
Migration Kit for Solaris OS to Linux

Migrating applications from Solaris OS to

Linux using Source Checking Tool

���

Migration Kit for Solaris OS to Linux

Migrating applications from Solaris OS to

Linux using Source Checking Tool

���

Note: Before using this information and the product it supports, read the general information in “Notices” on page 31.

First Edition (September 2005)

This edition applies to the Source Checking Tool version 1 and to all subsequent releases and modifications until

otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Introduction . 1

Chapter 2. Installing Source Checking Tool 3

Prerequisites . 3

Installation steps . 3

Installing using the pkg file . 3

Uninstalling the pkg file . 4

Installing using the tar file . 4

Uninstalling the tar file . 4

Chapter 3. Getting started with Source Checking Tool 5

Overview of porting steps . 5

Scanning the application code for the first time 6

Displaying scanned code . 7

Source Checking Tool output files 8

Portout files . 8

Error log file . 9

Assessing the porting effort . 11

Making changes to the code . 13

Changing code using the Source Checking Tool editor 13

Creating multi-platform code 15

Chapter 4. Source Checking Tool reference 17

The Source Checking Tool window 17

The menu bar . 17

Functions . 18

Scan . 18

Display . 19

Save as . 19

The editor . 20

Views . 23

The summary view . 23

The metrics view . 24

The graphics view . 24

Chapter 5. Hints and tips . 27

Appendix. Messages . 29

Notices . 31

Trademarks . 32

© Copyright IBM Corp. 2005 iii

iv Migrating with Source Checking Tool

Chapter 1. Introduction

Source Checking Tool is a tool that assists in migrating applications from Sun

Solaris Operating System to Linux®, reducing the time and skill required.

Source Checking Tool supports the following porting environment:

v You can port from the following operating systems: Sun Solaris 8 OS and Sun

Solaris 9 OS

v You can port to the following environments: Linux kernel version 2.6-based

distributions that run on any IBM® hardware platform, for example, Red Hat

Enterprise Linux 4.0 and Novell SUSE LINUX Enterprise Server 9.

Source Checking Tool simplifies porting work by supplying the following:

v Code analysis.

Source Checking Tool scans files with certain file extensions (.c, .h, .l, .y, .C, .H,

.L, .cc, .hh, .cpp, .hpp, .cxx, .hxx) in a code tree. The code tree starts at a

directory that you specify. It scans C and C++ code for constructs (APIs, include

files, and pragmas) that are specific to Solaris OS and that you need to change

for Linux.

Source Checking Tool does not make changes to the source code. Instead, it

highlights the constructs that need to be changed, offers recommendations and

examples, and provides an analysis of the size and difficulty of the porting effort.

v Different views.

Source Checking Tool provides a summary view that organizes the scanned code

in different ways. This allows you to work on the code sorted by categorized API

functions. For example, you might approach the port by changing all the code

related to threading. The summary function assists with this approach by listing

all the files that require changes to threading code. In addition to the summary

view, Source Checking Tool offers the following views:

– Portouts. This displays a list of files which have been determined to contain

problems. Users can then click a file to open it with an editor.

– Metrics. This displays a high-level analysis of the porting effort.

– Graphics. This displays the analysis of the porting effort graphically, using a

pie chart.

v Porting effort analysis.

Source Checking Tool provides a metrics function to give you an idea of the

difficulty of the porting effort. Each flagged function has an associated level of

difficulty: Low, medium, high, or to be assessed. Source Checking Tool calculates

the percentage of code lines that require changes and the percentage of flagged

functions by difficulty level.

Source Checking Tool recognizes over 3800 Solaris OS API calls, pragmas, and

include files. While the porting effort always depends on the applications being

ported, an analysis of all Solaris OS calls show that:

v Slightly less than half of all Solaris OS calls are identical to their Linux

equivalents, and need not be changed when porting.

v About ten percent of all Solaris OS calls require minimal changes only.

v About five percent require small changes in their local context.

v About 15 percent require greater changes.

© Copyright IBM Corp. 2005 1

v About 25 percent of calls must be assessed in the context of their application

before the porting effort can be analyzed.

2 Migrating with Source Checking Tool

Chapter 2. Installing Source Checking Tool

This chapter describes the prerequisites and the installation procedure for Source

Checking Tool.

