
.

© Copyright IBM Corporation, 2005. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders.

Modernizing the FLGHT400 database:
Modernizing a DB2 UDB for iSeries application

.

Gene Cobb
IBM ISV Strategy and Enablement

December 2005

Table of contents
Change history ..Error! Bookmark not defined.
Abstract..1
Introduction ...1
Modernization Goals...1
Modularization Plan ..2

Tools used ... 2
Description of libraries and schemas... 3

Stage 1: Reverse engineering DDS to SQL DDS..3
Step 1: Classifying the existing environment... 4
Step 2: Establishing a list of all DDS files to be converted .. 5

Identifying tables.. 5
Identifying Indexes... 6

Step 3: Creating SQL DDL scripts ... 9
Creating script to build the tables .. 9
Creating script to build the indexes ... 11

Reviewing the SQL DDL scripts .. 12
Changing the target schema ... 12
Adding columns... 12
Other considerations ... 13

Record Format Name... 13
Managing SQL DDL.. 13

Creating the new SQL objects ... 13
Creating the new DB2 Schema (collection) on the iSeries server 13
Creating the tables .. 14
Creating the indexes.. 15

Copying data to new schema .. 15
Stage 2: Creating I/O modules to access data ...17

Step 1: Identifying all programs and modules that are to be converted.......................... 18
Step 2: Identifying all instances of RLA in the programs identified in step 1 19
Step 3: Documenting the business rule .. 20
Step 4: Creating the SQL view to access data.. 24
Step 5: Creating an I/O procedure for each unique RLA instance or group 25
Step 6: Replacing each RLA instance or group with call to new I/O procedure 31
Step 7: Creating the I/O module.. 32
Step 8: Creating the I/O service program.. 32
Step 9: Recompiling existing modules, service programs, and programs 33

Other considerations.. 34
Null values ... 34
SQL error handling .. 34

Stage 3: Moving business rules to the database ...36
Implementing referential integrity constraints .. 37
Implementing check constraints .. 38
Implementing automatic key generation and unique identifiers .. 39
Implementing trigger programs.. 41

Stage 4: Externalizing data access ...41
Summary..45
Appendix A: SQL scripts..46

SQL procedure GenIndexList .. 46
SQL procedure GenIndexList2 .. 47
SQL DDL script to create the tables .. 50
SQL DDL script to create the indexes ... 53
SQL DDL script to create the views... 54

FLGHT400 database modernization

SQL DDL script to create the constraints .. 55
Appendix B: Source code after conversion..56

NFSSQL (binder source) ... 56
NFSSQLPR (prototypes) ... 56
NFSSQL (SQL I/O procedures) ... 60
Programs and modules converted from RLA to SQL I/O procedures ... 79

NFS001 ... 79
NFS402 ... 85
NFS404 ... 86
NFS405 ... 88

Appendix C: Resources..90
Appendix D: About the author ...91
Trademarks and special notices..92

FLGHT400 database modernization

Abstract
This paper enables the reader to understand the steps involved in updating the database
definitions and data access methods of an IBM® iSeries™ RPG 5250 application. This is done
by bringing the reader through a sample application, FLGHT400. Readers can use this example
to better understand how to implement improved database techniques in their own applications.

Introduction
The IBM iSeries Developer Roadmap is a key initiative that helps iSeries developers enhance their
existing applications and toolsets. The SQL programming language and IBM DB2 Universal Database™
(DB2® UDB) are two modern tools that are available to help iSeries programmers move along the iSeries
Developer Roadmap. Using the FLGHT400 application as an example, this white paper explains the
process from an SQL and DB2 UDB point of view.

Embracing newer database techniques provides multiple benefits for your application:

 Portability of code and skills
 Strategic database interface for the application development industry and the IBM i5/OS®

operating system
 Better positioning of the iSeries family of systems as a database server
 Reduction of the total lines of SQL code
 Enablement of the use of DB2 UDB symmetric multiprocessing (SMP) and parallel database

processing

Establishing database enhancement goals
In the white paper “Modernizing FLGHT400,” the author focused on one aspect of iSeries application
modernization. That paper discussed and demonstrated various modularization techniques and
methodologies using the FLGHT400 application. Its primary objective was to explain and demonstrate the
process of separating the application into callable modules. When modularized, you can access the
functions of the application through either a Web interface or 5250 terminal interface. Because both
interfaces used the same business logic, dual maintenance issues were avoided and the architecture for
reusable components was established. Refer to the Resources section for information regarding the
“Modernizing FLGHT400” white paper.

In this paper, the evolution of the FLGHT400 application continues and focuses on implementing newer
database techniques, and includes step-by-step examples of the implementation.

As a guide to this process, you will follow the stages as documented in the IBM Redbook abstract
“Modernizing IBM eServer iSeries Application Data Access - A Roadmap Cornerstone.” This Redbook
provides a thorough discussion on why database enhancement is important and explains its benefits.
Refer to the Resources section for the Web site associated with this Redbook.

FLGHT400 database modernization

 1

Knowing the modernization plan
The methodology for the database modernization involves three stages:

 Stage 1: Reverse engineering data description specifications (DDS) to SQL data definition
language (DDL)

 Stage 2: Creating I/O modules to access the database
 Stage 3: Moving business rules into the database

Using FLGHT400 as an example, this paper show the activities involved in each stage.

Using the tools

This section describes the tools used during the database modernization process of the FLGHT400
application.

IBM WebSphere® Development Studio Client Advanced Edition for iSeries is an integrated development
environment (IDE) and tool set for developing Java™, Web, Web-service, client/server, and iSeries
system applications. The Remote Systems Explorer (RSE) component of this development tool is used to
access and edit the FLGHT400 application. To access this WebSphere tool set:

1. Open WebSphere Development Studio Client from your workstation.
2. Specify your workspace.
3. At the toolbar menu, click Window > Open Perspective > Remote Systems Explorer (Figure 1).
4. Expand the iSeries connection.

Figure 1: Open RSE perspective

FLGHT400 database modernization

 2

iSeries Navigator is the main interface used to work with database objects and is accessed as follows:

1. Open iSeries Navigator from your PC.
2. Expand an iSeries connection and click Databases > Database (your system name) >

Schemas.
3. Select the schema FLGHT400.

Describing libraries and schemas

As a result of the evolution of the FLGHT400 application, multiple libraries have been created to store the
various versions.

 FLGHT400: Contains the original programming model (OPM) programs, physical files, logical
files, source code files, and other objects of the original version of the FLGHT400 application.

 FLGHT400M: Contains the Integrated Language Environment (ILE) program and service
programs. The application modernization process stimulated the development of this library.

 FLGHT400M2: Contains the ILE and service programs, as well as the SQL objects (tables,
views, indexes, and so forth). The database modernization process stimulated the development
of this library.

Note: The last two libraries listed above hold only the incremental changes made to the application. Thus,
to run the application you must restore all three libraries and set up the library list in the following order:

1. FLGHT400M2
2. FLGHT400M
3. FLGHT400

Stage 1: Reverse engineering DDS to SQL DDS
This stage, also known as improving data definitions, is not a required or prerequisite for the other stages
but is important for several reasons. The conversion of DDS-created files to SQL DDL-created database
objects results in the benefits listed below.

 Faster reads as data validation is performed at write instead of read: This can yield
performance improvements. In most applications, data is read more often than it is written. In
those cases, the data no longer requires validatation during every read operation, thus realizing
better performance.

 64-kilobyte access paths on SQL created indexes: This means more keys can be loaded into
memory. Single-key lookups using an index might not be as efficient, because it takes longer to
read a 64-kilobyte page than an 8-kilobyte page. Regardless, you will see performance
improvements in queries that load many key values into an index (as more of the keys are
brought into memory).

 More data types: The expanded choices for supported data types include datalinks, binary large
objects (BLOBs),and character large objects (CLOBs).

 Constraint definitions can be included in object source: DDS has no support for constraints.
 Longer, more descriptive table and column names: DDS column names are restricted to

10 characters. In the release following i5/OS Version 5 Release 3, SQL will support up to
128-character column names.

FLGHT400 database modernization

 3

In the remainder of the section, you will learn how the FLGHT400 database converts from DDS to SQL
DDL. This stage is comprised of six steps:

1. Classify the existing environment.
2. Establish a list of all DDS files to be converted.
3. Define naming conventions for SQL objects.
4. Convert the DDS to SQL DDL.
5. Review the generated SQL DDL.
6. Create the new DB2 UDB schemas and SQL objects on the iSeries system.
7. Copy data to new schemas.

Step 1: Classifying the existing environment

The first step in this stage is to classify and understand the existing environment that we will convert to
SQL. The primary objective of this step is to provide an idea of the amount of effort that lies ahead. In
general, the lower the classification, the more work is involved to complete the enhancement. Here is
description of each classification:

 Class 0: These are program-described files. In this environment, the DDS contains some key
fields and one large field. The large field is specified in RPG in an I spec and in COBOL in the FD
section.

 Class 1: This is a mix of program-described and externally-described files. This environment
usually has no normalization in place.

 Class 2: These files are externally-described with no referential integrity. In this environment,
some type of normalization exists. Journaling is usually not used, and unique keys are defined for
the physical or logical files.

 Class 3: These files are also externally-described with some referential integrity constraints. In
this environment, a greater degree of normalization is in place. Transaction files usually are in
second normal form (2NF) and master files in third normal form (3NF). Primary and foreign key
constraints are defined, and journaling is used; although commitment control is probably not
used.

 Class 4: These files are externally-described with referential integrity and some business logic
has moved to the database. In this environment, the database is highly normalized. Some of the
business logic has moved to the database using Referential Integrity (RI), triggers, stored
procedures, user-defined types (UDTs), user-defined functions (UDFs), journaling, and
commitment control.

Using the information about each of the classifications, it is possible to determine that the FLGHT400
application has the following characteristics:

 Contains all externally described files
 Has no referential integrity
 No primary or foreign key constraints are defined
 Uses neither journaling nor commitment control

These facts indicate that class 2 is the appropriate classification.

FLGHT400 database modernization

 4

Step 2: Establishing a list of all DDS files to be converted

The purpose of this section is to identify all of the DDS-created files that are to be converted to SQL DDL-
created tables and indexes.

Identifying tables

The first step is to determine which DDS physical files are to convert to SQL tables. In the case of
FLGHT400, all application files are within the same library. Because of this, the technique is
straightforward; find all the physical files (table type = ‘P’) in the library with an object attribute of Data
(file type = ‘D’). The following query produces a list of tables in schema FLGHT400 to reverse
engineer:

SELECT table_name, table_type, file_type
FROM qsys2/SYSTABLES
WHERE table_schema = 'FLGHT400' and
 table_type = 'P' and file_type = 'D'
ORDER BY table_name

Open a Run SQL Script window from iSeries Navigator and execute this query statement. Figure 2
shows the results.

Figure 2: List of DDS files to convert

FLGHT400 database modernization

 5

Identifying Indexes

The next step is to identify the indexes to create (based on the existing keyed logical files). It is
important to note that the indexes are not required for SQL database access. During execution of an
SQL statement, the SQL optimizer will decide which access method to use. This means that if no
indexes exist, the optimizer might perform a full table scan to carry out the query. Though the query
will still execute successfully without any indexes, its performance can be less than optimal. Creating
the right indexes will not only improve performance, it will also give the optimizer more information to
accurately gauge the resource cost for each available access method.

At this stage, it is difficult to determine which indexes to create. The best option is to build indexes
based on the existing keyed logical files.

In the “SQL scripts” section of Appendix A, you will find the code for two utility procedures,
GENINDEXLIST and GENINDEXLIST2. When called, these procedures will return the list of indexes
to consider creating, based on the existing keyed logical and physical files. The first procedure,
GenIndexList, accepts the schema name as an input parameter. It then searches SYSTABLES and
finds all physical data files in the specified schema. For each physical data file found, procedure
GenIndexList2 is called and accepts the physical file name and schema name as input parameters. It
finds any object that can be recreated as an SQL index (keyed logical file, constraint, and keyed
physical file) against that physical file and adds a row to the result table. The contents of the result
table can then be used to create the script with the necessary Create Index statements.

To create and run the procedures, take the following actions:

1. From a Run SQL Scripts window, enter and execute the CREATE PROCEDURE statements
(located in Appendix A: SQL scripts) to build the utility procedures.

2. From a Run SQL Scripts window, enter and execute the statement to call the utility
procedures and generate a list of indexes to consider creating:

CALL QGPL.GenIndexList('FLGHT400');

Figure 3 shows the results of these actions.

Figure 3: Results of Generate Index Listing Utility

FLGHT400 database modernization

 6

If you are reverse engineering a single table, you might consider using the Index Evaluator feature
that is available with the i5/OS V5R3 version of iSeries Navigator. This feature will show you the list of
keyed logical files and indexes for a selected table. (See Figure 4.) To see the logical files using this
method, do the following:

1. From iSeries Navigator, expand Schemas.
2. Select and expand the relevant schema.
3. Select Tables as shown in Figure 4.

Figure 4: List of tables

4. Select the desired table from the list displayed.

FLGHT400 database modernization

 7

5. From the right-click menu, click Indexes as shown in Figure 5.

Figure 5: Select Indexes

Figure 6 presents the list of available keyed logical files (indexes) for that table. You can scroll to the right
to see more information about the indexes.

Figure 6: List of indexes for selected table

Note: This method will show you the list of indexes that the SQL optimizer evaluates when SQL accesses
the table.

FLGHT400 database modernization

 8

Step 3: Building SQL DDL scripts

In this section, the SQL DDL scripts will be built to perform the conversion.

Building scripts to build tables

To reverse engineer the physical files or tables from DDS to SQL DDL, use the Generate SQL
feature in iSeries Navigator:

6. In iSeries Navigator, select the schema FLGHT400 and then choose Tables. The main window
presents a list of the tables in the FLGHT400 schema.

7. The “Identifying tables” section defines a query that produces a list of seven physical files to
reverse engineer. Select the seven files, right-click, and choose Generate SQL, as shown in
Figure 7. (Note: Use the Ctrl key to choose multiple tables.)

Figure 7: Select tables to reverse engineer

FLGHT400 database modernization

 9

8. The Generate SQL window appears (Figure 8).

Figure 8: Generate SQL window

9. Select Open in Run SQL Scripts and click Generate.
10. The RUN SQL window appears with the generated SQL statements (Figure 9).

Figure 9: Generated SQL statements

11. From the toolbar menu, click File >Save.
12. Specify file name Create Tables.SQL and press Save.

Note: The Generate SQL feature uses the Generate DDL (QSQGNDDL) API to retrieve the SQL
source from System Catalogs.

FLGHT400 database modernization

 10

Building the script to create the indexes

This section shows you how to build the SQL script to create the indexes into the new schema.

Note: It is possible to utilize the iSeries Navigator Generate SQL feature to produce the DDL that
creates the tables. This feature is not used against the existing logical files to generate the DDL for
the indexes because this technique will not yield the desired results. For logical files, iSeries
Navigator generates DDL to create an SQL view instead of an index. However, one of the parameters
of the QSQGNDDL API is database object type. This parameter specifies the type of the database
object or object attribute for which DDL is generated. If a program is written to call QSQGNDDL,
specifying the logical file and “INDEX” for the database object-type parameter, then the DDL to create
the Index will be generated. For complete information on the QSQGNDDL API and its parameters,
refer to the iSeries Information Center Web site, found in the Resources section.

In the previous section, “Identifying Indexes,” SQL procedures were built and run to produce a list of
the indexes to be created. These indexes were based on the keyed logical and physical files that
already existed in the FLGHT400 application. After examining this list, it was evident that several
indexes could be eliminated because they were duplicates. Given the result, the DDL script was
manually generated to create the necessary indexes. Refer to Appendix A, “SQL DDL script to create
the indexes” for an illustration of this script.

To build the Create Indexes script, take the following actions:

1. Open a new Run SQL Scripts window.
2. Type the following statements:

SET CURRENT SCHEMA flght400m2;
CREATE INDEX agents_ix1
 ON agents (agent_no ASC) ;
CREATE INDEX agents_ix2
 ON agents (agent_name ASC) ;
CREATE INDEX airline_ix1
 ON airline (airlin ASC) ;
CREATE INDEX customers_ix1
 ON customers (cust_name ASC) ;
CREATE INDEX customers_ix2
 ON customers (cust_no DESC) ;
CREATE INDEX FLIGHTS_IX1
 ON flights (departure ASC, arrival ASC, day_week ASC, flight_no ASC) ;
CREATE INDEX flights_ix2
 ON flights (flight_no ASC) ;
CREATE INDEX frcity_ix1
 ON frcity (frcint ASC) ;
CREATE INDEX orders_ix1
 ON orders (order_no ASC) ;
CREATE INDEX tocity_ix1
 ON tocity (tocint ASC) ;

3. From the toolbar menu, click File >Save.
4. Specify file name Create Indexes.SQL and press Save.
5. Close the Run SQL Scripts window.

FLGHT400 database modernization

 11

Reviewing the SQL DDL scripts

Prior to executing the SQL DDL scripts, review the code and make any necessary modifications.

Changing the target schema

FLGHT400M2 will be selected as the new target schema name. This schema will contain the reverse
engineered SQL objects as well as any programs, service programs, and all other objects created or
updated as a result of this database modernization effort. As such, it is necessary to modify the SQL
DDL scripts so that the new objects are created in this new target schema.

Rather than hard coding the target schema into each CREATE statement, the current schema can be
set. Using this technique, all unqualified objects will be created in the specified current schema.

1. Open a new Run SQL Scripts window.
2. From the toolbar menu, click File > Open.
3. Select the CREATE TABLES.SQL file.
4. Add the following line to the very top of the script (the first statement of the script):

 SET CURRENT SCHEMA FLGHT400M2;
5. From the toolbar menu, click File > Save.
6. Repeat steps one through five for file CREATE INDEXES.SQL.
7. Close the Run SQL Scripts window.

Adding columns

The reverse engineering process might be an opportune time to add new columns to the tables. To
the CUSTOMERS table, new columns were added for Address, City, State, Zip Code, and Telephone
number by performing the following steps:

1. Open a new Run SQL Scripts window.
2. From the toolbar menu, click File > Open.
3. Select the CREATE TABLES.SQL file.
4. Change the CREATE TABLE CUSTOMERS statement as shown:

CREATE TABLE CUSTOMERS (

 CUSTOMER_NO FOR COLUMN CUST_NO INTEGER DEFAULT NULL ,

 CUSTOMER_NAME FOR COLUMN CUST_NAME VARCHAR(64) CCSID 37 DEFAULT NULL ,

 ADDRESS VARCHAR(150) CCSID 37 NOT NULL DEFAULT '' ,

 CITY CHAR(50) CCSID 37 DEFAULT NULL ,

 STATE CHAR(2) CCSID 37 DEFAULT NULL ,

 ZIPCODE CHAR(9) CCSID 37 DEFAULT NULL ,

 TELEPHONE CHAR(20) CCSID 37 DEFAULT NULL ,

 CREDIT_CARD FOR COLUMN CRED_CARD CHAR(30) CCSID 37 DEFAULT NULL ,

 CC_NUMBER CHAR(20) CCSID 37 DEFAULT NULL ,

 EXP_DATE CHAR(20) CCSID 37 DEFAULT NULL ,

 PREF_AIRLINE_ID FOR COLUMN PREF_AIRLN CHAR(10) CCSID 37 DEFAULT NULL ,

 FF_NUMBER CHAR(20) CCSID 37 DEFAULT NULL) ;

5. From the toolbar menu, click File > Save.
6. Close the Run SQL Scripts window.

FLGHT400 database modernization

 12

Other considerations

Additionally, you will need to determine whether the following issues are relevant.

Record format name

When a table is created using SQL, the table name and the record format name will be the same.
This can be problematic because it will usually result in errors when you attempt to recompile
high-level language (HLL) programs using record-level access. However, if your HLL programs
use embedded SQL, this is not an issue. Because the data access is being converted to
embedded SQL in the next stage, this paper does not address this topic. If you are interested in
the options available to work around this issue, refer to the Redbook, “Modernizing Data Access.”

