
© 2013 Copyright IBM Corporation Page 1 of 118

Learn to Accelerate Your Web App
Development with the Liberty Profile

Lab Instructions

Authors:
Alasdair Nottingham, Senior Software Engineer

Tim deBoer, Senior Technical Staff Member
Ross Pavitt, Software Engineer

© 2013 Copyright IBM Corporation Page 2 of 118

Table of Contents

Table of Contents.. 2

Objective ... 3

Prerequisite Knowledge.. 3

Setting up Eclipse.. 3

Instructions ... 3

The Hello World Application... 6

Instructions ... 6

Summary ... 18

Registration Application.. 18

Defining the JPA entity.. 18

Create the Persistence Unit .. 29

Building the EJB... 33

Adding Servlets ... 39

Adding CDI to the Application... 49

Importing JSP resources.. 51

Create the Add Attendee page ... 52

Update the landing page... 62

Configure the server ... 63

Running the application.. 72

Summary ... 79

Adding RESTful services using JAX-RS... 79

Adding the client-side capability... 79

Adding JAX-RS to the Web Project.. 82

Creating the JAX-RS application.. 86

Creating a JAX-RS GET request handling method... 93

Creating JAX-RS POST requests... 95

Summary ... 100

Adding another EJB... 100

Securing the application ... 107

Add an SSL certificate.. 107

Configuring the application to use transport guarantees 109

Configure security on the Liberty profile.. 112

Testing security ... 114

Summary ... 114

Packaging the server for deployment... 114

Summary ... 117

© 2013 Copyright IBM Corporation Page 3 of 118

Objective

In this lab, you learn:

• How to install the IBM WebSphere Application Server V8.5.5 Liberty Profile.

• How to create and deploy a simple web application using the IBM WebSphere

Application Server Developer Tools for Eclipse V8.5.5.

• How to create and deploy a simple registration web application that uses

Servlets, JPA, EJBs, Context and Dependency Injection, and JAX-RS.

• How to secure applications to use SSL.

• How to generate a customised Liberty profile image, and use that image to

deploy your application outside of a development environment.

Prerequisite Knowledge

To get the most out of this lab, knowledge of the following areas is useful

• Basic knowledge of Java EE

• Basic familiarity with the Eclipse IDE

Setting up Eclipse

To run this lab you need to start Eclipse, configure a workspace and import the required

resources.

Instructions

1. Go to https://www.ibmdw.net/wasdev/websphere-application-server-

developer-tools-v8-5-5/, and follow instructions to install WebSphere

Application Server Developer Tool for Eclipse V8.5.5.

2. Launch the Eclipse IDE. If you are prompted to provide a workspace location,

provide a path to an empty folder that can be used to store your work with

Eclipse and click OK.

© 2013 Copyright IBM Corporation Page 4 of 118

3. Select File > Import…

© 2013 Copyright IBM Corporation Page 5 of 118

4. In the Import dialog, expand the General section, and select Existing Projects

into Workspace, then click Next.

5. Select the option for Select archive file, and use the Browse button to navigate

to the copy of Lab-AppDevelopment.zip that came with this set of

instructions. Once this is done, click Finish.

© 2013 Copyright IBM Corporation Page 6 of 118

The Hello World Application

In this exercise you will install the Liberty profile, create a simple web project, write an

application consisting of a single HTML page, and deploy that application to a Liberty

profile server. This application forms the basis for later parts of the lab.

Instructions

1. Create a new Web Project by clicking File > New > Web Project.

© 2013 Copyright IBM Corporation Page 7 of 118

2. Enter the name of the project as RegistrationAppWeb. Select the Simple option

from the Project Templates, and check the Programming model is set to Java

EE. Click Finish. If prompted to open the Web perspective, click Yes.

3. To create the web page right click the RegistrationAppWeb project and select

New > Web Page.

© 2013 Copyright IBM Corporation Page 8 of 118

4. Set the File Name to index.html, and set the Template to HTML from the Basic

Templates, then click Finish.

5. In the web page, add <h1>Hello World</h1> between the opening and

closing tags of the body element.

© 2013 Copyright IBM Corporation Page 9 of 118

6. Save the file using the control-S shortcut.

7. Now the basic application is complete. To deploy, right click on the index.html

file and select Run As > Run on Server.

© 2013 Copyright IBM Corporation Page 10 of 118

8. Select Manually define a server. Expand IBM, and select WebSphere

Application Server V8.5 Liberty Profile. Check Always use this server when

running this project. Click Next.

© 2013 Copyright IBM Corporation Page 11 of 118

9. Click the download or install link.

© 2013 Copyright IBM Corporation Page 12 of 118

10. Select the option to Install a new runtime from an archive, and use the Browse

button to select the wlp-developers-runtime-8.5.5.0.jar and click

Next.

11. Click Next on the Install Add-ons screen.

© 2013 Copyright IBM Corporation Page 13 of 118

12. Select the radio button for I accept the terms of the license agreement and click

Next.

© 2013 Copyright IBM Corporation Page 14 of 118

13. Set the Target installation folder to C:\wlp, and then click Finish.

© 2013 Copyright IBM Corporation Page 15 of 118

14. Click OK when presented with a message box stating the installation was

successful.