Prerequisites

In order to use Source Checking Tool, you need the following:

v ActivePerl version 5.8, which includes the Perl/Tk toolkit. ActivePerl is available

from www.activestate.com.

v For remote access, a working X server environment. An open source X server is

available, for example, from sources.redhat.com/cygwin/xfree/.

v A packaging tool, for example, the Sun Solaris OS Package tool or tar.

Installation steps

You can install Source Checking Tool by using a pkg file or a tar file.

Installing using the pkg file

Before you begin: You must have root authority to perform these steps.

Perform these steps to install Source Checking Tool:

1. Copy the package file called SCT.pkg to a temporary directory and change to

this directory.

2. Use the pkgadd tool to install the package. Issue:

pkgadd -d SCT.pkg SCT

This installs Source Checking Tool in /opt/ibm/mksl/SCT.

Note: If the /opt/ directory already exists, pkgadd might complain about

conflicting entries, because the package tries to install /opt/ with default

values for the owner and access rights. In this case, you can keep the

current values by answering "no" to the question ″Do you want to install

these conflicting files″:

Checking for conflicts with packages already installed.

The following files are already installed on the system and are being

used by another package:

 /opt <attribute change only>

Do you want to install these conflicting files [y,n,?,q] n

Do you want to continue with the installation of <SCT> [y,n,?] y

Checking for setuid/setgid programs.

Processing package information.

Processing system information.

3. There is a wrapper in /usr/bin. You can run Source Checking Tool by issuing the

following command (you do not need to be root to run the tool):

$ /usr/bin/sct

The shell script /usr/bin/sct tries to detect the location of ActivePerl. If this detection

fails, you can change the Perl version that Source Checking Tool looks for by

changing the line "PERL=" in the shell script to the appropriate path.

© Copyright IBM Corp. 2005 3

http://www.activestate.com
http://sources.redhat.com/cygwin/xfree/

Uninstalling the pkg file

Before you begin: You must have root authority.

Uninstall the package by issuing the following command:

pkgrm SCT

Installing using the tar file

You do not need root authority to perform these steps.

1. Create the folder where you want to install Source Checking Tool and change

into it.

2. Unpack the tar file:

$ tar xf SCT.tar

This installs Source Checking Tool into a subfolder called SCT.

3. You can run the tool by issuing the following command:

$ cd SCT

$ <path to ActivePerl> sct.pl

Alternatively, you can change the first line of sct.pl to the path of your Perl

version.

Uninstalling the tar file

To uninstall, remove the folder into which you have installed the tar file.

4 Migrating with Source Checking Tool

Chapter 3. Getting started with Source Checking Tool

This chapter gives a brief introduction to the Source Checking Tool and shows a

typical porting workflow.

Overview of porting steps

The following are the typical steps in porting an application from Solaris OS to Linux

with the help of Source Checking Tool (see Figure 1).

1. Make a copy of the application’s code tree. This will avoid accidental corruption

of the original code.

2. Use Source Checking Tool to scan the source code. See “Scanning the

application code for the first time” on page 6 for details.

3. Assess the porting effort using the Source Checking Tool’s summary and

metrics views, which display information about the size and difficulty of the

work. See “Assessing the porting effort” on page 11 for more information.

4. Plan your approach to porting the code. You can replace Solaris OS code with

Linux code or make the code multi-platform. See “Creating multi-platform code”

on page 15 for details.

5. Make changes to the code. Using your favorite editor, make the changes in the

application source code files. See “Making changes to the code” on page 13 for

suggestions.

Figure 1. Source Checking Tool supports scanning the code, assessing the work, and

changing the code

© Copyright IBM Corp. 2005 5

Scanning the application code for the first time

Scanning a very large code tree may take a few hours. However, you only need to

scan once.

To scan the code, follow these steps:

1. On the Source Checking Tool menu bar, click File --> Scan.

2. On the Scan Base Directory window, shown in Figure 2, select the directory you

want to scan and click OK. The tool will also scan any subdirectories under the

base directory.

Optionally, select Include documentation to highlight functions that may

require modification and insert documentation about the required modification at

each line that it highlights.

You can view the documentation without having inserted it into the file;

double-clicking a highlighted function displays the associated documentation in

a separate window.

Note: If you select Include documentation, line numbers in the output files will

not correspond to line numbers in the original file. This may make it

difficult to go back and forth between the two files.

