
Learn to Accelerate Your Web App
Development with WebSphere Liberty

Lab Instructions

© 2017 Copyright IBM Corporation 1

Objective
In this lab, you learn:

• How to set up a Liberty runtime environment
• How to create a server to run in this environment
• How to deploy a simple web application to this server
• How to build a simple web application using JAX-RS, CDI and JPA

Prerequisite Knowledge
To get the most out of this lab, knowledge of the following areas is useful

• Basic knowledge of Java EE
• Basic familiarity with the Eclipse IDE

Registration Application
In this exercise you will set up the WebSphere Application Server Liberty Profile and create a web
application to run on it. You will learn how to create an application that uses Java RESTful Services
(JAX-RS), Context and Dependency Injection (CDI) and Java Persistence API (JPA) to implement a
simple registration application. The registration application will be able to register the name and
email of the attendee you would like to add to an event, and display a list of all registered
attendees. We will also include additional functionality to remove attendees from the list.

Getting Started

1. Download and install WebSphere Developer Tools for Eclipse. Instructions can be found on
WASdev.net

2. Launch the Eclipse IDE. If you are prompted to provide a workspace location, provide a
path to an empty folder that can be used to store your work with Eclipse and click OK.

Creating the server
We will start by setting up our Liberty runtime environment and creating a server that our
application can run on. We will be using the WAS Liberty with Java EE7 Web Profile runtime and
will set it up using the archive package.

1. Create a new Dynamic Web Project by clicking File > New > Dynamic Web Project.

2. Enter the name of the project as RegistrationAppWeb. Ensure that Dynamic web
module version is set to 3.1, and ensure that Add project to an EAR is not checked.

© 2017 Copyright IBM Corporation 2

http://wasdev.net/downloads

3. Under Target runtime click New Runtime.

© 2017 Copyright IBM Corporation 3

4. Expand IBM, and select WebSphere Application Server Liberty Profile. Check Create a new
local server. Click Next.

5. At this stage you can either point to an existing Liberty installation or download the Liberty
runtime from the Liberty Repository.

6. Click Next.

© 2017 Copyright IBM Corporation 4

7. Leave the Server name as defaultServer and click Finish.

© 2017 Copyright IBM Corporation 5

8. On the New Dynamic Web Project window click Finish.

9. At this point Eclipse may suggest that you switch to the Web perspective, select no.

© 2017 Copyright IBM Corporation 6

Creating the web page
For our web application we are going to use client-side technologies such as Angular and
Javascript. The code for the web page has already been provided for you and can be found in the
Resources folder which was provided alongside this document.

1. Copy the Angular folder, the js folder and the index.html file from the Web folder
of the Resources project by dragging it into the WebContent directory of the
RegistrationAppWeb project.

Running the application
Now that we have set up a server and created the web page for our application, we can go ahead
and start the server to test it out.

1. Go to the Servers view in Eclipse.

© 2017 Copyright IBM Corporation 7

2. Right click on the server and select Add and Remove...

3. Select the RegistrationWebApp application and click Add.

© 2017 Copyright IBM Corporation 8

4. Click Finish.

5. With the server selected, click the green start button in the Servers view to start the
server.

© 2017 Copyright IBM Corporation 9

6. Go to Window > Web Browser > Firefox. This will ensure that Eclipse will launch our web
application in the Firefox web browser.

7. From the Console view, click on the link to our web application to open the application in a
browser.

8. We now have the client available to us in the browser. Enter the details of an attendee and
click the add button.

At the moment our application does not have the functionality to register an attendee. If you look
in the Console view in Eclipse, you should see the following error:

© 2017 Copyright IBM Corporation 10

The error occurs because the client is making a REST API call to try and register the attendee, but it
cannot find the JAX-RS endpoint named attendees on the path /api/attendees. We are going to
solve this problem by creating a JAX-RS interface that will handle the clients requests.

Adding RESTful services using JAX-RS
JAX-RS allows you to write a RESTful interface that uses Java objects to communicate with
clients. Web requests are made to classes with annotations that identify them as
handling different HTTP requests. The JAX-RS application consists of a class that handles making
the application available and a class that performs the request handling. We will first create the
class that makes our application available.

1. Right click on the RegistrationAppWeb project and select Properties.

2. On the Project Facets, check the checkbox for JAX-RS (REST Web Services) and set the
version to 2.0. Click OK.

3. We will now create the class that performs request handling. Right click on
RegistrationAppWeb, select New > Class.

4. Set the package to net.wasdev.reg and the name to RegApp.

© 2017 Copyright IBM Corporation 11

5. Click the Browse button next to the Superclass field. Using the filter box, type
Application, and select the Application class from the javax.ws.rs.core package. Click
OK.

