
IBM WebSphere MQ

Message Service Client for C/C++
Version 2.0.3

SC34-6984-03

���

IBM WebSphere MQ

Message Service Client for C/C++
Version 2.0.3

SC34-6984-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 485.

Edition Notice

This edition applies to IBM Message Service Client for C/C++, Version 2.0.3 and to all subsequent releases and
modifications until otherwise indicated in new editions. This edition replaces SC34-6984-02.

© Copyright IBM Corporation 2005, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Chapter 1. Welcome to the
documentation for Message Service
Client for C/C++ 1
What's new in this release 1

Chapter 2. Introduction to Message
Service Client for C/C++ 3
What is Message Service Client for C/C++? 3
Styles of messaging 4
The XMS object model 5

Attributes and properties of objects 6
Administered objects 7

The XMS message model 8
Operating environments 8
Prerequisites for XMS applications connecting to
WebSphere MQ 9

Chapter 3. Installing Message Service
Client for C/C++ 11
Installing Message Service Client for C/C++ . . . 11

Installing Message Service Client for C/C++
using the installation wizard. 11
Installing from the command line 14
What is installed on AIX, Linux, and Solaris . . 16
What is installed on Windows (C/C++) 17
Uninstalling Message Service Client for C/C++ 18

Chapter 4. Setting up the messaging
server environment 21
Configuring the queue manager and broker for an
application that connects to a WebSphere MQ queue
manager 21
Configuring the broker for an application that uses
a real-time connection to a broker 23
Configuring the service integration bus for an
application that connects to a WebSphere service
integration bus 24

Chapter 5. Developing XMS
applications 25
Writing XMS applications. 25
The threading model 26
ConnectionFactories and Connection objects . . . 26

Connection started and stopped mode 27
Connection closure 27
Exception Handling 27
Connection to a WebSphere service integration
bus 28

Sessions 28
Transacted sessions 29
Message acknowledgement 29

Asynchronous message delivery 31
Synchronous message delivery 32
Message delivery mode 32

Destinations 32
Topic uniform resource identifiers 33
Queue uniform resource identifiers 35
Temporary destinations 36

Message producers 36
Message producers with no associated
destination 36
Message producers with associated destination 37

Message consumers 37
Durable subscribers. 37
Non-durable subscribers 38
Synchronous message consumers 39
Asynchronous message consumers 39
Poison messages. 39

Queue browsers 41
Requestors. 41
Object Deletion 42
XMS primitive types 42
Implicit conversion of a property value from one
data type to another 43
Iterators 45
Coded character set identifiers 46
XMS error and exception codes 48
Building your own applications 48
Network stack selection mechanism 49
Automatic WMQ client reconnection through XMS 53
Connecting applications in a multiple installation
environment 54

Chapter 6. Writing XMS applications in
C 57
Object handles in C. 57
Object Properties in C 58
C functions that return a string by value 58
C functions that return a byte array by value . . . 59
C functions that return a string or byte array by
reference 60
C functions that accept a string as input 61
Error handling in C. 61

Return codes 61
The error block 61

Message and exception listener functions in C . . . 62
Message listener functions in C 62
Exception listener functions in C 63

Chapter 7. Writing XMS applications in
C++ 65
Namespaces in C++ 65
String objects in C++ 66
C++ methods that return a byte array 67
Properties in C++ 67
Assignment of XMS objects to variables in C++ . . 67

© Copyright IBM Corp. 2005, 2013 iii

Error handling in C++ 70
Message and exception listeners in C++ 72

Message listeners in C++ 72
Exception listeners in C++ 74

Use of C APIs in a C++ application 74

Chapter 8. Working with administered
objects. 77
Supported types of administered object repository 77
Property mapping for administered objects 78
Required properties for administered
ConnectionFactory objects 78
Required properties for administered Destination
objects 79
Creating administered objects 80
InitialContext objects 81
InitialContext properties 81
URI format for XMS initial contexts 81
JNDI Lookup Web service 83
Retrieval of administered objects 83

Chapter 9. Securing communications
for XMS applications. 85
Secure connections to a WebSphere MQ queue
manager 85
CipherSuite and CipherSpec name mappings for
connections to a WebSphere MQ queue manager . . 86
Secure connections to a WebSphere service
integration bus messaging engine 88

CipherSuite and CipherSpec name mappings for
connections to a WebSphere service integration
bus 90

Chapter 10. XMS messages 91
Parts of an XMS message 91
Header fields in an XMS message 91
Properties of an XMS message 92

JMS-defined properties of a message 93
IBM-defined properties of a message 94
Application-defined properties of a message . . 95

The body of an XMS message 95
Data types for elements of application data. . . 96
Bytes messages 97
Map messages 98
Object messages 98
Stream messages 99
Text messages 100

Message selectors 100
Mapping XMS messages onto WebSphere MQ
messages 101
Using the XMS sample applications 102

The sample applications 102
Running the sample applications 104
Building the C or C++ sample applications . . 105

Chapter 11. Troubleshooting 107
Problem determination for C/C++ applications . . 107

Error conditions that can be handled at run time 107
Error conditions that cannot be handled at run
time 108

Repeatable failures 108
FFDC and trace configuration for C/C++
applications 109
Tips for troubleshooting 111

Chapter 12. C classes 113
BytesMessage 114

Functions 114
Connection 127

Functions. 127
ConnectionFactory for the C class 132

Functions. 133
ConnectionMetaData 135

Functions. 135
Destination for the C class 136

Functions. 136
ErrorBlock 140

Functions. 141
ExceptionListener 144

Functions. 145
InitialContext 145

Functions. 145
Iterator 147

Functions. 147
MapMessage 149

Functions. 149
Message 164

Functions. 165
MessageConsumer 180

Functions. 180
MessageListener 184

Functions. 184
MessageProducer 185

Functions. 185
ObjectMessage 194

Functions. 194
Property 196

Functions. 196
PropertyContext 211

Functions 211
QueueBrowser 228

Functions. 228
Requestor 230

Functions. 230
Session 232

Functions. 232
StreamMessage 245

Functions. 245
TextMessage. 259

Functions. 259

Chapter 13. Additional C functions 261
Process CCSID functions 261

Functions. 261

Chapter 14. C++ classes. 263
BytesMessage 265

Methods 265
Inherited methods 275

Connection 275

iv WebSphere MQ: Message Service Client for C/C++

Methods 275
Inherited methods 280

ConnectionFactory for the C++ class. 280
Constructors. 280
Methods 281
Inherited methods 283

ConnectionMetaData 283
Methods 283
Inherited methods 285

Destination for the C++ class 285
Constructors. 285
Methods 286
Inherited methods 288

Exception. 288
Methods 289

ExceptionListener 292
Methods 292

IllegalStateException 293
Inherited methods 293

InitialContext 293
Constructors. 293
Methods 294
Inherited methods 296

InvalidClientIDException 296
Inherited methods 296

InvalidDestinationException 296
Inherited methods 296

InvalidSelectorException. 296
Inherited methods 296

Iterator 297
Methods 297

MapMessage 299
Methods 300
Inherited methods 310

Message 311
Methods 311
Inherited methods 323

MessageConsumer 323
Methods 323
Inherited methods 327

MessageEOFException 327
Inherited methods 328

MessageFormatException 328
Inherited methods 328

MessageListener 328
Methods 328

MessageNotReadableException 329
Inherited methods 329

MessageNotWritableException. 329
Inherited methods 329

MessageProducer 329
Methods 329
Inherited methods 338

ObjectMessage 338
Methods 339
Inherited methods 340

Property 340
Constructors. 341
Methods 342

PropertyContext 353
Methods 353

QueueBrowser 365
Methods 365
Inherited methods 367

Requestor 368
Constructors. 368
Methods 368
Inherited methods 370

ResourceAllocationException 370
Inherited methods 370

SecurityException 371
Inherited methods 371

Session 371
Methods 371
Inherited methods 384

StreamMessage 384
Methods 384
Inherited methods 394

String 394
Constructors. 394
Methods 396

TextMessage. 398
Methods 398
Inherited methods 399

TransactionInProgressException 400
Inherited methods 400

TransactionRolledBackException 400
Inherited methods 400

Chapter 15. Properties of XMS objects 401
Properties of Connection 401
Properties of ConnectionFactory 402
Properties of ConnectionMetaData 406
Properties of Destination 407
Properties of InitialContext 408
Properties of Message 409
Properties of MessageConsumer 414
Properties of MessageProducer 414
Properties of Session 414
Property definitions 414

JMS_IBM_ArmCorrelator 417
JMS_IBM_CHARACTER_SET 417
JMS_IBM_ENCODING 418
JMS_IBM_EXCEPTIONMESSAGE 419
JMS_IBM_EXCEPTIONPROBLEMDESTINATION 419
JMS_IBM_EXCEPTIONREASON 419
JMS_IBM_EXCEPTIONTIMESTAMP. 419
JMS_IBM_FEEDBACK 420
JMS_IBM_FORMAT 420
JMS_IBM_LAST_MSG_IN_GROUP 420
JMS_IBM_MSGTYPE 421
JMS_IBM_PUTAPPLTYPE 421
JMS_IBM_PUTDATE 421
JMS_IBM_PUTTIME 422
JMS_IBM_REPORT_COA 422
JMS_IBM_REPORT_COD 423
JMS_IBM_REPORT_DISCARD_MSG. 423
JMS_IBM_REPORT_EXCEPTION 423
JMS_IBM_REPORT_EXPIRATION 424
JMS_IBM_REPORT_NAN 425
JMS_IBM_REPORT_PAN 425
JMS_IBM_REPORT_PASS_CORREL_ID 425

Contents v

JMS_IBM_REPORT_PASS_MSG_ID 426
JMS_IBM_RETAIN 426
JMS_IBM_SYSTEM_MESSAGEID 427
JMS_TOG_ARM_Correlator. 427
JMSX_APPID 427
JMSX_DELIVERY_COUNT 428
JMSX_GROUPID 428
JMSX_GROUPSEQ 428
JMSX_USERID 429
XMSC_ASYNC_EXCEPTIONS. 429
XMSC_CLIENT_CCSID 429
XMSC_CLIENT_ID 430
XMSC_CONNECTION_TYPE 430
XMSC_DELIVERY_MODE 431
XMSC_IC_PROVIDER_URL 432
XMSC_IC_SECURITY_AUTHENTICATION . . 432
XMSC_IC_SECURITY_CREDENTIALS 432
XMSC_IC_SECURITY_PRINCIPAL 432
XMSC_IC_SECURITY_PROTOCOL 433
XMSC_IC_URL 433
XMSC_JMS_MAJOR_VERSION 433
XMSC_JMS_MINOR_VERSION 433
XMSC_JMS_VERSION 433
XMSC_MAJOR_VERSION 434
XMSC_MINOR_VERSION 434
XMSC_PASSWORD 434
XMSC_PRIORITY 434
XMSC_PROVIDER_NAME 435
XMSC_RTT_CONNECTION_PROTOCOL . . . 435
XMSC_RTT_HOST_NAME 435
XMSC_RTT_LOCAL_ADDRESS 436
XMSC_RTT_PORT. 436
XMSC_TIME_TO_LIVE 437
XMSC_USERID. 437
XMSC_VERSION 437
XMSC_WMQ_BROKER_CONTROLQ 438
XMSC_WMQ_BROKER_PUBQ 438
XMSC_WMQ_BROKER_QMGR 438
XMSC_WMQ_BROKER_SUBQ 438
XMSC_WMQ_BROKER_VERSION 439
XMSC_WMQ_CCSID. 439
XMSC_WMQ_CHANNEL 440
XMSC_WMQ_CLIENT_RECONNECT_OPTIONS 440
XMSC_WMQ_CONNECTION_MODE 441
XMSC_WMQ_CONNECTION_NAME_LIST . . 442
XMSC_WMQ_DUR_SUBQ 442
XMSC_WMQ_ENCODING 443
XMSC_WMQ_FAIL_IF_QUIESCE. 444
XMSC_WMQ_MESSAGE_BODY 444
XMSC_WMQ_MQMD_MESSAGE_CONTEXT 445
XMSC_WMQ_MQMD_READ_ENABLED . . . 446
XMSC_WMQ_MQMD_WRITE_ENABLED . . 447
XMSC_WMQ_PUT_ASYNC_ALLOWED . . . 447
XMSC_WMQ_READ_AHEAD_ALLOWED . . 448
XMSC_WMQ_READ_AHEAD_CLOSE_POLICY 448
XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID449
XMSC_WMQ_HOST_NAME 450
XMSC_WMQ_LOCAL_ADDRESS 450
XMSC_WMQ_MESSAGE_SELECTION 451
XMSC_WMQ_MSG_BATCH_SIZE 451
XMSC_WMQ_POLLING_INTERVAL 452

XMSC_WMQ_PORT 452
XMSC_WMQ_PROVIDER_VERSION 452
XMSC_WMQ_PUB_ACK_INTERVAL 454
XMSC_WMQ_QMGR_CCSID 454
XMSC_WMQ_QUEUE_MANAGER 454
XMSC_WMQ_RECEIVE_EXIT 455
XMSC_WMQ_RECEIVE_EXIT_INIT 455
XMSC_WMQ_SECURITY_EXIT 456
XMSC_WMQ_SECURITY_EXIT_INIT 456
XMSC_WMQ_SEND_EXIT 456
XMSC_WMQ_SEND_EXIT_INIT 457
XMSC_WMQ_SEND_CHECK_COUNT 457
XMSC_WMQ_SHARE_CONV_ALLOWED . . 457
XMSC_WMQ_SSL_CERT_STORES 458
XMSC_WMQ_SSL_CIPHER_SPEC 458
XMSC_WMQ_SSL_CIPHER_SUITE 460
XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B461
XMSC_WMQ_SSL_CRYPTO_HW. 461
XMSC_WMQ_SSL_FIPS_REQUIRED 462
XMSC_WMQ_SSL_KEY_REPOSITORY 462
XMSC_WMQ_SSL_KEY_RESETCOUNT . . . 463
XMSC_WMQ_SSL_PEER_NAME 463
XMSC_WMQ_SYNCPOINT_ALL_GETS . . . 463
XMSC_WMQ_TARGET_CLIENT 464
XMSC_WMQ_TEMP_Q_PREFIX 464
XMSC_WMQ_TEMP_TOPIC_PREFIX 465
XMSC_WMQ_TEMPORARY_MODEL 465
XMSC_WMQ_WILDCARD_FORMAT 465
XMSC_WPM_BUS_NAME 466
XMSC_WPM_CONNECTION_PROTOCOL . . 466
XMSC_WPM_CONNECTION_PROXIMITY . . 467
XMSC_WPM_DUR_SUB_HOME 467
XMSC_WPM_HOST_NAME 467
XMSC_WPM_LOCAL_ADDRESS. 468
XMSC_WPM_ME_NAME 469
XMSC_WPM_NON_PERSISTENT_MAP . . . 469
XMSC_WPM_PERSISTENT_MAP 469
XMSC_WPM_PORT 470
XMSC_WPM_PROVIDER_ENDPOINTS . . . 470
XMSC_WPM_SSL_CIPHER_SUITE 471
XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B472
XMSC_WPM_SSL_KEY_REPOSITORY 473
XMSC_WPM_SSL_KEYRING_LABEL 473
XMSC_WPM_SSL_KEYRING_PW 473
XMSC_WPM_SSL_KEYRING_STASH_FILE . . 473
XMSC_WPM_SSL_FIPS_REQUIRED. 474
XMSC_WPM_TARGET_GROUP 474
XMSC_WPM_TARGET_SIGNIFICANCE . . . 474
XMSC_WPM_TARGET_TRANSPORT_CHAIN 475
XMSC_WPM_TARGET_TYPE 475
XMSC_WPM_TEMP_Q_PREFIX 476
XMSC_WPM_TEMP_TOPIC_PREFIX 476
XMSC_WPM_TOPIC_SPACE 476

Index 479

Notices 485
Programming interface information 487
Trademarks 487

vi WebSphere MQ: Message Service Client for C/C++

Sending your comments to IBM . . . 489

Contents vii

viii WebSphere MQ: Message Service Client for C/C++

Figures

1. XMS objects and their relationships 6
2. Typical use of administered objects by an XMS

application 8

3. Connecting applications in a multiple
installation environment 55

© Copyright IBM Corp. 2005, 2013 ix

x WebSphere MQ: Message Service Client for C/C++

Chapter 1. Welcome to the documentation for Message
Service Client for C/C++

This documentation is about IBM® Message Service Client for C/C++ Version 2.0.3.
The documentation describes and documents the APIs provided by Message
Service Client for C/C++. This API is referred to as XMS.

What's new in this release
This topic summarizes what is new in this release of Message Service Client for
C/C++.

The following sections summarize the key enhancements.

Support for TLS 1.2 enabled for XMS C/C++

XMS C/C++ now supports the TLS1.2 protocol with SSL Version 3.0 and TLS 1.0.
For more information about the additional ciphers that are supported refer
property “XMSC_WMQ_SSL_CIPHER_SPEC” on page 458,
“XMSC_WMQ_SSL_CIPHER_SUITE” on page 460, and
“XMSC_WPM_SSL_CIPHER_SUITE” on page 471.

Addition of a new properties:
XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B and
XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B

Two new properties XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B and
XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B have been to determine if application
can use non-Suite B cipher for WebSphere® Platform Messaging and WebSphere
MQ connectivity. XMS C/C++ can now be configured to operate in compliance
with the US National Security Agency (NSA) Suite B standard. The
XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B property is supported from WebSphere
MQ 7.1 onwards. See “XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B” on
page 461 and “XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B” on page 472
for details of these properties.

Support for more operating systems enabled for XMS C/C++

Refer to the Table Message Service Client for C/C++ platforms and compilers
“Operating environments” on page 8 for details of the supported operating
environment.

Support disabled for Multicast support for real-time connection to a broker

XMS C/C++ Version 2.0.3 does not support mutlicast for real-time connection to a
broker.

© Copyright IBM Corp. 2005, 2013 1

2 WebSphere MQ: Message Service Client for C/C++

Messaging considerations for GDPR readiness added

The information about messaging considerations for GPDR readiness can be found
at the following location:

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/
com.ibm.mq.helphome.v71.doc/q131940_.htm

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.helphome.v71.doc/q131940_.htm

Chapter 2. Introduction to Message Service Client for C/C++

This chapter describes Message Service Client for C/C++.

This chapter contains the following sections:
v “What is Message Service Client for C/C++?”
v “Styles of messaging” on page 4
v “The XMS object model” on page 5
v “The XMS message model” on page 8
v “Operating environments” on page 8
v “Prerequisites for XMS applications connecting to WebSphere MQ” on page 9

What is Message Service Client for C/C++?
Message Service Client for C/C++ provides an API called XMS that has the same
set of interfaces as the Java Message Service (JMS) API. Message Service Client for
C/C++ contains two implementations of XMS, one for use by C applications and
another for use by C++ applications.

XMS supports both the point-to-point and the publish/subscribe styles of
messaging, and supports both synchronous and asynchronous message delivery.

An XMS application can connect to, and use the resources of, any of the following
messaging servers:
v A WebSphere MQ queue manager.

The application can connect in either bindings or client mode.
v A WebSphere service integration bus.

The application can use a direct TCP/IP connection, or it can use HTTP over
TCP/IP.

v A broker of WebSphere Event Broker or WebSphere Message Broker.
Messages are transported between the application and the broker using
WebSphere MQ Real-Time Transport.

By connecting to a WebSphere MQ queue manager, an XMS application can use
WebSphere MQ Enterprise Transport to communicate with a broker of WebSphere
Event Broker or WebSphere Message Broker. Alternatively, an XMS application can
use a WebSphere MQ Publish/Subscribe broker.

An XMS application can exchange messages with any of the following types of
application:
v An XMS application
v A WebSphere MQ JMS application
v A native WebSphere MQ application
v A JMS application that is using the WebSphere default messaging provider

© IBM Corporation 2005, 2008 © IBM 2005, 2013 3

Styles of messaging
XMS supports the point-to-point and publish/subscribe styles of messaging.

Styles of messaging are also called messaging domains.

Point-to-point messaging
A common form of point-to-point messaging uses queuing. In the simplest
case, an application sends a message to another application by identifying,
implicitly or explicitly, a destination queue. The underlying messaging and
queuing system receives the message from the sending application and
routes the message to its destination queue. The receiving application can
then retrieve the message from the queue.

If the underlying messaging and queuing system contains a WebSphere
Message Broker, the broker might replicate a message and route copies of
the message to different queues so that more than one application can
receive the message. The broker might also transform a message and add
data to it.

A key characteristic of point-to-point messaging is that an application
identifies a destination queue when it sends a message. The configuration
of the underlying messaging and queuing system then determines
precisely which queue the message is put on so that it can be retrieved by
the receiving application.

Publish/subscribe messaging
WebSphere MQ V7.1 contains embedded publish/subscribe function. This
function replaces WebSphere MQ Publish/Subscribe, which was supplied
with WebSphere MQ V7.0. Message Service Client for C/C++ applications
can use the embedded publish/subscribe function, and can use it instead
of using WebSphere Event Broker or WebSphere Message Broker for
publish/subscribe messaging with WebSphere MQ as the transport.
Configuring Message Service Client for C/C++ to use the new function is
simpler than configuring Message Service Client for C/C++ to use
WebSphere MQ Publish/Subscribe, WebSphere Event Broker, or WebSphere
Message Broker. Administrators and application developers need not
manage publication queues, subscriber queues, subscription stores, and
subscriber cleanup.

In publish/subscribe messaging, there are two types of application:
publisher and subscriber.
A publisher supplies information in the form of messages. When a publisher
publishes a message, it specifies a topic, which identifies the subject of the
information inside the message.
A subscriber is a consumer of the information that is published. A
subscriber specifies the topics it is interested in by sending subscription
requests to a publish/subscribe broker. The broker receives published
messages from publishers and subscription requests from subscribers, and
it routes published messages to subscribers. A subscriber receives messages
on only those topics, to which it has subscribed.
A key characteristic of publish/subscribe messaging is that a publisher
identifies a topic when it publishes a message, and a subscriber receives
the message only if it has subscribed to the topic. If a message is published
on a topic for which there are no subscribers, no application receives the
message.
An application can be both a publisher and a subscriber.
The embedded publish/subscribe function also provides some additional

4 WebSphere MQ: Message Service Client for C/C++

features such as retained publications and a choice of two wildcard
schemes for specifying a range of topics to which an application wants to
subscribe.
An application can still use a real-time connection to a broker of
WebSphere Event Broker or WebSphere Message Broker for
publish/subscribemessaging. This support is unchanged. Applications
using WebSphere MQ Publish/Subscribe can use the embedded
publish/subscribe function without change when the queue manager to
which they are connected is upgraded. Properties that are set by an
application, but are not required by the embedded publish/subscribe
function, are ignored.

The XMS object model
The XMS API is an object-oriented interface. The XMS object model is based on the
JMS 1.1 object model.

The following list summarizes the main XMS classes, or types of object:

ConnectionFactory
A ConnectionFactory object encapsulates a set of configuration parameters
for a connection. An application uses a ConnectionFactory to create a
connection. An application can create a ConnectionFactory object at run
time, or it can create a ConnectionFactory object from an object definition
that is retrieved from a repository of administered objects.

Connection
A Connection object encapsulates an application's active connection to a
messaging server. An application uses a connection to create sessions.

Destination
The source from where an application sends messages or receives
messages. In the publish/subscribe domain, a Destination object
encapsulates a topic and, in the point-to-point domain, a Destination object
encapsulates a queue. An application can create a Destination object at run
time, or it can create a Destination object from an object definition that is
retrieved from a repository of administered objects.

Session
A session is a single threaded context for sending and receiving messages.
An application uses a session to create messages, message producers, and
message consumers.

Message
A Message object encapsulates a message that an application sends
(MessageProducer) or receives (MessageConsumer).

MessageProducer
An object used by an application to send messages to a destination.

MessageConsumer
An object used by an application to receive messages sent to a destination.

Figure 1 on page 6 shows these objects and their relationships.

Chapter 2. Introduction to Message Service Client for C/C++ 5

XMS applications written in C++ use these classes and their methods. XMS
applications written in C use the same object model even though C is not an object
oriented language. When a C application calls a function to create an object, XMS
stores the object internally and returns a handle for the object to the application.
The application can then use the handle subsequently to access the object. For
example, if a C application creates a ConnectionFactory, XMS returns a handle for
the ConnectionFactory to the application. In general, for each C++ method in the
C++ interface, there is an equivalent C function in the C interface.

The XMS object model is based on the domain independent interfaces that are
described in Java Message Service Specification, Version 1.1. Domain specific classes,
such as Topic, TopicPublisher, and TopicSubscriber, are not provided.

Attributes and properties of objects
An XMS object can have attributes and properties, which are characteristics of the
object, that are implemented in different ways.

Attributes
An object characteristic that is always present and occupies storage, even if
the attribute does not have a value. In this respect, an attribute is similar to
a field in a fixed length data structure. A distinguishing feature of
attributes is that each attribute has its own methods for setting and getting
its value.

Properties
A property of an object is present and occupies storage only after its value
is set. However, a property cannot be deleted (nor can the storage be
recovered) after its value has been set, although you can change its value.
XMS provides a set of generic methods for setting and getting property
values.

Related concepts:
“XMS primitive types” on page 42: A property of an object is present and

Creates

Creates

CreatesSends to Receives from

CreatesCreates

ConnectionFactory

Connection

Session

Message DestinationDestination

MessageConsumerMessageProducer

Figure 1. XMS objects and their relationships

6 WebSphere MQ: Message Service Client for C/C++

occupies storage only after its value is set. However, a property cannot be
deleted (nor can the storage be recovered) after its value has been set,
although you can change its value. XMS provides a set of generic methods
for setting and getting property values.

“Implicit conversion of a property value from one data type to another” on
page 43: When an application gets the value of a property, the value can be
converted by XMS into another data type. Many rules govern which
conversions are supported and how XMS performs the conversions.

Related reference:
“Data types for elements of application data” on page 96: To ensure that an
XMS application can exchange messages with a WebSphere MQ JMS
application, both the applications must be able to interpret the application
data in the body of a message in the same way

Administered objects
Using administered objects, you can administer the connection settings used by
client applications to be administered from a central repository. An application
retrieves object definitions from the central repository and uses them to create
ConnectionFactory and Destination objects. This allows applications to be
de-coupled from the resources that they use at runtime.

For example, XMS applications can be written and tested with administered objects
that reference a set of connections and destinations in a test environment. When
the applications are deployed, the administered objects can be changed to point the
applications to a production environment.

XMS supports two types of administered object:
v A ConnectionFactory object, which is used by applications to make the initial

connection to the server
v A Destination object, which is used by applications to specify the destination for

messages that are being sent, and the source of messages that are being received.
A destination is either a topic or a queue on the server to which an application
connects.

The WebSphere MQ JMS administration tool (JMSAdmin) available with
WebSphere MQ can be used to create and manage administered objects for
WebSphere MQ, WebSphere Message Broker, or WebSphere Event Broker in a
central repository of administered objects.

The administered objects in the repository can be used by WebSphere MQ JMS
applications, and also by XMS applications for ConnectionFactories and
Destinations for WebSphere MQ queue manager, or for a realtime connection to a
broker. An administrator can change the object definitions held in the repository
without affecting application code.

The following diagram shows how an XMS application typically uses administered
objects.

Chapter 2. Introduction to Message Service Client for C/C++ 7

The XMS message model
The XMS message model is the same as the WebSphere JMS message model.

In particular, XMS implements the same message header fields and message
properties that WebSphere JMS implements:
v JMS header fields. These are fields whose names commence with the prefix JMS.
v JMS defined properties. These are properties whose names commence with the

prefix JMSX.
v IBM defined properties. These are the properties whose names commence with

the prefix JMS_IBM_.

As a result, XMS applications can exchange messages with WebSphere JMS
applications. For each message sent by an XMS or WebSphere JMS application,
some of the header fields and properties are set by the application, others are set
by XMS or WebSphere JMS when the message is sent, and the remainder are set by
XMS or WebSphere JMS when the message is received. Where appropriate, these
header fields and properties are propagated with a message through a messaging
server and are made available to any application that receives the message.

Operating environments
An XMS client is supplied for each of the tested operating systems.

Table 1 lists the compiler for each client platform.

Table 1. Message Service Client for C/C++ platforms and compilers

Operating system Compiler

Microsoft Windows 2012, Microsoft
Windows 7, Microsoft Windows 8,
MicrosoftWindows Server 2003,
MicrosoftWindows Server 2003 R2, Microsoft
Windows Vista, Microsoft Windows Server
2008 (Intel 32 bit)

Microsoft Visual Studio 2010, service Pack 1

Administers Looks up Produces/consumes
messages

Administered
objects repository

Destination

ConnectionFactory

Administration console XMS application

Messaging server

Figure 2. Typical use of administered objects by an XMS application

8 WebSphere MQ: Message Service Client for C/C++

Table 1. Message Service Client for C/C++ platforms and compilers (continued)

Operating system Compiler

Microsoft Windows 2012, Microsoft
Windows 7, Microsoft Windows 8, Microsoft
Windows Server 2003, Microsoft Windows
Server 2003 R2, Microsoft Windows Vista,
Microsoft WindowsServer 2008 (x64 bit)

Microsoft Visual Studio 2010, service Pack 1

Red Hat Enterprise Linux 5.0 or 6.0 (Intel 32
bit), SUSE Linux ES 10.0 or 11.0 (Intel 32 bit)

gnu gcc 4.1.2

Red Hat Enterprise Linux 5.0 or 6.0 (Intel 64
bit) with update 4 SUSE Linux 10.0 or 11.0
(Intel 64 bit)

gnu gcc 4.1.2

AIX® 6.1 AIX 7.0 IBM® XL C/C++ Enterprise Edition for AIX
9.0 (The minimum level of IBM XL C/C++
Enterprise Edition for AIX 9.0 is 9.0.0.3)

Sun Solaris version 10 and 11 (on SPARC) Sun ONE Studio 11 Enterprise Edition for
Solaris (C and C++)

Note: XMS on Sun Solaris has been built and tested using both the Forte
Developer 6 Update 2 C and C++ compilers. The version of the C compiler and the
C++ compiler itself are both version 5.3.

The XMS C libraries are readily usable with objects built with earlier or later
versions of the Sun Studio C compilers.

The XMS C++ libraries are readily usable with later 5.x versions of the Sun Studio
C compilers. Note that the XMS C++ libraries are likely to be unusable with objects
built by a C++ compiler with version earlier than 5.x, or with 5.x compilers
operating in version 4 compatibility mode. Therefore, if an object has been
compiled by a version 5.x compiler specifying the -compat option, it is likely to be
unusable, either at link time or run time, with the XMS C++ libraries.

Prerequisites for XMS applications connecting to WebSphere MQ
Some prerequisites apply if your XMS application connects to WebSphere MQ.

For applications that connect to a WebSphere MQ queue manager, you must install
the appropriate WebSphere MQ client libraries on the machine you use to run the
XMS application. These libraries are pre-installed on machines with a local queue
manager.

For XMS client for C/C++, use the WebSphere MQ Version 7.1 client libraries.
These enable client mode connections to WebSphere MQ Version 7.0, and above,
WebSphere MQ Version 6.0, and WebSphere MQ Version 5.3 queue managers, and
bindings mode connections to WebSphere MQ Version 7.0 and above local queue
managers.

XMS client for C/C++ can still work with WebSphere MQ Version 7.0.0.0 client
libraries but will not be able to use WebSphere MQ Version 7.0 features.

Related tasks:

Chapter 2. Introduction to Message Service Client for C/C++ 9

The chapter Chapter 4, “Setting up the messaging server environment,” on page 21
describes how to set up the messaging server environment to allow XMS
applications to connect to a server.

10 WebSphere MQ: Message Service Client for C/C++

Chapter 3. Installing Message Service Client for C/C++

This chapter describes how to install Message Service Client for C/C++ (XMS).

About this task

Follow these instructions to install or uninstall Message Service Client for C/C++.

This chapter contains the following section:
v “Installing Message Service Client for C/C++”

Installing Message Service Client for C/C++
This chapter describes how to install Message Service Client for C/C++ (XMS).
Follow these instructions to install or uninstall Message Service Client for C/C++.

About this task

Message Service Client for C/C++ is installed using an InstallAnywhere installer.
You can either use the installer in the form of a wizard with a graphical user
interface, or you can invoke the installer from a command prompt. For general
information about InstallAnywhere, see the InstallAnywhere Web site at
http://www.acresso.com/products/ia/installanywhere-overview.htmhttp://
www.acresso.com/products/ia/installanywhere-overview.htm.

The installer also installs GSKit.

Note: When you are installing on Windows using the installation wizard, you can
choose the location in which GSKit is installed.

The following sections describe how to install and uninstall Message Service Client
for C/C++ in more detail:
v “Installing Message Service Client for C/C++ using the installation wizard”
v “Installing from the command line” on page 14
v “What is installed on AIX, Linux, and Solaris” on page 16
v “What is installed on Windows (C/C++)” on page 17
v “Uninstalling Message Service Client for C/C++” on page 18

Installing Message Service Client for C/C++ using the
installation wizard

The installation for Message Service Client for C/C++ uses an InstallAnywhere
installer. Two setup options are available, so that you can choose either a complete
or a custom installation.

Before you begin

The installed client requires 150 MB of disk space on AIX, Linux, Solaris, and
Windows.

© IBM Corporation 2005 © IBM 2005, 2013 11

http://www.acresso.com/products/ia/installanywhere-overview.htm

About this task

To install Message Service Client for C/C++ on AIX, Linux, Solaris, or Windows,
follow this procedure. You can click Cancel at any time during the install setup
process to stop the installation process from continuing, but note that the Cancel
option is not available while the product is actually being installed.

Procedure
1. If you are installing from a SupportPac, complete the following steps,

otherwise proceed directly to step 2;
a. On AIX, Linux, or Solaris, log in as root. On Windows, log on as an

administrator.
b. Create a temporary directory and extract the contents of the zipped file

supplied with Message Service Client for C/C++ into the directory.
A subdirectory of the temporary directory is created. The subdirectory is
called gxixms_install and contains the files needed for the installation.

c. Run the setup file:
v On AIX, run the file called setup.bin that is in the gxixms_install

directory.
v On Linux, run the file called setup.bin that is in the gxixms_install

directory.
v On Solaris, run the file called setup.bin that is in the gxixms_install

directory.
v On Windows, run the file setup.exe that is in the gxixms_install

directory.
Messages informing you that the installer is preparing to install are
displayed. Message Service Client for C/C++ provides a JVM for the
installer; you do not need to provide one.

2. When the installation wizard opens, select the appropriate language to be
used in the wizard and click OK.

3. In the Introduction panel, text notifying that the installation wizard will install
IBM Message Service Client for C/C++ on your computer is displayed. Click
Next.

4. If the wizard asks you to read the license agreement, and you accept the terms
of the license agreement, click I accept the terms in the license agreement,
and then click Next. On Windows only, the installer asks you where you want
to install GSKit.

5. If you are installing on Windows and you want to install GSKit in the
directory suggested, click Next ; otherwise, choose another directory. The
installation wizard asks you where you want to install Message Service Client
for C/C++.

6. To install Message Service Client for C/C++ in the directory suggested, click
Next; otherwise choose another directory. If you choose to install Message
Service Client for C/C++ in a directory that does not currently exist, the
installation wizard creates the directory for you.
The installation wizard asks you to choose the setup type that best suits your
needs.

7. Select the type of setup that you require:
v To install all program features, click the Complete icon.
v To choose which features you want to install, click the Custom icon.

8. Click Next.

12 WebSphere MQ: Message Service Client for C/C++

If you select the complete install option, the installation wizard displays
details of the installation options that you have selected, and you can proceed
as described in step 10. If you select the custom install option, the installation
wizard asks you which features you want to install, and you must complete
step 9 before moving on to step 10.

9. For a custom install only, select the Message Service Client for C/C++ features
that you want to be installed and then click Next.
If you want to develop XMS applications, ensure that you select the
Development Tools and Samples feature. This feature provides the sample
applications, and the libraries and header files needed to compile C and C++
applications. If you do not select this feature, only the files needed to run
XMS applications are installed.
The installation wizard displays details of the installation options that you
have selected.

10. When you are satisfied with your selected installation options, click Install to
start the installation. Note that Cancel becomes unavailable when the
installation has started.
The installation wizard displays a bar showing the progress of the installation.
Wait for the progress bar to complete. When the installation completes
successfully, the wizard displays a message confirming that the
InstallAnywhere wizard has successfully installed IBM Message Service Client
for C/C++ on your computer.

11. Click Next. If you want to view the readme file for Message Service Client for
C/C++, select View Readme and then click Done.

12. If you selected View Readme option in the previous step, the readme is
displayed in the installation wizard. Click Done to close the installation
wizard.

Results

You have now successfully installed Message Service Client for C/C++, which is
ready to use.

What to do next

Before running any XMS applications, including the sample applications provided
with XMS, you must set up the messaging server environment as described in
Chapter 4, “Setting up the messaging server environment,” on page 21.

Related concepts:

Refer to “JNDI Lookup Web service” on page 83 to access a COS naming directory
from XMS, a JNDI Lookup Web service must be deployed on a WebSphere service
integration bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.

The chapter Chapter 4, “Setting up the messaging server environment,” on page 21
describes how to set up the messaging server environment to allow XMS
applications to connect to a server.

The chapter “Using the XMS sample applications” on page 102provides
information about how to use the sample applications provided with XMS.

Chapter 3. Installing Message Service Client for C/C++ 13

Installing from the command line
As an alternative to using the installation wizard, you can run the installation from
the command line.

About this task

Running the installer from a command prompt allows you to finely control the
installation. The following options are available:
v Perform a console-based, text-based installation.
v Record a response file using the runtime command line option -r.
v Perform an unattended, or silent installation, which requires no interaction with

the wizard by invoking the installer from a command prompt using the runtime
command line option silent. The silent install uses the response file that you
specify when you type in the command.

To use any of these options, type the appropriate command as described in the
sub-topics.

This chapter contains the following subsections:
v “Running the installer from the command line”
v “Installing silently” on page 15

Related concepts:

Refer to “JNDI Lookup Web service” on page 83 to access a COS naming directory
from XMS, a JNDI Lookup Web service must be deployed on a WebSphere service
integration bus server. This Web service translates the Java information from the
COS naming service into a form that XMS applications can read.

The chapter Chapter 4, “Setting up the messaging server environment,” on page 21
describes how to set up the messaging server environment to allow XMS
applications to connect to a server.

The chapter “Using the XMS sample applications” on page 102provides
information about how to use the sample applications provided with XMS.

Running the installer from the command line
You can run the installation from the command line to perform a console-based,
text-based installation.

About this task

Running the installer from a command prompt using the option console allows
you to perform a console-based, text-based installation.

Procedure
v On AIX, type the following command:

setup.bin -i console

v On Linux, type the following command:
setup.bin -i console

v On Solaris, type the following command:
setup.bin -i console

v On Windows, type the following command:

14 WebSphere MQ: Message Service Client for C/C++

setup.exe -i console

Installing silently
If you invoke the installer from a command prompt using the runtime command
line option silent, you can perform an unattended, or silent installation.

About this task

Running the installer in silent mode requires no interaction with the wizard. You
can invoke a silent install using all the default setup options, or provide a response
file for a non-standard installation.

To use any of these options, type the appropriate command from the following list.

Procedure
v To run a silent install using all the default setup options, type one of the

following commands:
– On AIX, type:

setup.bin -i silent -DLICENSE_ACCEPTED=TRUE

– On Linux, type:
setup.bin -i silent -DLICENSE_ACCEPTED=TRUE

– On Solaris, type:
setup.bin -i silent -DLICENSE_ACCEPTED=TRUE

– On Windows, type:
setup.exe -i silent -DLICENSE_ACCEPTED=TRUE

In this way, you explicitly accept the license agreement and the install can
proceed using the default options.

v To record a response file using the wizard, type one of the following commands:
– On AIX, type:

setup.bin -r responsefilename.txt

– On Linux, type:
setup.bin -r responsefilename.txt

– On Solaris, type:
setup.bin -r responsefilename.txt

– On Windows, type:
setup.exe -r responsefilename.txt

You can use the console option in conjunction with the above command to
record the response file in a text-based manner. For example
– On Windows, type:

setup.exe -i console -r responsefilename.txt

v To invoke a silent install using a response file, type one of the following
commands:
– On AIX, type:

setup.bin -i silent -f [responsefilename.txt]

– On Linux, type:
setup.bin -i silent -f [responsefilename.txt]

– On Solaris, type:
setup.bin -i silent -f [responsefilename.txt]

– On Windows, type:

Chapter 3. Installing Message Service Client for C/C++ 15

setup.exe -i silent -f [responsefilename.txt]

v You can use the silent option for uninstalling by adding it as an argument to the
uninstaller command. For example:
– On Windows, type:

uninstaller.exe -u silent

v You can use the console option instead to perform a text-based uninstallation.
For example:
– On Windows, type:

uninstaller.exe -u console

What is installed on AIX, Linux, and Solaris
On AIX, Linux, and Solaris, Message Service Client for C/C++ is installed in the
/opt/IBM/XMS directory unless you choose to install it in a different directory.

Table 2 lists the installed directories, relative to the installation directory, and
describes their contents.

Table 2. Installed directories on AIX, Linux, and Solaris, and their contents

Installed feature Installed directory Contents

Runtime The readme.txt file for the product and the
license agreement

_jvm The Java Virtual Machine (JVM) required by
the uninstaller

_uninst The files required to uninstall Message
Service Client for C/C++

bin Programs, for example, gxitrcfmt and gxisc

lib The shared object libraries required to
compile and run XMS applications, and a
symbolic link to the shared object library in
the lib/3.3 directory

lib64 The shared object libraries required to
compile and run XMS applications on 64 bit
platforms
Note: This directory will only appear on
currently supported 64 bit platforms.

lib/3.3 On Linux only, the shared object library
required to compile XMS applications written
in C++ using the gcc 3.3 compiler, and to run
the applications

lib/4.1 and lib64/4.1 On RHEL4.0 x86_64 only, the shared object
library required to compile XMS applications
written in C++ using the gcc 4.1 compiler,
and to run the applications

Development
Tools

tools/c/include The XMS header files for C

tools/cpp/include The XMS header files for C++

16 WebSphere MQ: Message Service Client for C/C++

Table 2. Installed directories on AIX, Linux, and Solaris, and their contents (continued)

Installed feature Installed directory Contents

Documentation
and Samples

doc This documentation as a PDF file

tools/samples The readme.txt file for the sample
applications

tools/samples/bin The compiled sample applications and the
command file to run them

tools/samples/
SampleConsumerC

The source and makefile for the C message
consumer sample application

tools/samples/
SampleProducerC

The source and makefile for the C message
producer sample application

tools/samples/
SampleConsumerCPP

The source and makefile for the C++ message
consumer sample application

tools/samples/
SampleProducerCPP

The source and makefile for the C++ message
producer sample application

tools/samples/
SampleConfigC

The sampleconfig tool

What is installed on Windows (C/C++)
On Windows x86, XMS is installed in the C:\Program Files\IBM\XMS directory
and on Windows x64, XMS is installed in the C:\Program Files (x86) \IBM\XMS
directory unless you choose to install it in a different directory.

Table 3 lists the installed directories, relative to the installation directory, and
describes their contents.

Table 3. Installed directories on Windows and their contents

Installed feature Installed directory Contents

Runtime The license agreement for the product and the
readme.txt file

_jvm The Java Virtual Machine (JVM) required by
the uninstaller

_uninst The files required to uninstall Message Service
Client for C/C++

bin The *.dll and *.pdb files required to run XMS
applications. Programs, for example, gxitrcfmt
and gxisc

bin64 The *.dlls required to run 64bit XMS
aplications

licenses The licenses for Message Service Client for
C/C++.

Development
Tools

tools\c\include The XMS header files for C

tools\cpp\include The XMS header files for C++

tools\lib The XMS link libraries for C and C++

tools\lib64 On x64 only, 64bit XMS link libraries for C and
C++

Chapter 3. Installing Message Service Client for C/C++ 17

Table 3. Installed directories on Windows and their contents (continued)

Installed feature Installed directory Contents

Documentation
and Samples

doc This documentation as a PDF file

tools\samples\bin The compiled sample applications and the
command file to run them

tools\samples\
SampleConsumerC

The source and makefile for the C message
consumer sample application

tools\samples\
SampleProducerC

The source and makefile for the C message
producer sample application

tools\samples\
SampleConsumerCPP

The source and makefile for the C++ message
consumer sample application

tools\samples\
SampleProducerCPP

The source and makefile for the C++ message
producer sample application

tools\samples\c\
sampleconfig

The sampleconfig tool

tools\samples\
readme.txt

The readme.txt file for the sample applications

Note: If you do not have Visual C++ 2010 installed on the system, you need to
install the Microsoft Visual C++ 2010 Redistributable Package. This package has the
runtime components of Visual C++ Libraries that are required to run applications
developed with Visual C++ 2010 on a computer that does not have Visual C++
2010 installed. To download this package, refer to the Microsoft Website for more
information.