When Source Checking Tool finishes scanning, it displays the code in the summary

view. You can also display the scanned code at a later time.

Figure 2. The Scan Base Directory window

6 Migrating with Source Checking Tool

Displaying scanned code

To display already scanned code:

1. On the menu bar, click File --> Display to display the scanned directory tree.

The code tree contains the original source files, copies of files that have porting

issues identified by Source Checking Tool, and some other files that Source

Checking Tool creates for its own use.

2. (Optional) On the menu bar, click File --> Save As to save the current view

(summary, list of output files, metrics, or graphics). The tool saves the

information as a formatted report, with a title, time stamp, and indication of the

directory. The graphics view is saved as a postscript file; the other views are

saved as text files.

As an example, here is a code excerpt as it appears in the original source file:

...

 DP(DLEVEL3,("Cascading on %s\n",fpath));

 if ((dp = opendir(fpath)) == NULL) {

 if (!(flags & FS_NOERROR))

 fprintf(stderr,"tgrep: Can’t open dir %s, %s. Ignored.\n",

 fpath,strerror(errno));

 goto DONE;

 }

 while ((readdir_r(dp,dent)) != NULL) {

 restart_cnt = 10; /* only try to restart the interupted 10 X */

 if (dent->d_name[0] == ’.’) {

 if (dent->d_name[1] == ’.’ && dent->d_name[2] == ’\0’)

 continue;

Figure 3 on page 8 shows the same code excerpt, scanned and displayed in the

Source Checking Tool summary view, including documentation.

Chapter 3. Getting started with Source Checking Tool 7

Source Checking Tool output files

This section discusses the files that Source Checking Tool produces, portout files,

and an error log file.

Portout files

As an alternative to working with the GUI, you can work directly with files the tool

creates. The copies of source code that Source Checking Tool creates have an

extension of .portout. These portout files are copies of the original source files with

markers around recognized porting issues. If you selected Include documentation

when scanning, the portout files also have porting information and tips inserted as

comments. The portout files are created in the directory of the source tree where

the original file is located.

Here is the same excerpt as it appears in the portout file:

Figure 3. Source Checking Tool summary view example with documentation

8 Migrating with Source Checking Tool

DP(DLEVEL3,("Cascading on %s\n",fpath));

 if ((dp = opendir(fpath)) == NULL) {

 if (!(flags & FS_NOERROR))

 fprintf(stderr,"tgrep: Can’t open dir %s, %s. Ignored.\n",

 fpath,strerror(errno));

 goto DONE;

 }

 while ((!%readdir_r%!

/* Begin SourceCheckingTool Documentation:

Description

The Solaris OS function call readdir_r() can be used on Linux with minor modifications. The

Linux default implementation of the readdir_r() call is equivalent to the Solaris OS POSIX

implementation.

On Solaris OS, there is one more implementation of the readdir_r() call that does not conform

to the POSIX standards. This implementation of the readdir_r() call is not available in Linux.

Format

Solaris OS:

Default implementation

 #include <sys>

 #include <dirent.h>

 struct dirent *readdir_r(DIR *dirp, struct dirent *entry);

POSIX

 cc [flag ...] file ... -D_POSIX_PTHREAD_SEMANTICS [library ...]

 int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);

Linux:

 #include <sys>

 #include <dirent.h>

 int readdir_r (DIR *DIRSTREAM, struct dirent *ENTRY, struct dirent **RESULT)

*/

(dp,dent)) != NULL) {

 restart_cnt = 10; /* only try to restart the interupted 10 X */

 if (dent->d_name[0] == ’.’) {

 if (dent->d_name[1] == ’.’ && dent->d_name[2] == ’\0’)

 continue;

 if (dent->d_name[1] == ’\0’)

 continue;

The bold indicates text that Source Checking Tool adds to the copy of the file. Note

that markers are added to the function name to indicate a degree of difficulty. These

markers will cause compiler errors, should you attempt to compile the portout file.

Change the portout file before attempting to compile. The markers are explained in

Table 1.

 Table 1. Portout file markers

Level of difficulty Beginning marker Ending marker Color

High ! ~ ~! Red

Medium !& &! Yellow

Low !% %! Green

To be assessed !@ @! White

Error log file

Source Checking Tool creates one log file that is called sct.log. The log file is in the

upper-most directory, SCT_files, of the source code tree. Application error

Chapter 3. Getting started with Source Checking Tool 9

messages relevant to problem determination are logged in the log file. For details

about messages, see “Messages,” on page 29.