15. The next step is to define a new server. To do this click Next.

© 2013 Copyright IBM Corporation Page 16 of 118

16. Leave the Server name as defaultServer and click Finish.

© 2013 Copyright IBM Corporation Page 17 of 118

17. The server is started and index.html file is opened in a browser.

© 2013 Copyright IBM Corporation Page 18 of 118

Summary

In this exercise you have learned how to

• Create a simple web application

• Install the Liberty profile

• Deploy an application to a server

This example illustrates how easy it is to get up and running with the Liberty profile and

the WebSphere Application Server Developer Tools for Eclipse.

Registration Application

In this next exercise you create a more complex application. You will learn how to create

an application that uses Enterprise Java Beans (EJBs), Context and Dependency Injection

(CDI), Java Server Pages (JSP), Java Persistence API (JPA), and Servlets to implement a

simple registration application. Enterprise Java Beans provide a mechanism to separate

business logic from presentation logic. The first task is to create the JPA entity that will

be required by the EJB, and then to create the business logic of the EJB.

Defining the JPA entity

As we are using WebSphere Application Server Developer Tools for Eclipse we benefit

from tools to aid the creation of JPA entities. To do this we will include the JPA project

Facet in Eclipse, and then define a new JPA entity called Person.

.

1. Right click on the RegistrationAppWeb project in Eclipse and select Properties.

© 2013 Copyright IBM Corporation Page 19 of 118

2. Navigate to the Targeted Runtimes section, and ensure the checkbox is selected

next to WebSphere Application Server V8.5 Liberty Profile.

© 2013 Copyright IBM Corporation Page 20 of 118

3. Next, navigate to the Project Facets section. Check the checkbox for JPA, and

click OK. A prompt will appear asking to add the jpa-2.0 feature to the Liberty

profile, select Yes.

4. Right click on the RegistrationAppWeb project and select New > JPA Entity.

© 2013 Copyright IBM Corporation Page 21 of 118

5. Set the Java package to com.ibm.websphere.sample.registration.data, and the

Class name to Person, then click Next.

© 2013 Copyright IBM Corporation Page 22 of 118

6. Click the Add button to add a new field to the class.

© 2013 Copyright IBM Corporation Page 23 of 118

7. Click the Browse button to select a Java class type.

8.

© 2013 Copyright IBM Corporation Page 24 of 118

9. In the filter box enter String, and select the String from the java.lang

package, then click OK.

10. Set the Name to Email and click OK.

11. To set this field to a Primary Key (ensuring this field must be unique across all

entities), check the checkbox under the Key header. Then click the Add… button

to add a new field.

© 2013 Copyright IBM Corporation Page 25 of 118

12. Click the Browse button again, and select the String class from the

java.lang package again, which should be stored in your history of Matching

Items.

© 2013 Copyright IBM Corporation Page 26 of 118

13. Enter a Name of Name, then click OK.

14. Click the Add… button again to add the last field to this entity.

© 2013 Copyright IBM Corporation Page 27 of 118

15. Select the Browse button again.

16. Type Boolean into the filter box, and select the Boolean class from the

java.lang package. Then click OK.

© 2013 Copyright IBM Corporation Page 28 of 118

17. Set a Name of Arrived, then click OK.

18. The set up of the entity should look as below. Click Finish to create the entity.

© 2013 Copyright IBM Corporation Page 29 of 118

Create the Persistence Unit

JPA uses Persistence Units to define the types of data required to be stored by your

application. We will configure this in an XML file called persistence.xml, which

was created for us when the JPA project Facet was added.

1. Expand the JPA Content section of the RegistrationAppWeb project, and double

click on the persistence.xml file.

© 2013 Copyright IBM Corporation Page 30 of 118

2. Switch to the Connection tab, and set the JTA data source to

java:comp/env/jdbc/DerbyDataSource.

© 2013 Copyright IBM Corporation Page 31 of 118

3. Switch to the Properties tab, and click the Add… button.

4. Set the Name to openjpa.jdbc.SynchronizeMappings, and the Value to

buildSchema.

5. Switch to the General tab. Expand the Managed Classes section. Check the

checkbox for Exclude unlisted classes, then click the Add… button.

© 2013 Copyright IBM Corporation Page 32 of 118

6. In the filter box, type Person. Select the Person class from the package

com.ibm.websphere.sample.registration.data, and then click

OK.

7. Use the control-S shortcut to save the file.

© 2013 Copyright IBM Corporation Page 33 of 118

Building the EJB

Enterprise Java Beans (EJBs) are a useful programming model to assist separating

Business logic from presentation logic. This application uses an EJB to separate to

process of managing an attendee from the presenting of information about attendees.

Creating this EJB is the next task.

1. Right click on the RegistrationAppWeb and select New > Other….

2. In the New Wizard dialog, expand the section for EJB and select the Session

Bean (EJB 3.x). Then click Next.

© 2013 Copyright IBM Corporation Page 34 of 118

3. Set the Java package to com.ibm.websphere.sample.registration.ejb, and set the

Class name to RegistrationBean. Click Finish.

