

DB2 for i porting guide
Informix to the IBM i platform

Version 8.0

.

The database technology team
ISV Business Strategy and Enablement

July 2014

© Copyright IBM Corporation, 2014. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders

Table of contents
Abstract.. 1

1
1

1

2
2

2

4
4

4

5

6

6

6

7

7

7

8

8

8

8

9

10

11

11

11

11

12
13
13

13

13
13
13
14

... 14
14
15
15
15

Introduction ...
The audience for this paper ...
Assumptions ..

Preparing to port ...
Porting approaches..
Design trade-offs..
Misused porting approach ... 3
Porting tools ... 3

Sizing the port ...
Architecture..

Brief history..
Interfaces and packaging ..
Physical model ..
Storage model ...

Metadata ..
Data types..

DECIMAL...
NCHAR..
MONEY ...
ROWID ..
DATETIME ..
INTERVAL ...
SERIAL..
Character types (including variable-length types) ...
Quoted character strings ...
Collection data types ...

SQL language elements ..
Identifiers ...

Naming conventions and formats ..
Synonyms..

String truncation with inserts ...
Query syntax considerations ...

SELECT FIRST ..
SELECT stored procedure calls ..
GROUP BY..
ORDER BY..
OUTER JOINS
UPDATE WITH JOIN CONDITION (XPS)...
MINUS operator ..
MATCHES predicate...

Functions ...

DB2 for i porting guide: Informix to the IBM i platform

UDF performance .. 16
16
16
16
17
17
17

18
18
18
18
19

19

19
19
20
20

22

22

22

22

23

23
23
23
23
23
24
24
24
24
24

25

25

25

25

25

26

26

26

26

27
27

27

Concatenation ..
Substring notation...
Length function...
Unique function ..
Implicit casting ...

Stored procedures...
Declarations ...
File and screen I/O..
Operating system commands..
Returning results sets..

Triggers ...
Constraints ..

Primary key ...
RI constraints...
Deferred constraint checking ..

Temporary tables...
Unsupported options..
Application development..

DBANSIWARN environment variable..
Informix 4GL..
ESQL/C ...

Precompiler tags ...
Indicator variables ..
Declare cursor considerations ...
Array host variables ..
Declaring date and time variables..
Cursor and statement-named variables ..
C library functions for date and time ..
Null terminator truncation ..
Comments ...

Error handling ..
System catalog access..

Concurrency and recovery...
Lock modes ...
Isolation levels ...
Changing the isolation level ..
With hold cursors...
Transaction mode..
Journaling and recovery ..
Recovery ...

After the port ...
Functional testing...
Performance tuning and sizing ..

DB2 for i porting guide: Informix to the IBM i platform

DB2 for i porting guide: Informix to the IBM i platform

Administration .. 28

28

29

29
29

30

31

33

System i Navigator ..
Utilities ...

Load and import ...
ALTER TABLE statements ...

Summary..
Resources..
Trademarks and special notices..

1

Abstract
This paper discusses the various processes and considerations regarding porting an Informix
database application to the IBM i platform to run with IBM DB2 for i. Discussions include:
assessing the differences between the source and target databases, porting approaches and
administrative differences.

Introduction
This paper is a working document; new topics will be added as they appear in more and more porting
situations. Meanwhile, depending on the type of application, not all topics discussed in this paper are
relevant to a particular situation.

The audience for this paper

This paper is written for application developers and database administrators who want to convert an
Informix® application to IBM® DB2® for i. The paper covers the most common issues and
inconsistencies encountered by developers when porting from Informix to DB2 for i. It also covers DB2

support and administration topics that are relevant to database administrators.

This paper concentrates primarily on the database differences between the Informix and DB2 for i
database servers. It does not focus on the differences between the underlying operating systems.

Application development issues are covered only from a database perspective. Refer to the Resources
section of this paper for a website listing that provides a more general perspective on porting applications
to the IBM Power Systems and the IBM i (System i™ System i5™, eServer™ i5 and iSeries™) platform.

Assumptions

The paper assumes readers are working with Informix IDS 12 and are porting to DB2 for i 7.2 release. For
simplicity, this paper uses DB2 to represent DB2 for i.

The paper also assumes readers are familiar with the concepts of RDBMSs and with Informix SQL. It is

also assumed that readers have easy access to DB2 for i 7.2 documentation. Refer to that documentation
for detailed information about the actual SQL statement syntax. More information regarding DB2 for i can
be found online at the following website: ibm.com/systems/power/software/i/db2/docs/books.html

DB2 for i Porting Guide: Informix to the IBM i platform

2

Preparing to port
Before diving into a detailed comparison of DB2 and Informix, the first step in considering a port to DB2 is
reviewing the source database. A firm understanding of the technologies and interfaces used by your

Informix application enables you to be more productive as you use this paper to assess the port to DB2.
Here are some questions that you need to be able to answer about your application and database:
 Does the application use standard or proprietary SQL such as the Informix DataBlade modules?

 What programming interfaces does the application use for data access?
 Does the application rely on any platform-specific middleware or technology?
 Are there any known performance bottlenecks?

 Does the logic reside in procedural database objects (triggers and procedures) or the application?

To request a formal DB2 porting assessment document, send an email to: rchudb@us.ibm.com.

Porting approaches

After you have a thorough understanding of the source database, it is time to consider the approach that

you want to take when porting your application to DB2. Any solution can be ported, given enough time
and money. However, the questions to ask are: “What is the end goal for the application being ported?
Does it need to be a portable solution that can easily support multiple DBMS products or a solution that is

tightly integrated and tuned for DB2?” This porting issue needs to be discussed before the database
porting project starts to make sure that all of the parties on both sides agree on the priority. If the solution
already supports multiple DBMS products, then this is a relatively easy question to answer.

With its support for industry-standard interfaces, DB2 can accommodate this design with minor changes.

Design trade-offs

However, if your application currently supports just a single DBMS product, you have some application
design issues to investigate further. The first alternative to consider is redesigning your application with

an abstraction layer to support database servers more easily with a single code base. This design
approach requires more effort and investment, but better positions your application for expansion to other
platforms and databases in the future. In addition, as you enhance your core application, this design

makes if faster to deploy these enhancements to all of your supported platforms.

If the source code to be maintained must also remain portable, it is best to isolate all database runtime
calls from the application. Usually, this isolation is done by having the application create its own set of

database methods or calls that are passed to a single procedure or module. That procedure or module
then turns the application database request into the specific format or API (ODBC, JDBC, or other
interface) supported by the target database.

Another alternative is to create a separate version of your application for DB2 for i. This can require less
up-front investment than the previous approach, but the long-term expenses are greater because of
maintaining, enhancing and testing two code sets. The benefit is that the best performance is obtained by

changing the application and database to exploit the target server. However, the more changes made, the
harder it is to have a single set of application source code that can run against multiple database servers.
If the goal is to have a common set of single-source code, then avoid platform-specific features in the

conversion. However, performance is the tradeoff when you code to the lowest common denominator. For

DB2 for i Porting Guide: Informix to the IBM i platform

3

example, Informix has a scalar function called X and DB2 has an equivalent function called Y. The
developer who converts to DB2 has a choice: change the application to call function Y (to yield the best

performance) or code a DB2 user-defined function (UDF), called X (to merely call function Y). This allows
the application code to remain unchanged, but results in slower performance.

These porting issues need to be discussed before the database porting project starts, to ensure that all of

the parties on both sides agree on the priority (best performance or easiest code maintenance).

This tradeoff is especially critical with DB2 for i because its implementation of dynamic SQL prepare and
b statements has some nuances. Often, an application designed for other database servers blindly

prepares and runs the same SQL statement repeatedly in a single program call, although it is more
efficient to prepare that statement only once. Or, the application uses the ODBC SQLExecDirect function
or JDBC statement class to run the same SQL request many times in a connection. DB2 is not suited for

these inefficient models. If the application cannot be changed so that an SQL statement is prepared once
and run many times, then most likely, that application will not perform well on the IBM i platform.

On the performance topic, it is strongly recommended that database administrators or SQL developers

who are new to the IBM i platform attend the DB2 for i SQL Performance workshop
(ibm.com/systems/power/software/i/db2/education/performance.html). This course teaches the developer
the proper way to design and implement a high-performing DB2 solution.

Misused porting approach

Because DB2 is also available for Linux™ and Microsoft® Windows® workstations, many developers
wonder if they can perform their porting and associated testing on the workstation and then move it to the
IBM i platform after the testing on the workstation has been completed. Does that work? The short

answer is, “Probably not.” Although DB2 for i does belong to DB2 Family, there are differences in the SQL
syntax and features supported by each DB2 product. There is not a master version of DB2 and each
product has features that are not supported by one of the other database products.

This approach works if, you first verify that DB2 for i supports the SQL statement and syntax (see
ibm.com/partnerworld/wps/servlet/ContentHandler/SROY-6UZDN4 for a listing that provides a high-level
examination of DB2 for i and the IBM DB2 Family.