10 Migrating with Source Checking Tool

Assessing the porting effort

The metrics view of Source Checking Tool helps you assess the amount of effort

involved in your porting project. The information in the metrics view consists of the

following:

v Base directory that is scanned

v Total number of lines that are scanned (all files)

v Total number of lines flagged

v Total number of lines flagged with each degree of difficulty (high, medium, low

and to be assessed)

v Percentage of total lines that were flagged

v Of the lines that were flagged, the percentage for each degree of difficulty

v Number of assembler files found

To display the metrics view, on the menu bar, click View --> Metrics.

The metrics view gives an overview of the entire porting effort, including all files,

regardless of category. For example:

Base of directory tree scanned: /home/scttest/solaris-code/tgrep

Scanned: 1969 lines

Flagged: 20 functions

High difficulty: 0 functions flagged (0% of the total)

Medium difficulty: 13 functions flagged (65% of the total)

Low difficulty: 4 functions flagged (20% of the total)

To be assessed: 3 functions flagged (15% of the total)

The degrees of difficulty have the following meanings:

High There is no equivalent function in Linux, and the code must be re-written.

Medium

There is no exact equivalent function in Linux, but a similar function might

be used.

Low There is an equivalent function in Linux that can be used with only minor

changes.

To be assessed

Source Checking Tool cannot determine the degree of difficulty; the porting

effort must be assessed in the context of the particular application.

To display the data graphically, on the menu bar, click View --> Graphics. Figure 4

on page 12 shows the data represented in a pie chart.

Chapter 3. Getting started with Source Checking Tool 11

Figure 4. The graphics view

12 Migrating with Source Checking Tool

Making changes to the code

When making changes to the code, you can use Source Checking Tool for

guidance and planning. Choose the view that suits your approach. Use Source

Checking Tool’s summary view to display categorized APIs. The summary view lets

you find the files and lines in those files that need changing. Use the portout view

when you want to work from the list of files that require changes.

There are many possibilities to access the code and adopt it to Linux, for example:

v Use the Source Checking Tool editor for smaller changes and use Save As to

replace the original source code file.

v Use Source Checking Tool in conjunction with your favorite editor. In this case

you should not enable the option Include documentation because the line

numbers will not match.

v Use the Source Checking Tool Include documentation option to build output

files (.portout) with included porting remarks. Copy these files back to your

working source code tree and continue with your favorite editor.

The last approach is appropriate for large scale projects that are handled in a larger

team and that involve lots of mechanical changes. With the first two approaches

you can coordinate your porting work and process the source code by category and

function using the Source Checking Tool summary view.

Changing code using the Source Checking Tool editor

Source Checking Tool has a built-in editor (invoked from the summary view or

portout file list). The editor has basic editor functions, such as, save as, search, and

cut and paste. To invoke these functions, use the context menus by clicking and

holding the right mouse button. See “The editor” on page 20 for more details about

the editor.

You can use the Source Checking Tool editor for minor editing of the code.

However, for larger projects or redesigns, it might be more productive to use your

favorite IDE or editor.

When displaying a portout file, the editor highlights the identified problems in the

source code. Color expresses the level of difficulty:

v Red for high

v Yellow for medium

v Green for low

v White for to be assessed

The summary view, shown in Figure 5 on page 14, shows all the identified problems

grouped by categorized APIs. You can then expand each category to show a

particular issue and the file name and line number for each occurrence. The line

numbers of problems that are identified by Source Checking Tool are line numbers

in the portout files.

Chapter 3. Getting started with Source Checking Tool 13

Note: The line numbers in the portout file do not correspond to line numbers in the

original file if you selected the Include documentation option.

The summary provides the number of lines flagged and a degree of difficulty. For

example, a line in the summary would show <1-High> to indicate one line is flagged

and it is considered to be a high degree of difficulty. The degree of difficulty can be

low, medium, high, or to be assessed.

From the tree in the left panel you can:

v Expand or collapse branches by clicking the nodes, marked by a + (when the

branch is collapsed) or a - (when the branch is expanded).

v Open the file in an edit session by double-clicking the file name or a line number.

