ENDIAN CHECKING PORTABILITY

TOOL (ECT)
IBM

Getting Started Tutorial



COPYRIGHT

This Tool and all material delivered with it are
(C) Copyright International Business Machines (IBM), 2004, 2005

and are useable and distributable only with IBM permission and under IBM terms and
conditions. It may not be copied or further distributed unless authorized in writing by
IBM.



INTRODUCTION

The Endian Check Tool (ECT) is similar in execution and principle to the "lint" code
analysis tool, which is well-known to C developers. The tool performs an analysis of the
application binary and sources, looking for code with potential chip architecture
dependencies and problems in cross-hardware portability.

This tutorial takes the user through the basic steps to set up ECT, modify the build
process, and analyze the results.

Overview

This tutorial will take you through all the steps necessary to test an application for
potential endian problems. In the following steps you will install ECT, modify the test
application's build process, check the application and interpret the results.

Prior to running through this tutorial you should verify that you have the following
packages installed on your system:

SFWgawk  gawk - pattern scanning and processing language
SFWgbin binutils - GNU binary utilities

SFWgcc gce - GNU Compiler Collection

SFWgcce33  gee-3.3.2 - GNU Compiler Collection
SFWgemn  gemn - Common GNU package

SFWgdb gdb - GNU source level debugger

SFWgmake make - GNU make utility

Enter "pkgi nfo | grep SFW at the command line to verify this. For more information,
please check the installation instructions in the ECT section of the MSLK manual.

Step 1 - Installation

For the purpose of this tutorial, you will be using the tarball installation method and
installing ECT into your home directory. We recommend you don't get fancy with where
you put things at this point. You can always clean up the ECT directory and re-install
when the tutorial is finished.

Get the ect-1.0.tar.gz file and place it in your home directory (example starting in the
directory where the ect-1.0.tar.gz file resides. If this is your home directory skip to the
next step).

cp ect-1.0.tar.gz ~/

Change to your home directory, expand the archive and then extract the files from the
tarball:



cd
gunzip ect-1.0.tar.gz
tar xvf ect-1.0.tar

You will now have an ect subdirectory in your home directory. Let's go right to the
tutorial files

cd ~/lct/tutori al

Step 2 — Rebuilding The Code

Now we have to change the build process for the application so that it includes debugging
information in the stab format, and the application is statically linked. Note that for the
simple example we use here static linking doesn't really matter, but when you use ECT on
a large application with multiple shared libraries, static linking for analysis allows ECT to
check every function call made.

The Makefile looks like this (bring it up in your favorite editor)

CC=gcc

CFLAGS= -2
LDFLAGS= -static
DEPS =

all: testl

testl: testla.o testlb.o
gcc -0 $@$" $(CFLAGS) $(LDFLAGS)
% o0: % c $(DEPS)
$(CO -c -0 $@ $< $(CFLACS)
. PHONY: cl ean
cl ean:
rm-f *.o0 *~ core *.i *.s *. out
rm-f testl
We'll start by changing the CFLAGS line from:
CFLAGS= -2
to
CFLAGS= -2 -gstabs+ -save-tenps
Wherever you put gcc options in your Makefile, you will need to add “-gstabs+ -save-

temps”. This gives ECT the information needed to analyze the program and leaves behind
the files you need to interpret the results.

Next we'll modify the linker flags to ensure the application is being statically linked.
Change the LDFLAGS line:



LDFLAGS=

to
LDFLAGS= -static

The Makefile should now look like this:
CC=gcc
CFLAGS= -2 -gstabs+ -save-tenps
LDFLAGS= -static
all: testl
testl: testla.o testlb.o
gcc -0 $@ %" $(CFLAGS) $(LDFLAGS)
% o0: %c $(DEPS)
$(CCO -c -0 $@$< $(CFLAGS)
. PHONY: cl ean
cl ean:
rm-f *.o0 *~ core *.i *.s *. out
rm-f testl

Now you are almost ready to build this intensely complicated application. But first we
have to verify that a few environment variables are set up. We have to assume that the
GNU tools were set up in the default directory of /opt/sfw. You can quickly verify that the
exports we are about to make will work by running the following commands:

pkgchk -1 SFWymake | grep gnake$

pkgchk -1 SFWycc33 | grep gcc$

pkgchk -1 SUNWgrp | grep ggrep$

pkgchk -1 SFWjcc33 | grep libstdc++. so
The output from each command will tell you the path to the GNU utilities like gmake, the
path to the gcc compiler, and the path to the runtime libraries. If the results of these
commands indicate your are installed somewhere other than /opt/sfw, you will have to

modify the following commands appropriately to reflect the proper paths (The commands
are ordered exactly as each entry here):

export PATH=/ opt/sfw gcc-3/bin:/opt/sfw bin:/usr/sfw bin/:$PATH
export LD LI BRARY_PATH=/ opt/sfw gcc-3/1i b/