Porting tools

IBM offers an Informix Migration Toolkit to assist in porting Informix solutions. This toolkit automates many
steps in migrating a database from Informix to DB2 for i (tables, views, indexes, triggers and stored
procedures, see ibm.com/partnerworld/i/db2porting for this toolkit). Although the DB2 Migration Toolkit

greatly reduces the time it takes to convert from Informix to DB2, but does not completely automate the
process. For example, the toolkit does not convert Informix catalog references to the corresponding DB2
catalog references; you must perform some manual work. However, the toolkit flags items that must be

converted manually. The converted procedural objects (triggers, functions and stored procedures) need
to be reviewed to ensure their semantic equivalence. In addition, the generated SQL code might not
result in the best-performing SQL statements. Thus, you must do some performance tuning after using

the toolkit. If your application has dependencies on proprietary features that existing migration tools do
not support, you might consider building your own migration tool. This approach involves a significant
upfront time investment and requires an indepth knowledge of the source and target databases.

DB2 for i Porting Guide: Informix to the IBM i platform

4

Sizing the port
Although the design approach and usage of porting tools definitely affects the costs required to complete
the port, the effort is also dependent on the features used in the source database. This section highlights

and compares some key differences encountered between Informix and DB2 databases during
application ports to help assess the difficulty of your porting project.

Architecture

This section provides an overview of the DB2 for i architecture and a comparison of that architecture with

the Informix database product. In addition, the interfaces used with Informix and DB2 for i databases are
also compared.

Brief history

An integrated, fully relational database has shipped with every IBM i machine as far back as the
inception of the IBM AS/400® systems in the late 1980s. Many users did not realize they had a
database because this integrated relational database originally had no name. In 1995, the database

joined the DB2 brand by adopting the name DB2/400. Then, in 1999, the DB2 Universal Database
branding was added. DB2 for i is still running on the original database engine; it has more features
and functions with each new release of the IBM i operating system. In fact, the database is integrated

so well that some IBM i customers might tell you that they are not using DB2.

Since the IBM AS/400® family of systems was developed before SQL was widely used, a proprietary
language and high-level language extensions (think of them as APIs) were made available for

relational database creation and data access. Data Definition Specification (DDS) is the language
used for creating DB2 objects. The language extensions (or APIs). known as the record level I/O
interfaces, are available in most of the languages supported by the IBM i platform with the most

usage in RPG and COBOL programs. These extensions and DDS are also known as the native
database interface and the native database interface is quite similar to indexed sequential access
method (ISAM).

Because of this native, non-SQL interface, some IBM i users and consultants might use terminology
that is not familiar to those coming from an SQL background. Table 1, below, provides a mapping of
that terminology:

SQL terms IBM i terms
TABLE PHYSICAL FILE
ROW RECORD
COLUMN FIELD
INDEX KEYED LOGICAL FILE, ACCESS PATH
VIEW NON-KEYED LOGICAL FILE
SCHEMA LIBRARY
LOG JOURNAL
ISOLATION LEVEL COMMITMENT CONTROL LEVEL

Table 1: Mapping of SQL and IBM i terms

DB2 for i Porting Guide: Informix to the IBM i platform

5

Because of the integrated nature of the IBM i database, both the native and SQL interfaces are
almost completely interchangeable. Objects created with DDS can be accessed with SQL

statements. Also, objects created with SQL can be accessed with the native record level access
APIs. The DB2 SQL interface is compliant with the core level of the SQL 2008 standard.

Interfaces and packaging

Because DB2 for i is integrated, most SQL-based applications run on any server that can run IBM i
without requiring additional products to be purchased for the client or server. The following DB2
capabilities are included with the IBM i operating systems at no additional charge:

 SQL parser and run-time support
 SQL interfaces (server side)

 CLI (call level interface)

 Native JDBC driver (Version 4.0)
 SQLJ

 IBM i Access for Windows (formerly IBM Client Access Express and IBM iSeries Access)

 ODBC (Version 3.5)
 JDBC (Version 4.0)
 OLE DB provider

 .NET provider (Version 2.0)
 PHP ibm_db2 extension (Zend Server for IBM i)
 Open Group™ DRDA application requester and server

 SQL Statement Processors (RUNSQLSTM & RUNSQL CL commands)
 Qshell DB2 utility
 Performance tuning tools

The DB2 for i SQL Development Kit and Query Manager (5722-ST1) product must be purchased if
you need to embed SQL in a high-level language (C, C++, RPG, or COBOL). This product needs to
be installed only on the development system.

If your application already supports DB2 access through the middleware provided by DB2 Connect,
another option is DB2 Connect Unlimited Edition for System i. This product is not included with the
base operating system and must be purchased separately. For more information, see the Resources

section of this paper.

Many vendors prefer using a native database interface instead of an industry-standard interface, such
as ODBC or CLI, because of performance concerns. DB2 does not have a native SQL-based

interface; instead the ODBC and CLI interfaces are treated as the native SQL interface for DB2 for i
and provide performance similar to that of the native interfaces offered by other database products.
The one SQL-based interface that is similar to a native interface for DB2 is the Extended Dynamic

interface via the QSQPRCED API or XDA API set. However, this interface is proprietary and can only
be used effectively with a thorough understanding of the IBM i SQL engine. That knowledge can be
obtained from the DB2 for i SQL Performance workshop (referenced in the Resources section of

this paper).

DB2 for i Porting Guide: Informix to the IBM i platform

6

Physical model

Frequently, Informix database design is based on creating multiple databases within one instance

where all the databases are shared by the same applications. Often, the tables from the separate
databases are joined and even have the same names. Although this design is suitable for Informix, in
most cases this design is not optimal for DB2 for i. In fact, DB2 for i does not even support the

CREATE DATABASE statement.

Although DB2 can support multiple databases on a single server with independent auxiliary storage
pools, this design is not commonly used. The default configuration for DB2 for i is a single, system-

wide database. Therefore, it is recommended that all Informix instances and associated databases be
consolidated into a one system-wide database. For this reason, when consolidating multiple Informix
databases that use the same table name across several databases, DB2 requires the application to

use unique, two-part table names. DB2 tables can be made unique by adding schema names that
correspond to the Informix database from which they are sourced. The application code must also be
modified to reference the new table names. Alternatively, aliases can be created to point to the new

names.

Storage model

With DB2 for i, all of the storage allocation and management is handled by the database manager

and operating system. Thus, there are no table spaces to create or manage on the IBM i platform. In
addition, the data for DB2 for i non-partitioned tables is automatically partitioned (or striped) across
the disk devices (or chunks) to eliminate contention.

Thus, Informix fragments, chunks, dbspaces, buffers, configuration files and the Sysmaster database
(which contains resource and storage information) have no equivalent on DB2 for i. A DBA does not
need to allocate or manage these object types because the operating system and database engine

automatically take care of this processing. In addition, the page size on DB2 is fixed and cannot be
changed.

DB2 for i supports partitioned tables with partitioning by range and hash value. However, partitioned

tables must only be used when the row or size limit for a single table is about to be exceeded. For
details on the DB2 for i partitioned table implementation, consult the DB2 white papers at the website
listed in the Resources section of this paper.

Metadata

Metadata provides the roadmap to interpret the information stored in the database. DB2 catalog views
have a different structure from Informix system tables. Applications that are designed to access Informix
system tables require rewriting when migrating to DB2.

Detailed descriptions of the catalog views can be found in an appendix of the DB2 for i SQL Reference
Guide. The use of a CLI and ODBC programming interface can help in making structural differences
(among the system catalogs of various database vendors) transparent to an application. DB2 for i as well

as DB2 for Linux™, UNIX® and Windows both support a common set of catalog views for ODBC and
JDBC clients in the SYSIBM schema.

DB2 for i Porting Guide: Informix to the IBM i platform

7

Data types

Table 2 summarizes the mapping from IDS data types to corresponding DB2 data types. The mapping is
one-to-many and depends on the actual usage of the data.

IDS data type Notes DB2 data type Notes
CHAR(n) n <

32,767
CHAR(n)
VARCHAR(n)

n <= 32766, CHAR
n <= 32740, VARCHAR

VARCHAR n <= 255 VARCHAR(n) n <= 32740
LVARCHAR n <= 2000 VARCHAR(n)
NCHAR NCHAR
TEXT CLOB

VARCHAR
CLOB limit is 2 gigabytes.

INT8 10 bytes
on disk

BIGINT 8-byte value

DECIMAL(p,s) p <= 32
digits

DECIMAL(p,s) p <= 63 digits

DECIMAL(p) FLOAT,
DECFLOAT

SMALLFLOAT REAL
MONEY Use DECIMAL
ROWID ROWID
BYTE BINARY

VARBINARY
BLOB
VARCHAR for
bit data

BOOLEAN Use CHAR(1)
DATETIME DATE

TIME
TIMESTAMP

INTERVAL Use DECIMAL
SERIAL
SERIAL8

 INTEGER
BIGINT

Use the Identity clause.

Table 2: Mapping of IDS data types to DB2

DECIMAL

In an Informix non-ANSI database, a DECIMAL data type without a scale, such as DECIMAL(9), is
represented internally as a FLOAT data type. DB2 does not support this variation on the DECIMAL
data type. With DB2, a DECIMAL data type that is specified with a precision but without a scale,

defaults to DECIMAL(9,0). The DB2 DECFLOAT data type can also be used.

With Informix, when a value of 123.456 is inserted into a DECIMAL(3,2) column, Informix rounds the
second decimal place value and stores 123.46. With DB2, when a value of 123.456 is inserted into a

DEC(3,2) column, DB2 truncates the second decimal place value and stores 123.45.