Clicking a line number opens the file to that line number. The edit session is in

the right pane. Users who wish to use another editor must launch that editor

separately. See “The editor” on page 20 for more information.

v Display porting documentation by double-clicking a category or function. The

editor displays the documentation in the right pane. The documentation is

appropriate to the selected category or function.

From the portout view in the right panel, you can double-click the highlighted

function to get a documentation text. If you use the Include documentation option,

the documentation is displayed intermixed with the source code.

Figure 5. The summary view. An example of a split window with a summary on the left and

an editor session on the right

14 Migrating with Source Checking Tool

Creating multi-platform code

You may choose to simply replace Solaris OS code with Linux code, or to make the

code multi-platform, including both the Solaris OS and Linux code. To do this, use

#ifdef statements to tell the compiler what set of code to use.

For example:

#ifdef __s390__

pthread_create(&tid[i], NULL, sleeping,(void *)SLEEP_TIME);

#elsif __sun__

thr_create(NULL, 0, sleeping, (void *)SLEEP_TIME, 0, &tid[i]);

#endif

The symbols “__s390__” and “__sun__” are examples of symbols that are defined

on Sun Solaris OS and Linux for zSeries® systems. You can either use other

system-defined symbols or use the -D compiler option to define user-created

symbols.

When using gcc, there are a number of predefined preprocessor #defines. These

include:

__s390__

When compiling for an IBM zSeries in 64- or 31-bit mode, or an S/390® in

31-bit mode.

__s390x__

When compiling for a zSeries processor which supports 64-bit addressing.

__powerpc__ or __PPC__

When compiling for a PowerPC® processor.

__powerpc64__ or __PPC64__

When compiling for a 64-bit PowerPC processor.

__gnu_linux__

When compiling for Linux.

Chapter 3. Getting started with Source Checking Tool 15

16 Migrating with Source Checking Tool

Chapter 4. Source Checking Tool reference

This chapter presents the details of the Source Checking Tool graphical user

interface and lists Source Checking Tool menu items and functions.

The Source Checking Tool window

Figure 6 shows the parts of the Source Checking Tool window.

 The window parts are:

1. Title line, showing the title of the current view, either Summary, Portout list,

Metrics or Graphics, and the base directory that was scanned.

2. Left pane, used for the summary or the list of portout files.

3. Vertical separator between the panes; it can be slid right and left to resize the

panes.

4. Right pane, used for displaying the porting documentation or portout file with an

editor.

5. Message line or status bar.

Metrics and graphics are shown in a single pane. See “Functions” on page 18 for

more examples of the window.

The menu bar

The items on the menu bar are described below. For details on the associated

functions, see “Functions” on page 18.

File

Scan This displays a tree in a pop-up window, from which you can select

the directory that contains the files you want to scan.

Figure 6. The Source Checking Tool main window

© Copyright IBM Corp. 2005 17

Display

This displays the tree from which you can select a previously

scanned directory. Select the directory to open the summary view

(the default).

Save Summary As | Save Portout List As | Save Metrics As | Save

Graphics As

This saves the current view (in contrast to Save As in the edit

window). It displays a file selection that lets you select a path for

saving the current view (Summary, Portout list, Metrics, or

Graphics). This action is not available when the window is empty. It

does not save the contents of the right pane when the window is

split.

Exit This ends the tool.

View Mutually exclusive actions under View control the contents of the main

window. They also control the results of the next File-->Scan action, so the

options are available even if the window is empty.

Portouts

This displays a list of files which have been determined to contain

problems. Users can then click a file to open it with an editor.

Summary

This is the default. It displays the summary, which describes and

acts as a map to the porting effort.

Metrics

This displays a high-level analysis of the porting effort.

Graphics

This displays the metrics in a graphical format, using a pie chart.

Help

Help This displays help for the tool in a pop-up window.

About This displays copyright and release information in a pop-up window

Functions

This section describes the main functions of Source Checking Tool.

Scan

Launch the scan function by clicking File -->Scan. The Scan Base Directory

window, which contains a directory tree, opens as shown in Figure 7 on page 19.

18 Migrating with Source Checking Tool

The window includes an Include documentation option. When the option is

selected the scan inserts porting documentation at each line that it flags. The

default is that the option is not selected. The option is most useful when viewing the

portout files outside of Source Checking Tool. When viewing the portout files within

Source Checking Tool, users can click a highlighted function to display the

documentation in a separate window.