At last you can build the application. Just run gmake from the command line and your
application should build:

bash- 2. 05% gneke

gcc -c -0 testla.o testla.c -2 -gstabs+ -save-tenps



testla.c: In function "main':
testla.c:8: warning: return type of “nain' is not “int'

gcc -c -0 testlb.o testlb.c -2 -gstabs+ -save-tenps

gcc -0 testl testla.o testlb.o -2 -gstabs+ -save-tenps -static

bash-2. 05$

Step 3 — Running ECT

Now you finally get to run ECT against the code and see if there are any problems. Since
we didn't bother including the ECT binaries in the PATH, we will run it as follows (we

are still in ~/ect/tutorial) enter the following command:
../ bin/ect.bash testl testl.results

So you understand what is going on, ect.bash controls the analysis process, as it runs it
calls various other programs for each stage of the analysis. To run ect.bash you pass it the
executable you are analyzing and the name of a file to hold the results of the analysis.

Now that you've kicked off the analysis process you should see a bunch of output that

looks like this:

0% Conpl ete [11:43:10] - Staring ...
sparc-sun-sol aris2.9

Solaris 9

This might take a long time to conplete.. please do not interrupt

Using ...
ECT Bin direct: ../ect/bin
executable file: testl
results file: testl.results
dat abase direct: ../ect/data/testl. DB
obj dunmp file: ..lect/datal/testl. DB/ obj dunp. t xt

10% Conpl ete [11:43:25] - generated size table...
[crtgdb]: generating function definitions
[crtgdb]: generating gdb commands for function details.
[crtgdb]: gdb version = 6
[crtFuncDef]: generating type info

20% Conpl ete [11:43:25] - generated function definitions table...

[genCbj Fr]: generating function calls

30% Conpl ete [11:43:27] - generated function references table...

it..



40% Conpl ete [11:43:27] - checked for risky APl calls...

50% Conpl ete [11:43:27] - checked for ioctl usage...

ERROR: not enough source information to build tFunctionRefParns.tbl
60% Conpl ete [11:43:27]

70% Conpl ete [11:43: 33]
decl arations. ..

80% Conpl ete [11: 43: 33]

90% Conpl ete [11: 43: 33]
__BUILTIN...

100% Conpl ete [11:43:33] - Formulated results ...

checked for endian errors in function calls...

checked for endian errors in global variable

checked for data size differences...

checked for potentially invalid uses of

Found 1 warni ngs and
1l errors in
2 files

You will notice partway through an error message came up “ERROR  not enough
source information to build tFunctionRefParns.tbl”. This is due to the
simplicity of the tutorial application.

The end result is ECT found 1 error in the application and has 1 warning. You can view
the report from the analysis by opening the file testl.report (there will always be an
executable-name.report file at completion).

Step 4 — Analyzing The Results

The test.report for this run looks like this:

/export/home/joe-user/tut/testlb.i - Line: 220 E40002 d obal Variable
"messedupvar" type mismatch "int" (Defined in "/export/home/joe-
user/tut/testlb.c" as "char *")

[opt/sfw gcc-3/1ib/gce-1ib/sparc-sun-solaris2.9/3.3.2/include/stdarg. h
- Line: 43 W50001 Potentially hazardous use of builtin:
__builtin_va l|ist

Now that we've run the tool and have our report, we need to review the results and see
what remediations are necessary. We'll start with the error:

/export/ home/joe-user/tut/testlb.i - Line: 220 E40002 d obal Variable
"messedupvar" type mismatch "int" (Defined in "/export/home/joe-
user/tut/testla.c" as "char *")

That line is telling us two important things, what kind of error we have and where we can
find the offending code. First the error code E40002 tells us what we have to deal with, a
type mismatch, a variable was defined differently in two files (All the error and warning
messages are documented in the manual).



We can find the source of the problem on line 220 of test1b.i. That .i file is a temporary
file created during compilation (has all include files included and macros expanded).
Remember we added that -save-temps switch to the gcc options? That is so we can go
into that file now and figure out the problem. If we look at line 220 of test1b.i, you can
see that messedupvar is defined as an int.

218 # 2 "testlb.c" 2
219

220 extern int nessedupvar;

The error message also tells us that when that variable was originally defined in testla.c
as a character pointer (line 3 in the following listing).

1 #include <stdio. h>

2
3 char nessedupvar[2] = "A";
4
5 wvoid bad_function(void);
6
7 void main(void)
8 {
9 bad_function();
10 }

The warnings we received alerts us to potential problems:

opt/sfw gcc-3/1ib/gcc-1ib/sparc-sun-solaris2.9/3.3.2/include/stdarg. h -
Li ne: 43 W50001 Potentially hazardous use of builtin:
__builtin_va_list

In this case, since we aren't doing anything with variable argument functions, it is only an
artifact from the standard include files and we shouldn't have to worry about changing
anything. Each warning you receive should be investigated and not summarily dismissed.

In conclusion, we have taken you through the steps required to install ECT, run a code
analysis, and interpret the results. The next step is to repeat the process on your
application. The scale may be larger, the build processes may be more complicated, but
the basic steps you need to take are exactly the same as you walked through here.