6. Click Finish on the New Java Class window.

7. Add the following code above the class declaration in the RegApp class.
@ApplicationPath("/api")

8. To resolve the import errors, use the control-shift-o keyboard shortcut. Use control-s to
save the class.

9. We have now created the class that makes our application available. It should resemble
the image below.

© 2017 Copyright IBM Corporation 12

10. We will now create the class that performs the request handling. Right click on
RegistrationAppWeb, select New > Class.

11. Set the package to net.wasdev.reg and the name to Attendees. Click Finish.

12. Add the following annotations to the class declaration.
@Path("/attendees")
@RequestScoped

13. To resolve the import errors, use the control-shift-o keyboard shortcut. This will cause a
prompt for ambiguous imports.

14. For the RequestScoped annotation, select javax.enterprise.context.RequestScoped. Click
Finish. Use control-s to save the class.

© 2017 Copyright IBM Corporation 13

15. We have now created the class that performs the request handling. It should resemble the
image below.

Creating a Java object to represent Attendee
Before we write the request handlers for our REST API, we will need a Java Object that will be used
to store information about the attendee to pass to the client.

1. Right click on RegistrationAppWeb, select New > Class.

2. Set the package to net.wasdev.reg and the name to Attendee. Click Finish.

3. Add the following fields to the Attendee class.
private String name;
private String email;

4. Right click on the Attendee.java class file. Select Source > Generate Getters and Setters.

© 2017 Copyright IBM Corporation 14

5. Check the boxes next to name and email. Set the Insertion point to After 'email'. Ensure
that the message 4 of 4 selected appears at the bottom of the window to indicate that you
have chosen to generate getters and setters for both fields. Click OK.

© 2017 Copyright IBM Corporation 15

6. Use control-s to save the class. It should now resemble the image below.

7. We have now set up our JAX-RS interface which the client can communicate with. The
application will have automatically updated after the changes were saved. Enter another
attendee using the web interface, you should see the following error message in the
console.

Creating a JAX-RS POST request handling method
The error shows that no resource methods have been found. The resources the client is looking for
are the request handlers that will respond to different HTTP requests. The first one we need to
add will handle POST requests. These will be used to register the details of an attendee. For now,
we will store the details of our attendees in an ArrayList in the JAX-RS request handler class.

1. Go to the Attendees class and add the following field.
private ArrayList<Attendee> attendees = new ArrayList<Attendee>();

2. Add the following method into the Attendees class to add an attendee to the list:
public void addAttendee(Attendee attendee) {

attendees.add(attendee);
}

3. To call the method when receiving a HTTP POST request, and accept an Attendee object as
JSON, add the following annotations to the method:
@POST
@Consumes(MediaType.APPLICATION_JSON)

© 2017 Copyright IBM Corporation 16

Our application will now add an attendee to the ArrayList every time it receives a post
request, however we will not be able to see evidence of this in the browser. To change this
we need our POST request handler to return the list of attendees to the client.

4. To return the updated list to the client add the following annotation to the method:
@Produces(MediaType.APPLICATION_JSON)

5. We also need to return the list of attendees from the method. Add the following code to
the end of the method body:
return attendees;

6. Change the method header from void to List<Attendee>.

7. To resolve any import errors, use the control-shift-o keyboard shortcut.

8. For MediaType, select javax.ws.rs.core.MediaType. Click Next.

9. For Produces, select javax.ws.rs.Produces. Click Next.

10. For List, select java.Util.List. Click Finish. Use control-s to save the class.

11. The Attendees class should now resemble the following image.

© 2017 Copyright IBM Corporation 17

12. Register an attendee through the browser. We can now see that they get displayed.

If you now try and register another attendee you will notice that they replace the previous
attendee, rather than being appended to the list. This is because the JAX-RS class works on a
request scoped basis, meaning that every time a request is made a new resource is made, and we
lose the data stored in the ArrayList. To solve this we will create a CDI bean which will work on an
application scope and be a better place to store our data. It is also good practice to separate the
business logic from our request handlers, and this can be done using a CDI bean.