Select a directory from the tree and click OK to dismiss the window and cause the

tool to scan the files in the directory for potential problems. When the tool finds a

file that requires code changes, it creates the portout copy of the file. When the

scan is complete, the main window opens with the appropriate output (by default,

the summary).

Display

Launch the Display function by clicking File -->Display from the action bar. This

displays the Display Base Directory window, which contains the same tree as the

Scan function. The directory selected on the window is searched for the results of a

previous scan, which are then displayed. Note that this pop-up does not include the

option to include documentation, as that option cannot be changed with the Display

function.

Save as

To launch the Save as function, click File -->Save As on the menu bar. This

displays a file chooser that lets the you specify where to save the current view

(summary, list of portout files, metrics or graphics). The information is saved as a

formatted report, with a title, time stamp and indication of the directory. The

graphics view is saved as a postscript file; the other views are saved as text files.

The following example shows a list of portout files saved and then viewed with the

vi editor:

Figure 7. Directory tree example

Chapter 4. Source Checking Tool reference 19

SourceCheckingTool Summary Report

Time stamp : Fri Sep 2 2005 15:37:40

Search directory: /home/scttest/solaris-code/tgrep

Threads<1-Medium,2-To be assessed>

 thr_getconcurrency<1-To be assessed>

 tgrep.c.portout

When a summary is saved, the report uses indentation to indicate the tree

structure, for example:

Syscall<2-Low>

 stat<2-Low>

 tgrep.c.portout

 Line-456<Low>

 Line-1192<Low>

The editor

The editor (invoked from the summary or portout file list) indicates the level of

difficulty of flagged functions with color when it is used to display a portout file:

v Red for high

v Yellow for medium

v Green for low

v White for to be assessed

If you have specified that porting documentation be included, the documentation is

displayed in red. Figure 8 on page 21 shows a Source Checking Tool window with

documentation included (on screen, the documentation will be displayed in red).

20 Migrating with Source Checking Tool

The editor provides basic editor functions, for example, save as, cut and paste and

search. These functions can be invoked from context menus, displayed by pressing

and holding the right mouse button. Figure 9 on page 22 shows the editor with a

context menu displayed.

Figure 8. Source Checking Tool example with documentation

Chapter 4. Source Checking Tool reference 21

The context menu has the following items:

File

v Open (opens a file selection to select a file; this file replaces the contents of

the edit window)

v Save As (opens a file selection for saving the contents of the edit window)

v Include (opens a file selection to select a file to insert at the cursor)

v Clear (clears the contents of the edit window)

Edit

v Undo (undo last change)

v Redo (redo last undone change)

v Copy (put selected text into clipboard)

v Cut (remove selected text from the file and put it in clipboard)

v Paste (place the contents of the clipboard at the cursor)

v Select All (select the contents of the file that is being displayed)

v Unselect All (clear selections)

Search

v Find (opens a window for entering a search string)

v Find Next (scroll forward to the next instance of the search string)

v Find Previous (scroll backward to the previous instance of the search

string)

v Replace (opens a window for entering a search string and the string with

which to replace it)

View

v Goto Line (opens a window for entering line number to which you want to

scroll)

v Which Line? (opens a window that shows the number of the current line)

v Wrap (set the wrap option from a menu)

Figure 9. Editor with context menu

22 Migrating with Source Checking Tool

Views

This section describes the summary, metrics, and graphics views.

The summary view

The summary is displayed in the left pane of the Source Checking Tool window. It

uses one tree to show functions and a second tree to show include files.

The summary groups problem functions by category. The categories are sorted in

descending alphabetical order. The functions are in alphabetical order within the

category. Under each function within a category is a list of files that were found to

contain it. Under each file name is a list of the specific lines containing the function.

The file list uses the portout files rather than the original source files.

The summary also provides some metrics. This includes both a quantitative

assessment, the number of lines flagged, and a qualitative assessment, a degree of

difficulty. For example, a line in the summary would show <1-High> to indicate one

line is flagged. It is considered to be a high degree of difficulty. The degree of

difficulty can be low, medium, high, or to be assessed.

A degree of difficulty is omitted if no lines were flagged for it. The summary shows

the degree of difficulty for every level of the tree except portout files.