Uninstalling Message Service Client for C/C++
An uninstaller is provided to remove Message Service Client for C/C++ from your
system.

About this task

To remove Message Service Client for C/C++ from your AIX, Linux, Solaris, or
Windows system, follow this procedure. The Uninstaller also removes GSKit from
your system.

Procedure
1. On AIX, Linux or Solaris, log in as root. On Windows, log on as an

administrator.
2. Run the uninstaller:

v On AIX, run the file called uninstaller that is in the directory
install_dir/_uninst.

v On Linux, run the file called uninstaller that is in the directory
install_dir/_uninst.

v On Solaris, run the file called uninstaller that is in the directory
install_dir/_uninst.

v On Windows, run the file uninstaller.exe that is in the directory
install_dir_uninst.

install_dir is the directory where you have installed Message Service Client for
C/C++.
The Uninstaller window opens and displays the following message:

18 WebSphere MQ: Message Service Client for C/C++

The wizard will uninstall Message Service Client for C/C++ from your computer.

3. Click Uninstall.
The Uninstaller window displays details of what is about to be uninstalled and
begins the uninstallation process. After all the items have been uninstalled, the
following message is displayed:
All items were successfully uninstalled.

4. Click Done to close the Uninstaller window.

Results

You have now successfully removed the Message Service Client for C/C++ from
your system.

Uninstalling on Message Service Client for C/C++ using
Add/Remove Programs
As an alternative to launching the uninstaller manually, you can remove Message
Service Client for C/C++ from your Windows system using Add/Remove
Programs.

About this task

To remove Message Service Client for C/C++ using Add/Remove Programs,
follow this procedure. The Uninstaller also removes GSKit from your system.

The Add/Remove Programs window shows only one instance of Message Service
Client for C/C++. If you have problems uninstalling Message Service Client for
C/C++, or you have more than one instance of Message Service Client for C/C++,
you might want to uninstall Message Service Client for C/C++ using the
procedure described in “Uninstalling Message Service Client for C/C++” on page
18.

Procedure
1. Log on to Windows as an administrator.
2. From the Windows task bar, click Start —> Settings —> Control Panel. The

Control Panel window opens.
3. Double-click Add/Remove Programs. The Add/Remove Programs window

opens.
4. Click IBM Message Service Client for C/C++ to select it.
5. Click Change/Remove. The Uninstaller window opens and displays the

following message:
The wizard will uninstall Message Service Client for C/C++ from your computer.

6. Click Uninstall. The Uninstaller window displays details of what is about to be
uninstalled and begins the uninstallation process. After all the items have been
uninstalled, the following message is displayed:
All items were successfully uninstalled.

7. Click Done to close the Uninstaller window.

Results

You have now successfully removed Message Service Client for C/C++ from your
system.

Chapter 3. Installing Message Service Client for C/C++ 19

20 WebSphere MQ: Message Service Client for C/C++

Chapter 4. Setting up the messaging server environment

This chapter describes how to set up the messaging server environment to allow
XMS applications to connect to a server.

Before you begin

The following prerequisite applies to setting up the messaging server environment:
v For applications that connect to a WebSphere MQ queue manager, the

WebSphere MQ client (or queue manager for bindings mode) is required.

There are currently no prerequisites for applications that use a real-time connection
to a broker.

For additional information about prerequisites, refer to the readme.txt file for
Message Service Client for C/C++.

About this task

You must set up the messaging server environment before running any XMS
applications, including the sample applications provided with XMS.

This chapter contains the following sections:
v “Configuring the queue manager and broker for an application that connects to

a WebSphere MQ queue manager”
v “Configuring the broker for an application that uses a real-time connection to a

broker” on page 23
v “Configuring the service integration bus for an application that connects to a

WebSphere service integration bus” on page 24

Configuring the queue manager and broker for an application that
connects to a WebSphere MQ queue manager

This section assumes that you are using WebSphere MQ version 7.0. Before you
can run an application that connects to a WebSphere MQ queue manager, you
must configure the queue manager. For a publish/subscribe application, some
additional configuration is required if you are using Queued Publish/Subscribe
interface.

Before you begin

Before starting this task, you must do the following:
v Make sure that your application has access to a queue manager that is running.
v If your application is a publish/subscribe application and uses Queued

Publish/Subscribe interface, make sure that “PSMODE” attribute is set to
“ENABLED” on the queue manager.

v Make sure that your application uses a connection factory whose properties are
set appropriately to connect to the queue manager. If your application is a
publish/subscribe application, make sure that the appropriate connection factory

© IBM Corporation 2005 © IBM 2005, 2013 21

properties are set for using the broker. For more information about the
properties of a connection factory, “Properties of ConnectionFactory” on page
402.

About this task

You configure the queue manager and broker to run XMS applications in the same
way that you configure the queue manager and queued publish/subscribe
interface to run WebSphere MQ JMS applications. The following steps summarize
what you need to do:

Procedure
1. On the queue manager, create the queues that your application needs.

For information about how to do this, see the WebSphere MQ System
Administration Guide.
If your application is a publish/subscribe application and uses Queued
Publish/Subscribe interface that needs access to WebSphere MQ JMS system
queues, wait until Step 4a before creating the queues.

2. Grant the user ID associated with your application the authority to connect to
the queue manager and the appropriate authorities to access the queues.
For information about how to do this, see the WebSphere MQ System
Administration Guide. If your application connects to the queue manager in
client mode, see also WebSphere MQ Clients or WebSphere MQ Security.

3. If your application connects to the queue manager in client mode, make sure
that a server connection channel is defined at the queue manager and that a
listener has been started.
For information about how to do this, see WebSphere MQ Clients.
You do not need to perform this step for each application that connects to the
queue manager. One server connection channel definition and one listener can
support all the applications that connect in client mode.

4. If your application is a publish/subscribe application, and uses Queued
Publish/Subscribe interface, perform the following steps.
a. On the queue manager, create the WebSphere MQ JMS system queues by

running the script of MQSC commands supplied with WebSphere MQ.
Make sure that the user ID associated with the broker has the authorities it
needs to access the queues.
For information about where to find the script and how to run it, see
WebSphere MQ Using Java.
You need to perform this step only once for the queue manager. The same
set of WebSphere MQ JMS system queues can support all XMS and
WebSphere MQ JMS applications that connect to the queue manager.

b. Grant the user ID associated with your application the authorities it needs
to access the WebSphere MQ JMS system queues.
For information about what authorities the user ID needs, see WebSphere
MQ Using Java.

c. For a broker of WebSphere Event Broker or WebSphere Message Broker,
create and deploy a message flow to service the queue where applications
send messages that they publish.
The basic message flow comprises an MQInput message processing node to
read the published messages and a Publication message processing node to
publish the messages.

22 WebSphere MQ: Message Service Client for C/C++

For information about how to create and deploy a message flow, see the
WebSphere Event Broker or WebSphere Message Broker Information Center.
You do not need to perform this step if a suitable message flow is already
deployed at the broker.

Results

You can now start your application.

Configuring the broker for an application that uses a real-time
connection to a broker

Before you can run an application that uses a real-time connection to a broker, you
must configure the broker.

Before you begin

Before starting this task, you must do the following:
v Make sure that your application has access to a broker that is running.
v Make sure that your application uses a connection factory whose properties are

set appropriately for a real-time connection to the broker. For more information
about the properties of a connection factory, see “Properties of
ConnectionFactory” on page 402.

About this task

You configure the broker to run XMS applications in the same way that you
configure the broker to run WebSphere MQ JMS applications. The following steps
summarize what you need to do but, for more details, see the WebSphere Event
Broker or WebSphere Message Broker Information Center:

Procedure
1. Create and deploy a message flow to read messages from the TCP/IP port on

which the broker is listening and publish the messages.
You can do this in either of the following ways:
v Create a message flow that contains a Real-timeOptimizedFlow message

processing node.
v Create a message flow that contains a Real-timeInput message processing

node and a Publication message processing node.

You must configure the Real-timeOptimizedFlow or Real-timeInput node to
listen on the port used for real-time connections. In XMS, the default port
number for real-time connections is 1506.
You do not need to perform this step if a suitable message flow is already
deployed at the broker.

2. If your application supplies a user ID and a password when it connects to the
broker, and you want the broker to authenticate your application using this
information, configure the user name server and the broker for simple
telnet-like password authentication.

Results

You can now start your application.

Chapter 4. Setting up the messaging server environment 23

Configuring the service integration bus for an application that
connects to a WebSphere service integration bus

Before you can run an application that connects to a WebSphere service integration
bus, you must configure the service integration bus in the same way that you
configure the service integration bus to run JMS applications that use the default
messaging provider.

Before you begin

Before starting this task, you must do the following:
v Make sure that a messaging bus has been created and that your server has been

added to the bus as a bus member.
v Make sure that your application has access to a service integration bus that

contains at least one messaging engine that is running.
v If HTTP operation, is required then an HTTP messaging engine inbound

transport channel must be defined. By default, channels for SSL and TCP will
already have been predefined during the server installation.

v Make sure that your application uses a connection factory whose properties are
set appropriately to connect to the service integration bus using a bootstrap
server. The minimum information that you need to specify is:
– The provider endpoint, which describes the location and protocol to use

when negotiating a connection to the messaging server (that is, via the
bootstrap server). In its simplest form, for a server installed with default
settings, this can be set to the hostname of the server.

– The name of the bus through which messages should be sent.
For more information about the properties of a connection factory, see
“Properties of ConnectionFactory” on page 402.

About this task

Any queue or topic spaces that you require must be defined. By default a topic
space called Default.Topic.Space will already have been predefined during the
server installation but, if you require further topic spaces, you must create these
yourself. You do not need to predefine individual topics within a topic space, since
the server instantiates these dynamically as required.

The following steps summarize what you need to do but, for more details, see the
WebSphere Application Server Information Center.

Procedure
1. Create the queues that your application needs for point-to-point messaging.
2. Create any additional topic spaces that your application needs for

publish/subscribe messaging.

Results

You can now start your application.

24 WebSphere MQ: Message Service Client for C/C++

Chapter 5. Developing XMS applications

This chapter provides information that you might find useful when writing XMS
applications.

About this task

The information in this chapter applies to C, and C++ applications.

For information about writing XMS applications, refer to the following topics:

Writing XMS applications
About this task

The information in this chapter applies to C and C++ applications.

If you are writing applications in C, see also Chapter 6, “Writing XMS applications
in C,” on page 57. If you are writing applications in C++, see also Chapter 7,
“Writing XMS applications in C++,” on page 65.

This chapter contains the following sections:
v “The threading model” on page 26
v “ConnectionFactories and Connection objects” on page 26
v “Sessions” on page 28
v “Destinations” on page 32
v “Message producers” on page 36
v “Message consumers” on page 37
v “Queue browsers” on page 41
v “Requestors” on page 41
v “Object Deletion” on page 42
v “XMS primitive types” on page 42
v “Implicit conversion of a property value from one data type to another” on page

43
v “Iterators” on page 45
v “Coded character set identifiers” on page 46
v “XMS error and exception codes” on page 48
v “Building your own applications” on page 48
v “Network stack selection mechanism” on page 49

Related tasks:

The chapter Chapter 6, “Writing XMS applications in C,” on page 57 provides
information help you write XMS applications in C.

The chapter Chapter 7, “Writing XMS applications in C++,” on page 65 provides
information to help you when writing XMS applications in C++.

© IBM Corporation 2005 © IBM 2005, 2013 25

The threading model
General rules govern how a multithreaded application can use XMS objects.
v Only objects of the following types can be used concurrently on different

threads:
– ConnectionFactory
– Connection
– ConnectionMetaData
– Destination

v A Session object can be used on only a single thread at any one time.

Exceptions to these rules are indicated by entries labelled “Thread context” in the
interface definitions of the methods in the API reference chapters Reference.

ConnectionFactories and Connection objects
A ConnectionFactory object provides a template that an application uses to create a
Connection object. The application uses the Connection object to create a Session
object.

For C and C++ applications a single type of ConnectionFactory has a property that
enables you to select which type of protocol you want to use for a connection.

An XMS application can create multiple connections, and a multithreaded
application can use a single Connection object concurrently on multiple threads. A
Connection object encapsulates a communications connection between an
application and a messaging server.

A connection serves several purposes:
v When an application creates a connection, the application can be authenticated.
v An application can associate a unique client identifier with a connection. The

client identifier is used to support durable subscriptions in the
publish/subscribe domain. The client identifier can be set in two ways:
The preferred way of assigning a connection's client identifier is to configure in a
client-specific ConnectionFactory object using properties and transparently
assign it to the connection it creates.
An alternative way of assigning a client identifier is to use a provider-specific
value that is set on the Connection object. This value does not override the
identifier that has been administratively configured. It is provided for the case
where no administratively specified identifier exists. If an administratively
specified identifier does exist, an attempt to override it with a provider-specific
value causes an exception to be thrown. If an application explicitly sets an
identifier, it must do this immediately after creating the connection and before
any other action on the connection is taken; otherwise, an exception is thrown.

v A C application can register an exception listener function and context data with
a connection. A C++ application can register an exception listener with a
connection.

An XMS application typically creates a connection, one or more sessions, and a
number of message producers and message consumers.

26 WebSphere MQ: Message Service Client for C/C++

Creating a connection is relatively expensive in terms of system resources because
it involves establishing a communications connection, and it might also involve
authenticating the application.

Connection started and stopped mode
A connection can operate in either started or stopped mode.

When an application creates a connection, the connection is in stopped mode.
When the connection is in stopped mode, the application can initialize sessions,
and it can send messages but cannot receive them, either synchronously or
asynchronously.

An application can start a connection by calling the Start Connection method.
When the connection is in started mode, the application can send and receive
messages. The application can then stop and restart the connection by calling the
Stop Connection and Start Connection methods.

Connection closure
An application closes a connection by calling the Close Connection method.

When an application closes a connection, XMS performs the following actions:
v It closes all the sessions associated with the connection and deletes certain

objects associated with these sessions. For more information about which objects
are deleted, see “Object Deletion” on page 42. At the same time, XMS rolls back
any transactions currently in progress within the sessions.

v It ends the communications connection with the messaging server.
v It releases the memory and other internal resources used by the connection.

XMS does not acknowledge the receipt of any messages that it has failed to
acknowledge during a session, prior to closing the connection. For more
information about acknowledging the receipt of messages, see “Message
acknowledgement” on page 29.

Exception Handling
If a C application registers an exception listener function and context data with a
connection, or if a C++ application registers an exception listener with a
connection, XMS notifies the application asynchronously when a serious problem
occurs with the connection.

XMS notifies a C application by calling the exception listener function, passing a
pointer to the context data as one parameter and the handle for the error block as
the other parameter. XMS notifies a C++ application by calling the onException()
method of the exception listener, passing a pointer to the exception as a parameter.

If an application uses a connection only to consume messages asynchronously it
learns about a problem with the connection only by using an exception listener.

For more information about using exception listener functions in a C application,
see “Exception listener functions in C” on page 63. If you are using C++, see
“Exception listeners in C++” on page 74.

Chapter 5. Developing XMS applications 27

Connection to a WebSphere service integration bus
An XMS application can connect to a WebSphere service integration bus either by
using a direct TCP/IP connection or by using HTTP over TCP/IP.

The HTTP protocol can be used in situations where a direct TCP/IP connection is
not possible. One common situation is when communicating through a firewall,
such as when two enterprises exchange messages. Using HTTP to communicate
through a firewall is often referred to as HTTP tunnelling. HTTP tunnelling,
however, is inherently slower than using a direct TCP/IP connection because
HTTP headers add significantly to the amount of data that is transferred, and
because the HTTP protocol requires more communication flows than TCP/IP.

To create a TCP/IP connection, an application can use a connection factory whose
XMSC_WPM_TARGET_TRANSPORT_CHAIN property is set to
XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC. This is the default value of
the property. If the connection is created successfully, the
XMSC_WPM_CONNECTION_PROTOCOL property of the connection is set to
XMSC_WPM_CP_TCP.

To create a connection that uses HTTP, an application must use a connection
factory whose XMSC_WPM_TARGET_TRANSPORT_CHAIN property is set to the
name of an inbound transport chain that is configured to use an HTTP transport
channel. If the connection is created successfully, the
XMSC_WPM_CONNECTION_PROTOCOL property of the connection is set to
XMSC_WPM_CP_HTTP. For information about how to configure transport chains,
see the WebSphere Application Server Version 6.0x Information Center.

An application has a similar choice of communication protocols when connecting
to a bootstrap server. The XMSC_WPM_PROVIDER_ENDPOINTS property of a
connection factory is a sequence of one or more endpoint addresses of bootstrap
servers. The bootstrap transport chain component of each endpoint address can be
either XMSC_WPM_BOOTSTRAP_TCP, for a TCP/IP connection to a bootstrap
server or XMSC_WPM_BOOTSTRAP_HTTP, for a connection that uses HTTP.

Sessions
A session is a single threaded context for sending and receiving messages.

An application can use a session to create messages, message producers, message
consumers, queue browsers, and temporary destinations. An application can also
use a session to run local transactions.

An application can create multiple sessions, where each session produces and
consumes messages independently of the other sessions. If two message consumers
in separate sessions (or even in the same session) subscribe to the same topic, each
receives a copy of any message published on that topic.

Unlike a Connection object, a Session object cannot be used concurrently on
different threads. Only the Close Session method of a Session object can be called
from a thread other than the one that the Session object is using at the time. The
Close Session method ends a session and releases any system resources allocated to
the session.

28 WebSphere MQ: Message Service Client for C/C++

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?

If an application must process messages concurrently on more than one thread, the
application must first create the additional threads, and then use a different session
on each thread.

Transacted sessions
XMS applications can run local transactions. A local transaction is a transaction that
involves changes only to the resources of the queue manager or service integration
bus to which the application is connected.

The information in this section is relevant only if an application connects to a
WebSphere MQ queue manager or a WebSphere service integration bus. The
information is not relevant for a real-time connection to a broker.

To run local transactions, an application must first create a transacted session by
calling the Create Session method of a Connection object, specifying as a parameter
that the session is transacted. Subsequently, all messages sent and received within
the session are grouped into a sequence of transactions. A transaction ends when
the application commits or rolls back the messages it has sent and received since
the transaction began.

To commit a transaction, an application calls the Commit method of the Session
object. When a transaction is committed, all messages sent within the transaction
become available for delivery to other applications, and all messages received
within the transaction are acknowledged so that the messaging server does not
attempt to deliver them to the application again. In the point-to-point domain, the
messaging server also removes the received messages from their queues.

To roll back a transaction, an application calls the Rollback method of the Session
object. When a transaction is rolled back, all messages sent within the transaction
are discarded by the messaging server, and all messages received within the
transaction become available for delivery again. In the point-to-point domain, the
messages that were received are put back on their queues and become visible to
other applications again.

A new transaction starts automatically when an application creates a transacted
session or calls the Commit or Rollback method. Therefore, a transacted session
always has an active transaction.

When an application closes a transacted session, an implicit rollback occurs. When
an application closes a connection, an implicit rollback occurs for all the
connection's transacted sessions.

A transaction is wholly contained within a transacted session. A transaction cannot
span sessions. This means that it is not possible for an application to send and
receive messages in two or more transacted sessions and then commit or roll back
all these actions as a single transaction.

Message acknowledgement
Every session that is not transacted has an acknowledgement mode that
determines how messages received by the application are acknowledged. Three
acknowledgement modes are available, and the choice of acknowledgement mode
affects the design of the application.

Chapter 5. Developing XMS applications 29

The information in this section is relevant only if an application connects to a
WebSphere MQ queue manager or a WebSphere service integration bus. The
information is not relevant for a real-time connection to a broker.

XMS uses the same mechanism for acknowledging the receipt of messages that
JMS uses.

If a session is not transacted, the way that messages received by the application are
acknowledged is determined by the acknowledgement mode of the session. The
three acknowledgement modes are described in the following paragraphs:

XMSC_AUTO_ACKNOWLEDGE
The session automatically acknowledges each message received by the
application.

If messages are delivered synchronously to the application, the session
acknowledges receipt of a message every time a Receive call completes
successfully. If messages are delivered asynchronously to a C application,
the session acknowledges receipt of a message every time a call to a
message listener function completes successfully. For a C++ application, the
session acknowledges receipt of a message every time a call to the
onMessage() method of a message listener completes successfully.

If the application receives a message successfully, but a failure prevents
acknowledgement from occurring, the message becomes available for
delivery again. The application must therefore be able to handle a message
that is re-delivered.

XMSC_DUPS_OK_ACKNOWLEDGE
The session acknowledges the messages received by the application at
times it selects.

Using this acknowledgement mode reduces the amount of work the
session must do, but a failure that prevents message acknowledgement
might result in more than one message becoming available for delivery
again. The application must therefore be able to handle messages that are
re-delivered.

Restriction: In AUTO_ACKNOWLEDGE and
DUPS_OK_ACKNOWLEDGE modes, XMS C/C++ does not support an
application throwing an unhandled exception in a message listener. This
means that messages are always acknowledged when the message listener
returns, regardless of whether it was processed successfully (provided any
failures are non-fatal and do not prevent the application from continuing).
If you require finer control of message acknowledgement, use the
CLIENT_ACKNOWLEDGE or transacted modes, which give the
application full control of the acknowledgement functions.

XMSC_CLIENT_ACKNOWLEDGE
The application acknowledges the messages it receives by calling the
Acknowledge method of the Message class.

The application can acknowledge the receipt of each message individually,
or it can receive a batch of messages and call the Acknowledge method
only for the last message it receives. When the Acknowledge method is
called all messages received since the last time the method was called are
acknowledged.

30 WebSphere MQ: Message Service Client for C/C++

In conjunction with any of these acknowledgement modes, an application can stop
and restart the delivery of messages in a session by calling the Recover method of
the Session class. Messages whose receipt was previously unacknowledged are
re-delivered. However, they might not be delivered in the same sequence in which
they were previously delivered. In the meantime, higher priority messages might
have arrived, and some of the original messages might have expired. In the
point-to-point domain, some of the original messages might have been consumed
by another application.

An application can determine whether a message is being re-delivered by
examining the contents of the JMSRedelivered header field of the message. The
application does this by calling the Get JMSRedelivered method of the Message
class.

Asynchronous message delivery
If a C application registers a message listener function and context data with a
message consumer, or if a C++ application registers a message listener with a
message consumer, the application can receive messages asynchronously.

When a message arrives for a message consumer, XMS delivers the message to a C
application by calling the message listener function, passing a pointer to the
context data as one parameter and the handle for the message as the other
parameter. XMS delivers the message to a C++ application by calling the
onMessage() method of the message listener, passing a pointer to the message as a
parameter.

XMS uses one thread to handle all asynchronous message delivery for a session.
This means that only one message listener function or one onMessage() method
can run at a time. If more than one message consumer in a session is receiving
messages asynchronously, and a message listener function or onMessage() method
is currently delivering a message to one message consumer, then any other
message consumers that are waiting for the same message must continue to wait.
Other messages that are waiting to be delivered to the session must also continue
to wait.

If an application requires concurrent delivery of messages, it must create more than
one session, so that XMS uses more than one thread to handle asynchronous
message delivery. In this way, more than one message listener function or
onMessage() method can run concurrently.

WebSphere MQ V7.0 and above also supports asynchronous message consumption.
An application can register a callback function for a destination. When a suitable
message is sent to the destination, WebSphere MQ calls the function and passes the
message as a parameter. The function then processes the message asynchronously.
In previous releases of WebSphere MQ, this feature was available only when using
WebSphere MQ classes for JMS and Message Service Client for C/C++.

Message Service Client for C/C++ has been changed to use this new feature in
WebSphere MQ V7.1. The implementation of XMS message listeners is now a more
natural fit with WebSphere MQ. Message Service Client for C/C++ no longer has
to find a destination to check whether a suitable message has been sent to the
destination. The performance of XMS message listeners is improved as a result,
particularly when an application uses multiple message listeners in a session to

Chapter 5. Developing XMS applications 31

monitor multiple destinations. Message throughput is increased, and the time
taken to deliver a message to a message listener after it has arrived at a destination
is reduced.

For more information about using message listener functions in a C application,
see “Message listener functions in C” on page 62. If you are using C++, see
“Message listeners in C++” on page 72.

Synchronous message delivery
Messages are delivered synchronously to an application if the application uses the
Receive methods of MessageConsumer objects.

Using the Receive methods, an application can wait a specified period of time for a
message, or it can wait indefinitely. Alternatively, if an application does not want
to wait for a message, it can use the Receive with No Wait method.

Message delivery mode
XMS supports two modes of message delivery.
v Persistent messages are delivered once and once only. A messaging server takes

special precautions, such as logging the messages, to ensure that persistent
messages are not lost in transit, even in the event of a failure.

v Nonpersistent messages are delivered no more than once. Nonpersistent messages
are less reliable than persistent messages because they can be lost in transit in
the event of a failure.

The choice of delivery mode is a trade-off between reliability and performance.
Nonpersistent messages are typically transported more quickly than persistent
messages.

Destinations
An XMS application uses a Destination object to specify the destination of
messages that are being sent, and the source of messages that are being received.

An XMS application can either create a Destination object at run time, or obtain a
predefined destination from the repository of administered objects.

As with a ConnectionFactory, the most flexible way for an XMS application to
specify a destination is to define it as an administered object. Using this approach,
applications written in C, C++ languages, as well as Java, can share the same
definition of the destination. Using this approach, applications written in C and
C++ languages, as well as Java, can share the same definition of the destination..
The properties of administered Destination objects can be changed without
changing any code.

You can create a destination for a C or C++ application in either of the following
ways:
v By specifying a uniform resource identifier (URI), which is a string that identifies a

destination, you have the option to specify one or more properties of the
destination

v By specifying whether you require a queue or topic and providing a destination
name

32 WebSphere MQ: Message Service Client for C/C++

For further information, see “Destination for the C class” on page 136 for C or
“Destination for the C++ class” on page 285 for C++.

For further information about creating a URI, see “Topic uniform resource
identifiers” and “Queue uniform resource identifiers” on page 35.

Topic uniform resource identifiers
The topic uniform resource identifier (URI) specifies the name of the topic; it can
also specify one or more properties for it.

The URI for a topic begins with the sequence topic://, followed by the name of
the topic and (optional) a list of name-value pairs that set the remaining topic
properties. A topic name cannot be empty.

Here is an example in a fragment of C++ code:
topic = session.createTopic("topic://Sport/Football/Results");

For more information about the properties of a topic, including the name and valid
values that you can use in a URI, see “Properties of Destination” on page 407.

When specifying a topic URI for use in a subscription, wildcards can be used. The
syntax for these wildcards depends on the connection type and broker version; the
following options are available:
v WebSphere MQ V7.0 queue manager with Character level wildcard format
v WebSphere MQ V7.0 queue manager with Topic level wild card format
v WebSphere MQ V6.0 queue manager with broker V1 (WebSphere MQ V6.0

Publish/Subscribe)
v WebSphere MQ V6.0 with, or real-time connection to, broker V2 (WebSphere

Event Broker or WebSphere Message Broker)
v WebSphere service integration bus

WebSphere MQ V7.0 queue manager with Character level
wildcard format

WebSphere MQ V7.0 queue manager with Character level wildcard format uses the
following wild card characters:

* for 0 or more characters
? for 1 character
% for an escape character

Table 4 gives some examples of how to use this wildcard scheme.

Table 4. Example URIs using character level wildcard scheme for WebSphere MQ V7.0 queue manager

Uniform Resource Identifier Matches Examples

"topic://Sport*Results" All topics starting with "Sport"
and ending in "Results"

"topic://SportsResults" and "topic://Sport/
Hockey/National/Div3/Results"

"topic://Sport?Results" All topics starting with "Sport"
followed by a single character,
followed by "Results"

"topic://SportsResults" and "topic://
SportXResults"

"topic://Sport/*ball*/Div?/
Results/*/???"

Topics "topic://Sport/Football/Div1/Results/2002/Nov"
and "topic://Sport/Netball/National/Div3/
Results/02/Jan"

Chapter 5. Developing XMS applications 33

WebSphere MQ V7.0 queue manager with Topic level wild card
format

WebSphere MQ V7.0 queue manager with Topic level wild card format uses the
following wildcard characters:

to match multiple levels
+ to match a single level

Table 5 gives some examples of how to use this wildcard scheme.

Table 5. Example URIs using topic level wildcard scheme for WebSphere MQ V7.0 queue manager

Uniform Resource
Identifier Matches Examples

"topic://Sport/+/Results" All topics with a single hierarchical level
name between Sport and Results

"topic://Sport/Football/Results" and
"topic://Sport/Ju-Jitsu/Results"

"topic://Sport/#/Results" All topics starting with "Sport/" and
ending in "/Results"

"topic://Sport/Football/Results" and
"topic://Sport/Hockey/National/Div3/
Results"

"topic://Sport/Football/#" All topics starting with "Sport/Football/" "topic://Sport/Football/Results" and
"topic://Sport/Football/TeamNews/
Signings/Managerial"

WebSphere MQ V6.0 queue manager with broker V1

WebSphere MQ V6.0 queue manager with broker V1 uses the following wildcard
characters:

* for 0 or more characters
? for 1 character
% for an escape character

Table 4 on page 33 gives some examples of how to use this wildcard scheme.

WebSphere MQ V6.0 with, or real-time connection to, a broker V2

WebSphere MQ V6.0 with, or real-time connection to, a broker V2 uses the
following wildcard characters:

to match multiple levels
+ to match a single level

Table 5 gives some examples of how to use this wildcard scheme.

WebSphere service integration bus

WebSphere MQ with, or real-time connection to, a broker V2 uses the following
wildcard characters:

* to match any characters at one level in the hierarchy
// to match 0 or more levels
//. to match 0 or more levels (at the end of a Topic expression)

Table 6 on page 35 gives some examples of how to use this wildcard scheme.

34 WebSphere MQ: Message Service Client for C/C++

Table 6. Example URIs using wildcard scheme for WebSphere service integration bus

Uniform Resource
Identifier Matches Examples

"topic://Sport/*ball/
Results"

All topics with a single hierarchical level
name ending in "ball" between Sport and
Results

"topic://Sport/Football/Results" and
"topic://Sport/Netball/Results"

"topic://Sport//Results" All topics starting with "Sport/" and
ending in "/Results"

"topic://Sport/Football/Results" and
"topic://Sport/Hockey/National/Div3/
Results"

"topic://Sport/
Football//."

All topics starting with "Sport/Football/" "topic://Sport/Football/Results" and
"topic://Sport/Football/TeamNews/
Signings/Managerial"

"topic://Sport/*ball//
Results//."

Topics "topic://Sport/Football/Results" and
"topic://Sport/Netball/National/Div3/
Results/2002/November"

Queue uniform resource identifiers
The URI for a queue specifies the name of the queue; it can also specify one or
more properties of the queue.

The URI for a queue begins with the sequence queue://, followed by the name of
the queue; it might also include a list of name-value pairs that set the remaining
queue properties.

For WebSphere MQ queues (but not for WebSphere Application Server default
messaging provider queues), the queue manager on which the queue resides may
be specified before the queue, with a / separating the queue manager name from
the queue name.

If a queue manager is specified, then it must be the one to which XMS is directly
connected for the connection using this queue, or it must be accessible from this
queue. Remote queue managers are only supported for retrieving messages from
queues, not for putting messages onto queues. For full details, refer to the
WebSphere MQ queue manager documentation.

If no queue manager is specified, then the extra / separator is optional, and its
presence or absence makes no difference to the definition of the queue.

The following queue definitions are all equivalent for a WebSphere MQ queue
called QB on a queue manager called QM_A, to which XMS is directly connected:
queue://QB
queue:///QB
queue://QM_A/QB

The following is an example of queue definitions for C++:
ioQueue = session.createQueue("queue:///SYSTEM.DEFAULT.LOCAL.QUEUE");

The name of the queue manager is omitted. This is interpreted as the queue
manager to which the owning connection is connected at the time when the Queue
object is used.

The following example of C code connects to queue Q1 on queue manager
HOST1.QM1, and causes all messages to be sent as nonpersistent and priority 5
messages:

Chapter 5. Developing XMS applications 35

rc = xmsDestCreate(
"queue://HOST1.QM1/Q1?persistence=1&priority=5",
&ioQueue);

Temporary destinations
XMS applications can create and use temporary destinations.

An application typically uses a temporary destination to receive replies to request
messages. To specify the destination where a reply to a request message is to be
sent, an application calls the Set JMSReplyTo method of the Message object
representing the request message. The destination specified on the call can be a
temporary destination.

To create a temporary destination, a C application calls the
xmsDestCreateTemporaryByType() function. As parameters on the call, the
application specifies the handle for the session in which the temporary destination
is being created and the type of temporary destination, which is either a queue or
a topic.

A C++ application creates a temporary queue by calling the
createTemporaryQueue() method of a Session object, and it creates a temporary
topic by calling the createTemporaryTopic() method of a Session object.

Although a session is used to create a temporary destination, the scope of a
temporary destination is actually the connection that was used to create the
session. Any of the connection's sessions can create message producers and
message consumers for the temporary destination. The temporary destination
remains until it is explicitly deleted, or the connection ends, whichever happens
first.

When an application creates a temporary queue, a queue is created in the
messaging server to which the application is connected. If the application is
connected to a queue manager, a dynamic queue is created from the model queue
whose name is specified by the XMSC_WMQ_TEMPORARY_MODEL property,
and the prefix that is used to form the name of the dynamic queue is specified by
the XMSC_WMQ_TEMP_Q_PREFIX property. If the application is connected to a
service integration bus, a temporary queue is created in the bus, and the prefix that
is used to form the name of the temporary queue is specified by the
XMSC_WPM_TEMP_Q_PREFIX property.

When an application that is connected to a service integration bus creates a
temporary topic, the prefix that is used to form the name of the temporary topic is
specified by the XMSC_WPM_TEMP_TOPIC_PREFIX property.

Message producers
In XMS, a message producer can be created either with a valid destination or with
no associated destination. When creating a message producer with a null
destination, a valid destination needs to be specified when sending a message.

Message producers with no associated destination
In the C and C++ API, a message producer can be created with a null destination.

In the C API, NULL can be passed into the xmsSessCreateProducer() function, to
create a message producer with no associated destination. In this case, the

36 WebSphere MQ: Message Service Client for C/C++

destination must be specified when the message is sent. For further details about
creating a message producer in a C API, see “Session” on page 232.

To create a message producer with no associated destination when using the C++
API, a default xms::Destination object created using the default constructor must be
passed into the Session::createProducer() method. For further details about creating
a message producer in a C++ API, see “Session” on page 371.

Message producers with associated destination
In this scenario, the message producer is created using a valid destination. During
the send operation, the destination need not be specified.

Message consumers
Message consumers can be classified as durable and non-durable subscribers and
synchronous and asynchronous message consumers.

Durable subscribers
A durable subscriber is a message consumer that receives all messages published
on a topic, including those published while the subscriber is inactive.

The information in this section is relevant only if an application connects to a
WebSphere MQ queue manager or a WebSphere service integration bus. The
information is not relevant for a real-time connection to a broker.

To create a durable subscriber for a topic, an application calls the Create Durable
Subscriber method of a Session object, specifying as parameters a name that
identifies the durable subscription and a Destination object representing the topic.
The application can create a durable subscriber with or without a message selector,
and it can specify whether the durable subscriber is to receive messages published
by its own connection.

The session used to create a durable subscriber must have an associated client
identifier. The client identifier is the same as that associated with the connection
that is used to create the session; it is specified as described in
“ConnectionFactories and Connection objects” on page 26.

The name that identifies the durable subscription must be unique within the client
identifier, and therefore the client identifier forms part of the full, unique identifier
of the durable subscription. The messaging server maintains a record of the
durable subscription and ensures that all messages published on the topic are
retained until they are acknowledged by the durable subscriber or they expire.

The messaging server continues to maintain the record of the durable subscription
even after the durable subscriber closes. To reuse a durable subscription that was
created previously, an application must create a durable subscriber specifying the
same subscription name, and using a session with the same client identifier, as
those associated with the durable subscription. Only one session at a time can have
a durable subscriber for a particular durable subscription.

The scope of a durable subscription is the messaging server that is maintaining a
record of the subscription. If two applications connected to different messaging
servers each create a durable subscriber using the same subscription name and
client identifier, two completely independent durable subscriptions are created.

Chapter 5. Developing XMS applications 37

To delete a durable subscription, an application calls the Unsubscribe method of a
Session object, specifying as a parameter the name that identifies the durable
subscription. The client identifier associated with the session must be the same as
that associated with the durable subscription. The messaging server deletes the
record of the durable subscription that it is maintaining and does not send any
more messages to the durable subscriber.

To change an existing subscription, an application can create a durable subscriber
using the same subscription name and client identifier, but specifying a different
topic, or message selector (or both). Changing a durable subscription is equivalent
to deleting the subscription and creating a new one.

For an application that connects to WebSphere MQ v7.0 queue manager, XMS
manages the subscriber queues. Hence the application is not required to specify a
subscriber queue. XMS will ignore the subscriber queue if specified.

However for an application that connects to WebSphere MQ v6.0 queue manager,
each durable subscriber must have a designated subscriber queue. To specify the
name of the subscriber queue for a topic, set the XMSC_WMQ_DUR_SUBQ
property of the Destination object representing the topic. The default subscriber
queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

Durable subscribers connecting to WebSphere MQ v6.0 queue managers can share
a single subscriber queue, or each durable subscriber can retrieve its messages
from its own exclusive subscriber queue. For a discussion about which approach to
adopt for your application, see WebSphere MQ Using Java.

Note that you cannot change the subscriber queue for a durable subscription. The
only way to change the subscriber queue is to delete the subscription and create a
new one.

For an application that connects to a service integration bus, each durable
subscriber must have a designated durable subscription home. To specify the
durable subscription home for all durable subscribers that use the same
connection, set the XMSC_WPM_DUR_SUB_HOME property of the
ConnectionFactory object that is used to create the connection. To specify the
durable subscription home for an individual topic, set the
XMSC_WPM_DUR_SUB_HOME property of the Destination object representing
the topic. A durable subscription home must be specified for a connection before
an application can create a durable subscriber that uses the connection. Any value
specified for a destination overrides the value specified for the connection.

Non-durable subscribers
A non-durable subscriber is a message consumer that only receives messages that
are published while the subscriber is active. Messages delivered while the
subscriber is inactive are lost.

The information in this section is relevant only when you are using
publish/subscribe messaging over WebSphere MQ v6.0 queue manager.

If consumer objects are not deleted before or during the closing of the connection,
messages can be left on the broker queues for subscribers that are no longer active.

In this situation, the queues can be cleared of these messages using the Cleanup
utility provided with WebSphere MQ Classes for JMS. Details of how to use this

38 WebSphere MQ: Message Service Client for C/C++

utility are provided in WebSphere MQ Using Java. You may also need to increase the
queue depth of the subscriber queue if there are large numbers of messages left on
this queue.

Synchronous message consumers
The synchronous message consumer receives the messages from a queue
synchronously.

A synchronous message consumer receives one message at a time. When the
Receive(with a wait interval) method is used; the call waits only a specified period
of time in milliseconds for a message, or until the message consumer is closed.

If the Receive with No Wait method is used, the synchronous message consumer
receives messages without any delay; if the next message is available, it is received
immediately, otherwise a pointer to a null Message object is returned.

Asynchronous message consumers
The asynchronous message consumer receives message from a queue
asynchronously. The message listener registered by the application is invoked
whenever a new message is available on the queue.

Poison messages
A poison message is one which cannot be processed by a receiving MDB
application. If a poison message is encountered, the XMS MessageConsumer object
can requeue it according to two queue properties, BOQUEUE, and BOTHRESH.

In some circumstances, a message delivered to an MDB might be rolled back onto
a WebSphere MQ queue. This can happen, for example, if a message is delivered
within a unit of work that is subsequently rolled back. A message that is rolled
back is generally delivered again, but a badly formatted message might repeatedly
cause an MDB to fail and therefore cannot be delivered. Such a message is called a
poison message. You can configure WebSphere MQ so that the poison message is
automatically transferred to another queue for further investigation or is discarded.
For information about how to configure WebSphere MQ in this way, see Handling
poison messages in ASF.

Sometimes, a badly-formatted message arrives on a queue. In this context,
badly-formatted means that the receiving application cannot process the message
correctly. Such a message can cause the receiving application to fail and to back
out this badly-formatted message. The message can then be repeatedly delivered to
the input queue and repeatedly backed out by the application. These messages are
known as poison messages. The XMS MessageConsumer object detects poison
messages and reroutes them to an alternative destination.

The WebSphere MQ queue manager keeps a record of the number of times that
each message has been backed out. When this number reaches a configurable
threshold value, the message consumer requeues the message to a named backout
queue. If this re-queuing fails for any reason, the message is removed from the
input queue and either requeued to the dead-letter queue, or discarded.

XMS ConnectionConsumer objects handle poison messages in the same way and
using the same queue properties. If multiple connection consumers are monitoring
the same queue, it is possible that the poison message may be delivered to an

Chapter 5. Developing XMS applications 39

application more times than the threshold value before the requeue occurs. This
behavior is due to the way individual connection consumers monitor queues and
requeue poison messages.

The threshold value and the name of the back out queue are attributes of a
WebSphere MQ queue. The names of the attributes are BackoutThreshold and
BackoutRequeueQName. The queue they apply to is as follows:
v For point-to-point messaging, this is the underlying local queue. This is

important when message consumers and connection consumers use queue
aliases.

v For publish/subscribe messaging in WebSphere MQ messaging provider normal
mode, it is the model queue from which the Topic's managed queue is created.

v For publish/subscribe messaging in WebSphere MQ messaging provider
migration mode, it is the CCSUB queue defined on the TopicConnectionFactory
object, or the CCDSUB queue defined on the Topic object.

To set the BackoutThreshold and BackoutRequeueQName attributes, issue the
following MQSC command:
ALTER QLOCAL(your.queue.name) BOTHRESH(threshold value)
BOQUEUE(your.backout.queue.name)

For publish/subscribe messaging, if your system creates a dynamic queue for each
subscription, these attribute values are obtained from the WebSphere MQ classes
for JMS model queue, SYSTEM.JMS.MODEL.QUEUE. To alter these settings, use:
ALTER QMODEL(SYSTEM.JMS.MODEL.QUEUE) BOTHRESH(threshold value)
BOQUEUE(your.backout.queue.name)

If the backout threshold value is zero, poison message handling is disabled, and
poison messages remain on the input queue. Otherwise, when the backout count
reaches the threshold value, the message is sent to the named backout queue. If the
backout count reaches the threshold value, but the message cannot go to the
backout queue, the message is sent to the dead-letter queue or it is discarded. This
situation occurs if the backout queue is not defined, or if the MessageConsumer
object cannot send the message to the backout queue.

Handling poison messages in ASF
When you use Application Server Facilities (ASF), the ConnectionConsumer, rather
than the MessageConsumer, processes poison messages. The ConnectionConsumer
requeues messages according to the BackoutThreshold and
BackoutRequeueQName properties of the queue.

When an application uses ConnectionConsumers, the circumstances in which a
message is backed out depend on the session that the application server provides:
v When the session is non-transacted, with AUTO_ACKNOWLEDGE or

DUPS_OK_ACKNOWLEDGE, a message is backed out only after a system error,
or if the application terminates unexpectedly.

v When the session is non-transacted with CLIENT_ACKNOWLEDGE,
unacknowledged messages can be backed out by the application server calling
Session.recover().
Typically, the client implementation of MessageListener or the application server
calls Message.acknowledge(). Message.acknowledge() acknowledges all messages
delivered on the session so far.

v When the session is transacted, unacknowledged messages can be backed out by
the application server calling Session.rollback().

40 WebSphere MQ: Message Service Client for C/C++

Queue browsers
An application uses a queue browser to browse messages on a queue without
removing them.

To create a queue browser, an application calls the Create Queue Browser method
of a Session object, specifying as a parameter a Destination object that identifies the
queue to be browsed. The application can create a queue browser with or without
a message selector.

After creating a queue browser, the application can call the Get Messages method
of the QueueBrowser object to get a list of the messages on the queue. The list of
messages is returned as an iterator that encapsulates a list of Message objects. The
order of the Message objects in the list is the same as the order in which the
messages would be retrieved from the queue. The application can then use the
iterator to browse each message in turn.

The iterator is updated dynamically as messages are put on the queue and
removed from the queue. Each time the application uses the iterator to browse the
next message on the queue, the message returned reflects the current contents of
the queue. When the iterator indicates that there are no more messages on the
queue, it stops returning messages, even if further messages arrive on the queue.
However, by calling the Reset Iterator method of the Iterator object, the application
can continue to use the same iterator to browse messages, starting from the
beginning of the queue.

An application can call the Get Messages method more than once for a given
queue browser. Each call returns a new iterator. The application can therefore use
more than one iterator to browse the messages on a queue and maintain multiple
positions within the queue.