Managing SQL DDL

Traditionally, the source for database objects (physical and logical files) are stored in source file
members, and the objects are created by issuing the control language (CL) command CRTPF
and CRTLF against those members. Managing SQL DDL scripts is done similarly. The scripts
can also be stored in source file members, but to create the objects, issue the CL command
RUNSQLSTM (instead of CRTPF/CRTLF) against the source file members. Some other things to
consider regarding SQL DDL management are:

 If you are using change management tools that are not specific to the iSeries platform,
store the SQL DDL scripts in PC or integrated file system (IFS) files.

 If the SQL DDL source is misplaced or deleted, you can use the Generate Data Definition
Language (QSQGNDDL) API to retrieve the SQL source from System Catalogs
(SYSIBM and QSYS2).

Creating the new SQL objects

In this section, the new target schema will be created. The generated SQL scripts will also be run to build
the new SQL tables and indexes.

Creating the new DB2 UDB schema (collection) on the iSeries system

At this point, the SQL scripts for reverse engineering the FLGHT400 database objects are ready. But
before executing them, you must determine where the new objects will be created. The new SQL
objects will be built in a new schema. On DB2 UDB for iSeries, a schema is used to group related
database objects. When a CREATE SCHEMA statement executed, the following objects are created:

 OS/400 library
 OS/400 journal and journal receiver
 DB2 UDB views that contain a subset of the information in system-wide catalog views

As mentioned earlier, as the container for this new version of FLGHT400, the new schema name will
be FLGHT400M2. To create the schema, take the following steps:

1. Open a new Run SQL Scripts window.
2. Type the following statement: CREATE SCHEMA FLGHT400M2;
3. From the toolbar menu, click Run > All.

FLGHT400 database modernization

 13

4. Verify that the script runs successfully by checking the results in Run History. (The bottom
pane of the Run SQL scripts window will show the “Statement ran successfully” message.)

5. Close the Run SQL Scripts window.

The CREATE SCHEMA statement will automatically enable journaling for all tables created in the
specified schema. If journaling of the tables is not desired, you can turn this feature off by deleting the
journal QSQJRN in the schema. It is important to do this before any database objects are created
(and subsequently automatically journaled) in the schema. If database objects have been created and
are being journaled, you must end journaling for those objects before the journal object can be
deleted.

To delete the QSQJRN journal, take the following actions:

1. From iSeries Navigator select Schema FLGHT400M2
2. Select Journals
3. Select QSQJRN
4. From the right-click menu, select Delete (Figure 10: Delete Journal).

Figure 10: Delete Journal

Creating the tables

Now that you have built the new schema and updated the scripts, it is time to execute them and
create the database objects. First, create the new tables by taking the following actions:

1. Open a new Run SQL Scripts window.
2. From the toolbar menu, click File > Open.
3. Select the CREATE TABLES.SQL file.
4. From the toolbar menu, click Run > All.
5. Verify that the script ran successfully by checking the results in Run History. (The bottom

pane of the Run SQL scripts window will show the “Statement ran successfully” message.)
6. Close the Run SQL Scripts window.

FLGHT400 database modernization

 14

Creating the indexes

Once the tables have been created, the indexes can be built over them.

Take the following actions to create the new indexes:

1. Open a new Run SQL Scripts window.
2. From the toolbar menu, click File > Open.
3. Select the CREATE INDEXES.SQL file.
4. From the toolbar menu, click Run > All.
5. Verify that the script ran successfully by checking the results in Run History. (The bottom

pane of the Run SQL scripts window will show the “Statement ran successfully” message.
6. Close the Run SQL Scripts window.

Copying data to new schema

Once the new tables have been created in the new schema, they will obviously be empty. The next step
is to copy the production data to the new tables. The following SQL statements will copy rows from tables
in the FLGHT400 schema to the reverse engineered tables in FLGHT400M2:

1. Open a new Run SQL Scripts window.
2. Type the following statements:

 SET TRANSACTION ISOLATION LEVEL NO COMMIT;
INSERT INTO FLGHT400M2.AGENTS
 SELECT * FROM FLGHT400.AGENTS;
INSERT INTO FLGHT400M2.ORDERS
 SELECT * FROM FLGHT400.ORDERS;
INSERT INTO FLGHT400M2.FLIGHTS
 SELECT * FROM FLGHT400.FLIGHTS;
INSERT INTO FLGHT400M2.FRCITY
 SELECT * FROM FLGHT400.FRCITY;
INSERT INTO FLGHT400M2.TOCITY
 SELECT * FROM FLGHT400.TOCITY;
INSERT INTO FLGHT400M2.AIRLINE
 SELECT * FROM FLGHT400.AIRLINE;
INSERT INTO FLGHT400M2.CUSTOMERS
 (CUSTOMER_NO,
 CUSTOMER_NAME,
 CREDIT_CARD,
 CC_NUMBER,
 EXP_DATE,
 PREF_AIRLINE_ID,
 FF_NUMBER)
 SELECT CUSTOMER_NO,
 CUSTOMER_NAME,
 CREDIT_CARD,
 CC_NUMBER, EXP_DATE,
 PREF_AIRLINE_ID,
 FF_NUMBER
 FROM FLGHT400.CUSTOMERS;

FLGHT400 database modernization

 15

3. From the toolbar menu, click Run > All.
4. Verify that the script ran successfully.
5. Close the Run SQL Scripts window.

Note: Recall the addition of new columns to the CUSTOMERS table in the new schema. Because of this,
the SQL statement that copies rows from table CUSTOMERS to the new schema looks a little different.

FLGHT400 database modernization

 16

Stage 2: Creating I/O modules to access data
This section describes the process of designing, creating, and using prototyped procedures to provide an
encapsulated database interface to the data. This form of data encapsulation provides multiple benefits.

 Maintenance is simplified. If changes are made to a table, only one service program needs to be
updated or recreated. Some instances do not need to be found in the application that is reading,
writing, or updating a particular table and performing the necessary maintenance.

 There is more consistency with the object-oriented (OO) approach to data access and
manipulation.

 Procedures can be wrappered as stored procedures and called from client programs.

Think of this approach as creating an API layer to your database. If you want to force all database access
to be performed through this interface, you can do so be restricting access to your database and giving
users access to these procedures.

In addition, the data access method that is used in the I/O procedures is embedded SQL. The
advantages of using SQL over record-level access (RLA) include the following:

 SQL is the iSeries platform’s strategic direction for database development and data access.
 Programs that utilize embedded SQL do not have format-level check issues.
 The SQL optimizer determines the access plans, which frees you from this responsibility.

The following is a list of steps involved in this process:

1. Identify all programs and modules that are to be converted.
2. Identify all instances of RLA in the programs identified in step 1.
3. Document the business rule of the RLA.
4. Create a view to access the data.
5. Create an I/O procedure for each unique RLA instance or group.
6. Replace each RLA instance or group with a call to new I/O procedure.
7. Create the I/O module.
8. Create the I/O service program.
9. Recompile existing modules, programs, and service programs.

Note: In this database modernization exercise, stages 1 and 2 were implemented in a relatively short
period of time. This means that after files are reverse engineered, programs that use the files to
incorporate SQL access were immediately converted, and the transition period between the two stages
did not present a concern. Obviously, this simplifies the process significantly as the effort of making sure
the native RLA interfaces still work with the new SQL database object is eliminated.

In a real life application, it is rather impractical to expect to carry out stages 1 and 2 in this manner.
Typically, after the files are reverse engineered, existing application programs must be able to continue
using the re-engineered database objects without requiring immediate changes to the application.
Stages 2 and beyond can then be carried out at the desired pace. The IBM Redbook “Modernizing IBM
eServer iSeries Application Data Access - A Roadmap Cornerstone” provides details on the methods and
techniques of managing this transition period. (Appendix C has a listing of the IBM Redbooks Web site.)

FLGHT400 database modernization

 17

Step 1: Identifying programs and modules to convert

The goal is to replace all RLA operations; therefore, the first step entails finding all programs and
modules that contain those I/O operations. This can be accomplished using a variety of techniques.

 Manually check each source file member for F specs (file declarations).
 Use Programming Development Manager (PDM) to scan the source file members for each

table.
 Develop your own analysis utility.
 Use a third-party analysis tool (such as: Databorough X-Analysis or Hawkeye Pathfinder™)

to perform impact analyses and to identify objects for conversion.
Note: See Appendix C for a Web listing for the IBM Redpaper entitled “Modernizing and
improving the maintainability of RPG applications using x-Analysis Version 5.6.”

To obtain the list of programs and modules with RLA access that need to be changed, an analysis
utility was created to perform the following:

1. Using the DSPPGMREF command the utility creates a work file with all programs and
service programs in the FLGHT400M library and their file references. Notice that it is the
FLGHT400M library and not the original library, FLGHT400. The reason for this is that,
during the application modularization process, all RLA operations were moved to the new
library.

2. Using the DSPOBJD command, the utility creates another work file of all files in the
FLGHT400 library (the library that contains the physical and logical files for FLGHT400
Version 2).

3. The utility executes an SQL statement to display only programs/service programs that
reference either physical or logical files.

4. The Run SQL Script window was opened and the following statements were executed:

CL: DSPPGMREF PGM(FLGHT400M/*ALL) OUTPUT(*OUTFILE) OBJTYPE(*ALL)

OUTFILE(QTEMP/PGMREFFILE);

CL: DSPOBJD OBJ(FLGHT400/*ALL) OBJTYPE(*FILE) OUTPUT(*OUTFILE)

OUTFILE(QTEMP/ALLFILES);

SELECT WHPNAM,WHFNAM, WHFUSG, WHRFNM FROM

qtemp.pgmreffile WHERE whotyp = '*FILE' and whfnam in (SELECT odobnm FROM

qtemp.allfiles WHERE odobat = 'PF' OR odobat = 'LF')

FLGHT400 database modernization

 18

5. The query yielded the following list of programs and modules to convert (Table 1):

Program Name File Name Record Usage Format SRVPGM=V, PGM=P, MODULE=M
NFS001 ORDERSZ 7 ORDNMZ V
NFS001 CUSTORD 1 CUSNMR V
NFS001 ORDDATE 1 ORDDTR V
NFS400 FRCITY 1 FRCTYR V
NFS400 TOCITY 1 TOCTYR V
NFS400 FRCITYL 1 FRCTYL V
NFS400 TOCITYL 1 TOCTYL V
NFS400 FLIGHTSL 1 FLGHTR V
NFS400 FLIGHTSZ 1 FLGHTR V
NFS400 CUSTNAME 1 CUSTR V
NFS400 CUSTOMER 3 CUSTR V
NFS400 CUSTOMRZ 1 CUSTZ V
NFS400 CUSTOMERS 1 V

Table 1: Query of program and modules to convert

In an ILE setting, keep in mind that the underlying module objects (used to build the programs and
service programs) might have been compiled into QTEMP or deleted from the library (as they are no
longer needed after the programs and service programs have been created). In these cases, you
must interrogate the programs and service programs further to determine the modules that need
converting.

Step 2: Identifying instances of RLA

Next, locate all instances of RLA in the programs and modules identified in step 1. The following list
contains all the RPG operations that perform record-level access:

 SETLL
 SETGT
 READ
 READP
 READE
 READEP
 CHAIN
 UPDAT and UPDATE
 DELET and DELETE
 WRITE

In addition, you can check for the following operations and built-in functions that, when used, often
accompany RLA operations:

 OPEN
 CLOSE
 %EOF
 %OPEN
 %FOUND
 %EQUAL

For each of the objects identified in step 1, scan the corresponding source member for all of the listed
RLA operations. Another technique of locating all RLA operations is to scan the source for the

FLGHT400 database modernization

 19

filename or record format name. For locating the desired search string, you have a couple of options
depending on your editor of choice:

 Find String feature (F14) of Source Entry Utility (SEU) or Find String (option 25) of the PDM.
 Find feature (Ctrl-F) of WDSCs LPEX editor.

Step 3: Documenting the business rule

After the RLA operations have been identified, the next step is to determine if each operation acts
independently or if multiple RLA operations can be grouped together to form a single business rule.
Keep in mind that the ultimate goal is to replace the identified RLA operation or group of operations
with a call to a single I/O procedure that uses embedded SQL for the data access. To accomplish
this, you must fully understand the business rule behind the RLA operations as well as have a good
comprehension of SQL data-access methods.

RLA operations are not necessarily mapped one-to-one with an I/O procedure. For example, a single
SQL SELECT statement can replace a SETLL operation followed by a READ operation. As another
example, a single SELECT statement (using join syntax) can replace a series of consecutive CHAIN
operations (drilling down through a set of normalized files). This is why it is important to understand
and document the business rule behind each RLA operation.

To emphasize this point, some examples follow. (Note: These examples are not part of the
FLGHT400 database modernization exercise):

Example 1:

Calculate the number of records/rows with a departure date of 05/18/2004 (Table 2).

RLA version SQL version
/free
 countRet = 0;
 findDate = %date ('051804' : *mdy0);
 setll 1 orders;
 dou %error;
 read(e) orders;
 deparDate = %date (depar_date);
 if %eof;
 leave;
 endif;
 if deparDate = findDate;
 countRet = countRet + 1;
 endif;
 enddo;

 /end-free

/free
 countRet = 0;
 findDate = %date ('051804' : *mdy0);

/end-free

C/EXEC SQL
c+ SELECT count(*) INTO :countRet
c+ FROM orders
c+ WHERE DATE(departure_date) =
:findDate
C/END-EXEC

/free
/end-free

Table 2: Departure date examples in RLA and SQL

In the RLA version, the program logic loops through and reads each record the ORDERS file. For
each record that has a departure date of 05/18/2004, the count variable is incremented.

In the SQL version, notice that there is no looping in the program logic. Instead, a single embedded
SQL statement calculates the number of orders whose departure date is 05/18/2004.

FLGHT400 database modernization

 20

Example 2:

Change the status field to CANCELED for all records with a departure date of 05/18/2004 (Table 3).

RLA version SQL version
/free
 findDate = %date ('051804' : *mdy0);
 setll 1 orders;
 dou %error;
 read(e) orders;
 deparDate = %date (depar date);
 if %eof;
 leave;
 endif;
 if deparDate = findDate;
 status = “Canceled”;
 update orderRec;
 endif;
 enddo;

 /end-free

/free
 countRet = 0;
 findDate = %date ('051804' : *mdy0);
/end-free

C/EXEC SQL
c+ UPDATE
c+ FROM orders
c+ SET status = ‘Canceled’
c+ WHERE DATE(departure_date)
:findDate
C/END-EXEC

/free
/end-free

Table 3: RLA and SQL versions of CANCELED in status field

Again, in the RLA version, the program logic loops through and reads each record in the ORDERS
file. For each record that has a departure date of 05/18/2004, the value of the STATUS field is
changed to CANCELED and the record is updated.

In the SQL version, one statement finds all of the rows with a departure date of 05/18/2004 and sets
the STATUS field to CANCELED.

Example 3:

Search through five tables to return data for the specified time period of the sixth month of 1998. For
the SQL version, the following SQL view is created with a join query, as shown in Table 4:

CREATE VIEW joinView

 (year, month, orderdate, country,

 customer, part, supplier, quantity, revenue)

 AS SELECT

 t.year,t.month,i.orderdate,c.country,c.customer,

 p.part,s.supplier,i.quantity,i.revenue_wo_tax

 FROM item_fact i

 INNER JOIN part_dim p ON (i.partkey =p.partkey)

 INNER JOIN time_dim t ON (i.orderdate=t.datekey)

 INNER JOIN cust_dim c ON (i.custkey=c.custkey)

 INNER JOIN supp_dim s ON (i.suppkey=s.suppkey);

FLGHT400 database modernization

 21

RLA version SQL version
 SearchKey KList

 Kfld SearchYear

 Kfld SearchMonth

Times Occur Result_Set

/free

SearchYear = 1998;

SearchMonth = 6;

Setll SearchKey TIME_DIML1;

if %found;

 DOU RowsReq= RowsRd;

 READ TIME_DIML1;

 If %EOF;

 Leave;

 Endif;

 Setll DATEKEY ITEMFACTL1;

 If %FOUND;

 DOU RowsReq = RowsRd;

 READE DATEKEY ITEMFACTL1;

 If %EOF;

 Leave;

 Endif;

 CHAIN PARTKEY PART_DIML1;

 If Not %FOUND;

 Iter;

 Endif;

 CHAIN CUSTKEY CUST_DIML1;

 If Not %FOUND;

 Iter;

 Endif;

 CHAIN SUPPKEY SUPP_DIML1;

 If Not %FOUND;

 Iter;

 Endif;

 RowsRd = RowsRd + 1

 Enddo;

 Endif;

 Enddo;

Endif;

/end-free

Times Occur result_set

C/EXEC SQL

C+ DECLARE sql_jn CURSOR FOR

C+ SELECT * FROM JoinView

C+ WHERE year=1998 AND month=6

C/END-EXEC

C/EXEC SQL

C+ OPEN sql_jn

C/END-EXEC

C/EXEC SQL

C+ FETCH NEXT FROM sql_jn FOR

C+ :RowsReq ROWS INTO :result_set

C/END-EXEC

 * SQLER3 contains the number of rows fetched.
/free

If SQLCOD = 0 and

 SQLER5 = 100 and

 SQLER3 > 0;

 RowsRd = SQLER3;

Endif;

/end-free

Table 4: SQL view with a join query

Notice how SQL performs the search in one request. In contrast, the RLA program performs READ
operations against each table individually and must specify a logical file to use. Though you can write
SQL code to access each table separately, this is not recommended to mirror the RLA code (for
performance reasons). The real value of SQL is processing a set of data on a single request and not
subdividing a single request into multiple parts. Additionally, notice how the SQL version is performing
a blocked fetch into a multi-occurrence data structure to process multiple rows in one statement.

Keep in mind that you can simplify the RLA version by creating a join logical file. However, SQL views
have an advantage over join logical files in that the join order is not fixed and more complex join types
are available. The query optimizer has an opportunity to analyze the join request and modify the join
order coded in the SQL view if it determines that a different join order will perform better. With join

FLGHT400 database modernization

 22

logical files, the burden is on the programmer to code the join order correctly and, over time,
continually check to ensure that the coded join order is still optimal.

Getting back to the FLGHT400 exercise, consider the GetCustNumber procedure:

//**
p GetCustNumber b export
 //**
d GetCustNumber pi
d Name 64 const
d Number 9B 0
d Generate 1 const options(*nopass)
 //
d NameV s 64 varying
 /free
 NameV = %trim(Name);
 chain(e) NameV CUSTR;
 if not %found;
 if %parms > 2 and Generate = 'Y';
 dou not %error;
 setll *hival CUSTOMERR;
 read(e) CUSTOMERR;
 CNUMBR = CNUMBR + 1;
 CUSTNM = NameV;
 write(e) CUSTOMERR;
 enddo;
 CUSTNO = CNUMBR;
 else;
 CUSTNO = -1;
 endif;
 endif;
 Number = CUSTNO;
 /end-free
p GetCustNumber e

The purpose of the GetCustNumber procedure is to search the CUSTOMER file for a record that
matches the specified customer name. If the record is found, the customer number is returned and
the procedure ends. If the record is not found, a new one is inserted into the table. Before the
insertion, the procedure must first generate a new key (the customer number field) for the new row.
To do this, the procedure searches the CUSTOMERS file again, looking for the record with the
highest current value of the customer_number field. That value is incremented by one and is used
as the customer number field of the new row to be inserted. The value of the new customer_number
field is then returned.

