.

PEX TPROF trace

One of the easiest ways to determine if the GC is running efficiently is to measure the
percentage of CPU time spent performing garbage collection. You can do this by using a
Performance Explorer (PEX) trace profile (TPROF). (For details, see Collecting and analyzing
an IBM iSeries TPROF trace. A link to this site is available in the Resources section of this
paper.) You can run a TPROF trace against any JVM, without any kind of restart required or
special JVM properties passed into the JVM. This paper will go through the steps of creating a
TPROF trace.

When you have collected the trace profile data, you can use one of the following tools to view
this data:

•	 IBM Performance Trace Data Visualizer (PTDV) is a free tool. (You can download this
tool from the IBM alphaWorks® Web site.)

•	 Alternatively, you can print the report using the Print PEX Report (PRTPEXRPT)
command with the *PROGRAM option. (This command is available with the Performance
Tools licensed program product [LPP], 5722PT1.) The bottom section of the report
shows the percentage of CPU time spent in the various programs on the system. The
Java garbage collection (JAVAGC) program indicates the time spent in garbage
collection. In Figure 3 below, about 5.4% of the CPU time is performing garbage
collection.

Histogram Hit Hit Cum Start Map Stmt Name
Cnt % % Addr Flag Nbr

***** 11908 14.6 14.6 0F147E886E1F39C4 == 0 WEBASADV4_
** 6113 7.5 22.2 0AE07FA0D520DB08 == 0 JAVA400_JD
** 5041 6.2 28.4 2FDF43EB09180D40 == 0 LIB_QP_EJB
* 	 4359 5.4 33.7 FFFFFFFFB39D7CC4 == 0 JAVAGC
* 	 4292 5.3 39.0 FFFFFFFFFE9C6280 == 0 JAVADEEP

2215 2.7 41.7 2E609B9CDE1EB93C == 0 JAVA_EXTLI
1946 2.4 44.1 03E126CBCE10EF30 == 0 EXT_QP_DB2

Figure 3: Sample trace profile output

As a rule of thumb, the time spent in Java garbage collection will be less than 10% of the total
CPU time. It is best to have it around 3%, but this might not always be possible. If the percentage
is too high, there is probably room for improvement.

If the amount of time spent in garbage collection is too high, additional analysis is often
unnecessary. You can just try increasing the initial heap size, as explained in the Tuning the GC
section. Then monitor your application's performance (throughput and response time) to ensure
that the performance improves.

You can also collect another trace profile to see if there is additional room for improvement.

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

Verbose garbage collection

At times, it might be helpful to collect additional data about the GC as its running. You can
accomplish this by enabling verbose garbage collection. This will dump several pieces of
information into System.out file each time the GC runs. This includes the current heap size, as
well as the number and size of objects collected, number of objects in the heap, amount of time
the collector ran, and other information.

You can enable verbose garbage collection by including the -verbosegc parameter on the Java
command line. Alternatively, in WebSphere V6.0, you can use the Enable garbage collection
verbose mode check box from the WebSphere Administration Console (Figure 4). Both of these
require that you restart the JVM after making this update.

Figure 4: Shows how to set verbose garbage collection in the WebSphere V6.0 Administration Console

Verbose garbage collection will dump some additional text to the stdout file. Below, in Figure 5,
is an example of some output that verbose garbage collection dumps into the file.

GC 4: starting collection, threshold allocation reached.

GC 4: live objects 2562187; collected objects 4936351; collected(KB) 541840.

GC 4: queued for finalization 0; total soft references 92; cleared soft references 5.

GC 4: current heap(KB) 1171424; current threshold(KB) 524288.

GC 4: collect (milliseconds) 4138.

GC 4: current cycle allocation(KB) 236160; previous cycle allocation(KB) 524314.

GC 4: total weak references 684; cleared weak references 0.

GC 4: total final references 11797; cleared final references 63.

GC 4: total phantom references 0; cleared phantom references 0.

GC 4: total old soft references 0; cleared old soft references 0.

Figure 5: Sample verbose garbage collection output

For the purposes of tuning the GC, the most important of these fields are:

� GC 4: The fourth GC cycle since the JVM started

� Live objects: Number of objects currently active in the JVM

� Collected objects: Number of objects collected during this cycle

� Collected(KB): Total size of the objects collected during this cycle

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

� Current heap(KB): The current heap size

� Current threshold(KB): The threshold value (Also referred to the initial heap size)

� Collect (milliseconds): Elapsed time for this cycle

� Current cycle allocation(KB): Memory allocated since the current cycle began

� Previous cycle allocation(KB): Memory allocated since the last cycle began

The current threshold is the value set for the initial heap size (512 megabytes in the example
output). The previous cycle allocation is normally close to this value, because the GC cycle is
triggered when the amount of memory allocated since the last cycle begins to reach the
threshold value. The example output shows that the GC cycle took more than four seconds to
complete. During that time, the current cycle allocation reached more than 200 megabytes. This
is about 40% of the threshold value, which suggests that the total time between the beginning of
this cycle and the next cycle is around 10 seconds. This cycle collected nearly 5 million objects
(collected objects), leaving only 2.5 million objects in the heap at the end of the cycle (live
objects).