An application can use a queue browser to search for a suitable message to remove
from a queue, and then use a message consumer with a message selector to
remove the message. The message selector can select the message according to the
value of the JMSMessageID header field. For information about this and other JMS
message header fields, see “Header fields in an XMS message” on page 91.

Requestors
An application uses a requestor to send a request message and then to wait for
and to receive the reply.

Many messaging applications are based on algorithms that send a request message
and then wait for a reply. XMS provides a class called Requestor to help with the
development of this style of application.

To create a requestor, an application calls the Create Requestor constructor of the
Requestor class, specifying as parameters a Session object and a Destination object
that identifies where request messages are to be sent. The session must not be
transacted nor have an acknowledgement mode of
XMSC_CLIENT_ACKNOWLEDGE. The constructor automatically creates a
temporary queue or topic where reply messages are to be sent.

After creating a requestor, the application can call the Request method of the
Requestor object to send a request message and then wait for, and receive, a reply
from the application that receives the request message. The call waits until the

Chapter 5. Developing XMS applications 41

reply is received or until the session ends, whichever occurs first. Only one reply is
required by the requestor for each request message.

When the application closes the requestor, the temporary queue or topic is deleted.
The associated session, however, does not close.

Object Deletion
When an application deletes an XMS object that it has created, XMS releases the
internal resources that have been allocated to the object.

When an application creates an XMS object, XMS allocates memory and other
internal resources to the object. XMS retains these internal resources until the
application explicitly deletes the object by calling the object's close or delete
method, at which point XMS releases the internal resources. In a C++ application,
an object is also deleted when it goes out of scope. If an application tries to delete
an object that is already deleted, the call is ignored.

When an application deletes a Connection or Session object, XMS deletes certain
associated objects automatically and releases their internal resources. These are
objects that were created by the Connection or Session object and have no function
independent from the object. These objects are shown in Table 7. Note that, if an
application closes a connection with dependent sessions, all objects dependent on
those sessions are also deleted. Only a Connection or Session object can have
dependent objects.

Table 7. Objects that are deleted automatically

Deleted object Method Dependent objects that are deleted automatically

Connection Close Connection ConnectionMetaData and Session objects

Session Close Session MessageConsumer, MessageProducer,
QueueBrowser, and Requestor objects

XMS primitive types
XMS provides equivalents of the eight Java primitive types (byte, short, int, long,
float, double, char and boolean). This allows the interchange of messages between
XMS and JMS without data becoming lost or corrupted.

Table 8 lists the Java equivalent data type, size, and minimum and maximum value
of each XMS primitive type.

Table 8. XMS data types and their Java equivalents

XMS data type

Compatible
Java data
type Size Minimum value Maximum value

xmsBOOL boolean 32 bits xmsFALSE xmsTRUE

xmsSBYTE byte 8 bits -27 (-128) 27-1 (127)

xmsCHAR byte 8 bits -27 (-128) 27-1 (127)

xmsCHAR16 char 16 bits 0 (\u0000) 216-1 (\uFFFF)

xmsSHORT short 16 bits -215 (-32768) 215-1 (32767)

xmsINT int 32 bits -231 (-2147483648) 231-1 (2147483647)

xmsLONG long 64 bits -263 (-9223372036854775808) 263-1 (9223372036854775807)

42 WebSphere MQ: Message Service Client for C/C++

Table 8. XMS data types and their Java equivalents (continued)

XMS data type

Compatible
Java data
type Size Minimum value Maximum value

xmsFLOAT float 32 bits -3.402823E-38 (to 7 digits
precision)

3.402823E+38 (to 7 digits
precision)

xmsDOUBLE double 64 bits -1.79769313486231E-308 (to 15
digits precision)

1.79769313486231E+308 (to 15
digits precision)

Implicit conversion of a property value from one data type to another
When an application gets the value of a property, the value can be converted by
XMS into another data type. Many rules govern which conversions are supported
and how XMS performs the conversions.

A property of an object has a name and a value; the value has an associated data
type, where the value of a property is also referred to as the property type.

An application uses the methods of the PropertyContext class to get and set the
properties of objects. In order to get the value of a property, an application calls
the method that is appropriate for the property type. For example, to get the value
of an integer property, an application typically calls the Get Integer Property
method.

However, when an application gets the value of a property, the value can be
converted by XMS into another data type. For example, to get the value of an
integer property, an application can call the Get String Property method, which
returns the value of the property as a string. The conversions supported by XMS
are shown in Table 9.

Table 9. Supported conversions from a property type to other data types

Property type Supported target data types

String xmsBOOL, xmsDOUBLE, xmsFLOAT, xmsINT, xmsLONG,
xmsSBYTE, xmsSHORT

xmsBOOL String, xmsSBYTE, xmsINT, xmsLONG, xmsSHORT

xmsCHAR String

xmsDOUBLE String

xmsFLOAT String, xmsDOUBLE

xmsINT String, xmsLONG

xmsLONG String

xmsSBYTE String, xmsINT, xmsLONG, xmsSHORT

xmsSBYTE array String

xmsSHORT String, xmsINT, xmsLONG

The following general rules govern the supported conversions:
v Numeric property values can be converted from one data type to another

provided no data is lost during the conversion. For example, the value of a
property with data type xmsINT can be converted into a value with data type
xmsLONG, but it cannot be converted into a value with data type xmsSHORT.

v A property value of any data type can be converted into a string.

Chapter 5. Developing XMS applications 43

v A string property value can be converted to any other data type provided the
string is formatted correctly for the conversion. If an application attempts to
convert a string property value that is not formatted correctly, XMS may return
errors.

v If an application attempts a conversion that is not supported, XMS may return
an error.

The following rules apply when a property value is converted from one data type
to another:
v When converting a boolean property value to a string, the value xmsTRUE is

converted to the string “true”, and the value false is converted to the string
“false”.

v When converting a boolean property value to a numeric data type, including
xmsSBYTE, the value xmsTRUE is converted to 1, and the value xmsFALSE is
converted to 0.

v When converting a string property value to a boolean value, the string “true”
(not case sensitive) or “1” is converted to xmsTRUE, and the string “false” (not
case sensitive) or “0” is converted to xmsFALSE. All other strings cannot be
converted.

v When converting a string property value to a value with data type xmsINT,
xmsLONG, xmsSBYTE, or xmsSHORT, the string must have the following
format:

[blanks][sign]digits

The string components are defined as follows:

blanks Optional leading blank characters.

sign An optional plus sign (+) or minus sign (-) character.

digits A contiguous sequence of digit characters (0-9). At least one digit
character must be present.

After the sequence of digit characters, the string can contain other characters
that are not digit characters, but the conversion stops as soon as the first of these
characters is reached. The string is assumed to represent a decimal integer.
XMS may return an error if the string is not formatted correctly.

v When converting a string property value to a value with data type xmsDOUBLE
or xmsFLOAT, the string must have the following format:

[blanks][sign][digits][point[d_digits]][e_char[e_sign]e_digits]

The string components are defined as follows:

blanks (Optional) Leading blank characters.

sign (Optional) Plus sign (+) or minus sign (-) character.

digits A contiguous sequence of digit characters (0-9). At least one digit
character must be present in either digits or d_digits.

point (Optional) Decimal point (.).

d_digits
A contiguous sequence of digit characters (0-9). At least one digit
character must be present in either digits or d_digits.

e_char An exponent character, which is either E or e.

e_sign (Optional) Plus sign (+) or minus sign (-) character for the exponent.

44 WebSphere MQ: Message Service Client for C/C++

e_digits
A contiguous sequence of digit characters (0-9) for the exponent. At least
one digit character must be present if the string contains an exponent
character.

After the sequence of digit characters, or the optional characters representing an
exponent, the string can contain other characters that are not digit characters,
but the conversion stops as soon as the first of these characters is reached. The
string is assumed to represent a decimal floating point number with an exponent
that is a power of 10.
XMS may return an error if the string is not formatted correctly.

v When converting a numeric property value to a string, including a property
value with data type xmsSBYTE, the value is converted to the string
representation of the value as a decimal number, not the string containing the
ASCII character for that value. For example, the integer 65 is converted to the
string “65”, not the string “A”.

v When converting a byte array property value to a string, each byte is converted
to the 2 hexadecimal characters that represent the byte. For example, the byte
array {0xF1, 0x12, 0x00, 0xFF} is converted to the string “F11200FF”.

Conversions from a property type to other data types are supported by the
methods of both the Property and the PropertyContext classes. However, the C
functions xmsPropertyGetStringByRef() and xmsGetStringPropertyByRef() make no
attempt to convert a property value that is not a string. If an application calls
either of these functions to get a pointer to a property value that is not a string,
XMS may return an error.

Iterators
An iterator encapsulates a list of objects and a cursor that maintains the current
position in the list. A C or C++ application uses an iterator to retrieve each object
in the list in turn.

When an iterator is created, the position of the cursor is before the first object. An
application uses an iterator to retrieve each object in turn. To retrieve the objects,
the application uses the following three methods of the Iterator class:
v Check for More Objects
v Get Next Object
v Reset Iterator

The Iterator class is equivalent to the Enumerator class in Java.

An application can use an iterator to perform the following tasks:
v To get the properties of a message
v To get the name-value pairs in the body of a map message
v To browse the messages on a queue
v To get the names of the JMS defined message properties supported by a

connection

The following code fragment shows how a C application can use an iterator to
print out all properties of a message:
/**/
/* XMS Sample using an iterator to browse properties */
/**/

Chapter 5. Developing XMS applications 45

rc = xmsMsgGetProperties(hMsg, &it, xmsError);
if (rc == XMS_OK)
{

rc = xmsIteratorHasNext(it, &more, xmsError);
while (more)
{

rc = xmsIteratorGetNext(it, (xmsHObj)&p, xmsError);
if (rc == XMS_OK)
{

xmsPropertyGetName(p, name, 100, &len, xmsError);
printf("Property name=\"%s\"\n", name);
xmsPropertyGetTypeId(p, &type, xmsError);
switch (type)
{

case XMS_PROPERTY_TYPE_INT:
{

xmsINT value=0;
xmsPropertyGetInt(p, &value, xmsError);
printf("Property value=%d\n", value);
break;

}
case XMS_PROPERTY_TYPE_STRING:
{

xmsINT len=0;
char value[100];
xmsPropertyGetString(p, value, 100, &len, xmsError);
printf("Property value=\"%s\"\n", value);
break;

}
default:
{

printf("Unhandled property type (%d)\n", (int)type);
}

}
xmsPropertyDispose(&p, xmsError);

}
rc = xmsIteratorHasNext(it, &more, xmsError);

}
printf("Finished iterator....\n");
xmsIteratorDispose(&it, xmsError);

}
/**/

Coded character set identifiers
For C or C++ strings of character set identifiers (CCSIDs) that an object passes to,
or receives from, XMS might require conversion. The XMSC_CLIENT_CCSID
property of the object tells XMS which code page the object is using.

When an object in a C or C++ application passes a string of character data to XMS
across the API XMS converts (if necessary) the character data in the string from the
code page used by the object into the code page required by XMS for the data.
Similarly, when an object receives a string of character data from XMS across the
API XMS converts (if necessary) the character data in the string from the code
page that the data is currently in into the code page used by the object. Therefore,
in order to convert the character data in a string, XMS must identify which code
page an object is using.

The XMSC_CLIENT_CCSID property of a ConnectionFactory, Connection, Session,
MessageProducer, or MessageConsumer object specifies which code page the object
is using. The value of the XMSC_CLIENT_CCSID propertyis a CCSID which
identifies a code page. XMS sets the property when an application creates one of
these objects, but the application can change its value subsequently.

46 WebSphere MQ: Message Service Client for C/C++

When an application starts, XMS derives an appropriate CCSID for the application
from the environment in which the application is running. This CCSID is called the
process CCSID. At any time, the application can change the process CCSID by
calling xmsSetClientCCSID(). This is a C function that does not belong to any class,
but C++ applications can use the function as well.

When an application creates a connection factory, XMS sets the
XMSC_CLIENT_CCSID property of the object. If the connection factory is created
from an object definition retrieved from a repository of administered objects, and
the object definition specifies a value for the XMSC_CLIENT_CCSID property, XMS
uses this value to set the property. Otherwise, XMS sets the property to the special
value XMSC_CCSID_PROCESS, which means that the connection factory is using
the code page identified by the process CCSID.

When an application uses a connection factory to create a connection, XMS copies
the XMSC_CLIENT_CCSID property of the ConnectionFactory object to the newly
created Connection object. XMS copies the property only at the time the
application creates the connection. If the application subsequently changes the
value of the XMSC_CLIENT_CCSID property of the ConnectionFactory object,
XMS does not propagate the change to the XMSC_CLIENT_CCSID property of the
Connection object.

In the same way, when an application uses a connection to create a session, XMS
copies the XMSC_CLIENT_CCSID property of the Connection object to the newly
created Session object. When an application uses a session to create a message
producer or message consumer, XMS copies the XMSC_CLIENT_CCSID property
of the Session object to the newly created MessageProducer or MessageConsumer
object. In each case, XMS copies the property only at the time the application
creates the object.

At any time, an application can change the value of the XMSC_CLIENT_CCSID
property of an object by calling the Set Integer Property method of the
PropertyContext class. The application can set the property to one of the following
values:

A coded character set identifier (CCSID)
The object is using the code page identified by the specified CCSID. If the
application specifies either a CCSID that is not valid or a CCSID for which
the platform does not support code page conversion, the call fails and XMS
returns an error.

XMSC_CCSID_UTF8
The object is using the UTF-8 representation of Unicode data.

XMSC_CCSID_UTF16
The object is using the UTF-16 representation of Unicode data.

XMSC_CCSID_UTF32
The object is using the UTF-32 representation of Unicode data.

XMSC_CCSID_PROCESS
The object is using the code page identified by the process CCSID. XMS
queries the process CCSID whenever it needs to determine which code
page the object is using. If the application changes the process CCSID by
calling xmsSetClientCCSID(), XMS detects the change the next time it
determines which code page the object is using.

This is a special value of the property and is not an actual CCSID.

Chapter 5. Developing XMS applications 47

XMSC_CCSID_HOST
The object is using the code page identified by the CCSID that is derived
from the environment in which the application is running. This CCSID is
the same as the process CCSID unless the application has changed the
process CCSID by calling xmsSetClientCCSID().

This is a special value of the property and is not an actual CCSID.

XMSC_CCSID_NO_CONVERSION
Strings of character data received by the object are not converted.

This is a special value of the property and is not an actual CCSID.

The strings of character data that an application passes to, and receives from, XMS
include (but are not exclusively confined to) the strings in messages. The strings
that require conversion might be in any of the following parts of a message:
v Header fields (see “Header fields in an XMS message” on page 91)
v Properties (see “Properties of an XMS message” on page 92)
v The body (see “The body of an XMS message” on page 95)

When XMS converts the strings in an outgoing message, it uses the code page
associated with the session that created the message. When XMS converts the
strings in an incoming message, it uses the code page associated with the message
consumer that receives the message. XMS determines the code page from the value
of the XMSC_CLIENT_CCSID property of the relevant Session or
MessageConsumer object.

Converting strings in messages might have an impact on performance depending
on the amount of data to be converted the frequency with which conversion
occurs. If you are designing applications to maximize the throughput of messages,
you might want to consider ways of reducing the amount of data conversion that
is required. The following examples illustrate how this can be done:
v For example, you might know that the strings in incoming messages are in a

certain code page (the UTF-8 representation of Unicode data). You might
determine this information from a knowledge of the application that sends the
messages or the message server environment through which the messages pass.
If you can arrange for the application that receives the messages to use the same
code page, no data conversion of the strings is required.

v If you can arrange for both the sending and receiving applications to use the
same code page, you might consider using bytes messages and reading and
writing strings as byte arrays. No data conversion is performed in these
circumstances.

XMS error and exception codes
XMS uses a range of error codes to indicate failures. These error codes are not
explicitly listed in this documentation because they may vary from release to
release. Only XMS exception codes (in the format XMS_X_...) are documented
because they remain the same across releases of XMS.

Building your own applications
You build your own applications like you build the sample applications.

48 WebSphere MQ: Message Service Client for C/C++

About this task

This section lists the prerequisites you need to build your own C or C++
application.This chapter lists the prerequisites you need to build your own C or
C++ applications. For additional guidance on how to build your own applications,
use the makefiles provided for each sample application.

Tip: To assist with problem diagnosis in the event of a failure, you might find it
helpful to compile applications with symbols included.

On Windows, if you are building a C or C++ application, make sure that your
compilation settings are correct. All of the XMS libraries are compiled using the
multithreaded runtime libraries. Therefore, when you are a building C or C++
application using the XMS libraries, make sure that your project or makefile
compiler flag settings are set to select multi-threaded runtime libraries (/MD or,
for debug, /MDd), and not single-threaded runtime libraries (/ML or, for debug,
/MLd).

Build your application:
v C or C++, as described in “Building the C or C++ sample applications” on page

105

Build your C or C++ application, as described in “Building the C or C++ sample
applications” on page 105

Network stack selection mechanism
This section describes the network stack selection mechanism when both IPv4 and
IPv6 network stacks are enabled on a machine.

When both IPv4 and IPv6 network stacks are enabled on a machine, the connection
binds to either of the two network stacks based on the host name and local
address properties.

The host name is specified by any of these properties,
XMSC_WMQ_HOST_NAME, XMSC_RTT_HOST_NAME, and
XMSC_WPM_PROVIDER_ENDPOINTS, while the local address may be
determined by XMSC_WMQ_LOCAL_ADDRESS, XMSC_RTT_LOCAL_ADDRESS,
or XMSC_WPM_LOCAL_ADDRESS.

The following table lists the outcome for the possible combinations of network
stacks in use for the host name and local address.

Chapter 5. Developing XMS applications 49

Table 10. Network stack selection mechanism

Stack Host Name Local Address Connection result

IPv4 only stack IPv4 address None Connection binds to
IPv4 stack

IPv6 address None Connection fails to
resolve host name

Host name resolves
to both IPv4 and IPv6
addresses

None Connection binds to
IPv4 stack

IPv4 address IPv4 address Connection binds to
IPv4 stack

IPv6 address IPv4 address Connection fails to
resolve host name

Remote host name
resolves to both IPv4
and IPv6 addresses

IPv4 address Connection binds to
IPv4 stack

Any address IPv6 address Connection fails to
resolve local address

IPv4 address Local address
resolves to both IPv4
and IPv6 addresses

Connection binds to
IPv4 stack

IPv6 address Local address
resolves to both IPv4
and IPv6 addresses

Connection fails to
resolve host name

Remote host name
resolves to both IPv4
and IPv6 addresses

Local address
resolves to both IPv4
and IPv6 addresses

Connection binds to
IPv4 stack

50 WebSphere MQ: Message Service Client for C/C++

Table 10. Network stack selection mechanism (continued)

Stack Host Name Local Address Connection result

Dual (IPv4 and IPv6)
stack

IPv4 address None Connection binds to
IPv4 stack

IPv6 address None Connection binds to
IPv6 stack

Remote host name
resolves to both IPv4
and IPv6 addresses

None For WPM and RTT,
connection binds to
IPv6 stack.

For WebSphere MQ,
channel binds to
stack determined by
the value of the
MQIPADDRV
environment
variable.

IPv4 address IPv4 address Connection binds to
IPv4 stack

IPv6 address IPv4 address Connection fails to
resolve host name

Remote host name
resolves to both IPv4
and IPv6 addresses

IPv4 address Connection binds to
IPv4 stack

IPv4 address IPv6 address Maps an IPv4 host
name to an IPv4
mapped IPv6
address. IPv6
implementations that
do not support IPv4
mapped IPv6
addressing fail to
resolve host name.

IPv6 address IPv6 address Connection binds to
IPv6 stack

Remote host name
resolves to both IPv4
and IPv6 addresses

IPv6 address Connection binds to
IPv6 stack

IPv4 address Local address
resolves to both IPv4
and IPv6 addresses

Connection binds to
IPv4 stack

IPv6 address Local address
resolves to both IPv4
and IPv6 addresses

Connection binds to
IPv6 stack

Remote host name
resolves to both IPv4
and IPv6 addresses

Local address
resolves to both IPv4
and IPv6 addresses

For WPM and RTT,
connection binds to
IPv6 stack.

For WebSphere MQ,
channel binds to
stack determined by
the value of the
MQIPADDRV
environment
variable.

Chapter 5. Developing XMS applications 51

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs12330_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs12330_.htm

Table 10. Network stack selection mechanism (continued)

Stack Host Name Local Address Connection result

IPv6 only stack IPv4 address None Maps an IPv4 host
name to an IPv4
mapped IPv6
address. IPv6
implementations that
do not support IPv4
mapped IPv6
addressing fail to
resolve host name

IPv6 address None Connection binds to
IPv6 stack

Remote host name
resolves to both IPv4
and IPv6 addresses

None Connection binds to
IPv6 stack

Any address IPv4 address Connection fails to
resolve local address

IPv4 address IPv6 address Maps an IPv4 host
name to an IPv4
mapped IPv6
address. IPv6
implementations that
do not support IPv4
mapped IPv6
addressing fail to
resolve host name

IPv6 address IPv6 address Connection binds to
IPv6 stack

Remote host name
resolves to both IPv4
and IPv6 addresses

IPv6 address Connection binds to
IPv6 stack

IPv4 address Local address
resolves to both IPv4
and IPv6 addresses

Maps an IPv4 host
name to an IPv4
mapped IPv6
address. IPv6
implementations that
do not support IPv4
mapped IPv6
addressing fail to
resolve host name

IPv6 address Local address
resolves to both IPv4
and IPv6 addresses

Connection binds to
IPv6 stack

Remote host name
resolves to both IPv4
and IPv6 addresses

Local address
resolves to both IPv4
and IPv6 addresses

Connection binds to
IPv6 stack

52 WebSphere MQ: Message Service Client for C/C++

Automatic WMQ client reconnection through XMS
You can make your XMS applications to reconnect automatically following a
network, queue manager or server failure. This feature is available only with
WebSphere MQ V7.0 client or above. This is controlled by connection factory
properties XMSC_WMQ_CLIENT_RECONNECT_OPTIONS and
XMSC_WMQ_CONNECTION_NAME_LIST.

XMSC_WMQ_CLIENT_RECONNECT_OPTIONS

By default, XMS client applications are not automatically reconnected. Automatic
reconnection is enabled by setting the property
XMSC_WMQ_CLIENT_RECONNECT_OPTIONS to
XMSC_WMQ_CLIENT_RECONNECT or
XMSC_WMQ_CLIENT_RECONNECT_Q_MGR.

Reconnecting to a queue manager of the same name does not guarantee that you
have reconnected to the same instance of a queue manager. Option
XMSC_WMQ_CLIENT_RECONNECT_Q_MGR only allows reconnection to an
instance of the same queue manager.

Seer XMSC_WMQ_CLIENT_RECONNECT_Q_MGR for details of this property.

XMSC_WMQ_CONNECTION_NAME_LIST

XMS application can connect to queue manager using XMSC_WMQ_HOST_NAME
and XMSC_WMQ_PORT. A new property
XMSC_WMQ_CONNECTION_NAME_LIST is provided where a list of connection
names can be given.

If XMS application looses connection with the server, the connections are tried in
the order they are specified in the connection list until a connection is successfully
established or for client reconnect timeout duration.

There is a timeout value you can configure to limit the time a client waits for
reconnection. The value (in seconds) is set in CHANNELS stanza of mqclient.ini
file.
CHANNELS:
MQReconnectTimeout = 1800

Note: No reconnection attempts are made after the timeout has expired. The
default value is 1800 seconds (30 minutes). See
XMSC_WMQ_CONNECTION_NAME_LIST property for details.

XMS application can register an exception listener function so that it can be
informed about changes in the state of reconnection. If XMS detects a problem
with the connection, during reconnection, XMS calls the exception listener function
passing a pointer to the context data as one parameter and the handle for an error block
as the other parameter.

Errors are indicated by the error codes:

MQRC_RECONNECTING indicates connection has failed, and the system is
attempting to reconnect.

Chapter 5. Developing XMS applications 53

MQRC_RECONNECTED indicates reconnection has been made and all handles are
successfully reestablished.

For more information on exception listener function, see Exception listener
functions in C.

A reconnectable client is able to reconnect automatically only after connecting.

Note: Some restrictions apply during reconnection. When a client reconnection
occurs, the XMS operation will pause. Depending on the nature of the XMS
session, it may be that subsequent commits or message acknowledges would fail
and need to be retried. An application should be written to handle this.

Connecting applications in a multiple installation environment
With multiple installations of WebSphere MQ on a system, you need to consider
how XMS C/C++ works with a particular installation.

By default, applications use the primary installation. If there is no primary
installation, or you do not want to use the primary installation, you must use the
setmqenv command to specify which installation to use. The setmqenv command is
shipped with WebSphere MQ version 7.1.

For more information about installation of multiple copies of WebSphere MQ, and
supported versions, see the WebSphere MQ information center.

On UNIX and Linux systems, using the setmqenv command set the
LD_LIBRARY_PATH(LIBPATH on AIX), with the -n and -k option using the following
command.

.<INSTALLATION PATH>/bin/setmqenv -n InstallationName -k, where -n
InstallationName is the name of the WebSphere MQ v7.1 installation.

The -k parameter updates the LD_LIBRARY_PATH, or LIBPATH environment variable,
with the path to the WebSphere MQ libraries at the start.

On UNIX platforms the leading ". "is critical. The dot, followed by a space,
instructs the command shell to run setmqenv in the same command shell, and
therefore inherit the environment set by setmqenv.

On Windows platforms, set the PATH environment variable using the setmqenv -n
option.

INSTALLATION_PATH\bin\setmqenv -n InstallationName, where -n
InstallationName sets up the environment for the installation named
InstallationName.

For more information about the other options for setmqenv, see the WebSphere MQ
information center.

If the XMS C/C++ application is set to use the WebSphere MQ v7.1 environment
in bindings connection mode, then the WebSphere MQ v7.1 libraries internally load
the required libraries, depending on the queue manager the application is
connecting to.

54 WebSphere MQ: Message Service Client for C/C++

For example, Figure 3 shows a multiple installation environment with a version
7.0.1 installation (Installation0), and a version 7.1 installation (Installation1).
Two applications are connected to these installations, but they load different library
versions.

Application 1 directly loads a version 7.0.1 library. When application 1 connects
to QM2, the version 7.0.1 libraries are used . If application 1 attempts to connect to
QM1, or if QM2 is associated with Installation1, application 1 fails with a 2059
(080B) (RC2059): MQRC_Q_MGR_NOT_AVAILABLE error. The application fails because
the version 7.0.1 library is not capable of loading other library versions. That is, if
version 7.0.1 libraries are directly loaded, you cannot use a queue manager
associated with an installation at a later version of WebSphere MQ.

If Application 2 connects to QM2, the version 7.1 libraries load, and use the version
7.0.1 library. If application 2 connects to QM1, or if QM2 is associated with
Installation1, then the version 7.1 library is loaded, and the application works as
expected. directly loads a version 7.1 library.

runtime linked with runtime linked with
Application

1

v7.0.1
library

v7.1
library

connects to connects to

loads

QM1QM2

Application
2

Version
7.0.1

"Installation0"

Version
7.1

"Installation1"

Figure 3. Connecting applications in a multiple installation environment

Chapter 5. Developing XMS applications 55

56 WebSphere MQ: Message Service Client for C/C++

Chapter 6. Writing XMS applications in C

This chapter provides information help you write XMS applications in C.

About this task

This chapter provides information that is specific to writing XMS applications in C.
For general information about writing XMS applications, see Chapter 5,
“Developing XMS applications,” on page 25.

The chapter contains the following sections:
v “Object handles in C”
v “Object Properties in C” on page 58
v “C functions that return a string by value” on page 58
v “C functions that return a byte array by value” on page 59
v “C functions that return a string or byte array by reference” on page 60
v “C functions that accept a string as input” on page 61
v “Error handling in C” on page 61
v “Message and exception listener functions in C” on page 62

Object handles in C
A C application uses an object handle to access an object. There are two kinds of
object handles; one has a data type that is related to the type of the object, and the
other is a generic object handle whose data type is not related to the type of the
object.

When a C application calls a function to create an object, XMS stores the object
internally and returns a handle for the object to the application. The application
can then use the handle to access the object.

Every object handle has a data type, which is related to the object type. Table 11
shows the object handle data type for each type of object. Note that BytesMessage,
MapMessage, ObjectMessage, StreamMessage, TextMessage, and Message objects
all have handles with the same data type, xmsHMsg. For more information about
how to use handles for messages, see “The body of an XMS message” on page 95.

Table 11. Data types for object handles

Type of object Object handle data type

Connection xmsHConn

ConnectionFactory xmsHConnFact

ConnectionMetaData xmsHConnMetaData

Destination xmsHDest

ErrorBlock xmsHErrorBlock

InitialContext xmsHInitialContext

Iterator xmsHIterator

Message, BytesMessage, MapMessage, ObjectMessage,
StreamMessage, and TextMessage

xmsHMsg

© IBM Corporation 2005 © IBM 2005, 2013 57

Table 11. Data types for object handles (continued)

Type of object Object handle data type

MessageConsumer xmsHMsgConsumer

MessageProducer xmsHMsgProducer

Property xmsHProperty

QueueBrowser xmsHQueueBrowser

Requestor xmsHRequestor

Session xmsHSess

Certain functions return a generic object handle, which is not related to the type of
object that they create. A generic object handle has data type xmsHObj.

If an application receives a generic object handle from one of these functions, the
application can call the xmsGetHandleTypeId() function in the PropertyContext
class to determine the related data type object handle for that object. The
application can then call any function to perform an operation on the object by
casting, if necessary, the generic object handle to the data type required by the
function.

Object Properties in C
A C application uses the functions in the PropertyContext class to get and set the
properties of objects.

For each XMS data type, the PropertyContext class contains a function to get the
value of a property with that data type and a function to set its value. For
example, a C application can call the function xmsGetIntProperty() to get the value
of an integer property and the function xmsSetIntProperty() to set its value.

Functions in the PropertyContext class can operate on any object that can have
properties. Each individual class does not contain its own functions to get and set
the properties of objects of that class. As a result, functions in the PropertyContext
class accept only generic object handles as input. If an application is currently
accessing an object using a handle with a data type that is related to the type of
the object, the application must cast the handle to the generic object handle data
type, xmsHObj, in order to get or set the properties of the object. For more
information about generic object handles, see “Object handles in C” on page 57.

All objects except ErrorBlock, Iterator, and Property objects can have properties.

If an application sets the value of a property, the new value replaces any previous
value the property had.

C functions that return a string by value
This section describes the interface used by C functions that return a string by
value.

In the C API, certain functions return a string as a parameter. Each of these
functions uses the same interface for retrieving a string. The following example C
code illustrates the function, xmsGetStringProperty() in the PropertyContext class:

58 WebSphere MQ: Message Service Client for C/C++

xmsRC xmsGetStringProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Three parameters control the retrieval of a string:

propertyValue
This parameter is a pointer to a buffer provided by the application into
which XMS copies the characters in the string. If data conversion is
required, XMS converts the characters into the code page used by the
application before copying them into the buffer.

length This parameter is the length of the buffer in bytes. This is an input
parameter that must be set by the application before the call. If you specify
XMSC_QUERY_SIZE instead, the string is not returned, but its length is
returned in the actualLength parameter.

actualLength
This output parameter is the length of the string that XMS copies into the
buffer. If data conversion is required, this is the length after conversion.
The length is measured in bytes. XMS always returns a null terminated
string, and the length reported to the application includes the terminating
null character. If you specify a null pointer for this parameter on input, the
length of the string is not returned.

If the buffer is not large enough to store the whole string, including the
terminating null character, XMS returns the string truncated to the length of the
buffer, sets the actualLength parameter to the length of the whole string, and
returns error code XMS_E_DATA_TRUNCATED.

If an XMS application receives a message sent by a JMS application, strings in the
header fields, properties, and body of the message might contain embedded null
characters. Strings containing embedded nulls cannot be manipulated using the
standard C string manipulator because they read the first null character to be the
end of the string.

C functions that return a byte array by value
This section describes the interface used by C functions that return a byte array by
value.

In the C API, certain functions return a byte array as a parameter. Each of these
functions uses the same interface for retrieving a byte array. The following example
written in C code illustrates the function, xmsGetByteArrayProperty() in the
PropertyContext class:
xmsRC xmsGetByteArrayProperty(xmsHObj object

xmsCHAR *propertyName,
xmsSBYTE *propertyValue,
xmsINT length,
xmsINT *actualLength
xmsHErrorBlock errorBlock) const;

Three parameters control the retrieval of a byte array:

Chapter 6. Writing XMS applications in C 59

propertyValue
This parameter is a pointer to a buffer provided by the application into
which XMS copies the bytes in the array.

length This parameter is the length of the buffer in bytes. This is an input
parameter that must be set by the application before the call. If you specify
XMSC_QUERY_SIZE instead, the byte array is not returned, but its length is
returned in the actualLength parameter.

actualLength
This output parameter is the number of bytes in the array that XMS copies
into buffer. If you specify a null pointer for this parameter on input, the
length of the array is not returned.

If the buffer is not large enough to store the whole array, XMS returns the array
truncated to the length of the buffer, sets the actualLength parameter to the length
of the whole array, and returns an error.

Two functions, xmsBytesMsgReadBytes() and xmsStreamMsgReadBytes(), have a
slightly different interface. Using one of these functions, an application can retrieve
a byte array in stages by successive calls to the function. Each call reads bytes into
the buffer provided by the application starting from the current position of an
internal cursor, and an output parameter, returnedLength, to determine how many
bytes have been read into the buffer. Neither function has the equivalent of the
actualLength parameter in its interface, but an application can specify
XMSC_QUERY_SIZE to determine the number of bytes remaining in an array starting
from the current position of the cursor.

C functions that return a string or byte array by reference
This section describes the interface used by C functions that return a string or byte
array by reference.

When a C application calls one of the functions described in “C functions that
return a string by value” on page 58 or “C functions that return a byte array by
value” on page 59, XMS must copy the string or byte array into the buffer
provided by the application. If an application is processing a large volume of
messages, and the strings or byte arrays in the messages are very large, then the
time taken to copy them might affect performance.

The C API has functions to deliver better performance. When an application calls
one of these functions, one parameter returns a pointer to a string or byte array
that is stored in memory owned by XMS, and another parameter returns the length
of the string or byte array. Examples of these functions are
xmsBytesMsgReadBytesByRef() and xmsGetStringPropertyByRef().

If data conversion is required for a string, XMS converts the characters into the
code page of the application and returns a pointer to the converted string. The
length returned to the application is the length of the converted string.

If data conversion is required, the first time an application retrieves a string by
reference might take as long as retrieving the string by value. However, XMS
caches the converted string and so subsequent calls to retrieve the same string do
not take as long.

60 WebSphere MQ: Message Service Client for C/C++

Note: These functions return a pointer to memory owned by XMS. You must not
attempt to free or modify the contents of this memory as doing so will cause
unpredictable results.

The pointer returned to the application remains valid until the next time that the
application adds a new piece of data to the bytes message.

C functions that accept a string as input
This section describes the interface used by C functions that accept a string as an
input parameter.

In the C API, certain functions accept a string as an input parameter. Each of these
functions uses the same interface for passing a string to XMS. The following
example of C code illustrates the function, xmsSetStringProperty() in the
PropertyContext class:
xmsRC xmsSetStringProperty(xmsHObj object,

xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsINT length,
xmsHErrorBlock errorBlock);

Two input parameters control passing a string to XMS:

propertyValue
A pointer to a character array that contains the string to be passed to XMS.

length The length of the string in bytes. If the string is null terminated with no
embedded null characters, you can specify XMSC_CALCULATE_STRING_SIZE
instead and XMS calculates its length.

Error handling in C
Most functions in the C API return a value that is a return code, and have an
optional input parameter that is a handle for an error block. This section describes
the roles of the return code and the error block.

Return codes
The return code from a C function call indicates whether the call was successful.
The return code has data type xmsRC. Table 12 lists the possible return codes and
gives their meaning.

Table 12. Return codes from C function calls

Return code Meaning

XMS_OK The call completed successfully.

Any other value The call failed. The error block contains more details about why the call
failed. The return code is the same as the exception code that is
returned in the error block.

The error block
When an application calls a C function, the application can include a handle for an
error block as an input parameter on the call. If the call fails, XMS stores
information in the error block about why the call failed. The application can then
retrieve this information.

Chapter 6. Writing XMS applications in C 61

An error block contains the following information:

Exception code
An integer representing the exception. The exception code provides a
high-level indication of why the call failed, but it does not indicate
precisely which error has occurred. The header file xmsc.h defines a named
constant for each exception code.

The exception code matches the JMS exception that is thrown by a JMS
method in the same circumstances.

Error code
An integer representing the error. The error code provides a more precise
indication of which error has occurred. The header file xmsc.h defines a
named constant for each error code.

Error string
A null terminated string of characters that describes the error. The
characters in the string are the same as those in the named constant that
represents the error code.

Error data
A null terminated string of characters that provides additional information
about the error. The information is free format.

Linked error
The handle for an linked error block. To report more information about a
call that has failed, XMS can create one or more additional error blocks and
chain them from the error block provided by the application.

XMS provides a set of helper functions to create an error block and extract
information from it. An application must use a helper function to create an error
block and obtain a handle for it before calling the first function that can accept the
handle as an input parameter. If the function call fails, the application can then use
other helper functions to extract information about the error that XMS has stored
in the error block. For details of these helper functions, see “ErrorBlock” on page
140.

Message and exception listener functions in C
A C application uses a message listener function to receive messages
asynchronously, and an exception listener function to be notified asynchronously of
a problem with a connection.

Message listener functions in C
To receive messages asynchronously, a C application must register a message
listener function and context data with one or more message consumers. The
application does this by calling the xmsMsgConsumerSetMessageListener()
function for each message consumer, passing pointers to the message listener
function and context data as parameters.

A message listener function is a callback function written by the user. When a
message arrives for a message consumer, XMS calls the message listener function
to deliver the message, passing a pointer to the context data as one parameter and
the handle for the message as the other parameter.

The format and content of the context data is defined by the application, and the
data itself occupies memory owned by the application. For example, the context

62 WebSphere MQ: Message Service Client for C/C++

data might be a structure allocated on the heap. The context data contains all the
information that the message listener function needs to refer to when processing a
message. XMS does not make a copy of the context data, and so the application
must ensure that the context data is still available when XMS calls the message
listener function.

Note: The application must release the resources used by a message that is
received asynchronously. XMS does not release these resources.

To stop the asynchronous delivery of messages to a message consumer, the
application can call the xmsMsgConsumerSetMessageListener() function again, by
passing a null pointer as a parameter instead of a pointer to a message listener
function.

A new message listener function and context data can be registered with a message
consumer without cancelling the registration of an existing message listener
function. If an existing message listener function is running when a new message
listener function is registered, the active message listener function completes as
usual, and any subsequent messages are processed by calls to the new message
listener function. If a transaction is in progress when a message listener function is
changed, the transaction is completed by calls to the new message listener
function.

For more information about the message listener function, including its signature,
see “MessageListener” on page 184.

Exception listener functions in C
Using an exception listener function is similar in principle to using a message
listener function.

A C application must register an exception listener function with a connection by
calling the xmsConnSetExceptionListener() function, passing pointers to the
exception listener function and context data as parameters. An exception listener
function is a callback function written by the user. If XMS detects a problem with
the connection, XMS calls the exception listener function, passing a pointer to the
context data as one parameter and the handle for an error block as the other
parameter.

The context data contains all the information that the exception listener function
requires when processing an error block. In all other respects, the context data is
used with an exception listener function in the same way as it is used with a
message listener function.

For more information about the exception listener function, including its signature,
see “MessageListener” on page 328.

Note: The application is required to release the resources used by an error block
received in this way. XMS does not release these resources.

To stop the asynchronous reporting of problems with a connection, the application
can call the xmsConnSetExceptionListener() function again, by passing a null
pointer as a parameter instead of a pointer to an exception listener function.

Chapter 6. Writing XMS applications in C 63

64 WebSphere MQ: Message Service Client for C/C++

Chapter 7. Writing XMS applications in C++

This chapter provides information to help you when writing XMS applications in
C++.

About this task

This chapter provides information that is specific to writing XMS applications in
C++. For general information about writing XMS applications, see Chapter 5,
“Developing XMS applications,” on page 25.

The chapter contains the following sections:
v “Namespaces in C++”
v “String objects in C++” on page 66
v “C++ methods that return a byte array” on page 67
v “Properties in C++” on page 67
v “Assignment of XMS objects to variables in C++” on page 67
v “Error handling in C++” on page 70
v “Message and exception listeners in C++” on page 72
v “Use of C APIs in a C++ application” on page 74

Namespaces in C++
All the C++ classes supplied with XMS are declared in a namespace called xms.

A C++ application can therefore adopt one of the following approaches when
referring to the names of XMS classes:
v The application can qualify the names of XMS classes with the name of the

namespace, xms, as show in the following C++ code fragment:
#include <xms.hpp>

using namespace std;

int main(int argc, char *argv[])
{

xms::ConnectionFactory connFact;
xms::Connection conn;

connFact.setIntProperty(XMSC_CONNECTION_TYPE, XMSC_CT_RTT);
connFact.setIntProperty(XMSC_RTT_CONNECTION_PROTOCOL, XMSC_RTT_CP_TCP);
connFact.setStringProperty(XMSC_RTT_HOST_NAME, "localhost");
connFact.setIntProperty(XMSC_RTT_PORT, 1506);

conn = connFact.createConnection();

// Other code here

cout << "Exiting..." << endl;

return(0);
}

v The application can use a using directive to make the names of XMS classes
available without having to qualify them. For example:

© IBM Corporation 2005 © IBM 2005, 2013 65

#include <xms.hpp>

using namespace std;
using namespace xms;

int main(int argc, char *argv[])
{

ConnectionFactory connFact;
Connection conn;

connFact.setIntProperty(XMSC_CONNECTION_TYPE, XMSC_CT_RTT);
connFact.setIntProperty(XMSC_RTT_CONNECTION_PROTOCOL, XMSC_RTT_CP_TCP);
connFact.setStringProperty(XMSC_RTT_HOST_NAME, "localhost");
connFact.setIntProperty(XMSC_RTT_PORT, 1506);

conn = connFact.createConnection();

// Other code here

cout << "Exiting..." << endl;

return(0);
}

String objects in C++
In the C++ API, a String object encapsulates a string. When called, certain methods
accept a String object as a parameter or return a String object.

A String object can encapsulate a null terminated character array. Alternatively, a
String object can encapsulate a byte array with embedded null characters, where
the byte array might or might not be, null terminated. Therefore, when an
application creates a String object from a byte array, the application must specify
the length of the array. The following code fragment creates both types of String
object:
#include <xms.hpp>

using namespace std;

int main(int argc, char *argv[])
{

xms::String strA("Normal character string");
xms::String strB("This\0string\0contains\0nulls", 26);

// The overloaded assignment operator can be used to create
// a String object from a null terminated character array.

xms::String strC = "Another character string";

// Other code here

return(0);
}

To make it easier to create and manipulate String objects, certain operators and
constructors are overloaded on the String class. If an application calls a method
that requires a String object as an input parameter, it is not necessary to create the
String object first. The application can pass a null terminated character array to the
method as a parameter, and XMS automatically creates a String object on the stack.

In addition, the String class encapsulates methods to create and manipulate String
objects. For the definitions of these methods, see “String” on page 394.

66 WebSphere MQ: Message Service Client for C/C++

C++ methods that return a byte array
This section describes the interface used by C++ methods that return a byte array.

In the C++ API, certain methods return a byte array as a parameter. Each of these
methods uses the same interface for retrieving a byte array. The following example
illustrates one of these methods, PropertyContext.getBytesProperty():
xmsINT getBytesProperty(const String & propertyName,

xmsSBYTE *propertyValue,
const xmsINT length,
xmsINT *actualLength) const;

The parameters propertyValue, length, and actualLength control the retrieval of the
byte array in the same way as described in “C functions that return a byte array
by value” on page 59.

Other examples of these methods are MapMessage.getBytes(),
MapMessage.getObject(), Property.getByteArray(), and String.get().

Properties in C++
A C++ application uses the methods in the PropertyContext class to get and set the
properties of objects.

The PropertyContext class is an abstract superclass that encapsulates methods that
get and set properties. These methods are inherited, directly or indirectly, by the
following classes:
v BytesMessage
v Connection
v ConnectionFactory
v ConnectionMetaData
v Destination
v InitialContext
v MapMessage
v Message
v MessageConsumer
v MessageProducer
v ObjectMessage
v QueueBrowser
v Requestor
v Session
v StreamMessage
v TextMessage

If an application sets the value of a property, the new value replaces any previous
value the property had.

Assignment of XMS objects to variables in C++
This section describes how XMS objects are assigned to variables in C++.