© 2013 Copyright IBM Corporation Page 35 of 118

4. This will open the RegistrationBean. This class requires access to an

EntityManager to provide JPA function, so add the following lines just below

the class definition:

@PersistenceContext(unitName = "RegistrationAppWeb")
EntityManager em;

5. This will cause errors to appear, as the classes have not been imported. To fix

this, begin by clicking on the red X to the left of the @PersistenceContext

annotation, and double clicking Import ‘PersistenceContext’ (javax.persitence)

from the menu.

© 2013 Copyright IBM Corporation Page 36 of 118

6. Next hover over the EntityManager and select Import ‘EntityManager’

(javax.persistence) from the pop-up menu.

7. Now we will add the business methods. First, add the method to register users

by placing the following code below the RegistrationBean constructor:

public void register(String name, String email) {
 Person p = new Person();
 p.setEmail(email);
 p.setName(name);
 em.persist(p);
}

8. Next, add a method to remove users by adding the code below just below the

previous one:

public void unregister(String email) {
 Person p = em.find(Person.class, email);
 em.remove(p);
}

© 2013 Copyright IBM Corporation Page 37 of 118

9. Next, add the functions to mark whether a person has attended or not by adding

the following code below the previous set:

public void markAttended(String email) {
 Person p = em.find(Person.class, email);
 p.setArrived(true);
}

public void markUnattended(String email) {
 Person p = em.find(Person.class, email);
 p.setArrived(false);
}

10. Add the following code below the previous set, in order to allow searches and

retrieval of specific attendees.

public List<Person> getPeople() {
 return searchForPeople("*");
}

public Person getPerson(String email) {
 return em.find(Person.class, email);
}

public List<Person> searchForPeople(String searchTerm)
{
 String queryString = "SELECT p FROM Person p WHERE
p.Name LIKE :searchTerm OR p.Email LIKE :searchTerm";
 Query query = em.createQuery(queryString);
 String cleanedSearchTerm = "%";

 if (searchTerm != null) {
 cleanedSearchTerm = "%" +
searchTerm.replaceAll("*", "%").toLowerCase() + "%";
 }

 query.setParameter("searchTerm", cleanedSearchTerm);

 @SuppressWarnings("unchecked")
 List<Person> people = query.getResultList();

 return people;
}

11. Use the control-shift-o shortcut to automatically set up imports. This will

present a dialog asking for clarification of which packages to use for specific

classes. To begin, select javax.persistence.Query, then click Next.

© 2013 Copyright IBM Corporation Page 38 of 118

12. On the next dialog, select java.util.List, then click Finish.

13. Use the control-S shortcut to save the file. The file should resemble the

screenshot below.

© 2013 Copyright IBM Corporation Page 39 of 118

Adding Servlets

To register and edit users, you will use servlets to drive methods of the

RegistrationBean. Note that this could also be achieved via JAX-RS, and we will

use JAX-RS later in the lab.

AddAttendee servlet

1. Right click on the RegistrationAppWeb project, and select New >Servlet.

© 2013 Copyright IBM Corporation Page 40 of 118

2. Provide a Java package of com.ibm.websphere.sample.registration.servlets, and

a Class name of AddAttendee. Click Finish.

© 2013 Copyright IBM Corporation Page 41 of 118

3. We need to define the data resources used by JPA. These can be defined in

multiple locations, in our case we are using an annotation. Add this just below

the WebServlet annotation in the AddAttendee class:

@Resources({
 @Resource(name = "jdbc/DerbyDataSource", type =
javax.sql.DataSource.class),
 @Resource(name = "jdbc/NonTxDerbyDataSource", type
= javax.sql.DataSource.class) })

4. Use the control-shift-o shortcut to import the required packages and classes.

5. This servlet will be used to register the attendees, so you need to inject the

RegistrationBean. To do this, add the following line to the class, just above

the constructor:

@Inject RegistrationBean rb;

6. Hover over the @Inject annotation and select Import 'Inject' (javax.inject)

from the dialog.

© 2013 Copyright IBM Corporation Page 42 of 118

7. Next, hover over the RegistrationBean class and select Import

‘RegistrationBean’ (com.ibm.websphere.sample.registration.ejb) from the pop-

up menu.

8. Next, add the following lines to the doPost() method of the AddAttendee

class:

// Get the email parameter from the request
String email = request.getParameter("email");
//Get the name parameter from the request
String name = request.getParameter("name");
// register a new user using the registration Bean
rb.register(name, email);
// forward the request on to the ListAttendee JSP file
RequestDispatcher rd =

request.getRequestDispatcher(
 "ListAttendee.jsp?email="+ email);

rd.forward(request, response);

© 2013 Copyright IBM Corporation Page 43 of 118

9. Hover over RequestDispatcher and select Import 'RequestDispatcher'

(javax.servlet) from the dialog.

10. Save the file using the control-S shortcut. The completed file should match the

image below.

© 2013 Copyright IBM Corporation Page 44 of 118

EditAttendee servlet

As well as adding an attendee, we also need to be able to edit attendees. To do this,

we will create the EditAttendee servlet.

1. Expand the Java Resources section of the RegistrationAppWeb project, then

expand the src directory inside. Next, expand the

com.ibm.websphere.sample.registration.servlets package. Right click on the

AddAttendee servlet and select New > Servlet.