NCHAR

NCHAR data type maps to the DB2 NCHAR or GRAPHIC data type, but there are differences.

The NCHAR data type can be used for single- or double-byte characters. The Informix server uses
the codepage to determine whether the NCHAR string is required to store single- or double-byte data.
With the DB2 NCHAR data type, DB2 always allocates double the length specified for the NCHAR

data type and always stores the data in the UTF-16 double-byte Unicode format.

DB2 for i Porting Guide: Informix to the IBM i platform

8

MONEY

DB2 supports the DECIMAL data type instead of a MONEY data type. If monetary formatting is

needed, a DB2 user-defined function can be written to handle this requirement. Note that MONEY(16)
maps to the DB2 DECIMAL(16,2). The scale on the MONEY data type defaults to 2 if it is omitted.

ROWID

The DB2 ROWID type stores a 40-byte unique value that does not contain any information about the
block or row. Although DB2 allows direct access to a row via its ROWID value, the access of this row
is no faster than a WHERE clause that is implemented with an index scan. DB2 does automatically

create a unique constraint on top of ROWID columns. Some DB2 for i solutions have also
successfully used the RRN scalar function to simulate the ROWID data type.

DATETIME

The IDS DATETIME data type supports variable-length precision; the output formatting is controlled
by setting the DBDATE value. Examine the following DATETIME formats:

yyyy-mm
yyyy-mm-dd hh
hh:mm:ss

Of these, only hh:mm:ss can be mapped directly to DB2 as a Time value. The first format requires a

DAY value to complete a DATE function. The second format requires minutes and seconds to
complete a TIMESTAMP function.

DB2 TIMESTAMP data type does not require that a value is specified for microseconds (defaults to 0.

However, a value for year, month, date, hour, minute and second must always be provided. The
nondesignated DB2 timestamp literal formats are:

’yyyy-mm-dd-hh.mm.ss.nnnnnn' , 'yyyymmddhhmmss' or .‘yyyy-mm-dd hh:mm:ss’

INTERVAL

With Informix, INTERVAL values are specified as string literals and are stored internally as decimals.
In DB2, the month and second intervals must be converted to the total number of months and

seconds and stored in a decimal column. An example of an interval format is:

INTERVAL(123456 13:07:56) DAY(6) TO SECOND

This value is stored in Informix as the decimal number 123456130756.

The Informix Migration Toolkit normalizes this value to seconds and represents the value as the
number of seconds in an interval. Thus, the DB2 value in seconds for this literal is:

123456*86400 + 13*3600 +7*60 +56

To complete the example, compare the Informix CREATE TABLE statement with its DB2 translation:

DB2 for i Porting Guide: Informix to the IBM i platform

9

Informix:
 CREATE TABLE t1 (col1 INTERVAL DAY (6) TO SECOND

 DEFAULT INTERVAL (2 0:0:56) DAY (6) TO SECOND NOT NULL)

DB2:
 CREATE TABLE t1 (col1 DECIMAL (20,5) DEFAULT 172856 NOT NULL)

SERIAL

The Informix SERIAL data types are mapped to DB2 using the IDENTITY attribute on a column with
any number data type with a scale of zero. If GENERATED ALWAYS clause is used with the

IDENTITY parameter, DB2 always supplies a value for the column.

If the GENERATED BY DEFAULT clause is used with the IDENTITY attribute, DB2 generates a
value for the column, as long as no value is provided on the INSERT statement. However, this can

have a different behavior than when using the Serial column on subsequent Insert statements.
Consider the following comparison:

Use ALTER TABLE to reset the internal counter to the next number in sequence. This updates the

internal counter so that the next value DB2 generates is in sequence with the last value inserted or
loaded. See the example below:

DB2:
CREATE TABLE tab
 (c1 INTEGER,
 c2 INTEGER GENERATED BY DEFAULT AS IDENTITY);

 INSERT INTO tab(c1) VALUES(5); -- 1 generated for c2
 INSERT INTO tab(c1,c2) VALUES (5,10); -- No value generated, 10 assigned
 INSERT INTO tab(c1) VALUES(5); -- 2 generated for c2

IDS:

CREATE TABLE tab
 (c1 INTEGER, c2 SERIAL);

INSERT INTO tab(c1) VALUES(5); --1 generated for c2
INSERT INTO tab(c1,c2) VALUES(5,10); --internal counter = 10

INSERT INTO tab(c1) VALUES(5); --11 generated for c2

To ensure that the DB2 IDENTITY column has the same behavior as the Serial column, run the

following ALTER TABLE statement after the second INSERT statement to reset the IDENTITY
column’s generated value.

ALTER TABLE tab ALTER c2 RESTART WITH 11

When inserting values into a table with the IDENTITY column, use DEFAULT as a placeholder for the
value of the IDENTITY column. This eliminates the requirement to list every column of the table in the

INSERT statement. To retrieve the last value inserted into an IDENTITY column, use the
IDENTITY_VAL_LOCAL built-in function.

DB2 for i Porting Guide: Informix to the IBM i platform

10

Character types (including variable-length types)

DB2 supports the CHAR and VARCHAR data types for single-byte character strings and the NCHAR,

NVARCHAR, NCLOB, GRAPHIC and VARGRAPHIC data types for double-byte character strings.
Unicode® data is supported with the GRAPHIC and VARGRAPHIC data types with a CCSID value of
13488 for the UCS-2 encoding or a CCSID value of 1200 for the UTF-16 encoding. The national-

character data types (NCHAR, NVARCHAR and NCLOB) can also be used to create a column with
the UTF-16 encoding. The UTF-8 Unicode encoding is also available with the CHAR and VARCHAR
data types with a CCSID value of 1208.

It is usually better to port variable-length columns to the fixed-length DB2 CHAR(n) data type, which
is more efficient and uses less storage than VARCHAR. A general guideline is to use the CHAR data
type for columns of 40 bytes or less. Before deciding on the column type based on performance, read

the DB2 for i paging and I/O behaviors for variable-length and LOB columns described in this section.

In general, the DB2 variable-length data types (VARCHAR and VARGRAPHIC) should only be used
for long-memo or text-description columns that are referenced infrequently. DB2 variable-length types

usually cause additional disk I/O processing because they can be stored in a different data segment
(auxiliary overflow storage) from the rest of the columns.

If it is not possible to change the column definition from a variable-length column to a fixed-length

column, the ALLOCATE keyword can be used to improve performance. ALLOCATE(0) is the default
and causes column value to be stored in the auxiliary overflow part of the row; this is the best value if
the goal is to save space. The ALLOCATE(N) keyword allocates n bytes in the fixed portion of the

row and only stores the column in the overflow area when the column value exceeds N. Setting N so
that almost all of the column values are stored in the fixed portion of the row can improve
performance by avoiding the extra I/O operation from the auxiliary overflow area.

Here is an example of changing the ALLOCATE value in an effort to improve performance. An
address column is initially defined as VARCHAR(60) with the default ALLOCATE value of 0,
meaning that the data is stored in the auxiliary overflow section. Performance analysis has shown

that this address column is retrieved frequently; therefore, you want to move most of the address
values back into the fixed portion of the row. If most of the address values are 40 bytes or less in
length, then you can use the ALTER TABLE statement to change the ALLOCATE value to 40. Now,

all address values that are 40 bytes or less are stored in the fixed portion of the row, thus, eliminating
the extra I/O operation on the auxiliary overflow area.

The problem is magnified further when both LOB and VARCHAR values are stored in the auxiliary

overflow area. LOB storage is almost identical to VARCHAR column storage; therefore, it is possible
for both large LOB values and smaller VARCHAR columns to share the same overflow area. The
sharing is not a problem, but when a VARCHAR column that sits in the overflow area is referenced,

the entire overflow area for that row is paged into main memory, including all BLOB and VARCHAR
values. The application might only retrieve a VARCHAR(50) column, but if that column happens to be
in the same overflow storage area as three 2-megabyte BLOB values, then the application waits until

the VARCHAR and all three large BLOB values are paged into memory. If a row contains both BLOB
and VARCHAR columns, then most likely, the VARCHAR column’s ALLOCATE value must be set to
the maximum to ensure that the value is always stored in the fixed portion of the row.

Another option is to move the LOB column to a different table.

DB2 for i Porting Guide: Informix to the IBM i platform

11

Quoted character strings

Informix supports both single and double-quoted character strings. For example, each of the following

search predicates is legal with Informix:

 WHERE color =’RED’
 WHERE color = “RED”

DB2 does not support double-quoted character strings. The Informix Migration Toolkit does translate
this difference automatically.

Collection data types

DB2 for i does not support any of the Informix Collection Data Types (SET, MULTISET or LIST). Any
table using these data types have to be redefined into multiple tables.

SQL language elements

This section covers the most common differences with SQL syntax and semantics.

Identifiers

DB2 for i supports two types of SQL identifiers: ordinary identifiers and delimited identifiers. Ordinary
identifiers begin with an uppercase letter and are converted to all uppercase. A delimited identifier is a

sequence of one or more characters enclosed within SQL escape characters ("..."). With delimited
identifiers, leading blanks are significant and letters in the identifier are not converted to uppercase.

