
Guide to Application Porting
From Solaris OS to Linux

IBM Corporation
October 5, 2005

Mark Brown
STSM, IBM Linux Technology Center

Ajay Sood
Staff Software Engineer, IBM Global Services, Bangalore, India

Chakarat Skawratananond
Linux on POWER Technical Consultant, IBM

Matthew Davis
Linux on POWER Technical Consultant, IBM

Special Notices
This publication/presentation was produced in the United States. IBM might not offer the products,
programs, services or features discussed herein in other countries, and the information might be subject to
change without notice. Consult your local IBM business contact for information on the products, programs,
services, and features available in your area. Any reference to an IBM product, program, service, or feature
is not intended to state or imply that only IBM's product, program, service, or feature may be used. Any
functionally equivalent product, program, service, or feature that does not infringe on IBM's intellectual
property rights may be used instead.

Information in this presentation concerning non-IBM products was obtained from the suppliers of these
products, published announcement material or other publicly available sources. Sources for non-IBM list
prices and performance numbers are taken from publicly available information including D.H. Brown,
vendor announcements, vendor WWW Home Pages, SPEC Home Page, GPC (Graphics Processing
Council) Home Page and TPC (Transaction Processing Performance Council) Home Page. IBM has not
tested these products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to suppliers of those products. IBM
might have patents or pending patent applications covering subject matter in this presentation. Furnishing
this presentation does not give you any license to these patents. Send license inquiries, in writing, to IBM
Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY 10504-1785 USA. All statements
regarding IBM's future direction and intent are subject to change or withdrawal without notice, and
represent goals and objectives only. Contact your local IBM office or IBM authorized reseller for the full
text of a specific Statement of General Direction.

The information contained in this presentation has not been submitted to any formal IBM test and is
distributed "AS IS." While each item may have been reviewed by IBM for accuracy in a specific situation,
there is no guarantee that the same or similar results will be obtained elsewhere. The use of this
information or the implementation of any techniques described herein is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the customer's operational
environment. Customers attempting to adapt these techniques to their own environments do so at their own
risk.

The information contained in this document represents the current views of IBM on the issues discussed as
of the date of publication. IBM cannot guarantee the accuracy of any information presented after the date
of publication.

The following terms are registered trademarks of International Business Machines Corporation in the
United States and/or other countries: AIX, AIX 5L, AIX/6000, IBM, RS/6000, VisualAge, e-business
(logo), POWER2 Architecture, PowerPC (logo), PowerPC 604, pSeries, SP, iSeries, OS/400, AS/400,
POWER3, POWER4, RS64IV, . A full list of U.S. trademarks owned by IBM may be found at
http://ibm.com/legal/copy/trade.html. UNIX is a registered trademark of The Open Group in the United
States and other countries. Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and other countries. Lotus, Lotus Domino and Lotus Notes are
trademarks or registered trademarks of Lotus Development Corporation. Tivoli, TME, TME 10 and TME
10 Global Enterprise Manager are trademarks or registered trademarks of Tivoli Systems, Inc. Other
company, product and service names, which may be denoted by a double asterisk (**), may be trademarks
or service marks of others. Linux is a registered trademark of Linus Torvalds. HP-UX and Tru64 are
trademarks of HPQ in the United States and other countries. Solaris is a registered trademark of Sun
Microsystems in the United States and other countries.

Introduction
Generally, porting Solaris OS-based applications to Linux is a simple task since both
Solaris OS and Linux are based on the UNIX® system. Porting often requires only a
recompile with minor changes in some compiler and linker switches. Even so, differences
can arise in the areas that depend on the architecture, memory maps, threading, or some
specific areas like system administration or natural language support. Generally, it is
when applications depend on system-specific implementations that they then require
modifications. While both Solaris OS and Linux are designed to follow standards,
differences in their implementations sometimes occur. This guide highlights these
differences and recommends possible solutions, if an equivalent on the Linux side is not
available.

This document is based on Solaris OS Version 8 and later. For Linux, this guide focuses
on the Enterprise-quality distributions from Novell/SUSE (SUSE Linux Enterprise
Server 9) and Red Hat (Red Hat Enterprise Linux 4). Even so, almost all of the
information in this guide will also be useful when applied to almost any other modern
Linux distribution.

This guide is organized as follows:
• Planning for the migration
• Development environments of Solaris OS and Linux
• Architecture-specific differences
• System-specific differences
• Performance tuning and software packaging tools available for Linux

Porting roadmap
The following steps provide a roadmap for successful migration:

Step 1: Prepare

Do research to understand the differences between the source and target platforms. While
it is true in the general sense that moving from Solaris OS to Linux is much like moving
from one flavor of commercial UNIX system to another, the nature and degree of
differences will shape the work effort. For example, you need to know if the endianness
on the source platform is different from the endianness on the target platform. If your
source platform is Solaris OS/Sparc, then endianness should be under your consideration
since Sparc is big-endian, while Linux on an ia32-based machine is little-endian. IBM
xSeries machines are Little-Endian, while iSeries, pSeries and zSeries machines are Big-
Endian.

Determine, also, if all the required third party packages (such as databases and class
libraries) are available on the target platform. For 32-bit applications, consider if it is
necessary to migrate to 64-bit.

Other key factors to research include
• Development environment – what compiler and build tools are you planning to

use? The set of tools typically used on Linux (GNU) is also available as a set of
free binaries from Sun for Solaris OS. It might make the project easier to port
your development environment to a GNU-based on first on Solaris OS, and then
port with an already-working build tree.

• ISO C++ - the class libraries, namespaces and other factors are going to be
different.

• Threads – If your application uses Solaris OS (as opposed to POSIX) threads,
there will be extra effort involved in the move.

• Internationalization – while Linux meets ISO standards, the locales and other
customization data may be different.