© 2013 Copyright IBM Corporation Page 45 of 118

2. Clear the checkbox for Use an existing Servlet class or JSP, and provide a Class

name of EditAttendee. Click Finish.

© 2013 Copyright IBM Corporation Page 46 of 118

3. Add the following line just above the constructor of EditAttendee.java:

@Inject RegistrationBean rb;

4. Hover over the @Inject annotation and select Import 'Inject' (javax.inject)

from the dialog.

5. Hover over the RegistrationBean class and select Import

'RegistrationBean' (com.ibm.websphere.sample.registration.ejb) from the

dialog.

6. In the doPost() method, add the following code:

© 2013 Copyright IBM Corporation Page 47 of 118

String name = request.getParameter("fullname");
String email = request.getParameter("email");
String oldemail = request.getParameter("oldemail");
boolean arrived = false;
if(request.getParameter("arrived") != null
 && request.getParameter("arrived").equals("on")){
 arrived = true;
}

rb.unregister(oldemail);
rb.register(name, email);
if (arrived) {
 rb.markAttended(email);
}
RequestDispatcher dispatcher =
request.getRequestDispatcher(
 "ListAttendee.jsp?email="+email);
request.setAttribute("RETURN_MESSAGE", "Updated");
dispatcher.forward(request, response);

7. Hover over RequestDispatcher and select Import 'RequestDispatcher '
(javax.servlet) from the dialog.

© 2013 Copyright IBM Corporation Page 48 of 118

8. Save the file using the control-S shortcut. The completed file should match the

image below.

© 2013 Copyright IBM Corporation Page 49 of 118

Adding CDI to the Application

To use CDI we need ensure the beans.xml file is added. One way to add the

beans.xml is to add the CDI project facet to the Eclipse project. This ensures the

beans.xml file is added and the tooling is configured correctly.

1. Right click on the RegistrationAppWeb project, and select Properties.

© 2013 Copyright IBM Corporation Page 50 of 118

2. Navigate to the Project Facets, and check the checkbox for Context and

dependency injection (CDI), then click OK.

© 2013 Copyright IBM Corporation Page 51 of 118

3. If a prompt appears to install the cdi-1.0 feature, click Yes.

Importing JSP resources

All required JSP files are provided in the Resources project.

© 2013 Copyright IBM Corporation Page 52 of 118

1. Copy ListAttendee.jsp and ListAttendees.jsp files by dragging

and dropping the files from the Web/jsp directory in the Resources project to

the WebContent directory of the RegistrationAppWeb project.

Create the Add Attendee page

To drive the AddAttendee servlet, we need to create a new HTML page that contains

a form. To create this page, we will use the Web Page editor built into Eclipse.

1. Right click on the RegistrationAppWeb project, and select New > HTML File.

© 2013 Copyright IBM Corporation Page 53 of 118

2. Give the file a name of AddAttendee.html. Click Next.

© 2013 Copyright IBM Corporation Page 54 of 118

3. Ensure the HTML 5 template is selected. Click Finish.

© 2013 Copyright IBM Corporation Page 55 of 118

4. In the HTML editor, click the Palette icon at the top to open the Palette view.

5. From the Palette, select the Heading 1 from the HTML Tags section, and drag

and drop it into the Design section.

© 2013 Copyright IBM Corporation Page 56 of 118

© 2013 Copyright IBM Corporation Page 57 of 118

6. Double click the box it creates, and type in “Add Attendee”.

7. Drag the form element into the main area just below the heading. Right click on

the form tag in the Source section, and then select Properties.

© 2013 Copyright IBM Corporation Page 58 of 118

8. Set the Action to AddAttendee, and set the Method to Post.

9. Switch back to the Palette view, and drag a Text field element into the Source

view, between the form tags.

© 2013 Copyright IBM Corporation Page 59 of 118

10. Right click on the input tag you just inserted in the Source view and select

Properties. Set the name to “name”

© 2013 Copyright IBM Corporation Page 60 of 118

11. Under the All tab set the placeholder property to “Enter name here”.

12. Drag another Text field into the form. Right click on the new input tag and select

Properties.

13. In the Properties view, set the name to “email” in the Tag tab, and the

placeholder to “Enter email here”.

© 2013 Copyright IBM Corporation Page 61 of 118

14. Finally, drag a Submit button into the form.

© 2013 Copyright IBM Corporation Page 62 of 118

15. Use the control-S shortcut to save the page. The completed for should match

the image below.

Update the landing page

In a previous step we created the landing page index.html. We now need to update

this so that the pages we need to return to are easily available.

1. Expand the WebContent folder in the RegistrationAppWeb project, and

double click the index.html file to open it.

2. Update the contents of the <body> tag to be

<h1>Hello World</h1>
Add Attendee

List Attendees

© 2013 Copyright IBM Corporation Page 63 of 118

3. Use the control-S shortcut to save the file.

Configure the server

Now all the resources are in place to add and edit attendees. We will now configure the

server. This involves adding the derby.jar to allow JDBC function, and configuring

the server’s configuration file, server.xml.

1. Open the WebSphere Application Server V8.5 Liberty Profile project, and

expand the shared folder. Right click on the resources directory, and select

New > Folder.