It is strongly recommended that you not use variant characters (such as $, @, #, ^ and ~) in SQL

identifiers. This is because the underlying code points of these characters can vary depending on the
CCSID or language that is active on the system. If variant characters are used in your identifiers, then
unpredictable results can occur, especially on systems that use non-English CCSID values. The _

(underscore) character is not considered to be a variant character.

In general, the DB2 for i SQL identifier-length maximums are not an issue when porting databases.
DB2 supports identifiers with a length up to 128 characters for columns, tables, indexes, procedures

and constraints. Table 3 provides a summary of the Informix object types that support a longer
identifier name. All of the SQL limits are documented in the DB2 for i SQL Reference. A listing for
this online manual is provided in the Resources section of this paper.

Object type DB2 for i IDS V9 XPS V8.5
User name 10 32 32
Cursor name 128 128
Host identifier 64 or 128, depending

on the language
128 128

Schema name 128 32
Statement name 128 128
Column name 128 128 128

Table 3: Informix object types that support a longer identifier name

Although DB2 supports long SQL identifiers, the commands and interfaces native to IBM i, there is a

hard maximum of 10 characters for object names. For example, the Save commands that are used to
back up database object, such as tables and indexes, only support a 10-character identifier.

DB2 for i Porting Guide: Informix to the IBM i platform

12

Therefore, how do you back up an SQL object that has an identifier longer than 10 characters? When
an SQL identifier longer than 10 characters is specified, DB2 automatically generates a short

identifier of 10 characters in length that can be used with operating system commands and native
interfaces. This short name is generated for all SQL object names, including column identifiers. These
shorter SQL identifiers with a 10-character maximum are also known as system names.

The system-generated short names do have a downside because they are generated by the system.
First, they are not user-friendly. DB2 appends a five-digit unique number to the first five characters of
the SQL identifier. For instance, CUSTOMER_MASTER has a short name of CUSTO00001. Second

and more importantly, these short names are not guaranteed to be consistent across systems or
repeated creations of the same SQL object because of the dependencies on creation order and other
identifiers that share the same first five characters. Thus, special SQL syntax was added that allows

the short name to be controlled by the developer.

The SQL FOR SYSTEM NAME clause was recently made available to allow a short name to be
assigned to tables, indexes and views. The FOR COLUMN clause can be used on the CREATE

TABLE and ALTER TABLE statements to assign a short column name. The SPECIFIC clause can
be used to assign a short name when creating procedures and functions. Here are some examples of
using this special SQL syntax to assign your own short system names:

CREATE TABLE dbtest/customer_master
 FOR SYSTEM NAME cusmst
 (customer_name FOR COLUMN cusnam CHAR (20),
 customer_city FOR COLUMN cuscty CHAR(40))

To overwrite the system-generated name for customer_master (CUSTO0001), the FOR SYSTEM

NAME clause will instead assign a short name of cusmst. After running this statement, the SQL table
name is customer_master and the system table name is cusmst. Either name can be referenced on
other SQL statements.

The FOR SCHEMA clause can be used on the CREATE SCHEMA statement to assign a short
system name for schema names that are longer than 10 characters.

Naming conventions and formats

Most DB2 for i SQL interfaces allow you to specify an SQL Naming Mode or Format. This option
controls the syntax when qualifying an object with a schema (or library) name as well as defining
the default search path used when unqualified SQL object names have been referenced.

*SYS (System naming) mode is based on the traditional, native database access on the IBM i
platform. System naming mode dictates that the traditional IBM i slash (/) is used when explicitly
qualifying SQL objects with a schema name (for example, mylib/mytablename). Furthermore,

when a schema is not specified, then system naming searches through the libraries defined in the
job’s library list looking for the unqualified object.

*SQL (SQL naming) is based on the SQL standard. SQL naming requires the schema and object

name to be separated with a period (.) (for example, mylib.mytablename). With the SQL naming
convention, the only library (or schema) that is searched for unqualified objects is the library
matching the name of the current SQL authorization name (or user profile name). If the

authorization name is JOHNDOE and an unqualified object is referenced, DB2 expects to find
that object in a schema named JOHNDOE.

DB2 for i Porting Guide: Informix to the IBM i platform

13

There are other settings that can impact the default search path, but this section describes the
default behavior of each of the naming conventions. The SQL Reference Guide can be

consulted for a full explanation. (See the Resources section of this paper.)

Synonyms

Informix supports private and public synonyms to access tables on a local or remote database.

With DB2, an alias is comparable to the IDS synonym. The user of the alias must have privileges
to access the base table where the alias is created. The DB2 aliases can be created by using the
CREATE ALIAS statement. Although not preferred, the CREATE SYNONYM statement is also

recognized.

When creating an alias, the Private or Public keyword is not used in the syntax, as it is with IDS.
All DB2 aliases are essentially private and can only be used by the owner or another user, as

long as the owner of the alias is explicitly specified. The owner of an alias grants privileges to
other users to use the same alias. A public synonym (supported by IDS) is one in which any user
can use any synonym without specifying an owner’s name. DB2 does not support this.

A DB2 alias can be created for a table or view that resides on a non-local database by using
three-part naming as the following example shows:

 CREATE ALIAS mylib.tab1 FOR rdb1a.mylib.tab1

String truncation with inserts

A non-ANSI Informix database supports truncation of strings that are longer than the columns into
which they are inserted; no error is returned. An ANSI Informix database supports truncation of

strings that are longer than the columns into which they are inserted; however, an error is returned.
DB2 does not truncate strings that are longer than the columns into which they are inserted. Instead,
an error is returned to the application.

Query syntax considerations

There are some syntax points to be aware of when migrating queries.

SELECT FIRST

Both IDS and DB2 enable you to specify that only n number of rows are to be returned by a
SELECT statement. They use different placement and words to specify this however:

IDS: SELECT FIRST n ...
DB2: SELECT ...FETCH FIRST n ROWS

SELECT stored procedure calls

IDS supports the calling of a stored procedure from within a SELECT list:

SELECT marks_stored_procedure(col1) FROM t1

DB2 does not support the calling of a stored procedure from within a SELECT list. However, DB2
does support the calling of user-defined functions.

GROUP BY

DB2 for i Porting Guide: Informix to the IBM i platform

14

Informix supports a GROUP BY clause with either the column name or an ordinal number that
corresponds to the column in the SELECT list. Currently, DB2 only supports the column name

and does not support an ordinal number (because use of the ordinal number in a GROUP BY
clause is not part of the ANSI standard).

ORDER BY

Informix supports the ordering of a column by a substring notation. This is not supported by DB2.
For example, the following clause instructs Informix to sort by the first two characters in the
company name, instead of sorting the entire value.

ORDER BY company_name(1,2).

To accomplish the same operation with DB2, the Substring function must be coded on the Order
By clause, as follows:

ORDER BY SUBSTR(company_name,1,2)

OUTER JOINS

As of IDS V9.2, Informix supports the same ANSI Outer Join syntax that is supported by DB2.

Informix also supports a proprietary Outer Join syntax, as well. Here is an example of converting
the proprietary Outer Join syntax to DB2.

IDS:

 Select c.customer_num, c.lname, c.company, c.phone, u.call_dtime, u.call_descr,
 s.support_level
 From customer c, OUTER cust_calls u, OUTER support_packages s
 Where c.customer_num = u.customer_num AND c.customer_num = s.support_id;

IDS and DB2:

Select c.customer_num, c.lname, c.company, c.phone, u.call_dtime, u.call_descr,
 s.support_level

 From ((customer AS c LEFT OUTER JOIN cust_calls u
 ON c.customer_num = u.customer_num)
 LEFT OUTER JOIN support_packages s ON c.customer_num = s.support_id;

UPDATE WITH JOIN CONDITION (XPS)

XPS supports updating a column to a value of a column from another table, based on a join

condition. For example:

UPDATE tab a
 SET a.col1 = b.col2
 FROM tab1 a, tab2 b
 WHERE b.coljoinb = a.coljoina

DB2 does not support this exact syntax. The following are two examples of how to code the same
type of update with DB2:

DB2 for i Porting Guide: Informix to the IBM i platform

15

UPDATE tab a SET a.col1 =
 CASE
 WHEN (SELECT b.col1 FROM tab2 b
 WHERE b.coljoinb = a.coljoina) IS NOT NULL
 THEN(SELECT b.col1 FROM tab2 b WHERE b.coljoinb = a.coljoina)
 ELSE a.col1
 END

UPDATE tab a SET a.col1 =
 (SELECT b.col1 FROM tab2 b WHERE b.coljoinb = a.coljoina)
 WHERE EXISTS (SELECT ‘x’ FROM tab2 bb WHERE bb.coljoinb = a.coljoina)

MINUS operator

The DB2 equivalent to the MINUS set operator is the EXCEPT operator.

MATCHES predicate

Informix supports both the MATCHES and LIKE predicates. DB2 only supports the SQL Standard
LIKE predicate. (See Table 4.) Without escape characters, the Informix LIKE clause behaves

differently than DB2 when processing a fixed-length character column. The search predicate,
FixedCharCol LIKE ‘A’, returns a match on Informix when FixedCharCol equals ‘A’. This is not the
case with the DB2 LIKE clause, a match is only returned for this predicate if FixedCharCol is

defined as a variable-length column.