• Shell Scripting – Linux offers shells compatible with sh, csh, and ksh, but the
files and commands used by your scripts may need to be changed.

Step 2: Configure

This step involves setting up the development environment, setting environment
variables, making changes to makefiles, and so on. At the end of this stage, you should be

ready to start building your application. This step may require several iterations before
you're ready to move to the next step.

Since the GNU development tools (standard on Linux) are also available for free from
Sun, it is possible to save some time and effort by installing them onto your Solaris OS-
based development system and then set up the application development environment,
make files, etc. similarly to what they would be on Linux. In this way the work of porting
the build tree can be done in a familiar environment.

Step 3: Build

This step involves fixing compiler errors, linker errors, and more. This document will
cover compiler and linker differences in sections below. It is not unusual for code to go
through several iterations of Steps 2 and 3 before a clean build is produced.

Again, building first in a GNU-based environment on your Solaris OS machine is a good
way to work out these differences while in a familiar environment. The resulting binaries
are also testable on Solaris OS for preliminary debugging.

Step 4: Run-time test and debug

After the application is successfully built, test it for runtime errors. This typically
involves porting your applications' test methods over to Linux as well. Experience shows
that much more time is spent in this stage than any other, including the porting of the
application itself. Most software vendors perform a full testing and certification effort for
their ports, the same as if it were an initial release of the application.

Step 5: Performance tuning

Now the ported code is running on the target platform. Monitor performance to ensure the
ported code performs as expected. If not, performance tuning must be completed. The
Performance Tuning section of this document provides more information about the
performance tuning tools available for Linux.

Step 6: Packaging

Will you have to distribute the resulting code to others? If so, what packaging method
will you want to use? Linux provides several ways to package your application such as a
tarball, self-installing shell script, or RPM. The section Software Packaging provides
more information about software packaging for Linux.

RPM is the package-management system widely used on Linux. Solaris OS uses
pkgadmin as its package manager. The format of the package-specification template files
used by pkgadmin in Solaris OS is different from the spec file used by RPM -- translating
packaging information from template file into spec files requires a substantial effort.
Using a software package like the InstallShield for Multiplatforms (ISMP) could deliver
common packaging software across both operating systems and reduce the porting effort.
By using ISMP, application developers can use a common spec file across platforms.

Development Environment
Now let's look at some of the differences in the development environments of Solaris OS
and Linux, including the following:

• Makefiles
• Compiler and linker options
• Compiler Differences in Porting
• Java Technology

GNU Make versus Solaris OS Make

Most basic features are common between various versions of make. Some of the
advanced functions differ. When porting an application from Solaris OS to Linux, it is
likely that there will be a need to modify the makefiles.

The help information on GNU Make (access this using the command "info make") on
your Linux host, includes sections on Features and Missing, that provide a detailed list of
features unique to GNU make and features not supported in GNU make. To make sure
that the same makefile can be used with Linux and Solaris OS it is a good idea to follow
one of the following methods:

● When making changes to makefile only use features common between both
versions of make. This can be verified by testing the makefile on both platforms
after the porting changes. This will make porting the makefile to additional
platforms simpler.

● Switch to the GNU Make on both platforms.

Special Target Support

Special Target Solaris OS Linux

.DEFAULT yes yes

.DELETE_ON_ERROR no yes

.DONE yes no

.EXPORT_ALL_VARIABLES no yes

.FAILED yes no

.GET_POSIX yes no

.IGNORE yes yes

Special Target Solaris OS Linux

.INIT yes no

.INTERMEDIATE no yes

.KEEP_STATE yes no

.KEEP_STATE_FILE yes no

.MAKE_VERSION yes no

.NOTPARALLEL no yes(1)

.NO_PARALLEL yes(1) no

.PARALLEL yes(2) no

.PHONY no yes

.POSIX yes no

.PRECIOUS yes yes

.SCCS_GET yes no

.SCCS_GET_POSIX yes no

.SECONDARY no yes

.SILENT yes yes

.SUFFIXES yes yes

.WAIT yes no
1 These two special targets have the same effect.
2 Reserved for future use, has no effect.

Make File Search Order

File Solaris OS Linux

./makefile 1 1

./Makefile 2 2

./SCCS/.makefile 4 6

./SCCS/.Makefile 6 8

./s.makefile 3 5

./s.Makefile 5 7

./makefile.v 3

./Makefile.v 9

File Solaris OS Linux

./RCS/makefile.v 4

./RCS/Makefile.v 10

LIBPATH environment variable
The environment variable for indicating the library paths are different on Solaris OS and
Linux. On Linux, it is suggested to use LIBPATH in place of the Solaris OS variable
LD_LIBRARY_PATH, although the latter should work.

Command Line Option Differences

Option Solaris OS Linux

b no yes

dd yes no

h no yes

i no yes

l no yes

m no yes

o no yes

v no yes

w no yes

C no yes

D yes no

DD yes no

I no yes

K yes no

P yes no

R no yes

V yes no

W no yes

Compiler and linker

Linux, like Solaris OS, offers a high performance compiler set in addition to the GNU
Compiler Collection -- the IBM XL C/C++ compiler set. Details about its licensing are
available at the XL C/C++ Advanced Edition for Linux Web site. (See
http://www.ibm.com/software/awdtools/xlcpp/.) Here is a brief overview of each
compiler set and their advantages:

GCC
The GNU C Compiler is far and away the most commonly-used compiler for
development projects on Linux. Not only is it one of the first and premier open-source
applications, shipped as a part of the development tools provided with every distribution,
but it is also very portable, available on almost every hardware and OS platform. GCC
also allows some code prototypes that are only understood by GCC, such as GCC specific
macros. However, many of these “GCC-isms" are incorporated in the IBM XL C/C++
compilers.