From the tree you can:

v Expand or collapse branches by clicking the nodes, marked by a + (when the

branch is collapsed) or a − (when the branch is expanded).

v Open the file in an edit session by double-clicking the file name or a line number.

Clicking a line number opens the file to that line number. The edit session is in

the right pane. The editor is a simple editor, which includes basic function such

as search and save as. Users who wish to use another editor must launch that

editor separately. See “The editor” on page 20 for more information.

v Display porting documentation by double-clicking a category or function. The

documentation is displayed in the right pane, using the editor, and is appropriate

to the selected category or function.

An example of the split window with a summary on the left and a portout file on the

right is shown in Figure 10 on page 24.

Chapter 4. Source Checking Tool reference 23

The metrics view

The metrics view gives an overview in a single pane of the entire porting effort,

including all files being ported, regardless of category.

The information in the metrics view consists of:

v Base directory scanned

v Total number of lines scanned (all files)

v Total number of lines flagged

v Total number of lines flagged with each degree of difficulty (high, medium, low

and to be assessed)

v Percentage of total lines that were flagged

v Of the lines that were flagged, the percentage for each degree of difficulty

v Number of assembler files (for example, ″.s″) found

For example:

Base of directory tree scanned: /home/scttest/solaris-code/tgrep

Scanned: 1969 lines

Flagged: 20 functions

High difficulty: 0 functions flagged (0% of the total)

Medium difficulty: 13 functions flagged (65% of the total)

Low difficulty: 4 functions flagged (20% of the total)

To be assessed: 3 functions flagged (15% of the total)

The graphics view

The graphics view shows the metrics in graphical form, using a pie chart in a single

pane. Levels of difficulty with no lines flagged are omitted from the pie, though the

level of difficulty is included in the legend. For example, the following graphics view

shows a case with no high degree of difficulty lines.

Figure 10. Example of a split window

24 Migrating with Source Checking Tool

Figure 11. The graphics view

Chapter 4. Source Checking Tool reference 25

26 Migrating with Source Checking Tool

Chapter 5. Hints and tips

Search strings are found outside code

 Source Checking Tool can search for APIs, include files, and pragmas for

text strings. When searching, Source Checking Tool will not only detect API

calls that are part of the executable code, but also those in comments and

character constants. Finding API names in comments is useful in order to

keep comments and code consistent.Example: Searching for "monitor" in

the following code will find one occurrence.

#include <stdio.h>

int

main ()

{

 printf(" SCT will find this occurrence of monitor()\n");

}

Similar effects exist concerning comments, and combinations of nested

comments and string constants.

 A typical example of where this might be useful is a program generator

where the text output is itself a C program.

Large code samples

When scanning large code samples (more than 100 MB), the tool needs

several hours. You might want to plan accordingly and run the scan during

lunch break, or another convenient time.

Line numbers in original code and portout files differ

In rare cases, the line breaks in the original file and the portout file differ. All

given line numbers refer to the line numbers in the portout file.

Code markers

If a code marker (see Table 1 on page 9) occurs without a corresponding

end marker, the code will not show up as marked in the GUI. Code that is

surrounded by a pair of code markers will show up as marked in the GUI,

even though the code might not need porting.

© Copyright IBM Corp. 2005 27

28 Migrating with Source Checking Tool

Appendix. Messages

Interactive messages are displayed in a message area at the bottom of the main

window; error messages are displayed in a pop-up window.

Cannot create the output file file. See the Source

Checking Tool log file located at directory/SCT_files

for more information.

Explanation: Source Checking Tool could not create a

portout file.

User response: See the message log for more

information. This may be a problem with permissions. If

the permissions are correct, the disk may have been

corrupted. The message log is located in SCT_files

under the directory that was scanned.

Cannot find the file file under the installation

directory. See the Source Checking Tool log file

located at directory/SCT_files for more information.

Explanation: Source Checking Tool could not find a

required file.

User response: Source Checking Tool may not have

been installed correctly. Try reinstalling Source

Checking Tool as root.

Cannot open the file file under the installation

directory. See the Source Checking Tool log file

located at directory/SCT_files for more information.

Explanation: Source Checking Tool could not open a

required file.

User response: Source Checking Tool may not have

been installed correctly. Try reinstalling Source

Checking Tool as root.