Chapter 7. Writing XMS applications in C++ 67

The assignment operator is overloaded on each of the XMS classes listed in
Table 13. If an object is already assigned to one variable, and an application assigns
the value of that variable to another variable of the same type, the precise action of
the overloaded assignment operator depends on the type of the object being
assigned:
v For some types of objects, a copy of the object is assigned to the second variable.

This is called a deep copy. When a deep copy is made, the original object and its
copy become two completely separate objects, which can be used independently
of each other.

v For the other types of objects, only a reference to the object is copied and
assigned to the second variable. This is called a shallow copy. When a shallow
copy is made, the two variables reference the same object. If an application
makes changes to the object by accessing the object through one variable, the
application can see those changes if it accesses the object through the other
variable.

Table 13 indicates, for each type of object, whether the overloaded assignment
operator makes a shallow or a deep copy of an object.

Table 13. The XMS classes on which the assignment operator is overloaded

Class Shallow copy Deep copy

BytesMessage UYes

Connection UYes

ConnectionFactory UYes

ConnectionMetaData UYes

Destination UYes

Exception UYes

IllegalStateException UYes

InitialContext UYes

InvalidClientIDException UYes

InvalidDestinationException UYes

InvalidSelectorException UYes

Iterator UYes

MapMessage UYes

Message UYes

MessageConsumer UYes

MessageEOFException UYes

MessageFormatException UYes

MessageNotReadableException UYes

MessageNotWritableException UYes

MessageProducer UYes

ObjectMessage UYes

Property UYes

QueueBrowser UYes

Requestor UYes

ResourceAllocationException UYes

SecurityException UYes

68 WebSphere MQ: Message Service Client for C/C++

Table 13. The XMS classes on which the assignment operator is overloaded (continued)

Class Shallow copy Deep copy

Session UYes

StreamMessage UYes

String UYes

TextMessage UYes

TransactionInProgressException UYes

TransactionRolledBackException UYes

When a shallow copy of an object is made, the object is deleted only when all the
variables that reference the object go out of scope. If the application closes or
deletes the object before the variables that reference the object go out of scope, the
application can no longer access the object through any of the variables.

The following code fragment illustrates these concepts:
#include <xms.hpp>

using namespace std;

int main(int argc, char *argv[])
{

xms::ConnectionFactory cf;
xms::Connection conn;
xms::Session sess;
xms::Session sess2;

cf.setIntProperty(XMSC_CONNECTION_TYPE, XMSC_CT_RTT);
cf.setIntProperty(XMSC_RTT_CONNECTION_PROTOCOL, XMSC_RTT_CP_TCP);
cf.setStringProperty(XMSC_RTT_HOST_NAME, "localhost");
cf.setIntProperty(XMSC_RTT_PORT, 1506);

conn = cf.createConnection();
sess = conn.createSession();

// Make a shallow copy of the Session object.

sess2 = sess;

// Set a property in the Session object using the sess2 variable.

sess2.setStringProperty("property", "test");

// Make another shallow copy of the Session object.

if (sess2.isNull() != xmsTRUE)
{

xms::Session sess3 = sess2;

// Set another property in the Session object, this time using
// the sess3 variable.

sess3.setStringProperty("another property", "test");
}

// The sess3 variable is now out of scope, but the second property
// is still set in the Session object.

// Close the Session object.

sess.close();

Chapter 7. Writing XMS applications in C++ 69

// The Session object is now closed and can no longer be accessed
// through the sess2 variable. As a result, the following statement
// causes "invalid session" to be written to the standard output
// stream.

if (sess2.isNull() == xmsTRUE)
{

cout << "invalid session" << endl;
}

return(0);
}

Error handling in C++
XMS throws an exception when it detects an error while processing a call to a
method.

An XMS exception is an object of one of the following types:
v Exception
v IllegalStateException
v InvalidClientIDException
v InvalidDestinationException
v InvalidSelectorException
v MessageEOFException
v MessageFormatException
v MessageNotReadableException
v MessageNotWritableException
v ResourceAllocationException
v SecurityException
v TransactionInProgressException
v TransactionRolledBackException

The Exception class is a superclass of each of the remaining classes in this list. As a
result, an application can include the calls to XMS methods in a try block and, to
catch all types of XMS exception, the application can specify the Exception class in
the exception declaration of the catch construct. The following code fragment
illustrates this technique:
#include <xms.hpp>

using namespace std;

int main(int argc, char *argv[])
{

int nRC = 0;

try
{

xms::ConnectionFactory connFact;
xms::Connection conn;

connFact.setIntProperty(XMSC_CONNECTION_TYPE, XMSC_CT_RTT);
connFact.setIntProperty(XMSC_RTT_CONNECTION_PROTOCOL, XMSC_RTT_CP_TCP);
connFact.setStringProperty(XMSC_RTT_HOST_NAME, "localhost");
connFact.setIntProperty(XMSC_RTT_PORT, 1506);

conn = connFact.createConnection();

70 WebSphere MQ: Message Service Client for C/C++

// Other code here
}
catch(xms::Exception & ex)
{

// Error handling code here

nRC = -1;
}

return(nRC);
}

If an application uses this technique to catch XMS exceptions, it must catch an
exception by reference, and not by value. This ensures that an exception is not
sliced and that valuable data about the error is not lost.

The Exception class itself is a subclass of the std::exception class. Therefore, to
catch all exceptions, including those thrown by the C++ runtime environment, an
application can specify the std::exception class in the exception declaration of the
catch construct. The following code fragment illustrates this concept:
#include <xms.hpp>

using namespace std;

int main(int argc, char *argv[])
{

int nRC = 0;

try
{

xms::ConnectionFactory connFact;

connFact.setIntProperty(XMSC_CONNECTION_TYPE, XMSC_CT_RTT);
connFact.setIntProperty(XMSC_RTT_CONNECTION_PROTOCOL, XMSC_RTT_CP_TCP);
connFact.setStringProperty(XMSC_RTT_HOST_NAME, "localhost");
connFact.setIntProperty(XMSC_RTT_PORT, 1506);

// Additional code here
}
catch(exception & ex)
{

// Error handling code here

nRC = -1;
}

return(nRC);
}

After an application catches an XMS exception, it can use the methods of the
Exception class to find out information about the error. For the definitions of these
methods, see “Exception” on page 288. The information encapsulated by an XMS
exception is essentially the same as the information provided to a C application in
an error block. For details of this information, see “The error block” on page 61.

XMS can create an exception for each error it detects during a call and link the
exceptions to form a chain. After an application has caught the first exception, it
can call the getLinkedException() method to get a pointer to the next exception in
the chain. The application can continue to call the getLinkedException() method on
each exception in the chain until a null pointer is returned, indicating that there are
no more exceptions in the chain.

Chapter 7. Writing XMS applications in C++ 71

Because the getLinkedException() method returns a pointer to a linked exception,
the application must release the object using the C++ delete operator.

The Exception class provides the dump() method, which an application can use to
dump an exception, as formatted text, to a specified C++ output stream. The
operator << is overloaded on the Exception class and can be used for the same
purpose.

Message and exception listeners in C++
A C++ application uses a message listener to receive messages asynchronously, and
it uses an exception listener to be notified asynchronously of a problem with a
connection.

Message listeners in C++
To receive messages asynchronously, a C++ application must define a message
listener class that is based on the abstract class MessageListener. The message
listener class must provide an implementation of the onMessage() method. The
application can then instantiate the class to create a message listener and register
the message listener with one or more message consumers by calling the
setMessageListener() method for each message consumer. Subsequently, when a
message arrives for a message consumer, XMS calls the onMessage() method to
deliver the message. XMS does not make a copy of the message listener, and the
application must ensure that the message listener is still available when XMS calls
the onMessage() method.

If more than one message consumer in a session has a registered message listener,
only one onMessage() method can run at a time. For more information about this
situation, and what to do if your application requires concurrent delivery of
messages, see “Asynchronous message delivery” on page 31.

To stop the asynchronous delivery of messages to a message consumer, the
application can call the setMessageListener() method again, by passing a null
pointer as the parameter instead of a pointer to a message listener. Unless the
registration of a message listener is cancelled in this way, the message listener
must exist for as long as the message consumer exists.

A new message listener can be registered with a message consumer without
cancelling the registration of an existing message listener. If the onMessage()
method of an existing message listener is running when a new message listener is
registered, the active method completes normally, and any subsequent messages
are processed by calls to the onMessage() method of the new message listener. If a
transaction is in progress when a message listener is changed, the transaction is
completed by calls to the onMessage() method of the new message listener.

The following code fragment provides an example of a message listener class
implementation with an onMessage() method:
#include <xms.hpp>

using namespace std;

class MyMsgListener : public xms::MessageListener
{
public:

xmsVOID onMessage(const xms::Message * pMsg);
};

72 WebSphere MQ: Message Service Client for C/C++

-------–--

xmsVOID MyMsgListener::onMessage(const xms::Message * pMsg)
{

if (pMsg != NULL)
{

cout << pMsg->getJMSCorrelationID() << endl;
cout << pMsg->getJMSMessageID() << endl;

if (pMsg->getType() == XMS_MESSAGE_TYPE_BYTES)
{

xms::BytesMessage * pBytes = (xms::BytesMessage *) pMsg;

cout << pBytes->readUTF() << endl;
}

delete pMsg;
}

}

Because XMS delivers a pointer to a message when it calls the onMessage()
method, the application must release the message using the delete operator.

The following code fragment now shows how an application can use this message
listener class to implement the asynchronous delivery of messages to a message
consumer:
#include <xms.hpp>

using namespace std;

int main(int argc, char *argv[])
{

int nRC = 0;
xms::ConnectionFactory cf;
xms::Connection conn;
xms::Session sess;
xms::Destination dest;
xms::MessageConsumer msgConn;
MyMsgListener msgLst;

try
{

cf.setIntProperty(XMSC_CONNECTION_TYPE, XMSC_CT_RTT);
cf.setIntProperty(XMSC_RTT_CONNECTION_PROTOCOL, XMSC_RTT_CP_TCP);
cf.setStringProperty(XMSC_RTT_HOST_NAME, "localhost");
cf.setIntProperty(XMSC_RTT_PORT, 1506);

conn = cf.createConnection();
sess = conn.createSession();
dest = xms::Destination(XMS_DESTINATION_TYPE_TOPIC, "test");
msgConn = sess.createConsumer(dest);

msgConn.setMessageListener(&msgLst);

conn.start();

while(xmsTRUE)
{

Sleep(1000);
cout << "Waiting..." << endl;

}
}
catch(exception & ex)
{

Chapter 7. Writing XMS applications in C++ 73

nRC = -1;
}

return(nRC);
}

Exception listeners in C++
Using an exception listener is similar in principle to using a message listener.

A C++ application must define an exception listener class that is based on the
abstract class ExceptionListener. The exception listener class must provide an
implementation of the onException() method. The application can then instantiate
the class to create an exception listener, and register the exception listener with a
connection by calling the setExceptionListener() method. Subsequently, if XMS
detects a problem with the connection, XMS calls the onException() method to pass
an exception to the application. XMS does not make a copy of the exception
listener, and so the application must ensure that the exception listener is still
available when XMS calls the onException() method.

To stop the asynchronous reporting of problems with a connection, the application
can call the setExceptionListener() method again, by passing a null pointer as the
parameter instead of a pointer to an exception listener. Unless the registration of an
exception listener is cancelled in this way, the exception listener must exist for as
long as the connection exists.

Because XMS passes a pointer to an exception when it calls the onException()
method, the application must release the exception by using the C++ delete
operator.

Use of C APIs in a C++ application
Most C++ classes supplied with XMS provide a getHandle() method. A C++
application can call the getHandle() method of an object to retrieve the handle that
a C application would use to access the object. The C++ application can then use
the handle to access the object by calling functions in the C API.

The following code fragment illustrates how this is done:
#include <xms.hpp>

using namespace std;

int main(int argc, char *argv[])
{

xms::ConnectionFactory cf;
xms::Connection conn;
xmsHConn hConn;

cf.setIntProperty(XMSC_CONNECTION_TYPE, XMSC_CT_RTT);
cf.setIntProperty(XMSC_RTT_CONNECTION_PROTOCOL, XMSC_RTT_CP_TCP);
cf.setStringProperty(XMSC_RTT_HOST_NAME, "localhost");
cf.setIntProperty(XMSC_RTT_PORT, 1506);

conn = cf.createConnection();

// Retrieve the handle for the connection.

hConn = conn.getHandle();

// Using the retrieved handle, call a C API function.

74 WebSphere MQ: Message Service Client for C/C++

xmsConnStart(hConn, NULL);

// Other code here

return(0);
}

Using the handle for an object, a C++ application can close or delete the object by
calling the appropriate C API function. However, if a C++ application does that it
can no longer use the object using the C++ API.

Being able to use the C API is useful because some functions are available only in
the C API. An example of such a function is described in “C functions that return a
string or byte array by reference” on page 60.

Chapter 7. Writing XMS applications in C++ 75

76 WebSphere MQ: Message Service Client for C/C++

Chapter 8. Working with administered objects

This chapter provides information about administered objects. XMS applications
can retrieve object definitions from a central administered objects repository, and
use them to create connection factories and destinations.

About this task

This chapter provides information to help with creating and managing
administered objects, describing the types of administered object repository that
XMS supports. The chapter also explains how an XMS application makes a
connection to an administered objects repository to retrieve the required
administered objects.

The chapter contains the following sections:
v “Supported types of administered object repository”
v “Property mapping for administered objects” on page 78
v “Required properties for administered ConnectionFactory objects” on page 78
v “Required properties for administered Destination objects” on page 79
v “Creating administered objects” on page 80
v “InitialContext objects” on page 81
v “InitialContext properties” on page 81
v “URI format for XMS initial contexts” on page 81
v “JNDI Lookup Web service” on page 83
v “Retrieval of administered objects” on page 83

Supported types of administered object repository
XMS supports two types of administered object directory: File System and
Lightweight Directory Access Protocol (LDAP).XMS supports three types of
administered object directory: File System, Lightweight Directory Access Protocol
(LDAP), and COS naming.

File System object directories take the form of serialized Java and Naming
Directory Interface (JNDI) objects. LDAP object directories are directories that
contain JNDI objects. File System and LDAP object directories can both be
administered using the JMSAdmin tool available with WebSphere MQ. Both these
object directories can be used to administer client connections by centralizing
WebSphere MQ connection factories and destinations. This allows the network
administrator to deploy multiple applications that all refer to the same central
repository, and that are automatically updated to reflect changes to connection
settings made in the central repository.

A COS naming directory contains WebSphere service integration bus connection
factories and destinations and can be administered using the WebSphere
Application Server administrative console. In order for an XMS application to be
able to retrieve objects from the COS naming directory, a JNDI lookup Web service
must be deployed. This Web service is not available on all WebSphere service
integration technologies. Refer to the product documentation for details.

© Copyright IBM Corp. 2005, 2013 77

Note: It is necessary to restart application connections for changes to the object
directory to take effect.

Property mapping for administered objects
To enable applications to use WebSphere MQ JMS and WebSphere Application
Server connection factory and destination object definitions, the properties
retrieved from these definitions must be mapped on to the corresponding XMS
properties that can be set on XMS connection factories and destinations.

In order to create, for example, an XMS connection factory with properties
retrieved from a WebSphere MQ JMS connection factory, the properties must be
mapped between the two.

All property mappings are performed automatically.

The following table demonstrates the mappings between some of the most
common properties of connection factories and destinations. The properties shown
in this table are just a small set of examples, and not all properties shown are
relevant to all connection types and servers.

Table 14. Examples of name mapping for connection factory and destination properties

WebSphere MQ JMS
property name XMS property name

PERSISTENCE (PER) XMSC_DELIVERY_MODE

EXPIRY (EXP) XMSC_TIME_TO_LIVE

PRIORITY (PRI) XMSC_PRIORITY

Table 15. Examples of name mapping for connection factory and destination properties

WebSphere MQ JMS
property name XMS property name

WebSphere service
integration bus property
name

PERSISTENCE (PER) XMSC_DELIVERY_MODE

EXPIRY (EXP) XMSC_TIME_TO_LIVE

PRIORITY (PRI) XMSC_PRIORITY

XMSC_WPM_HOST_NAME serverName

XMSC_WPM_BUS_NAME busName

XMSC_WPM_TOPIC_SPACE topicName

Required properties for administered ConnectionFactory objects
When an application creates a connection factory, a number of properties must be
defined to create a connection to a messaging server.

The properties listed in the following tables are the minimum required for an
application to set to create a connection to a messaging server. If you want to
customize the way that a connection is created, then your application can set any
additional properties of the ConnectionFactory object as necessary. For further
information, and a complete list of available properties, see “Properties of
ConnectionFactory” on page 402.

78 WebSphere MQ: Message Service Client for C/C++

Connection to a WebSphere MQ queue manager

Table 16. Property settings for administered ConnectionFactory objects for connections to a
WebSphere MQ queue manager

Required XMS Equivalent WebSphere MQ JMS property required

XMSC_CONNECTION_TYPE XMS works this out from the connection factory class
name and TRANSPORT (TRAN) property.

XMSC_WMQ_HOST_NAME HOSTNAME (HOST)

XMSC_WMQ_PORT PORT

Real-time connection to a broker

Table 17. Property settings for administered ConnectionFactory objects for real-time
connections to a broker

Required XMS Equivalent WebSphere MQ JMS property required

XMSC_CONNECTION_TYPE XMS works this out from the connection factory class
name and TRANSPORT (TRAN) property.

XMSC_RTT_HOST_NAME HOSTNAME (HOST)

XMSC_RTT_PORT PORT

Connection to a WebSphere service integration bus

Table 18. Property settings for administered ConnectionFactory objects for connections to a
WebSphere service integration bus

XMS property Description

XMSC_CONNECTION_TYPE The type of messaging server to which an application
connects. This is determined from the connection
factory class name.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service
integration bus that the application connects to or, for
a destination, the name of the service integration bus
in which the destination exists.

Required properties for administered Destination objects
An application that creates a Destination object must set several properties as
compared to an application using an administered Destination object.

Table 19. WebSphere MQ JMS property settings for administered Destination objects

Type of connection Property Description

WebSphere MQ queue
manager

QUEUE (QU)

TOPIC (TOP)

The queue that you wish to connect to

The topic that the application uses as a
destination

Real-time connection to a
broker

TOPIC (TOP) The topic that the application uses as a
destination

Chapter 8. Working with administered objects 79

Table 20. Property settings for administered Destination objects

Type of connection Property Description

WebSphere MQ queue
manager

QUEUE (QU)

TOPIC (TOP)

The queue that you wish to connect to

The topic that the application uses as a
destination

Real-time connection to a
broker

TOPIC (TOP) The topic that the application uses as a
destination

WebSphere service
integration bus

topicName

queueName

If your application is connecting to a topic

If your application is connecting to a queue

Creating administered objects
The ConnectionFactory and Destination object definitions that XMS applications
require to make a connection to a messaging server must be created using the
appropriate administrative tools.

Before you begin

For further details about the different types of administered object repository that
XMS supports, see “Supported types of administered object repository” on page 77.

About this task

To create the administered objects for WebSphere MQ, use the WebSphere MQ
Explorer or WebSphere MQ JMS administration (JMSAdmin) tool.

To create the administered objects for WebSphere MQ, WebSphere Event Broker, or
WebSphere Message Broker, use the WebSphere MQ JMS administration
(JMSAdmin) tool.

To create administered objects for WebSphere service integration bus, use the
WebSphere Application Server administrative console.

The following steps summarize what you do to create administered objects.

Procedure
1. Create a connection factory and define the properties needed to create a

connection from your application to your chosen server. The minimum
properties that XMS requires to make a connection are defined in “Required
properties for administered ConnectionFactory objects” on page 78.

2. Create the required destination on the messaging server to which your
application will connect:
v For a connection to a WebSphere MQ queue manager, create a queue or

topic.
v For a real-time connection to a broker, create a topic.
v For a connection to a WebSphere service integration bus, create a queue or a

topic.
The minimum properties that XMS requires to make a connection are defined
in “Required properties for administered Destination objects” on page 79.

80 WebSphere MQ: Message Service Client for C/C++

InitialContext objects
An application must create an initial context to be used to make a connection to
the administered objects repository to retrieve the required administered objects.

About this task

An InitialContext object encapsulates a connection to the repository. The XMS API
provides methods to perform the following tasks:
v Create an InitialContext object.
v Delete the InitialContext object when it is no longer required (applies to C and

C++ only).
v Lookup an administered object in the administered object repository.

For further details about creating an InitialContext object, see “InitialContext” on
page 145 for C, “InitialContext” on page 293 for C++ and “Properties of
InitialContext” on page 408.

InitialContext properties
The parameters of the InitialContext constructor include the location of the
repository of administered objects, given as a uniform resource indicator (URI). In
order for an application to establish a connection to the repository, it may be
necessary to provide more information than the information contained in the URI.

In JNDI implementation of XMS, the additional information is provided in an
environment Hashtable to the constructor.

In the C and C++ implementations of XMS, the information is provided by setting
properties on the InitialContext object after it has been constructed. For C and C++,
therefore, the creation of the InitialContext object and the connection to the
directory (for the lookup) are done separately so that the properties can be set on
the InitialContext object before an application connects to the directory to retrieve
administered objects.

The location of the administered object repository is defined in the XMSC_IC_URL
property. This property is typically passed on the Create call, but can be modified
to connect to a different naming directory before the lookup. For FileSystem or
LDAP contexts, this property defines the address of the directory. For COS naming,
this is the address of the Web service that uses these properties to connect to the
JNDI directory.

The following properties are passed unmodified to the Web service which will use
them to use to connect to the JNDI directory.
v XMSC_IC_PROVIDER_URL
v XMSC_IC_SECURITY_CREDENTIALS
v XMSC_IC_SECURITY_AUTHENTICATION
v XMSC_IC_SECURITY_PRINCIPAL
v XMSC_IC_SECURITY_PROTOCOL

URI format for XMS initial contexts
The location of the repository of administered objects is provided as a uniform
resource indicator (URI). The format of the URI depends on the context type.

Chapter 8. Working with administered objects 81

FileSystem context

For the FileSystem context, the URL gives the location of the file system based
directory. The structure of the URL is as defined by RFC 1738, Uniform Resource
Locators (URL): the URL has the prefix file://, and the syntax following this prefix
is a valid definition of a file that can be opened on the system on which XMS is
running.

This syntax can be platform-specific, and can use either '/ separators or '\'
separators. If you use '\', then each separator needs to be escaped by using an
additional '\'. This prevents the C runtime from trying to interpret the separator as
an escape character for what follows. Furthermore, if the URI is coded as literal C
strings in source code, the compiler also requires each '\' character to be escaped.

These examples illustrate this syntax:
file://myBindings
file:///admin/.bindings
file://\\admin\\.bindings
file://c:/admin/.bindings
file://c:\\admin\\.bindings
file://\\\\madison\\shared\\admin\\.bindings
file:///usr/admin/.bindings

The following examples show the syntax written as literal C strings within source
code:
"file://c:\\\\admin\\\\.bindings"
"file://\\\\\\\\madison\\\\shared\\\\admin\\\\.bindings"

LDAP context

For the LDAP context, the basic structure of the URL is as defined by RFC 2255,
The LDAP URL Format, with the case-insensitive prefix ldap://

The precise syntax is illustrated in the following example:
LDAP://[Hostname][:Port][“/”[DistinguishedName]]

This syntax is as defined in the RFC but without support for any attributes, scope,
filters, or extensions.

Examples of this syntax include:
ldap://madison:389/cn=JMSData,dc=IBM,dc=UK
ldap://madison/cn=JMSData,dc=IBM,dc=UK
LDAP:///cn=JMSData,dc=IBM,dc=UK

WSS context

For the WSS context, the URL is in the form of a Web services endpoint, with the
prefix http://.

Alternatively, you can use the prefix cosnaming:// or wsvc://.

These two prefixes are interpreted as meaning that you are using a WSS context
with the URL accessed over http, which enables the initial context type to be
derived easily directly from the URL.

Examples of this syntax include the following:

82 WebSphere MQ: Message Service Client for C/C++

http://madison.ibm.com:9080/xmsjndi/services/JndiLookup
cosnaming://madison/jndilookup

JNDI Lookup Web service
To access a COS naming directory from XMS, a JNDI Lookup Web service must be
deployed on a WebSphere service integration bus server. This Web service
translates the Java information from the COS naming service into a form that XMS
applications can read.

The Web service is provided in the enterprise archive file SIBXJndiLookupEAR.ear,
located within the install directory. This can be installed within a WebSphere
service integration bus server by using either the administrative console or the
wsaadmin scripting tool. Refer to the product documentation for further
information on deploying Web service applications.

To define the Web service within XMS applications, you simply need to set the
XMSC_IC_URL property of the InitialContext object to the Web service endpoint
URL. For example, if the Web service is deployed on a server host called MyServer,
an example of a Web service endpoint URL:
wsvc://MyHost:9080/SIBXJndiLookup/services/JndiLookup

Setting the XMSC_IC_URL property allows InitialContext Lookup calls to invoke
the Web service at the defined endpoint, which in turn looks up the required
administered object from the COS naming service.

C and C++ applications can use the Web service.

Retrieval of administered objects
XMS retrieves an administered object from the repository using the address
provided when the InitialContext object is created, or in the InitialContext
properties.

Objects to be retrieved can have the following types of names:
v A simple name describing the Destination object, for example, a queue

destination called SalesOrders
v A composite name, which can be made up of SubContexts, separated by '/', and

it must end with the object name. An example of a composite name is
"Warehouse/PickLists/DispatchQueue2" where Warehouse and Picklists are
SubContexts in the naming directory, and DispatchQueue2 is the name of a
Destination object.

Chapter 8. Working with administered objects 83

84 WebSphere MQ: Message Service Client for C/C++

Chapter 9. Securing communications for XMS applications

This chapter provides information about setting up secure communications to
enable XMS applications to connect via Secure Sockets Layer (SSL) to a WebSphere
service integration bus messaging engine or WebSphere MQ queue manager.

About this task

This chapter provides information about configuring XMS ConnectionFactory
properties to enable applications to make secure connections.

The chapter contains the following sections:
v “Secure connections to a WebSphere MQ queue manager”
v “CipherSuite and CipherSpec name mappings for connections to a WebSphere

MQ queue manager” on page 86
v “Secure connections to a WebSphere service integration bus messaging engine”

on page 88
v “CipherSuite and CipherSpec name mappings for connections to a WebSphere

service integration bus” on page 90

Secure connections to a WebSphere MQ queue manager
To enable an XMS C or C++ application to make secure connections to a
WebSphere MQ queue manager, the relevant properties must be defined in the
ConnectionFactory object.To enable an XMS C or C++ application to make secure
connections to a WebSphere MQ queue manager, the relevant properties must be
defined in the ConnectionFactory object.

The protocol used in the encryption negotiation can be either Secure Sockets Layer
(SSL) or Transport Layer Security (TLS), depending on which CipherSuite you
specify in the ConnectionFactory object.

If you use the WebSphere MQ Version 7.0.0.1 and above client libraries and
connect to a WebSphere MQ Version 7 queue manager, then you can create
multiple connections to same queue manager in XMS application. However
connection to different queue manager is not permitted. If you attempt you get the
MQRC_SSL_ALREADY_INITIALIZED error.

If you use the WebSphere MQ Version 6 and above client libraries, then you can
create a new SSL connection only if you close any previous SSL connection first.
Multiple concurrent SSL connections from the same process to the same or
different queue managers are not permitted. If you attempt more than one request,
you get the warning MQRC_SSL_ALREADY_INITIALIZED, which might mean that some
requested parameters for the SSL connection were ignored.

ConnectionFactory properties for connections via SSL to a WebSphere MQ
manager, with a brief description, are shown in the following table:

© Copyright IBM Corp. 2005, 2013 85

Table 21. Properties of ConnectionFactory for connections to a WebSphere MQ queue manager via SSL

Name of property Description

XMSC_WMQ_SSL_CERT_STORES The locations of the servers that hold the certificate
revocation lists (CRLs) to be used on an SSL connection to
a queue manager.

XMSC_WMQ_SSL_CIPHER_SPEC The name of the cipher spec to be used on a secure
connection to a queue manager.

XMSC_WMQ_SSL_CIPHER_SUITE The name of the CipherSuite to be used on an SSL or TLS
connection to a queue manager. The protocol used in
negotiating the secure connection depends on the specified
CipherSuite.

XMSC_WMQ_SSL_CRYPTO_HW Configuration details for the cryptographic hardware
connected to the client system.

XMSC_WMQ_SSL_FIPS_REQUIRED The value of this property determines whether an
application can or cannot use non-FIPS compliant cipher
suites. If this property is set to true, only FIPS algorithms
are used for the client-server connection.

XMSC_WMQ_SSL_KEY_REPOSITORY The location of the key database file in which keys and
certificates are stored.

XMSC_WMQ_SSL_KEY_RESETCOUNT The KeyResetCount represents the total number of
unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated.

XMSC_WMQ_SSL_PEER_NAME The peer name to be used on an SSL connection to a queue
manager.

“XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B”
on page 461

The value of this property determines whether an
application can use the Suite B compliant cipher suites.

CipherSuite and CipherSpec name mappings for connections to a
WebSphere MQ queue manager

The InitialContext translates between the JMSAdmin Connection Factory property
SSLCIPHERSUITE and the XMS near-equivalent
XMSC_WMQ_SSL_CIPHER_SPEC. A similar translation is necessary if you specify
a value for XMSC_WMQ_SSL_CIPHER_SUITE but omit value for
XMSC_WMQ_SSL_CIPHER_SPEC.

Table 22 lists the available CipherSpecs and their JSSE CipherSuite equivalents.

Table 22. Available CipherSpecs and their JSSE CipherSuite equivalents

CipherSpec Equivalent JSSE CipherSuite Fips

SuiteB
128
bit

SuiteB
192
bit

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA No No No

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA No No No

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA No No No

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA No No No

NULL_MD5 SSL_RSA_WITH_NULL_MD5 No No No

NULL_SHA SSL_RSA_WITH_NULL_SHA No No No

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 No No No

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 No No No

86 WebSphere MQ: Message Service Client for C/C++

Table 22. Available CipherSpecs and their JSSE CipherSuite equivalents (continued)

CipherSpec Equivalent JSSE CipherSuite Fips

SuiteB
128
bit

SuiteB
192
bit

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 No No No

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA No No No

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes No No

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA Yes No No

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA No No No

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA No No No

ECDHE_ECDSA_3DES_EDE_CBC_SHA256SSL_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA Yes No No

ECDHE_ECDSA_AES_128_CBC_SHA256 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 Yes No No

ECDHE_ECDSA_AES_128_GCM_SHA256 SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 Yes Yes No

ECDHE_ECDSA_AES_256_CBC_SHA384 SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 Yes No No

ECDHE_ECDSA_AES_256_GCM_SHA384 SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 Yes No Yes

ECDHE_ECDSA_NULL_SHA256 SSL_ECDHE_ECDSA_WITH_NULL_SHA No No No

ECDHE_ECDSA_RC4_128_SHA256 SSL_ECDHE_ECDSA_WITH_RC4_128_SHA No No No

ECDHE_RSA_3DES_EDE_CBC_SHA256 SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA Yes No No

ECDHE_RSA_AES_128_CBC_SHA256 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256 Yes No No

ECDHE_RSA_AES_128_GCM_SHA256 SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA25 Yes No No

ECDHE_RSA_AES_256_CBC_SHA384 SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384 Yes No No

ECDHE_RSA_AES_256_GCM_SHA384 SSL_ECDHE_RSA_WITH_AES_256_GCM_SHA384 Yes No No

ECDHE_RSA_NULL_SHA256 SSL_ECDHE_RSA_WITH_NULL_SHA No No No

ECDHE_RSA_RC4_128_SHA256 SSL_ECDHE_RSA_WITH_RC4_128_SHA No No No

TLS_RSA_WITH_AES_128_CBC_SHA256 SSL_RSA_WITH_AES_128_CBC_SHA256 Yes No No

TLS_RSA_WITH_AES_128_GCM_SHA256 SSL_RSA_WITH_AES_128_GCM_SHA256 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA256 SSL_RSA_WITH_AES_256_CBC_SHA256 Yes No No

TLS_RSA_WITH_AES_256_GCM_SHA384 SSL_RSA_WITH_AES_256_GCM_SHA384 Yes No No

TLS_RSA_WITH_NULL_SHA256 SSL_RSA_WITH_NULL_SHA256 No No No

TLS_RSA_WITH_RC4_128_SHA256 SSL_RSA_WITH_RC4_128_SHA No No No

Note: A one-to-one mapping for the CipherSuite name
SSL_RSA_WITH_3DES_EDE_CBC_SHA or SSL_RSA_WITH_DES_CBC_SHA must
account for the setting of the property XMSC_WMQ_SSL_FIPSREQUIRED and
apply an heuristic.

Note: For additional information about these values, see WebSphere MQ Security.

If you specify SSL_RSA_WITH_3DES_EDE_CBC_SHA or
SSL_RSA_WITH_DES_CBC_SHA for the property
XMSC_WMQ_SSL_CIPHER_SUITE, and there is no value for
XMSC_WMQ_SSL_CIPHER_SPEC, a value for XMSC_WMQ_SSL_CIPHER_SPEC is
chosen according to the following tables.

Chapter 9. Securing communications for XMS applications 87

The values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify
SSL_RSA_WITH_3DES_EDE_CBC_SHA for the XMSC_WMQ_SSL_CIPHER_SUITE
property are shown in the following table:

Table 23. Values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify
SSL_RSA_WITH_3DES_EDE_CBC_SHA for the XMSC_WMQ_SSL_CIPHER_SUITE property

Input: XMSC_WMQ_SSL_FIPSREQUIRED value Output: XMSC_WMQ_SSL_CIPHER_SPEC chosen

xmsFALSE (that is, MQSSL_FIPS_NO) TRIPLE_DES_SHA_US

xmsTRUE (that is, MQSSL_FIPS_YES) TLS_RSA_WITH_3DES_EDE_CBC_SHA

The values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify
SSL_RSA_WITH_DES_CBC_SHA for the XMSC_WMQ_SSL_CIPHER_SUITE
property are shown in the following table:

Table 24. Values used for XMSC_WMQ_SSL_CIPHER_SPEC when you specify SSL_RSA_WITH_DES_CBC_SHA
for the XMSC_WMQ_SSL_CIPHER_SUITE property

Input: XMSC_WMQ_SSL_FIPSREQUIRED value Output: XMSC_WMQ_SSL_CIPHER_SPEC chosen

xmsFALSE (that is, MQSSL_FIPS_NO) DES_SHA_EXPORT

xmsTRUE (that is, MQSSL_FIPS_YES) TLS_RSA_WITH_DES_CBC_SHA

Secure connections to a WebSphere service integration bus
messaging engine

To enable an XMS C/C++ application to make secure connections to a WebSphere
service integration bus messaging engine, the relevant properties must be defined
in the ConnectionFactory object.

XMS provides SSL and HTTPS support for connections to a WebSphere service
integration bus. SSL and HTTPS provide secure connections for authentication and
confidentiality.

Like WebSphere security, XMS security is configured with respect to JSSE security
standards and naming conventions, which include the use of CipherSuites to
specify the algorithms that are used when negotiating a secure connection. The
protocol used in the encryption negotiation can be either SSL or TLS, depending on
which CipherSuite you specify in the ConnectionFactory object.

The security capabilities for XMS C/C++ application are provided by IBM's
standard security enablement component, Global Security Kit (GSKit). XMS
configures the relevant GSKit options by means of properties set on the XMS
ConnectionFactory object. These properties must be specified regardless of whether
the ConnectionFactory object is an administered object.

Table 25 on page 89 lists the properties that must be defined in the
ConnectionFactory object.

88 WebSphere MQ: Message Service Client for C/C++

Table 25. Properties of ConnectionFactory for secure connections to a WebSphere service integration bus messaging
engine

Name of property Description

XMSC_WPM_SSL_CIPHER_SUITE The name of the CipherSuite to be used on an SSL or
TLS connection to a WebSphere service integration bus
messaging engine. The protocol used in negotiating
the secure connection depends on the specified
CipherSuite.

XMSC_WPM_SSL_KEY_REPOSITORY A path to the file that is the keyring file containing the
public or private keys to be used in the secure
connection.

XMSC_WPM_SSL_KEYRING_LABEL The certificate to be used when authenticating with
the server.

XMSC_WPM_SSL_KEYRING_PW The password for the keyring file.

XMSC_WPM_SSL_KEYRING_STASH_FILE The name of a binary file containing the password of
the key repository file.

XMSC_WPM_SSL_FIPS_REQUIRED The value of this property determines whether an
application can or cannot use non-FIPS compliant
cipher suites. If this property is set to true, only FIPS
algorithms are used for the client-server connection.

“XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B” on
page 472

The value of this property determines whether an
application can use the Suite B compliant cipher
suites.

Note: You must specify the XMSC_WPM_SSL_CIPHER_SUITE properties for all
applications, and the XMSC_WPM_SSL_KEY_REPOSITORY properties for C/C++
applications only. You can specify all the other properties listed in the table
according to requirements.

The following is an example of ConnectionFactory properties for secure
connections to a WebSphere integration messaging engine:
cf.setStringProperty(XMSC_WPM_PROVIDER_ENDPOINTS, host_name:port_number:chain_name);
cf.setStringProperty(XMSC_WPM_SSL_KEY_REPOSITORY, key_repository_pathname);
cf.setStringProperty(XMSC_WPM_TARGET_TRANSPORT_CHAIN, transport_chain);
cf.setStringProperty(XMSC_WPM_SSL_CIPHER_SUITE, cipher_suite);
cf.setStringProperty(XMSC_WPM_SSL_KEYRING_STASH_FILE, stash_file_pathname);

Where chain_name should be set to either BootstrapTunneledSecureMessaging or
BootstrapSecureMessaging, and port_number is the number of the port on which
the bootstrap server listens for incoming requests.

The following is an example of ConnectionFactory properties for secure
connections to a WebSphere integration messaging engine with sample values
inserted:

/* CF properties needed for an SSL connection */
cf.setStringProperty(XMSC_WPM_PROVIDER_ENDPOINTS,"localhost:7286:BootstrapSecureMessaging");
cf.setStringProperty(XMSC_WPM_TARGET_TRANSPORT_CHAIN,"InboundSecureMessaging");
cf.setStringProperty(XMSC_WPM_SSL_KEY_REPOSITORY,"C:\\Program Files\\IBM\\gsk7\\bin\\XMSkey.kdb");
cf.setStringProperty(XMSC_WPM_SSL_KEYRING_STASH_FILE,"C:\\Program Files\\IBM\\gsk7\\bin\\XMSkey.sth");
cf.setStringProperty(XMSC_WPM_SSL_CIPHER_SUITE,"SSL_RSA_EXPORT_WITH_RC4_40_MD5");

Chapter 9. Securing communications for XMS applications 89

CipherSuite and CipherSpec name mappings for connections
to a WebSphere service integration bus

Because GSKit uses CipherSpecs rather than CipherSuites, the JSSE-style
CipherSuite names specified in the XMSC_WPM_SSL_CIPHER_SUITE property
must be mapped to the GSKit-style CipherSpec names.

Table 26 lists the equivalent CipherSpec for each recognized CipherSuite.

Table 26. Available CipherSuites and their equivalent CipherSpecs

CipherSuite CipherSpec equivalent

SSL_RSA_WITH_NULL_MD5 NULL_MD5

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RC4_MD5_EXPORT

SSL_RSA_WITH_RC4_128_MD5 RC4_MD5_US

SSL_RSA_WITH_NULL_SHA NULL_SHA

SSL_RSA_WITH_RC4_128_SHA RC4_SHA_US

SSL_RSA_WITH_DES_CBC_SHA DES_SHA_EXPORT

SSL_RSA_FIPS_WITH_DES_CBC_SHA FIPS_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA TRIPLE_DES_SHA_US

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA FIPS_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_NULL_SHA256 TLS_RSA_WITH_NULL_SHA256

TLS_RSA_WITH_AES_128_GCM_SHA256 TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384 TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_RSA_WITH_RC4_128_SHA TLS_ECDHE_RSA_WITH_RC4_128_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_RC4_128_SHA TLS_RSA_WITH_RC4_128_SHA

90 WebSphere MQ: Message Service Client for C/C++

Chapter 10. XMS messages

This sectionchapter describes the structure and content of XMS messages and
explains how applications process XMS messages.

This chapter contains the following sections:
v “Parts of an XMS message”
v “Header fields in an XMS message”
v “Properties of an XMS message” on page 92
v “The body of an XMS message” on page 95
v “Message selectors” on page 100
v “Mapping XMS messages onto WebSphere MQ messages” on page 101

Parts of an XMS message
An XMS message consists of a header, a set of properties, and a body.

Header
The header of a message contains fields, and all messages contain the same
set of header fields. XMS and applications use the values of the header
fields to identify and route messages. For more information about header
fields, see “Header fields in an XMS message.”

Set of properties
The properties of a message specify additional information about the
message. Although all messages have the same set of header fields, every
message can have a different set of properties. For more information, see
“Properties of an XMS message” on page 92.

Body The body of a message contains application data. For more information,
see “The body of an XMS message” on page 95.

An application can select which messages it wants to receive. It does this by using
message selectors, which specify the selection criteria. The criteria can be based on
the values of certain header fields and the values of any of the properties of a
message. For more information about message selectors, see “Message selectors”
on page 100.

Header fields in an XMS message
To allow an XMS application to exchange messages with a WebSphere JMS
application, the header of an XMS message contains the JMS message header
fields.

The names of these header fields commence with the prefix JMS. For a description
of the JMS message header fields, see the Java Message Service Specification, Version
1.1.

XMS implements the JMS message header fields as attributes of a Message object.
Each header field has its own methods for setting and getting its value. For a
description of these methods, see “Message” on page 164 for C, or “Message” on
page 311 for C++. A header field is always readable and writable.

© IBM Corporation 2005 © IBM 2005, 2013 91

Table 27 lists the JMS message header fields and indicates how the value of each
field is set for a transmitted message. Some of the fields are set automatically by
XMS when an application sends a message or, in the case of JMSRedelivered, when
an application receives a message.

Table 27. JMS message header fields

Name of the JMS message
header field

How the value is set for a transmitted message (in the
format method [class])

JMSCorrelationID Set JMSCorrelationID [Message]

JMSDeliveryMode Send [MessageProducer]

JMSDestination Send [MessageProducer]

JMSExpiration Send [MessageProducer]

JMSMessageID Send [MessageProducer]

JMSPriority Send [MessageProducer]

JMSRedelivered Receive [MessageConsumer]

JMSReplyTo Set JMSReplyTo [Message]

JMSTimestamp Send [MessageProducer]

JMSType Set JMSType [Message]

Properties of an XMS message
XMS supports three kinds of message property: JMS defined properties, IBM
defined properties, and application-defined properties.

An XMS application can exchange messages with a WebSphere JMS application
because XMS supports the following predefined properties of a Message object:
v The same JMS-defined properties that WebSphere JMS supports. The names of

these properties begin with the prefix JMSX.
v The same IBM-defined properties that WebSphere JMS supports. The names of

these properties begin with the prefix JMS_IBM_.

Each predefined property has two names:
v A JMS name, for a JMS-defined property, or a WebSphere JMS name, for an

IBM-defined property.
This is the name by which the property is known in JMS or WebSphere JMS, and
it is also the name that is transmitted with a message that has this property. An
XMS application uses this name to identify the property in a message selector
expression.

v An XMS name to identify the property in all situations except in a message
selector expression. Each XMS name is defined as a named constant in one of
the header files, xmsc.h, xmsc_rtt.h, xmsc_wmq.h, or xmsc_wpm.h. The value of the
named constant is the corresponding JMS or WebSphere JMS name

In addition to the predefined properties, an XMS application can create and use its
own set of message properties. These properties are called application defined
properties.

For information about getting and setting the properties of messages, see “Object
Properties in C” on page 58 or “Properties in C++” on page 67.

92 WebSphere MQ: Message Service Client for C/C++

After an application creates a message, the properties of the message are readable
and writable. The properties remain readable and writable after the application
sends the message. When an application receives a message, the properties of the
message are read-only. If an application calls the Clear Properties method of the
Message class when the properties of a message are read-only, the properties
become readable and writable. The method also clears the properties.

The received message, when forwarded after clearing up the message properties,
will behave in a manner consistent with the behavior of forwarding a standard
WMQ XMS for C/C++ BytesMessage with message properties cleared up.

This is, however, not recommended since the following properties will be lost:
v JMS_IBM_Encoding property value, implying that the message data cannot be

decoded meaningfully.
v JMS_IBM_Format property value, implying that the header chaining between the

(MQMD or the new MQRFH2) message header and existing headers would be
broken.

To determine the values of all the properties of a message, an application can call
the Get Properties method of the Message class. The method creates an iterator
that encapsulates a list of Property objects, where each Property object represents a
property of the message. The application can then use the methods of the Iterator
class to retrieve each Property object in turn, and it can use the methods of the
Property class to retrieve the name, data type, and value of each property. For a
sample fragment of C code that performs a similar function, see “Iterators” on
page 45.