XL C/C++
XL C/C++ V7.0 is the follow-on release to VisualAge V6.0 for Linux. XL C/C++
compilers offer a high performance alternative to GCC, as well as a number of additional
features. Fortunately, the XL C/C++ compilers produce 32- and 64-bit GNU elf objects,
which are fully compatible with the objects GCC compilers produce because the XL
C/C++ compilers employ the same GNU libraries, linker, assembler, and binutils as
GCC. In fact, functionality formerly exclusively offered by GCC compilers has been
ported to XL C/C++ to facilitate source compatibility; some GCC macros and inline
functions, for example. But aside from compatibility, XL C/C++ offers unparalleled
performance.

In addition to algorithmic optimization routines, XL C/C++ provides some architecture
specific support not yet available in GCC -- specifically, support for VMX vector
instructions featured in the IBM eServer® BladeCenter™ JS20 product. These
instructions are supported by GCC 3.3 but only XL C/C++ version 7 offers automatic
vectorization of unvectorized code and optimizes it for POWER VMX instructions.

As mentioned earlier, the most commonly used compiler on Linux on x86 is GNU GCC.
Following is a list of widely used compiler options for the SUN Studio C/C++ compiler
and the equivalent options for the GNU GCC.

Solaris OS-to-Linux equivalent compiler options
SUN Studio GNU GCC Description
-# -v Instructs the compiler to report information on the progress

of the compilation.
-### -### Traces the compilation without invoking anything.
-Bstatic -static Causes the link editor to look only for files named libx.a.
-Bdynamic (Default) Instructs the link editor to look for files named libx.so and

then libx.a when given the lx option.
-G -shared Produces a shared object rather than a dynamically linked

executable.
-xmemalign -malign-

natural,
Specifies the maximum assumed memory alignment and
the behavior of misaligned data accesses.

-xO1, -xO2,
-xO3, -xO4,
-xO5

-O, -O2,
-O3

Optimizes code at a choice of levels during compilation.
Something about O2.

-KPIC -fPIC Generates position-independent code for use in shared
libraries (large model).

-Kpic -fpic Generates position-independent code for use in shared
libraries (small model).

-mt -pthread Compiles and links for multithreaded code.
-R dirlist -Wl,

-rpath,
dirlist

Builds dynamic library search path into the executable file.

-xarch -mcpu,
-march

Specifies the target architecture instruction set.

 IBM also makes a C and C++ compiler for Linux (XL C/C++), as does Intel.

Compiler Differences in Porting
Sun's Forte compiler is more forgiving of non-standard constructs than the GCC
or VisualAge compilers. This results in unexpected compiler errors. Some
known errors are described below, along with recommended solutions.

STD C++ headers with and without .h extension
According to the new C++ standards, standard C++ headers are used without the
.h extension. This means that #include <iostream> is used instead of #include
<iostream.h>. The Forte C++ Compiler allows you to mix C++ standard header
files with and without the .h extension. In fact, under the Forte C++ Compiler,
the standard header file with .h actually includes the header files without .h and
includes using statements. This makes compiler upgrade easier. But in Linux, neither
C++ compiler does allow this mixing. The .h extension of C++ standard header files for
Linux must be removed.

Namespace
Namespace is very strict with the VisualAge compilers, especially within the Standard
Template Library (STL). Expressions like using namespace std, using std::string, or using
std::vector, etc. are required in the header files to avoid compiler errors.

Containers
Some containers such as map and vector do not allow const type by the VisualAge
compiler. Specifically, std::map< const std::string, Foo> will not compile with
VisualAge. The const is unnecessary since map keys are immutable anyway. The key
type is made const when a (key, value) pair is returned, but it should not be declared
const in the map template.

Casting
Casting is strictly enforced by the GCC and VisualAge compilers. For example, const
void * cannot be cast into non-const pointers.

char constant reference

Solaris OS Code Linux Code
#include <iostream.h>
class test{
 public:
// Using a constant ref. to a
// variable whose value can be
// changed
 void test1(char& const nEvt){
 cout << nEvt << endl;
 }
};

int main()
{
 test t;
 char * const ptr="ABC";
 t.test1(*ptr);
 return 0;
}

#include <iostream.h>
class test{
 public:
// Using a constant ref. to a
// variable whose value can be
// changed
 void test1(char const & nEvt){
 cout << nEvt << endl;
 }
};

int main()
{
 test t;
 char * const ptr="ABC";
 t.test1(*ptr);
 return 0;
}

The char& const is different from char const &. char& const is a reference to a
constant value, while in char const &, the reference is constant but not the value of the
reference.

const reference
The following code fragment would compile clean on Solaris OS, but gives error
messages on Linux on iSeries and pSeries.

Solaris OS Code Linux Code

class T {
 public:
 T(int);
};

class U {
 public:
 U(T& k=T(0));
};

class T {
 public:
 T(int);
};

class U {
 public:
 U(const T&k=T(0))
};

Here are the errors messages that result with the VisualAge compiler:
"test.cpp", line 10.16: 1540-1280 (S) An rvalue of type "T"
cannot be converted to "T &".
"test.cpp", line 10.16: 1540-1290 (I) An rvalue cannot be

converted to a reference to a non-const type.
In order to get this code fragment to compile clean on Linux on iSeries and pSeries,
const must be added to the parameter. The problem with making the parameter non-
const is that the constructor could try to update the reference. Since the reference points
to a temporary, the update would then be lost. The way to make this code fragment
compile on Linux is to use U(const T&k=T(0)). This makes the code more C++
conformant also.

Storing returned object in a reference
The following code fragment would compile clean on Solaris OS (in the left-hand
column), but gives error messages on Linux on iSeries and pSeries. In the righthead
column, two solutions are shown that will compile clean on Linux on iSeries
and pSeries.