2. Call the folder derby. Click Finish.

© 2013 Copyright IBM Corporation Page 64 of 118

3. Open the Resources project and expand the Jars folder. Drag and drop the

derby.jar from this folder into the shared/resources/derby folder

you just created in the WebSphere Application Server V8.5 Liberty Profile

project.

4. Open the Servers view and expand the WebSphere Application Server V8.5

Liberty Profile at localhost server definition.

© 2013 Copyright IBM Corporation Page 65 of 118

5. Double click on the Server Configuration. This opens the server.xml

configuration tool.

6. Click on the Server Configuration element, then click Add.

7. Using the filter box, type JDBC, then select the JDBC Driver element and click OK.

© 2013 Copyright IBM Corporation Page 66 of 118

8. Set the Id to be DerbyDriver.

9. Right click on the JDBC Driver and select Add > Shared Library.

© 2013 Copyright IBM Corporation Page 67 of 118

10. Right click on the Shared Library and select Add > File.

11. Click on the File element, and select the Browse button under File.

© 2013 Copyright IBM Corporation Page 68 of 118

12. Select the shared.resource.dir from the left hand navigation pane. Expand the

derby folder, click on the derby.jar and then click OK.

13. Click on the Server Configuration and click the Add button.

© 2013 Copyright IBM Corporation Page 69 of 118

14. Using the filter, type data and then select the Data Source element and click OK.

15. Set the Id to jdbc/DerbyDataSource, and the JNDI Name to

jdbc/DerbyDataSource. Set the JDBC driver to DerbyDriver using the dropdown.

© 2013 Copyright IBM Corporation Page 70 of 118

16. Right click on the data source you have just created and select Add > Derby

Embedded Properties.

© 2013 Copyright IBM Corporation Page 71 of 118

17. Set the Database name to RegistrationDB, and the Create database dropdown

to create.

© 2013 Copyright IBM Corporation Page 72 of 118

18. Save the file using the control-S shortcut. The configuration should resemble the

image below.

Running the application

Now the application is ready, we can run it in the server and test it.

© 2013 Copyright IBM Corporation Page 73 of 118

8. Go to Window > Web browser, and select Firefox from the list of options. This

redirects any web pages opened in Eclipse to the Firefox web browser instead,

which is required for some of the technologies being used in this lab.

9. Go to the Console view. The application will be started, and you should have a

line like this:

[AUDIT] CWWKT0016I: Web application available (default_host):

http://localhost:9080/RegistrationAppWeb/

10. Click the hyperlink in the Console view to open the landing page of the

application.

© 2013 Copyright IBM Corporation Page 74 of 118

11. To add an attendee, click the AddAttendee link on the landing page.

Note that the placeholder text may not appear, depending on the browser used.

12. Provide an email address and name for the user, then click submit. This will take

you to the ListAttendee.jsp page, but display an error message.

© 2013 Copyright IBM Corporation Page 75 of 118

13. This is because the EJBLite feature is not enabled, meaning your EJB is not

being run correctly. To fix this we need to enable the missing feature in

server.xml. Open server.xml.

14. Click on the Feature Manager section under the server Configuration, then click

the Add… button under the detailed Feature Manager panel.

15. From the dialog, type ejb into the filter box. Then, select the ejbLite-3.1 feature,

and then click OK.

© 2013 Copyright IBM Corporation Page 76 of 118

16. Save the file using the control-S shortcut.

17. Reopen the homepage by clicking on the link in the console.

18. Try adding a new Attendee again. This time it works, but the page you are taken

to shows empty fields.

© 2013 Copyright IBM Corporation Page 77 of 118

19. This is because the RegistrationBean is not marked as @Named, and so is

not being managed correctly. Open the RegistrationBean class.

20. Between the @LocalBean annotation and the class definition line, add the

@Named annotation. To import this annotation, hover over it and select Import

'Named' (javax.inject) from the dialog.

21. Save the file using the control-S shortcut.

22. Return to the landing page, and click the Add Attendee link again.

23. Fill out the details of a different Attendee, and click Submit. This will take you to

the List Attendee page, where you can update details.

© 2013 Copyright IBM Corporation Page 78 of 118

24. Mark the attendee as arrived, and click Submit. You will get a message that says

“Updated”, and the checkbox will remained checked.

25. Return to the landing page and click the List Attendees link. This shows a list of

users you have added and their current state of attendance.

© 2013 Copyright IBM Corporation Page 79 of 118

Summary

In this section you learned:

• How to create and deploy an EJB

• How to enable CDI

• How to configure the Liberty profile server for JPA

Adding RESTful services using JAX-RS

JAX-RS allows you to write a RESTful interface that uses POJOs to communicate to

clients. Web requests are made to classes with annotations that identify them as

handling different HTTP requests. We will use JAX-RS here to enable a search facility.

Adding the client-side capability

To enable searching we are going to use client-side technologies such as Dojo. The

Resources project contains Dojo modules, plus some modules in the registration folder

that are used to send requests to a web server and receive responses. These resources

will be added to the Web project so they form part of our application.

1. Copy the SearchForAttendees.html file from the Web/html folder of

the Resources project into the WebContent folder of the RegistrationAppWeb

project.

© 2013 Copyright IBM Corporation Page 80 of 118

2. Copy the dojo folder from the Web folder of the Resources project by dragging

it into the WebContent directory of the RegistrationAppWeb project.