Creating a CDI Bean

1. Right click on RegistrationAppWeb, select New > Class.

2. Set the package to net.wasdev.reg and the name to AttendeeManager.

3. Add the following annotation to the class declaration:
@ApplicationScoped

4. We will now store our list of attendees in the CDI bean and perform any operations on the
list from within this bean. Add the following code inside the AttendeeManager class body:
private ArrayList<Attendee> attendees = new ArrayList<Attendee>();

public List<Attendee> getAllAttendees() {
 return attendees;

}

public void addAttendee(Attendee attendee) {
attendees.add(attendee);

}

5. To resolve the import errors, use the control-shift-o keyboard shortcut.

6. For ApplicationScoped, select javax.enterprise.context.ApplicationScoped.

7. For List, select java.Util.List. Click Finish. Use control-s to save the class.

© 2017 Copyright IBM Corporation 18

8. The AttendeeManager class should resemble the image below.

9. Now we need to make our JAX-RS class call our CDI bean to operate on the list of attendees
rather than doing it within the JAX-RS class. Open the Attendees class. Remove the
following code:
private ArrayList<Attendee> attendees = new ArrayList<Attendee>();

10. To make the CDI bean available to the JAX-RS class, add the following code to the top of
the AttendeeManager class body:
@Inject
AttendeeManager attendeeManager;

11. Replace the contents of the addAttendee method body with the following code:
attendeeManager.addAttendee(attendee);
return attendeeManager.getAllAttendees();

12. To resolve the import errors, use the control-shift-o keyboard shortcut. Use control-s to
save the class.

© 2017 Copyright IBM Corporation 19

13. The Attendees class should resemble the image below.

14. Register two attendees through the browser. We can now see that they both get displayed
and the information in the list is retained beyond each request.

15. Go to the Servers view in Eclipse.

© 2017 Copyright IBM Corporation 20

16. Right click on the server and select Restart.

17. Return to the browser and register another attendee.

We can see that the two attendees previously registered have been replaced by the attendee we
have just registered. This is because the data stored in the CDI bean will only persist as long as the
application is running, once the server is restarted that data is lost. For more persistent storage we
need our application to communicate with a database.

Creating a JPA Entity
For our application we will use JPA to persist our data and store it in a database. By designating
our Attendee Java object as a JPA entity we can store the object's fields in a database.

1. Right click on the RegistrationAppWeb project and select Properties.

© 2017 Copyright IBM Corporation 21

2. On the Project Facets, check the checkbox for JPA and set the version to 2.1. Click OK.

3. Open the Attendee class.

4. To define the Attendee class as a JPA entity add the following annotation to the class
declaration:
@Entity

5. We need to designate one of the fields in our Attendee class as the primary key for the
database entry. To do this add the following annotation to the email field:
@Id

6. To resolve the import errors, use the control-shift-o keyboard shortcut. Use control-s to
save the class.

© 2017 Copyright IBM Corporation 22

7. The Attendee class should resemble the image below.

You may see an error in the console stating Class "net.wasdev.reg.Attendee" is managed, but is
not listed in the persistence.xml file. This is because JPA uses Persistence Units to define the
types of data required to be stored by your application and our class is not listed in the Persistence
Unit. We will configure this in an XML file called persistence.xml, which was created for us
when the JPA project Facet was added. This will resolve our error.

1. Expand the JPA Content section of the RegistrationAppWeb project, and double click on
the persistence.xml file.

© 2017 Copyright IBM Corporation 23

2. Under the Managed Classes section, click Add.

3. Type Attendee in the filter box and select the Attendee class. Click OK.

© 2017 Copyright IBM Corporation 24

4. Switch to the Connection tab.

5. Set the JTA data source to jdbc/RegData

6. Switch to the Properties tab, and click the Add button.

7. Set the Name to eclipselink.ddl-generation, and the Value to create-or-extend-tables.

8. Use the control-S shortcut to save the file.

© 2017 Copyright IBM Corporation 25

Setting up the database

1. Copy the derby.jar file from the Jars folder of the Resources project by dragging it
into the shared/resources directory of the Websphere Application Server Liberty
Profile project.

2. Go to the Servers view in Eclipse.

3. Double click on Server Configuration under our server.

4. Switch to the Source tab. Add the following code inside the server tags:
<dataSource jndiName="jdbc/RegData">
 <properties.derby.embedded databaseName="${shared.resource.dir}/regData"
createDatabase="create"/>
 <jdbcDriver>
 <library>
 <file name="${shared.resource.dir}/derby.jar" />
 </library>
 </jdbcDriver>
 </dataSource>

© 2017 Copyright IBM Corporation 26

5. Use the control-S shortcut to save the file.

6. The server.xml class should resemble the image below.

We now need our CDI bean to store the Attendees in the database rather than the ArrayList.