Before After

class foo {
 public:
 foo();
};

foo getFoo() {
 foo myFoo;
 return myFoo;
}

void myFunc() {
 foo& myFoo = getFoo();

}

class foo {
 public:
 foo();
};

foo getFoo() {
 foo myFoo;
 return myFoo;
}

void myFunc() {

Solution 1:
 const foo & myFoo = getFoo();

Solution 2:
 foo tmpFoo =getFoo();
 foo& myFoo = tmpFoo;
}

A temporary, such as produced by the expression getFoo(), cannot bind to a non
const reference, according to the C++ standard. Both Linux compilers adhere to that
requirement.

Copy constructors, equals operator and comparison operator
VisualAge requires copy constructors, equals operator and comparison operator
parameters to sometimes be const. Therefore, the general rule would be to make
all the parameters const if possible to avoid errors.

Before After

Foo(Foo&)
Foo & operator = (Foo &)
Boolean operator == (Foo &,Foo &)

Foo(const Foo&)
Foo & operator = (const Foo &)
Boolean operator == (const Foo
&, const Foo &)

Method naming
Method names cannot be class names.

Before After

class Foo;
class FooNext {
 Foo *Foo;
};

class Foo;
class FooNext {
 Foo *fooPtr;
};

Friend usage
Using friend does not make it a class. Forward declare a class prior to making it friend.

Before After

class Foo{
 friend class FooFriend;
};

class FooFriend;
class Foo {
 friend class FooFriend;
};

Static friend usage
Solaris OS' Forte C++ compiler allows the friend function to be static, but the VisualAge
C++ compiler does not allow it. Do not specify the friend function as static.

Class Qualifiers
VisualAge does not allow usage of class qualifier :: within a class definition.

Before After

class FooNext {
 void FooNext::getFoo();
};

class FooNext {
v oid getFoo();
};

Text after #endif
Neither compiler allows extra non comment text following #endif statements.

Before After

#endif extra comment #endif //extra comment

Linked Lists
The following code fragments compiles clean on Solaris OS, but give the error message
below on Linux:

/* Type definition for a linked list and linked list pointer. */
class LinkList : public Node {
 int _listlength; /* no. of elements in linked list */
 int _itemsize; /* size of the data _item (see _NODE) */
 public :
 Node *_head; /* pointer to _head of linked list */
 Node *_tail; /* pointer to _tail of linked list */
 Node *_current; /* pointer to _current node */
}

LinkList operator++(){
 if(_current->_next)
 _current = _current->_next;
 else
 _current = NULL;
 return *this;
}

LinkList LinkList::operator=(LinkList &from_list)
{
 char *from_item,
 *to_item;
 LinkList _list(sizeof(this->_head));
 from_list++;
}

Error message for the "from_list++" line:
1540-0218 (S) The call does not match any parameter list for
"operator++".
1540-0215 (I) The wrong number of arguments have been specified
for
"LinkList::operator++()".
1540-1283 (I) "LinkList::operator++()" is not a viable candidate.

To make this work on Linux, change the declaration from
LinkList operator++() {

to
LinkList operator++(int){

If the compiler sees ++b, it generates a call to B::operator++(). If it sees b++ it
calls B::operator++(int).

C++ Style Comments
To enable C++ style comments in C source file with the VA compiler, use the flag
-qpluscmt. This is not required for GCC.

Java technology
Java technology allows developers to deploy across multiple platforms without
recompiling code, provided that the Java Runtime Environment is compatible with the
Java Developer Kit (JDK) for the platform on which the software was developed. Linux
Java development is supported on both RHEL and SLES by the IBM Developer Kit for
Linux, Java Technology Edition. This developer kit is available in both 32- and 64-bit
versions at no cost from IBM . The IBM developer kit is also packaged with both RHEL
and SLES media, and updates are supported by the distributions' maintenance packages.

Architecture-Specific differences
Now, let's look at the architecture- and system-specific differences between Solaris OS
and Linux, including base data types and endianness.

Base data type and alignment

There are two different classes of data types available on a system: base data types and
derived data types. Base data types are all data types defined by the C and C++ language
specification. Table 3 compares base data types for Linux on x86 and Solaris OS on
SPARC.

Comparing Linux and Solaris OS base data types
Linux
x86

Linux
IA64

Linux
Power

Linux
Power

Linux
zSeries

Linux
zSeries
64bit

Solaris
OS Sparc
32bit

Solaris
OS
Sparc
64bit

Base
type

ILP32
(bytes)

LP64
(bytes)

ILP32
(bytes)

LP64
(bytes)

ILP32 ILP64 LP32
(bytes)

LP64
(bytes)

char 1 1 1 1 1 1 1 1

short 2 2 2 2 2 2 2 2

Int 4 4 4 4 4 4 4 4

float 4 4 4 4 4 4 4 4

long 4 8 4 8 4 8 4 8

pointer 4 8 4 8 4 8 4 8

long
long

8 8 8 8 8 8 8 8

double 8 8 8 8 8 8 8 8

long
double

12 16 8/16* 8/16* 8 8/16** 16 16

*The default size for long double in Linux on POWER is 64 bits. They can be increased
to 128 bits if the compiler option –qlongdouble in XL C/C++ compiler is used.
** 16 bit is a future enhancement.

When porting applications between platforms or between 32-bit and 64-bit modes, you
need to take into account the differences between alignment settings available in the
different environments to avoid possible degradation in performance and data corruption.
Table 4 shows the alignment values in bytes for Linux on x86.