© 2013 Copyright IBM Corporation Page 81 of 118

3. Open the index.html file in the RegistrationAppWeb project, and update the

<body> tag to be:

<h1>Hello World</h1>
Add Attendee

List Attendees

Search For
Attendees

4. Save the file using the control-S shortcut.

© 2013 Copyright IBM Corporation Page 82 of 118

Adding JAX-RS to the Web Project

The SearchForAttendees.html page is now available. However, when you

attempt to search, you will receive an error like:

We are going to solve this by providing a JAX-RS class that will answer these requests.

1. Right click on the RegistrationAppWeb project and select Properties.

© 2013 Copyright IBM Corporation Page 83 of 118

2. On the Project Facets, check the checkbox for JAX-RS (REST Web Services).

© 2013 Copyright IBM Corporation Page 84 of 118

3. Click the link at the bottom labelled Further configuration required….

4. Click Add.

© 2013 Copyright IBM Corporation Page 85 of 118

5. Specify the URL Pattern as /rest/* and click OK.

6. Click OK to exit the Modify Faceted Project dialog.

7. Click Apply, you are prompted to add the jaxrs-1.1 feature. Click Yes.

© 2013 Copyright IBM Corporation Page 86 of 118

8. Click OK.

Creating the JAX-RS application

The JAX-RS application consists of a class that handles making the application available,

a class that performs the request handling, and some configuration in the web.xml

file. Adding the JAX-RS project facet provides most of the web.xml configuration,

however we still need to complete that and also add the other classes.

1. Right click on the RegistrationAppWeb project and select New > Class.

2. Set the package name to com.ibm.websphere.sample.registration.rest, and the

Class name to SearchAttendees. Click Finish.

© 2013 Copyright IBM Corporation Page 87 of 118

3. Right click on the com.ibm.webshere.sample.registration.rest package and select

New > Class.

© 2013 Copyright IBM Corporation Page 88 of 118

4. Set the name to SearchAttendeesApplication.

© 2013 Copyright IBM Corporation Page 89 of 118

5. Click the Browse button next to the Superclass field. Using the filter box, type

Application, and select the Application class from the javax.ws.rs.core

package. Click OK.

6. Click Finish.

7. Add the following method to the SearchAttendeesApplication class:

@Override
public Set<Class<?>> getClasses() {
 Set<Class<?>> classes = new HashSet<Class<?>>();
 classes.add(SearchAttendees.class);
 return classes;
}

8. Hover over the Set class and select Import 'Set' (java.util) from the dialog.

© 2013 Copyright IBM Corporation Page 90 of 118

9. Hover over HashSet and select Import 'HashSet' (java.util) from the dialog.

10. Save the file using the control-S shortcut. The completed class should match the

following image.

© 2013 Copyright IBM Corporation Page 91 of 118

11. Open the web.xml file in the WebContent/WEB-INF folder of the

RegistrationAppWeb project.

12. Right click on the Servlet element on the left pane and select Add > Initialization

Parameter.

© 2013 Copyright IBM Corporation Page 92 of 118

13. In the Details panel on the right, set the Name to javax.ws.rs.Application. In the

Value, enter

com.ibm.websphere.sample.registration.rest.SearchAttendeesApplication.

14. Save the file using the control-S shortcut.

15. Open the SearchAttendees.java class.

16. Add the following annotation to the SearchAttendees class declaration:

@Path("search")

© 2013 Copyright IBM Corporation Page 93 of 118

17. Save the file using the control-S shortcut. Note that the file contains an import

error. We will resolve this during the next few steps.

Creating a JAX-RS GET request handling method

The JAX-RS application is now in place. However, it does not contain any methods that

are configured to handle requests. The first one we need to add is to handle GET

requests. These will come from searches.

1. Add the following method into the SearchAttendees class to enable the

search request to be processed:

public Collection<Person> searchForAttendees
 (String searchTerm) {
 return null;
}

2. To receive requests via HTTP GET requests, and return a collection of Person

objects as JSON, add the following annotations to the method:

@GET
@Produces(MediaType.APPLICATION_JSON)
public Collection<Person> searchForAttendees
 (String searchTerm) {

3. Inject the RegistrationBean EJB so that we can look up a list of users based

on the filter by adding this line to the SearchAttendees class:

@Inject RegistrationBean rb;

4. Change the return statement of the searchForAttendees() method to call

the RegistrationBean.

return rb.searchForPeople(searchTerm);

5. Lastly, update the filter parameter with the @QueryParam annotation:

© 2013 Copyright IBM Corporation Page 94 of 118

public Collection<Person>
 searchForAttendees(@QueryParam("filter")
 String searchTerm) {

6. The file at this stage should resemble the image below.

7. To resolve the import errors, use the control-shift-o keyboard shortcut. This will

cause a prompt for ambiguous imports.

8. For the Produces annotation, select javax.ws.rs.Produces. Click Next.

9. For MediaType class, select javax.ws.rs.core.MediaType. Click

Finish.

© 2013 Copyright IBM Corporation Page 95 of 118

10. Save the file using the control-S shortcut. The file should resemble the image

below. Ensure the import statements match.