Now that you understand what the procedure does, document the business rule for each RLA
operation or group of operations (Table 5):

RLA operation Table accessed Business rule
chain CUSTOMERS Search the CUSTOMERS table for a record that matches the

specified customer name.
setll
read

CUSTOMERS Find the record with the highest value for the customer number
field.

write CUSTOMERS Insert a new record/row into the CUSTOMERS table

Table 5: RLA operations business rules

FLGHT400 database modernization

 23

Step 4: Creating the SQL view to access data

In this next step, the necessary SQL views used to access the data in the FLGHT400 tables are
created. For this modernization exercise, the decision was made to allow only data access through
views. None of the programs access the physical data model (the tables) directly. This is the ideal
approach for database administrators (DBAs) to consider implementing. In this type of
implementation, DBAs must determine what columns are eligible to be queried from both users and
applications. after that analysis is completed, the DBA can then create views that project only those
columns that users and applications need to see.

The following list contains some advantages of using SQL views:

 More flexibility in selecting and processing data:
 CASE expression
 Date/time functions
 Grouping
 Join processing

 Views can be opened by native programs as nonkeyed logical files
 Views can be directly accessed via ODBC/JDBC
 Enables database programers to mask complexity of the database to users
 Provides a way to restrict access to the data in the table
 Views can be utilized to define an externally defined data structure in programs
 View structure can be used as the parameter to pass to or from the I/O procedures

With these advantages in mind, the new SQL I/O procedures will use views (instead of tables) to
access the data. The following list in Table 6, taken from the previous step, is updated to include the
chosen view to access the data:

RLA
operation

Table

Business rule New view

chain CUSTOMERS Search the CUSTOMERS table for a record that
matches the specified customer name.

ALLCUSTS

setll
read

CUSTOMERS Find the record/row in table CUSTOMERS with the
highest value for the customer number field.

None – replaced by
Sequence object (Note)

write CUSTOMERS Insert a new record/row into the CUSTOMERS table ALLCUSTS

Table 6: New RLA operation view

Note: The file access has been replaced with a sequence object. This is discussed in detail in the
section “Implementing automatic key generation and unique identifiers.”

FLGHT400 database modernization

 24

The remaining two documented business rules access the same table and thus can use the same
SQL view. ALLCUSTS is the name of the new view. To create the new view, open a Run SQL Scripts
window and run the following statement:

CREATE VIEW allCusts
 (CUSTOMER_NO,
 CUSTOMER_NAME,
 ADDRESS,
 CITY,
 STATE,
 ZIPCODE,
 TELEPHONE,
 CREDIT_CARD,
 CC_NUMBER,
 EXP_DATE,
 PREF_AIRLINE_ID,
 FF_NUMBER)
AS select * From customers;

Repeat this step for all documented RLA business rules.

Appendix A includes a script program, “SQL DDL script to create all of the views.”

Step 5: Creating an I/O procedure for each unique RLA instance or group

The RLA operations that need to be replaced have been identified, and the views that the SQL I/O
procedure will use to access the data have been created. The next step is to construct the I/O
procedures.

Before you create the I/O procedures, complete the following activities to set the proper environment:

1. Create source file QRPGLESRC in schema FLGHT400M2
2. Add two new members to FLGHT400M2/QRPGLESRC:

NFSSQL: Contains all of the I/O procedures
NFSSQLPR: Contains all of the prototypes of the I/O procedures

3. Add one new member to FLGHT400M2/QSRVSRC (binder source):
NFSSQL: Contains all EXPORT statements that identify the procedures to export
from the NFSSQL service program

To set up the environment for the new I/O procedures, take the following actions:

4. Open the RSE perspective in a WebSphere Development Studio Client window.
5. From the Toolbar menu, click File > New > iSeries Source Physical file (Figure 11).

FLGHT400 database modernization

 25

Figure 11: Create new source physical file

6. Specify FLGHT400M2 for the library and QRPGLESRC for the file (shown in Figure 12).

Figure 12: Specify source physical file attributes

FLGHT400 database modernization

 26

7. Click Finish.
8. From the Toolbar menu, click File > New > iSeries Source Member (see Figure 13).

Figure 13: Create iSeries Source Member

FLGHT400 database modernization

 27

9. Specify FLGHT400M2 for the library, QRPGLESRC for the file, NFSSQLPR for the member,
RPGLE for the member type, and I/O Procedure prototypes for the text (Figure 14).

Figure 14: Create member for I/O procedure prototypes

10. Click Finish.
11. From the Toolbar menu, click File > New > iSeries Source Member.
12. Specify FLGHT400M2 for the Library, QRPGLESRC for the File, NFSSQL for the member,

SQLRPGLE for the member type, and I/O Procedures for the text.
13. Click Finish.
14. From the Toolbar menu, click File > New > iSeries Source Member.
15. Specify FLGHT400M2 for the library, QSRVSRC for the file, NFSSQL for the member, BND

for the member type, and NFSSQL Procedures to export for the text.
16. Click Finish.

For each identified RLA operation or group of operations, an equivalent I/O procedure will be created
that uses embedded SQL to access the data. This involves the following steps:

1. Add externally described data structure definition based on the SQL views to member
NFSSQLPR (if one does not already exist for the view). These will be used as
parameters for the data access subprocedures.

FLGHT400 database modernization

 28

2. Add procedure prototype to source file member NFSSQLPR in file QRPGLESRC.
3. Add new procedure to source file member NFSSQL in file QRPGLESRC.
4. Add the procedure name to the list of procedures to export in source file member

NFSSQL in file QSRVSRC. (Note: For FLIGHT400, a naming convention was
implemented for the I/O procedures. To clearly distinguish them from other procedures,
all database access procedures begin with the prefix “dbx-”.)

Table 7 summarizes the I/O procedure methodology behind each type of table access:

Type of access I/O procedure methodology
READ Pass in key as input parameter. This key is used to find desired row(s). It returns the row(s), SQL

state return code (indicating success or failure), and the SQL error message.
UPDATE Pass in key and updated row as input parameters. This key is used to find the row and row is

updated. It returns the SQL state return code and SQL error message.
INSERT Pass in the new row as input parameter. The row is inserted. It returns the SQL state return code

and SQL error message.
DELETE Pass in the key as input parameter. This key is used to find and delete the row. It returns the SQL

state return code and SQL error message.

Table 7: Table access I/O procedure methodology

To continue examining the example procedure GetCustNumber, the list in Table 8 will be updated to
include the new I/O procedure implemented to access the data:

RLA
operation

Table

Business rule view

New procedure

chain CUSTOMERS Search CUSTOMERS table for a record that
matches the specified customer name.

ALLCUSTS dbxGetCusByNam

setll
read

CUSTOMERS Find the record/row in CUSTOMERS table
with the highest value for the customer
number field.

None; replaced
by sequence
object

dbxInsCus

Write CUSTOMERS Insert a new record/row into the
CUSTOMERS table

ALLCUSTS dbxInsCus

Table 8: New RLA operations business rule procedure

Next, the two new I/O modules, dbxGetCusByNam and dbxInsCus are added:

7. To incorporate the externally-described data structure definition based on the SQL view
ALLCUSTS, add the following line to the member NFSSQLPR:
d customerRow e ds extname(allCusts)

8. To incorporate the prototypes for the two procedures, add the following lines to the to the
source file member NFSSQLPR:

*--
d dbxGetCusByNam pr likeds(customerRow)
*--
d inCusName 64a const
d outSqlState 5a
d outSqlMsg 256a

 *--
d dbxInsCus pr
 *--
d inCusRow likeds(customerRow)
d outSqlState 5a
d outSqlMsg 256a

9. To add the two procedures, insert the code on the next page into the source member NFSSQL:

FLGHT400 database modernization

 29

 p dbxGetCusByNam b export

 * Returns one row from CUSTOMERS table that matches the
 * specified customer name

 d dbxGetCusByNam pi likeds(CustomerRow)
 d inCusName 64a const
 d outSqlState 5a
 d outSqlMsg 256a

 d outCustRow ds likeds(CustomerRow)

 C/EXEC SQL
 c+ select * into :outCustRow :customerNIArr
 c+ from allCusts
 c+ where customer_Name = :inCusName
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 clear outCustRow;
 endif;
 return outCustRow;
 /end-free

 p dbxInsCus b export

 * Inserts a new row into CUSTOMERS table

 d dbxInsCus pi
 d inCusRow likeds(CustomerRow)
 d outSqlState 5a
 d outSqlMsg 256a

 d NextCustNum s 9b 0

 * Use SQL sequence to generate next customer number
 C/EXEC SQL
 c+ VALUES NEXT VALUE FOR customer_number
 c+ INTO :nextCustNum
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 inCusRow.cust_no = -1;
 return;
 else;
 inCusRow.cust_no = nextCustNum;
 endif;
 /end-free

 C/EXEC SQL
 c+ insert into allCusts
 c+ values (:inCusRow)
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 /end-free

 p dbxInsCus e

FLGHT400 database modernization

 30

10. Add the new procedure names to the binder source member NFSSQL in physical file
member FLGHT400M2/QSRVSRC. This contains all EXPORT statements identifying the
procedures to export from NFSSQL. Once added, this service program will look as shown
below. (Note: Appendix B lists the complete version of the binder source member.)

STRPGMEXP PGMLVL(*CURRENT)
 EXPORT SYMBOL(DBXGETCUSBYNAM)
 EXPORT SYMBOL(DBXINSCUS)
ENDPGMEXP

Two I/O modules have been created to replace the RLA operations in procedure GetCustNumber.

Step 6: Replacing each RLA instance or group with call to new I/O procedure

Once the I/O procedures have been written, the RLA operations can be replaced. For each RLA
operation or group of operations identified in step 2, replace it with a call to the new I/O procedures.

Below are the activities involved with this step (and illustrated in Table 9):
1. Copy the source file member to the new schema.
2. Edit the new source file member.
3. Remove/comment out the file declarations (F specs) for each physical and logical files.
4. Remove/comment out all explicit file OPEN and CLOSE operations and all RLA operations.
5. Insert calls to I/O procedures where RLA operations previously existed.
6. Save the member.

FLGHT400 database modernization

 31

FLGHT400 (Original) version FLGHT400M2 (Modernized) version
//**
p GetCustNumber b export
 //**
d GetCustNumber pi
d Name 64 const
d Number 9B 0
d Generate 1 const
options(*nopass)
 //
d NameV s 64 varying
 /free
 NameV = %trim(Name);
 chain(e) NameV CUSTR;
 if not %found;
 if %parms > 2 and Generate = 'Y';
 dou not %error;
 setll *hival CUSTOMERR;
 read(e) CUSTOMERR;
 CNUMBR = CNUMBR + 1;
 CUSTNM = NameV;
 write(e) CUSTOMERR;
 enddo;
 CUSTNO = CNUMBR;
 else;
 CUSTNO = -1;
 endif;
 endif;
 Number = CUSTNO;
 /end-free
p GetCustNumber e

//**
p GetCustNumber b export
//**

d GetCustNumber pi
d Name 64 const
d Number 9B 0
d Generate 1 const
options(*nopass)
//

d NameV s 64 varying
d outSqlState s 5a
d outSqlMsg s 256a
d newCustRow ds
likeds(CustomerRow)
d custNo s
like(customerRow.cust_no)

/free
NameV = %trim(Name);

 customerRow = dbxGetCusByNam
 (Name:outSqlState:outSqlMsg);
[1]
 if %subst(outSqlState:1:2) <> '00'; [2]
 if %parms > 2 and Generate = 'Y';

 newCustRow.cust_name = Name; [3]
 dbxInsCus(newCustRow : outSqlState :
outSqlMsg);[4]
 custNo = newCustRow.cust no;
 else;

 custNo = -1;
 endif;
else;

 custNo = customerRow.cust_no; [5]
endif;

 Number = CUSTNO;
/end-free
p GetCustNumber e

Table 9: Replacing RLA operations

The following changes are made to the new version (refer to the numbers in red):

1. A function call to dbxGetCusByNam replaced the RPG CHAIN operation. This function returns a
data structure containing the row that matches the specified customer name.

2. Instead of checking the value returned by the built-in function %FOUND, the value of the SQL
State return code (that was returned from dbxGetCusByName) is checked.

3. The data structure newCustRow is primed with the passed in Customer Name.
4. The RPG SETLL and READ operations, as well as the WRITE operations are replaced by a

function call to dbxInsCus. This generates the new order number, inserts the new row into the
table, and returns the new row in the newCustRow data structure.

5. The new customer number is extracted from the newCustRow data structure.

Everything else remains relatively unchanged.

Step 7: Creating the I/O module

After all of the I/O procedures have been added to NFSSQL and the prototypes added to
NFSSQLPR, it is time to create the module object. Issue the following command to build the module:
CRTSQLRPGI OBJ(QTEMP/NFSSQL) SRCFILE(FLGHT400M2/QRPGLESRC) +
 COMMIT(*NONE) OBJTYPE(*MODULE) DLYPRP(*YES) DBGVIEW(*SOURCE)

Step 8: Creating the I/O service program

After the prototypes have been defined and the module created, you can create the service program.

FLGHT400 database modernization

 32

1. Issue the following command to build the service program:

CRTSRVPGM SRVPGM(FLGHT400M2/NFSSQL) MODULE(QTEMP/NFSSQL) +
 TEXT('Flight 400 SQL I/O Procedures')

Step 9: Recompiling existing modules, service programs, and programs

You now have a service program with the I/O procedures, and the RLA operations with calls to the
new I/O procedure were replaced. The next step is the recompile all existing objects.

1. Recreate the module and service program NFS001:

CRTRPGMOD MODULE(QTEMP/NFS001) +
 SRCFILE(FLGHT400M2/QRPGLESRC) DBGVIEW(*ALL)
CRTSRVPGM SRVPGM(FLGHT400M2/NFS001) MODULE(QTEMP/NFS001) +
 TEXT('Flight 400 Information Procedures')

2. Recreate the modules and service program NFS400:

CRTRPGMOD MODULE(QTEMP/NFS402) +
 SRCFILE(FLGHT400M2/QRPGLESRC) DBGVIEW(*ALL)
CRTRPGMOD MODULE(QTEMP/NFS404) +
 SRCFILE(FLGHT400M2/QRPGLESRC) DBGVIEW(*ALL)
CRTRPGMOD MODULE(QTEMP/NFS405) +
 SRCFILE(FLGHT400M2/QRPGLESRC) DBGVIEW(*ALL)
CRTSRVPGM SRVPGM(FLGHT400M2/NFS400) MODULE(QTEMP/NFS402 +
 QTEMP/NFS404 QTEMP/NFS405) TEXT('Flight +
 400 Information Procedures')

3. Create a new binding directory: CRTBNDDIR BNDDIR(FLGHT400M2/FLGHT400M)
4. Add the following binding directory entries to the new binding directory:

NFS001 *SRVPGM *LIBL
NFSUTIL *SRVPGM *LIBL
NFS400 *SRVPGM *LIBL
NFSSQL *SRVPGM *LIBL

5. The NFS001 and NFS400 service programs were updated; therefore, the existing programs
that bind them must be recompiled. Here is a list of those programs:

 FRS000
 FRS000X
 FRS000Y
 FRS001
 FRS002
 FRS003
 FRS004
 FRS009
 FRS402
 FRS403
 FRS404
 FRS405
 FRS407
 FRS408
 FRS410

For each program listed, follow these steps:
6. Copy source file member from FLGHT400M to FLGHT400M2

7. Issue command to create the bound RPG program:
CRTBNDRPG PGM(FLGHT400M2/FRSxxx) SRCFILE(FLGHT400M2/QRPGLESRC)

FLGHT400 database modernization

 33

Other considerations

Null values

A NULL is an attribute that a column can have to indicate a missing or unknown value. All data types
can be assigned a NULL value, but they can be problematic in embedded SQL programs when
selecting or fetching into host variables. The error SQL0305 occurs when attempting to fetch columns
with null values into program variables.

In the original version of FLGHT400, the keyword ALWNULL was specified for several of the physical
file fields. We need to be able to handle null values because of the use of embedded SQL and
fetching into host variables.

When using embedded SQL, you must handle values by choosing indicator variables.

Indicator variables detect NULL values in host variables.

If you choose a host structure for the retrieval values (as is the case with all of the FLGHT400
examples), define a 2-byte binary (integer) array the same number of elements as the number of data
structure subfields. Specify this indicator immediately after the host structure.

The following example shows the use of a host structure with an indicator array.

 * Define the host stucture
 d customerRow e ds extname(xcustomers) prefix(c_)

 * Null indicator arrays
 D customerNIArr s 5i 0 dim(12)

 C/EXEC SQL
 C+ FETCH cursorCusLstCN into :customerRow :customerNIArr
 C/END-EXEC

SQL error handling

When you process an SQL statement in your program, SQL places a return code in both the
SQLCODE and SQLSTATE fields. Originally, iSeries developers used the SQLCODE field to detect
errors and warning conditions. However, SQLCODE was never a standard, and problems arose when
different database managers developed their own error code structures. This made it difficult to build
portable code to manage error conditions.

The addition of a new field, SQLSTATE, complies with SQL-92 standards. This field contains a
standardized error code consistent across other IBM database products and other SQL-92
conformant database managers.

Both return codes indicate the success or failure of the running of your statement. If SQL encounters
an error while processing the statement, the SQLCODE is a negative number, and the first two digits
of the SQLSTATE field are not 00, 01, or 02. When processing the SQL statement, if you encounter
a warning (which is a valid condition), the SQLCODE is a positive number, and the first two digits of
SQLSTATE are 01 or 02. If you process an SQL statement without encountering an error or warning
condition, the SQLCODE is zero and the SQLSTATE is 00000.

As a rule, the return code field to use in your applications is SQLSTATE when there is any concern
about portability. This is because SQLSTATE provides a platform-independent error code structure

FLGHT400 database modernization

 34

and is common across many database managers. For FLGHT400, the SQLSTATE field was chosen
to detect and process error conditions.

In i5/OS V5R3, additional support is available for the GET DIAGNOSTICS statement in HLL
programs using embedded SQL. You can use the GET DIAGNOSTICS statement to return diagnostic
information about the last executed SQL statement. This simplifies error handling and is consistent
with the errors that are typically handled in the SQL procedural language.

Below is an example of how FLGHT400 uses these SQL error-handling features. A procedure
getSQLDiagMsg was created to capture an SQL error message, extract the message text and
constraint name (if the error was a constraint violation), and return the message text to the caller.
Below is the code for this procedure:
 *__
 *
 * Get SQL Diagnostic message
 *__
 p getSQLDiagMsg b

 d getSQLDiagMsg pi
 d SQLmsg 256A
 *
 d cst_name s 128A
 *
 /free
 cst_name = *blanks;
 sqlMsg = *blanks;
 /end-free
 *
 C/EXEC SQL
 C+ GET DIAGNOSTICS CONDITION 1
 C+ :cst_name = CONSTRAINT_NAME,
 C+ :sqlMsg = MESSAGE_TEXT
 C/END-EXEC
 *
 p getSQLDiagMsg e

You might have noticed that this procedure only processes a single error condition. The following
modified example demonstrates how you can process and display multiple errors that will possibly
result from one SQL statement:
 C/EXEC SQL
 C+ GET DIAGNOSTICS
 C+ :cond_count = NUMBER
 C/END-EXEC

 /free
 for i = 1 to cond_Count;
 /end-free

 C/EXEC SQL
 C+ GET DIAGNOSTICS CONDITION :i
 C+ :cst_name = CONSTRAINT_NAME,
 C+ :sqlMsg = MESSAGE_TEXT
 C/END-EXEC

 /free
 dsply sqlMsg; //display the error message to the screen
 endfor;
 /end-free

FLGHT400 database modernization

 35

Below is an example of how this procedure is called:

 p dbxGetFrCty b export

 * Returns one row from FRCITY table that matches the
 * specified departure city initials

 d dbxGetFrCty pi likeds(frCityRow)
 d inCityInt 3a const
 d outSqlState 5a
 d outSqlMsg 256a

 d outFrCityRow ds likeds(frCityRow)

 C/EXEC SQL
 c+ select * into :outFrCityRow [1]
 c+ from fromCities
 c+ where frcint = :inCityInt
 C/END-EXEC

 /free
 outSqlState = sqlState; [2]
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00'; [3]
 getSQLDiagMsg(outSqlMsg);
 clear outFrCityRow;
 endif;
 return outFrCityRow;
 /end-free

 p dbxGetFrCty e

Code sample notes (refer to the numbers in red):

1. Execute the SQL statement.
2. Assign the SQLState field value to the output parameter, return code field.
3. Check the value of SQLSTATE. If an error occurred, call the getSQLDiagMsg procedure to

extract and return the error messages.