In general, it is best to have a low cycle time. One to two seconds is ideal, but times of five to 10
seconds are common for WebSphere applications, especially on older or slower hardware. It is
also best to have some time between collection cycles (in other words, current cycle allocation
will mostly likely be less than the current threshold). These two goals work against each other.
Increasing the threshold value allows the heap to grow, which results in more time between
cycles but lengthens each cycle. Decreasing the threshold shortens each cycle but also reducers
the time between cycles.

The key to tuning the GC is to find a balance between these two goals. This is why examining
the CPU consumed by the GC is generally better than looking at values such as the current heap
size.

DMPJVM

Another tool that you can use to learn about garbage collector performance is the Dump JVM
(DMPJVM) command. This tool provides a spool file with information about your JVM, including
some of the key GC data (initial heap size, maximum heap size, current heap size, and number
of collections since the JVM started). The DMPJVM spool file also includes a dump of the objects
currently in the heap, which can be helpful for analyzing object leak problems. (Object leaks
occur when your application creates new objects and keeps a reference to the objects even
when they are no longer needed. This prevents the GC from collecting them. In the Resources
section, refer to Collecting and Analyzing a Java object creation trace on the IBM eServer
iSeries platform for more details.) Figure 6 shows a sample of the GC section of DMPJVM
output.

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

Table 1: Suggestions for initial heap size

..

. Garbage Collection .

..
Garbage collector parameters
Initial size: 262144 K
Max size: 240000000 K
Current values
Heap size: 449952 K
Garbage collections: 278
Additional values
JIT heap size: 85728 K
JVM heap size: 186588 K
Last GC cycle time: 1302 ms

Figure 6: Sample DMPJVM output

While the DMPJVM data is only a snapshot and does not provide the details available with
verbose garbage collection, you can run it without restarting the JVM. For this reason, it is useful
for getting some information about the JVM after a problem has occurred. Details on the
DMPJVM command can be found in the iSeries Information Center. A listing for this site is
available in the Resources section of this white paper.

Tuning the GC
When running the classic JVM in the i5/OS environment, it is simple to tune the GC. There are
relatively few parameters and values that you can tune to affect the garbage collector. In reality,
you have two options to reduce the time spent in collecting objects:

1. Modify the GC tuning parameters.

2. Reduce the number of objects that your application creates.

Modifying the GC tuning parameters

Tuning your application's initial heap size is an iterative process. Begin by picking a reasonable
starting point. The correct size varies depending on the system and application, but Table 1
provides a rule of thumb in choosing the starting size, based on the number of processors that
the system utilizes. These guidelines assume that the Java or WebSphere application is the only
significant application running on the system and that it is utilizing most of the CPU resources.
You might need to adjust these suggestions for other conditions.

Processors Initial heap size
1 96 megabytes
2 128 megabytes
4 256 megabytes
8 512 megabytes
12 or more one gigabyte
When you have picked a reasonable starting point, start your application and let it run for a time
under the maximum load that you intend to handle, giving it time to reach a steady state (a few
minutes is usually sufficient). It is best to use a load-generation tool to put a constant load on

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

your system. This allows you to tune your application in a development environment rather than
a production environment.

In addition to providing a constant load (allowing you to see the effects of changes more
accurately), this allows you to make changes as necessary without affecting users. While your
application is running, use the aforementioned tools to measure the impact of your changes.
Make sure that your load-generation tool also details the throughput and response time so that
you can see the impact on your application's performance. Whenever you change performance
parameters such as the GC threshold, you can measure the effects on throughput and response
time to ensure that the changes actually help.

If the tools indicate that there is still room for improvement, change the threshold, and try a new
run. In general, increase the threshold from the starting points in Table 1. When you have
increased it too far, the throughput begins to degrade again, indicating that you must reduce the
threshold.

These suggestions assume that your system has enough main store to handle larger heap sizes.
In reality, this might not always be the case. In systems with limited memory, it might be
necessary to set the GC threshold to a lower value, which increases collection frequency and
decreases heap size. This allows the JVM to keep the entire heap in memory. Use the i5/OS
Work with System Status (WRKSYSSTS) command or the IBM Collection Services tool (formerly
IBM Performance Monitor) to monitor the non-database paging and faulting rates. If these rates
get too high, the heap might be too large. (Note: The Collection Services provide the underlying
performance, data collection function for the i5/OS environment. These services support the
monitor and graph history functions and also provide input to the Performance Tools for iSeries.)

The definition of too large depends on a variety of factors: system size, number of disks, and
system workload. However, sustained nondatabase paging rates greater than 10 faults per
second by Java programs are generally cause for concern. Higher paging rates are acceptable
during warm-up periods.