 One of any character None or many of any character
MATCHES ? *
LIKE _ %

Table 4: The MATCHES and LIKE predicate

Functions

Many of the functions supplied with Informix are also supplied with DB2 with the same name and

behavior; therefore, no effort is required to port those invocations. Other functions have a different
name in DB2 than in Informix, but serve the same purposes and these cases can also be easily
ported as sourced UDFs (see next). The remaining functions used in an Informix application are

either: functions supplied with IDS that have no equivalent in DB2 or user-written functions. Both of
these must be converted as UDFs to run with DB2. There are several types of scalar and table UDFs
in DB2, all of which are created with the CREATE FUNCTION statement. The basic UDF types are:

 Sourced UDF: A sourced UDF is a reuse of the implementation of an existing function, usually
with some attributes changed, such as input data types. A sourced UDF can also be used as a
form of alias. If there was a function in Informix, such as IDSFUNC, that had an equivalent called

DB2FUNC in DB2, then a sourced UDF, called IDSFUNC, can be created in DB2, invoking the
DB2FUNC function and Informix statements calling IDSFUNC do not need to be changed.

 SQL-bodied UDF: This can be fully implemented with the SQL procedural language (PSM).

 External UDF: This type of UDF can be used when it is easier to implement the function with a
high-level programming language. An external UDF can be written in any high-level programming
language supported on IBM i, including Java™.

DB2 for i Porting Guide: Informix to the IBM i platform

16

UDF performance

If performance is more important than a single code base, then you might want to avoid using

DB2 UDFs in the porting exercise. This is especially helpful when the same function can be
implemented inline with a series of calls to IBM i supplied functions. UDF invocations on the IBM i
platform are implemented with an external program call that has more performance overhead

than a system-supplied function call. Creating the UDF as NOT FENCED and DETERMINISTIC
can dramatically improve performance in some situations.

Table 5 provides a comparison of those Informix functions that are named differently from the

equivalent DB2 function or that have no direct equivalent in DB2.

IDS function DB2 equivalent Comments
CARDINALITY -- Need to create a UDF
CURRENT CURRENT DATE or

CURRENT TIMESTAMP

DBSERVERNAME CURRENT SERVER
DECODE CASE statement
EXTEND -- MTK supported
INITCAP --
LENGTH LENGTH IDS length does not include trailing spaces for fixed-

length columns
MDY --
NVL COALESCE or VALUE Same function; however, all arguments must be the

same data type on DB2
TODAY CURRENT DATE
TO_CHAR CHAR or

VARCHAR_FORMAT
These functions are a partial replacement.
(See the DB2 SQL Reference for details.)

TO_DATE DATE or
TIMESTAMP_FORMAT

These functions are a partial replacement.
(See the DB2 SQL Reference for details.)

WEEKDAY DAYOFWEEK(date) - 1 Sunday on the DB2 function returns a value of 1
instead of the 0 value returned by WEEKDAY.

Table 5: Naming of Informix and DB2 functions

Concatenation

Informix supports implicit casting; therefore, the concatenation || operator can be used with

numeric values. DB2 does not support implicit casting; only character values can be
concatenated.

When moving IDS SQL to DB2, be aware of operators and the data types on which they operate.

A casting function might be necessary before the expression is valid on DB2.

Substring notation

Informix and DB2 support the SUBSTR(col, start, length) function. Informix also supports a

column substring notation, that is, col[start,end]. DB2 does not support this syntax. Notice the
following mapping from an IDS substring notation to the DB2 SUBSTR function:

 Col[s,e] = SUBSTR(col,s,e-s+1);

Length function

The Informix Length function does not include trailing spaces in the length for fixed-length
character fields. Thus, if a 30-byte character column contains 10 nonblank characters, a value of

DB2 for i Porting Guide: Informix to the IBM i platform

17

10 is returned by the Length function. The DB2 Length function always returns the maximum
length of a fixed-length character field (30, in this case). The following combination of functions

can be used to simulate the IDS behavior: LENGTH(RTRIM(charcol)).

Unique function

Informix supports both the UNIQUE and DISTINCT functions. DB2 only supports the DISTINCT

function.

Implicit casting

Informix supports implicit casting of data types; DB2 requires explicit casting on some interfaces.

When using different data types (such as CHAR and INTEGER or CHAR and DATE) in field
assignments, joins or equality operators, be sure to use a casting function on one of the data
types to match the other before the operation.

For example, to do a substring on DB2 numeric data where x = an integer, do the following:

 INTEGER(SUBSTR(CHAR(x),1,1))

DB2 performs implicit promotion of data types. For example, joining a SMALLINT data type to a
BIGINT data type implicitly promotes the SMALLINT to a BIGINT before the join.

Stored procedures

Both Informix and DB2 for i support SQL stored procedures. However, the DB2 for i SQL
procedural language is based on a subset of the ANSI/ISO Persistent Stored Modules (PSM)

specification and is similar to the Informix Stored Procedure Language (SPL). The DB2 PSM
language is also available for the development of SQL triggers and functions on DB2.

DB2 also allows stored procedures to be written in any language that is supported by the DB2

precompilers, including: Java™, C, C++, RPG and COBOL. Stored procedures can use any
database interface that is supported by the IBM i platform (embedded SQL, CLI, JDBC and
others). A DB2 stored procedure (regardless of the language) is treated and behaves the same

as any program object. SQL procedures are converted automatically to C code and are compiled
when the Create Procedure statement is run.

Table 6 shows the mapping of some of the Informix procedural constructs to the DB2 SQL

procedural language.

 INFORMIX SPL DB2 SQL PSM
 DBINFO (row count) Get Diagnostics row_count
 Raise Exception Signal
 FOREACH FOR loopname AS c1 CURSOR FOR SELECT or Cursor Processing
 Exception Handling Condition Handlers
 Return with Resume WITH RETURN FOR

Table 6: Mapping Informix procedural constructs to DB2 procedural language

As mentioned earlier, the IBM DB2 Migration Toolkit does translate Informix procedures into DB2
SQL procedures.

DB2 for i Porting Guide: Informix to the IBM i platform

18

Declarations

DB2 requires that all declarations be made at the start of each BEGIN/END block in the

procedure. This includes the DECLARE CURSOR statement. BEGIN/END blocks can be nested.

File and screen I/O

Informix SPL stored procedures can use the DEBUG statement to write errors to a stream file.

The DB2 procedure language does not directly support file or screen I/O. However, debug data
can be written to a DB2 table or an external stored procedure can be written to write data to
stream files.

Operating system commands

Informix procedures support the use of the SYSTEM statement for calling operating system
commands. DB2 for i includes an external stored procedure, QCMDEXC, that can be used to call

most IBM i commands. Here is an example of a call to this stored procedure to run the IBM i
Delete File (DLTF) command. The second parameter is the number of characters in the
command (the first parameter).

 CALL qsys2.qcmdexc (‘DLTF MYFILE’)

An external stored procedure can also be written to issue system commands.

Returning results sets

With Informix, the RETURN WITH RESUME clause is used to return single or multiple result sets
from an SPL procedure. The RETURN WITH RESUME clause is used within a looping construct,

such as a FOREACH loop. The variables specified in the RETURN clause must match those in
the RETURN clause of the routine. Here is an example of such an Informix stored procedure that
is followed by the equivalent DB2 version.

Informix SPL version:

CREATE PROCEDURE getcusts RETURNING int, char(15), char(15);
DEFINE rcity, rname char (15);
DEFINE i int;

 FOREACH
 SELECT id, name, city INTO i, rname, rcity
 FROM custinfo
 WHERE id < 200;
 RETURN i, rname, rcity WITH RESUME;
 END FOREACH

END PROCEDURE;

DB2 for i Porting Guide: Informix to the IBM i platform

19

DB2 version:

CREATE PROCEDURE getcusts ()
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN
 DECLARE cust1 CURSOR WITH RETURN TO CLIENT FOR
 SELECT id, name, city
 FROM custinfo WHERE id < 200;

 OPEN cust1;
END;

The preceding example demonstrates several key points:

Specifying DYNAMIC RESULT SETS in the CREATE PROCEDURE statement to indicate

that result sets are being returned on the procedure call and the number of result sets
being returned (In this example, one result set is returned.)

Declaring the cursor using the WITH RETURN clause

Keeping the cursor open so the result set can be returned to the invoking application

Triggers

IDS and DB2 SQL triggers are very close in function and syntax. The IDS EXECUTE PROCEDURE

statement needs to be mapped to a stored procedure call on DB2.

One difference with IDS triggers is support for SELECT triggers. DB2 for i does allow the creation of
external (non-SQL) triggers for a Read (or Select) event. However, these external Read triggers can

have a negative impact on query optimization and performance. An alternative that possibly offers
better performance is the use of the QIBM_QDB_OPEN exit point.

One other item to consider about DB2 triggers is that

Before statement-level triggers are not supported.

Constraints

DB2 automatically creates an index for the database manager’s usage in enforcing the constraint

when the following types of constraints are created:

 Primary key
 Foreign key

 Unique key

Primary key

IDS allows a primary key value to be null, this proprietary behavior is not supported on DB2.