The SQLState field and error message fields can be bubbled up to calling programs so that the
appropriate feedback can be provided to the user or requester (display the error message to the
screen, send the error message back to the client, and so forth).

Stage 3: Moving business rules to the database
One of the problems with coding business rules at the application program level is that if another interface
is used to access the data, the business rules can be circumvented. For example, if the application has
an edit in the RPG program to reject the creation of a new order for a customer with a bad credit rating,
the business rule is only enforced if the order is placed through the application. A user with authority to
the database can still add a row to the order table and violate this rule by using an SQL interface or even
the Data File Utility (DFU) on a 5250 emulation session. When you enforce business rules this way, you
expose your database to major data integrity issues. By moving business rules to the database level, you
can enforce the defined rules, regardless of the interface. In stage 3, there is an examination of this
process and examples are provided regarding how this was carried out for the FLGHT400 database.

FLGHT400 database modernization

 36

Implementing referential integrity constraints

Referential integrity is a set of database rules that enforce the following: The value of each foreign key in
a table must match the value of a primary key in another table. The table with the foreign key is referred
to as the dependent table. The table with the primary key is called the parent table.

In this section, referential integrity (RI) constraints are added to the tables to enforce business rules at the
database level. This will reduce application-level changes and eliminate the possibility of an introduction
of RI violations by other interfaces to the tables (Data File Utility, SQL statements, and so forth).

Neither the original version of FLGHT400 nor the modernized version contained any referential integrity.
Thus, an order can be created with an agent number that did not exist in the agent table, or with a
customer number that did not exist in the Customer table. To prevent such violations of data integrity,
either you need to add code to the application to enforce data integrity, or you can let the database do it
for you. If you add code to your application, entered or updated data through other interfaces (for
example, STRDFU or SQL statements) is a possibility, and the exposure will still exist. However, if RI
constraints are defined, integrity is enforced at the database level with no possibility of circumventing it.

In addition, if the constraints are coded in SQL, they are more portable, both from a platform perspective and
a skills perspective. Consider the following example of adding RI constraint. First, a primary key constraint
must exist for the parent table. In this example, a primary key constraint is added to table FLIGHTS:

ALTER TABLE flights

 ADD CONSTRAINT flights_pk_flight_number

 PRIMARY KEY(flight_number ;

Note: You can also define a primary key constraint when creating the table with the CREATE TABLE
statement. Below, you can see how the same constraint is defined for the FLIGHTS table using the
CREATE TABLE statement:

CREATE TABLE flights (
 flight_number FOR COLUMN flight_no INTEGER DEFAULT NULL ,
 departure_initials FOR COLUMN depar_int VARCHAR(16) CCSID 37 DEFAULT NULL,
 departure varchar(16) CCSID 37 DEFAULT NULL ,
 day_of_week FOR COLUMN day_week VARCHAR(16) CCSID 37 DEFAULT NULL ,
 arrival_initials FOR COLUMN arriv_int VARCHAR(16) CCSID 37 DEFAULT NULL ,
 arrival varchar(16) CCSID 37 DEFAULT NULL ,
 departure_time FOR COLUMN depar_time VARCHAR(32) CCSID 37 DEFAULT NULL ,
 arrival_time FOR COLUMN arriv_time VARCHAR(32) CCSID 37 DEFAULT NULL ,
 airlines VARCHAR(32) CCSID 37 DEFAULT NULL ,
 seats_available FOR COLUMN seats_avl INTEGER DEFAULT NULL ,
 ticket_price FOR COLUMN ticket_prc VARCHAR(22) CCSID 37 DEFAULT NULL ,
 mileage INTEGER DEFAULT NULL,
 CONSTRAINT flights_pk_flightnumber PRIMARY KEY(flight_number));

Now, a foreign key constraint can be added to the dependant table. Below, you can see that the
constraint has been added to the ORDERS table:

ALTER TABLE orders
 ADD CONSTRAINT orders_fk_flight_number
 ADD FOREIGN KEY (flight_number)
 REFERENCES flights (flight_number)
 ON DELETE NO ACTION ON UPDATE NO ACTION;

FLGHT400 database modernization

 37

No matter what interface is used to update the table, a row cannot be added to ORDERS unless the
specified value of the flight number column has a row with that flight number in table FLIGHTS.

INSERT INTO FLGHT400M2/ORDERS VALUES(999555599, 1, 5555, 5555, NULL, 1, '3', '3333')

If such an operation as the one above is attempted (and there is no row in table FLIGHTS with flight
number 99955599), the error SQL0530 will be returned.

Message ID : SQL0530 Severity : 30
Message type : Diagnostic

Message : Operation not allowed by referential constraint
 FLIGHTS_PK_FLIGH_TNUMBER in FLGHT400M2.
Cause : If this is an INSERT or UPDATE statement, the value is not
 valid for the foreign key because it does not have a matching value in the
 parent key. If this is a DELETE statement affected by a SET DEFAULT delete
 rule, the default value is not valid for the same reason. If this is an
 ALTER TABLE statement, the result of the operation would violate the
 constraint FLIGHTS_PK_FLIGHT_NUMBER. Constraint FLIGHTS_PK_FLIGHT_NUMBER in
 FLGHT400M2 for table ORDERS in FLGHT400M2 requires that any non-null value
 of the foreign key have a matching value in the parent key.
Recovery . . . : To conform to the constraint rule, you must either:
 -- change the INSERT or UPDATE value to match a value in the parent key,
 -- insert a row in the parent file that matches the foreign key values
 being inserted or updated.
 -- insert a row in the parent file that matches the foreign key default
 values of the dependent rows. Otherwise, you must drop the referential constraint.

Note: The SQL DDL script to create all of the RI constraints can be found in Appendix A, “SQL DDL script
to create the constraints.” For more information on how your application can detect and handle RI
constraint violations, refer to the “SQL error handling” section (in Stage 2 above).

Implementing check constraints

Check constraints are used to ensure that column data does not violate rules defined for the column or
only a certain set of values is allowed into a column.

As mentioned, you can code edits into the application, but at the risk of circumventions through other
interfaces. A check constraint defined at the database level ensures the constraint is always enforced.

In the following example, a check constraint is created to ensure that only the values of 1, 2, or 3 can be
specified for the column CLASS in the table ORDERS:
ALTER TABLE orders ADD CONSTRAINT flght400m2/orders_ck_class
CHECK (class='1' OR class='2' OR class='3')

FLGHT400 database modernization

 38

In the following example, there is an attempt to violate this rule by adding a row with a value other than 1,
2, or 3. The result is the insert fails with error message SQL0545.

INSERT INTO FLGHT400M2/ORDERS VALUES(999555599, 1, 5555, 1100171, NULL, 1, 'Z', '3333')

Message ID : SQL0545 Severity : 30
Message type : Diagnostic

Message : INSERT or UPDATE not allowed by CHECK constraint.
Cause : The value being inserted or updated does not meet the
 criteria of CHECK constraint ORDERS_CK_CLASS. The operation is not allowed.
Recovery . . . : Change the values being inserted or updated so that the
 CHECK constraint is met. Otherwise, drop the CHECK constraint
 ORDERS_CK_CLASS.

For more information on how your application can detect and handle check constraint violations, refer to
the “SQL error handling” section (in Stage 2 above).

Implementing automatic key generation and unique identifiers

Two of the tables (CUSTOMERS AND ORDERS) contain primary, application generated key fields. Both
tables generate the next key by finding the current maximum key value in the table and incrementing it by
one. This is not an optimal solution when many concurrent users are trying to generate the next key
value; it can result in locking and serialization issues. In these cases, a much better solution is to utilize
database features such as identity columns or sequence objects to automatically generate unique values.
Let the database manager handle the key generation as well as locking and serialization of that value, so
the programmer can concentrate on real business logic.

FLGHT400 involved the implementation of automatically generated keys using Sequence objects rather
than identity columns, because the tables already contained many rows and existing key values. With a
Sequence object implementation, keep existing keys as is. You merely specify the starting value of the
next key value for the Sequence object. This is not possible with identity columns. Removing and
regenerating key values for the tables when implementing identity columns requires more sophisticated
analysis. Tool development will also be required to prevent compromise to database integrity. To
implement automatic key generation using a sequence object, take the following steps:

1. Identify the tables and keys to implement automatic key generation:

Table Key
CUSTOMERS CUSTOMER_NO
ORDERS ORDER_NUMBER

2. Determine the current maximum value for the identified tables and keys. From Run SQL script
window, execute the following statements:

SELECT MAX(CUSTOMER_NO) FROM FLGHT400M2.CUSTOMERS;
SELECT MAX(ORDER_NUMBER) FROM FLGHT400M2.ORDERS;

3. Increment the result of each query by 1 and document that value as the next key value.

Table Key Next key value
CUSTOMERS CUSTOMER_NO 10023
ORDERS ORDER_NUMBER 5671308

4. Using the calculated next key values, execute the following SQL statements to create the
Sequence objects:

FLGHT400 database modernization

 39

CREATE SEQUENCE flght400m2.customer_number
 AS INTEGER
 START WITH 10023
 INCREMENT BY 1
 MINVALUE 10023
 MAXVALUE 2147483647
 NO CYCLE CACHE 20 NO ORDER ;

CREATE SEQUENCE flght400m2.order_number
 AS INTEGER
 START WITH 5671308
 INCREMENT BY 1
 MINVALUE 5671308
 MAXVALUE 2147483647
 NO CYCLE CACHE 20 NO ORDER ;

5. For the tables and keys identified, locate the procedures that are responsible for generating the
next key value and inserting the new row. Modify these procedures to use the Sequence object
instead (as shown in Table 9).

FLGHT400 version (original) FLGHT400M2 version (modernized)
 chain(e) NameV CUSTR;
 if not %found;
 if %parms > 2 and Generate = 'Y';
 dou not %error;
 setll *hival CUSTOMERR;
 read(e) CUSTOMERR;
 CNUMBR = CNUMBR + 1;
 CUSTNM = NameV;
 write(e) CUSTOMERR;
 enddo;
 CUSTNO = CNUMBR;
 else;
 CUSTNO = -1;
 return;
 endif;
 endif;

* Get next customer number from sequence object
c/EXEC SQL
c+ VALUES NEXT VALUE FOR customer_number
c+ INTO :nextCustNum
c/END-EXEC

 /free
 if sqlCode = 0;
 inCusRow.cust_no = nextCustNum;
 else;
 inCusRow.cust_no = -1;
 return;
 endif;
 /end-free

C/EXEC SQL
c+ insert into customers
c+ values (:inCusRow)
C/END-EXEC

Table 9:Generating next key value in FLGHT400 (original) and FLGHT400M2 (enhanced)

In the original version of FLGHT400, the CUSTOMERS file is searched for a record that matches the
specified customer name. If that name is not found, the program (using the SETGT amd READ
operations) interrogates the same file for the current maximum customer number value. This value is
incremented by one to yield the new customer number. A new record, with that customer number, is
added to the CUSTOMERS file. This method is prone to error as multiple versions of the program running
simultaneously in different jobs can retrieve the same high value for customer number. These
simultaneous runs generate duplicate keys.

In the enhanced version, the program retrieves the next customer number value from the SQL Sequence
object (a data area). Using that customer number, a new row is then inserted in the CUSTOMERS table.
The issue of duplicate key generation is avoided as each job caches 20 unique sequence values (based
on the CACHE 20 clause in the CREATE SEQUENCE statement). When those 20 sequence values are
consumed, the database manager will access and lock the Sequence object for the next 20 values. Note:
You can specify NO CACHE on the CREATE SEQUENCE statement, but performance is affected
because the database manager must access and lock the Sequence object for each value generated.

FLGHT400 database modernization

 40

Implementing trigger programs

Defining constraints is a sound way of enforcing simple table and column-level business rules; however,
DB2 UDB triggers can carry out more complex rules. A trigger is a user-written program or SQL routine
that is associated with a database table. A trigger is automatically activated (triggered) by the database
manager when a change occurs in the table, regardless of the interface that initiated the change.

For FLGHT400, a trigger tracks changes made to the Credit Card Number field (CC_NUMBER) in the
table CUSTOMERS. To create this trigger and supporting database object, do the following:

1. Create a table to track the credit card number changes. From a new Run SQL Scripts window,
execute the following statement:

CREATE TABLE flght400m2.cc_number_track (
customer_no FOR COLUMN cust_no INTEGER NOT NULL DEFAULT 0,
old_cc_number FOR COLUMN old_cc_no CHAR(20) CCSID 37 NOT NULL DEFAULT '' ,
new_cc_number FOR COLUMN new_cc_no CHAR(20) CCSID 37 NOT NULL DEFAULT '' ,
update_user FOR COLUMN upd_user CHAR(20) CCSID 37 NOT NULL DEFAULT '' ,
update_timestamp FOR COLUMN upd_ts TIMESTAMP DEFAULT NULL) ;

2. Create a trigger on the CUSTOMERS table that will insert a new row into the table
CC_NUMBER_TRACK when column CC_NUMBER is changed. Execute the following statement:

CREATE TRIGGER flght400m2.cc_number_track
 AFTER UPDATE OF cc_number ON flght400m2.customers
 REFERENCING OLD AS orow
 NEW AS nrow
 FOR EACH ROW
 MODE DB2SQL
 WHEN (nrow.cc_number <> orow.cc_number)
 BEGIN INSERT INTO flght400m2.cc_number_track
 (customer_no ,
 old_cc_number ,
 new_cc_number ,
 update_user ,
 update_timestamp)
 VALUES
 (nrow.customer_no ,
 orow.cc_number ,
 nrow.cc_number ,
 USER ,
 CURRENT_TIMESTAMP) ;
END;

Stage 4: Externalizing data access
So far, in the database enhancement process we have performed the following processes:

 Reverse engineered the database so that SQL defines the database objects
 Created I/O modules to access the data using SQL access methods
 Moved some of the business rules to the database

One final implementation worth mentioning is that stored procedures can be used to enhance the
FLGHT400 application. Stored procedures provide a standard way to call an external procedure from
within an application by using an SQL statement. Some advantages of stored procedures include the
following:

FLGHT400 database modernization

 41

 Improved modularity by allowing the same code to be used for both an existing 5250 application
and new Web-based solutions

 Better partitioning of logic (for example, separation of presentation and database logic)
 Using an industry standard interface for remote invocations of host programs (including

interfaces for JDBC and ODBC)
 Allowing you to take advantage of iSeries security features. The stored procedure’s underlying

program or service program can adopt authority, giving the stored procedure the ability to access
data that is otherwise restricted.

The two types of stored procedures are:

 SQL stored procedures: These procedures are based on procedural extensions to SQL and
enable better portability of logic (and programming skills) to and from other platforms.

 External stored procedures: These procedures are coded in one of the high-level languages
available on the iSeries system. As a general rule, use external stored procedures when reusing
code. External stored procedures can contain SQL statements, but they are not required.

For this example, an external stored procedure will be created that uses an I/O procedure in the service
program created in the FLGHT400 database modernization process.

Note: The ability to create external stored procedures that invoke iSeries procedures in service programs
was a feature added in i5/OS V5R3. Before that, external procedures only invoked program objects. The
following list describes the process of creating an external stored:

FLGHT400 database modernization

 42

1. Create a user-written service program: Use the I/O procedure dbxinscus2 in service program
NFSSQL. This is one of the procedures that was created during stage 2 of the modernization
process. The procedure accepts 11 input parameters (containing new customer information) and
inserts a new row in the table CUSTOMERS. Here is the source code for that procedure:

 p dbxInsCus2 b export

 d dbxInsCus2 pi
 d customer_name like(CustomerRow.cust_name)
 d address like(CustomerRow.address)
 d city like(CustomerRow.city)
 d state like(CustomerRow.state)
 d zipCode like(CustomerRow.zipcode)
 d telephone like(CustomerRow.telephone)
 d creditCard like(CustomerRow.cred_card)
 d CC_Number like(CustomerRow.cc_number)
 d exp_Date like(CustomerRow.exp_date)
 d pref_Airline like(CustomerRow.pref_airln)
 d ff_Number like(CustomerRow.ff_Number)
 d outSqlState 5a
 d outSqlMsg 256a

 d Apostrophe C ''''

 d SQLStatement s 512
 d nextCustNum2 s like(CustomerRow.cust_no)
 d customer_no s like(CustomerRow.cust_no)

 * Useq SQL sequence to generate next customer number
 C/EXEC SQL
 c+ VALUES NEXT VALUE FOR customer_number
 c+ INTO :nextCustNum2
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 customer_no = -1;
 return;
 else;
 customer_no = nextCustNum2;
 endif;
 /end-free

 * Insert the new row
 C/EXEC SQL
 c+ insert into allCusts
 c+ values (:customer_no, :customer_name, :address, :city,
 c+ :state, :zipcode, :telephone, :creditCard,
 c+ :cc_number, :exp_date, :pref_airline, :ff_Number)
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 /end-free

 p dbxInsCus2 e

FLGHT400 database modernization

 43

2. Register the program or procedure as a stored procedure using any SQL interface:
To do this, open a Run SQL Script window and execute the following statement:

CREATE PROCEDURE FLGHT400M2.ADDCUSTOMER ([a]
 IN customer_name VARCHAR(64) ,
 IN customer_address VARCHAR(150) ,
 IN customer_city CHAR(50) ,
 IN customer_state CHAR(2) ,
 IN customer_zip CHAR(9) ,
 IN customer_telephone CHAR(20) ,
 IN customer_credit_card CHAR(30) ,
 IN customer_cc_number CHAR(20) ,
 IN customer_cc_exp_date CHAR(20) ,
 IN customer_pref_airline CHAR(10) ,
 IN customer_ff_number CHAR(20) ,
 OUT sql_state char(5)

OUT sql_msg char(256))
 LANGUAGE RPGLE
 NOT DETERMINISTIC
 MODIFIES SQL DATA
 CALLED ON NULL INPUT
 EXTERNAL NAME 'FLGHT400M2/NFSSQL(DBXINSCUS2)' [b]
 PARAMETER STYLE SQL ;

Code sample notes (see annotations in red):

a. The SQL long name for the stored procedure

b. The name of the library (FLGHT400M2), service program (NFSSQL), and procedure
(DBXINSCUS2) to invoke when calling the stored procedure.

3. With the stored procedure created and registered, you can call it from any SQL-based interface
that supports the SQL CALL statement. For example, from a Run SQL Scripts window, execute
the following statement to call the stored procedure and insert a new customer record:

Call FLGHT400M2.ADDCUSTOMER (
 'Steve Carfino' ,
 '123 Mockingbird Lane',
 'Rochester',
 'MN',
 '55901 ',
 '5074445555',
 'VISA',
 '11111111111111',
 '10/2007',
 'NWA',
 '33333333333',
 ?,

?);

FLGHT400 database modernization

 44

The following Java code snippet demonstrates how this stored procedure can be called from a
Java client:

 conn = ds.getConnection();
 stmt = conn.prepareCall("CALL ADDCUSTOMER (?,?,?,?,?,?,?,?,?,?,?,?,?)");
 stmt.setString(1,"Steve Carfino");
 stmt.setString(2,"123 Mockingbird Lane");
 stmt.setString(3,"Rochester");
 stmt.setString(4,"MN");
 stmt.setString(5,"55901");
 stmt.setString(6,"50744455555");
 stmt.setString(7,"VISA");
 stmt.setString(8,"11111111111111");
 stmt.setString(9,"10/2007");
 stmt.setString(10,"NWA");
 stmt.setString(11,"33333333333");

 // call the stored procedure
 stmt.execute();

Again, it is important to note that the same procedure (dbxInsCus2 in service program NFSSQL) can be
called directly from an RPG program; or it can be called as a stored procedure from any SQL-based
interface. This ability to reuse existing code is a compelling reason to consider implementing external
stored procedures.