Could not open all files under base-directory. See the

Source Checking Tool log file located at

directory/SCT_files for more information.

Explanation: Source Checking Tool could not open all

files to scan, due to permission errors with one or more

of the files.

User response: See the log file for a complete list of

files that could not be opened. The message log is

located in SCT_files under the directory that was

scanned.

Could not open the file file. See the Source

Checking Tool log file located at directory/SCT_files

for more information.

Explanation: The file may have been corrupted, or the

permissions for the file may have been changed while

Source Checking Tool was running.

User response: See the message log. The message

log is located in SCT_files under the directory that was

scanned.

Could not read one or more of the documentation

files. See the Source Checking Tool log file located

at directory/SCT_files for more information.

Explanation: Source Checking Tool could not open

one or more documentation files.

User response: See the message log for more

information. Ensure that permissions on the

documentation folder are correct. If that does not solve

the problem, reinstall Source Checking Tool. The

message log is located in SCT_files under the directory

that was scanned.

Could not remove one or more pre-existing .portout

files.

Explanation: Source Checking Tool cannot remove

one or more .portout files.

User response: None required.

Could not save view file.

Explanation: The indicated view could not be saved to

the indicated file.

User response: Specify another file, ensuring that you

have the necessary permissions.

Could not scan all folders under base-directory.

Please see the Source Checking Tool log file

located at directory/SCT_files for more information.

(Remove ″please″)

Explanation: Source Checking Tool could not open all

the folders in the tree structure to scan for source files.

User response: See the message log for more

information. The message log is located in SCT_files

under the directory that was scanned.

file loaded.

Explanation: The indicated file has been loaded for

display in the Source Checking Tool window.

User response: None required.

file not found.

Explanation: The indicated file could not be loaded for

© Copyright IBM Corp. 2005 29

display in the Source Checking Tool window.

User response: If it is a portout file that was

inadvertently deleted, you can recreate the file by

scanning the source again.

file not found. See the Source Checking Tool log file

located at directory/SCT_files for more information.

Explanation: The indicated file could not be found.

User response: See the message log for more

information. If the missing file is a documentation file,

there may have been an error during the installation

process. Reinstall Source Checking Tool as root to

avoid any possible permission errors. If the missing file

is port_categories.out or port_metrics, the file or disk

may have been corrupted, or the file may have been

deleted while Source Checking Tool was running. Try

scanning your source code again. If this does not solve

the problem, trying reinstalling Source Checking Tool as

root.

Nothing to display. You must first scan a directory.

Explanation: You have changed the view without

conducting a scan.

User response: None required. The view will apply to

the next scan.

No data found in file. See the Source Checking Tool

log file located at directory/SCT_files for more

information.

Explanation: There has been an internal error with

Source Checking Tool.

User response: Try scanning the source code again.

The message log is located in /SCT_files under the

directory that was scanned.

No source code found under base-directory.

Explanation: Source Checking Tool did not find any

source code files to scan.

User response: Ensure that you selected the correct

directory, and that you have the required permissions.

view file was saved.

Explanation: The indicated view was saved to the

indicated file.

User response: None required.

30 Migrating with Source Checking Tool

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005 31

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

Trademarks

The following terms are trademarks of International Business Machines Corporation

in the United States, other countries, or both:

v IBM

v PowerPC

v S/390

v zSeries

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

The shown code samples are excerpts from tgrep.c by Ron Winacott.

32 Migrating with Source Checking Tool

����

	Contents
	Chapter 1. Introduction
	Chapter 2. Installing Source Checking Tool
	Prerequisites
	Installation steps
	Installing using the pkg file
	Uninstalling the pkg file
	Installing using the tar file
	Uninstalling the tar file

	Chapter 3. Getting started with Source Checking Tool
	Overview of porting steps
	Scanning the application code for the first time
	Displaying scanned code
	Source Checking Tool output files
	Portout files
	Error log file

	Assessing the porting effort
	Making changes to the code
	Changing code using the Source Checking Tool editor
	Creating multi-platform code

	Chapter 4. Source Checking Tool reference
	The Source Checking Tool window
	The menu bar
	Functions
	Scan
	Display
	Save as
	The editor

	Views
	The summary view
	The metrics view
	The graphics view

	Chapter 5. Hints and tips
	Appendix. Messages
	Notices
	Trademarks