Creating JAX-RS POST requests

© 2013 Copyright IBM Corporation Page 96 of 118

Now that the search handler is in place, the search function should work (you can try

this out by opening the Search For Attendees page in Firefox and setting the search term

to “*”).

Each search result displayed on the page includes a checkbox to mark whether the

attendee is attending or not, and a button to allow the attendee to be unregistered.

However clicking these currently returns a 404 error. This is because no handlers have

been defined for these requests.

1. Open the SearchAttendees java class and copy the method below into the

class to allow processing of POST requests with a URL of /search/update. We still

return a string of JSON text, but this time the return type is Person, not

Collection<Person>, so the returned JSON string only contains the details of one

person object (the one we have updated).

@POST
@Produces(MediaType.APPLICATION_JSON)
@Path("/update")
public Person changeAttendance(
 @QueryParam("email") String emailAddress,
 @QueryParam("state") boolean attending)
 throws Exception {
 String email =
 emailAddress.substring("checkbox".length());
 if (attending)
 rb.markAttended(email);
 else
 rb.markUnattended(email);
 return rb.getPerson(email);

© 2013 Copyright IBM Corporation Page 97 of 118

}

2. Add the following method to the SearchAttendees class to allow the delete

request to be processed, and to return a representation of the person who was

unregistered:

@POST
@Produces(MediaType.APPLICATION_JSON)
@Path("/delete")
public Person changeAttendance(
 @QueryParam("email") String emailAddress)
 throws Exception {
 String email =
 emailAddress.substring("button".length());
 Person p = rb.getPerson(email);
 rb.unregister(email);
 return p;
}

3. Resolve any import issues by using the control-shift-o shortcut again.

4. Save the file using the control-S shortcut. The class should resemble the image

below.

© 2013 Copyright IBM Corporation Page 98 of 118

© 2013 Copyright IBM Corporation Page 99 of 118

5. Return to the landing page in your browser, and select the Search Attendees

link. Perform the search again. Now, attempt to toggle the checkbox for the

attendee. This causes the attendee to be updated as shown below.

6. Remove one of the attendees by clicking the Remove Attendee button. This

removes the button and marks the attendee as removed.

7. Performing a new search shows the attendee has gone.

© 2013 Copyright IBM Corporation Page 100 of 118

Summary

In this section you learned:

• How to enable JAX-RS support for an application

• How to interact with client side technologies using AJAX techniques

Adding another EJB

Currently our application uses one EJB to handle the business logic of the application.

In this section, we will add another function, which will log use of certain business logic

methods on the RegistrationBean. As we want to keep our logging separate, we

will use a separate EJB to manage that data access.

1. Open the Business/view folder of the Resources project, right click on the

AuditEntry class and click on Move.

© 2013 Copyright IBM Corporation Page 101 of 118

2. Expand the RegistrationAppWeb project down to

src/com/ibm/websphere/sample/registration/data.

© 2013 Copyright IBM Corporation Page 102 of 118

3. Click on the data folder and click OK. This is the same folder that contains the

Person.java class.

4. Open the Business folder of the Resources project, click on the AuditBean

class. Next, right click and select Move.

5. Expand the RegistrationAppWeb project down to

src/com/ibm/websphere/sample/registration/ejb.

© 2013 Copyright IBM Corporation Page 103 of 118

6. Click on the ejb folder and click OK.

7. Open the RegistrationBean class and add the injection for the

AuditBean:

@Inject AuditBean ab;

8. Hover over the @Inject annotation and select Import 'Inject' (javax.inject)

from the dialog.

© 2013 Copyright IBM Corporation Page 104 of 118

9. Next, add audit lines to the register and unregister methods:

public void register(String name, String email) {
 ab.logUpdate("Registering attendee "
 + name + " with email " + email);

public void unregister(String email) {
 ab.logUpdate("Unregistering attendee with email "
 + email);

10. Save the file using the control-S shortcut.

11. Open the persistence.xml file.

12. Switch to the General tab, and click the Add… button.

© 2013 Copyright IBM Corporation Page 105 of 118

13. Type Audit in the filter box, and select AuditEntry from the

com.ibm.websphere.sample.registration.data package.

14. Save the file using the control-S shortcut.

© 2013 Copyright IBM Corporation Page 106 of 118

15. Open the landing page, click on the Add Attendees, and add a couple of

attendees.

16. Copy the Audit.jsp file into the application by dragging it from the Web/jsp

folder of the Resources project, and dropping it into the WebContent folder of

the RegistrationAppWeb project.

17. Navigate to the page using the URL

http://localhost:9080/RegistrationAppWeb/Audit.jsp . This contains a line for the

register of an attendee that you just performed. It will also show any unregisters

you perform, and any edits to an attendee which will show the attendee being

removed and then re-registered.

© 2013 Copyright IBM Corporation Page 107 of 118

Securing the application

Applications may handle sensitive data such as personal information, and may require

the use of SSL to ensure secure transportation of data over a network. The following

section will add SSL to the application, and ensure it is enforced in all communication

between the application and the client.

Add an SSL certificate

1. Open the Servers view, right click on the server and select Utilities > Create SSL

Certificate.