JMS-defined properties of a message
Several JMS-defined properties of a message are supported by both XMS and
WebSphere JMS.

Table 28 lists the JMS-defined properties of a message that are supported by both
XMS and WebSphere JMS. For a description of the JMS-defined properties, see Java
Message Service Specification, Version 1.1. The JMS-defined properties are not valid
for a real-time connection to a broker.

The table specifies the data type of each property and indicates how the value of
the property is set for a transmitted message. Some of the properties are set
automatically by XMS when an application sends a message or, in the case of
JMSXDeliveryCount, when an application receives a message.

Table 28. JMS-defined properties of a message

XMS name of the JMS
defined property JMS name Data type

How the value is set for a transmitted
message (in the format method [class])

JMSX_APPID JMSXAppID String Send [MessageProducer]

JMSX_DELIVERY_COUNT JMSXDeliveryCount xmsINT Receive [MessageConsumer]

JMSX_GROUPID JMSXGroupID String Set String Property [PropertyContext]

JMSX_GROUPSEQ JMSXGroupSeq xmsINT Set Integer Property [PropertyContext]

JMSX_USERID JMSXUserID String Send [MessageProducer]

Chapter 10. XMS messages 93

IBM-defined properties of a message
Several IBM-defined properties of a message are supported by XMS and
WebSphere JMS.

Table 29 lists the IBM defined properties of a message that are supported by both
XMS and WebSphere JMS. For more information about the IBM-defined properties,
see WebSphere MQ Using Java or the WebSphere Application Server Information
Center.

The table specifies the data type of each property and indicates how the value of
the property is set for a transmitted message. Some of the properties are set
automatically by XMS when an application sends a message.

Table 29. IBM-defined properties of a message

XMS name of the IBM defined
property WebSphere JMS name Data type

How the value is set
for a transmitted
message (in the
format method [class])

JMS_IBM_CHARACTER_SET JMS_IBM_Character_Set xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_ENCODING JMS_IBM_Encoding xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_EXCEPTIONMESSAGE JMS_IBM_ExceptionMessage String Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONREASON JMS_IBM_ExceptionReason xmsINT Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONTIMESTAMP JMS_IBM_ExceptionTimestamp xmsLONG Receive
[MessageConsumer]

JMS_IBM_EXCEPTIONPROBLEM
DESTINATION

JMS_IBM_ExceptionProblemDestination String Receive
[MessageConsumer]

JMS_IBM_FEEDBACK JMS_IBM_Feedback xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_FORMAT JMS_IBM_Format String Set String Property
[PropertyContext]

JMS_IBM_LAST_MSG_IN_GROUP JMS_IBM_Last_Msg_In_Group xmsBOOL Set Integer Property
[PropertyContext]

JMS_IBM_MSGTYPE JMS_IBM_MsgType xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_PUTAPPLTYPE JMS_IBM_PutApplType xmsINT Send
[MessageProducer]

JMS_IBM_PUTDATE JMS_IBM_PutDate String Send
[MessageProducer]

JMS_IBM_PUTTIME JMS_IBM_PutTime String Send
[MessageProducer]

JMS_IBM_REPORT_COA JMS_IBM_Report_COA xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_COD JMS_IBM_Report_COD xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_DISCARD_MSG JMS_IBM_Report_Discard_Msg xmsINT Set Integer Property
[PropertyContext]

94 WebSphere MQ: Message Service Client for C/C++

Table 29. IBM-defined properties of a message (continued)

XMS name of the IBM defined
property WebSphere JMS name Data type

How the value is set
for a transmitted
message (in the
format method [class])

JMS_IBM_REPORT_EXCEPTION JMS_IBM_Report_Exception xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_EXPIRATION JMS_IBM_Report_Expiration xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_NAN JMS_IBM_Report_NAN xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PAN JMS_IBM_Report_PAN xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PASS_CORREL_
ID

JMS_IBM_Report_Pass_Correl_ID xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_REPORT_PASS_MSG_ID JMS_IBM_Report_Pass_Msg_ID xmsINT Set Integer Property
[PropertyContext]

JMS_IBM_SYSTEM_MESSAGEID JMS_IBM_System_MessageID String Send
[MessageProducer]

Application-defined properties of a message
An XMS application can create and use its own set of message properties. When
an application sends a message, these properties are also transmitted with the
message. A receiving application, using message selectors, can then select which
messages it wants to receive based on the values of these properties.

To allow a WebSphere JMS application to select and process messages sent by an
XMS application, the name of an application-defined property must conform to the
rules for forming identifiers in message selector expressions, as documented in
WebSphere MQ Using Java. The value of an application-defined property must have
one of the following data types: xmsBOOL, xmsSBYTE, xmsSHORT, xmsINT,
xmsLONG, xmsFLOAT, xmsDOUBLE, or String (or character array, if you are
using the C interface).

The body of an XMS message
The body of a message contains application data. However, a message can have no
body, and comprise only the header fields and properties.

XMS supports five types of message body:

Bytes The body contains a stream of bytes. A message with this type of body is
called a bytes message. The BytesMessage class for C or C++ contains the
methods to process the body of a bytes message. For more information, see
“Bytes messages” on page 97.

Map The body contains a set of name-value pairs, where each value has an
associated data type. A message with this type of body is called a map
message. The MapMessage class for C or C++contains the methods to
process the body of a map message. For more information, see “Map
messages” on page 98.

Object
The body contains a serialized Java object. A message with this type of

Chapter 10. XMS messages 95

body is called an object message. The ObjectMessage class for C or
C++contains the methods to process the body of an object message. For
more information, see “Object messages” on page 98.

Stream
The body contains a stream of values, where each value has an associated
data type. A message with this type of body is called a stream message. The
StreamMessage class for C or C++contains the methods to process the
body of a stream message. For more information, see “Stream messages”
on page 99.

Text The body contains a string. A message with this type of body is called a
text message. The TextMessage class for C or C++ and contains the methods
to process the body of a text message. For more information, see “Text
messages” on page 100.

In the C interface, XMS returns a message handle to an application when the
application creates a message. The application can use this handle to call any of
the methods of the Message class and any of the methods of the BytesMessage,
MapMessage, ObjectMessage, StreamMessage, or TextMessage class, whichever is
appropriate for the type of message body. However, if an application tries to call a
method that is inappropriate for the type of message body, the call fails and XMS
returns an error.

A C application can call the xmsMsgGetTypeId() function to determine the body
type of a message. The function returns one of the following values:

XMS_MESSAGE_TYPE_BASE
If the message has no body

XMS_MESSAGE_TYPE_BYTES
If the message is a bytes message

XMS_MESSAGE_TYPE_MAP
If the message is a map message

XMS_MESSAGE_TYPE_OBJECT
If the message is an object message

XMS_MESSAGE_TYPE_STREAM
If the message is a stream message

XMS_MESSAGE_TYPE_TEXT
If the message is a text message

In the C++ interface, BytesMessage, MapMessage, ObjectMessage, StreamMessage,
and TextMessage are subclasses of the Message class.

For information about the size and maximum and minimum values of each of
these data types, see Table 8 on page 42.

For more information about the required data types for elements of application
data written in the body of a message and about the five types of body message,
see the subtopics.

Data types for elements of application data
To ensure that an XMS application can exchange messages with a WebSphere MQ
JMS application, both the applications must be able to interpret the application
data in the body of a message in the same way.

96 WebSphere MQ: Message Service Client for C/C++

For this reason, each element of application data written in the body of a message
by an XMS application must have one of the data types listed in Table 30. For each
XMS data type, the table shows the compatible Java data type. XMS provides the
methods to write elements of application data only with these data types.

Table 30. XMS data types that are compatible with Java data types

XMS data type Represents
Compatible Java
data type

xmsBOOL The boolean value xmsTRUE or xmsFALSE boolean

xmsCHAR16 Double byte character char

xmsSBYTE Signed 8-bit integer byte

xmsSHORT Signed 16-bit integer short

xmsINT Signed 32-bit integer int

xmsLONG Signed 64-bit integer long

xmsFLOAT Signed floating point number float

xmsDOUBLE Signed double precision floating point number double

String String of characters String

For information about the size, maximum value and minimum value of each of
these data types, see “XMS primitive types” on page 42.

Bytes messages
The body of a bytes message contains a stream of bytes. The body contains only
the actual data, and it is the responsibility of the sending and receiving
applications to interpret this data.

Bytes messages are particularly useful if an XMS application needs to exchange
messages with applications that are not using the XMS or JMS application
programming interface.

After an application creates a bytes message, the body of the message is write-only.
The application assembles the application data into the body by calling the
appropriate write methods of the BytesMessage class (for C or C++). Each time the
application writes a value to the bytes message stream, the value is assembled
immediately after the previous value written by the application. XMS maintains an
internal cursor to remember the position of the last byte that was assembled.

When the application sends the message, the body of the message becomes
read-only. In this mode, the application can send the message repeatedly.

When an application receives a bytes message, the body of the message is
read-only. The application can use the appropriate read methods of the
BytesMessage class or IBytesMessage interface to read the contents of the bytes
message stream. The application reads the bytes in sequence, and XMS maintains
an internal cursor to remember the position of the last byte that was read.

In the case of C only, an application can skip over bytes without reading them by
calling a read function with a null pointer for the value parameter or by calling
xmsBytesMsgReadBytes(). For information about how to skip over a string, see
“xmsBytesMsgReadUTF – Read UTF String” on page 122.

Chapter 10. XMS messages 97

If an application calls the Reset method of the BytesMessage class or
IBytesMessage interface when the body of a bytes message is write-only, the body
becomes read-only. The method also repositions the cursor at the beginning of the
bytes message stream.

If an application calls the Clear Body method of the Message class for C or C++
when the body of a bytes message is read-only, the body becomes write-only. The
method also clears the body.

Map messages
The body of a map message contains a set of name-value pairs, where each value
has an associated data type.

In each name-value pair, the name is a string that identifies the value, and the
value is an element of application data that has one of the XMS data types listed in
Table 30 on page 97. The order of the name-value pairs is not defined. The
MapMessage class contains the methods to set and get name-value pairs.

An application can access a name-value pair randomly by specifying its name.
Alternatively, a C or C++ application can access the name-value pairs sequentially
using an iterator. The application can call the Get Name-Value Pairs method of the
MapMessage class to create an iterator that encapsulates a list of Property objects,
where each Property object encapsulates a name-value pair. The application can
then use the methods of the Iterator class to retrieve each Property object in turn,
and it can use the methods of the Property class to retrieve the name, data type,
and value of each name-value pair. Although a name-value pair is not a property,
the methods of the Property class treat a name-value pair like a property.
CONFIRM THAT WHOLE OF THIS APPLIES TO C/C++

When an application gets the value of a name-value pair, the value can be
converted by XMS into another data type. For example, to get an integer from the
body of a map message, an application can call the Get String method of the
MapMessage class, which returns the integer as a string. The supported
conversions are the same as those that are supported when XMS converts a
property value from one data type to another. For more information about the
supported conversions, see “Implicit conversion of a property value from one data
type to another” on page 43.

After an application creates a map message, the body of the message is readable
and writable. The body remains readable and writable after the application sends
the message. When an application receives a map message, the body of the
message is read-only. If an application calls the Clear Body method of the Message
class when the body of a map message is read-only, the body becomes readable
and writable. The method also clears the body.

Object messages
The body of an object message contains a serialized Java object.

An XMS application can receive an object message, change its header fields and
properties, and then send it to another destination. An application can also copy
the body of an object message and use it to form another object message. XMS
treats the body of an object message as an array of bytes.

After an application creates an object message, the body of the message is readable
and writable. The body remains readable and writable after the application sends

98 WebSphere MQ: Message Service Client for C/C++

the message. When an application receives an object message, the body of the
message is read-only. If an application calls the Clear Body method of the Message
class for C or C++ when the body of an object message is read-only, the body
becomes readable and writable. The method also clears the body.

Stream messages
The body of a stream message contains a stream of values, where each value has
an associated data type.

The data type of a value is one of the XMS data types listed in Table 30 on page
97.

After an application creates a stream message, the body of the message is
write-only. The application assembles the application data into the body by calling
the appropriate write methods of the StreamMessage class for C or C++. Each time
the application writes a value to the message stream, the value and its data type
are assembled immediately after the previous value written by the application.
XMS maintains an internal cursor to remember the position of the last value that
was assembled.

When the application sends the message, the body of the message becomes
read-only. In this mode, the application can send the message multiple times.

When an application receives a stream message, the body of the message is
read-only. The application can use the appropriate read methods of the
StreamMessage class for C or C++ to read the contents of the message stream. The
application reads the values in sequence, and XMS maintains an internal cursor to
remember the position of the last value that was read.

Using the C interface only, an application can skip over a value without reading it
by calling a read function with a null pointer for the value parameter or by calling
xmsStreamMsgReadBytes() or xmsStreamMsgReadObject() for the buffer parameter.
For information about how to skip over a value that is a string, see
“xmsStreamMsgReadString – Read String” on page 252.

When an application reads a value from the message stream, the value can be
converted by XMS into another data type. For example, to read an integer from the
message stream, an application can call the Read String method, which returns the
integer as a string. The supported conversions are the same as those that are
supported when XMS converts a property value from one data type to another. For
more information about the supported conversions, see “Implicit conversion of a
property value from one data type to another” on page 43.

If an error occurs while an application is attempting to read a value from the
message stream, the cursor is not advanced. The application can recover from the
error by attempting to read the value as another data type.

If an application calls the Reset method of the StreamMessage class for C or C++
when the body of a stream message is write-only, the body becomes read-only. The
method also repositions the cursor at the beginning of the message stream.

If an application calls the Clear Body method of the Message class for C or C++
when the body of a stream message is read-only, the body becomes write-only. The
method also clears the body.

Chapter 10. XMS messages 99

Text messages
The body of a text message contains a string.

After an application creates a text message, the body of the message is readable
and writable. The body remains readable and writable after the application sends
the message. When an application receives a text message, the body of the message
is read-only. If an application calls the Clear Body method of the Message class for
C or C++ when the body of a text message is read-only, the body becomes
readable and writable. The method also clears the body.

Message selectors
An XMS application uses messages selectors to select the messages it wants to
receive.

When an application creates a message consumer, it can associate a message
selector expression with the consumer. The message selector expression specifies
the selection criteria.

When an application is connecting to WebSphere MQ V7.0 and above queue
manager, the message selection is done at the queue manager side. XMS without
doing any selection delivers the message it received from the queue manager, thus
providing better performance.

Except for selecting messages by message identifier or correlation identifier, all
message selection in previous releases of WebSphere MQ was done by Message
Service Client for C/C++. In WebSphere MQ V7.0 and above, all message selection
is done by the queue manager on all platforms except z/OS®. For an application
connected to a z/OS queue manager, message selection is done by the queue
manager in the publish/subscribe domain, but is still done by Message Service
Client for C/C++ in the point-to-point domain.

As a result, message throughput is increased for applications that consume
messages using message selection, where the message selection is done by the
queue manager. The performance improvement is greater for an application that
connects in the client mode because only those messages that satisfy the selection
criteria are transported over the network, and Message Service Client for C/C++
sees only those messages that it delivers to the application.

However when an application is connecting to WebSphere MQ V6.0 and below,
WebSphere Event Broker, WebSphere Message Broker, or WebSphere Service
Integration Bus, XMS determines whether each incoming message satisfies the
selection criteria. If a message satisfies the selection criteria, XMS delivers the
message to the message consumer. If a message does not meet the selection
criteria, XMS does not deliver the message to the message consumer. In the
point-to-point domain, the message remains on the queue.

An application can create more than one message consumer, each with its own
message selector expression. If an incoming message meets the selection criteria of
more than one message consumer, XMS delivers the message to each of these
consumers.

A message selector expression can see the following properties of a message:
v JMS-defined properties
v IBM-defined properties

100 WebSphere MQ: Message Service Client for C/C++

v Application-defined properties

It can also see the following message header fields:
v JMSCorrelationID
v JMSDeliveryMode
v JMSMessageID
v JMSPriority
v JMSTimestamp
v JMSType

A message selector expression, however, cannot reference data in the body of a
message.

Here is an example of a message selector expression:
JMSPriority > 3 AND manufacturer = ’Jaguar’ AND model in (’xj6’,’xj12’)

XMS delivers a message to a message consumer with this message selector
expression only if the message has a priority greater than 3; an application-defined
property, manufacturer, with a value of Jaguar; and another application
defined-property, model, with a value of xj6 or xj12.

The syntax rules for forming a message selector expression in XMS are the same as
the one in WebSphere MQ JMS. For information about how to construct a message
selector expression, see WebSphere MQ Using Java. Note that, in a message selector
expression, the names of JMS-defined properties must be the JMS names, and the
names of IBM-defined properties must be the WebSphere MQ JMS names. You
cannot use the XMS names in a message selector expression.

Mapping XMS messages onto WebSphere MQ messages
The JMS header fields and properties of an XMS message are mapped onto fields
in the header structures of a WebSphere MQ message.

When an XMS application is connected to a WebSphere MQ queue manager,
messages sent to the queue manager are mapped onto WebSphere MQ messages in
the same way that WebSphere MQ JMS messages are mapped onto WebSphere MQ
messages in similar circumstances.

If the XMSC_WMQ_TARGET_CLIENT property of a Destination object is set to
XMSC_WMQ_TARGET_DEST_JMS, the JMS header fields and properties of a
message sent to the destination are mapped onto fields in the MQMD and
MQRFH2 header structures of the WebSphere MQ message. Setting the
XMSC_WMQ_TARGET_CLIENT property in this way assumes that the application
that receives the message can handle an MQRFH2 header. The receiving
application might therefore be another XMS application, a WebSphere MQ JMS
application, or a native WebSphere MQ application that has been designed to
handle an MQRFH2 header.

If the XMSC_WMQ_TARGET_CLIENT property of a Destination object is set to
XMSC_WMQ_TARGET_DEST_MQ instead, the JMS header fields and properties of
a message sent to the destination are mapped onto fields in the MQMD header
structure of the WebSphere MQ message. The message does not contain an
MQRFH2 header, and any JMS header fields and properties that cannot be mapped

Chapter 10. XMS messages 101

onto fields in the MQMD header structure are ignored. The application that
receives the message can therefore be a native WebSphere MQ that has not been
designed to handle an MQRFH2 header.

WebSphere MQ messages received from a queue manager are mapped onto XMS
messages in the same way that WebSphere MQ messages are mapped onto
WebSphere MQ JMS messages in similar circumstances.

If an incoming WebSphere MQ message has an MQRFH2 header, the resulting
XMS message has a body whose type is determined by the value of the Msd
property contained in the mcd folder of the MQRFH2 header. If the Msd property
is not present in the MQRFH2 header, or if the WebSphere MQ message has no
MQRFH2 header, the resulting XMS message has a body whose type is determined
by the value of the Format field in the MQMD header. If the Format field is set to
MQFMT_STRING, the XMS message is a text message. Otherwise, the XMS
message is a bytes message. If the WebSphere MQ message has no MQRFH2
header, only those JMS header fields and properties that can be derived from fields
in the MQMD header are set.

For more information about mapping WebSphere MQ JMS messages onto
WebSphere MQ messages, see WebSphere MQ Using Java.

Using the XMS sample applications
This chapter provides information about how to use the sample applications
provided with XMS.

About this task

A number of sample applications are supplied with XMS. The samples provide an
overview of the common features of each API. You can use these sample
applications to verify your installation and messaging server setup, and also for
guidance in building your own applications.

This chapter contains the following topicssections:
v “The sample applications”
v “Running the sample applications” on page 104
v “Building the C or C++ sample applications” on page 105

The sample applications
The sample applications provide an overview of the common features of each API.
You can use them to verify your installation and messaging server setup and your
own applications.

These samples do not cover the whole of the API, but rather provide an overview
of how to use some of the most common features. They are subject to change in
future releases of XMS.

If you require guidance on how to create your own applications, use the sample
applications as a starting point. Look through the sample source code and identify
the key steps to create each required object for your application
(ConnectionFactory, Connection, Session, Destination, and a Producer, or a
Consumer, or both), and to set any specific properties that are needed to specify
how you want your application to work. For additional information, see Chapter 5,
“Developing XMS applications,” on page 25.

102 WebSphere MQ: Message Service Client for C/C++

Table 31 shows the threethree sets of sample applications (one for each API) that
are supplied with XMS.

Table 31. XMS sample applications

Name of sample Description

SampleConsumerC

SampleConsumerCPP

SampleConsumerCS

A message consumer application that consumes messages from
a queue or topic.

SampleProducerC

SampleProducerCPP

SampleConsumerCS

A message producer application that produces messages to a
queue or on a topic.

SampleConfigC

SampleConsumerCS

A configuration application that you can use to create a
file-based administered object repository containing a connection
factory and destination for your particular connection settings.
This administered object repository can then be used with each
of the sample consumer and producer applications.

The samples that support the same functionality in the various APIs have
syntactical differences.
v The sample message consumer and producer applications both support the

following:
– Connections to WebSphere MQ, WebSphere Event Broker, WebSphere

Message Broker (using a real-time connection to a broker), and a WebSphere
service integration bus

– Administered object repository lookups via the initial context interface
– Connections to queues (WebSphere MQ and WebSphere service integration

bus) and topics (WebSphere MQ, real-time connection to a broker, and
WebSphere service integration bus)

– Base, bytes, map, object, stream, and text messages.
v The sample message consumer application supports synchronous and

asynchronous receive modes, and SQL Selector statements.
v The sample message producer application supports persistent and non-persistent

delivery modes.

Both the source and a compiled version are provided for each application.

Operating modes

The samples can operate in one of two modes:
v Simple mode - you can run the samples with the minimum user input.
v Advanced mode - you can customize more finely the way in which the samples

operate.

All the samples are compatible and can therefore operate across languages. For
example, the SampleConsumerCPP application can run in conjunction with the
Sample ProducerCS application.

Chapter 10. XMS messages 103

Where to find the samples

To find out where sample applications for Message Service Client for C/C++ are
installed:
v For AIX, Linux, and Solaris see Table 2 on page 16“What is installed on AIX,

Linux, and Solaris” on page 16.
v For Windows, see Table 3 on page 17“What is installed on Windows (C/C++)”

on page 17.

Running the sample applications
You can run the C and C++ sample applications interactively in either simple or
advanced mode, or noninteractively using auto-generated or custom response files.

Before you begin

Before running any of the supplied sample applications, you must first set up the
messaging server environment so that the applications can connect to a server as
described in Chapter 4, “Setting up the messaging server environment,” on page
21.

For C or C++ sample applications, you must have set up one of the following
environment variables:
v On AIX, the <install_dir>/lib directory on your LIBPATH
v On HP-UX, the <install_dir>/lib directory on your SHLIB_PATH
v On Linux and Solaris, the <install_dir>/lib directory on your

LD_LIBRARY_PATH
v On Windows, the <install_dir>\bin directory on your PATH

About this task

The operation of the C and C++ sample applications is identical for all platforms.

Tip: When you are running a sample application, type ? at any time for help on
what to do next.

The following steps summarize what you need to do to run the C and C++ sample
applications.

Procedure
1. Select the mode in which you want to run the sample application. Type either

Advanced or Simple.
2. Answer the questions. To select the default value, which is shown in the square

brackets at the end of the question, press Enter. To select a different value, type
the appropriate value, and press Enter.
Here is an example question:
Enter connection type [wpm]:

In this case, the default value is wpm (connection to a WebSphere service
integration bus).

Results

When you run the sample applications, response files are generated automatically
in the current working directory. Response file names are in the format

104 WebSphere MQ: Message Service Client for C/C++

<connectiontype>-<sampletype>.rsp; (for example, wpm-producer.rsp). If required,
you can use a generated response file to rerun the sample application with the
same options, without re-entering these options manually.

Building the C or C++ sample applications
When you build a sample C or C++ application, an executable version is created.

Before you begin

To build the C or C++ samples, you must have the appropriate compiler installed
as described in “Operating environments” on page 8.

About this task

This section provides the information that you need to build the C and C++
applications.

Procedure
1. Open a command prompt window.
2. Change to the directory that contains the source and makefile for the sample

application you want to build.
3. Type one of the following commands:

a. If you are using AIX, Linux, or Solaris type make.
b. If you are using Windows, type nmake.

The command builds an executable version of the application in the current
directory. This application has the same name as the folder; for example, if you
are building the C version of the sample message producer application,
SampleProducerC.exe is created in the SampleProducerC folder.

4. Before running the samples, make sure that the directory where you have
installed XMS is specified by the appropriate environment variable:
a. On AIX, the <install_dir>/lib directory must be in the path specified by the

LIBPATH environment variable.
b. On Linux and Solaris, the <install_dir>/lib directory must be in the path

specified by the LD_LIBRARY_PATH environment variable.
c. On Windows, the <install_dir>\bin directory must be in the path specified

by the PATH environment variable.

Note: If the application is built in 64bit mode then on Windows
<install_dir>/bin64 should be added to the PATH environment variable, in
place of <install_dir>/bin and on all other platforms <install_dir>/lib64 should
be added to the appropriate environment variable, in place of <install_dir>/lib.

Chapter 10. XMS messages 105

106 WebSphere MQ: Message Service Client for C/C++

Chapter 11. Troubleshooting

This chapter provides information to help you to detect and deal with problems.

About this task

This chapter provides information to help you with problem determination for
XMS applications, and describes how to configure First Failure Data Capture
(FFDC) and trace for C/C++ applications.

This chapter contains the following sections:
v “Problem determination for C/C++ applications”
v “FFDC and trace configuration for C/C++ applications” on page 109
v “Tips for troubleshooting” on page 111

Problem determination for C/C++ applications
This topic provides information to help you to detect and deal with problems in
XMS C/C++ applications.

This topic contains the following subtopics:
v “Error conditions that can be handled at run time”
v “Error conditions that cannot be handled at run time” on page 108
v “Repeatable failures” on page 108

Error conditions that can be handled at run time
Return codes from API calls are error conditions that can be handled at run time.
The way in which you deal with this type of error depends on whether you are
using the C or C++ API.

How to detect errors at run time

If an application calls a C API function and the call fails, a response with a return
code other than XMS_OK is returned with an XMS error block containing more
information about the reason for the failure. For further details, see “Return codes”
on page 61 and “ErrorBlock” on page 140.

The C++ API throws an exception when a method is used.

An application uses an exception listener to be notified asynchronously of a
problem with a connection. The exception listener is supplied to, and is initialized
using, the XMS C or C++ API. For further information, see “Message and
exception listener functions in C” on page 62 and “Message and exception listeners
in C++” on page 72.

How to handle errors at run time

Some error conditions are an indication that some resource is unavailable, and the
action that an application can take depends on the XMS function that the
application is calling. For example, if a connection fails to connect to the server,
then the application may wish to retry periodically until a connection is made. An

© Copyright IBM Corp. 2005, 2013 107

XMS error block or exception might not contain enough information to determine
what action to take, and, in these situations, there is often a linked error block or
exception that contains more specific diagnostic information.

In the C API, always test for a response with a return code other than XMS_OK,
and always pass an error block on the API call. The action taken usually depends
on which API function is the application using. For further details, see “Error
handling in C” on page 61.

In the C++ API, always include calls to methods in a try block and, to catch all
types of XMS exception, specify the Exception class in the catch construct. For
further details, see “Error handling in C++” on page 70.

The exception listener is an asynchronous error condition path that can be started
at any time. When the exception listener function is started, on its own thread, it is
usually an indication of a more severe failure than a normal XMS API error
condition. Any appropriate action may be taken, but you must be careful to follow
the rules for the XMS threading model as described in “The threading model” on
page 26.

Error conditions that cannot be handled at run time
First Failure Data Capture (FFDC) records can be written in the current working
directory if the XMS library code finds a condition that it cannot handle. If an
FFDC record is written, this often indicates a serious condition, and it is likely that
XMS functions incorrectly because of the same unhandleable condition.

The type of FFDC record that XMS generates depends on the type of failure that
has occurred. There are two distinct types of FFDC record:
v The first type of FFDC record is sometimes, but not always, generated as a result

of a user's own application causing a failure, and usually results in the
application being terminated. This type of failure is often characterized in the
FFDC record as 'Unhandled Exception detected' or 'SIGNAL xx received'. The
FFDC record contains detailed information describing the cause of the failure
and also contains a function stack back-trace which shows the failing function
stack.

v The second type of FFDC record is generated by XMS itself in cases where it has
detected an unexpected condition. Generally, the application continues to run
but, depending upon the reason for which the FFDC record was generated, XMS
API function calls may return negative responses.

Repeatable failures
If you are dealing with a repeatable failure, it might be necessary for you to
capture product trace over an extended period of time to allow the problem to be
diagnosed.

If you need to provide a product trace, either enable trace as advised by the IBM
Support Center representative or as described in “FFDC and trace configuration for
C/C++ applications” on page 109.

It is important that the size of the trace file is large enough to capture the trace
while the repeatable problem occurs. To set the size of the trace file, either use
environment variable XMS_TRACE_FILE_SIZE or use the gxisc executable
command as follows:
alter trace(enabled) tracesize(xxxx)

108 WebSphere MQ: Message Service Client for C/C++

Refer to Table 32 for the descriptions of various environment variable settings for
C/C++ trace.

After the failure that you are tracing has occurred, you must either copy the trace
files or disable the trace using the following command:
gxisc trace(disabled)

This is because trace wraps, which means that leaving trace on would eventually
cause the trace at the point of failure to be lost.

XMS product trace is written in compressed form to gain a performance
advantage. You can format the trace files using the gxitrcfmt tool.

If you are experiencing problems where you do not have access to the information
provided in the error block, you may want to enable the
XMS_FFDC_EXCEPTIONS environment variable. This produces an FFDC record
whenever the XMS API returns an error from a function. The FFDC record contains
full details of the XMS error block to assist in debugging failures.

Refer to “FFDC and trace configuration for C/C++ applications” for more
information on the gxisc and gxitrcfmt commands.

FFDC and trace configuration for C/C++ applications
First Failure Data Capture (FFDC) records are stored in human readable text files
with names that start with the prefix xmsffdc. Trace files are binary and can be
formatted. Trace file names start with the prefix xms.

XMS creates FFDC records and trace files in the current working directory, unless
you specify an alternative location by configuring an XMS environment variable as
described below.

Trace configuration using XMS environment variables

To configure trace for an XMS C or C++ application, set the following XMS
environment variables before running the application:

Questions, comments, and requirements:

The following two queries relate to Feature 95705 raised by Martin Gompertz:

1. I think we need to meet up to discuss Table 1 - in particular how this table indicates in
the "Settings" column how to set the environment variables. I'm looking especially at
XMS_TRACE_ON - the usage of this is quite complex. Indeed I would like to suggest
(will need to get a nod from others though) that the usage of this variable has grown
over time such that it may be better to name it XMS_TRACE_SETUP or even a very
basic XMS_TRACE.

2. Again I will need to discss further with the devt team, but I think it is necessary to
show customers how to run API-only trace. After all, the (default) full trace is usable
only by IBM Support; customers will not be able to make anything of it.

Table 32. Environment variable settings for C/C++ trace

Environment variables Default Settings Meaning

XMS_TRACE_ON Not applicable normal Selected components are traced.

full All components are traced.

Chapter 11. Troubleshooting 109

Table 32. Environment variable settings for C/C++ trace (continued)

Environment variables Default Settings Meaning

partial A comma separated list of component identifiers to
trace. For example, "partial,osa,cal" only traces XMS
components gxiosa and gxical. Use full trace to show
the components that can be traced.

XMS_TRACE_FILE_PATH Current
working
directory

/dirpath/ The directory path that trace and FFDC records are
written to.

XMS creates FFDC and trace files in the current
working directory, unless you specify an alternative
location by setting the environment variable
XMS_TRACE_FILE_PATH to the fully qualified path
name of the directory where you want XMS to create
the FFDC and trace files. You must set this environment
variable before you start the application that you want
to trace, and you must make sure that the user identifier
under which the application runs has the authority to
write to the directory where XMS creates the FFDC and
trace files.

XMS_TRACE_FILE_SIZE 200000 integer The maximum size that XMS product trace can grow to
(in kilobytes), that is, 10 represents 10,000 bytes.

XMS_TRACE_FILE_NUMBER 4 integer The number of files that can be used to store trace
records. (200000 / 4 = 50000 bytes per file.)

Dynamic trace configuration

To configure trace dynamically, use the executable gxisc. You can use gxisc to
enable and disable trace in a running XMS C or C++ application, and to modify
the trace size. You must run gxisc on the same machine as the XMS application.

To invoke gxisc, use the process id of the XMS application for which you want to
alter the trace configuration, as shown in the example below.
gxisc 1234 <enter>
display all <enter>
alter trace(enabled) tracesize(100) <enter>
help <enter>
alter trace(disabled) <enter>
alter <enter>
end

gxisc <enter>
alter pid(1234) trace(enabled) <enter>
end

cat a.file <enter>

alter pid(1234) trace(enabled)
end

cat a.file | gxisc <enter>

cat b.file <enter>

alter trace(disabled) tracesize(1000)
end

cat b.file | gxisc 1234 <enter>

110 WebSphere MQ: Message Service Client for C/C++

Note: Trace settings are not retained after the XMS C or C++ application
terminates.

Trace file formatting

To minimize processing and disk overheads at runtime, XMS outputs trace in a
binary format into one or more trace files with the extension .trc. You can format
trace files by using the executable gxitrcfmt, as shown in the following example:
gxitrcfmt xms01234.trc

A formatted file has the suffix txt, for example:
cat xms01234.trc.txt

Tips for troubleshooting
Use these tips to help you troubleshoot problems with using XMS.

An XMS application cannot connect to a queue manager (not
authorized)

The XMS C/C++ clients may have different behavior from that of theWebSphere
MQ JMS client. Therefore, you may find that your XMS application cannot connect
to your queue manager, although your JMS application can.

The XMS C/C++ client may have different behavior from that of theWebSphere
MQ JMS client. Therefore, you may find that your XMS application cannot connect
to your queue manager, although your JMS application can.
v A simple solution to this problem is to try using a userid that is no more than 12

characters long and is authorized completely in the queue manager's authority
list. If this solution is not ideal, a different but more complex approach would be
to use security exits. If you need further help on this issue, contact IBM Support
for assistance.

v If you set the XMSC_USERID property of the connection factory, it must match
the userid and password of the logged on user. If you do not set this property,
the queue manager will use the userid of the logged on user by default.

Chapter 11. Troubleshooting 111

112 WebSphere MQ: Message Service Client for C/C++

Chapter 12. C classes

This topic documents the C classes and their functions.

The following table summarizes all the classes.

Table 33. Summary of the C classes

Class Description

“BytesMessage” on page 114 A bytes message is a message whose body
comprises a stream of bytes.

“Connection” on page 127 A Connection object represents an
application's active connection to a broker.

“ConnectionFactory for the C class” on page
132

An application uses a connection factory to
create a connection.

“ConnectionMetaData” on page 135 A ConnectionMetaData object provides
information about a connection.

“Destination for the C class” on page 136 A destination is where an application sends
messages, or it is a source from which an
application receives messages, or both.

“ErrorBlock” on page 140 If a C function call fails, XMS can store
information about why the call failed in an
error block.

“ExceptionListener” on page 144 An application uses an exception listener to
be notified asynchronously of a problem
with a connection.

“InitialContext” on page 145 An application uses an InitialContext object
to create objects from object definitions that
are retrieved from a repository of
administered objects.

“Iterator” on page 147 An iterator encapsulates a list of objects. An
application uses an iterator to access each
object in turn.

“MapMessage” on page 149 A map message is a message whose body
comprises a set of name-value pairs, where
each value has an associated data type.

“Message” on page 164 A Message object represents a message that
an application sends or receives.

“MessageConsumer” on page 180 An application uses a message consumer to
receive messages sent to a destination.

“MessageListener” on page 184 An application uses a message listener to
receive messages asynchronously.

“MessageProducer” on page 185 An application uses a message producer to
send messages to a destination.

“ObjectMessage” on page 194 An object message is a message whose body
comprises a serialized Java object.

“Property” on page 196 A Property object represents a property of
an object.

© Copyright IBM Corp. 2005, 2013 113

Table 33. Summary of the C classes (continued)

Class Description

“PropertyContext” on page 211 The PropertyContext class contains functions
that get and set properties. These functions
can operate on any object that can have
properties.

“QueueBrowser” on page 228 An application uses a queue browser to
browse messages on a queue without
removing them.

“Requestor” on page 230 An application uses a requestor to send a
request message and then wait for, and
receive, the reply.

“Session” on page 232 A session is a single threaded context for
sending and receiving messages.

“StreamMessage” on page 245 A stream message is a message whose body
comprises a stream of values, where each
value has an associated data type.

“TextMessage” on page 259 A text message is a message whose body
comprises a string.

The definition of each function lists the exception codes that XMS might return if it
detects an error while processing a call to the function. Each exception code is
represented by its named constant.

BytesMessage
A bytes message is a message whose body comprises a stream of bytes.

Functions
Summary of functions:

Function Description
xmsBytesMsgGetBodyLengthGet the length of the body of the message when the body of the

message is read-only.
xmsBytesMsgReadBoolean Read a boolean value from the bytes message stream.
xmsBytesMsgReadByte Read the next byte from the bytes message stream as a signed

8-bit integer.
xmsBytesMsgReadBytes Read an array of bytes from the bytes message stream starting

from the current position of the cursor.
xmsBytesMsgReadBytesByRefGet a pointer to the start of the bytes message stream and get

the length of the stream.
xmsBytesMsgReadChar Read the next 2 bytes from the bytes message stream as a

character.
xmsBytesMsgReadDouble Read the next 8 bytes from the bytes message stream as a

double precision floating point number.
xmsBytesMsgReadFloat Read the next 4 bytes from the bytes message stream as a

floating point number.
xmsBytesMsgReadInt Read the next 4 bytes from the bytes message stream as a signed

32-bit integer.
xmsBytesMsgReadLong Read the next 8 bytes from the bytes message stream as a signed

64-bit integer.
xmsBytesMsgReadShort Read the next 2 bytes from the bytes message stream as a signed

16-bit integer.

114 WebSphere MQ: Message Service Client for C/C++

Function Description
xmsBytesMsgReadUnsignedByteRead the next byte from the bytes message stream as an

unsigned 8-bit integer.
xmsBytesMsgReadUnsignedShortRead the next 2 bytes from the bytes message stream as an

unsigned 16-bit integer.
xmsBytesMsgReadUTF Read a string, encoded in UTF-8, from the bytes message stream.
xmsBytesMsgReset Put the body of the message into read-only mode and reposition

the cursor at the beginning of the bytes message stream.
xmsBytesMsgWriteBoolean Write a boolean value to the bytes message stream.
xmsBytesMsgWriteByte Write a byte to the bytes message stream.
xmsBytesMsgWriteBytes Write an array of bytes to the bytes message stream.
xmsBytesMsgWriteChar Write a character to the bytes message stream as 2 bytes, high

order byte first.
xmsBytesMsgWriteDouble Convert a double precision floating point number to a long

integer and write the long integer to the bytes message stream
as 8 bytes, high order byte first.

xmsBytesMsgWriteFloat Convert a floating point number to an integer and write the
integer to the bytes message stream as 4 bytes, high order byte
first.

xmsBytesMsgWriteInt Write an integer to the bytes message stream as 4 bytes, high
order byte first.

xmsBytesMsgWriteLong Write a long integer to the bytes message stream as 8 bytes, high
order byte first.

xmsBytesMsgWriteShort Write a short integer to the bytes message stream as 2 bytes,
high order byte first.

xmsBytesMsgWriteUTF Write a string, encoded in UTF-8, to the bytes message stream.

xmsBytesMsgGetBodyLength – Get Body Length
Interface:

xmsRC xmsBytesMsgGetBodyLength(xmsHMsg message,
xmsLONG *bodyLength,
xmsHErrorBlock errorBlock);

Get the length of the body of the message when the body of the message is
read-only.

Parameters:

message (input)
The handle for the message.

bodyLength (output)
The length of the body of the message in bytes. The function
returns the length of the whole body regardless of where the
cursor for reading the message is currently positioned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

xmsBytesMsgReadBoolean – Read Boolean Value
Interface:

Chapter 12. C classes 115

xmsRC xmsBytesMsgReadBoolean(xmsHMsg message,
xmsBOOL *value,
xmsHErrorBlock errorBlock);

Read a boolean value from the bytes message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The boolean value that is read. If you specify a null pointer on
input, the function skips over the boolean value without reading it.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadByte – Read Byte
Interface:

xmsRC xmsBytesMsgReadByte(xmsHMsg message,
xmsSBYTE *value,
xmsHErrorBlock errorBlock);

Read the next byte from the bytes message stream as a signed 8-bit integer.

Parameters:

message (input)
The handle for the message.

value (output)
The byte that is read. If you specify a null pointer on input, the
function skips over the byte without reading it.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadBytes – Read Bytes
Interface:

xmsRC xmsBytesMsgReadBytes(xmsHMsg message,
xmsSBYTE *buffer,
xmsINT bufferLength,
xmsINT *returnedLength,
xmsHErrorBlock errorBlock);

116 WebSphere MQ: Message Service Client for C/C++

Read an array of bytes from the bytes message stream starting from the current
position of the cursor.

Parameters:

message (input)
The handle for the message.

buffer (output)
The buffer to contain the array of bytes that is read. If the number
of bytes remaining to be read from the stream before the call is
greater than or equal to the length of the buffer, the buffer is filled.
Otherwise, the buffer is partially filled with all the remaining
bytes.

If you specify a null pointer on input, the function skips over the
bytes without reading them. If the number of bytes remaining to
be read from the stream before the call is greater than or equal to
the length of the buffer, the number of bytes skipped is equal to
the length of the buffer. Otherwise, all the remaining bytes are
skipped.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, no bytes are read into the buffer, but the number of bytes
remaining in the stream, starting from the current position of the
cursor, is returned in the returnedLength parameter, and the cursor
is not advanced.

returnedLength (output)
The number of bytes that are read into the buffer. If the buffer is
partially filled, the value is less than the length of the buffer,
indicating that there are no more bytes remaining to be read. If
there are no bytes remaining to be read from the stream before the
call, the value is XMSC_END_OF_STREAM.

If you specify a null pointer on input, the function returns no
value.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

xmsBytesMsgReadBytesByRef – Read Bytes by Reference
Interface:

xmsRC xmsBytesMsgReadBytesByRef(xmsHMsg message,
xmsSBYTE **stream,
xmsINT *length,
xmsHErrorBlock errorBlock);

Get a pointer to the start of the bytes message stream and get the length of the
stream.

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Chapter 12. C classes 117

Parameters:

message (input)
The handle for the message.

stream (output)
A pointer to the start of the bytes message stream.

length (output)
The number of bytes in the bytes message stream.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

xmsBytesMsgReadChar – Read Character
Interface:

xmsRC xmsBytesMsgReadChar(xmsHMsg message,
xmsCHAR16 *value,
xmsHErrorBlock errorBlock);

Read the next 2 bytes from the bytes message stream as a character.

Parameters:

message (input)
The handle for the message.

value (output)
The character that is read. If you specify a null pointer on input,
the function skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadDouble – Read Double Precision Floating
Point Number
Interface:

xmsRC xmsBytesMsgReadDouble(xmsHMsg message,
xmsDOUBLE *value,
xmsHErrorBlock errorBlock);

Read the next 8 bytes from the bytes message stream as a double precision floating
point number.

Parameters:

message (input)
The handle for the message.

118 WebSphere MQ: Message Service Client for C/C++

value (output)
The double precision floating point number that is read. If you
specify a null pointer on input, the function skips over the bytes
without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadFloat – Read Floating Point Number
Interface:

xmsRC xmsBytesMsgReadFloat(xmsHMsg message,
xmsFLOAT *value,
xmsHErrorBlock errorBlock);

Read the next 4 bytes from the bytes message stream as a floating point number.

Parameters:

message (input)
The handle for the message.

value (output)
The floating point number that is read. If you specify a null pointer
on input, the function skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadInt – Read Integer
Interface:

xmsRC xmsBytesMsgReadInt(xmsHMsg message,
xmsINT *value,
xmsHErrorBlock errorBlock);

Read the next 4 bytes from the bytes message stream as a signed 32-bit integer.

Parameters:

message (input)
The handle for the message.

value (output)
The integer that is read. If you specify a null pointer on input, the
function skips over the bytes without reading them.

Chapter 12. C classes 119

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadLong – Read Long Integer
Interface:

xmsRC xmsBytesMsgReadLong(xmsHMsg message,
xmsLONG *value,
xmsHErrorBlock errorBlock);

Read the next 8 bytes from the bytes message stream as a signed 64-bit integer.

Parameters:

message (input)
The handle for the message.

value (output)
The long integer that is read. If you specify a null pointer on input,
the function skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadShort – Read Short Integer
Interface:

xmsRC xmsBytesMsgReadShort(xmsHMsg message,
xmsSHORT *value,
xmsHErrorBlock errorBlock);

Read the next 2 bytes from the bytes message stream as a signed 16-bit integer.