RI constraints

It is a good practice to use referential integrity (RI) constraints instead of creating database
triggers to enforce RI. Although there are minor differences in the syntax of RI constraints

between Informix and DB2, conversion effort is decreased when using referential constraints

DB2 for i Porting Guide: Informix to the IBM i platform

20

instead of triggers. One minor difference is that Informix generates a constraint name if it is not
included in the definition. The constraint name is needed with DB2.

Examples of IDS and DB2 RI syntax:

IDS:
 CREATE TABLE accounts (

 acc_num INTEGER,
 acc_type INTEGER,
 acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type))

CREATE TABLE sub_accounts (
 sub_acc INTEGER PRIMARY KEY,
 ref_num INTEGER NOT NULL,
 ref_type INTEGER NOT NULL,
 sub_descr CHAR(20),
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts (acc_num, acc_type))

DB2:

CREATE TABLE accounts (
 acc_num INTEGER,
 acc_type INTEGER,
 acc_descr CHAR(20),
CONSTRAINT generated_pkname PRIMARY KEY (acc_num, acc_type))

CREATE TABLE sub_accounts (
 sub_acc INTEGER PRIMARY KEY,
 ref_num INTEGER NOT NULL,
 ref_type INTEGER NOT NULL,
 sub_descr CHAR(20),
CONSTRAINT generated_fkname FOREIGN KEY (ref_num, ref_type)

 REFERENCES accounts (acc_num, acc_type))

Deferred constraint checking

Deferred constraint checking supports the changing of keys during a transaction that might

otherwise violate RI constraints. With IDS, referential integrity checking can be deferred to the
end of the transaction (at the time of commit when all changes have been completed). DB2 does
not support deferred-constraint checking. With DB2, enforcing Check and Referential constraint

checking, you can temporarily suspend and reactivate it by using the Change Physical File
Constraint (CHGPFCST) command. When you disable and re-enable constraint checking for a
table, DB2 verifies that all of the rows in the table meet the constraint criteria - only limited access

to the table is allowed during this verification process.

Temporary tables

Though Informix temporary tables can be created implicitly when data is selected, it is a good practice

to create the temporary table explicitly in a separate step because this is required for DB2.

Also, because DB2 temporary tables are qualified with the session schema name and because no
other qualifier is allowed, do not use session as a user ID or schema name in an Informix application.

DB2 for i Porting Guide: Informix to the IBM i platform

21

With DB2, all global temporary tables must be declared before using the table, by using a SELECT
statement with the WITH NO DATA clause. After the temporary table is explicitly declared, data can

be inserted into it. Here is an example of converting the Informix implicit temporary table creation to
an explicitly created temporary table that DB2 can support.

In IDS, rather than doing the following:

1) SELECT col1, col2, col3, col4
 FROM tab1
 WHERE col1 = ‘Hello’
 INTO TEMP temptab1 WITH NO LOG;

Do this:
1) CREATE TEMP TABLE temptab1(col1 CHAR(5), col2 INT, col3 INT, col4 INT))
 WITH NO LOG;

2) INSERT INTO temptab1
 SELECT col1, col2, col3, col4
 FROM tab1
 WHERE col1 = ‘Hello’;

The following is the equivalent DB2 example of using a temporary table by first declaring it and then
inserting data into the temporary table.

DB2:
1) DECLARE GLOBAL TEMPORARY TABLE session.temptab1 AS
 (SELECT col1, col2, col3, col4 FROM tab1)
 WITH NO DATA
 ON COMMIT PRESERVE ROWS
 NOT LOGGED;

2) INSERT INTO session.temptab1
 SELECT col1, col2, col3, col4
 FROM tab1

 WHERE col1 = ‘Hello’;
With DB2, the default action with a commit operation is to delete rows from the temporary table. With

Informix, the default action with a commit operation is to preserve rows in the temporary table.

DB2 for i Porting Guide: Informix to the IBM i platform

22

Unsupported options

Some Informix features or capabilities are extremely difficult to support or come up with a DB2

circumvention. The features listed here can require portions of the application to be rewritten or
redesigned.

 Objected-oriented and object-relational support

 Compound SQL (DB2 supports only compound statements in SQL procedures, triggers and
functions.)

 IDS DataBlade modules (DB2 does support XML and Text Extenders.)

 Optimizer directives (The DB2 optimizer is cost-based and does not give the programmer any control.
Software vendors need to have a person on their staff attend the DB2 for i SQL Performance
workshop.)

Application development

When porting IDS applications to DB2 for i, JDBC and CLI/ODBC are the preferred programming
interfaces. If the IDS application uses ESQL/C, the most likely target for that migration is a C or C++
program that invokes embedded SQL.

Some SQL applications require a manual conversion to DB2. The migration toolkit does not convert
ESQL/C or Informix 4GL code. To minimize these conversion efforts, you should favor coding new IDS
applications with the use of embedded ANSI SQL or CLI/ODBC, whenever possible.

Try to design SQL applications by limiting SQL statements to a few modules that are called by other
modules rather than distributing SQL throughout all modules. This helps to contain the scope of the SQL-
conversion effort.

DBANSIWARN environment variable

It is a good practice to set the Informix DBANSIWARN environment variable to check for Informix
extensions to ANSI-standard SQL syntax. At run time, the DBANSIWARN environment variable

causes the sixth character of the sqlwarn array in the SQLCA to be set to W when running a
statement that is recognized as including any Informix extension to the ANSI/ISO standard.

Informix 4GL

For Informix 4GL applications, IBM has an Informix 4GL-to-EGL Conversion Utility with the Rational
Developer V6.0 products. The latest version of this utility offers these key features and benefits:
 Uniform conversion from 4GL-to-EGL: Retains the look-and-feel of your 4GL program with the

equivalent EGL program after conversion
 Graphical conversion wizard: Steps you through each step of the conversion process
 Command line conversion: Supports scripted or automated usage

More information on the Conversion Utility and EGL can be found at
ibm.com/developerworks/rational/products/egl/.

DB2 for i Porting Guide: Informix to the IBM i platform

23

ESQL/C

The ESQL/C precompiler enables access of Informix data via embedded SQL in C programs.

Precompiler tags

The ESQL/C precompiler recognizes the tokens $ or EXEC SQL as a tag for embedded SQL
statements within C code. Because the DB2 precompiler only recognizes EXEC SQL, the $ token

tag must be converted. Similarly, Informix allows $ as a prefix for host variables; this needs to be
converted to a colon (:) as supported by DB2 and the SQL standard.

Indicator variables

ESQL/C supports using $ or a colon (:) to denote a null indicator variable. Always use a colon (:)
rather than $ to stay consistent with ISO SQL and DB2 syntax.

Declare cursor considerations

The IDS DECLARE CURSOR statement provides support for INSERT statements. A PUT
statement is used to perform the insert operation with the cursor. These Insert cursors must be
converted to DB2 Insert statements. If possible, these cursors are converted to a Blocked Insert

request. Informix also supports a cursored SELECT statement, where multiple rows are retrieved
using a SELECT… INTO clause or a FETCH INTO clause. DB2 only supports the FETCH INTO
clause. The DB2 SELECT… INTO statement is used only for single SELECT statements. Here is

an example of the IDS support and the equivalent DB2 statement.

IDS:
 EXEC SQL DECLARE cur1 CURSOR FOR

b FROM t1;
 EXEC SQL OPEN cur1;

 EXEC SQL FETCH cur1;

DB2 and IDS:
 EXEC SQL DECLARE cur1 CURSOR FOR
 SELECT col1, col2 FROM t1;
 EXEC SQL OPEN cur1;
 EXEC SQL FETCH cur1 INTO :var1, :var2;

Array host variables

Unlike IDS, DB2 does not support array variables in embedded SELECT statements; it supports the
values selected into host variables or data structures. For embedded DB2 SQL statements, use

SELECT with the cursor and the FETCH clause to retrieve multiple values into host variables.
IDS:

SELECT col1, col2, col3 INTO :arr1[b], :arr2[c], :arr3[d]

Declaring date and time variables

For DB2 date and time values in embedded SQL programs within the EXEC SQL DECLARE
BEGIN section, declare the DATE, TIME and TIMESTAMP values as character strings:

DATE CHAR(10)

TIME CHAR(8)
TIMESTAMP CHAR(26)

By contrast, Informix stores a DATE as an integer and DATETIME and INTERVAL as decimals.

DB2 for i Porting Guide: Informix to the IBM i platform

24

The ESQL/C declaration for the DATETIME value is:
 Typedef struct dtime{
 short dt_qual;
 dec_t dt_dec;
 } dtime_t;

Here, the dt_qual field shows the level of granularity for the DATETIME value (Year to Day,
Hour to Second). The dt_dec field contains the digits of the DATETIME value in decimal format.

Cursor and statement-named variables

Informix supports cursor name variables and dynamic SQL statement variables in ESQL/C. DB2
does not support these constructs in embedded SQL, but does support these statements in CLI.