Alignment values (in bytes) for Linux on x86

Data type Linux IA-32
(ILP32)

Linux IA-64
(LP64)

Linux Power
(ILP32)

Linux Power
(LP64)

Bool 1 1 1 1

Char 1 1 1 1

wchar_t 4 4 2 4

int 4 4 4 4

Short 2 2 2 2

long 4 8 4 8

long long 8 8 8 8

Float 4 4 4 4

Double 4 8 8 8

long double 4* 16 8 8

Note: Alignment depends the compiler switches being used. These switches control the
size of the "long double" type. The i386 application binary interface specifies the size to
be 96 bits, so -m96bit-long-double is the default in 32-bit mode. Modern architectures
(Pentium and newer) would prefer "long double" to be aligned to an 8- or 16-byte
boundary. In arrays or structures conforming to the ABI, this would not be possible. So
specifying a -m128bit-long-double will align "long double" to a 16-byte boundary by
padding the "long double" with an additional 32-bit zero.

System-derived data types
A derived data type is a derivative or structure of existing base types or other derived
types. System-derived data types can have different byte sizes depending on the employed
data model (32-bit or 64-bit) and the hardware platforms. Table 5 shows some of the
derived data types on Linux that are different from those on Solaris OS.

Derived data types on Solaris OS and Linux

OS gid_t mode_t pid_t uid_t wint_t

Solaris OS
ILP32 l

long unsigned long long long long

Solaris OS
LP64

int unsigned int int int int

Linux
ILP32

unsigned int unsigned int int unsigned int unsigned int

Linux LP64 unsigned int unsigned int int unsigned int unsigned int

Endian-ness

Endianness issues are often encountered during the process of migrating applications
from one type of architecture to another. Endianness is the ordering of a data element and
its individual bytes as they are stored and addressed in memory. There are two types of
endianness: big-endian and little-endian. Some processors (such as Sparc and Power or
zSeries) store values in memory Big-Endian, from most significant to least significant
value:

0x4A3B2C1D is stored as 0x4A 0x3B 0x2C 0x1D
Little-Endian processors (such as Intel ia32) store them from least- to most-significant:

0x4A3B2C1D is stored as 0x1D 0x2C 0x3B 0x4A

Code that expects a certain address order for binary data will not be portable between
these processor types. Since both SPARC and POWER architectures are big-endian, there
will be no endianness issues when porting applications between these platforms.
However, if you are porting Solaris OS on Sparc applications to Linux on xSeries (ia32),
you may need to deal with endianness portability issues since ia32 is a little-endian
architecture. Most problems arise from three types of incompatibility:

1. Non-uniform data reference
2. Data sharing across BE and LE platforms
3. Data exchange between network devices (e.g. IP and PCI)

Non-uniform data reference is chief among these issues, especially in user space
application code, whereas the latter two categories are difficulties at lower code
levels, e.g. device drivers. Consistent with the scope of this document, only the
former is discussed in detail.

Non-uniform Data Reference
Non-uniform data reference arises from improper datatype reference with regard to
endianness, usually dealing with unions or pointers. Endian-friendly code should
incorporate definitions to determine if the platform is LE or BE.

It is considered good programming habit to never cast a pointer to an int and to explicitly
reference datatype and byte values during conversion.

32 to 64 bit Migration

Any attempt to migrate from a 32 bit platform to 64 bit Linux should be treated as two
separate ports: first from the native platform to 32 bit Linux, and second from 32 to 64
bit. Datatype mismatches are common among code incompatibilities due to endianness
and 32 to 64 bit issues. Opportunities to isolate the source of these incompatibilities
should be exploited at every turn.

A 64 bit application environment can radically improve the performance of memory
addressing and throughput for applications that manipulate very large data structures, e.g.
databases. However, underutilization of a 64 bit address space also results in performance
loss.

Datatype Consistency
In a 64 bit environment, long and ptr data types are 64 bit, not 32. Failure to account for
this difference from a 32 bit environment will result in compile errors when ints are
improperly matched. A long is not an int in 64 bit code, and thus the two cannot be
interchanged. Attempts to do so will either result in compile errors or worse yet,
data truncation at runtime. Explicit reference is key to avoiding these types of errors.
Consider this code example:

Explicit reference example
extern long dosomething(int);

int main(int argc, char *argv[])
{
int i1, i2, i3;
long l1, l2, l3;

/* implicit truncation occurs in the next 3 statements */
i1 = l1;
i2 =i2 *l2;
i3 = dosomething(l3);

/* use explicit casting to obtain the intended narrowing */
i1 = (int) l1;
i2 = (int) i2 * l2;
i3 = (int) dosomething((int) l3);
}

Never case a pointer to an int in 64 bit code. This is considered by some to be poor
coding practice regardless, but is forbidden in 64 bit code. Use of longs and explicit type
reference are again keys to
avoiding these mistakes.

In preparing code for migration to 64 bit, the VA compilers can help identify potential
incompatibilities. The -qwarn64 build flag of the VA compilers will identify potential
data truncations arising from long to int conversion.

System-specific Differences
In this section, learn about the differences between Solaris OS and Linux, including
system calls, signals, data types, and threading libraries.

System calls and library functions

While Solaris OS and Linux both have the same UNIX-system-based roots, they are
different and some Solaris OS system calls and library functions are not available on
Linux. When this happens, a wrapper-call may have to be implemented on the Linux side.
Here are a few examples of incompatibilities between Solaris OS and Linux:

• regexec() and regcomp(): The routines regexecc() and regcomp() on Solaris
OS need to be replaced by regexp() and regcmp() on Linux.

• Dirent structure on Solaris OS is different from that on Linux.

• File system interface routines: Solaris OS file system routines employ vfstab
structures and contain vfs in the function name, such as getvfsent. Linux
provides equivalent interfaces, but the routines use fstab structures and contain fs
in the routine name, such as getfsent. The vfstab structure on Solaris OS is
defined in /usr/include/sys/vfstab.h. The definition of fstab on Linux is
in /usr/include/fstab.h.