Parameters:

message (input)
The handle for the message.

value (output)
The short integer that is read. If you specify a null pointer on
input, the function skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

120 WebSphere MQ: Message Service Client for C/C++

v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadUnsignedByte – Read Unsigned Byte
Interface:

xmsRC xmsBytesMsgReadUnsignedByte(xmsHMsg message,
xmsBYTE *value,
xmsHErrorBlock errorBlock);

Read the next byte from the bytes message stream as an unsigned 8-bit integer.

Parameters:

message (input)
The handle for the message.

value (output)
The byte that is read. If you specify a null pointer on input, the
function skips over the byte without reading it.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsBytesMsgReadUnsignedShort – Read Unsigned Short Integer
Interface:

xmsRC xmsBytesMsgReadUnsignedShort(xmsHMsg message,
xmsUSHORT *value,
xmsHErrorBlock errorBlock);

Read the next 2 bytes from the bytes message stream as an unsigned 16-bit integer.

Parameters:

message (input)
The handle for the message.

value (output)
The unsigned short integer that is read. If you specify a null
pointer on input, the function skips over the bytes without reading
them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Chapter 12. C classes 121

xmsBytesMsgReadUTF – Read UTF String
Interface:

xmsRC xmsBytesMsgReadUTF(xmsHMsg message,
xmsCHAR *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Read a string, encoded in UTF-8, from the bytes message stream. If required, XMS
converts the characters in the string from UTF-8 into the local code page.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

message (input)
The handle for the message.

buffer (output)
The buffer to contain the string that is read. If data conversion is
required, this is the string after conversion.

bufferLength (input)
The length of the buffer in bytes.

If you specify XMSC_QUERY_SIZE, the string is not returned, but its
length is returned in the actualLength parameter, and the cursor is
not advanced.

If you specify XMSC_SKIP, the function skips over the string without
reading it.

actualLength (output)
The length of the string in bytes. If data conversion is required,
this is the length of the string after conversion. If you specify a
null pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Notes:

1. If the buffer is not large enough to store the whole string, XMS returns the
string truncated to the length of the buffer, sets the actualLength parameter to
the actual length of the string, and returns an error. XMS does not advance the
internal cursor.

2. If any other error occurs while attempting to read the string, XMS reports the
error but does not set the actualLength parameter or advance the internal
cursor.

xmsBytesMsgReset – Reset
Interface:

122 WebSphere MQ: Message Service Client for C/C++

xmsRC xmsBytesMsgReset(xmsHMsg message,
xmsHErrorBlock errorBlock);

Put the body of the message into read-only mode and reposition the cursor at the
beginning of the bytes message stream.

Parameters:

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

xmsBytesMsgWriteBoolean – Write Boolean Value
Interface:

xmsRC xmsBytesMsgWriteBoolean(xmsHMsg message,
xmsBOOL value,
xmsHErrorBlock errorBlock);

Write a boolean value to the bytes message stream.

Parameters:

message (input)
The handle for the message.

value (input)
The boolean value to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteByte – Write Byte
Interface:

xmsRC xmsBytesMsgWriteByte(xmsHMsg message,
xmsSBYTE value,
xmsHErrorBlock errorBlock);

Write a byte to the bytes message stream.

Parameters:

message (input)
The handle for the message.

value (input)
The byte to be written.

Chapter 12. C classes 123

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteBytes – Write Bytes
Interface:

xmsRC xmsBytesMsgWriteBytes(xmsHMsg message,
xmsSBYTE *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Write an array of bytes to the bytes message stream.

Parameters:

message (input)
The handle for the message.

value (input)
The array of bytes to be written.

length (input)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteChar – Write Character
Interface:

xmsRC xmsBytesMsgWriteChar(xmsHMsg message,
xmsCHAR16 value,
xmsHErrorBlock errorBlock);

Write a character to the bytes message stream as 2 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The character to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

124 WebSphere MQ: Message Service Client for C/C++

xmsBytesMsgWriteDouble – Write Double Precision Floating
Point Number
Interface:

xmsRC xmsBytesMsgWriteDouble(xmsHMsg message,
xmsDOUBLE value,
xmsHErrorBlock errorBlock);

Convert a double precision floating point number to a long integer and write the
long integer to the bytes message stream as 8 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The double precision floating point number to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteFloat – Write Floating Point Number
Interface:

xmsRC xmsBytesMsgWriteFloat(xmsHMsg message,
xmsFLOAT value,
xmsHErrorBlock errorBlock);

Convert a floating point number to an integer and write the integer to the bytes
message stream as 4 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The floating point number to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteInt – Write Integer
Interface:

xmsRC xmsBytesMsgWriteInt(xmsHMsg message,
xmsINT value,
xmsHErrorBlock errorBlock);

Chapter 12. C classes 125

Write an integer to the bytes message stream as 4 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The integer to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteLong – Write Long Integer
Interface:

xmsRC xmsBytesMsgWriteLong(xmsHMsg message,
xmsLONG value,
xmsHErrorBlock errorBlock);

Write a long integer to the bytes message stream as 8 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The long integer to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteShort – Write Short Integer
Interface:

xmsRC xmsBytesMsgWriteShort(xmsHMsg message,
xmsSHORT value,
xmsHErrorBlock errorBlock);

Write a short integer to the bytes message stream as 2 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The short integer to be written.

errorBlock (input)
The handle for an error block or a null handle.

126 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsBytesMsgWriteUTF – Write UTF String
Interface:

xmsRC xmsBytesMsgWriteUTF(xmsHMsg message,
xmsCHAR *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Write a string, encoded in UTF-8, to the bytes message stream. If required, XMS
converts the characters in the string from the local code page into UTF-8.

Parameters:

message (input)
The handle for the message.

value (input)
A character array containing the string to be written.

length (input)
The length of the string in bytes. If the string is null terminated
with no embedded null characters, you can specify
XMSC_CALCULATE_STRING_SIZE instead and allow XMS to calculate
its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Connection
A Connection object represents an application's active connection to a broker.

For a list of the XMS defined properties of a Connection object, see “Properties of
Connection” on page 401.

Functions
Summary of functions:

Function Description
xmsConnClose Close the connection.
xmsConnCreateSession Create a session.
xmsConnGetClientID Get the client identifier for the connection.
xmsConnGetExceptionListenerGet pointers to the exception listener function and context data

that are registered with the connection.
xmsConnGetMetaData Get the metadata for the connection.
xmsConnSetClientID Set a client identifier for the connection.
xmsConnSetExceptionListenerRegister an exception listener function and context data with

the connection.

Chapter 12. C classes 127

Function Description
xmsConnStart Start, or restart the delivery of incoming messages for the

connection.
xmsConnStop Stop the delivery of incoming messages for the connection.

xmsConnClose – Close Connection
Interface:

xmsRC xmsConnClose(xmsHConn *connection,
xmsHErrorBlock errorBlock);

Close the connection.

If an application tries to close a connection that is already closed, the call is
ignored.

Parameters:

connection (input/output)
On input, the handle for the connection. On output, the function
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsConnCreateSession – Create Session
Interface:

xmsRC xmsConnCreateSession(xmsHConn connection,
xmsBOOL transacted,
xmsINT acknowledgeMode,
xmsHSess *session,
xmsHErrorBlock errorBlock);

Create a session.

Parameters:

connection (input)
The handle for the connection.

transacted (input)
The value xmsTRUE means that the session is transacted. The value
xmsFALSE means that the session is not transacted.

For a real-time connection to a broker, the value must be xmsFALSE.

acknowledgeMode (input)
Indicates how messages received by an application are
acknowledged. The value must be one of the following
acknowledgement modes:

XMSC_AUTO_ACKNOWLEDGE

XMSC_CLIENT_ACKNOWLEDGE

XMSC_DUPS_OK_ACKNOWLEDGE

128 WebSphere MQ: Message Service Client for C/C++

For a real-time connection to a broker, the value must be
XMSC_AUTO_ACKNOWLEDGE or XMSC_DUPS_OK_ACKNOWLEDGE.

This parameter is ignored if the session is transacted. For more
information about acknowledgement modes, see “Message
acknowledgement” on page 29.

session (output)
The handle for the session.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsConnGetClientID – Get Client ID
Interface:

xmsRC xmsConnGetClientID(xmsHConn connection,
xmsCHAR *clientID,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the client identifier for the connection.

This function is not valid for a real-time connection to a broker.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

connection (input)
The handle for the connection.

clientID (output)
The buffer to contain the client identifier.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the client identifier is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the client identifier in bytes. If data conversion is
required, this is the length of the client identifier after conversion.
If you specify a null pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 129

xmsConnGetExceptionListener – Get Exception Listener
Interface:

xmsRC xmsConnGetExceptionListener(xmsHConn connection,
fpXMS_EXCEPTION_CALLBACK *lsr,
xmsCONTEXT *context,
xmsHErrorBlock errorBlock);

Get pointers to the exception listener function and context data that are registered
with the connection.

For more information about using exception listener functions, see “Exception
listener functions in C” on page 63.

Parameters:

connection (input)
The handle for the connection.

lsr (output)
A pointer to the exception listener function. If no exception listener
function is registered with the connection, the call returns a null
pointer.

context (output)
A pointer to the context data. If no exception listener function is
registered with the connection, the call returns a null pointer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsConnGetMetaData – Get Metadata
Interface:

xmsRC xmsConnGetMetaData(xmsHConn connection,
xmsHConnMetaData *connectionMetaData,
xmsHErrorBlock errorBlock);

Get the metadata for the connection.

Parameters:

connection (input)
The handle for the connection.

connectionMetaData (output)
The handle for the connection metadata.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

130 WebSphere MQ: Message Service Client for C/C++

xmsConnSetClientID – Set Client ID
Interface:

xmsRC xmsConnSetClientID(xmsHConn connection,
xmsCHAR *clientID,
xmsINT length,
xmsHErrorBlock errorBlock)

Set a client identifier for the connection. A client identifier is used only to support
durable subscriptions in the publish/subscribe domain, and is ignored in the
point-to-point domain.

If an application calls this function to set a client identifier for a connection, the
application must do so immediately after creating the connection, and before
performing any other operation on the connection. If the application tries to call
the function after this point, the function returns exception
XMS_X_ILLEGAL_STATE_EXCEPTION.

This method is not valid for a real-time connection to a broker.

Parameters:

connection (input)
The handle for the connection.

clientID (input)
The client identifier as a character array.

length (input)
The length of the client identifier in bytes. If the client identifier is
null terminated with no embedded null characters, you can specify
XMSC_CALCULATE_STRING_SIZE instead and allow XMS to calculate
its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION
v XMS_X_INVALID_CLIENTID_EXCEPTION

xmsConnSetExceptionListener – Set Exception Listener
Interface:

xmsRC xmsConnSetExceptionListener(xmsHConn connection,
fpXMS_EXCEPTION_CALLBACK lsr,
xmsCONTEXT context,
xmsHErrorBlock errorBlock);

Register an exception listener function and context data with the connection.

For more information about using exception listener functions, see “Exception
listener functions in C” on page 63.

Parameters:

connection (input)
The handle for the connection.

Chapter 12. C classes 131

lsr (input)
A pointer to the exception listener function. If an exception listener
function is already registered with the connection, you can cancel
the registration by specifying a null pointer instead.

context (input)
A pointer to the context data.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsConnStart – Start Connection
Interface:

xmsRC xmsConnStart(xmsHConn connection,
xmsHErrorBlock errorBlock);

Start, or restart the delivery of incoming messages for the connection. The call is
ignored if the connection is already started.

Parameters:

connection (input)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsConnStop – Stop Connection
Interface:

xmsRC xmsConnStop(xmsHConn connection,
xmsHErrorBlock errorBlock);

Stop the delivery of incoming messages for the connection. The call is ignored if
the connection is already stopped.

Parameters:

connection (input)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

ConnectionFactory for the C class
An application uses a connection factory to create a connection.

132 WebSphere MQ: Message Service Client for C/C++

For a list of the XMS defined properties of a ConnectionFactory object, see
“Properties of ConnectionFactory” on page 402.

Functions
Summary of functions:

Function Description
xmsConnFactCreate Create a connection factory with the default properties.
xmsConnFactCreateConnection Create a connection using the default user identity.
xmsConnFactCreateConnectionForUserCreate a connection using a specified user identity.
xmsConnFactDispose Delete the connection factory.

xmsConnFactCreate – Create Connection Factory
Interface:

xmsRC xmsConnFactCreate(xmsHConnFact *factory,
xmsHErrorBlock errorBlock);

Create a connection factory with the default properties.

Parameters:

factory (output)
The handle for the connection factory.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsConnFactCreateConnection – Create Connection (using the
default user identity)
Interface:

xmsRC xmsConnFactCreateConnection(xmsHConnFact factory,
xmsHConn *connection,
xmsHErrorBlock errorBlock);

Create a connection using the default user identity.

If you are connecting to WebSphere MQ, and you set the XMSC_USERID property
of the connection factory, it must match the userid of the logged on user. If you do
not set these properties, the queue manager will use the userid of the logged on
user by default. If you require further connection-level authentication of individual
users you can write a client authentication exit which is configured in WebSphere
MQ. You can learn more about creating a client authentication exit in the
Authentication topic in the WebSphere MQ Clients manual.

The connection is created in stopped mode. No messages are delivered until the
application calls xmsConnStart().

Parameters:

factory (input)
The handle for the connection factory.

Chapter 12. C classes 133

connection (output)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_SECURITY_EXCEPTION

xmsConnFactCreateConnectionForUser – Create Connection
(using a specified user identity)
Interface:

xmsRC xmsConnFactCreateConnectionForUser(xmsHConnFact factory,
xmsCHAR *userID,
xmsCHAR *password,
xmsHConn *connection,
xmsHErrorBock errorBlock);

Create a connection using a specified user identity.

If you are connecting to WebSphere MQ, and you set the XMSC_USERID property
of the connection factory, it must match the userid of the logged on user. If you do
not set these properties, the queue manager will use the userid of the logged on
user by default. If you require further connection-level authentication of individual
users you can write a client authentication exit which is configured in WebSphere
MQ. You can learn more about creating a client authentication exit in the
Authentication topic in the WebSphere MQ Clients manual.

The connection is created in stopped mode. No messages are delivered until the
application calls xmsConnStart().

Parameters:

factory (input)
The handle for the connection factory.

userID (input)
The user identifier to be used to authenticate the application. The
user identifier is in the format of a null terminated string. If the
user identifier is null, the connection factory property
XMSC_USERID is used instead.

password (input)
The password to be used to authenticate the application. The
password is in the format of a null terminated string. If the
password is null, the connection factory property
XMSC_PASSWORD is used instead.

connection (output)
The handle for the connection.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_SECURITY_EXCEPTION

134 WebSphere MQ: Message Service Client for C/C++

xmsConnFactDispose – Delete Connection Factory
Interface:

xmsRC xmsConnFactDispose(xmsHConnFact *factory,
xmsHErrorBlock errorBlock);

Delete the connection factory.

If an application tries to delete a connection factory that is already deleted, the call
is ignored.

Parameters:

factory (input/output)
On input, the handle for the connection factory. On output, the
function returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

ConnectionMetaData
A ConnectionMetaData object provides information about a connection.

For a list of the XMS defined properties of a ConnectionMetaData object, see
“Properties of ConnectionMetaData” on page 406.

Functions
Summary of functions:

Function Description
xmsConnMetaDataGetJMSXPropertiesGet a list of the names of the JMS defined message properties

supported by the connection.

xmsConnMetaDataGetJMSXProperties – Get JMS Defined
Message Properties
Interface:

xmsRC
xmsConnMetaDataGetJMSXProperties(xmsHConnMetaData connectionMetaData,

xmsHIterator *iterator,
xmsHErrorBlock errorBlock);

Get a list of the names of the JMS defined message properties supported by the
connection.

The function returns an iterator that encapsulates a list of Property objects, where
each Property object encapsulates the name of a JMS defined message property.
The application can then use the iterator to retrieve the name of each JMS defined
message property in turn.

JMS defined message properties are not supported by a real-time connection to a
broker.

Chapter 12. C classes 135

Note: The equivalent JMS method performs a slightly different function. The JMS
method returns an enumeration of the names of the JMS defined message
properties.

Parameters:

connectionMetaData (input)
The handle for the connection metadata.

iterator (output)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Destination for the C class
A destination is where an application sends messages, or it is a source from which
an application receives messages, or both.

For a list of the XMS defined properties of a Destination object, see “Properties of
Destination” on page 407.

Functions
Summary of functions:

Function Description
xmsDestCreate Create a destination using the specified uniform resource

identifier (URI).
xmsDestCreateByType Create a destination using the specified destination type and

name.
xmsDestCreateTemporaryByTypeCreate a temporary destination.
xmsDestDispose Delete the destination.
xmsDestGetName Get the name of the destination.
xmsDestGetTypeId Get the type of the destination.
xmsDestToString Get the name of the destination in the format of a uniform

resource identifier (URI).

xmsDestCreate – Create Destination (using a URI)
Interface:

xmsRC xmsDestCreate(xmsCHAR *URI,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

Create a destination using the specified uniform resource identifier (URI).
Properties of the destination that are not specified by the URI take the default
values.

For a destination that is a queue, this function does not create the queue in the
messaging server. You must create the queue before an application can call this
function.

Parameters:

136 WebSphere MQ: Message Service Client for C/C++

URI (input)
The URI in the format of a null terminated string.

destination (output)
The handle for the destination.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsDestCreateByType – Create Destination (specifying a type
and name)
Interface:

xmsRC xmsDestCreateByType(xmsDESTINATION_TYPE destinationType,
xmsCHAR *destinationName,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

Create a destination using the specified destination type and name.

For a destination that is a queue, this function does not create the queue in the
messaging server. You must create the queue before an application can call this
function.

Parameters:

destinationType (input)
The type of the destination, which must be one of the following
values:

XMS_DESTINATION_TYPE_QUEUE

XMS_DESTINATION_TYPE_TOPIC

destinationName (input)
The name of the destination, which can be the name of a queue or
the name of a topic. The name is in the format of a null terminated
string.

If the destination is a WebSphere MQ queue, you can specify the
name of the destination in either of the following ways:

QName

QMgrName/QName

where QName is the name of a WebSphere MQ queue, and QMgrName
is the name of a WebSphere MQ queue manager. The WebSphere
MQ queue name resolution process uses the values of QName and
QMgrName to determine the actual destination queue. For more
information about the queue name resolution process, see the
WebSphere MQ Application Programming Guide.

destination (output)
The handle for the destination.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

Chapter 12. C classes 137

v XMS_X_GENERAL_EXCEPTION

xmsDestCreateTemporaryByType – Create Temporary Destination
Interface:

xmsRC xmsDestCreateTemporaryByType(xmsDESTINATION_TYPE destinationType,
xmsHSess session,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

Create a temporary destination.

The scope of the temporary destination is the connection. Only the sessions created
by the connection can use the temporary destination.

The temporary destination remains until it is explicitly deleted, or the connection
ends, whichever is the sooner.

For more information about temporary destinations, see “Temporary destinations”
on page 36.

Parameters:

destinationType (input)
The type of the temporary destination, which must be one of the
following values:

XMS_DESTINATION_TYPE_QUEUE

XMS_DESTINATION_TYPE_TOPIC

session (input)
The handle for the session.

destination (output)
The handle for the temporary destination.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsDestDispose – Delete Destination
Interface:

xmsRC xmsDestDispose(xmsHDest *destination,
xmsHErrorBlock errorBlock);

Delete the destination.

For a destination that is a queue, this function does not delete the queue in the
messaging server unless the queue was created for an XMS temporary queue.

If an application tries to delete a destination that is already deleted, the call is
ignored.

Parameters:

138 WebSphere MQ: Message Service Client for C/C++

destination (input/output)
On input, the handle for the destination. On output, the function
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsDestGetName – Get Destination Name
Interface:

xmsRC xmsDestGetName(xmsHDest destination,
xmsCHAR *destinationName,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the name of the destination.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

destination (input)
The handle for the destination.

destinationName (output)
The buffer to contain the name of the destination. The name is
either the name of a queue or the name of a topic.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the name of the destination is not returned, but its length
is returned in the actualLength parameter.

actualLength (output)
The length of the name of the destination in bytes. If you specify a
null pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsDestGetTypeId – Get Destination Type
Interface:

xmsRC xmsDestGetTypeId(xmsHDest destination,
xmsDESTINATION_TYPE *destinationType,
xmsHErrorBlock errorBlock);

Get the type of the destination.

Parameters:

Chapter 12. C classes 139

destination (input)
The handle for the destination.

destinationType (output)
The type of the destination, which is one of the following values:

XMS_DESTINATION_TYPE_QUEUE

XMS_DESTINATION_TYPE_TOPIC

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsDestToString – Get Destination Name as URI
Interface:

xmsRC xmsDestToString(xmsHDest destination,
xmsCHAR *destinationName,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the name of the destination in the format of a uniform resource identifier
(URI).

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

destination (input)
The handle for the destination.

destinationName (output)
The buffer to contain the URI. The URI is either a queue URI or a
topic URI.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the URI is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the URI in bytes. If you specify a null pointer on
input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

ErrorBlock
If a C function call fails, XMS can store information about why the call failed in an
error block.

140 WebSphere MQ: Message Service Client for C/C++

For more information about the error block and its contents, see “The error block”
on page 61.

Functions in this class return the following return codes:

Return code Meaning
XMS_OK The call completed successfully.
Any other value The call failed, for example, because the

error block that was passed to the function
was not valid.

This class is a helper class.

Functions
Summary of functions:

Function Description
xmsErrorClear Clear the contents of the error block.
xmsErrorCreate Create an error block.
xmsErrorDispose Delete the error block.
xmsErrorGetErrorCode Get the error code.
xmsErrorGetErrorData Get the error data.
xmsErrorGetErrorString Get the error string.
xmsErrorGetJMSExceptionGet the exception code.
xmsErrorGetLinkedErrorGet the handle for the next error block in the chain of error blocks.

xmsErrorClear – Clear Error Block
Interface:

xmsRC xmsErrorClear(xmsHErrorBlock errorBlock);

Clear the contents of the error block.

Note that XMS automatically clears the contents of an error block that is passed by
an API function call.

Parameters:

errorBlock (input)
The handle for the error block.

Thread context:
Any

xmsErrorCreate – Create Error Block
Interface:

xmsRC xmsErrorCreate(xmsHErrorBlock *errorBlock);

Create an error block.

In a newly created error block, the exception code is XMS_X_NO_EXCEPTION.

Parameters:

Chapter 12. C classes 141

errorBlock (output)
The handle for the error block.

Thread context:
Any

xmsErrorDispose – Delete Error Block
Interface:

xmsRC xmsErrorDispose(xmsHErrorBlock *errorBlock);

Delete the error block.

Only the first error block in a chain of error blocks can be explicitly deleted. By
deleting the first error block in a chain, all subsequent error blocks in the chain are
also deleted.

If an application tries to delete an error block that is already deleted, the call is
ignored.

Parameters:

errorBlock (input/output)
On input, the handle for the error block. On output the function
returns a null handle.

Thread context:
Any

xmsErrorGetErrorCode – Get Error Code
Interface:

xmsRC xmsErrorGetErrorCode(xmsHErrorBlock errorBlock,
xmsINT *errorCode);

Get the error code.

For more information about the error code, see “The error block” on page 61.

Parameters:

errorBlock (input)
The handle for the error block.

errorCode (output)
The error code.

Thread context:
Any

xmsErrorGetErrorData – Get Error Data
Interface:

142 WebSphere MQ: Message Service Client for C/C++

xmsRC xmsErrorGetErrorData(xmsHErrorBlock errorBlock,
xmsCHAR *buffer,
xmsINT bufferLength,
xmsINT *actualLength);

Get the error data.

For more information about the error data, see “The error block” on page 61.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

errorBlock (input)
The handle for the error block.

buffer (output)
The buffer to contain the error data.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the error data is not returned, but its length is returned in
the actualLength parameter.

actualLength (output)
The length of the error data in bytes. If you specify a null pointer
on input, the length is not returned.

Thread context:
Any

xmsErrorGetErrorString – Get Error String
Interface:

xmsRC xmsErrorGetErrorString(xmsHErrorBlock errorBlock,
xmsCHAR *buffer,
xmsINT bufferLength,
xmsINT *actualLength);

Get the error string.

For more information about the error string, see “The error block” on page 61.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

errorBlock (input)
The handle for the error block.

buffer (output)
The buffer to contain the error string.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the error string is not returned, but its length is returned
in the actualLength parameter.

Chapter 12. C classes 143

actualLength (output)
The length of the error string in bytes. If you specify a null pointer
on input, the length is not returned.

Thread context:
Any

xmsErrorGetJMSException – Get Exception Code
Interface:

xmsRC xmsErrorGetJMSException(xmsHErrorBlock errorBlock,
xmsJMSEXP_TYPE *exceptionCode);

Get the exception code.

For more information about the exception code, see “The error block” on page 61.

Parameters:

errorBlock (input)
The handle for the error block.

exceptionCode (output)
The exception code. If the error block is in a chain of error blocks,
but is not the first in the chain, the exception code is always
XMS_X_GENERAL_EXCEPTION.

Thread context:
Any

xmsErrorGetLinkedError – Get Linked Error
Interface:

xmsRC xmsErrorGetLinkedError(xmsHErrorBlock errorBlock,
xmsHErrorBlock *linkedError);

Get the handle for the next error block in the chain of error blocks.

Parameters:

errorBlock (input)
The handle for the error block.

linkedError (output)
The handle for the next error block in the chain. The function
returns a null handle if there are no more error blocks in the chain.

Thread context:
Any

ExceptionListener
An application uses an exception listener to be notified asynchronously of a
problem with a connection.

If an application uses a connection only to consume messages asynchronously, and
for no other purpose, then the only way the application can learn about a problem
with the connection is by using an exception listener. In other situations, an

144 WebSphere MQ: Message Service Client for C/C++

exception listener can provide a more immediate way of learning about a problem
with a connection than waiting until the next synchronous call to XMS.

Functions
Summary of functions:

Function Description
onException Notify the application of a problem with a connection.

onException – On Exception
Interface:

xmsVOID onException(xmsCONTEXT context,
xmsHErrorBlock errorBlock);

Notify the application of a problem with a connection.

onException() is the exception listener function that is registered with the
connection. The name of the function does not have to be onException.

For more information about using exception listener functions, see “Exception
listener functions in C” on page 63.

Parameters:

context (input)
A pointer to the context data that is registered with the connection.

errorBlock (input)
The handle for an error block created by XMS.

InitialContext
An application uses an InitialContext object to create objects from object definitions
that are retrieved from a repository of administered objects.

For a list of the XMS defined properties of an InitialContext object, see “Properties
of InitialContext” on page 408.

Functions
Summary of functions:

Function Description
xmsInitialContextCreate Create an InitialContext object.
xmsInitialContextDispose Delete the InitialContext object.
xmsInitialContextLookup Create an object from an object definition that is retrieved from

the repository of administered objects.

xmsInitialContextCreate – Create Initial Context
Interface:

xmsRC xmsInitialContextCreate(xmsCHAR *URL,
xmsHInitialContect *initalContext,
xmsHErrorBlock errorBlock);

Create an InitialContext object.

Chapter 12. C classes 145

Parameters:

URL (input)
A uniform resource locator (URL) that identifies the name and
location of a repository containing administered objects. The URL
is in the format of a null terminated string.

initialContext (output)
The handle for the InitialContext object.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsInitialContextDispose – Delete Initial Context
Interface:

xmsRC xmsInitialContextDispose(xmsHInitialContext *initialContext,
xmsHErrorBlock errorBlock);

Delete the InitialContext object.

If an application tries to delete an InitialContext object that is already deleted, the
call is ignored.

Parameters:

initialContext (input/output)
On input, the handle for the InitialContext object. On output, the
function returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsInitialContextLookup – Look Up Object in Initial Context
Interface:

xmsRC xmsInitialContextLookup(xmsHInitialContext initialContext,
xmsCHAR *objectName,
xmsHObj *returnedObject,
xmsHANDLE_TYPE *handleType,
xmsHErrorBlock errorBlock);

Create an object from an object definition that is retrieved from the repository of
administered objects.

Parameters:

initialContext (input)
The handle for the InitialContext object.

objectName (input)
The name of the administered object in the format of a null
terminated string.

146 WebSphere MQ: Message Service Client for C/C++

returnedObject (output)
The handle for the object that is created.

handleType (output)
The type of the handle for the object that is created, which is one
of following values:

XMS_HANDLE_TYPE_CONNFACT

XMS_HANDLE_TYPE_DEST

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Iterator
An iterator encapsulates a list of objects. An application uses an iterator to access
each object in turn.

An iterator also encapsulates a cursor that maintains the current position in the
list. When an iterator is created, the position of the cursor is before the first object.

An application cannot create an iterator directly. An iterator is created only by
certain functions in order to pass a list of objects back to the application.

This class is a helper class.

Functions
Summary of functions:

Function Description
xmsIteratorDispose Delete the iterator.
xmsIteratorGetNext Move the cursor to the next object and get the object at the new

position of the cursor.
xmsIteratorHasNext Check whether there are any more objects beyond the current

position of the cursor.
xmsIteratorReset Move the cursor back to a position before the first object.

xmsIteratorDispose – Delete Iterator
Interface:

xmsRC xmsIteratorDispose(xmsHIterator *iterator,
xmsHErrorBlock errorBlock);

Delete the iterator.

If an application tries to delete an iterator that is already deleted, the call is
ignored.

Parameters:

iterator (input/output)
On input, the handle for the iterator. On output, the function
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 12. C classes 147

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsIteratorGetNext – Get Next Object
Interface:

xmsRC xmsIteratorGetNext(xmsHIterator iterator,
xmsHObj *object,
xmsHErrorBlock errorBlock);

Move the cursor to the next object and get the object at the new position of the
cursor.

Parameters:

iterator (input)
The handle for the iterator.

object (output)
The handle for the object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsIteratorHasNext – Check for More Objects
Interface:

xmsRC xmsIteratorHasNext(xmsHIterator iterator,
xmsBOOL *moreProperties,
xmsHErrorBlock errorBlock);

Check whether there are any more objects beyond the current position of the
cursor. The call does not move the cursor.

Parameters:

iterator (input)
The handle for the iterator.

moreProperties (output)
The value is xmsTRUE if there are more objects beyond the current
position of the cursor. The value is xmsFALSE if there are no more
objects beyond the current position of the cursor.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

148 WebSphere MQ: Message Service Client for C/C++

v XMS_X_GENERAL_EXCEPTION

xmsIteratorReset – Reset Iterator
Interface:

xmsRC xmsIteratorReset(xmsHIterator iterator,
xmsHErrorBlock errorBlock);

Move the cursor back to a position before the first object.

Parameters:

iterator (input)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

MapMessage
A map message is a message whose body comprises a set of name-value pairs,
where each value has an associated data type.

When an application gets the value of name-value pair, the value can be converted
by XMS into another data type. For more information about this form of implicit
conversion, see “Map messages” on page 98.

Functions
Summary of functions:

Function Description
xmsMapMsgGetBoolean Get the boolean value identified by name from the body of

the map message.
xmsMapMsgGetByte Get the byte identified by name from the body of the map

message.
xmsMapMsgGetBytes Get the array of bytes identified by name from the body of

the map message.
xmsMapMsgGetBytesByRef Get a pointer to an array of bytes in the body of the map

message and get the length of the array.
xmsMapMsgGetChar Get the character identified by name from the body of the

map message.
xmsMapMsgGetDouble Get the double precision floating point number identified

by name from the body of the map message.
xmsMapMsgGetFloat Get the floating point number identified by name from the

body of the map message.
xmsMapMsgGetInt Get the integer identified by name from the body of the

map message.
xmsMapMsgGetLong Get the long integer identified by name from the body of

the map message.
xmsMapMsgGetMap Get a list of the name-value pairs in the body of the map

message.

Chapter 12. C classes 149

Function Description
xmsMapMsgGetObject Get the value of a name-value pair, and its data type, from

the body of the map message.
xmsMapMsgGetShort Get the short integer identified by name from the body of

the map message.
xmsMapMsgGetString Get the string identified by name from the body of the

map message.
xmsMapMsgGetStringByRef Get a pointer to the string identified by name and get the

length of the string.
xmsMapMsgItemExists Check whether the body of the map message contains a

name-value pair with the specified name.
xmsMapMsgSetBoolean Set a boolean value in the body of the map message.
xmsMapMsgSetByte Set a byte in the body of the map message.
xmsMapMsgSetBytes Set an array of bytes in the body of the map message.
xmsMapMsgSetChar Set a 2-byte character in the body of the map message.
xmsMapMsgSetDouble Set a double precision floating point number in the body

of the map message.
xmsMapMsgSetFloat Set a floating point number in the body of the map

message.
xmsMapMsgSetInt Set an integer in the body of the map message.
xmsMapMsgSetLong Set a long integer in the body of the map message.
xmsMapMsgSetObject Set a value, with a specified data type, in the body of the

map message.
xmsMapMsgSetShort Set a short integer in the body of the map message.
xmsMapMsgSetString Set a string in the body of the map message.

xmsMapMsgGetBoolean – Get Boolean Value
Interface:

xmsRC xmsMapMsgGetBoolean(xmsHMsg message,
xmsCHAR *name,
xmsBOOL *value,
xmsHErrorBlock errorBlock);

Get the boolean value identified by name from the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the boolean value. The name is in the
format of a null terminated string.

value (output)
The boolean value retrieved from the body of the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetByte – Get Byte
Interface:

150 WebSphere MQ: Message Service Client for C/C++

xmsRC xmsMapMsgGetByte(xmsHMsg message,
xmsCHAR *name,
xmsSBYTE *value,
xmsHErrorBlock errorBlock);

Get the byte identified by name from the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the byte. The name is in the format of a
null terminated string.

value (output)
The byte retrieved from the body of the map message. No data
conversion is performed on the byte.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetBytes – Get Bytes
Interface:

xmsRC xmsMapMsgGetBytes(xmsHMsg message,
xmsCHAR *name,
xmsSBYTE *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the array of bytes identified by name from the body of the map message.

For more information about how to use this function, see “C functions that return
a byte array by value” on page 59.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the array of bytes. The name is in the
format of a null terminated string.

buffer (output)
The buffer to contain the array of bytes. No data conversion is
performed on the bytes that are returned.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the array of bytes is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The number of bytes in the array. If you specify a null pointer on
input, the length of the array is not returned.

Chapter 12. C classes 151

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetBytesByRef – Get Bytes by Reference
Interface:

xmsRC xmsMapMsgGetBytesByRef(xmsHMsg message,
xmsCHAR *name,
xmsSBYTE **array,
xmsINT *length,
xmsHErrorBlock errorBlock);

Get a pointer to an array of bytes in the body of the map message and get the
length of the array. The array of bytes is identified by name.

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the array of bytes. The name is in the
format of a null terminated string.

array (output)
A pointer to the array of bytes.

length (output)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetChar – Get Character
Interface:

xmsRC xmsMapMsgGetChar(xmsHMsg message,
xmsCHAR *name,
xmsCHAR16 *value,
xmsHErrorBlock errorBlock);

Get the character identified by name from the body of the map message.

Parameters:

message (input)
The handle for the message.

152 WebSphere MQ: Message Service Client for C/C++

name (input)
The name that identifies the character. The name is in the format of
a null terminated string.

value (output)
The character retrieved from the body of the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetDouble – Get Double Precision Floating Point
Number
Interface:

xmsRC xmsMapMsgGetDouble(xmsHMsg message,
xmsCHAR *name,
xmsDOUBLE *value,
xmsHErrorBlock errorBlock);

Get the double precision floating point number identified by name from the body
of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the double precision floating point
number. The name is in the format of a null terminated string.

value (output)
The double precision floating point number retrieved from the
body of the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetFloat – Get Floating Point Number
Interface:

xmsRC xmsMapMsgGetFloat(xmsHMsg message,
xmsCHAR *name,
xmsFLOAT *value,
xmsHErrorBlock errorBlock);

Get the floating point number identified by name from the body of the map
message.

Parameters:

message (input)
The handle for the message.

Chapter 12. C classes 153

name (input)
The name that identifies the floating point number. The name is in
the format of a null terminated string.

value (output)
The floating point number retrieved from the body of the map
message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetInt – Get Integer
Interface:

xmsRC xmsMapMsgGetInt(xmsHMsg message,
xmsCHAR *name,
xmsINT *value,
xmsHErrorBlock errorBlock);

Get the integer identified by name from the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the integer. The name is in the format of a
null terminated string.

value (output)
The integer retrieved from the body of the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetLong – Get Long Integer
Interface:

xmsRC xmsMapMsgGetLong(xmsHMsg message,
xmsCHAR *name,
xmsLONG *value,
xmsHErrorBlock errorBlock);

Get the long integer identified by name from the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the long integer. The name is in the
format of a null terminated string.

154 WebSphere MQ: Message Service Client for C/C++

value (output)
The long integer retrieved from the body of the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetMap – Get Name-Value Pairs
Interface:

xmsRC xmsMapMsgGetMap(xmsHMsg message,
xmsHIterator *iterator,
xmsHErrorBlock errorBlock);

Get a list of the name-value pairs in the body of the map message.

The function returns an iterator that encapsulates a list of Property objects, where
each Property object encapsulates a name-value pair. The application can then use
the iterator to access each name-value pair in turn.

Note: The equivalent JMS method performs a slightly different function. The JMS
method returns an enumeration of only the names, not the values, in the body of
the map message.

Parameters:

message (input)
The handle for the message.

iterator (output)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetObject – Get Object
Interface:

xmsRC xmsMapMsgGetObject(xmsHMsg message,
xmsCHAR *name,
xmsSBYTE *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsOBJECT_TYPE *objectType,
xmsHErrorBlock errorBlock);

Get the value of a name-value pair, and its data type, from the body of the map
message. The name-value pair is identified by name.

For more information about how to use this function, see “C functions that return
a byte array by value” on page 59.

Parameters:

Chapter 12. C classes 155

message (input)
The handle for the message.

name (input)
The name of the name-value pair in the format of a null
terminated string.

buffer (output)
The buffer to contain the value, which is returned as an array of
bytes. If the value is a string and data conversion is required, this
is the value after conversion.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the value is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the value in bytes. If the value is a string and data
conversion is required, this is the length after conversion. If you
specify a null pointer on input, the length is not returned.

objectType (output)
The data type of the value, which is one of the following object
types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetShort – Get Short Integer
Interface:

xmsRC xmsMapMsgGetShort(xmsHMsg message,
xmsCHAR *name,
xmsSHORT *value,
xmsHErrorBlock errorBlock);

Get the short integer identified by name from the body of the map message.

Parameters:

message (input)
The handle for the message.

156 WebSphere MQ: Message Service Client for C/C++

name (input)
The name that identifies the short integer. The name is in the
format of a null terminated string.

value (output)
The short integer retrieved from the body of the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgGetString – Get String
Interface:

xmsRC xmsMapMsgGetString(xmsHMsg message,
xmsCHAR *name,
xmsCHAR *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the string identified by name from the body of the map message.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the string. The name is in the format of a
null terminated string.

buffer (output)
The buffer to contain the string. If data conversion is required, this
is the string after conversion.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the string is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the string in bytes. If data conversion is required,
this is the length of the string after conversion. If you specify a
null pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 157

xmsMapMsgGetStringByRef – Get String by Reference
Interface:

xmsRC xmsMapMsgGetStringByRef(xmsHMsg message,
xmsCHAR *name,
xmsCHAR **string,
xmsINT *length,
xmsHErrorBlock errorBlock);

Get a pointer to the string identified by name and get the length of the string.

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Parameters:

message (input)
The handle for the message.

name (input)
The name that identifies the string. The name is in the format of a
null terminated string.

string (output)
A pointer to the string. If data conversion is required, this is the
string after conversion.

length (output)
The length of the string in bytes. If data conversion is required,
this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgItemExists – Check Name-Value Pair Exists
Interface:

xmsRC xmsMapMsgItemExists(xmsHMsg message,
xmsCHAR *name,
xmsBOOL *pairExists,
xmsHErrorBlock errorBlock);

Check whether the body of the map message contains a name-value pair with the
specified name.

Parameters:

message (input)
The handle for the message.

name (input)
The name of the name-value pair in the format of a null
terminated string.

pairExists (output)
The value is xmsTRUE if the body of the map message contains a

158 WebSphere MQ: Message Service Client for C/C++

name-value pair with the specified name. The value is xmsFALSE if
the body of the map message does not contain a name-value pair
with the specified name.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetBoolean – Set Boolean Value
Interface:

xmsRC xmsMapMsgSetBoolean(xmsHMsg message,
xmsCHAR *name,
xmsBOOL value,
xmsHErrorBlock errorBlock);

Set a boolean value in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the boolean value in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The boolean value to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetByte – Set Byte
Interface:

xmsRC xmsMapMsgSetByte(xmsHMsg message,
xmsCHAR *name,
xmsSBYTE value,
xmsHErrorBlock errorBlock);

Set a byte in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the byte in the body of the map message. The
name is in the format of a null terminated string.

value (input)
The byte to be set.

Chapter 12. C classes 159

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetBytes – Set Bytes
Interface:

xmsRC xmsMapMsgSetBytes(xmsHMsg message,
xmsCHAR *name,
xmsSBYTE *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Set an array of bytes in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the array of bytes in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The array of bytes to be set.

length (input)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetChar – Set Character
Interface:

xmsRC xmsMapMsgSetChar(xmsHMsg message,
xmsCHAR *name,
xmsCHAR16 value,
xmsHErrorBlock errorBlock);

Set a 2-byte character in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the character in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The character to be set.

160 WebSphere MQ: Message Service Client for C/C++

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetDouble – Set Double Precision Floating Point
Number
Interface:

xmsRC xmsMapMsgSetDouble(xmsHMsg message,
xmsCHAR *name,
xmsDOUBLE value,
xmsHErrorBlock errorBlock);

Set a double precision floating point number in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the double precision floating point number in
the body of the map message. The name is in the format of a null
terminated string.

value (input)
The double precision floating point number to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetFloat – Set Floating Point Number
Interface:

xmsRC xmsMapMsgSetFloat(xmsHMsg message,
xmsCHAR *name,
xmsFLOAT value,
xmsHErrorBlock errorBlock);

Set a floating point number in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the floating point number in the body of the
map message. The name is in the format of a null terminated
string.

value (input)
The floating point number to be set.

Chapter 12. C classes 161

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetInt – Set Integer
Interface:

xmsRC xmsMapMsgSetInt(xmsHMsg message,
xmsCHAR *name,
xmsINT value,
xmsHErrorBlock errorBlock);

Set an integer in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the integer in the body of the map message.
The name is in the format of a null terminated string.

value (input)
The integer to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetLong – Set Long Integer
Interface:

xmsRC xmsMapMsgSetLong(xmsHMsg message,
xmsCHAR *name,
xmsLONG value,
xmsHErrorBlock errorBlock);

Set a long integer in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the long integer in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The long integer to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

162 WebSphere MQ: Message Service Client for C/C++

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetObject – Set Object
Interface:

xmsRC xmsMapMsgSetObject(xmsHMsg message,
xmsCHAR *name,
xmsSBYTE *value,
xmsINT length,
xmsOBJECT_TYPE objectType,
xmsHErrorBlock errorBlock);

Set a value, with a specified data type, in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the value in the body of the map message.
The name is in the format of a null terminated string.

value (input)
An array of bytes containing the value to be set.

length (input)
The number of bytes in the array.

objectType (input)
The data type of the value, which must be one of the following
object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetShort – Set Short Integer
Interface:

xmsRC xmsMapMsgSetShort(xmsHMsg message,
xmsCHAR *name,
xmsSHORT value,
xmsHErrorBlock errorBlock);

Chapter 12. C classes 163

Set a short integer in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the short integer in the body of the map
message. The name is in the format of a null terminated string.

value (input)
The short integer to be set.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMapMsgSetString – Set String
Interface:

xmsRC xmsMapMsgSetString(xmsHMsg message,
xmsCHAR *name,
xmsCHAR *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Set a string in the body of the map message.

Parameters:

message (input)
The handle for the message.

name (input)
The name to identify the string in the body of the map message.
The name is in the format of a null terminated string.

value (input)
A character array containing the string to be set.

length (input)
The length of the string in bytes. If the string is null terminated
with no embedded null characters, you can specify
XMSC_CALCULATE_STRING_SIZE instead and allow XMS to calculate
its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Message
A Message object represents a message that an application sends or receives.

164 WebSphere MQ: Message Service Client for C/C++

For a list of the JMS message header fields in a Message object, see “Header fields
in an XMS message” on page 91. For a list of the JMS defined properties of a
Message object, see “JMS-defined properties of a message” on page 93. For a list of
the IBM defined properties of a Message object, see “IBM-defined properties of a
message” on page 94.