1. Open the AttendeeManager class. Remove the following code:
private ArrayList<Attendee> attendees = new ArrayList<Attendee>();

2. Add the following code underneath the class declaration:
@PersistenceContext(unitName = "RegistrationAppWeb")
EntityManager em;

3. Replace the body of the getAllAttendees method with the following code:
CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Attendee> cq = cb.createQuery(Attendee.class);
Root<Attendee> rootEntry = cq.from(Attendee.class);
CriteriaQuery<Attendee> all = cq.select(rootEntry);
TypedQuery<Attendee> allQuery = em.createQuery(all);
return allQuery.getResultList();

4. Replace the body of addAttendee with the following code:
em.persist(attendee);

5. To resolve the import errors, use the control-shift-o keyboard shortcut.

6. For Root, select javax.persistence.criteria.Root. Click Finish. Use control-s to save the
class.

© 2017 Copyright IBM Corporation 27

7. The AttendeeManager class should resemble the image below.

8. Enter another attendee using the web interface, you should see the following error
message in the console.

We see this error because the methods that are querying the database are expected to be
transactional.

9. Add the following annotation to the getAllAttendees and addAttendee methods:
@Transactional

10. To resolve the import errors, use the control-shift-o keyboard shortcut. Use control-s to
save the class.

© 2017 Copyright IBM Corporation 28

11. The AttendeeManager class should resemble the image below.

Now if we restart the server and register another attendee, we can see that attendees registered
before the server restart have remained and the data has persisted beyond the scope of the
application.

Adding more functionality
We have now created an application that can register an attendee. The client makes a REST API
POST request which is handled by our JAX-RS classes, which then calls a CDI bean that handles the
business logic, and finally JPA is used to store our attendee in a database. We are still missing
some functionality in our application, we want the ability to see the attendees displayed without
having to perform a POST request and the ability to remove an attendee. This functionality can be
implemented by using GET and DELETE requests. The client that is implemented using the Angular
code provided is expecting a GET request to return a list of attendees to display, and is expecting a
DELETE request to remove a particular attendee from the list. We will now implement these GET
and DELETE requests in our application.

© 2017 Copyright IBM Corporation 29

First we will add a method to our CDI bean which handles removing a user from the database.

1. Open the AttendeeManager class.

2. Add the following code to the class body:
@Transactional
public Attendee removeAttendee(String email) {

Attendee attendeeToRemove = em.find(Attendee.class, email);
em.remove(attendeeToRemove);
return attendeeToRemove;

}

3. Use control-s to save the class.

4. The AttendeeManager class should resemble the image below.

© 2017 Copyright IBM Corporation 30

We will now add GET and DELETE request handlers to our JAX-RS resource class.

1. Open the Attendees class.

2. To make our JAX-RS class handle GET requests, add the following code to the class body:
@GET
@Produces(MediaType.APPLICATION_JSON)
public List<Attendee> getAttendees() {

return attendeeManager.getAllAttendees();
}

3. To make our JAX-RS class handle DELETE requests, add the following code to the class
body:
@DELETE
@Produces(MediaType.APPLICATION_JSON)
@Path("{email}")
public List<Attendee> removeAttendee(@PathParam("email") String email) {

attendeeManager.removeAttendee(email);
return attendeeManager.getAllAttendees();

}

4. To resolve the import errors, use the control-shift-o keyboard shortcut.

5. For PathParam, select javax.ws.rs.PathParam. Click Finish. Use control-s to save the class.

© 2017 Copyright IBM Corporation 31

6. The Attendees class should resemble the image below.

Now if you refresh the browser page, we can see a list of attendees displayed. If we click the
remove button, that attendee will be removed from the list. Our application now has all of the
required functionality.

© 2017 Copyright IBM Corporation 32

Summary
In this lab you learned:

• How to set up a Liberty runtime environment
• How to create a server to run in this environment
• How to deploy a simple web application to this server
• How to build a simple web application using JAX-RS, CDI and JPA

If you are interested in learning more please visit http://wasdev.net. WASdev is the developer
focussed community for WebSphere Application Server developers, providing:

• Useful articles on getting started
• Samples and tutorials of specific features
• Configuration snippets
• The latest releases of available Early Access Programs for Liberty and related products.
• Forums for finding further information from other developers, and getting answers to

questions.

© 2017 Copyright IBM Corporation 33