• Device Information Library Functions (libdevinfo): The libdevinfo library
contains a set of interfaces for accessing device configuration data, such as major
and minor numbers. The standard Linux installation does not support this.

• CPU Affinity: By default, a process in a multiprocessor system bounces among
several CPUs. By explicitly binding a process to certain CPUs (assigning CPU
affinity) may yield performance gain in some cases. System calls for CPU affinity
on Solaris OS are different from those on Linux. The Linux 2.6 kernel provides
sched_setaffinity() and sched_getaffinity() for CPU affinity. Please
consult the Linux man pages for more information.

The following table lists the Solaris OS system calls that either use a different name, signature, or
are not available on Linux:

Solaris OS system calls
Solaris OS Linux Notes

acl, facl N/A
get or set a files’s Access Control
List (ACL)

adjtime N/A
correct the time to allow
synchronization of the system
clock

audit N/A write a record to the audit log
auditon N/A manipulate auditing

auditsvc N/A
write audit log to specified file
descriptor

getacct, putacct, wracct N/A
get, put, or write extended
accounting data

getaudit, setaudit, getaudit_addr,
setaudit_addr

N/A
get and set process audit
information

getauid, setauid N/A get and set user audit identity

getdents getdents**

read directory entries and put in a
file system independent format.
Dirent structure on Linux and
Solaris OS are different.

getmsg, getpmsg N/A get next message off a stream
getpflags, setpflags N/A get or set process flags
getppriv, setppriv N/A get or set a privilege set

getustack, setustack N/A
retrieve or change the address of
per-LWP stack boundary
information

issetugid N/A
determine if current executable is
running setuid or setgid

llseek _llseek
move extended read/write file
pointer

_lwp_cond_signal,
_lwp_cond_broadcast

N/A signal a condition variable

_lwp_cond_wait,
_lwp_cond_timedwait,
_lwp_cond_reltimedwaid

N/A wait on a condition variable

_lwp_info N/A
return the time-accounting
information of a single LWP

_lwp_kill N/A send a signal to a LWP
_lwp_mutex_lock,
_lwp_mutex_unlock,
_lwp_mutex_trylock

N/A mutual exclusion

Solaris OS Linux Notes

_lwp_self N/A get LWP identifier
_lwp_sema_wait,
_lwp_sema_trywait,
_lwp_sema_init, _lwp_sema_post

N/A semaphore operations

_lwp_suspend, _lwp_continue N/A
continue or suspend LWP
execution

memcntl N/A memory management control
meminfo N/A provide information about memory

mount mount*
mount a file system. The
signatures of this system call on
Solaris OS and Linux are different.

msgids N/A
discover all message queue
identifiers

msgrcv msgrcv*
message receive operation. Linux
uses struct msgbuf type in one of
its argument.

msgsnap N/A message queue snapshot operation

msgsnd msgsnd*
message send operation. Linux
uses struct msgbuf type in one of
its argument.

ntp_adjtime N/A adjust local clock parameters
ntp_gettime N/A get local clock values

open, openat open*
open a file. openat() is not
available in Linux.

pcsample N/A program execution time profile

p_online N/A
return or change processor
operational status

priocntl N/A process scheduler control

priocntlset N/A
generalized process scheduler
control

processor_bind sched_setaffinity bind LWPs to a processor

processor_info N/A
determine type and status of a
processor

pset_bind N/A bind LWPs to a set of processors
pset_create, pset_destroy,
pset_assign

N/A manage sets of processors

pset_info N/A
get information about a processor
set

pset_list N/A get list of processor sets
pset_setattr, pset_getattr N/A set or get processor set attributes

Solaris OS Linux Notes

putmsg, putpmsg N/A send a message on a stream

rename, renameat rename*
change the name of a file. Linux
does not have renameat().

resolvepath N/A
resolve all symbolic links of a path
name

semids N/A discover all semaphore identifiers
setrctl, getrctl N/A set or get resource control values
settaskid, gettaskid, getprojid N/A set or get task or project IDs

shmids N/A
discover all shared memory
identifiers

sigsend, sigsendset N/A
send a signal to a process or a
group of processes

__sparc_utrap_install N/A
install a SPARC V9 user trap
handler

fstatat N/A get file status
swapctl N/A manage swap space
uadmin N/A administrative control

unlink, unlinkat unlink*
remove directory entry. Linux does
not have unlinkat().

futimesat N/A
set file access and modification
times. It resolves the path relative
to the fildes argument.

waitid N/A
wait for child process to change
state

yield sched_yield
yield execution to another
lightweight process

Signals

Linux supports both POSIX standard signals and POSIX real-time signals.

Note that for Linux:
• SIGABRT and SIGIOT are identical
• SIGCLD and SIGCHLD are identical
• SIGPOLL and SIGIO are identical
• Default action for SIGPWR for Linux is to terminate the process, but ignore on

Solaris OS.
The following signals are supported by Solaris OS, but not by Linux:

Signals supported by Solaris OS

Name
Default
action

Description

SIGEMT core Emulation trap
SIGWAITING ignore Concurrency signal used by threads library
SIGLWP ignore Inter-LWP signal used by threads library
SIGFREEZE ignore Checkpoint suspend
SIGTHAW ignore Checkpoint resume
SIGCANCEL ignore Cancellation signal used by threads library
SIGLOST ignore Resource lost (but supported in Linux running on Sparc)
SIGXRES ignore Resource control exceeded

sigset_t is defined differently on Solaris OS and Linux.