Functions
Summary of functions:

Function Description
xmsMsgAcknowledge Acknowledge this message and all previously

unacknowledged messages received by the session.
xmsMsgClearBody Clear the body of the message.
xmsMsgClearProperties Clear the properties of the message.
xmsMsgDispose Delete the message.
xmsMsgGetJMSCorrelationID Get the correlation identifier of the message.
xmsMsgGetJMSDeliveryMode Get the delivery mode of the message.
xmsMsgGetJMSDestination Get the destination of the message.
xmsMsgGetJMSExpiration Get the expiration time of the message.
xmsMsgGetJMSMessageID Get the message identifier of the message.
xmsMsgGetJMSPriority Get the priority of the message.
xmsMsgGetJMSRedelivered Get an indication of whether the message is being

re-delivered.
xmsMsgGetJMSReplyTo Get the destination where a reply to the message is to be sent.
xmsMsgGetJMSTimestamp Get the time when the message was sent.
xmsMsgGetJMSType Get the type of the message.
xmsMsgGetProperties Get a list of the properties of the message.
xmsMsgGetTypeId Get the body type of the message.
xmsMsgPropertyExists Check whether the message has a property with the specified

name.
xmsMsgSetJMSCorrelationID Set the correlation identifier of the message.
xmsMsgSetJMSDeliveryMode Set the delivery mode of the message.
xmsMsgSetJMSDestination Set the destination of the message.
xmsMsgSetJMSExpiration Set the expiration time of the message.
xmsMsgSetJMSMessageID Set the message identifier of the message.
xmsMsgSetJMSPriority Set the priority of the message.
xmsMsgSetJMSRedelivered Indicate whether the message is being re-delivered.
xmsMsgSetJMSReplyTo Set the destination where a reply to the message is to be sent.
xmsMsgSetJMSTimestamp Set the time when the message is sent.
xmsMsgSetJMSType Set the type of the message.

xmsMsgAcknowledge – Acknowledge
Interface:

xmsRC xmsMsgAcknowledge(xmsHMsg message,
xmsHErrorBlock errorBlock);

Acknowledge this message and all previously unacknowledged messages received
by the session.

An application can call this function if the acknowledgement mode of the session
is XMSC_CLIENT_ACKNOWLEDGE. Calls to the function are ignored if the
session has any other acknowledgement mode or is transacted.

Messages that have been received but not acknowledged might be re-delivered.

Chapter 12. C classes 165

For more information about acknowledging messages, see “Message
acknowledgement” on page 29.

Parameters:

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

xmsMsgClearBody – Clear Body
Interface:

xmsRC xmsMsgClearBody(xmsHMsg message,
xmsHErrorBlock errorBlock);

Clear the body of the message. The header fields and message properties are not
cleared.

If an application clears a message body, the body is left in the same state as an
empty body in a newly created message. The state of an empty body in a newly
created message depends on the type of message body. For more information, see
“The body of an XMS message” on page 95.

An application can clear a message body at any time, no matter what state the
body is in. If a message body is read-only, the only way that an application can
write to the body is for the application to clear the body first.

Parameters:

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgClearProperties – Clear Properties
Interface:

xmsRC xmsMsgClearProperties(xmsHMsg message,
xmsHErrorBlock errorBlock);

Clear the properties of the message. The header fields and the message body are
not cleared.

If an application clears the properties of a message, the properties become readable
and writable.

166 WebSphere MQ: Message Service Client for C/C++

An application can clear the properties of a message at any time, no matter what
state the properties are in. If the properties of a message are read-only, the only
way that the properties can become writable is for the application to clear the
properties first.

Parameters:

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgDispose – Delete Message
Interface:

xmsRC xmsMsgDispose(xmsHMsg *message,
xmsHErrorBlock errorBlock);

Delete the message.

If an application tries to delete a message that is already deleted, the call is
ignored.

Parameters:

message (input)
On input, the handle for the message. On output, the function
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetJMSCorrelationID – Get JMSCorrelationID
Interface:

xmsRC xmsMsgGetJMSCorrelationID(xmsHMsg message,
xmsCHAR *correlID,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the correlation identifier of the message.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

message (input)
The handle for the message.

Chapter 12. C classes 167

correlID (output)
The buffer to contain the correlation identifier.

length (input)
The length of the buffer in bytes. If you specify a length of 0, the
correlation identifier is not returned, but its length is returned in
the actualLength parameter.

actualLength (output)
The length of the correlation identifier in bytes. If you specify a
null pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetJMSDeliveryMode – Get JMSDeliveryMode
Interface:

xmsRC xmsMsgGetJMSDeliveryMode(xmsHMsg message,
xmsINT *deliveryMode,
xmsHErrorBlock errorBlock);

Get the delivery mode of the message. The delivery mode is set by the
xmsMsgProducerSend() call when the message is sent.

Parameters:

message (input)
The handle for the message.

deliveryMode (output)
The delivery mode of the message, which is one of the following
values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a newly created message that has not been sent, the delivery
mode is XMSC_DELIVERY_PERSISTENT, except for a real-time
connection to a broker for which the delivery mode is
XMSC_DELIVERY_NOT_PERSISTENT. For a message that has been
received, the function returns the delivery mode that was set by
the xmsMsgProducerSend() call when the message was sent unless
the receiving application changes the delivery mode by calling
xmsMsgSetJMSDeliveryMode().

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetJMSDestination – Get JMSDestination
Interface:

168 WebSphere MQ: Message Service Client for C/C++

xmsRC xmsMsgGetJMSDestination(xmsHMsg message,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

Get the destination of the message. The destination is set by the
xmsMsgProducerSend() call when the message is sent.

Parameters:

message (input)
The handle for the message.

destination (output)
The handle for the destination of the message.

For a newly created message that has not been sent, the function
returns a null handle and an error unless the sending application
sets a destination by calling xmsMsgSetJMSDestination(). For a
message that has been received, the function returns a handle for
the destination that was set by the xmsMsgProducerSend() call
when the message was sent unless the receiving application
changes the destination by calling xmsMsgSetJMSDestination().

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetJMSExpiration – Get JMSExpiration
Interface:

xmsRC xmsMsgGetJMSExpiration(xmsHMsg message,
xmsLONG *expiration,
xmsHErrorBlock errorBlock);

Get the expiration time of the message.

The expiration time is set by the xmsMsgProducerSend() call when the message is
sent. Its value is calculated by adding the time to live, as specified by the sending
application, to the time when the message is sent. The expiration time is expressed
in milliseconds since 00:00:00 GMT on the 1 January 1970.

If the time to live is 0, the xmsMsgProducerSend() call sets the expiration time to 0
to indicate that the message does not expire.

XMS discards expired messages and does not deliver them to applications.

Parameters:

message (input)
The handle for the message.

expiration (output)
The expiration time of the message.

For a newly created message that has not been sent, the expiration
time is 0 unless the sending application sets a different expiration
time by calling xmsMsgSetJMSExpiration(). For a message that has
been received, the function returns the expiration time that was set

Chapter 12. C classes 169

by the xmsMsgProducerSend() call when the message was sent
unless the receiving application changes the expiration time by
calling xmsMsgSetJMSExpiration().

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetJMSMessageID – Get JMSMessageID
Interface:

xmsRC xmsMsgGetJMSMessageID(xmsHMsg message,
xmsCHAR *msgID,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the message identifier of the message. The message identifier is set by the
xmsMsgProducerSend() call when the message is sent.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

message (input)
The handle for the message.

msgID (output)
The buffer to contain the message identifier.

For a message that has been received, the function returns the
message identifier that was set by the xmsMsgProducerSend() call
when the message was sent unless the receiving application
changes the message identifier by calling
xmsMsgSetJMSMessageID().

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the message identifier is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the message identifier in bytes. If you specify a null
pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:
XMS_X_GENERAL_EXCEPTION

Notes:

1. If a message has no message identifier, the function leaves the contents of the
buffer unchanged, sets the actualLength parameter to 0, and returns an error.

170 WebSphere MQ: Message Service Client for C/C++

xmsMsgGetJMSPriority – Get JMSPriority
Interface:

xmsRC xmsMsgGetJMSPriority(xmsHMsg message,
xmsINT *priority,
xmsHErrorBlock errorBlock);

Get the priority of the message. The priority is set by the xmsMsgProducerSend()
call when the message is sent.

Parameters:

message (input)
The handle for the message.

priority (output)
The priority of the message. The value is an integer in the range 0,
the lowest priority, to 9, the highest priority.

For a newly created message that has not been sent, the priority is
4 unless the sending application sets a different priority by calling
xmsMsgSetJMSPriority(). For a message that has been received, the
function returns the priority that was set by the
xmsMsgProducerSend() call when the message was sent unless the
receiving application changes the priority by calling
xmsMsgSetJMSPriority().

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetJMSRedelivered – Get JMSRedelivered
Interface:

xmsRC xmsMsgGetJMSRedelivered(xmsHMsg message,
xmsBOOL *redelivered,
xmsHErrorBlock errorBlock);

Get an indication of whether the message is being re-delivered. The indication is
set by the xmsMsgConsumerReceive() call when the message is received.

Parameters:

message (input)
The handle for the message.

redelivered (output)
The value is xmsTRUE if the message is being re-delivered. The
value is xmsFALSE if the message is not being re-delivered.

For a real-time connection to a broker, the value is always
xmsFALSE.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 171

xmsMsgGetJMSReplyTo – Get JMSReplyTo
Interface:

xmsRC xmsMsgGetJMSReplyTo(xmsHMsg message,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

Get the destination where a reply to the message is to be sent.

Parameters:

message (input)
The handle for the message.

destination (output)
The handle for the destination where a reply to the message is to
be sent. A null handle means that no reply is expected.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetJMSTimestamp – Get JMSTimestamp
Interface:

xmsRC xmsMsgGetJMSTimestamp(xmsHMsg message,
xmsLONG *timeStamp,
xmsHErrorBlock errorBlock);

Get the time when the message was sent. The time stamp is set by the
xmsMsgProducerSend() call when the message is sent and is expressed in
milliseconds since 00:00:00 GMT on the 1 January 1970.

Parameters:

message (input)
The handle for the message.

timeStamp (output)
The time when the message was sent.

For a newly created message that has not been sent, the time
stamp is 0 unless the sending application sets a different time
stamp by calling xmsMsgSetJMSTimestamp(). For a message that
has been received, the function returns the time stamp that was set
by the xmsMsgProducerSend() call when the message was sent
unless the receiving application changes the time stamp by calling
xmsMsgSetJMSTimestamp().

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Note:

172 WebSphere MQ: Message Service Client for C/C++

1. If the time stamp is undefined, the function sets the timeStamp parameter to 0
but returns no error.

xmsMsgGetJMSType – Get JMSType
Interface:

xmsRC xmsMsgGetJMSType(xmsHMsg message,
xmsCHAR *type,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the type of the message.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

message (input)
The handle for the message.

type (output)
The buffer to contain the type of the message. If data conversion is
required, this is the type after conversion.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the type of the message is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the type of the message in bytes. If data conversion
is required, this is the length after conversion. If you specify a null
pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetProperties – Get Properties
Interface:

xmsRC xmsMsgGetProperties(xmsHMsg message,
xmsHIterator *iterator,
xmsHErrorBlock errorBlock);

Get a list of the properties of the message.

The function returns an iterator that encapsulates a list of Property objects. The
application can then use the iterator to access each property in turn.

Note: The equivalent JMS method performs a slightly different function. The JMS
method returns an enumeration of only the names of the properties of the
message, not their values.

Chapter 12. C classes 173

Parameters:

message (input)
The handle for the message.

iterator (output)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgGetTypeId – Get Type
Interface:

xmsRC xmsMsgGetTypeId(xmsHMsg message,
xmsMESSAGE_TYPE *type,
xmsHErrorBlock errorBlock);

Get the body type of the message.

For information about message body types, see “The body of an XMS message” on
page 95.

Parameters:

message (input)
The handle for the message.

type (output)
The body type of the message, which is one of the following
values:

XMS_MESSAGE_TYPE_BASE (the message has no body)
XMS_MESSAGE_TYPE_BYTES

XMS_MESSAGE_TYPE_MAP

XMS_MESSAGE_TYPE_OBJECT

XMS_MESSAGE_TYPE_STREAM

XMS_MESSAGE_TYPE_TEXT

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgPropertyExists – Check Property Exists
Interface:

xmsRC xmsMsgPropertyExists(xmsHMsg message,
xmsCHAR *propertyName,
xmsBOOL *propertyExists,
xmsHErrorBlock errorBlock);

Check whether the message has a property with the specified name.

174 WebSphere MQ: Message Service Client for C/C++

Parameters:

message (input)
The handle for the message.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyExists (output)
The value is xmsTRUE if the message has a property with the
specified name. The value is xmsFALSE if the message does not have
a property with the specified name.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSCorrelationID – Set JMSCorrelationID
Interface:

xmsRC xmsMsgSetJMSCorrelationID(xmsHMsg message,
xmsCHAR *correlID,
xmsINT length,
xmsHErrorBlock errorBlock);

Set the correlation identifier of the message.

Parameters:

message (input)
The handle for the message.

correlID (input)
The correlation identifier as a character array.

length (input)
The length of the correlation identifier in bytes. If the correlation
identifier is null terminated with no embedded null characters, you
can specify XMSC_CALCULATE_STRING_SIZE instead and allow XMS to
calculate its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSDeliveryMode – Set JMSDeliveryMode
Interface:

xmsRC xmsMsgSetJMSDeliveryMode(xmsHMsg message,
xmsINT deliveryMode,
xmsHErrorBlock errorBlock);

Set the delivery mode of the message.

Chapter 12. C classes 175

A delivery mode set by this function before the message is sent is ignored and
replaced by the xmsMsgProducerSend() call when the message is sent. However,
you can use this function to change the delivery mode of a message that has been
received.

Parameters:

message (input)
The handle for the message.

deliveryMode (input)
The delivery mode of the message, which must be one of the
following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSDestination – Set JMSDestination
Interface:

xmsRC xmsMsgSetJMSDestination(xmsHMsg message,
xmsHDest destination,
xmsHErrorBlock errorBlock);

Set the destination of the message.

A destination set by this function before the message is sent is ignored and
replaced by the xmsMsgProducerSend() call when the message is sent. However,
you can use this function to change the destination of a message that has been
received.

Parameters:

message (input)
The handle for the message.

destination (input)
The handle for the destination of the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSExpiration – Set JMSExpiration
Interface:

xmsRC xmsMsgSetJMSExpiration(xmsHMsg message,
xmsLONG expiration,
xmsHErrorBlock errorBlock);

Set the expiration time of the message.

176 WebSphere MQ: Message Service Client for C/C++

An expiration time set by this function before the message is sent is ignored and
replaced by the xmsMsgProducerSend() call when the message is sent. However,
you can use this function to change the expiration time of a message that has been
received.

Parameters:

message (input)
The handle for the message.

expiration (input)
The expiration time of the message expressed in milliseconds since
00:00:00 GMT on the 1 January 1970.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSMessageID – Set JMSMessageID
Interface:

xmsRC xmsMsgSetJMSMessageID(xmsHMsg message,
xmsCHAR *msgID,
xmsINT length,
xmsHErrorBlock errorBlock);

Set the message identifier of the message.

A message identifier set by this function before the message is sent is ignored and
replaced by the xmsMsgProducerSend() call when the message is sent. However,
you can use this function to change the message identifier of a message that has
been received.

Parameters:

message (input)
The handle for the message.

msgID (input)
The message identifier as a character array.

length (input)
The length of the message identifier in bytes. If the message
identifier is null terminated with no embedded null characters, you
can specify XMSC_CALCULATE_STRING_SIZE instead and allow XMS to
calculate its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSPriority – Set JMSPriority
Interface:

Chapter 12. C classes 177

xmsRC xmsMsgSetJMSPriority(xmsHMsg message,
xmsINT priority,
xmsHErrorBlock errorBlock);

Set the priority of the message.

A priority set by this function before the message is sent is ignored and replaced
by the xmsMsgProducerSend() call when the message is sent. However, you can
use this function to change the priority of a message that has been received.

Parameters:

message (input)
The handle for the message.

priority (input)
The priority of the message. The value can be an integer in the
range 0, the lowest priority, to 9, the highest priority.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSRedelivered – Set JMSRedelivered
Interface:

xmsRC xmsMsgSetJMSRedelivered(xmsHMsg message,
xmsBOOL redelivered,
xmsHErrorBlock errorBlock);

Indicate whether the message is being re-delivered.

An indication of re-delivery set by this function before the message is sent is
ignored by the xmsMsgProducerSend() call when the message is sent, and is
ignored and replaced by the xmsMsgConsumerReceive() call when the message is
received. However, you can use this function to change the indication for a
message that has been received.

Parameters:

message (input)
The handle for the message.

redelivered (input)
The value xmsTRUE means that the message is being re-delivered.
The value xmsFALSE means that the message is not being
re-delivered.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSReplyTo – Set JMSReplyTo
Interface:

178 WebSphere MQ: Message Service Client for C/C++

xmsRC xmsMsgSetJMSReplyTo(xmsHMsg message,
xmsHDest destination,
xmsHErrorBlock errorBlock);

Set the destination where a reply to the message is to be sent.

Parameters:

message (input)
The handle for the message.

destination (input)
The handle for the destination where a reply to the message is to
be sent. A null handle means that no reply is expected.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSTimestamp – Set JMSTimestamp
Interface:

xmsRC xmsMsgSetJMSTimestamp(xmsHMsg message,
xmsLONG timeStamp,
xmsHErrorBlock errorBlock);

Set the time when the message is sent.

A time stamp set by this function before the message is sent is ignored and
replaced by the xmsMsgProducerSend() call when the message is sent. However,
you can use this function to change the time stamp of a message that has been
received.

Parameters:

message (input)
The handle for the message.

timeStamp (input)
The time when the message is sent expressed in milliseconds since
00:00:00 GMT on the 1 January 1970.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgSetJMSType – Set JMSType
Interface:

xmsRC xmsMsgSetJMSType(xmsHMsg message,
xmsCHAR *type,
xmsINT length,
xmsHErrorBlock errorBlock);

Set the type of the message.

Chapter 12. C classes 179

Parameters:

message (input)
The handle for the message.

type (input)
The type of the message as a character array.

length (input)
The length of the type of the message in bytes. If the type of the
message is null terminated with no embedded null characters, you
can specify XMSC_CALCULATE_STRING_SIZE instead and allow XMS to
calculate its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

MessageConsumer
An application uses a message consumer to receive messages sent to a destination.

For a list of the XMS defined properties of a MessageConsumer object, see
“Properties of MessageConsumer” on page 414.

Functions
Summary of functions:

Function Description
xmsMsgConsumerClose Close the message consumer.
xmsMsgConsumerGetMessageListenerGet pointers to the message listener function and context

data that are registered with the message consumer.
xmsMsgConsumerGetMessageSelectorGet the message selector for the message consumer.
xmsMsgConsumerReceive Receive the next message for the message consumer. The

call waits indefinitely for a message, or until the message
consumer is closed.

xmsMsgConsumerReceiveNoWaitReceive the next message for the message consumer if one
is available immediately.

xmsMsgConsumerReceiveWithWaitReceive the next message for the message consumer. The
call waits only a specified period of time for a message, or
until the message consumer is closed.

xmsMsgConsumerSetMessageListenerRegister a message listener function and context data with
the message consumer.

xmsMsgConsumerClose – Close Message Consumer
Interface:

xmsRC xmsMsgConsumerClose(xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

Close the message consumer.

If an application tries to close a message consumer that is already closed, the call is
ignored.

Parameters:

180 WebSphere MQ: Message Service Client for C/C++

consumer (input/output)
On input, the handle for the message consumer. On output, the
function returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgConsumerGetMessageListener – Get Message Listener
Interface:

xmsRC xmsMsgConsumerGetMessageListener(xmsHMsgConsumer consumer,
fpXMS_MESSAGE_CALLBACK *lsr,
xmsCONTEXT *context,
xmsHErrorBlock errorBlock);

Get pointers to the message listener function and context data that are registered
with the message consumer.

For more information about using message listener functions, see “Message listener
functions in C” on page 62.

Parameters:

consumer (input)
The handle for the message consumer.

lsr (output)
A pointer to the message listener function. If no message listener
function is registered with the message consumer, the call returns a
null pointer.

context (output)
A pointer to the context data. If no message listener function is
registered with the connection, the call returns a null pointer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgConsumerGetMessageSelector – Get Message Selector
Interface:

xmsRC xmsMsgConsumerGetMessageSelector(xmsHMsgConsumer consumer,
xmsCHAR *messageSelector,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the message selector for the message consumer.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Chapter 12. C classes 181

Parameters:

consumer (input)
The handle for the message consumer.

messageSelector (output)
The buffer to contain the message selector expression. If data
conversion is required, this is the message selector expression after
conversion.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the message selector expression is not returned, but its
length is returned in the actualLength parameter.

actualLength (output)
The length of the message selector expression in bytes. If data
conversion is required, this is the length of the message selector
expression after conversion. If you specify a null pointer on input,
the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgConsumerReceive – Receive
Interface:

xmsRC xmsMsgConsumerReceive(xmsHMsgConsumer consumer,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Receive the next message for the message consumer. The call waits indefinitely for
a message, or until the message consumer is closed.

Parameters:

consumer (input)
The handle for the message consumer.

message (output)
The handle for the message. If the message consumer is closed
while the call is waiting for a message, the function returns a null
handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgConsumerReceiveNoWait – Receive with No Wait
Interface:

xmsRC xmsMsgConsumerReceiveNoWait(xmsHMsgConsumer consumer,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

182 WebSphere MQ: Message Service Client for C/C++

Receive the next message for the message consumer if one is available
immediately.

Parameters:

consumer (input)
The handle for the message consumer.

message (output)
The handle for the message. If no message is available
immediately, the function returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgConsumerReceiveWithWait – Receive (with a wait
interval)
Interface:

xmsRC xmsMsgConsumerReceiveWithWait(xmsHMsgConsumer consumer,
xmsLONG waitInterval,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Receive the next message for the message consumer. The call waits only a specified
period of time for a message, or until the message consumer is closed.

Parameters:

consumer (input)
The handle for the message consumer.

waitInterval (input)
The time, in milliseconds, that the call waits for a message. If you
specify a wait interval of 0, the call waits indefinitely for a
message.

message (output)
The handle for the message. If no message arrives during the wait
interval, or if the message consumer is closed while the call is
waiting for a message, the function returns a null handle but no
error.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgConsumerSetMessageListener – Set Message Listener
Interface:

xmsRC xmsMsgConsumerSetMessageListener(xmsHMsgConsumer consumer,
fpXMS_MESSAGE_CALLBACK lsr,
xmsCONTEXT context,
xmsHErrorBlock errorBlock);

Chapter 12. C classes 183

Register a message listener function and context data with the message consumer.

For more information about using message listener functions, see “Message listener
functions in C” on page 62.

Parameters:

consumer (input)
The handle for the message consumer.

lsr (input)
A pointer to the message listener function. If a message listener
function is already registered with the message consumer, you can
cancel the registration by specifying a null pointer instead.

context (input)
A pointer to the context data.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

MessageListener
An application uses a message listener to receive messages asynchronously.

Functions
Summary of functions:

Function Description
onMessage Deliver a message asynchronously to the message consumer.

onMessage – On Message
Interface:

xmsVOID onMessage(xmsCONTEXT context,
xmsHMsg message);

Deliver a message asynchronously to the message consumer.

onMessage() is the message listener function that is registered with the message
consumer. The name of the function does not have to be onMessage.

For more information about using message listener functions, see “Message listener
functions in C” on page 62.

Parameters:

context (input)
A pointer to the context data that is registered with the message
consumer.

message (input)
The handle for the message.

184 WebSphere MQ: Message Service Client for C/C++

MessageProducer
An application uses a message producer to send messages to a destination.

For a list of the XMS defined properties of a MessageProducer object, see
“Properties of MessageProducer” on page 414.

Functions
Summary of functions:

Function Description
xmsMsgProducerClose Close the message producer.
xmsMsgProducerGetDeliveryModeGet the default delivery mode for messages sent by the

message producer.
xmsMsgProducerGetDestinationGet the destination for the message producer.
xmsMsgProducerGetDisableMsgIDGet an indication of whether a receiving application

requires message identifiers to be included in messages sent
by the message producer.

xmsMsgProducerGetDisableMsgTSGet an indication of whether a receiving application
requires time stamps to be included in messages sent by the
message producer.

xmsMsgProducerGetPriority Get the default priority for messages sent by the message
producer.

xmsMsgProducerGetTimeToLiveGet the default length of time that a message exists before it
expires.

xmsMsgProducerSend Send a message to the destination that was specified when
the message producer was created. Send the message using
the message producer's default delivery mode, priority, and
time to live.

xmsMsgProducerSendDest Send a message to a specified destination if you are using a
message producer for which no destination was specified
when the message producer was created. Send the message
using the message producer's default delivery mode,
priority, and time to live.

xmsMsgProducerSendDestWithAttrSend a message to a specified destination if you are using a
message producer for which no destination was specified
when the message producer was created. Send the message
using the specified delivery mode, priority, and time to live.

xmsMsgProducerSendWithAttr Send a message to the destination that was specified when
the message producer was created. Send the message using
the specified delivery mode, priority, and time to live.

xmsMsgProducerSetDeliveryModeSet the default delivery mode for messages sent by the
message producer.

xmsMsgProducerSetDisableMsgIDIndicate whether a receiving application requires message
identifiers to be included in messages sent by the message
producer.

xmsMsgProducerSetDisableMsgTSIndicate whether a receiving application requires time
stamps to be included in messages sent by the message
producer.

xmsMsgProducerSetPriority Set the default priority for messages sent by the message
producer.

xmsMsgProducerSetTimeToLive Set the default length of time that a message exists before it
expires.

xmsMsgProducerClose – Close Message Producer
Interface:

Chapter 12. C classes 185

xmsRC xmsMsgProducerClose(xmsHMsgProducer *producer,
xmsHErrorBlock errorBlock);

Close the message producer.

If an application tries to close a message producer that is already closed, the call is
ignored.

Parameters:

producer (input/output)
On input, the handle for the message producer. On output, the
function returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerGetDeliveryMode – Get Default Delivery Mode
Interface:

xmsRC xmsMsgProducerGetDeliveryMode(xmsHMsgProducer producer,
xmsINT *deliveryMode,
xmsHErrorBlock errorBlock);

Get the default delivery mode for messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

deliveryMode (output)
The default delivery mode, which is one of the following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the value is always
XMSC_DELIVERY_NOT_PERSISTENT.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerGetDestination – Get Destination
Interface:

xmsRC xmsMsgProducerGetDestination(xmsHMsgProducer producer,
xmsHDest *destination,
xmsHErrorBlock errorBlock);

Get the destination for the message producer.

Parameters:

186 WebSphere MQ: Message Service Client for C/C++

producer (input)
The handle for the message producer.

destination (output)
The handle for the destination. If the message producer does not
have a destination, the function returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerGetDisableMsgID – Get Disable Message ID
Flag
Interface:

xmsRC xmsMsgProducerGetDisableMsgID(xmsHMsgProducer producer,
xmsBOOL *msgIDDisabled,
xmsHErrorBlock errorBlock);

Get an indication of whether a receiving application requires message identifiers to
be included in messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

msgIDDisabled (output)
The value is xmsTRUE if a receiving application does not require
message identifiers to be included in messages sent by the message
producer. The value is xmsFALSE if a receiving application does
require message identifiers.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerGetDisableMsgTS – Get Disable Time Stamp
Flag
Interface:

xmsRC xmsMsgProducerGetDisableMsgTS(xmsHMsgProducer producer,
xmsBOOL *timeStampDisabled,
xmsHErrorBlock errorBlock);

Get an indication of whether a receiving application requires time stamps to be
included in messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

timeStampDisabled (output)
The value is xmsTRUE if a receiving application does not require

Chapter 12. C classes 187

time stamps to be included in messages sent by the message
producer. The value is xmsFALSE if a receiving application does
require time stamps.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerGetPriority – Get Default Priority
Interface:

xmsRC xmsMsgProducerGetPriority(xmsHMsgProducer producer,
xmsINT *priority,
xmsHErrorBlock errorBlock);

Get the default priority for messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

priority (output)
The default message priority. The value is an integer in the range
0, the lowest priority, to 9, the highest priority.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerGetTimeToLive – Get Default Time to Live
Interface:

xmsRC xmsMsgProducerGetTimeToLive(xmsHMsgProducer producer,
xmsLONG *timeToLive,
xmsHErrorBlock errorBlock);

Get the default length of time that a message exists before it expires. The time is
measured from when the message producer sends the message.

Parameters:

producer (input)
The handle for the message producer.

timeToLive (output)
The default time to live in milliseconds. A value of 0 means that a
message never expires. For a real-time connection to a broker, the
value is always 0.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

188 WebSphere MQ: Message Service Client for C/C++

xmsMsgProducerSend – Send
Interface:

xmsRC xmsMsgProducerSend(xmsHMsgProducer producer,
xmsHMsg message,
xmsHErrorBlock errorBlock);

Send a message to the destination that was specified when the message producer
was created. Send the message using the message producer's default delivery
mode, priority, and time to live.

Parameters:

producer (input)
The handle for the message producer.

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

xmsMsgProducerSendDest – Send (to a specified destination)
Interface:

xmsRC xmsMsgProducerSendDest(xmsHMsgProducer producer,
xmsHDest destination,
xmsHMsg message,
xmsHErrorBlock errorBlock);

Send a message to a specified destination if you are using a message producer for
which no destination was specified when the message producer was created. Send
the message using the message producer's default delivery mode, priority, and
time to live.

Typically, you specify a destination when you create a message producer but, if
you do not, you must specify a destination every time you send a message.

Parameters:

producer (input)
The handle for the message producer.

destination (input)
The handle for the destination.

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

Chapter 12. C classes 189

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

xmsMsgProducerSendDestWithAttr – Send (to a specified
destination, specifying a delivery mode, priority, and time to live)
Interface:

xmsRC xmsMsgProducerSendDestWithAttr(xmsHMsgProducer producer,
xmsHDest destination,
xmsHMsg message,
xmsINT deliveryMode,
xmsINT priority,
xmsLONG timeToLive,
xmsHErrorBlock errorBlock);

Send a message to a specified destination if you are using a message producer for
which no destination was specified when the message producer was created. Send
the message using the specified delivery mode, priority, and time to live.

Typically, you specify a destination when you create a message producer but, if
you do not, you must specify a destination every time you send a message.

Parameters:

producer (input)
The handle for the message producer.

destination (input)
The handle for the destination.

message (input)
The handle for the message.

deliveryMode (input)
The delivery mode for the message, which must be one of the
following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the value must be
XMSC_DELIVERY_NOT_PERSISTENT.

priority (input)
The priority of the message. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. On a
real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0
means that the message never expires. For a real-time connection
to a broker, the value must be 0.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION

190 WebSphere MQ: Message Service Client for C/C++

v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

xmsMsgProducerSendWithAttr – Send (specifying a delivery
mode, priority, and time to live)
Interface:

xmsRC xmsMsgProducerSendWithAttr(xmsHMsgProducer producer,
xmsHMsg message,
xmsINT deliveryMode,
xmsINT priority,
xmsLONG timeToLive,
xmsHErrorBlock errorBlock);

Send a message to the destination that was specified when the message producer
was created. Send the message using the specified delivery mode, priority, and
time to live.

Parameters:

producer (input)
The handle for the message producer.

message (input)
The handle for the message.

deliveryMode (input)
The delivery mode for the message, which must be one of the
following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the value must be
XMSC_DELIVERY_NOT_PERSISTENT.

priority (input)
The priority of the message. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. On a
real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0
means that the message never expires. For a real-time connection
to a broker, the value must be 0.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

xmsMsgProducerSetDeliveryMode – Set Default Delivery Mode
Interface:

Chapter 12. C classes 191

xmsRC xmsMsgProducerSetDeliveryMode(xmsHMsgProducer producer,
xmsINT deliveryMode,
xmsHErrorBlock errorBlock);

Set the default delivery mode for messages sent by the message producer.

Parameters:

producer (input)
The handle for the message producer.

deliveryMode (input)
The default delivery mode, which must be one of the following
values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the value must be
XMSC_DELIVERY_NOT_PERSISTENT.

The default value is XMSC_DELIVERY_PERSISTENT, except for a
real-time connection to a broker for which the default value is
XMSC_DELIVERY_NOT_PERSISTENT.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerSetDisableMsgID – Set Disable Message ID Flag
Interface:

xmsRC xmsMsgProducerSetDisableMsgID(xmsHMsgProducer producer,
xmsBOOL msgIDDisabled,
xmsHErrorBlock errorBlock);

Indicate whether a receiving application requires message identifiers to be included
in messages sent by the message producer.

On a connection to a queue manager, or on a real-time connection to a broker, this
flag is ignored. On a connection to a service integration bus, the flag is honoured.

Parameters:

producer (input)
The handle for the message producer.

msgIDDisabled (input)
The value xmsTRUE means that a receiving application does not
require message identifiers to be included in messages sent by the
message producer. The value xmsFALSE means that a receiving
application does require message identifiers. The default value is
xmsFALSE.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

192 WebSphere MQ: Message Service Client for C/C++

xmsMsgProducerSetDisableMsgTS – Set Disable Time Stamp
Flag
Interface:

xmsRC xmsMsgProducerSetDisableMsgTS(xmsHMsgProducer producer,
xmsBOOL timeStampDisabled,
xmsHErrorBlock errorBlock);

Indicate whether a receiving application requires time stamps to be included in
messages sent by the message producer.

On a real-time connection to a broker, this flag is ignored. On a connection to a
queue manager, or on a connection to a service integration bus, the flag is
honoured.

Parameters:

producer (input)
The handle for the message producer.

timeStampDisabled (input)
The value xmsTRUE means that a receiving application does not
require time stamps to be included in messages sent by the
message producer. The value xmsFALSE means that a receiving
application does require time stamps. The default value is
xmsFALSE.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerSetPriority – Set Default Priority
Interface:

xmsRC xmsMsgProducerSetPriority(xmsHMsgProducer producer,
xmsINT priority,
xmsHErrorBlock errorBlock);

Set the default priority for messages sent by the message producer.

On a real-time connection to a broker, the priority of a message is ignored.

Parameters:

producer (input)
The handle for the message producer.

priority (input)
The default message priority. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. The
default value is 4.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

Chapter 12. C classes 193

v XMS_X_GENERAL_EXCEPTION

xmsMsgProducerSetTimeToLive – Set Default Time to Live
Interface:

xmsRC xmsMsgProducerSetTimeToLive(xmsHMsgProducer producer,
xmsLONG timeToLive,
xmsHErrorBlock errorBlock);

Set the default length of time that a message exists before it expires. The time is
measured from when the message producer sends the message.

Parameters:

producer (input)
The handle for the message producer.

timeToLive (input)
The default time to live in milliseconds. The default value is 0,
which means that a message never expires. For a real-time
connection to a broker, the value must be 0.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

ObjectMessage
An object message is a message whose body comprises a serialized Java object.

Functions
Summary of functions:

Function Description
xmsObjectMsgGetObjectAsBytesGet the object that forms the body of the object message.
xmsObjectMsgSetObjectAsBytesSet the object that forms the body of the object message.

xmsObjectMsgGetObjectAsBytes – Get Object as Bytes
Interface:

xmsRC xmsObjectMsgGetObjectAsBytes(xmsHMsg message,
xmsSBYTE *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the object that forms the body of the object message.

For more information about how to use this function, see “C functions that return
a byte array by value” on page 59.

Parameters:

message (input)
The handle for the message.

194 WebSphere MQ: Message Service Client for C/C++

buffer (output)
The buffer to contain the object, which is returned as an array of
bytes.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the object is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the object in bytes. If you specify a null pointer on
input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Notes:

1. If the buffer is not large enough to store the whole object, XMS returns the
object truncated to the length of the buffer, sets the actualLength parameter to
the actual length of the object, and returns an error.

2. If any other error occurs while attempting to get the object, XMS reports the
error but does not set the actualLength parameter.

xmsObjectMsgSetObjectAsBytes – Set Object as Bytes
Interface:

xmsRC xmsObjectMsgSetObjectAsBytes(xmsHMsg message,
xmsSBYTE *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Set the object that forms the body of the object message.

Parameters:

message (input)
The handle for the message.

value (input)
An array of bytes representing the object to be set.

length (input)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Chapter 12. C classes 195

Property
A Property object represents a property of an object.

A Property object has three attributes:

Property name
The name of the property

Property value
The value of the property

Property type
The data type of the value of the property

If an application sets the property value attribute of a Property object, the property
value replaces any previous value the attribute had.

This class is a helper class.

Functions
Summary of functions:

Function Description
xmsPropertyCreate Create a Property object with no property value or property

type.
xmsPropertyDispose Delete the Property object.
xmsPropertyDuplicate Copy the Property object.
xmsPropertyGetBoolean Get the boolean property value from the Property object.
xmsPropertyGetByte Get the byte property value from the Property object.
xmsPropertyGetByteArray Get the byte array property value from the Property object.
xmsPropertyGetByteArrayByRef Get a pointer to the byte array property value in the

Property object.
xmsPropertyGetChar Get the 2-byte character property value from the Property

object.
xmsPropertyGetDouble Get the double precision floating point property value from

the Property object.
xmsPropertyGetFloat Get the floating point property value from the Property

object.
xmsPropertyGetInt Get the integer property value from the Property object.
xmsPropertyGetLong Get the long integer property value from the Property

object.
xmsPropertyGetName Get the property name from the Property object.
xmsPropertyGetShort Get the short integer property value from the Property

object.
xmsPropertyGetString Get the string property value from the Property object.
xmsPropertyGetStringByRef Get a pointer to the string property value in the Property

object.
xmsPropertyGetTypeId Get the property type from the Property object.
xmsPropertyIsTypeId Check whether the Property object has the specified

property type.
xmsPropertySetBoolean Set a boolean property value in the Property object and set

the property type.
xmsPropertySetByte Set a byte property value in the Property object and set the

property type.
xmsPropertySetByteArray Set a byte array property value in the Property object and

set the property type.

196 WebSphere MQ: Message Service Client for C/C++

Function Description
xmsPropertySetChar Set a 2-byte character property value in the Property object

and set the property type.
xmsPropertySetDouble Set a double precision floating point property value in the

Property object and set the property type.
xmsPropertySetFloat Set a floating point property value in the Property object

and set the property type.
xmsPropertySetInt Set an integer property value in the Property object and set

the property type.
xmsPropertySetLong Set a long integer property value in the Property object and

set the property type.
setShortxmsPropertySetShort Set a short integer property value in the Property object and

set the property type.
xmsPropertySetString Set a string property value in the Property object and set

the property type.

xmsPropertyCreate – Create Property (with no property value or
property type)
Interface:

xmsRC xmsPropertyCreate(xmsCHAR *propertyName,
xmsHProperty *property,
xmsHErrorBlock errorBlock);

Create a Property object with no property value or property type.

Parameters:

propertyName (input)
The property name in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyDispose – Delete Property
Interface:

xmsRC xmsPropertyDispose(xmsHProperty *property,
xmsHErrorBlock errorBlock);

Delete the Property object.

If an application tries to delete a Property object that is already deleted, the call is
ignored.

Parameters:

property (input/output)
On input, the handle for the Property object. On output the
function returns a null handle.

Chapter 12. C classes 197

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyDuplicate – Copy Property
Interface:

xmsRC xmsPropertyDuplicate(xmsHProperty property,
xmsHProperty *copiedProperty,
xmsHErrorBlock errorBlock);

Copy the Property object.

Parameters:

property (input)
The handle for the Property object.

copiedProperty (output)
The handle for the copy of the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetBoolean – Get Boolean Property Value
Interface:

xmsRC xmsPropertyGetBoolean(xmsHProperty property,
xmsBOOL *propertyValue,
xmsHErrorBlock errorBlock);

Get the boolean property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The boolean property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

198 WebSphere MQ: Message Service Client for C/C++

xmsPropertyGetByte – Get Byte Property Value
Interface:

xmsRC xmsPropertyGetByte(xmsHProperty property,
xmsSBYTE *propertyValue,
xmsHErrorBlock errorBlock);

Get the byte property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The byte property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetByteArray – Get Byte Array Property Value
Interface:

xmsRC xmsPropertyGetByteArray(xmsHProperty property,
xmsSBYTE *propertyValue,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the byte array property value from the Property object.

For more information about how to use this function, see “C functions that return
a byte array by value” on page 59.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The buffer to contain the property value, which is an array of
bytes.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the property value is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the property value in bytes. If you specify a null
pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 12. C classes 199

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetByteArrayByRef – Get Byte Array Property Value
by Reference
Interface:

xmsRC xmsPropertyGetByteArrayByRef(xmsHProperty property,
xmsSBYTE **propertyValue,
xmsINT *length,
xmsHErrorBlock errorBlock);

Get a pointer to the byte array property value in the Property object.

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
A pointer to the property value, which is an array of bytes.

length (output)
The length of the property value in bytes.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetChar – Get Character Property Value
Interface:

xmsRC xmsPropertyGetChar(xmsHProperty property,
xmsCHAR16 *propertyValue,
xmsHErrorBlock errorBlock);

Get the 2-byte character property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The 2-byte character property value.

errorBlock (input)
The handle for an error block or a null handle.

200 WebSphere MQ: Message Service Client for C/C++

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetDouble – Get Double Precision Floating Point
Property Value
Interface:

xmsRC xmsPropertyGetDouble(xmsHProperty property,
xmsDOUBLE *propertyValue,
xmsHErrorBlock errorBlock);

Get the double precision floating point property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The double precision floating point property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetFloat – Get Floating Point Property Value
Interface:

xmsRC xmsPropertyGetFloat(xmsHProperty property,
xmsFLOAT *propertyValue,
xmsHErrorBlock errorBlock);

Get the floating point property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The floating point property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 201

xmsPropertyGetInt – Get Integer Property Value
Interface:

xmsRC xmsPropertyGetInt(xmsHProperty property,
xmsINT *propertyValue,
xmsHErrorBlock errorBlock);

Get the integer property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetLong – Get Long Integer Property Value
Interface:

xmsRC xmsPropertyGetLong(xmsHProperty property,
xmsLONG *propertyValue,
xmsHErrorBlock errorBlock);

Get the long integer property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The long integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetName – Get Property Name
Interface:

xmsRC xmsPropertyGetName(xmsHProperty property,
xmsCHAR *propertyName,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

202 WebSphere MQ: Message Service Client for C/C++

Get the property name from the Property object.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

property (input)
The handle for the Property object.

propertyName (output)
The buffer to contain the property name.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the property name is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the property name in bytes. If you specify a null
pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetShort – Get Short Integer Property Value
Interface:

xmsRC xmsPropertyGetShort(xmsHProperty property,
xmsSHORT *propertyValue,
xmsHErrorBlock errorBlock);

Get the short integer property value from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The short integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetString – Get String Property Value
Interface:

Chapter 12. C classes 203

xmsRC xmsPropertyGetString(xmsHProperty property,
xmsCHAR *propertyValue,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the string property value from the Property object.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
The buffer to contain the string property value. If data conversion
is required, this is the value after conversion.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the property value is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the property value in bytes. If data conversion is
required, this is the length after conversion. If you specify a null
pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetStringByRef – Get String Property Value by
Reference
Interface:

xmsRC xmsPropertyGetStringByRef(xmsHProperty property,
xmsCHAR **propertyValue,
xmsINT *length,
xmsHErrorBlock errorBlock);

Get a pointer to the string property value in the Property object.

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Parameters:

property (input)
The handle for the Property object.

propertyValue (output)
A pointer to the string property value. If data conversion is
required, this is the value after conversion.

204 WebSphere MQ: Message Service Client for C/C++

Note that the property value must be a string. The function makes
no attempt to convert a property value with another data type into
a string. If an application calls this function to get a pointer to a
property value that is not a string, XMS returns an error.

length (output)
The length of the property value in bytes. If data conversion is
required, this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertyGetTypeId – Get Property Type
Interface:

xmsRC xmsPropertyGetTypeId(xmsHProperty property,
xmsPROPERTY_TYPE *propertyType,
xmsHErrorBlock errorBlock);

Get the property type from the Property object.

Parameters:

property (input)
The handle for the Property object.

propertyType (output)
The property type, which is one of the following values:

XMS_PROPERTY_TYPE_UNKNOWN

XMS_PROPERTY_TYPE_BOOL

XMS_PROPERTY_TYPE_BYTE

XMS_PROPERTY_TYPE_BYTEARRAY

XMS_PROPERTY_TYPE_CHAR

XMS_PROPERTY_TYPE_STRING

XMS_PROPERTY_TYPE_SHORT

XMS_PROPERTY_TYPE_INT

XMS_PROPERTY_TYPE_LONG

XMS_PROPERTY_TYPE_FLOAT

XMS_PROPERTY_TYPE_DOUBLE

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 205

xmsPropertyIsTypeId – Check Property Type
Interface:

xmsRC xmsPropertyIsTypeId(xmsHProperty property,
xmsPROPERTY_TYPE propertyType,
xmsBOOL *isType,
xmsHErrorBlock errorBlock);

Check whether the Property object has the specified property type.