ESQL/C for DB2 also supports translation of ESQL/C to DB2 CLI/ODBC, thus supporting these
constructs. Here is an Informix example that uses the Cursor and Statement Name variables:

EXEC SQL PREPARE :stmt1 FROM :stmtstrg
EXEC SQL OPEN CURSOR :getrows

Here is a DB2 example without the Cursor and Statement Name variables:
EXEC SQL PREPARE stmt1 FROM :stmtstrg
EXEC SQL OPEN CURSOR getrows

C library functions for date and time

ESQL/C supports manipulating date and time values through C library functions, in addition to
SQL built-in or UDFs. With DB2, only SQL built-in or UDFs are supported for C programs, which

should be favored to manipulate date and time values when coding applications in ESQL/C.

Null terminator truncation

When assigning values to host variables in a C program, if the variable is not declared long

enough to hold the string and null terminator, IDS truncates characters but not the null terminator.
DB2 supports the same behavior if you specify the *CNULRQD option on the CRTSQLCI or
CRTSQLCPPI precompiler command. *CNULRQD is not the default option on these commands.

Comments

DB2 does not support curly braces {} for comments. DB2 supports double dashes (--) and the
forward slash with asterisk /* */ for commenting in SQL procedures, triggers and UDFs.

Error handling

SQLCODE values and the SQLCA structure differ somewhat between Informix and DB2. To
resolve these inconsistencies, use the SQLSTATE variable, which consists of two parts:
 A two-character error class that identifies the general classification of the error
 A three-character error subclass that identifies a specific error type in a general error class

IDS and DB2 share many SQLSTATE codes; yet some values are specific to IDS. In IDS logged

nonmode ANSI databases and unlogged databases, the SQLCODE value is set to 100 (rows
found) only for SELECT statements that return no rows. For DELETE, UPDATE and INSERT
statements that run but find no rows, SQLCODE is set to 0. IDS supports the WHENEVER

ERROR STOP argument; DB2 does not. But this is easy to simulate in DB2 with the WHENEVER
SQLERROR GO TO argument. Another ANSI standard is the GET DIAGNOSTICS statement

DB2 for i Porting Guide: Informix to the IBM i platform

25

that allows retrieval of information for the last SQL statement run. The GET DIAGNOSTICS
statement is supported for ESQL/C and DB2 host-language programs and procedural objects.

System catalog access

To ease your transition, avoid designing applications that depend on system and catalog table
access, because DB2 accesses these through views defined in the QSYS2 or SYSIBM schema.

Concurrency and recovery

A few differences in the locking and concurrent access behavior of IDS and DB2 need to be considered.

Lock modes

With Informix, the lock mode is specified in the CREATE TABLE statement; if unspecified, the default

lock mode is PAGE. DB2 implicitly uses row-level locking and does not support an interface for
altering this locking mode. DB2 does support a table-level lock with the LOCK TABLE statement.

Isolation levels

Table 7 compares the isolation levels supported Informix and DB2.

IDS DB2
Repeatable Read (RR) Repeatable Read (RR)
Cursor Stability (CS) Cursor Stability (CS)
N/A Read Stability (RS)
Committed Read (CR) N/A
Dirty Read (DR) Uncommitted Read
N/A No Commit

Table 7: Supported isolation levels for IDS and DB2

The default isolation level for IDS logged databases (nonlog mode ANSI) is Committed Read. For
IDS log-mode ANSI, the default isolation level is Repeatable Read; unlogged Informix databases
default to Dirty Read. Most applications use this standard, because the need for lock resources is

small with relatively high transaction encapsulation. DB2 has no exact equivalent to Committed
Read, but you might consider Read Stability. The DB2 for i default isolation level is interface-
dependent; thus, it is best that the application set the isolation level. DB2 has several ways to do this:
 Use the COMMIT parameter on the CRTSQLxxx and RUNSQLSTM commands to specify the

default isolation level.
 Use the SET OPTION statement to specify the default isolation level within the source of a

module, program, SQL procedure or SQL function that contains embedded SQL.
 Use the isolation clause on the SELECT, SELECT INTO, INSERT, UPDATE, DELETE,

PREPARE and DECLARE CURSOR statements to override the default isolation level temporarily

for a specific statement or cursor.
 Use the connection attributes or data-source settings for ODBC, JDBC and CLI applications.

Changing the isolation level

The Set Isolation To statement is used with Informix to change isolation levels. DB2 has a similar
Set Transaction Isolation Level statement.

DB2 for i Porting Guide: Informix to the IBM i platform

26

With hold cursors

In IDS, declaring a WITH HOLD cursor causes a cursor to be held open through the end of any

transaction (for both COMMIT and ROLLBACK transactions). In DB2, the WITH HOLD declaration
holds a cursor open only through a COMMIT transaction.

Transaction mode

With an IDS nonANSI database, each SQL statement run is implicitly committed unless a transaction
is explicitly stated. A transaction is designated by using a BEGIN WORK or BEGIN TRANSACTION
statement and is ended with a COMMIT WORK statement. With DB2, all SQL is automatically part of

a transaction. The transaction begins implicitly with the first executable SQL statement and is ended
with a COMMIT statement. If a commit is required after each SQL statement with embedded SQL, the
COMMIT must be explicitly performed or the isolation level set to No Commit (*NONE). Other SQL

interfaces such as CLI and JDBC provide programming interfaces to enable autocommit behavior.

Journaling and recovery

As seen in the terminology chart earlier, logging on DB2 for i is known as journaling. You can use the

system ENDJRNPF CL command to turn off journaling for database objects that need no recovery
capabilities. Turning off journaling does improve performance, but it is at the expense of transaction
recovery. DB2 journaling is most similar to Informix unbuffered logging, but it also supports a variation

of the buffered-logging mode, where the logical log buffer is flushed when full or when a transaction is
completed. This mode offers an optimal combination of high performance and transactional integrity.

Recovery

DB2 journals can be used to recover changes made to a specific table or schema, or to all of the
objects involved in the logged transaction. Database objects involved in a transaction can be logged
to a different journal. However, to facilitate easy recovery, it is recommended that all of the objects in

a transaction be logged to the same journal. More detailed information on DB2 journaling and
recovery can be found in the SQL Programming Concepts and Backup and Recovery Guides.

DB2 for i Porting Guide: Informix to the IBM i platform

27

After the port
As with any software project, database porting is not complete merely because all the code has been
converted and compiled successfully. Thorough testing and performance tuning need to be done after the

database has been moved to DB2 for i.

Functional testing

Functional testing needs to be performed to make sure that objects and requests on the source and
target are returning equivalent results. Even when the SQL syntax is the same, the semantics and run

behavior of an SQL statement can be different.

This functional testing phase needs to include error-recovery testing. When comparing two DBMS
products, there are often subtle differences in the resolution of lock conflicts, the timing of when error

conditions arise and the value of the error condition returned to the application.

IBM does make IBM Power Systems hardware available for IBM i functional testing to developers and
integrators through its Power Development Platform. Refer to ibm.com/partnerworld/pdp. Testing

engagements can also be performed remotely or onsite at one of the IBM Innovation Centers for those
companies that are members of IBM Partnerword. Refer to ibm.com/isv/iic for more details.

Performance tuning and sizing

Many times, the biggest hurdle to overcome in database projects is the tuning of the application with the

new database. Each database engine has its strength and weaknesses from a performance point of view,
especially when comparing query optimizers. The Informix query optimizer might work great with a
specific set of indexes over the database; at the same time, the DB2 optimizer might require additional

indexes to be added to that base set of indexes. The opposite holds true, as well. The DB2 cost-based
query optimizer does not support hints or require the collection of database statistics. The database
manager automatically maintains and updates statistics (inside the table and index objects) as changes

are made to the objects. Starting with OS/400 V5R2, the optimizer also automatically collects stand-alone
statistics for some SQL requests. Refer to ibm.com/systems/
power/software/i/db2/support/sqe/index.htmlfor more information on this recent change regarding the DB2

SQL Query Engine.

A common problem found in the design of applications ported from other databases is that the application
programs blindly prepare and run the same SQL statement repeatedly within a single program call, even

though it is more efficient to prepare that SQL statement one time. Or, the application uses the ODBC
SQLExecDirect function or the JDBC statement class to run the same SQL request multiple times within
a connection. DB2 typically does not perform well with either of these inefficient program models.

DB2 includes several different database performance tools including the IBM i Navigator SQL
Performance Monitor and Visual Explain tools (see description in Administration section). However, to use
these tools effectively and to tune DB2 efficiently, in general, you need to attend the DB2 for i SQL

Performance workshop (ibm.com/ systems/power/software/i/db2/education/performance.html). Some
performance- tuning information can be found in the Database Performance and Query Optimization
book.

DB2 for i Porting Guide: Informix to the IBM i platform

http://ibm.com/servers/enable/site/vlp

28

A key factor in analyzing and tuning the performance of your application is making sure that you are use
IBM i on a system that is properly sized and configured for your application (in terms of processor,

memory and the number of disk arms). To be successful with your solution in the marketplace, you need
to know the minimum server configuration required to deliver acceptable performance.

The IBM i Performance and Scalability center is a great resource for procuring help with performance

tests and sizings on the hardware required by your application. Visit the following website for more
details: ibm.com/ systems/services/labservices/psscontact.html

You will find information on sizing tools on the following website, but none of the sizing tools are

specifically designed for DB2 for i workloads.

 ibm.com/systems/support/tools/estimator/index.html
An engagement with the Performance and Scalability Center is the safest and most accurate approach.