Solaris OS Threads and POSIX Threads

This section addresses issues that developers face when migrating multithreaded
applications from Solaris OS to Linux. Solaris OS supports two threading
implementations: Solaris OS threads and POSIX threads (pthreads). Linux supports the
POSIX threading library (pthreads). Applications coded to the POSIX threading model
on Solaris OS should not have any problems in this area, on Linux. There are some
functions implemented by the Solaris OS threads API that are not implemented by the
pthreads API, and vice versa. For those functions that do match, the associated arguments
might not. The following features are exclusively supported by the Solaris OS threads
API:

• The ability to create daemon threads. Daemon threads do not affect the process
exit status. A process can exit either by calling exit(), or by having every non-
daemon thread in the process call thr_exit().

• The ability to suspend or continue the execution of the thread using thr_suspend()
and thr_continue(). Note that thr_suspend() suspends the target thread with no
regard to the locks that the thread might be holding. If the suspending thread calls
a function that requires a lock held by the suspended target thread, deadlock
occurs.

• The ability to allow a thread to wait for any undetached thread in the process to
terminate. This is achieved when the first argument of thr_join() is set to 0. If you
set the first argument of pthread_join() to 0, the program will be terminated with a
segmentation fault.

The following table compares the key Solaris OS threads functions with the pthreads
functions. For other Solaris OS threads functions, please consult the "Multithreaded
Porting Guide" from Sun. (See http://docs.sun.com/app/docs/doc/816-5137)

Threads and pthreads functions
Solaris OS threads
API

Linux POSIX threads API Description

thr_create() pthread_create() Creates a new thread of control.

thr_exit() pthread_exit()
Terminates the execution of the
calling thread.

thr_join() pthread_join()
Suspends the calling thread until the
target thread completes.

thr_kill() pthread_kill() Sends a signal to another thread.

thr_self() pthread_self()
Returns the thread ID of the calling
process.

thr_yield() sched_yield()
Makes the current thread yield to
another thread.

thr_getprio() pthread_getschedparam()
Retrieves a thread's priority
parameters.

thr_setprio() pthread_setschedparam()
Modifies a thread's priority
parameters.

thr_getspecific() pthread_getspecific()
Binds a new thread-specific value to
the key.

thr_setspecific() pthread_setspecific()
Binds a new thread-specific value to
the key.

thr_getconcurrency() pthread_getconcurrency() Gets thread concurrency level.
thr_setconcurrency() pthread_setconcurrency() Sets thread concurrency level.

thr_sigsetmask() pthread_sigmask()
Changes or examines the calling
thread's signal mask.

thr_keycreate() pthread_key_create()
Creates a key that locates data
specific to a thread.

N/A pthread_key_delete()
Deletes a key that locates data
specific to a thread

thr_suspend() N/A
Suspends the execution of the
specified thread.

thr_continue() N/A
Resumes the execution of a
suspended thread.

fork1() fork() Regular fork
forkall() N/A Replicate all fork

The behavior of fork() in Solaris OS 9 and earlier releases is different from the behavior
of fork() in POSIX threads. In POSIX threads, fork() creates a new process, duplicating
the complete address space in the child. However, it duplicates only the calling thread in
the child process. Solaris OS threads API also provides the replicate all fork semantics,
forkall(). This function duplicates the address space and all the threads in the child. This
feature is not supported by POSIX thread standard.

There are some POSIX thread extensions implemented in Solaris OS, but not in Linux,
and vice versa. The following table lists those routines:

POSIX thread extensions
Routine Solaris OS Linux
pthread_cond_reltimedwait_np y n

pthread_mutexattr_getprioceiling y n

pthread_mutexattr_getprotocol y n

pthread_mutexattr_getrobust_np y n

pthread_mutexattr_setprioceiling y n

pthread_mutexattr_setprotocol y n

pthread_mutexattr_setrobust_np y n

pthread_mutex_consistent_np y n

pthread_mutex_getprioceiling y n

pthread_mutex_reltimedlock_np y n

pthread_mutex_setprioceiling y n

pthread_rwlock_reltimedrdlock_np y n

pthread_rwlock_reltimedwrlock_np y n

pthread_setschedprio y n

pthread_attr_getaffinity_np n y

pthread_attr_setaffinity_np n y

pthread_cleanup_pop_restore_np n y

pthread_cleanup_push_defer_np n y

pthread_getattr_np n y

pthread_kill_other_threads_np n y

pthread_rwlockattr_getkind_np n y

pthread_rwlockattr_setkind_np n y

pthread_timedjoin_np n y

pthread_tryjoin_np n y

POSIX threading on Linux implements the one-on-one threading model (where there is a
one-to-one relationship between user threads and kernel threads). It also implements the
inter-process POSIX synchronization primitives. Specifically, the thread option
PTHREAD_PROCESS_SHARED is supported. By default, each thread is created with
the detachstate attribute set to PTHREAD_CREATE_JOINABLE, scheduling policy set
to SCHED_OTHER, and no user-provided stack.

The following table shows the default values of attributes for POSIX threads on Linux:

Default values of POSIX threads attributes on Linux
Attribute Default Values
scope PTHREAD_SCOPE_SYSTEM
detachstate PTHREAD_CREATE_JOINABLE
schedparam 0
inhiritsched PTHREAD_EXPLICIT_SCHED
schedpolicy SCHED_OTHER

Testing and Performance tuning
Once the code has been ported and successfully executed on Linux, testing, performance
monitoring and tuning procedures can ensure that the ported code performs well on the
target platform. This section provides you with a list of tools available on Linux to help
accomplish that.

GNU Development tools
The GCC compiler set, and the GNU development utilities that come with each Linux
distribution, offer free and basic toolkit for debugging and profiling an application.

The basic profiling tools in Linux are the –p (profile) and –pg (profile for gprof) options
in gcc, and the prof and gprof utilities. Compiling using –p or -pg causes gcc to insert
instructions necessary to obtain profiling information into the object code. Running the
prof command with the application will allow you to then obtain:

• each procedure, ordered by descending processor activity

• the percentage CPU time used by each procedure

• the execution time in seconds for all references

• the number of times each procedure was called

• the average time for a call to the procedure

Running the gprof command with the application will gather (among other information):

• the percentage of CPU time used by each procedure and its calling tree

• a time breakdown for each procedure and what it calls

• the number of times a procedure was called

• what procedures were called by each procedure

Since gprof includes the descendants of a procedure in its timings, it is more useful for
procedures calling library routines.