Summary
A vital, but often overlooked, component in the overall iSeries Developer Roadmap process is the
modernization of the database. Most of the attention is focused on program modularization, separating
business logic from screen logic, and reengineering or rewriting the user interface. However, the
database is the foundation of most applications, and as such, needs to be given equal consideration in
this enhancement process. Without database modernization, applications will continue to use native I/O
access methods and will not be able to take advantage of many new database features and
enhancements that are only available through SQL interfaces. While it is acknowledged that the database
modernization effort is not a trivial one, the objective of this white paper is to provide enough information
(through discussion and examples) to enhance your awareness on this subject. Hopefully, this white
paper has convinced you that it is a vital step and that many advantages can be realized if it is included in
the modernization process.

FLGHT400 database modernization

 45

Appendix A: SQL scripts
Six SQL scripts are provided in this appendix:

 SQL procedure GenIndexList
 SQL procedure GenIndexList2
 SQL DDL script to create the tables
 SQL DDL script to create the indexes
 SQL DDL script to create the views
 SQL DDL script to create the constraints

SQL procedure GenIndexList
CREATE PROCEDURE QGPL.GenIndexList(SchemaName VARCHAR(10))
LANGUAGE SQL

Level_1 :
BEGIN

 DECLARE ixTable VARCHAR(128);
 DECLARE ixTableSchema VARCHAR(128);
 DECLARE at_end INT DEFAULT 0;

 DECLARE c1 CURSOR FOR
 SELECT table_name, table_schema
 FROM qsys2.systables
 WHERE (table_schema=UPPER(SchemaName) OR
 system_table_schema=UPPER(SchemaName)) AND
 table_type = 'P' and
 file_type = 'D'
 order by table_name;

 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET at_end = 1;

 DECLARE CONTINUE HANDLER FOR SQLSTATE '42704'
 SET at_end = 0;

 DROP TABLE QTEMP.IndexList;
 CREATE TABLE QTEMP.IndexList (
 TABLE_NAME VARCHAR(128) DEFAULT NULL,
 TABLE_SCHEMA VARCHAR(128) DEFAULT NULL,
 IDX_NAME VARCHAR(128) DEFAULT NULL,
 IDX_SCHEMA VARCHAR(128) DEFAULT NULL,
 IS_UNIQUE CHAR(1) DEFAULT NULL,
 KEY_COLUMN VARCHAR(128) DEFAULT NULL,
 ORDINAL_POS INTEGER DEFAULT NULL ,
 ORDERING CHAR(1) DEFAULT NULL,
 SYS_IDX_NAME VARCHAR(128) DEFAULT NULL,
 SYS_IDX_SCHEMA VARCHAR(128) DEFAULT NULL);

 OPEN c1;
 WHILE at_end = 0 DO
 FETCH FROM c1 INTO ixTable, ixTableSchema;
 call QGPL.GenIndexList2(ixTable, ixTableSchema);
 END WHILE;
 CLOSE c1;
End Level_1;

FLGHT400 database modernization

 46

SQL procedure GenIndexList2
CREATE PROCEDURE QGPL.GenIndexList2(TableName VARCHAR(128), SchemaName VARCHAR(128))
LANGUAGE SQL

BEGIN

DECLARE ixTable VARCHAR(128);
DECLARE ixTableSchema VARCHAR(128);

SELECT table_name, table_schema INTO ixTable, ixTableSchema
 FROM qsys2.systables
 WHERE (table_name=UPPER(TableName) and table_schema=UPPER(SchemaName)) OR
 (system_table_name=UPPER(TableName)
 and system_table_schema=UPPER(SchemaName));

INSERT INTO QTEMP.IndexList
WITH SQL_Indices

(table_name, table_schema, index_name, index_schema, is_unique, system_index_name,
system_index_schema)
 AS (SELECT table_name, table_schema, index_name, index_schema, is_unique,
system_index_name,
 system_index_schema
 FROM qsys2.sysindexes
 WHERE table_name = ixTable AND table_schema = ixTableSchema),

Const_Indices (table_name, table_schema, index_name, index_schema, is_unique)
 AS (SELECT table_name, table_schema, constraint_name, constraint_schema,
 CASE WHEN constraint_type = 'FOREIGN KEY' THEN 'D' ELSE 'U' END
 FROM qsys2.syscst
 WHERE table_name = ixTable AND table_schema = ixTableSchema
 and constraint_type<>'CHECK'),

KeyedLF_Indices (table_name, table_schema, index_name, index_schema, is_unique)
 AS (SELECT DBFFIL, DBFLIB, dbxfil, dbxlib, dbxunq
 FROM qsys.qadbxref, qsys.qadbfdep
 WHERE dbxatr='LF' AND dbxnkf>0 AND dbffdp=dbxfil AND dbfldp=dbxlib
 AND dbffil=ixTable
 AND dbflib=ixTableSchema),

KeyedPF_Index (table_name, table_schema, index_name, index_schema, is_unique,dbxfil)
AS (SELECT dbxlfi,dbxlib,dbxlfi,dbxlib,dbxunq,dbxfil
 FROM qsys.qadbxref
 WHERE dbxatr='PF' AND dbxnkf>0 AND dbxlib=ixTableSchema AND dbxlfi=ixTable
 AND NOT EXISTS (SELECT 1 FROM qsys.qadbfcst
 WHERE dbxlib=dbccfl AND dbxfil=dbccff AND dbccty='PRIMARY KEY'))

/* ---*/
/* SQL Indices */
/*--*/
SELECT
 SUBSTRING(SQL_Indices.table_name, 1, 30),
 SUBSTRING(SQL_Indices.table_schema, 1, 10),
 CASE
 WHEN ordinal_position = 1
 THEN SUBSTRING(SQL_Indices.index_name, 1, 30)
 ELSE ' '
 END as INDEX_NAME,
 CASE
 WHEN ordinal_position = 1
 THEN SUBSTRING(SQL_Indices.index_schema, 1, 10)

FLGHT400 database modernization

 47

 ELSE ' '
 END as INDEX_SCHEMA,
 is_unique,
 SUBSTRING(column_name, 1, 30) as KEY_COLUMN,
 ordinal_position,
 ordering ,
 SQL_Indices.system_index_name,
 SQL_Indices.system_index_schema
 FROM SQL_Indices, qsys2.syskeys B
 WHERE SQL_Indices.system_index_name = B.system_index_name
 AND SQL_Indices.system_index_schema = B.system_index_schema

UNION

/* ---*/
/* Constraint Indices */
/*--*/
SELECT
 SUBSTRING(Const_Indices.table_name, 1, 30),
 SUBSTRING(Const_Indices.table_schema, 1, 10),
 CASE
 WHEN ordinal_position = 1
 THEN SUBSTRING(Const_Indices.index_name, 1, 30)
 WHEN ordinal_position > 1 THEN ' '
 END,
 CASE
 WHEN ordinal_position = 1
 THEN SUBSTRING(Const_Indices.index_schema, 1, 10)
 WHEN ordinal_position > 1 THEN ' '
 END,
 is_unique,
 SUBSTRING(column_name, 1, 30),
 ordinal_position,
 'A' ,
 index_name,
 index_schema
 FROM Const_Indices, qsys2.syskeycst B
 WHERE Const_Indices.index_name = B.constraint_name
 AND Const_Indices.index_schema = B.constraint_schema

UNION

/* ---*/
/* Keyed LF Indices */
/*--*/
 SELECT
 SUBSTRING(KeyedLF_Indices.table_name, 1, 30),
 SUBSTRING(KeyedLF_Indices.table_schema, 1, 10),
 CASE
 WHEN dbkpos = 1
 THEN SUBSTRING(KeyedLF_Indices.index_name, 1, 10)
 ELSE ' '
 END,
 CASE
 WHEN dbkpos = 1
 THEN SUBSTRING(KeyedLF_Indices.index_schema, 1, 10)
 ELSE ' '
 END ,
 is_unique,
 dbiint,
 dbkpos,
 dbkord,

FLGHT400 database modernization

 48

 index_name,
 index_schema
 FROM KeyedLF_Indices, qsys.qadbkfld B , qsys.qadbifld C
 WHERE KeyedLF_Indices.index_name = dbkfil
 AND KeyedLF_Indices.index_schema = dbklib
 AND KeyedLF_Indices.index_name = dbifil
 AND KeyedLF_Indices.index_schema = dbilib
 AND dbkfld = dbifld

 UNION

/* ---*/
/* Keyed PF Indices */
/*--*/
SELECT
 SUBSTRING(KeyedPF_Index.table_name, 1, 30),
 SUBSTRING(KeyedPF_Index.table_schema, 1, 10),
 CASE
 WHEN dbkpos = 1
 THEN SUBSTRING(KeyedPF_Index.index_name, 1, 10)
 ELSE ' '
 END ,
 CASE
 WHEN dbkpos = 1
 THEN SUBSTRING(KeyedPF_Index.index_schema, 1, 10)
 ELSE ' '
 END ,
 is_unique,
 dbiint,
 dbkpos,
 dbkord,
 index_name,
 index_schema
 FROM KeyedPF_Index, qsys.qadbkfld B, qsys.qadbifld C
 WHERE KeyedPF_Index.index_name = dbkfil
 AND KeyedPF_Index.index_schema = dbklib
 AND KeyedPF_Index.index_name = dbifil
 AND KeyedPF_Index.index_schema = dbilib
 AND dbkfld = dbifld
 ORDER BY 1,2,9,10,7 ;

END;

FLGHT400 database modernization

 49

SQL DDL script to create the tables
SET CURRENT SCHEMA FLGHT400M2;

CREATE TABLE agents (
 agent_no INTEGER DEFAULT NULL ,
 agent_name VARCHAR(64) CCSID 37 DEFAULT NULL ,
 agent_pwd VARCHAR(64) CCSID 37 DEFAULT NULL) ;

LABEL ON TABLE agents
 IS 'Airline Agents' ;

LABEL ON COLUMN agents
(agent_pwd IS 'AGENT_PASSWORD') ;

LABEL ON COLUMN agents
(agent_pwd TEXT IS 'AGENT_PASSWORD') ;

CREATE TABLE AIRLINE (
 airlnm CHAR(16) CCSID 37 NOT NULL DEFAULT '' ,
 airlin CHAR(3) CCSID 37 NOT NULL DEFAULT '' ,
 PRIMARY KEY(airlnm)) ;

LABEL ON TABLE airline
 IS 'Airline Table for validation' ;

LABEL ON COLUMN airline
 (airlnm IS 'AIRLINE NAME' ,
 airlin IS 'AIRLINE INITIALS') ;

LABEL ON COLUMN airline
(airlnm TEXT IS 'AIRLINE NAME' ,
 airlin TEXT IS 'AIRLINE INITIALS') ;

CREATE TABLE customers (
 customer_no FOR COLUMN cust_no INTEGER DEFAULT NULL ,
 customer_name FOR COLUMN cust_name VARCHAR(64) CCSID 37 DEFAULT NULL ,
 address VARCHAR(150) CCSID 37 NOT NULL DEFAULT '' ,
 city CHAR(50) CCSID 37 DEFAULT NULL ,
 state CHAR(2) CCSID 37 DEFAULT NULL ,
 zipcode CHAR(9) CCSID 37 DEFAULT NULL ,
 telephone CHAR(20) CCSID 37 DEFAULT NULL ,
 credit_card FOR COLUMN cred_card CHAR(30) CCSID 37 DEFAULT NULL ,
 cc_number CHAR(20) CCSID 37 DEFAULT NULL ,
 exp_date CHAR(20) CCSID 37 DEFAULT NULL ,
 pref_airline_id FOR COLUMN pref_airln CHAR(10) CCSID 37 DEFAULT NULL ,
 ff_number CHAR(20) CCSID 37 DEFAULT NULL) ;

LABEL ON TABLE customers
 IS 'Airline Customers' ;

LABEL ON COLUMN customers
 (customer_no TEXT IS 'CUSTOMER_NO' ,
 customer_name TEXT IS 'CUSTOMER_NAME' ,
 credit_card TEXT IS 'CREDIT_CARD' ,
 cc_number TEXT IS 'CREDIT_CARD' ,
 exp_date TEXT IS 'CREDIT_CARD' ,
 pref_airline_id TEXT IS 'CREDIT_CARD' ,
 ff_number TEXT IS 'CREDIT_CARD') ;

CREATE TABLE FLIGHTS (

FLGHT400 database modernization

 50

 flight_number FOR COLUMN flight_no INTEGER DEFAULT NULL ,
 departure_initials FOR COLUMN depar_int CHAR(3) CCSID 37 DEFAULT NULL ,
 departure VARCHAR(16) CCSID 37 DEFAULT NULL ,
 day_of_week FOR COLUMN day_week VARCHAR(16) CCSID 37 DEFAULT NULL ,
 arrival_initials FOR COLUMN arriv_int CHAR(3) CCSID 37 DEFAULT NULL ,
 arrival VARCHAR(16) CCSID 37 DEFAULT NULL ,
 departure_time FOR COLUMN depar_time VARCHAR(32) CCSID 37 DEFAULT NULL ,
 arrival_time FOR COLUMN arriv_time VARCHAR(32) CCSID 37 DEFAULT NULL ,
 airlines CHAR(16) CCSID 37 DEFAULT NULL ,
 seats_available FOR COLUMN seats_avl INTEGER DEFAULT NULL ,
 ticket_price FOR COLUMN ticket_prc VARCHAR(22) CCSID 37 DEFAULT NULL ,
 mileage INTEGER DEFAULT NULL) ;

LABEL ON TABLE flights
 IS 'Flight schedule' ;

LABEL ON COLUMN flights
 (flight_number TEXT IS 'FLIGHT_NUMBER' ,
 departure_initials TEXT IS 'DEPARTURE_INITIALS' ,
 departure TEXT IS 'DEPARTURE' ,
 day_of_week TEXT IS 'DAY_OF_WEEK' ,
 arrival_initials TEXT IS 'ARRIVAL_INITIALS' ,
 arrival TEXT IS 'ARRIVAL' ,
 departure_time TEXT IS 'DEPARTURE_TIME' ,
 arrival_time TEXT IS 'ARRIVAL_TIME' ,
 airlines TEXT IS 'AIRLINES' ,
 seats_available TEXT IS 'SEATS_AVAILABLE' ,
 ticket_price TEXT IS 'TICKET_PRICE' ,
 mileage TEXT IS 'MILEAGE') ;

CREATE TABLE FRCITY (
 frcnam CHAR(16) CCSID 37 NOT NULL DEFAULT '' ,
 frcint CHAR(3) CCSID 37 NOT NULL DEFAULT '' ,
 frcaln CHAR(3) CCSID 37 NOT NULL DEFAULT '' ,
 frcnbr NUMERIC(3, 0) NOT NULL DEFAULT 0 ,
 PRIMARY KEY(frcnam)) ;

LABEL ON TABLE frcity
 IS 'City table for building Flights (From City)' ;

LABEL ON COLUMN frcity
 (frcnam IS 'CITY NAME' ,
 frcint IS 'CITY INITIALS' ,
 frcaln IS 'CITY AIRLINE' ,
 frcnbr IS 'FROM CITY NUMBER') ;

LABEL ON COLUMN frcity
 (frcnam TEXT IS 'FROM CITY NAME' ,
 frcint TEXT IS 'FROM CITY INITIALS' ,
 frcaln TEXT IS 'FROM CITY AIRLINE' ,
 frcnbr TEXT IS 'FROM CITY NUMBER') ;

CREATE TABLE ORDERS (
 order_number FOR COLUMN order_no INTEGER DEFAULT NULL ,
 agent_no INTEGER DEFAULT NULL ,
 customer_no FOR COLUMN cust_no INTEGER DEFAULT NULL ,
 flight_number FOR COLUMN flight_no INTEGER DEFAULT NULL ,
 departure_date FOR COLUMN depar_date TIMESTAMP DEFAULT NULL ,
 tickets_ordered FOR COLUMN ticks_ord INTEGER DEFAULT NULL ,
 class VARCHAR(1) CCSID 37 DEFAULT NULL ,
 send_signature_with_order FOR COLUMN send_sig VARCHAR(16)CCSID 37 DEFAULT
NULL);

FLGHT400 database modernization

 51

LABEL ON TABLE orders
 IS 'Airline Orders' ;

LABEL ON COLUMN orders
 (send_signature_with_order IS ' SEND_SIGNATURE WITH_ORDER') ;

LABEL ON COLUMN orders
 (order_number TEXT IS 'ORDER_NUMBER' ,
 agent_no TEXT IS 'AGENT_NO' ,
 customer_no TEXT IS 'CUSTOMER_NO' ,
 flight_number TEXT IS 'FLIGHT_NUMBER' ,
 departure_date TEXT IS 'DEPARTURE_DATE' ,
 tickets_ordered TEXT IS 'TICKETS_ORDERED' ,
 class TEXT IS 'CLASS' ,
 send_signature_with_order TEXT IS ' SEND_SIGNATURE WITH_ORDER') ;

CREATE TABLE TOCITY (
 tocnam CHAR(16) CCSID 37 NOT NULL DEFAULT '' ,
 tocint CHAR(3) CCSID 37 NOT NULL DEFAULT '' ,
 PRIMARY KEY(tocnam)) ;

LABEL ON TABLE tocity
 IS 'City table for building Flights (To City)' ;

LABEL ON COLUMN tocity
(tocnam IS 'TO CITY NAME' ,
 tocint IS 'TO CITY INITIALS') ;

LABEL ON COLUMN tocity
 (tocnam TEXT IS 'TO CITY NAME' ,
 tocint TEXT IS 'TO CITY INITIALS');

FLGHT400 database modernization

 52

SQL DDL script to create the indexes
SET CURRENT SCHEMA flght400m2;
CREATE INDEX agents_ix1
 ON agents (agent_no ASC) ;
CREATE INDEX agents_ix2
 ON agents (agent_name ASC) ;
CREATE INDEX airline_ix1
 ON airline (airlin ASC) ;
CREATE INDEX customers_ix1
 ON customers (cust_name ASC) ;
CREATE INDEX customers_ix2
 ON customers (cust_no DESC) ;
CREATE INDEX FLIGHTS_IX1
 ON flights (departure ASC, arrival ASC, day_week ASC, flight_no ASC) ;
CREATE INDEX flights_ix2
 ON flights (flight_no ASC) ;
CREATE INDEX frcity_ix1
 ON frcity (frcint ASC) ;
CREATE INDEX orders_ix1
 ON orders (order_no ASC) ;
CREATE INDEX tocity_ix1
 ON tocity (tocint ASC) ;

FLGHT400 database modernization

 53

SQL DDL script to create the views
SET CURRENT SCHEMA flght400m2;

CREATE VIEW AllOrdCust
 (order_number FOR COLUMN order_no,
 customer_name FOR COLUMN cust_name,
 departure_date FOR COLUMN depar_date)
 AS SELECT o.order_Number, c.customer_Name,
 o.departure_date FROM customers c INNER JOIN orders o on
 c.customer_no = o.customer_no;

CREATE VIEW AllOrders
 (order_number FOR COLUMN order_no,
 agent_no,
 customer_no FOR COLUMN cust_no,
 flight_number FOR COLUMN flight_no,
 departure_date FOR COLUMN depar_date,
 tickets_ordered FOR COLUMN ticks_ord,
 class,
 send_signature_with_order FOR COLUMN send_sig)
 AS SELECT * FROM orders;