Administration

As discussed in the Architecture section of this paper, many low-level database administration tasks are
automated on DB2. Thus, the database administration tasks and database administration tools are quite
different.

System i Navigator

System i Navigator (formerly iSeries Navigator) is the DB2 graphical interface for database
administrators and developers. It is the rough equivalent to the Enterprise Manager in Oracle.

From the System i Navigator interface, almost all database administrative duties (ranging from
performance tuning to journal management) can be performed. Here is a quick overview of some of
the System i Navigator capabilities:

 SQL Script Center: Develop and run SQL scripts.
 SQL Performance Monitors: Collect and analyze database performance monitor data for query

optimization issues and performance of specific SQL requests.

 Visual Explain: Analyze a graphical representation of the access plan generated by query
optimizer.

 SQL Plan Cache: Provide a live analysis of the access plans for the most current and frequently

run SQL requests.
 Journal Management: Start and end logging and swapping of journal receivers.
 Database Navigator: Perform basic graphical modeling of existing database definitions. The

IBM InfoSphere Data Architect product also provides full modeling support for DB2 for i
databases.

Note: this collection of tools is sometimes referred to as the OnDemand Performance Center.

In addition to the IBM performance tools, more-advanced DB2 performance tuning and management
tools are available from Centerfield Technology® (www.insuresql.com).

DB-Access provides Informix command line access to the database server. DB2 does not have an

analogous tool. Instead, it is recommended that you use the System i Navigator SQL Script Center to
perform some of the scripting and use the IBM i job scheduler for any scheduling activities. Note that
the SQL Script Center does not have any support for variables in the script. The DB2 QSHELL

DB2 for i Porting Guide: Informix to the IBM i platform

29

command does provide some variable support. Refer to ibm.com/systems/i/db2/qshellperl.html for
more details on this interface.

Utilities

Several utilities are available to help with your migration efforts.

Load and import

DB-Access supports the INSERT INTO tab1 LOAD FROM filename and UNLOAD TO filename
SELECT …FROM tab1 pseudo-SQL statements. DB2 load and unload support is provided with
system commands instead of SQL statements.

DB2 imports are done with the CPYFRMIMPF CL command. This command can import files
containing delimited data or fixed-format data. The command does not FTP the import file or
create the target table. It assumes that the target table is created and that the specified input file

does not contain any column definition information.

Here is an example of the utility being used to load a stream-based flat file where the column data
is delimited with a comma:

CPYFRMIMPF FROMSTMF('~mydir/myimport.txt') TOFILE(MYLIB/MYTABLE) DTAFMT(*DLM) FLDDLM(',’)

The System i Navigator toolset also provides a graphical interface to this command.

ALTER TABLE statements

DB2 supports the same operations as the IDS ALTER statement.

DB2 for i Porting Guide: Informix to the IBM i platform

http://ibm.com/iseries/db2/qshellperl.html

30

Summary
The purpose of this paper is to highlight potential issues in porting databases and applications from
Informix to DB2. This paper is a living document. As there is more experience with different porting

situations, it grows accordingly. If the reader encounters an issue that needs to be addressed but is not
covered in this paper, contact the author, Kent Milligan, at rchudb@us.ibm.com. Future readers will
benefit from the new information. Thank you.

NOTE: The DB2 for i 7.1 version of this paper can be obtained by sending an e-mail request to:
rchudb@us.ibm.com

DB2 for i Porting Guide: Informix to the IBM i platform

31

Resources
These websites provide useful references to supplement the information contained in this paper:

These Web sites provide useful references to supplement the information contained in this document:

 IBM i Knowledge Center
ibm.com/support/knowledgecenter/ssw_ibm_i_72

 IBM i on IBM PartnerWorld®

ibm.com/partnerworld/i

 DB2 for i online manuals
ibm.com/systems/power/software/i/db2/docs/books.html

 IBM Redbooks®
ibm.com/redbooks

 Stored Procedures, Triggers and User-defined Functions on DB2 for i (SG24-6503)

 Advanced Database Functions and Administration on DB2 for i (SG24-4249-03)

 Diagnosing SQL Performance on DB2 for i (SG24-6654)

 DB2 for AS/400 Object Relational Support (SG24-5409)

 The Ins and Outs of XML and DB2 for i (SG24-7258)

 OnDemand SQL Performance Analysis … in V5R4 (SG24-7326)

 Preparing for and Tuning the SQL Query Engine on DB2 for i (SG24-6598)

 DB2 for AS/400 Object Relational Support (SG24-5409)

 DB2 for i home page
ibm.com/systems/i/db2

 Education Resources and white papers
ibm.com/systems/power/software/i/db2/education/index.htmlibm.com/partnerworld/wps/whitepa

per/i5os

ibm.com/partnerworld/wps/training/i5os/courses

 DB2 for i Performance Workshop
ibm.com/systems/power/software/i/db2/education/performance.html

 IBM DB2 Migration Toolkit
ibm.com/partnerword/i/db2porting

 IBM Power Development Platform

ibm.com/partnerworld/pdp

 IBM Innovation Center
ibm.com/isv/iic

 IBM Performance and Scalability Center
ibm.com/systems/services/labservices/psscontact.html

DB2 for i Porting Guide: Informix to the IBM i platform

http://ibm.com/support/knowledgecenter/ssw_ibm_i_72
http://ibm.com/partnerworld/i
http://ibm.com/systems/power/software/i/db2/docs/books.html
http://ibm.com/redbooks
http://ibm.com/systems/i/db2
http://ibm.com/systems/power/software/i/db2/education/index.html
http://ibm.com/partnerworld/wps/whitepaper/i5os
http://ibm.com/partnerworld/wps/whitepaper/i5os
http://ibm.com/partnerworld/wps/training/i5os/courses
http://ibm.com/systems/power/software/i/db2/education/performance.html
http://ibm.com/partnerword/i/db2porting
http://ibm.com/partnerworld/pdp
http://ibm.com/isv/iic
http://ibm.com/systems/services/labservices/psscontact.html

32

 Performance Management for IBM i
ibm.com/systems/i/advantages/perfmgmt

Online forum

 IBM developerWorks
ibm.com/developerworks/forums/forum.jspa?forumID=292

Conversion services and tools

 IBM Systems and Technology Group Lab Services
ibm.com/systems/services/labservices

 DB2 Informix Migration Toolkit
ibm.com/software/data/db2/migration/mtk

Other publications and websites

 SQL for DB2 for i, by James Cooper and Paul Conte
29th Street Press, ISBN 1-58304-123-0

 SQL for eServer i5 and iSeries, by Kevin Forsythe

MC Press, ISBN 1-58347-048-4

 SQL Built-In Functions and Stored Procedures, by Mike Faust
MC Press, ISBN 1-58347-054-9

Third-party software

 Centerfield Technology
www.insuresql.com

DB2 for i Porting Guide: Informix to the IBM i platform

http://ibm.com/systems/i/advantages/perfmgmt/
http://ibm.com/systems/services/labservices/
http://ibm.com/software/data/db2/migration/mtk

DB2 for i Porting Guide: Informix to the IBM i platform

33

Trademarks and special notices
© Copyright IBM Corporation 2014. All rights Reserved.

References in this document to IBM products or services do not imply that IBM intends to make them

available in every country.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A

current list of IBM trademarks is available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

Information concerning non-IBM products was obtained from a supplier of these products, published

announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. IBM has not

tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

http://www.ibm.com/legal/copytrade.shtml

	Abstract
	Introduction
	The audience for this paper
	Assumptions

	Preparing to port
	Porting approaches
	Design trade-offs
	Misused porting approach
	Porting tools

	Sizing the port
	Architecture
	Brief history
	Interfaces and packaging
	Physical model
	Storage model

	Metadata
	Data types
	DECIMAL
	NCHAR
	MONEY
	ROWID
	DATETIME
	INTERVAL
	SERIAL
	Character types (including variable-length types)
	Quoted character strings
	Collection data types

	SQL language elements
	Identifiers
	Naming conventions and formats
	Synonyms

	String truncation with inserts
	Query syntax considerations
	SELECT FIRST
	SELECT stored procedure calls
	GROUP BY
	ORDER BY
	OUTER JOINS
	UPDATE WITH JOIN CONDITION (XPS)
	MINUS operator
	MATCHES predicate

	Functions
	UDF performance
	Concatenation
	Substring notation
	Length function
	Unique function
	Implicit casting

	Stored procedures
	Declarations
	File and screen I/O
	Operating system commands
	Returning results sets

	Triggers
	Constraints
	Primary key
	RI constraints
	Deferred constraint checking

	Temporary tables

	Unsupported options
	Application development
	DBANSIWARN environment variable
	Informix 4GL
	ESQL/C
	Precompiler tags
	Indicator variables
	Declare cursor considerations
	Array host variables
	Declaring date and time variables
	Cursor and statement-named variables
	C library functions for date and time
	Null terminator truncation
	Comments

	Error handling
	System catalog access

	Concurrency and recovery
	Lock modes
	Isolation levels
	Changing the isolation level
	With hold cursors
	Transaction mode
	Journaling and recovery
	Recovery

	After the port
	Functional testing
	Performance tuning and sizing
	Administration
	System i Navigator
	Utilities
	Load and import
	ALTER TABLE statements

	Summary
	Resources
	Trademarks and special notices