There are other profiling tools available to the developer, prof and gprof are mentioned
here as being the most commonly available. Some of these alternative tools may be
specialized for a specific purpose, such as parallel programming, or for massively-
multithreaded applications.

Compiler Options as Tuning Tools
Modern compilers offer many optional optimization features, gcc as one example offers
over sixty options related to performance optimization. These compilers often “know” the
machine architecture and processor better than the developer, performing as a matter of
course such optimizations as dead code elimination, loop unrolling, branch optimization,
and function inlining. In many cases, the programmer will find all of the major and
obvious bottlenecks identified via profiling, resolved by using the optimizations provided
by the compiler.

In gcc, the general level of optimization is controlled by the –O flag. At its most basic
level (-O1), will take the most general steps to reduce code size and execution time. –O2
will cause gcc to perform nearly all optimizations that do not involve a space-speed
tradeoff (such as loop unrolling or function inlining). –O3 turns on such additional
optimizations as function inlining and register renaming. We recommend an interactive
process of increasing optimization/profiling cycles to determine the best level for your
application. This is because it is possible, even with well-written code, for a higher level
of compiler aggressiveness in optimization to hurt a piece of code’s performance, rather
than help it. This is sometimes a matter of what the more aggressive optimizer is looking
for as opposed to what the code is actually trying to do. A reading of the performance
options section of the gcc manual will reveal many additional options, most of which are
more suitable for use once a particular code section has been analyzed and its problems
made clear.

GCC also offers a number of processor-specific performance options.

Rational Software Development Platform
The IBM Rational Software Development Platform (SDP) offers the most complete set of
offerings to build, integrate, modernize, extend, and deploy software and software-based
systems. It provides everything you need to automate and integrate your software
development projects. See http://www.ibm.com/software/rational/ for details.

Performance Inspector
This suite of tools can be used to identify performance problems in your application
(C/C++/Java) and shows how your application interacts with the Linux kernel. It consists
of seven tools:

• TProf is a timer profiler that identifies what code is running on the CPU during a
user-specified time interval. It is used to report hot-spots in applications as well as
the kernel. Basically, it records which code is running at each system-clock

interrupt (100 times per second per CPU). Oprofile (below) also provides this
feature.

• PTT collects per-thread statistics, such as number of CPU cycles, number of
interrupts, and number of times that the thread was dispatched.

• AI displays CPU utilization statistics during a user-specified interval.
• JLM provides statistics on locks based in the Java 2 technology.
• JProf is a shared library that interfaces with Java jvmpi interface.
• POST generates reports based on outputs from other tools.
• A2N is used by POST to map code execution to the application that was being

traced.

At the time of this writing, Performance Inspector supports SUSE LINUX Enterprise
Server 9 and Red Hat Enterprise Linux 3.0 Update 2. To download Performance
Inspector and get more information, please visit the Performance Inspector home page.
(See http://perfinsp.sourceforge.net/)

Post-Link Optimization for Power
This tool optimizes the executable image of a program by collecting information on the
behavior of the program while the program is used for some typical workload. It then re-
analyzes the program (together with the collected profile), applies global optimizations
(including program restructuring), and creates a new version of the program that is
optimized for that workload. The new program generated by the optimizer typically runs
faster and uses less real memory than the original program.

At the time of this writing, Post-Link Optimization for Power tool is supported on the
following Linux distributions: SUSE LINUX Enterprise Server 8 and above, Red Hat
Enterprise Linux 3. To download and get more information, please visit the IBM
alphaWorks Post-Link Optimization for Linux on POWER site. (See
http://www.alphaworks.ibm.com/tech/fdprpro)

Oprofile
Oprofile provides profiles of code based on hardware-related events such as cache misses
or CPU cycles. For example, Oprofile can help you determine which of the source
routines causes the most cache misses. Oprofile utilizes hardware performance counters
provided in many CPUs including IBM Power. Please visit the Oprofile Web site for
more information. (See http://oprofile.sourceforge.net/news/).

Software packaging
Application software is delivered to end users in a unit called a package. A package is a
collection of related files (binaries, libraries, documentation, and source code) and
metadata. Metadata is used by the package management system to coordinate all of the
pieces in the package. Solaris OS uses pkgadmin as its package manager. RPM is the
package management system widely used on Linux. For further information about RPM,
please visit http://www.rpm.org/ or type “man rpm” in Linux.

Note that the format of the package specification template files used by pkgadmin in
Solaris OS is different from the spec file used by RPM, and translating packaging
information from template file into spec files requires a substantial effort.

Summary (and Further Information)
The porting effort from Solaris OS to Linux in most cases is usually the same as the
move from Solaris OS to any other “flavor” of commercial UNIX system. While there are
great similarities, the differences must be taken into account. Usually, this involves just a
recompile or minor changes in compiler/linker switches. A move to Linux provides many
gains in versatility and platform choice, as it is supported on almost all hardware
platforms available today. Modern Linux distributions have gone beyond their hobbyist
roots, emerging as the primary forward force in enterprise platforms today.

IBM is currently working with Prentice-Hall publishing on a comprehensive examination
of UNIX-system-to-Linux migration: Unix to Linux Porting: A Comprehensive
Handbook. This book focuses on porting applications from commercial UNIX systems,
with select information on the Solaris OS operating system. Publication is currently
planned for May of 2006, and the ISBN is: 0-13-187109-9.

END OF DOCUMENT