CREATE VIEW allCusts
 (customer_no FOR COLUMN cust_no,
 customer_name FOR COLUMN cust_name,
 address,
 city,
 state,
 zipcode,
 telephone,
 credit_card FOR COLUMN cred_card,
 cc_number,
 exp_date,
 pref_airline_id FOR COLUMN pref_airln,
 ff_number)
 AS SELECT * FROM customers;

CREATE VIEW allFlights
 (flight_number FOR COLUMN flight_no,
 departure_initials FOR COLUMN depar_int,
 departure,
 day_of_week FOR COLUMN day_week,
 arrival_initial FOR COLUMN arriv_int,
 arrival,
 departure_time FOR COLUMN depar_time,
 arrival_time FOR COLUMN arriv_time,
 airlines,
 seats_available FOR COLUMN seats_avl,
 ticket_price FOR COLUMN ticket_prc,
 mileage)
 AS SELECT * FROM flights;

 CREATE VIEW fromCities
 (frcnam,
 frcint,
 frcaln,
 frcnbr)
 AS SELECT * FROM frCity;

 CREATE VIEW toCities
 (tocnam,
 tocint)
 AS SELECT * FROM toCity;

FLGHT400 database modernization

 54

SQL DDL script to create the constraints
SET CURRENT SCHEMA flght400m2;

ALTER TABLE customers
 ADD CONSTRAINT customers_pk_customer_number
 PRIMARY KEY(customer_no);

ALTER TABLE agents
 ADD CONSTRAINT agents_pk_agent_number
 PRIMARY KEY(agent_no);

ALTER TABLE airline
 ADD CONSTRAINT airline_pk_airline_name
 PRIMARY KEY(airlnm);

ALTER TABLE tocity
 ADD CONSTRAINT tocity_pk_to_city_initials
 PRIMARY KEY(tocint);

ALTER TABLE frcity
 ADD CONSTRAINT frcity_pk_from_city_initials
 PRIMARY KEY(frcint);

ALTER TABLE flights
 ADD CONSTRAINT flights_pk_flight_number
 PRIMARY KEY(flight_number) ;

ALTER TABLE flights
 ADD CONSTRAINT flghts_fk_departure_city
 FOREIGN KEY (departure_initials)
 REFERENCES frcity (frcint)
 ON DELETE NO ACTION ON UPDATE NO ACTION;

ALTER TABLE flights
 ADD CONSTRAINT flghts_fk_arrival_city
 FOREIGN KEY (arrival_initials)
 REFERENCES tocity (tocint)
 ON DELETE NO ACTION ON UPDATE NO ACTION;

ALTER TABLE flights
 ADD CONSTRAINT flghts_fk_airlines
 FOREIGN KEY (airlines)
 REFERENCES airline (airlnm)
 ON DELETE NO ACTION ON UPDATE NO ACTION;

ALTER TABLE ORDERS
 ADD CONSTRAINT orders_fk_customer_number
 FOREIGN KEY (customer_no) REFERENCES customers (customer_no)
 ON DELETE NO ACTION ON UPDATE NO ACTION;

ALTER TABLE orders
 ADD CONSTRAINT orders_fk_flight_number
 FOREIGN KEY (flight_number)
 REFERENCES flights (flight_number)
 ON DELETE NO ACTION ON UPDATE NO ACTION;

ALTER TABLE orders
 ADD CONSTRAINT orders_fk_agent_number
 FOREIGN KEY (agent_no)
 REFERENCES agents (agent_no)
 ON DELETE NO ACTION ON UPDATE NO ACTION;

FLGHT400 database modernization

 55

Appendix B: Source code after conversion
Here are the binder source, prototypes, and various I/O procedures for fLGHT400.

NFSSQL (binder source)
STRPGMEXP PGMLVL(*CURRENT)
 EXPORT SYMBOL(DBXGETORD)
 EXPORT SYMBOL(DBXUPDORD)
 EXPORT SYMBOL(DBXDELORD)
 EXPORT SYMBOL(DBXNXTORDNUM)
 EXPORT SYMBOL(DBXINSORD)
 EXPORT SYMBOL(DBXGETCUSLST)
 EXPORT SYMBOL(DBXGETCUSBYNUM)
 EXPORT SYMBOL(DBXGETCUSBYNAM)
 EXPORT SYMBOL(DBXUPDCUS)
 EXPORT SYMBOL(DBXUPDCUS2)
 EXPORT SYMBOL(DBXINSCUS)
 EXPORT SYMBOL(DBXINSCUS2)
 EXPORT SYMBOL(DBXGETALLCUS)
 EXPORT SYMBOL(DBXGETCUSWCNAM)
 EXPORT SYMBOL(DBXGETORDCUSCN)
 EXPORT SYMBOL(DBXGETORDCUSTS)
 EXPORT SYMBOL(DBXGETFLTLST)
 EXPORT SYMBOL(DBXGETFLT)
 EXPORT SYMBOL(DBXGETFRCTY)
 EXPORT SYMBOL(DBXGETTOCTY)
 EXPORT SYMBOL(DBXGETTOCTYLST)
 EXPORT SYMBOL(DBXGETFRCTYLST)
ENDPGMEXP

NFSSQLPR (prototypes)
 d orderRow e ds extname(allOrders) qualified
 d customerRow e ds extname(allCusts) qualified
 d frCityRow e ds extname(FromCities) qualified
 d toCityRow e ds extname(ToCities) qualified
 d flightsRow e ds extname(allFlights) qualified
 d ordCustRow e ds extname(allOrdCust) qualified

 * Null indicator arrays
 D customerNIArr s 5i 0 dim(12)

 *--
 d dbxGetOrd pr likeds(orderRow)
 *--
 d inOrderNumber 9b 0 const
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxUpdOrd pr 5a
 *--
 d inOrderNumber 9b 0 const
 d inOrderRow likeds(orderRow)
 d outSqlMsg 256a

 *--
 d dbxDelOrd pr 5a
 *--

FLGHT400 database modernization

 56

 d inOrderNumber 9b 0 const
 d outSqlMsg 256a

 *--
 d dbxNxtOrdNum pr like(orderRow.order_no)
 *--
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxInsOrd pr
 *--
 d inOrdRow likeds(OrderRow)
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxGetCusByNum pr likeds(customerRow)
 *--
 d inCusNumber like(customerRow.cust_no) const
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxGetCusByNam pr likeds(customerRow)
 *--
 d inCusName 64a const
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxGetCusLst pr
 *--
 d Position 64 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d OutputType 1 const
 d outCustomers likeds(CustomerRow) dim(100)
 d options(*varsize)

 *--
 d dbxUpdCus pr
 *--
 d inCusNumber like(customerRow.cust_no) const
 d inCusRow likeds(customerRow)
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxUpdCus2 pr
 *--
 d customer_no like(customerRow.cust_no)
 d customer_name like(customerRow.cust_name)
 d address like(customerRow.address)
 d city like(customerRow.city)
 d state like(customerRow.state)
 d zipCode like(customerRow.zipcode)
 d telephone like(customerRow.telephone)
 d creditCard like(customerRow.cred_card)
 d CC_Number like(customerRow.cc_number)
 d exp_Date like(customerRow.exp_date)

FLGHT400 database modernization

 57

 d pref_Airline like(customerRow.pref_airln)
 d ff_Number like(customerRow.ff_Number)
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxInsCus pr
 *--
 d inCusRow likeds(customerRow)
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxInsCus2 pr
 *--
 d customer_name like(customerRow.cust_name)
 d address like(customerRow.address)
 d city like(customerRow.city)
 d state like(customerRow.state)
 d zipCode like(customerRow.zipcode)
 d telephone like(customerRow.telephone)
 d creditCard like(customerRow.cred_card)
 d CC_Number like(customerRow.cc_number)
 d exp_Date like(customerRow.exp_date)
 d pref_Airline like(customerRow.pref_airln)
 d ff_Number like(customerRow.ff_Number)
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxGetAllCus pr
 *--

 *--
 d dbxGetCusWCNam pr
 *--
 d inLastName 64

 *--
 d dbxGetOrdCus pr
 *--
 d custPosition 64 const
 d tsPosition 26 const
 d listType 1 const
 d countReq 10i 0 const
 d countRet 10i 0
 d outputType 1 const
 d ordCustList likeds(ordCustRow) dim(100)

 *--
 d dbxGetOrdCusCN pr
 *--
 d custPosition 64 const
 d listType 1 const
 d countReq 10i 0 const
 d countRet 10i 0
 d outputType 1 const
 d ordCustList likeds(ordCustRow) dim(100)

 *--
 d dbxGetOrdCusTS pr
 *--

FLGHT400 database modernization

 58

 d tsPosition 26 const
 d listType 1 const
 d countReq 10i 0 const
 d countRet 10i 0
 d outputType 1 const
 d ordCustList likeds(ordCustRow) dim(100)

 *--
 d dbxGetFrCty pr likeds(frCityRow)
 *--
 d inCityInt 3a const
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxGetToCty pr likeds(toCityRow)
 *--
 d inCityInt 3a const
 d outSqlState 5a
 d outSqlMsg 256a

 *--
 d dbxGetFrCtyLst pr
 *--
 d Position 16 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d CityList likeds(frCityRow) dim(100)
 d options(*varsize)

 *--
 d dbxGetToCtyLst pr
 *--
 d Position 16 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d CityList likeds(toCityRow) dim(100)
 d options(*varsize)

 *--
 d dbxGetFltLst pr
 *--
 d inFromCity 16 const
 d inToCity 16 const
 d inFlightDoW 16 const
 d outFlightCnt 10i 0
 d outFlights likeds(FlightsRow) dim(50)

 *--
 d dbxGetFlt pr likeds(flightsRow)
 *--
 d inFlightNum like(flightsRow.flight_no)
 d outSqlState 5a
 d outSqlMsg 256a

FLGHT400 database modernization

 59

NFSSQL (SQL I/O procedures)
 h nomain bnddir('FLGHT400M')

 /copy nfsSQLpr

 *--
 d closeCursor pr
 *--
 d cursorID 10a const

 *--
 d getSQLDiagMsg pr
 *--
 d outSqlMsg 256a

*__
 *
 * Order SQL I/O procedures

*__

 p dbxGetOrd b export

 * Returns one row from ORDERS table that matches the
 * specified order number

 d dbxGetOrd pi likeds(orderRow)
 d inOrderNumber 9b 0 const
 d outSqlState 5a
 d outSqlMsg 256a

 d outOrderRow ds likeds(orderRow)

 C/EXEC SQL
 c+ select * into :outOrderRow
 c+ from allOrders
 c+ where order_Number = :inOrderNumber
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 clear outOrderRow;
 endif;
 return outOrderRow;
 /end-free

 p dbxGetOrd e

 p dbxUpdOrd b export

 * Updates the row with the specified order number

 d dbxUpdOrd pi 5a
 d inOrderNumber 9B 0 const

FLGHT400 database modernization

 60

 d inOrderRow likeds(orderRow)
 d outSqlMsg 256a

 d outSqlState s 5a

 C/EXEC SQL
 c+ update allOrders
 c+ set row = :inOrderRow
 c+ where order_Number = :inOrderNumber
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 return outSqlState;
 /end-free

 p dbxUpdOrd e

 p dbxDelOrd b export

 * Deletes the row with the specified order number

 d dbxDelOrd pi 5a
 d inOrderNumber 9B 0 const
 d outSqlMsg 256a

 d outSqlState s 5a

 C/EXEC SQL
 c+ delete from allOrders
 c+ where order_Number = :inOrderNumber
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 return outSqlState;
 /end-free

 p dbxDelOrd e

 p dbxNxtOrdNum b export

 * Returns the next order number

 d dbxNxtOrdNum pi like(orderRow.order_no)
 d outSqlState 5a
 d outSqlMsg 256a

 d nextOrdNum s like(orderRow.order_no)

 /free

FLGHT400 database modernization

 61

 nextOrdNum = 0;
 /end-free

 * Use SQL sequence to generate next order number
 C/EXEC SQL
 c+ VALUES NEXT VALUE FOR order_number
 c+ INTO :nextOrdNum
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 return nextOrdNum;
 /end-free

 p dbxNxtOrdNum e

 p dbxInsOrd b export

 * Inserts a new row into ORDER table

 d dbxInsOrd pi
 d inOrdRow likeds(orderRow)
 d outSqlState 5a
 d outSqlMsg 256a

 C/EXEC SQL
 c+ insert into allOrders
 c+ values (:inOrdRow)
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 /end-free

 p dbxInsOrd e

*__
 *
 * Customer SQL I/O procedures

*__

 p dbxGetCusLst b export

 * Returns multiple rows from CUSTOMERS table that are
 * at or beyond the specified starting customer name

 d dbxGetCusLst pi
 d custPosition 64 const
 d listType 1 const

FLGHT400 database modernization

 62

 d countReq 10i 0 const
 d countRet 10i 0
 d outputType 1 const
 d outCustomers likeds(CustomerRow) dim(100)
 d options(*varsize)

 d SQLStatement s 512a
 d tableID s 10a inz('Cust')
 d cursorID s 4a
 d i s 10i 0

 * ListType options:
 * S Start a new list beginning at the position specified
 * N Start the list at the position just after the value specified
 * M Return only those values that start with the position specified
 * C Continue from the last position

 * Output Type options:
 * P Return results in output parameter (array)
 * R Return results in a results set

 * Construct the SQL Statement

 /free
 CountRet = 0;

 if ListType <> 'C';
 closeCursor('CusLstCN ');
 /end-free

 C/EXEC SQL
 C+ declare cursorCusLstCN CURSOR FOR
 c+ select *
 c+ from allCusts
 c+ where Customer_Name >= :custPosition
 c+ order by customer_name
 c+ optimize for 10 rows
 C/END-EXEC
 C/EXEC SQL
 C+ OPEN cursorCusLstCN
 C/END-EXEC SQL

 /free
 endif;

 select;
 when outputType = 'P';
 for i = 1 to CountReq;
 if sqlcod <> 0;
 leave;
 endif;

 /end-free

 C/EXEC SQL
 C+ FETCH cursorCusLstCN into :customerRow :customerNIArr
 C/END-EXEC

 /free

FLGHT400 database modernization

 63

 if sqlcod <> 0;
 leave;
 endif;
 CountRet = CountRet + 1;
 outCustomers(CountRet) = customerRow;
 endfor;

 when outputType = 'R';
 /end-free

 C/EXEC SQL
 C+ SET RESULT SETS CURSOR cursorCusLstCN
 C/END-EXEC SQL
 /free
 endsl;
 /end-free

 p dbxGetCusLst e

 p dbxGetCusByNum b export

 * Returns one row from CUSTOMERS table that matches the
 * specified customer number
 d dbxGetCusByNum pi likeds(CustomerRow)
 d inCusNumber like(customerRow.cust_no) const
 d outSqlState 5a
 d outSqlMsg 256a

 d outCusRow ds likeds(CustomerRow)

 C/EXEC SQL
 c+ select * into :outCusRow :customerNIArr
 c+ from allCusts
 c+ where customer_No = :inCusNumber
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 clear outCusRow;
 endif;
 return outCusRow;
 /end-free

 p dbxGetCusByNum e

 p dbxGetCusByNam b export

 * Returns one row from CUSTOMERS table that matches the
 * specified customer name

 d dbxGetCusByNam pi likeds(CustomerRow)
 d inCusName 64a const
 d outSqlState 5a
 d outSqlMsg 256a

 d outCustRow ds likeds(CustomerRow)

FLGHT400 database modernization

 64

 C/EXEC SQL
 c+ select * into :outCustRow :customerNIArr
 c+ from allCusts
 c+ where customer_Name = :inCusName
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 clear outCustRow;
 endif;
 return outCustRow;
 /end-free

 p dbxGetCusByNam e

 P dbxUpdCus b export

 d dbxUpdCus pi
 d inCusNumber like(customerRow.cust_no) const
 d inCusRow likeds(CustomerRow)
 d outSqlState 5a
 d outSqlMsg 256a

 C/EXEC SQL
 c+ update allCusts
 c+ set row = :inCusRow
 c+ where customer_no = :inCusNumber
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 /end-free

 p dbxUpdCus e

 P dbxUpdCus2 b export

 d dbxUpdCus2 pi
 d customer_no like(CustomerRow.cust_no)
 d customer_name like(CustomerRow.cust_name)
 d address like(CustomerRow.address)
 d city like(CustomerRow.city)
 d state like(CustomerRow.state)
 d zipCode like(CustomerRow.zipcode)
 d telephone like(CustomerRow.telephone)
 d creditCard like(CustomerRow.cred_card)
 d CC_Number like(CustomerRow.cc_number)
 d exp_Date like(CustomerRow.exp_date)
 d pref_Airline like(CustomerRow.pref_airln)
 d ff_Number like(CustomerRow.ff_Number)

FLGHT400 database modernization

 65

 d outSqlState 5a
 d outSqlMsg 256a

 * Update the customer row
 C/EXEC SQL
 c+ update allCusts
 c+ set customer_no = :customer_no,
 c+ customer_name = :customer_name,
 c+ address = :address,
 c+ city = :city,
 c+ state = :state,
 c+ zipcode = :zipCode,
 c+ telephone = :telephone,
 c+ credit_card = :creditcard,
 c+ cc_number = :cc_number,
 c+ exp_date = :exp_date,
 c+ pref_airline_id = :pref_airline,
 c+ ff_Number = :ff_Number
 c+ where customer_no = :customer_no
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 /end-free

 *
 p dbxUpdCus2 e

 p dbxInsCus b export

 * Inserts a new row into CUSTOMERS table

 d dbxInsCus pi
 d inCusRow likeds(CustomerRow)
 d outSqlState 5a
 d outSqlMsg 256a

 d NextCustNum s 9b 0

 * Use SQL sequence to generate next customer number
 C/EXEC SQL
 c+ VALUES NEXT VALUE FOR customer_number
 c+ INTO :nextCustNum
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 inCusRow.cust_no = -1;
 return;
 else;
 inCusRow.cust_no = nextCustNum;
 endif;
 /end-free

 C/EXEC SQL

FLGHT400 database modernization

 66

 c+ insert into allCusts
 c+ values (:inCusRow)
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 /end-free

 p dbxInsCus e

 p dbxInsCus2 b export

 d dbxInsCus2 pi
 d customer_name like(CustomerRow.cust_name)
 d address like(CustomerRow.address)
 d city like(CustomerRow.city)
 d state like(CustomerRow.state)
 d zipCode like(CustomerRow.zipcode)
 d telephone like(CustomerRow.telephone)
 d creditCard like(CustomerRow.cred_card)
 d CC_Number like(CustomerRow.cc_number)
 d exp_Date like(CustomerRow.exp_date)
 d pref_Airline like(CustomerRow.pref_airln)
 d ff_Number like(CustomerRow.ff_Number)
 d outSqlState 5a
 d outSqlMsg 256a

 d Apostrophe C ''''

 d SQLStatement s 512
 d nextCustNum2 s like(CustomerRow.cust_no)
 d customer_no s like(CustomerRow.cust_no)

 * Useq SQL sequence to generate next customer number
 C/EXEC SQL
 c+ VALUES NEXT VALUE FOR customer_number
 c+ INTO :nextCustNum2
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 customer_no = -1;
 return;
 else;
 customer_no = nextCustNum2;
 endif;
 /end-free

 * Insert the new row
 C/EXEC SQL
 c+ insert into allCusts
 c+ values (:customer_no, :customer_name, :address, :city,
 c+ :state, :zipcode, :telephone, :creditCard,

FLGHT400 database modernization

 67

 c+ :cc_number, :exp_date, :pref_airline, :ff_Number)
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 endif;
 /end-free

 p dbxInsCus2 e

 //**
 p dbxGetAllCus b export
 //**
 * Returns all rows from CUSTOMERS table to result set

 d dbxGetAllCus pi

 C/EXEC SQL
 C+ DECLARE allCusCursor CURSOR FOR
 C+ SELECT customer_name, customer_no, credit_card
 C+ FROM allCusts
 C+ ORDER BY customer_name
 C/END-EXEC SQL