High paging rates might result from having the GC threshold set too high or might be a symptom
of a larger problem. In this case, the first step is to isolate the JVM in its own memory pool. This
reduces the effects that other applications might have on the JVM and makes it easier to identify
whether the problem is with the GC settings, system configuration, or simply not enough
hardware to handle the workload.

In cases where memory is especially limited, it might be useful to set the maximum heap size.
Normally, this is left at the *NOMAX default value, which means that GC runs only when the GC
threshold has been reached. If you do set a maximum heap size, the collector runs whenever the
heap reaches that maximum size. However, unlike a normal garbage collection, if the GC
reaches its maximum size, all application threads must wait until the collector has finished before
they can continue running (a synchronous garbage collection). This results in undesirable pause
times. Therefore, it is preferable to use the maximum heap size as a safety net to handle times of
unexpected heap growth and ensure that the heap does not grow larger than the available
memory. Be sure to set the GC threshold so that this maximum size is never actually reached
under normal circumstances.

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

Reducing object creation

Tuning the collector is one way to reduce the amount of CPU cycle time spent in garbage
collection. It is the easiest method, and it is best to try this before attempting other techniques.
However, another way of reducing garbage collection time is to reduce the number of objects the
Java code creates. If the number of objects your applications create is excessive, none of the
tuning for the initial heap size will bring the CPU resources spent to a reasonable value.

With excessive object creation, there are two primary reasons that CPU utilization will be higher.
First, the creation of an object will traverse code within the JVM heap management environment,
as well as in the constructor for each object. Secondly, the GC will have to run more frequently to
manage the objects as they are no longer needed, and that requires CPU resources. In some
extreme cases, CPU usage by the GC can be more than half of the total JVM CPU usage.

The memory usage will be higher because there is more heap demand on allocating many
objects in a short period of time, even if the objects are short-lived. Furthermore, the larger heap
can have ramifications on other parts of the system, such as less efficient chip caching (L1, L2,
and L3 cache).

Regardless of how many objects the JVM must handle, the GC can only deal with a maximum
number of them at a time. If the number of object creations increases beyond the maximum, the
heap can begin to swell in size because the GC will not be able to keep up with the number of
creations. This is a simplified explanation, because there are many factors that determine the
rate at which the GC manages objects. These other factors include:

� Object size

� Heap fragmentation

� Main store memory allocation of the JVM

� Other jobs using the memory

(See: Collecting and Analyzing a Java object creation trace on the IBM eServer iSeries
platform in the Resources section for more information.)

Summary
The i5/OS implementation of the JVM provides advanced GC benefits for Java and WebSphere
applications. However, the JVM requires some simple tuning efforts to optimize GC performance.
Fortunately, you can usually accomplish this tuning by setting just one parameter, the initial heap
size. The tools provided with the i5/OS operating system, the JVM, and WebSphere development
environment offer multiple ways to analyze and monitor GC performance. In many cases, just a
few minutes of analysis can result in significant performance improvements with no application
changes.

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

Resources

These Web sites provide useful reference materials to supplement the information contained
within this document.

� Performance Management for IBM eServer iSeries Web site:

www.iseries.ibm.com/perfmgmt

� IBM AlphaWorks Performance Trace Data Visualizer:

alphaworks.ibm.com/tech/ptdv

� Collecting and analyzing a Java object creation trace on the IBM eServer iSeries platform:
ibm.com/servers/enable/site/education/abstracts/8d46_abs.html

� Java on iSeries performance guide for developers:

ibm.com/servers/enable/site/education/abstracts/8f56_abs.html

� Collecting and analyzing an IBM iSeries TPROF trace:

ibm.com/servers/enable/site/education/wp/9a1a/index.html

� Details on the DMPJVM command can be found in the iSeries Information Center at:
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/cl/dmpjvm.htm

About the authors
Jeremy Arnold is a performance analyst specializing in Java and WebSphere performance. Jeremy has
worked in the Rochester lab for six years, primarily working with Java performance. He has written
numerous articles for trade magazines dealing with J2EE design that relates to Java performance.

Scott Moore is a senior performance analyst in the IBM Rochester lab and an i5/OS (OS/400®) and Java
expert. Recently, Scott has been the team leader for WebSphere and Java performance on the System i
platform and is currently helping solution providers with Java and WebSphere performance issues
through the IBM eServer Solutions Enablement team.

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/cl/dmpjvm.htm

Trademarks and special notices

© IBM Corporation 1994-2006. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them

available in every country.

The following terms are trademarks or registered trademarks of International Business Machines

Corporation in the United States, other countries, or both:

IBM eServer i5/OS DB2
ibm.com iSeries WebSphere DB2 Universal Database
the IBM logo AS/400 OS/400 System i
System i5

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

Some information addresses anticipated future capabilities. Such information is not intended as a
definitive statement of a commitment to specific levels of performance, function or delivery schedules with
respect to any future products. Such commitments are only made in IBM product announcements. The
information is presented here to communicate IBM's current investment and development activities as a
good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending
upon considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

Tuning garbage collection for Java and WebSphere running classic JVM on i5/OS