2. Provide a password for your keystore, then click Finish.

© 2013 Copyright IBM Corporation Page 108 of 118

3. A Console window will appear, containing the configuration for SSL. Highlight the

configuration section in the console, and copy it into memory using the control-C

shortcut.

4. In the Servers view, expand the server definition to show the Server

Configuration element.

5. Right click on the Server Configuration element and select Open.

© 2013 Copyright IBM Corporation Page 109 of 118

6. Switch to the Source tab, and paste the contents of the clipboard using the

control-V shortcut.

7. Save the file using the control-S shortcut.

Configuring the application to use transport guarantees

The configuration above will enable the use of SSL, but it does not force the application

to only work over SSL, meaning it can be accessed via HTTP. However, we can configure

this in the application to insist on using the CONFIDENTIAL transport guarantee. Be

aware that there is one more configuration step required after this to ensure the Liberty

profile server also enforces SSL only.

1. Open the web.xml file of the WebContent/WEB-INF folder of the

RegistrationAppWeb project.

2. Click on Web Application (RegistrationAppWeb), and click the Add button.

© 2013 Copyright IBM Corporation Page 110 of 118

3. Using the filter, type Security, and select the Security Constraint element. Click

OK.

4. Click the newly created Web Resource Collection element, and click Add next to

the URL Pattern.

© 2013 Copyright IBM Corporation Page 111 of 118

5. Type the pattern as “/*”. Provide a Web Resource Name of Secure Connection.

6. Right click on the Web Resource Collection in the left pane, and add a HTTP

Method. In the Details section set the HTTP Method to GET.

© 2013 Copyright IBM Corporation Page 112 of 118

7. Right click on the Web Resource Collection in the left pane again, add another

HTTP Method. In the Details section set the HTTP Method to POST.

8. Click on the Security Constraint. Scroll down to the User Data Constraint

(optional) section, and change the Transport Guarantee dropdown to

CONFIDENTIAL.

9. Save the file using the control-S shortcut.

Configure security on the Liberty profile

The final stage to enable security is to ensure the security feature is enabled on the

Liberty profile.

1. In the Servers view, expand the server definition to show the Server

Configuration element.

© 2013 Copyright IBM Corporation Page 113 of 118

2. Right click on the Server Configuration element and select Open.

3. Switch to the Design tab.

4. Expand Server Configuration and click on any Feature Manager element (there

may be more than one).

5. In the right pane, click the Add button.

6. From the dialog, select appSecurity-2.0. Click OK.

© 2013 Copyright IBM Corporation Page 114 of 118

7. Save the file using the control-S shortcut.

Testing security

The final stage is to attempt to connect to the server via an unsecured port, and ensure

your traffic is redirect to the SSL port.

1. In Firefox, open a connection to http://localhost:9080/RegistrationAppWeb.

2. If this succeeds, you will be redirected to the SSL port (port 9443).

3. Accept the security exception caused by the unknown certificate. This is we are

using the certificate you generated in a previous step.

4. Ensure the page displays as expected, the protocol is set to HTTPS, and the port

is the secured 9443 HTTPS port.

Summary

In this section you learned:

• How to secure the Liberty profile server for secure communication using SSL

• How to enforce SSL only traffic on applications

Packaging the server for deployment

The Liberty profile contains the Minify function. This allows you to build a customised

Liberty package that contains only the features you require to run the applications you

have installed.

© 2013 Copyright IBM Corporation Page 115 of 118

1. In the Servers view, shutdown the server by right clicking on the server and

selecting Stop.

2. Right click on the server in the Server view, and select Utilities > Package Server.

3. Click Browse next to the Archive name. Choose a folder, and set the name to

package.zip. Under the Include section, change the dropdown to Minimal

Runtime (minify), and click Finish.

© 2013 Copyright IBM Corporation Page 116 of 118

4. Once the packaging process is complete and the package.zip file is created,

use Windows Explorer to navigate to the folder package.zip was created.

Right click on the file and select Extract All.

5. Follow the instructions to extract the zip file.

6. Open a command prompt, from the start menu and navigate to the location

where the package.zip file was extracted to.

7. Navigate to the bin directory inside the extract location, and then run the

command server start defaultServer.

© 2013 Copyright IBM Corporation Page 117 of 118

8. Navigate to http://localhost:9080/RegistrationAppWeb. This will redirect to the

secure port. You are now accessing your application from the packaged minified

server.

Summary

In this lab you learned:

• How to install the IBM WebSphere Application Server V8.5.5 Liberty profile

• How to create and deploy a simple web application using the IBM WebSphere

Application Server Developer Tools for Eclipse V8.5.5.

• How to create and deploy a simple registration web application that uses

Servlets, JPA, EJBs, Context and Dependency Injection, and JAX-RS.

• How to secure applications to use SSL.

© 2013 Copyright IBM Corporation Page 118 of 118

• How to generate a customised Liberty profile image, and use that image to

deploy your application outside of a development environment.

If you are interested in learning more please visit http://wasdev.net. WASdev is the

developer focussed community for WebSphere Application Server developers,

providing:

• Useful articles on getting started

• Samples and tutorials of specific features

• Configuration snippets

• The latest releases of available Early Access Programs for Liberty and related

products.

• Forums for finding further information from other developers, and getting

answers to questions.