 C/EXEC SQL
 C+ OPEN allCusCursor
 C/END-EXEC SQL

 C/EXEC SQL
 C+ SET RESULT SETS CURSOR allCusCursor
 C/END-EXEC SQL

 p dbxGetAllCus e

 p dbxGetCusWCNam b export

 * Finds all rows from CUSTOMERS table
 * that match a wildcard search by name.
 * Results returned to a results set

 d dbxGetCusWCNam pi
 d inLastName 64

 d Apostrophe C ''''
 d LastNameKey s 64
 d FetchName s 64
 d SQLStatement s 512

 c eval LastNameKey = %trim(inLastName) + '%'
 * Construct the SQL Statement
 C Eval SQLStatement = 'SELECT customer_name, +
 c customer_no, credit_card +
 c from flght400m2/allCusts +
 C where UPPER(customer_name) +
 c like UPPER(' +
 c Apostrophe +

FLGHT400 database modernization

 68

 c %trim(inLastName) + '%' +
 c Apostrophe +
 c ') Order By customer_name'

 C/EXEC SQL
 C+ PREPARE allCusStatement FROM :SQLStatement
 C/END-EXEC
 *
 * Declare the SQL cursor to hold the data retrieved from the SELECT
 C/EXEC SQL
 C+ DECLARE CustLstNamCursor CURSOR FOR allCusStatement
 C/END-EXEC
 *
 * Open the SQL cursor.
 C/EXEC SQL
 C+ OPEN CustLstNamCursor
 C/END-EXEC SQL
 *
 c* enddo

 *
 C/EXEC SQL
 C+ SET RESULT SETS CURSOR CustLstNamCursor
 C/END-EXEC SQL

 p dbxGetCusWCNam e

 p dbxGetOrdCusCN b export

 * Returns multiple rows from Orders and Customers tables
 * that are at or beyond the specified starting customer name

 d dbxGetOrdCusCN pi
 d custPosition 64 const
 d listType 1 const
 d countReq 10i 0 const
 d countRet 10i 0
 d outputType 1 const
 d ordCustList likeds(ordCustRow) dim(100)

 d i s 10i 0
 d cursorID s 4a

 * ListType options:
 * S Start a new list beginning at the position specified
 * N Start the list at the position just after the value specified
 * M Return only those values that start with the position specified
 * C Continue from the last position

 * Output Type options:
 * P Return results in output parameter (array)
 * R Return results in a results set

 * If listType is not C (Continue fetching rows in the cursor)
 * declare and open the cursor

 /free
 CountRet = 0;
 if listType <> 'C';
 closeCursor('OrdCusCN ');

FLGHT400 database modernization

 69

 /end-free

 C/EXEC SQL
 C+ declare cursorOrdCusCN CURSOR FOR
 c+ select *
 c+ from allOrdCust
 c+ where customer_name >= :custPosition
 c+ order by customer_name
 c+ optimize for 10 rows
 C/END-EXEC
 C/EXEC SQL
 C+ OPEN cursorOrdCusCN
 C/END-EXEC SQL

 /free
 endif;

 select;
 when outputType = 'P';
 for i = 1 to CountReq;
 if sqlcod <> 0;
 leave;
 endif;
 /end-free

 C/EXEC SQL
 C+ FETCH cursorOrdCusCN into :ordCustRow
 C/END-EXEC

 /free
 if sqlcod <> 0;
 leave;
 endif;
 CountRet = CountRet + 1;
 ordCustList(CountRet) = ordCustRow;
 endfor;

 when outputType = 'R';
 /end-free

 C/EXEC SQL
 C+ SET RESULT SETS CURSOR cursorOrdCusCN
 C/END-EXEC SQL

 /free
 endsl;
 return;

 /end-free

 p dbxGetOrdCusCN e

 p dbxGetOrdCusTS b export

 * Returns multiple rows from Orders and Customers tables
 * that are at or beyond the specified starting timestamp

 d dbxGetOrdCusTS pi

FLGHT400 database modernization

 70

 d tsPosition 26 const
 d listType 1 const
 d countReq 10i 0 const
 d countRet 10i 0
 d outputType 1 const
 d ordCustList likeds(ordCustRow) dim(100)

 d i s 10i 0

 d OrdCust ds likeds(ordCustRow) dim(100)

 * ListType options:
 * S Start a new list beginning at the position specified
 * N Start the list at the position just after the value specified
 * M Return only those values that start with the position specified
 * C Continue from the last position

 * Output Type options:
 * P Return results in output parameter (array)
 * R Return results in a results set

 * If listType is not C (Continue fetching rows in the cursor)
 * declare and open the cursor

 /free
 CountRet = 0;
 if listType <> 'C';
 closeCursor('OrdCusTS ');
 /end-free

 C/EXEC SQL
 C+ declare cursorOrdCusTS CURSOR FOR
 c+ select *
 c+ from allOrdCust
 c+ where departure_date >= :tsPosition
 c+ order by departure_date
 c+ optimize for 10 rows
 C/END-EXEC
 C/EXEC SQL
 C+ OPEN cursorOrdCusTS
 C/END-EXEC SQL

 /free
 endif;

 select;
 when outputType = 'P';
 for i = 1 to CountReq;
 if sqlcod <> 0;
 leave;
 endif;
 /end-free

 C/EXEC SQL
 C+ FETCH cursorOrdCusTS into :ordCustRow
 C/END-EXEC

 /free
 if sqlcod <> 0;
 leave;

FLGHT400 database modernization

 71

 endif;
 CountRet = CountRet + 1;
 ordCustList(CountRet) = ordCustRow;
 endfor;

 when outputType = 'R';
 /end-free

 C/EXEC SQL
 C+ SET RESULT SETS CURSOR cursorOrdCusTS
 C/END-EXEC SQL

 /free
 endsl;
 return;
 /end-free

 p dbxGetOrdCusTS e

*__
 *
 * Flights SQL I/O procedures

*__

 p dbxGetFltLst b export

 * Returns an array of up to 50 rows from flights table that match the
 * specified departure city, arrival city, and day of the week

 d dbxGetFltLst pi
 d inFromCity 16 const
 d inToCity 16 const
 d inFlightDoW 16 const
 d outFlightCnt 10i 0
 d outFlights likeds(FlightsRow) dim(50)

 C/EXEC SQL
 C+ declare FlightsCursor cursor for
 c+ select *
 c+ from allFlights
 c+ where departure = :inFromCity
 c+ and arrival = :inToCity
 c+ and day_of_week = :inFlightDOW
 c+ order by flight_number
 C/END-EXEC

 C/EXEC SQL
 C+ open flightsCursor
 C/END-EXEC

 /free
 for outFlightCnt = 1 to 50;
 /end-free

 C/EXEC SQL

FLGHT400 database modernization

 72

 C+ fetch flightsCursor INTO :flightsRow
 C/END-EXEC

 /free
 if %subst(sqlState:1:2) <> '00';
 leave;
 endif;
 outFlights(outFlightCnt) = flightsRow;
 endfor;
 outFlightCnt = outFlightCnt - 1;
 /end-free

 C/EXEC SQL
 C+ close flightsCursor
 C/END-EXEC

 p dbxGetFltLst e

 p dbxGetFlt b export

 * Returns one row from flights table that matches the
 * specified flight number

 d dbxGetFlt pi likeds(flightsRow)
 d inFlightNum like(flightsRow.flight_no)
 d outSqlState 5a
 d outSqlMsg 256a

 d outFlightRow ds likeds(flightsRow)

 C/EXEC SQL
 c+ select * into :outFlightRow
 c+ from allFlights
 c+ where flight_number = :inFlightNum
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 clear outFlightRow;
 endif;
 return outFlightRow;
 /end-free

 p dbxGetFlt e

*__
 *
 * City SQL I/O procedures

*__

 p dbxGetFrCty b export

 * Returns one row from FRCITY table that matches the
 * specified departure city initials

FLGHT400 database modernization

 73

 d dbxGetFrCty pi likeds(frCityRow)
 d inCityInt 3a const
 d outSqlState 5a
 d outSqlMsg 256a

 d outFrCityRow ds likeds(frCityRow)

 C/EXEC SQL
 c+ select * into :outFrCityRow
 c+ from fromCities
 c+ where frcint = :inCityInt
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 clear outFrCityRow;
 endif;
 return outFrCityRow;
 /end-free

 p dbxGetFrCty e

 p dbxGetToCty b export

 * Returns one row from TOCITY table that matches the
 * specified arrival city initials

 d dbxGetToCty pi likeds(toCityRow)
 d inCityInt 3a const
 d outSqlState 5a
 d outSqlMsg 256a

 d outToCityRow ds likeds(toCityRow)

 C/EXEC SQL
 c+ select * into :outToCityRow
 c+ from toCities
 c+ where tocint = :inCityInt
 C/END-EXEC

 /free
 outSqlState = sqlState;
 outSqlMsg = *blanks;
 if %subst(sqlState:1:2) <> '00';
 getSQLDiagMsg(outSqlMsg);
 clear outToCityRow;
 endif;
 return outToCityRow;
 /end-free

 p dbxGetToCty e

 p dbxGetFrCtyLst b export

 * Returns multiple rows from FRCITY table that are
 * at or beyond the specified starting departure

FLGHT400 database modernization

 74

 * city name

 d dbxGetFrCtyLst pi
 d Position 16 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d frCityList likeds(frCityRow) dim(100)
 d options(*varsize)

 d i s 10i 0
 d mlength s 10i 0

 /free
 select;
 when ListType = 'S' or ListType = 'M';
 /end-free
 C/EXEC SQL
 C+ declare frCityCursor cursor for
 c+ select *
 c+ from fromCities
 c+ where frcnam >= :Position
 c+ order by frcnam
 c+ optimize for 10 rows
 C/END-EXEC
 C/EXEC SQL
 C+ open frCityCursor
 C/END-EXEC
 /free
 when ListType = 'N';
 /end-free
 C/EXEC SQL
 C+ declare frCityCursor2 cursor for
 c+ select *
 c+ from fromCities
 c+ where frcnam > :Position
 c+ order by frcnam
 c+ optimize for 10 rows
 C/END-EXEC
 C/EXEC SQL
 C+ open frCityCursor2
 C/END-EXEC
 /free
 endsl;
 /end-free

 /free
 if ListType = 'M';
 mlength = %len(%trimr(Position));
 endif;
 CountRet = 0;
 for i = 1 to CountReq;
 select;
 when ListType = 'S' or ListType = 'M';
 /end-free
 C/EXEC SQL
 C+ fetch frCityCursor INTO :frCityRow
 C/END-EXEC
 /free
 when ListType = 'N';
 /end-free

FLGHT400 database modernization

 75

 C/EXEC SQL
 C+ fetch frCityCursor2 INTO :frCityRow
 C/END-EXEC
 /free
 endsl;

 if %subst(sqlState:1:2) <> '00' or
 (ListType = 'M' and
 %subst(Position:1:mlength) <> %subst(frCityRow.frcnam:1:mlength));
 leave;
 endif;
 CountRet = CountRet + 1;
 frCityList(CountRet) = frCityRow;
 endfor;

 select;
 when ListType = 'S' or ListType = 'M';
 /end-free
 C/EXEC SQL
 C+ close frCityCursor
 C/END-EXEC

 /free
 when ListType = 'N';
 /end-free
 C/EXEC SQL
 C+ close frCityCursor2
 C/END-EXEC
 /free
 endsl;
 /end-free

 p dbxGetFrCtyLst e

 p dbxGetToCtyLst b export

 * Returns multiple rows from TOCITY table that are
 * at or beyond the specified starting arrival
 * city name

 d dbxGetToCtyLst pi
 d Position 16 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d ToCityList likeds(toCityRow) dim(100)
 d options(*varsize)

 d i s 10i 0
 d mlength s 10i 0

 /free
 select;
 when ListType = 'S' or ListType = 'M';
 /end-free
 C/EXEC SQL
 C+ declare ToCityCursor cursor for
 c+ select *
 c+ from toCities
 c+ where tocnam >= :Position
 c+ order by tocnam
 c+ optimize for 10 rows

FLGHT400 database modernization

 76

 C/END-EXEC
 C/EXEC SQL
 C+ open toCityCursor
 C/END-EXEC
 /free
 when ListType = 'N';
 /end-free
 C/EXEC SQL
 C+ declare toCityCursor2 cursor for
 c+ select *
 c+ from toCities
 c+ where tocnam > :Position
 c+ order by tocnam
 c+ optimize for 10 rows
 C/END-EXEC
 C/EXEC SQL
 C+ open toCityCursor2
 C/END-EXEC
 /free
 endsl;
 /end-free

 /free
 if ListType = 'M';
 mlength = %len(%trimr(Position));
 endif;
 CountRet = 0;
 for i = 1 to CountReq;
 select;
 when ListType = 'S' or ListType = 'M';
 /end-free
 C/EXEC SQL
 C+ fetch toCityCursor INTO :toCityRow
 C/END-EXEC
 /free
 when ListType = 'N';
 /end-free
 C/EXEC SQL
 C+ fetch toCityCursor2 INTO :toCityRow
 C/END-EXEC
 /free
 endsl;
 if %subst(sqlState:1:2) <> '00' or
 (ListType = 'M' and
 %subst(Position:1:mlength) <> %subst(toCityRow.tocnam:1:mlength));
 leave;
 endif;
 CountRet = CountRet + 1;
 toCityList(CountRet) = toCityRow;
 endfor;

 select;
 when ListType = 'S' or ListType = 'M';
 /end-free
 C/EXEC SQL
 C+ close toCityCursor
 C/END-EXEC

 /free
 when ListType = 'N';
 /end-free

FLGHT400 database modernization

 77

 C/EXEC SQL
 C+ close toCityCursor2
 C/END-EXEC
 /free
 endsl;
 /end-free

 p dbxGetToCtyLst e

 p closeCursor b

 * Closes the Cursor ordCustCursor

 d closeCursor pi
 d cursorID 10 const

 /free
 select;
 when cursorID = 'OrdCusCN ';
 /end-free
 * Close the SQL cursor (in case it is already open)
 C/EXEC SQL
 C+ close cursorOrdCusCN
 C/END-EXEC

 /free
 when cursorID = 'OrdCusTS ';
 /end-free
 * Close the SQL cursor (in case it is already open)
 C/EXEC SQL
 C+ close cursorOrdCusTS
 C/END-EXEC

 /free
 when cursorID = 'CusLstCN ';
 /end-free
 * Close the SQL cursor (in case it is already open)
 C/EXEC SQL
 C+ close cursorCusLstCN
 C/END-EXEC

 /free
 endsl;
 /end-free

 p closeCursor e

 *__
 *
 * Get SQL Diagnostic message
 *__
 p getSQLDiagMsg b

 d getSQLDiagMsg pi
 d SQLmsg 256A
 *
 d cst_name s 128A
 d i s 10i 0
 *
 /free
 cst_name = *blanks;

FLGHT400 database modernization

 78

 sqlMsg = *blanks;
 /end-free
 *
 C/EXEC SQL
 C+ GET DIAGNOSTICS
 C+ :cond_count = NUMBER
 C/END-EXEC

 /free
 for i = 1 to cond_Count;
 /end-free

 C/EXEC SQL
 C+ GET DIAGNOSTICS CONDITION :i
 C+ :cst_name = CONSTRAINT_NAME,
 C+ :sqlMsg = MESSAGE_TEXT
 C/END-EXEC

 /free
 dsply sqlMsg;
 endfor;
 /end-free
 p getSQLDiagMsg e

Programs and modules converted from RLA to SQL I/O procedures

NFS001
 h nomain bnddir('FLGHT400M')

 D RCVM0100 DS qualified
 D BytesRtn 10I 0
 D BytesAvail 10I 0
 D MsgSev 10I 0
 D MsgID 7A
 D MsgType 2A
 D MsgKey 4A
 D 7A
 D CCSID_status 10I 0
 D CCSID 10I 0
 D MsgDtaLen 10I 0
 D MsgDtaAvail 10I 0
 D MsgDta 8000A

 D ErrorCode ds qualified
 D BytesProv 10I 0 inz(0)
 D BytesAvail 10I 0 inz(0)

 D Reply s 100A

 /copy nfs001pr
 /copy nfs400pr
 /copy nfsSQLpr

 *--
 d rcvMsg pr extpgm('QMHRCVPM')
 *--
 D MsgInfo 32767A options(*varsize)
 D MsgInfoLen 10I 0 const
 D Format 8A const

FLGHT400 database modernization

 79

 D StackEntry 10A const
 D StackCount 10I 0 const
 D MsgType 10A const
 D MsgKey 4A const
 D WaitTime 10I 0 const
 D MsgAction 10A const
 D ErrorCode 8000A options(*varsize)

 *--
 d GetTimeStamp pr z
 *--
 d DateChars 8 value
 d TimeChars 8 value

 *--
 d CheckOrder pr 10i 0
 *--
 d OrderInfo likeds(ReserveInfo) const

 *--
 d ConvertRecord pr likeds(ReserveInfo)
 *--

 *--
 d ConvertOrder pr
 *--
 d OrderInfo likeds(ReserveInfo) const

 *--
 d SendMessage pr
 *--
 d peMsg 256A const

 *--
 p GetTimeStamp b
 *--
 d GetTimeStamp pi z
 d DateChars 8 value
 d TimeChars 8 value
 /free
 return %timestamp(%char(%date(DateChars:*mdy)) + '-' +
 %char(%time(TimeChars:*usa)) + '.000000');
 /end-free
 p GetTimeStamp e

 *--
 p CheckOrder b
 *--
 d CheckOrder pi 10i 0
 d OrderInfo likeds(ReserveInfo) const
 e*
 d Flight ds likeds(FlightInfo)
 d DepartInfo s z
 /free
 GetFlightInfo(OrderInfo.FlightNumber:Flight);
 if Flight.Flight = *blank;
 return -1;
 endif;
 DepartInfo = GetTimeStamp(OrderInfo.DepartDate:OrderInfo.DepartTime);
 if %time(Flight.DepartTime:*usa) <> %time(DepartInfo);
 return -2;

FLGHT400 database modernization

 80

 endif;
 if OrderInfo.Tickets < 1;
 return -3;
 endif;
 return 0;
 /end-free
 p CheckOrder e

 *--
 p ConvertRecord b
 *--
 d ConvertRecord pi likeds(ReserveInfo)
 d*
 d OrderInfo ds likeds(ReserveInfo)
 /free
 clear OrderInfo;

 OrderInfo.AgentNumber = orderRow.AGENT_NO; // dbmodc //
 OrderInfo.CustNumber = orderRow.CUST_NO; //dbmc //
 OrderInfo.FlightNumber = %char(orderRow.FLIGHT_NO); //dbmc //
 OrderInfo.Tickets = orderRow.TICKS_ORD;
 select;
 when orderRow.CLASS = '1';
 OrderInfo.ServiceClass = 'F';
 when orderRow.CLASS = '2';
 OrderInfo.ServiceClass = 'B';
 when orderRow.CLASS = '3';
 OrderInfo.ServiceClass = 'C';
 endsl;
 OrderInfo.DepartDate = %char(%date(orderRow.DEPAR_DATE):*mdy);
 OrderInfo.DepartTime = %char(%date(orderRow.DEPAR_DATE):*usa);

 return OrderInfo;
 /end-free
 p ConvertRecord e

 *--
 p ConvertOrder b
 *--
 d ConvertOrder pi
 d OrderInfo likeds(ReserveInfo) const
 /free
 orderRow.agent_no = OrderInfo.AgentNumber;
 orderRow.cust_no = OrderInfo.CustNumber;
 orderRow.flight_no = %dec(OrderInfo.FlightNumber:7:0);
 orderRow.ticks_ord = OrderInfo.Tickets;
 select;
 when OrderInfo.ServiceClass = 'F';
 orderRow.class = '1';
 when OrderInfo.ServiceClass = 'B';
 orderRow.class = '2';
 other;
 orderRow.class = '3';
 endsl;
 orderRow.depar_date = GetTimeStamp(OrderInfo.DepartDate:
 OrderInfo.DepartTime);
 orderRow.send_sig = 'N';
 /end-free
 p ConvertOrder e

 p ComputePrice b export

FLGHT400 database modernization

 81

 d ComputePrice pi
 d BasePrice 3 const
 d ServiceClass 1 const
 d Tickets 3 0 const
 d Price 7 2
 d Tax 5 2
 d TotalDue 7 2
 /free
 Price = %dec(BasePrice:7:2);
 select;
 when ServiceClass = 'F';
 Price = Price * 3;
 when ServiceClass = 'B';
 Price = Price * 2;
 endsl;
 if Tickets > 1;
 Price = Price * Tickets;
 endif;
 Tax = Price * 0.04;
 TotalDue = Price + Tax;
 /end-free
 p ComputePrice e

 p ReserveFlight b export

 d ReserveFlight pi
 d OrderInfo likeds(ReserveInfo) const
 d OrderNumber 9B 0
 d outSqlState 5a
 d outSqlMsg 256a

 d newOrderRow ds likeds(orderRow)

 /free
 OrderNumber = CheckOrder(OrderInfo);
 if OrderNumber <> 0;
 return;
 endif;

 OrderNumber = dbxNxtOrdNum(outSqlState:outSqlMsg);
 ConvertOrder(OrderInfo);
 orderRow.order_no = OrderNumber;
 //orderRow.order_no = 5671303;
 //orderRow.cust_no = 9897983;
 newOrderRow = OrderRow;
 dbxInsOrd(newOrderRow : outsqlState: outsqlMsg);
 /end-free
 p ReserveFlight e

 p FindOrderCust b export

 d FindOrderCust pi
 d custPosition 64 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d OrderList likeds(OrderSummary) dim(100)

 d ordCustList ds likeds(ordCustRow) dim(100)

FLGHT400 database modernization

 82

 d i s 10i 0

 d outputType s 1a inz('P')

 /free
 dbxGetOrdCusCN(custPosition :
 ListType :
 CountReq :
 CountRet :
 outputType :
 ordCustList);
 for i = 1 to CountReq;
 OrderList(i).OrderNumber = ordCustList(i).order_no;
 OrderList(i).CustName = ordCustList(i).cust_name;
 OrderList(i).DepartDate =
 %char(%date(ordCustList(i).depar_date):*mdy);
 endfor;
 /end-free
 p FindOrderCust e

 p FindOrderDate b export

 d FindOrderDate pi
 d Position 8 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d OrderList likeds(OrderSummary) dim(100)
 d*
 d ordCustList ds likeds(ordCustRow) dim(100)
 d i s 10i 0
 d timeStamp s z
 d tsPosition s 26a
 d outputType s 1a inz('P')

 /free
 timeStamp = GetTimeStamp(Position:'12:01 AM');
 tsPosition = %char(timestamp);
 dbxGetOrdCusTS(tsPosition :
 ListType :
 CountReq :
 CountRet :
 outputType :
 ordCustList);
 for i = 1 to CountReq;
 OrderList(i).OrderNumber = ordCustList(i).order_no;
 OrderList(i).CustName = ordCustList(i).cust_name;
 OrderList(i).DepartDate =
 %char(%date(ordCustList(i).depar_date):*mdy);
 endfor;
 /end-free
 p FindOrderDate e

 p GetOrderInfo b export

 d GetOrderInfo pi
 d OrderNumber 9B 0 const
 d OrderInfo likeds(ReserveInfo)

FLGHT400 database modernization

 83

 d outSqlState s 5a
 d outSqlMsg s 256a

 /free
 clear OrderInfo;
 orderRow = dbxGetOrd(OrderNumber : outSqlState : outSqlMsg);

 if %subst(outSqlState:1:2) = '00';
 OrderInfo = ConvertRecord();
 endif;
 /end-free
 p GetOrderInfo e

 p UpdateOrder b export

 d UpdateOrder pi
 d OrderNumber 9B 0 const
 d OldOrder likeds(ReserveInfo) const
 d NewOrder likeds(ReserveInfo) const
 d outSqlState 5a
 d outSqlMsg 256a
 /free
 if CheckOrder(NewOrder) <> 0;
 return;
 endif;

 orderRow = dbxGetOrd(OrderNumber : outSqlState : outSqlMsg);
 if %subst(outSqlState:1:2) = '00'
 and OldOrder = ConvertRecord();
 ConvertOrder(NewOrder);
 outSqlState = dbxUpdOrd(OrderNumber : orderRow : outSqlMsg);
 endif;
 /end-free
 p UpdateOrder e

 p DeleteOrder b export

 d DeleteOrder pi
 d OrderNumber 9B 0 const
 d outSqlState 5a
 d outSqlMsg 256a
 /free
 outSqlState = dbxDelOrd(OrderNumber : outSqlMsg);
 /end-free
 p DeleteOrder e
 *
 *__
 *
 * Send Message to joblog
 *__
 *
 p SendMessage b
 d SendMessage pi
 D peMsg 256A const

 D SndPgmMsg PR ExtPgm('QMHSNDPM')
 D MessageID 7A Const
 D QualMsgF 20A Const
 D MsgData 256A Const
 D MsgDtaLen 10I 0 Const

FLGHT400 database modernization

 84

 D MsgType 10A Const
 D CallStkEnt 10A Const
 D CallStkCnt 10I 0 Const
 D MessageKey 4A
 D ErrorCode 32766A options(*varsize)
 D dsEC DS
 D dsECBytesP 1 4I 0 INZ(256)
 D dsECBytesA 5 8I 0 INZ(0)
 D dsECMsgID 9 15
 D dsECReserv 16 16
 D dsECMsgDta 17 256

 D wwMsgLen S 10I 0
 D wwTheKey S 4A

 c eval wwMsgLen = %len(%trimr(peMsg))
 c if wwMsgLen<1
 c return
 c endif

 c callp SndPgmMsg('CPF9897': 'QCPFMSG *LIBL':
 c peMsg: wwMsgLen: '*INFO':
 c '*PGMBDY': 1: wwTheKey: dsEC)
 c return
 p SendMessage e
 *

NFS402
 h nomain bnddir('FLGHT400M')

 /copy nfs402pr
 /copy nfsSQLpr

 p FindFromCities b export

 d FindFromCities pi
 d Position 16 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d CityList likeds(CityInfo) dim(100)
 d options(*varsize)

 d frCityList ds likeds(frCityRow) dim(100)
 d i s 10i 0

 /free
 dbxGetFrCtyLst(position: ListType: CountReq: CountRet: frCityList);
 for i = 1 to CountReq;
 CityList(i).name = frCityList(i).frcnam;
 CityList(i).initials = frCityList(i).frcint;
 CityList(i).airline = frCityList(i).frcaln;
 endfor;
 /end-free

 p FindFromCities e

FLGHT400 database modernization

 85

 p FindToCities b export

 d FindToCities pi
 d Position 16 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d CityList likeds(CityInfo) dim(100)
 d options(*varsize)

 d toCityList ds likeds(toCityRow) dim(100)
 d i s 10i 0

 /free
 dbxGetToCtyLst(position: ListType: CountReq: CountRet: toCityList);
 for i = 1 to CountReq;
 CityList(i).name = toCityList(i).tocnam;
 CityList(i).initials = toCityList(i).tocint;
 CityList(i).airline = *blanks;
 endfor;
 /end-free
 p FindToCities e

 p GetCityName b export

 d GetCityName pi
 d Initials 3 const
 d FromTo 1 const
 d Name 16

 d outSqlState s 5a
 d outSqlMsg s 256a

 /free
 Name = *blank;
 if FromTo = 'F';
 frCityRow = dbxGetFrCty(Initials : outSqlState : outSqlMsg);
 if %subst(outSqlState:1:2) = '00';
 Name = frCityRow.FRCNAM;
 endif;
 else;
 toCityRow = dbxGetToCty(Initials : outSqlState : outSqlMsg);
 if %subst(outSqlState:1:2) = '00';
 Name = toCityRow.TOCNAM;
 endif;
 endif;
 /end-free
 p GetCityName e

NFS404
 h nomain bnddir('FLGHT400M')

 /copy nfs404pr
 /copy nfsutilpr
 /copy nfsSQLpr

 p FindFlightsDoW b export

FLGHT400 database modernization

 86

 d FindFlightsDoW pi
 d FromCity 16 const
 d ToCity 16 const
 d FlightDoW 16 const
 d FlightCount 10i 0
 d Flights likeds(FlightInfo) dim(50)
 *
 d flRows ds likeds(FlightsRow) dim(50)
 *
 d i s like(flightCount)
 d FlightKey ds
 d KFromCity 16
 d KToCity 16
 d KDoW 16
 d Flight09 10i 0
 /free
 FlightCount = 0;
 KFromCity = %trim(FromCity);
 KToCity = %trim(ToCity);
 KDoW = %trim(FlightDoW);

 // call procedure to return all flights for the
 // departure city, arrival city, and day of the week
 // then load them into the return data structure
 dbxGetFltLst(kFromCity : kToCity : kDOW: FlightCount : flRows);
 for i = 1 to FlightCount;
 Flights(i).Airline = flRows(i).airlines;
 Flights(i).Flight = %char(flRows(i).flight_no);
 Flights(i).DoW = flRows(i).day_week;
 Flights(i).DepartCity = flRows(i).depar_int;
 Flights(i).ArriveCity = flRows(i).arriv_int;
 Flights(i).DepartTime = flRows(i).depar_time;
 Flights(i).ArriveTime = flRows(i).arriv_time;
 Flights(i).Price = flRows(i).ticket_prc;
 endfor;
 /end-free
 p FindFlightsDoW e

 p FindFlights b export

 d FindFlights pi
 d FromCity 16 const
 d ToCity 16 const
 d FlightDate 8 const
 d FlightCount 10i 0
 d Flights likeds(FlightInfo) dim(50)
 /free
 FindFlightsDoW(FromCity:ToCity:
 DayOfWeek(%dec(%subst(FlightDate:1:2):2:0):
 %dec(%subst(FlightDate:4:2):2:0):
 %dec(%subst(FlightDate:7:2):2:0) + 2000):
 FlightCount:Flights);
 /end-free
 p FindFlights e

 p GetFlightInfo b export

 d GetFlightInfo pi
 d FlightNumber 7 const
 d Flight likeds(FlightInfo)

FLGHT400 database modernization

 87

 d FlightKey s like(flightsRow.flight_no)
 d flRow ds likeds(flightsRow)
 d outSqlState s 5a
 d outSqlMsg s 256a

 /free
 FlightKey = %dec(FlightNumber:7:0);
 flRow = dbxGetFlt(FlightKey : outSqlState : outSqlMsg);
 if %subst(outSqlState:1:2) = '00';
 Flight.Airline = flRow.airlines;
 Flight.Flight = %char(flRow.flight_no);
 Flight.DoW = flRow.day_week;
 Flight.DepartCity = flRow.depar_int;
 Flight.ArriveCity = flRow.arriv_int;
 Flight.DepartTime = flRow.depar_time;
 Flight.ArriveTime = flRow.arriv_time;
 Flight.Price = flRow.ticket_prc;
 else;
 clear Flight;
 endif;
 /end-free
 p GetFlightInfo e

NFS405
 h nomain bnddir('FLGHT400M')

 /copy nfs405pr
 /copy nfsSQLpr

 //**
 p FindCustomers b export
 //**
 d FindCustomers pi
 d Position 64 const
 d ListType 1 const
 d CountReq 10i 0 const
 d CountRet 10i 0
 d CustList likeds(CustInfo) dim(100)
 d options(*varsize)
 //
 d i s 10i 0
 d outputType s 1 inz('P')
 d custRows ds likeds(CustomerRow) dim(100)

 /free
 dbxGetCusLst(Position : ListType : CountReq :
 CountRet : outputType : custRows);
 for i = 1 to CountRet;
 CustList(i).Name = custRows(i).cust_name;
 CustList(i).Number = custRows(i).cust_no;
 endfor;
 /end-free
 p FindCustomers e

 //**
 p GetCustNumber b export
 //**
 d GetCustNumber pi

FLGHT400 database modernization

 88

 d Name 64 const
 d Number 9B 0
 d Generate 1 const options(*nopass)
 //
 d NameV s 64 varying
 d outSqlState s 5a
 d outSqlMsg s 256a
 d newCustRow ds likeds(CustomerRow)
 d custNo s like(customerRow.cust_no)

 /free
 NameV = %trim(Name);
 customerRow = dbxGetCusByNam(Name : outSqlState : outSqlMsg);
 if %subst(outSqlState:1:2) <> '00';
 if %parms > 2 and Generate = 'Y';
 newCustRow.cust_name = Name;
 dbxInsCus(newCustRow : outSqlState : outSqlMsg);
 custNo = newCustRow.cust_no;
 else;
 custNo = -1;
 endif;
 else;
 custNo = customerRow.cust_no;
 endif;
 Number = CUSTNO;
 /end-free
 p GetCustNumber e

 //**
 p GetCustName b export
 //**
 d GetCustName pi
 d Number 9B 0 const
 d Name 64

 d outSqlState s 5a
 d outSqlMsg s 256a

 /free
 Name = *blank;
 customerRow = dbxGetCusByNum(Number :outSqlState:outSqlMsg);
 if %subst(outSqlState:1:2) = '00';
 Name = customerRow.cust_name;
 endif;
 /end-free
 p GetCustName e

FLGHT400 database modernization

 89

Appendix C: Resources
These Web sites provide useful references to supplement the information contained in this document:

 DB2 UDB for iSeries home page
ibm.com/eserver/iseries/db2

 DB2 UDB Modernization Roadmaps
 Modernizing DB2 UDB definitions and usage

www.developer.ibm.com/vic/hardware/myportal/develop/roadmap?roadMapId=appiniti
(Note: Use this roadmap to learn how to reverse engineer database objects and replace all
DDS-created physical files and logical files with SQL-DDL created tables, views, and
indexes.)

 Modernizing data access with SQL
www.developer.ibm.com/vic/hardware/myportal/develop/roadmap?roadMapId=appinitj
(Note: Use this roadmap to learn how to update applications so that native I/O database
access methods are replaced with SQL interfaces.)

 Optimizing SQL performance
developer.ibm.com/vic/hardware/myportal/develop/roadmap?roadMapId=appinith
(Note: This roadmap teaches you how to optimize database and SQL statements so that
query response time, network traffic, disk I/O, and CPU time are all minimized when
executing your queries.)

 Online Publications for iSeries
 ibm.com/eserver/iseries/infocenter
 ibm.com/eserver/iseries/db2/books.html

 Education Resources (classroom and online)
 ibm.com/eserver/iseries/db2/db2educ_m.htm
 ibm.com/servers/enable/site/education/ibo/view.html?wp#db2
 ibm.com/servers/enable/site/education/ibo/view.html?oc#db2

 Online Newsgroups and Forums
 USENET: comp.sys.ibm.as400.misc, comp.databases.ibm-db2
 AS/400 Network SQL & DB2 UDB Forum

iseriesnetwork.com/isnforums
 Recommended IBM Redbooks™

 redbooks.ibm.com/
o Modernizing IBM eServer iSeries Application Data Access - A Roadmap Cornerstone,

(SG24-6393)
Stored Procedures,Triggers, and User-Defined Functions on DB2 UDB for iSeries
(SG24-6503)

o Advanced Database Functions and Administration on DB2 UDB for iSeries
(SG24-4249-03)

o DB2 UDB for AS/400 Object Relational Support (SG24-5409)
o Modernizing and improving the maintainability of RPG applications using x-Analysis

Version 5.6 (REDP-4046-00)

FLGHT400 database modernization

 90

 Other Publications
 White paper: Modernizing Flight 400

ibm.com/servers/enable/site/education/abstracts/40d2_abs.html
 SQL/400 Developer's Guide by Paul Conte & Mike Cravitz

29th Street Press (ISBN: 1-882419-70-7)
 iSeries & AS/400 SQL at Work, by Howard Arner

www.sqlthing.com/books.htm
 IBM eServer i5 Information Center

publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm
 IBM eServer p5 Information Center

publib.boulder.ibm.com/infocenter/pseries/index.jsp
 IBM Publications Center

elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US

Appendix D: About the author
Gene Cobb is a DB2 UDB technology specialist in ISV Strategy and Enablement. He has worked in IBM
midrange systems since 1988, with 10 years in the IBM Client Technology Center (CTC) in
Rochester, Minnesota. While in the CTC, he assisted customers with application design and development
using RPG, DB2 UDB for iSeries, CallPath/400, and IBM Lotus® Domino®. His current responsibilities
include providing consulting services to iSeries developers, with special emphasis in application and
database modernization.

FLGHT400 database modernization

 91

Trademarks and special notices
© IBM Corporation 1994-2005. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them
available in every country.

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM eServer i5/OS DB2
ibm.com iSeries WebSphere DB2 Universal Database
the IBM logo pSeries AIX Virtualization Engine
Redbooks Tivoli AIX 5L Enterprise Storage Server
PartnerWorld HACMP Lotus Domino

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Red Hat, the Red Hat "Shadow Man" logo, and all Red Hat-based trademarks and logos are trademarks
or registered trademarks of Red Hat, Inc., in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly
available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the
supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only. Contact your local IBM office or IBM authorized reseller
for the full text of the specific Statement of Direction.

FLGHT400 database modernization

 92

Some information addresses anticipated future capabilities. Such information is not intended as a
definitive statement of a commitment to specific levels of performance, function or delivery schedules with
respect to any future products. Such commitments are only made in IBM product announcements. The
information is presented here to communicate IBM's current investment and development activities as a
good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending
upon considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

FLGHT400 database modernization

 93

	Abstract
	Introduction
	Establishing database enhancement goals
	Knowing the modernization plan
	Using the tools
	Describing libraries and schemas

	Stage 1: Reverse engineering DDS to SQL DDS
	Step 1: Classifying the existing environment
	Step 2: Establishing a list of all DDS files to be converted
	Identifying tables
	Identifying Indexes

	Step 3: Building SQL DDL scripts
	Building scripts to build tables
	Building the script to create the indexes

	Reviewing the SQL DDL scripts
	Changing the target schema
	Adding columns
	Other considerations
	Record format name
	Managing SQL DDL

	Creating the new SQL objects
	Creating the new DB2 UDB schema (collection) on the iSeries
	Creating the tables
	Creating the indexes

	Copying data to new schema

	Stage 2: Creating I/O modules to access data
	Step 1: Identifying programs and modules to convert
	Step 2: Identifying instances of RLA
	Step 3: Documenting the business rule
	Step 4: Creating the SQL view to access data
	Step 5: Creating an I/O procedure for each unique RLA instan
	Step 6: Replacing each RLA instance or group with call to ne
	FLGHT400M2 (Modernized) version

	Step 7: Creating the I/O module
	Step 8: Creating the I/O service program
	Step 9: Recompiling existing modules, service programs, and

	Other considerations
	Null values
	SQL error handling

	Stage 3: Moving business rules to the database
	Implementing referential integrity constraints
	Implementing check constraints
	Implementing automatic key generation and unique identifiers
	Implementing trigger programs

	Stage 4: Externalizing data access
	Summary
	Appendix A: SQL scripts
	SQL procedure GenIndexList
	SQL procedure GenIndexList2
	SQL DDL script to create the tables
	SQL DDL script to create the indexes
	SQL DDL script to create the views
	SQL DDL script to create the constraints

	Appendix B: Source code after conversion
	NFSSQL (binder source)
	NFSSQLPR (prototypes)
	NFSSQL (SQL I/O procedures)
	Programs and modules converted from RLA to SQL I/O procedure
	NFS001
	NFS402
	NFS404
	NFS405

	Appendix C: Resources
	Appendix D: About the author
	Trademarks and special notices