Parameters:

property (input)
The handle for the Property object.

propertyType (input)
The property type, which must be one of the following values:

XMS_PROPERTY_TYPE_UNKNOWN

XMS_PROPERTY_TYPE_BOOL

XMS_PROPERTY_TYPE_BYTE

XMS_PROPERTY_TYPE_BYTEARRAY

XMS_PROPERTY_TYPE_CHAR

XMS_PROPERTY_TYPE_STRING

XMS_PROPERTY_TYPE_SHORT

XMS_PROPERTY_TYPE_INT

XMS_PROPERTY_TYPE_LONG

XMS_PROPERTY_TYPE_FLOAT

XMS_PROPERTY_TYPE_DOUBLE

isType (output)
The value is xmsTRUE if the Property object has the specified
property type. The value is xmsFALSE if the Property object does not
have the specified property type.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetBoolean – Set Boolean Property Value
Interface:

xmsRC xmsPropertySetBoolean(xmsHProperty property,
xmsBOOL propertyValue,
xmsHErrorBlock errorBlock);

Set a boolean property value in the Property object and set the property type.

Parameters:

property (input)
The handle for the Property object.

206 WebSphere MQ: Message Service Client for C/C++

propertyValue (input)
The boolean property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetByte – Set Byte Property Value
Interface:

xmsRC xmsPropertySetByte(xmsHProperty property,
xmsSBYTE propertyValue,
xmsHErrorBlock errorBlock);

Set a byte property value in the Property object and set the property type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The byte property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetByteArray – Set Byte Array Property Value
Interface:

xmsRC xmsPropertySetByteArray(xmsHProperty property,
xmsSBYTE *propertyValue,
xmsINT length,
xmsHErrorBlock errorBlock);

Set a byte array property value in the Property object and set the property type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The property value, which is an array of bytes.

length (input)
The length of the property value in bytes.

Chapter 12. C classes 207

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetChar – Set Character Property Value
Interface:

xmsRC xmsPropertySetChar(xmsHProperty Property,
xmsCHAR16 propertyValue,
xmsHErrorBlock errorBlock);

Set a 2-byte character property value in the Property object and set the property
type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The 2-byte character property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetDouble – Set Double Precision Floating Point
Property Value
Interface:

xmsRC xmsPropertySetDouble(xmsHProperty property,
xmsDOUBLE propertyValue,
xmsHErrorBlock errorBlock);

Set a double precision floating point property value in the Property object and set
the property type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The double precision floating point property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

208 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetFloat – Set Floating Point Property Value
Interface:

xmsRC xmsPropertySetFloat(xmsHProperty property,
xmsFLOAT propertyValue,
xmsHErrorBlock errorBlock);

Set a floating point property value in the Property object and set the property type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The floating point property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetInt – Set Integer Property Value
Interface:

xmsRC xmsPropertySetInt(xmsHProperty property,
xmsINT propertyValue,
xmsHErrorBlock errorBlock);

Set an integer property value in the Property object and set the property type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetLong – Set Long Integer Property Value
Interface:

Chapter 12. C classes 209

xmsRC xmsPropertySetLong(xmsHProperty property,
xmsLONG propertyValue,
xmsHErrorBlock errorBlock);

Set a long integer property value in the Property object and set the property type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The long integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetShort – Set Short Integer Property Value
Interface:

xmsRC xmsPropertySetShort(xmsHProperty property,
xmsSHORT propertyValue,
xmsHErrorBlock errorBlock);

Set a short integer property value in the Property object and set the property type.

Parameters:

property (input)
The handle for the Property object.

propertyValue (input)
The short integer property value.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsPropertySetString – Set String Property Value
Interface:

xmsRC xmsPropertySetString(xmsHProperty property,
xmsCHAR *propertyValue,
xmsINT length,
xmsHErrorBlock errorBlock);

Set a string property value in the Property object and set the property type.

Parameters:

210 WebSphere MQ: Message Service Client for C/C++

property (input)
The handle for the Property object.

propertyValue (input)
The string property value as a character array.

length (input)
The length of the property value in bytes. If the property value is
null terminated with no embedded null characters, you can specify
XMSC_CALCULATE_STRING_SIZE instead and allow XMS to calculate
its length.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

PropertyContext
The PropertyContext class contains functions that get and set properties. These
functions can operate on any object that can have properties.

All objects can have properties except ErrorBlock, Iterator, and Property objects.

Functions
Summary of functions:

Function Description
xmsGetBooleanProperty Get the value of the boolean property identified by

name.
xmsGetByteArrayProperty Get the value of the byte array property identified by

name.
xmsGetByteArrayPropertyByRef Get a pointer to the value of the byte array property

identified by name.
xmsGetByteProperty Get the value of the byte property identified by name.
xmsGetCharProperty Get the value of the 2-byte character property identified

by name.
xmsGetDoubleProperty Get the value of the double precision floating point

property identified by name.
xmsGetFloatProperty Get the value of the floating point property identified by

name.
xmsGetHandleTypeId Get the type of the handle for the object.
xmsGetIntProperty Get the value of the integer property identified by name.
xmsGetLongProperty Get the value of the long integer property identified by

name.
xmsGetObjectProperty Get the value and data type of the property identified by

name.
xmsGetProperty Get a Property object for the property identified by

name.
xmsGetShortProperty Get the value of the short integer property identified by

name.
xmsGetStringProperty Get the value of the string property identified by name.
xmsGetStringPropertyByRef Get a pointer to the value of the string property

identified by name.

Chapter 12. C classes 211

Function Description
xmsSetBooleanProperty Set the value of the boolean property identified by name.
xmsSetByteProperty Set the value of the byte property identified by name.
xmsSetByteArrayProperty Set the value of the byte array property identified by

name.
xmsSetCharProperty Set the value of the 2-byte character property identified

by name.
xmsSetDoubleProperty Set the value of the double precision floating point

property identified by name.
xmsSetFloatProperty Set the value of the floating point property identified by

name.
xmsSetIntProperty Set the value of the integer property identified by name.
xmsSetLongProperty Set the value of the long integer property identified by

name.
xmsSetObjectProperty Set the value and data type of a property identified by

name.
xmsSetProperty Set the value of a property using a Property object.
xmsSetShortProperty Set the value of the short integer property identified by

name.
xmsSetStringProperty Set the value of the string property identified by name.

xmsGetBooleanProperty – Get Boolean Property
Interface:

xmsRC xmsGetBooleanProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsBOOL *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the boolean property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetByteArrayProperty – Get Byte Array Property
Interface:

xmsRC xmsGetByteArrayProperty(xmsHObj object
xmsCHAR *propertyName,
xmsSBYTE *propertyValue,

212 WebSphere MQ: Message Service Client for C/C++

xmsINT length,
xmsINT *actualLength
xmsHErrorBlock errorBlock) const;

Get the value of the byte array property identified by name.

For more information about how to use this function, see “C functions that return
a byte array by value” on page 59.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The buffer to contain the value of the property, which is an array
of bytes.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the array of bytes is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The number of bytes in the array. If you specify a null pointer on
input, the length of the array is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetByteArrayPropertyByRef – Get Byte Array Property by
Reference
Interface:

xmsRC xmsGetByteArrayPropertyByRef(xmsHObj object
xmsCHAR *propertyName,
xmsSBYTE **propertyValue,
xmsINT *length,
xmsHErrorBlock errorBlock) const;

Get a pointer to the value of the byte array property identified by name.

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

Chapter 12. C classes 213

propertyValue (output)
A pointer to the value of the property, which is an array of bytes.

length (output)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetByteProperty – Get Byte Property
Interface:

xmsRC xmsGetByteProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsSBYTE *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the byte property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetCharProperty – Get Character Property
Interface:

xmsRC xmsGetCharProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsCHAR16 *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the 2-byte character property identified by name.

Parameters:

object (input)
The handle for the object.

214 WebSphere MQ: Message Service Client for C/C++

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetDoubleProperty – Get Double Precision Floating Point
Property
Interface:

xmsRC xmsGetDoubleProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsDOUBLE *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the double precision floating point property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetFloatProperty – Get Floating Point Property
Interface:

xmsRC xmsGetFloatProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsFLOAT *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the floating point property identified by name.

Parameters:

object (input)
The handle for the object.

Chapter 12. C classes 215

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetHandleTypeId – Get Handle Type
Interface:

xmsRC xmsGetHandleTypeId(xmsHObj object,
xmsHANDLE_TYPE *handleType,
xmsHErrorBlock errorBlock);

Get the type of the handle for the object.

Parameters:

object (input)
The handle for the object.

handleType (output)
The type of the handle for the object, which is one of the following
values:

XMS_HANDLE_TYPE_CONN

XMS_HANDLE_TYPE_CONNFACT

XMS_HANDLE_TYPE_CONNMETADATA

XMS_HANDLE_TYPE_DEST

XMS_HANDLE_TYPE_ERRORBLOCK

XMS_HANDLE_TYPE_INITIALCONTEXT

XMS_HANDLE_TYPE_ITERATOR

XMS_HANDLE_TYPE_MSG

XMS_HANDLE_TYPE_MSGCONSUMER

XMS_HANDLE_TYPE_MSGPRODUCER

XMS_HANDLE_TYPE_QUEUEBROWSER

XMS_HANDLE_TYPE_PROPERTY

XMS_HANDLE_TYPE_REQUESTOR

XMS_HANDLE_TYPE_SESS

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

216 WebSphere MQ: Message Service Client for C/C++

xmsGetIntProperty – Get Integer Property
Interface:

xmsRC xmsGetIntProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsINT *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the integer property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetLongProperty – Get Long Integer Property
Interface:

xmsRC xmsGetLongProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsLONG *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the long integer property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 217

xmsGetObjectProperty – Get Object Property
Interface:

xmsRC xmsGetObjectProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsSBYTE *propertyValue,
xmsINT length,
xmsINT *actualLength,
xmsOBJECT_TYPE *objectType,
xmsHErrorBlock errorBlock);

Get the value and data type of the property identified by name.

For more information about how to use this function, see “C functions that return
a byte array by value” on page 59.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The buffer to contain the value of the property, which is returned
as an array of bytes. If the value is a string and data conversion is
required, this is the value after conversion.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the value of the property is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the value of the property in bytes. If the value is a
string and data conversion is required, this is the length after
conversion. If you specify a null pointer on input, the length is not
returned.

objectType (output)
The data type of the value of the property, which is one of the
following object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

218 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetProperty – Get Property
Interface:

xmsRC xmsGetProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsHProperty *property,
xmsHErrorBlock errorBlock);

Get a Property object for the property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

property (output)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetShortProperty – Get Short Integer Property
Interface:

xmsRC xmsGetShortProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsLONG *propertyValue,
xmsHErrorBlock errorBlock);

Get the value of the short integer property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

Chapter 12. C classes 219

v XMS_X_GENERAL_EXCEPTION

xmsGetStringProperty – Get String Property
Interface:

xmsRC xmsGetStringProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the value of the string property identified by name.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
The buffer to contain the value of the property. If data conversion
is required, this is the value after conversion.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the value of the property is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the value of the property in bytes. If data conversion
is required, this is the length after conversion. If you specify a null
pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsGetStringPropertyByRef – Get String Property by Reference
Interface:

xmsRC xmsMsgGetStringPropertyByRef(xmsHObj object,
xmsCHAR *propertyName,
xmsCHAR **propertyValue,
xmsINT *length,
xmsHErrorBlock errorBlock);

Get a pointer to the value of the string property identified by name.

220 WebSphere MQ: Message Service Client for C/C++

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (output)
A pointer to the value of the property. If data conversion is
required, this is the value after conversion.

Note that the value of the property must be a string. The function
makes no attempt to convert a value with another data type into a
string. If an application calls this function to get a pointer to a
value that is not a string, XMS returns an error.

length (output)
The length of the value of the property in bytes. If data conversion
is required, this is the length after conversion.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSetBooleanProperty – Set Boolean Property
Interface:

xmsRC xmsSetBooleanProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsBOOL propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the boolean property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 221

v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetByteProperty – Set Byte Property
Interface:

xmsRC xmsSetByteProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsSBYTE propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the byte property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetByteArrayProperty – Set Byte Array Property
Interface:

xmsRC xmsSetByteArrayProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsSBYTE *propertyValue,
xmsINT length
xmsHErrorBlock errorBlock);

Set the value of the byte array property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property, which is an array of bytes.

length (input)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

222 WebSphere MQ: Message Service Client for C/C++

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetCharProperty – Set Character Property
Interface:

xmsRC xmsSetCharProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsCHAR16 propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the 2-byte character property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetDoubleProperty – Set Double Precision Floating Point
Property
Interface:

xmsRC xmsSetDoubleProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsDOUBLE propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the double precision floating point property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

Chapter 12. C classes 223

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetFloatProperty – Set Floating Point Property
Interface:

xmsRC xmsSetFloatProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsFLOAT propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the floating point property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetIntProperty – Set Integer Property
Interface:

xmsRC xmsSetIntProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsINT propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the integer property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

224 WebSphere MQ: Message Service Client for C/C++

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetLongProperty – Set Long Integer Property
Interface:

xmsRC xmsSetLongProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsLONG propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the long integer property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetObjectProperty – Set Object Property
Interface:

xmsRC xmsSetObjectProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsSBYTE *propertyValue,
xmsINT length,
xmsOBJECT_TYPE objectType,
xmsHErrorBlock errorBlock);

Set the value and data type of a property identified by name.

Parameters:

Chapter 12. C classes 225

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property as an array of bytes.

length (input)
The number of bytes in the array.

objectType (input)
The data type of the value of the property, which must be one of
the following object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetProperty – Set Property
Interface:

xmsRC xmsSetProperty(xmsHObj object,
xmsHProperty property,
xmsHErrorBlock errorBlock);

Set the value of a property using a Property object.

Parameters:

object (input)
The handle for the object.

property (input)
The handle for the Property object.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

226 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetShortProperty – Set Short Integer Property
Interface:

xmsRC xmsSetShortProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsSHORT propertyValue,
xmsHErrorBlock errorBlock);

Set the value of the short integer property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsSetStringProperty – Set String Property
Interface:

xmsRC xmsSetStringProperty(xmsHObj object,
xmsCHAR *propertyName,
xmsCHAR *propertyValue,
xmsINT length,
xmsHErrorBlock errorBlock);

Set the value of the string property identified by name.

Parameters:

object (input)
The handle for the object.

propertyName (input)
The name of the property in the format of a null terminated string.

propertyValue (input)
The value of the property as a character array.

length (input)
The length of the value of the property in bytes. If the value of the

Chapter 12. C classes 227

property is null terminated with no embedded null characters, you
can specify XMSC_CALCULATE_STRING_SIZE instead and allow XMS to
calculate its length.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Determined by the thread context of the object

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

QueueBrowser
An application uses a queue browser to browse messages on a queue without
removing them.

Functions
Summary of functions:

Function Description
xmsQueueBrowserClose Close the queue browser.
xmsQueueBrowserGetEnumerationGet a list of the messages on the queue.
xmsQueueBrowserGetMessageSelectorGet the message selector for the queue browser.
xmsQueueBrowserGetQueue Get the queue associated with the queue browser.

xmsQueueBrowserClose – Close Queue Browser
Interface:

xmsRC xmsQueueBrowserClose(xmsHQueueBrowser *browser,
xmsHErrorBlock errorBlock);

Close the queue browser.

If an application tries to close a queue browser that is already closed, the call is
ignored.

Parameters:

browser (input/output)
On input, the handle for the queue browser. On output, the
function returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsQueueBrowserGetEnumeration – Get Messages
Interface:

xmsRC xmsQueueBrowserGetEnumeration(xmsHQueueBrowser browser,
xmsHIterator *iterator,
xmsHErrorBlock errorBlock);

228 WebSphere MQ: Message Service Client for C/C++

Get a list of the messages on the queue.

The function returns an iterator that encapsulates a list of Message objects. The
order of the Message objects in the list is the same as the order in which the
messages would be retrieved from the queue. The application can then use the
iterator to browse each message in turn.

The iterator is updated dynamically as messages are put on the queue and
removed from the queue. Each time the application calls xmsIteratorGetNext() to
browse the next message on the queue, the message returned reflects the current
contents of the queue.

If an application calls this function more than once for a given queue browser, each
call returns a new iterator. The application can therefore use more than one iterator
to browse the messages on a queue and maintain multiple positions within the
queue.

Parameters:

browser (input)
The handle for the queue browser.

iterator (output)
The handle for the iterator.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsQueueBrowserGetMessageSelector – Get Message Selector
Interface:

xmsRC xmsQueueBrowserGetMessageSelector(xmsHQueueBrowser browser,
xmsCHAR *messageSelector,
xmsINT length,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the message selector for the queue browser.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

browser (input)
The handle for the queue browser.

messageSelector (output)
The buffer to contain the message selector expression. If data
conversion is required, this is the message selector expression after
conversion.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the message selector expression is not returned, but its
length is returned in the actualLength parameter.

Chapter 12. C classes 229

actualLength (output)
The length of the message selector expression in bytes. If data
conversion is required, this is the length of the message selector
expression after conversion. If you specify a null pointer on input,
the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsQueueBrowserGetQueue – Get Queue
Interface:

xmsRC xmsQueueBrowserGetQueue(xmsHQueueBrowser browser,
xmsHDest *queue,
xmsHErrorBlock errorBlock);

Get the queue associated with the queue browser.

Parameters:

browser (input)
The handle for the queue browser.

queue (output)
The handle for a Destination object representing the queue.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Requestor
An application uses a requestor to send a request message and then wait for, and
receive, the reply.

Functions
Summary of functions:

Function Description
xmsRequestorClose Close the requestor.
xmsRequestorCreate Create a requestor.
xmsRequestorRequest Send a request message and then wait for, and receive, a reply

from the application that receives the request message.

xmsRequestorClose – Close Requestor
Interface:

xmsRC xmsRequestorClose(xmsHRequestor *requestor,
xmsHErrorBlock errorBlock);

Close the requestor.

230 WebSphere MQ: Message Service Client for C/C++

If an application tries to close a requestor that is already closed, the call is ignored.

Note: When an application closes a requestor, the associated session does not close
as well. In this respect, XMS behaves differently compared to JMS.

Parameters:

requestor (input/output)
On input, the handle for the requestor. On output, the function
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsRequestorCreate – Create Requestor
Interface:

xmsRC xmsRequestorCreate(xmsHSess session,
xmsHDest destination,
xmsHRequestor *requestor
xmsHErrorBlock errorBlock);

Create a requestor.

Parameters:

session (input)
The handle for a session. The session must not be transacted and
must have one of the following acknowledgement modes:

XMSC_AUTO_ACKNOWLEDGE

XMSC_DUPS_OK_ACKNOWLEDGE

destination (input)
The handle for the destination where the application can send
request messages.

requestor (output)
The handle for the requestor.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
The session associated with the requestor

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsRequestorRequest – Request
Interface:

Chapter 12. C classes 231

xmsRC xmsRequestorRequest(xmsHRequestor requestor,
xmsHMsg requestMessage,
xmsHMsg *replyMessage,
xmsHErrorBlock errorBlock);

Send a request message and then wait for, and receive, a reply from the application
that receives the request message.

A call to this function blocks until a reply is received or until the session ends,
whichever is the sooner.

Parameters:

requestor (input)
The handle for the requestor.

requestMessage (input)
The handle for the request message.

replyMessage (output)
The handle for the reply message.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
The session associated with the requestor

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Session
A session is a single threaded context for sending and receiving messages.

For a list of the XMS defined properties of a Session, see “Properties of Session” on
page 414.

Functions
Summary of functions:

Function Description
xmsSessClose Close the session.
xmsSessCommit Commit all messages processed in the current

transaction.
xmsSessCreateBrowser Create a queue browser for the specified queue.
xmsSessCreateBrowserSelector Create a queue browser for the specified queue

using a message selector.
xmsSessCreateBytesMessage Create a bytes message.
xmsSessCreateConsumer Create a message consumer for the specified

destination.
xmsSessCreateConsumerSelector Create a message consumer for the specified

destination using a message selector.
xmsSessCreateConsumerSelectorLocal Create a message consumer for the specified

destination using a message selector and, if the
destination is a topic, specifying whether the
message consumer receives the messages published
by its own connection.

xmsSessCreateDurableSubscriber Create a durable subscriber for the specified topic.

232 WebSphere MQ: Message Service Client for C/C++

Function Description
xmsSessCreateDurableSubscriberSelectorCreate a durable subscriber for the specified topic

using a message selector and specifying whether the
durable subscriber receives the messages published
by its own connection.

xmsSessCreateMapMessage Create a map message.
xmsSessCreateMessage Create a message that has no body.
xmsSessCreateObjectMessage Create an object message.
xmsSessCreateProducer Create a message producer to send messages to the

specified destination.
xmsSessCreateStreamMessage Create a stream message.
xmsSessCreateTextMessage Create a text message with an empty body.
xmsSessCreateTextMessageInit Create a text message whose body is initialized with

the specified text.
xmsSessGetAcknowledgeMode Get the acknowledgement mode for the session.
xmsSessGetTransacted Determine whether the session is transacted.
xmsSessRecover Recover the session.
xmsSessRollback Rollback all messages processed in the current

transaction.
xmsSessUnsubscribe Delete a durable subscription.

xmsSessClose – Close Session
Interface:

xmsRC xmsSessClose(xmsHSess *session,
xmsHErrorBlock errorBlock);

Close the session. If the session is transacted, any transaction in progress is rolled
back.

All objects dependent on the session are deleted. For information about which
objects are deleted, see “Object Deletion” on page 42.

If an application tries to close a session that is already closed, the call is ignored.

Parameters:

session (input/output)
On input, the handle for the session. On output, the function
returns a null handle.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSessCommit – Commit
Interface:

xmsRC xmsSessCommit(xmsHSess session,
xmsHErrorBlock errorBlock);

Commit all messages processed in the current transaction.

Chapter 12. C classes 233

Parameters:

session (input)
The handle for the session. The session must be a transacted
session.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION
v XMS_X_TRANSACTION_ROLLED_BACK_EXCEPTION

xmsSessCreateBrowser – Create Queue Browser
Interface:

xmsRC xmsSessCreateBrowser(xmsHSess session,
xmsHDest queue,
xmsHQueueBrowser *browser
xmsHErrorBlock errorBlock);

Create a queue browser for the specified queue.

Parameters:

session (input)
The handle for the session.

queue (input)
The handle for a Destination object representing the queue.

browser (output)
The handle for the queue browser.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

xmsSessCreateBrowserSelector – Create Queue Browser (with
message selector)
Interface:

xmsRC xmsSessCreateBrowserSelector(xmsHSess session,
xmsHDest queue,
xmsCHAR *messageSelector,
xmsINT length,
xmsHQueueBrowser *browser
xmsHErrorBlock errorBlock);

Create a queue browser for the specified queue using a message selector.

Parameters:

session (input)
The handle for the session.

234 WebSphere MQ: Message Service Client for C/C++

queue (input)
The handle for a Destination object representing the queue.

messageSelector (input)
A message selector expression as a character array. Only those
messages with properties that match the message selector
expression are delivered to the queue browser.

A value of null or an empty string means that there is no message
selector for the queue browser.

length (input)
The length of the message selector expression in bytes. If the
message selector expression is null terminated with no embedded
null characters, you can specify XMSC_CALCULATE_STRING_SIZE
instead and allow XMS to calculate its length.

browser (output)
The handle for the queue browser.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

xmsSessCreateBytesMessage – Create Bytes Message
Interface:

xmsRC xmsSessCreateBytesMessage(xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Create a bytes message.

Parameters:

session (input)
The handle for the session.

message (output)
The handle for the bytes message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSessCreateConsumer – Create Consumer
Interface:

xmsRC xmsSessCreateConsumer(xmsHSess session,
xmsHDest destination,
xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

Chapter 12. C classes 235

Create a message consumer for the specified destination.

Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination.

consumer (output)
The handle for the message consumer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

xmsSessCreateConsumerSelector – Create Consumer (with
message selector)
Interface:

xmsRC xmsSessCreateConsumerSelector(xmsHSess session,
xmsHDest destination,
xmsCHAR *messageSelector,
xmsINT length,
xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

Create a message consumer for the specified destination using a message selector.

Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination.

messageSelector (input)
A message selector expression as a character array. Only those
messages with properties that match the message selector
expression are delivered to the message consumer.

A value of null or an empty string means that there is no message
selector for the message consumer.

length (input)
The length of the message selector expression in bytes. If the
message selector expression is null terminated with no embedded
null characters, you can specify XMSC_CALCULATE_STRING_SIZE
instead and allow XMS to calculate its length.

consumer (output)
The handle for the message consumer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

236 WebSphere MQ: Message Service Client for C/C++

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

xmsSessCreateConsumerSelectorLocal – Create Consumer (with
message selector and local message flag)
Interface:

xmsRC xmsSessCreateConsumerSelectorLocal(xmsHSess session,
xmsHDest destination,
xmsCHAR *messageSelector,
xmsINT length,
xmsBOOL noLocal,
xmsHMsgConsumer *consumer,
xmsHErrorBlock errorBlock);

Create a message consumer for the specified destination using a message selector
and, if the destination is a topic, specifying whether the message consumer
receives the messages published by its own connection.

Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination.

messageSelector (input)
A message selector expression as a character array. Only those
messages with properties that match the message selector
expression are delivered to the message consumer.

A value of null or an empty string means that there is no message
selector for the message consumer.

length (input)
The length of the message selector expression in bytes. If the
message selector expression is null terminated with no embedded
null characters, you can specify XMSC_CALCULATE_STRING_SIZE
instead and allow XMS to calculate its length.

noLocal (input)
The value xmsTRUE means that the message consumer does not
receive the messages published by its own connection. The value
xmsFALSE means that the message consumer does receive the
messages published by its own connection. The default value is
xmsFALSE.

consumer (output)
The handle for the message consumer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

Chapter 12. C classes 237

xmsSessCreateDurableSubscriber – Create Durable Subscriber
Interface:

xmsRC xmsSessCreateDurableSubscriber(xmsHSess session,
xmsHDest topic,
xmsCHAR *subscriptionName
xmsHMsgConsumer *subscriber,
xmsHErrorBlock errorBlock);

Create a durable subscriber for the specified topic.

This function is not valid for a real-time connection to a broker.

For more information about durable subscribers, see “Durable subscribers” on page
37.

Parameters:

session (input)
The handle for the session.

topic (input)
The handle for a Destination object representing the topic. The
topic must not be a temporary topic.

subscriptionName (input)
A name that identifies the durable subscription. The name must be
unique within the client identifier for the connection, and is in the
format of a null terminated string.

subscriber (output)
The handle for the MessageConsumer object representing the
durable subscriber.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

xmsSessCreateDurableSubscriberSelector – Create Durable
Subscriber (with message selector and local message flag)
Interface:

xmsRC xmsSessCreateDurableSubscriberSelector(xmsHSess session,
xmsHDest topic,
xmsCHAR *subscriptionName
xmsCHAR *messageSelector,
xmsINT length,
xmsBOOL noLocal,
xmsHMsgConsumer *subscriber,
xmsHErrorBlock errorBlock);

Create a durable subscriber for the specified topic using a message selector and
specifying whether the durable subscriber receives the messages published by its
own connection.

238 WebSphere MQ: Message Service Client for C/C++

This function is not valid for a real-time connection to a broker.

For more information about durable subscribers, see “Durable subscribers” on page
37.

Parameters:

session (input)
The handle for the session.

topic (input)
The handle for a Destination object representing the topic. The
topic must not be a temporary topic.

subscriptionName (input)
A name that identifies the durable subscription. The name must be
unique within the client identifier for the connection, and is in the
format of a null terminated string.

messageSelector (input)
A message selector expression as a character array. Only those
messages with properties that match the message selector
expression are delivered to the durable subscriber.

A value of null or an empty string means that there is no message
selector for the durable subscriber.

length (input)
The length of the message selector expression in bytes. If the
message selector expression is null terminated with no embedded
null characters, you can specify XMSC_CALCULATE_STRING_SIZE
instead and allow XMS to calculate its length.

noLocal (input)
The value xmsTRUE means that the durable subscriber does not
receive the messages published by its own connection. The value
xmsFALSE means that the durable subscriber does receive the
messages published by its own connection. The default value is
xmsFALSE.

subscriber (output)
The handle for the MessageConsumer object representing the
durable subscriber.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

xmsSessCreateMapMessage – Create Map Message
Interface:

xmsRC xmsSessCreateMapMessage(xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Create a map message.

Chapter 12. C classes 239

Parameters:

session (input)
The handle for the session.

message (output)
The handle for the map message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSessCreateMessage – Create Message
Interface:

xmsRC xmsSessCreateMessage(xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Create a message that has no body.

Parameters:

session (input)
The handle for the session.

message (output)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSessCreateObjectMessage – Create Object Message
Interface:

xmsRC xmsSessCreateObjectMessage(xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Create an object message.

Parameters:

session (input)
The handle for the session.

message (output)
The handle for the object message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

240 WebSphere MQ: Message Service Client for C/C++

xmsSessCreateProducer – Create Producer
Interface:

xmsRC xmsSessCreateProducer(xmsHSess session,
xmsHDest destination,
xmsHMsgProducer *producer,
xmsHErrorBlock errorBlock);

Create a message producer to send messages to the specified destination.

Parameters:

session (input)
The handle for the session.

destination (input)
The handle for the destination.

If you specify a null handle, the message producer is created
without a destination. In this case, the application must specify a
destination every time it uses the message producer to send a
message.

producer (output)
The handle for the message producer.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

xmsSessCreateStreamMessage – Create Stream Message
Interface:

xmsRC xmsSessCreateStreamMessage(xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Create a stream message.

Parameters:

session (input)
The handle for the session.

message (output)
The handle for the stream message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 12. C classes 241

xmsSessCreateTextMessage – Create Text Message
Interface:

xmsRC xmsSessCreateTextMessage(xmsHSess session,
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Create a text message with an empty body.

Parameters:

session (input)
The handle for the session.

message (output)
The handle for the text message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSessCreateTextMessageInit – Create Text Message
(initialized)
Interface:

xmsRC xmsSessCreateTextMessageInit(xmsHSess session,
xmsCHAR *text
xmsINT length
xmsHMsg *message,
xmsHErrorBlock errorBlock);

Create a text message whose body is initialized with the specified text.

Parameters:

session (input)
The handle for the session.

text (input)
A character array containing the text to initialize the body of the
text message.

length (input)
The length of the text in bytes. If the text is null terminated with
no embedded null characters, you can specify
XMSC_CALCULATE_STRING_SIZE instead and allow XMS to calculate
its length.

message (output)
The handle for the text message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

242 WebSphere MQ: Message Service Client for C/C++

xmsSessGetAcknowledgeMode – Get Acknowledgement Mode
Interface:

xmsRC xmsSessGetAcknowledgeMode(xmsHSess session,
xmsINT *acknowledgeMode,
xmsHErrorBlock errorBlock);

Get the acknowledgement mode for the session. The acknowledgement mode is
specified when the session is created.

A session that is transacted has no acknowledgement mode.

For more information about acknowledgement modes, see “Message
acknowledgement” on page 29.

Parameters:

session (input)
The handle for the session.

acknowledgeMode (output)
The acknowledgement mode. Provided the session is not
transacted, the acknowledgement mode is one of the following
values:

XMSC_AUTO_ACKNOWLEDGE

XMSC_CLIENT_ACKNOWLEDGE

XMSC_DUPS_OK_ACKNOWLEDGE

If the session is transacted, the function returns
XMSC_SESSION_TRANSACTED instead.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSessGetTransacted – Determine Whether Transacted
Interface:

xmsRC xmsSessGetTransacted(xmsHSess session,
xmsBOOL *transacted,
xmsHErrorBlock errorBlock);

Determine whether the session is transacted.

Parameters:

session (input)
The handle for the session.

transacted (output)
The value is xmsTRUE if the session is transacted. The value is
xmsFALSE if the session is not transacted.

For a real-time connection to a broker, the value is always
xmsFALSE.

errorBlock (input)
The handle for an error block or a null handle.

Chapter 12. C classes 243

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSessRecover – Recover
Interface:

xmsRC xmsSessRecover(xmsHSess session,
xmsHErrorBlock errorBlock);

Recover the session. Message delivery is stopped and then restarted with the
oldest unacknowledged message.

The session must not be a transacted session.

For more information about recovering a session, see “Message acknowledgement”
on page 29.

Parameters:

session (input)
The handle for the session.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

xmsSessRollback – Rollback
Interface:

xmsRC xmsSessRollback(xmsHSess session,
xmsHErrorBlock errorBlock);

Rollback all messages processed in the current transaction.

Parameters:

session (input)
The handle for the session. The session must be a transacted
session.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

xmsSessUnsubscribe – Unsubscribe
Interface:

244 WebSphere MQ: Message Service Client for C/C++

xmsRC xmsSessUnsubscribe(xmsHSess session,
xmsCHAR *subscriptionName,
xmsHErrorBlock errorBlock);

Delete a durable subscription. The messaging server deletes the record of the
durable subscription that it is maintaining and does not send any more messages
to the durable subscriber.

An application cannot delete a durable subscription in any of the following
circumstances:
v While there is an active message consumer for the durable subscription
v While a consumed message is part of a pending transaction
v While a consumed message has not been acknowledged

This function is not valid for a real-time connection to a broker.

Parameters:

session (input)
The handle for the session.

subscriptionName (input)
The name that identifies the durable subscription. The name is in
the format of a null terminated string.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

StreamMessage
A stream message is a message whose body comprises a stream of values, where
each value has an associated data type.

The contents of the body are written to and read sequentially.

When an application reads a value from the message stream, the value can be
converted by XMS into another data type. For more information about this form of
implicit conversion, see “Stream messages” on page 99.

Functions
Summary of functions:

Function Description
xmsStreamMsgReadBoolean Read a boolean value from the message stream.
xmsStreamMsgReadByte Read a signed 8-bit integer from the message stream.
xmsStreamMsgReadBytes Read an array of bytes from the message stream.
xmsStreamMsgReadBytesByRef Get a pointer to an array of bytes in the message

stream, and get the length of the array.
xmsStreamMsgReadChar Read a 2-byte character from the message stream.
xmsStreamMsgReadDouble Read an 8-byte double precision floating point number

from the message stream.

Chapter 12. C classes 245

Function Description
xmsStreamMsgReadFloat Read a 4-byte floating point number from the message

stream.
xmsStreamMsgReadInt Read a signed 32-bit integer from the message stream.
xmsStreamMsgReadLong Read a signed 64-bit integer from the message stream.
xmsStreamMsgReadObject Read a value from the message stream, and return its

data type.
xmsStreamMsgReadShort Read a signed 16-bit integer from the message stream.
xmsStreamMsgReadString Read a string from the message stream.
xmsStreamMsgReset Put the body of the message into read-only mode and

reposition the cursor at the beginning of the message
stream.

xmsStreamMsgWriteBoolean Write a boolean value to the message stream.
xmsStreamMsgWriteByte Write a byte to the message stream.
xmsStreamMsgWriteBytes Write an array of bytes to the message stream.
xmsStreamMsgWriteChar Write a character to the message stream as 2 bytes, high

order byte first.
xmsStreamMsgWriteDouble Convert a double precision floating point number to a

long integer and write the long integer to the message
stream as 8 bytes, high order byte first.

xmsStreamMsgWriteFloat Convert a floating point number to an integer and write
the integer to the message stream as 4 bytes, high order
byte first.

xmsStreamMsgWriteInt Write an integer to the message stream as 4 bytes, high
order byte first.

xmsStreamMsgWriteLong Write a long integer to the message stream as 8 bytes,
high order byte first.

xmsStreamMsgWriteObject Write a value, with a specified data type, to the message
stream.

xmsStreamMsgWriteShort Write a short integer to the message stream as 2 bytes,
high order byte first.

xmsStreamMsgWriteString Write a string to the message stream.

xmsStreamMsgReadBoolean – Read Boolean Value
Interface:

xmsRC xmsStreamMsgReadBoolean(xmsHMsg message,
xmsBOOL *value,
xmsHErrorBlock errorBlock);

Read a boolean value from the message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The boolean value that is read. If you specify a null pointer on
input, the call skips over the boolean value without reading it.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

246 WebSphere MQ: Message Service Client for C/C++

xmsStreamMsgReadByte – Read Byte
Interface:

xmsRC xmsStreamMsgReadByte(xmsHMsg message,
xmsSBYTE *value,
xmsHErrorBlock errorBlock);

Read a signed 8-bit integer from the message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The byte that is read. If you specify a null pointer on input, the call
skips over the byte without reading it.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadBytes – Read Bytes
Interface:

xmsRC xmsStreamMsgReadBytes(xmsHMsg message,
xmsSBYTE *buffer,
xmsINT bufferLength,
xmsINT *returnedLength,
xmsHErrorBlock errorBlock);

Read an array of bytes from the message stream.

Parameters:

message (input)
The handle for the message.

buffer (output)
The buffer to contain the array of bytes that is read.

If the number of bytes in the array is less than or equal to the
length of the buffer, the whole array is read into the buffer. If the
number of bytes in the array is greater than the length of the
buffer, the buffer is filled with part of the array, and an internal
cursor marks the position of the next byte to be read. A subsequent
call to xmsStreamMsgReadBytes() reads bytes from the array
starting from the current position of the cursor.

If you specify a null pointer on input, the call skips over the array
of bytes without reading it.

bufferLength (input)
The length of the buffer in bytes.

Chapter 12. C classes 247

returnedLength (output)
The number of bytes that are read into the buffer. If the buffer is
partially filled, the value is less than the length of the buffer,
indicating that there are no more bytes in the array remaining to be
read. If there are no bytes remaining to be read from the array
before the call, the value is XMSC_END_OF_BYTEARRAY.

If you specify a null pointer on input, the function returns no
value.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadBytesByRef – Read Bytes by Reference
Interface:

xmsRC xmsStreamMsgReadBytesByRef(xmsHMsg message,
xmsSBYTE **array,
xmsINT *length,
xmsHErrorBlock errorBlock);

Get a pointer to an array of bytes in the message stream, and get the length of the
array.

For more information about how to use this function, see “C functions that return
a string or byte array by reference” on page 60.

Parameters:

message (input)
The handle for the message.

array (output)
A pointer to the array of bytes.

length (output)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadChar – Read Character
Interface:

xmsRC xmsStreamMsgReadChar(xmsHMsg message,
xmsCHAR16 *value,
xmsHErrorBlock errorBlock);

248 WebSphere MQ: Message Service Client for C/C++

Read a 2-byte character from the message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The character that is read. If you specify a null pointer on input,
the call skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadDouble – Read Double Precision Floating
Point Number
Interface:

xmsRC xmsStreamMsgReadDouble(xmsHMsg message,
xmsDOUBLE *value,
xmsHErrorBlock errorBlock);

Read an 8-byte double precision floating point number from the message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The double precision floating point number that is read. If you
specify a null pointer on input, the call skips over the bytes
without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadFloat – Read Floating Point Number
Interface:

xmsRC xmsStreamMsgReadFloat(xmsHMsg message,
xmsFLOAT *value,
xmsHErrorBlock errorBlock);

Read a 4-byte floating point number from the message stream.

Parameters:

Chapter 12. C classes 249

message (input)
The handle for the message.

value (output)
The floating point number that is read. If you specify a null pointer
on input, the call skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadInt – Read Integer
Interface:

xmsRC xmsStreamMsgReadInt(xmsHMsg message,
xmsINT *value,
xmsHErrorBlock errorBlock);

Read a signed 32-bit integer from the message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The integer that is read. If you specify a null pointer on input, the
call skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadLong – Read Long Integer
Interface:

xmsRC xmsStreamMsgReadLong(xmsHMsg message,
xmsLONG *value,
xmsHErrorBlock errorBlock);

Read a signed 64-bit integer from the message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The long integer that is read. If you specify a null pointer on input,
the call skips over the bytes without reading them.

250 WebSphere MQ: Message Service Client for C/C++

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadObject – Read Object
Interface:

xmsRC xmsstreamMsgReadObject(xmsHMsg message,
xmsSBYTE *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsOBJECT_TYPE *objectType,
xmsHErrorBlock errorBlock);

Read a value from the message stream, and return its data type.

For more information about how to use this function, see “C functions that return
a byte array by value” on page 59.

Parameters:

message (input)
The handle for the message.

buffer (output)
The buffer to contain the value, which is returned as an array of
bytes. If the value is a string and data conversion is required, this
is the value after conversion.

If you specify a null pointer on input, the call skips over the value
without reading it.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the value is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the value in bytes. If the value is a string and data
conversion is required, this is the length after conversion. If you
specify a null pointer on input, the length is not returned.

objectType (output)
The data type of the value, which is one of the following object
types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

Chapter 12. C classes 251

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsStreamMsgReadShort – Read Short Integer
Interface:

xmsRC xmsStreamMsgReadShort(xmsHMsg message,
xmsSHORT *value,
xmsHErrorBlock errorBlock);

Read a signed 16-bit integer from the message stream.

Parameters:

message (input)
The handle for the message.

value (output)
The short integer that is read. If you specify a null pointer on
input, the call skips over the bytes without reading them.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

xmsStreamMsgReadString – Read String
Interface:

xmsRC xmsStreamMsgReadString(xmsHMsg message,
xmsCHAR *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Read a string from the message stream. If required, XMS converts the characters in
the string into the local code page.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

message (input)
The handle for the message.

buffer (output)
The buffer to contain the string that is read. If data conversion is
required, this is the string after conversion.

252 WebSphere MQ: Message Service Client for C/C++

bufferLength (input)
The length of the buffer in bytes.

If you specify XMSC_QUERY_SIZE, the string is not returned, but its
length is returned in the actualLength parameter, and the cursor is
not advanced.

If you specify XMSC_SKIP, the function skips over the string without
reading it.

actualLength (output)
The length of the string in bytes. If data conversion is required,
this is the length of the string after conversion. If you specify a
null pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Notes:

1. If the buffer is not large enough to store the whole string, XMS returns the
string truncated to the length of the buffer, sets the actualLength parameter to
the actual length of the string, and returns an error. XMS does not advance the
internal cursor.

2. If any other error occurs while attempting to read the string, XMS reports the
error but does not set the actualLength parameter or advance the internal
cursor.

xmsStreamMsgReset – Reset
Interface:

xmsRC xmsStreamMsgReset(xmsHMsg message,
xmsHErrorBlock errorBlock);

Put the body of the message into read-only mode and reposition the cursor at the
beginning of the message stream.

Parameters:

message (input)
The handle for the message.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Chapter 12. C classes 253

xmsStreamMsgWriteBoolean – Write Boolean Value
Interface:

xmsRC xmsStreamMsgWriteBoolean(xmsHMsg message,
xmsBOOL value,
xmsHErrorBlock errorBlock);

Write a boolean value to the message stream.

Parameters:

message (input)
The handle for the message.

value (input)
The boolean value to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteByte – Write Byte
Interface:

xmsRC xmsStreamMsgWriteByte(xmsHMsg message,
xmsSBYTE value,
xmsHErrorBlock errorBlock);

Write a byte to the message stream.

Parameters:

message (input)
The handle for the message.

value (input)
The byte to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteBytes – Write Bytes
Interface:

xmsRC xmsStreamMsgWriteBytes(xmsHMsg message,
xmsSBYTE *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Write an array of bytes to the message stream.

Parameters:

254 WebSphere MQ: Message Service Client for C/C++

message (input)
The handle for the message.

value (input)
The array of bytes to be written.

length (input)
The number of bytes in the array.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteChar – Write Character
Interface:

xmsRC xmsStreamMsgWriteChar(xmsHMsg message,
xmsCHAR16 value,
xmsHErrorBlock errorBlock);

Write a character to the message stream as 2 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The character to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteDouble – Write Double Precision Floating
Point Number
Interface:

xmsRC xmsStreamMsgWriteDouble(xmsHMsg message,
xmsDOUBLE value,
xmsHErrorBlock errorBlock);

Convert a double precision floating point number to a long integer and write the
long integer to the message stream as 8 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The double precision floating point number to be written.

Chapter 12. C classes 255

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteFloat – Write Floating Point Number
Interface:

xmsRC xmsStreamMsgWriteFloat(xmsHMsg message,
xmsFLOAT value,
xmsHErrorBlock errorBlock);

Convert a floating point number to an integer and write the integer to the message
stream as 4 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The floating point number to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteInt – Write Integer
Interface:

xmsRC xmsStreamMsgWriteInt(xmsHMsg message,
xmsINT value,
xmsHErrorBlock errorBlock);

Write an integer to the message stream as 4 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The integer to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

256 WebSphere MQ: Message Service Client for C/C++

xmsStreamMsgWriteLong – Write Long Integer
Interface:

xmsRC xmsStreamMsgWriteLong(xmsHMsg message,
xmsLONG value,
xmsHErrorBlock errorBlock);

Write a long integer to the message stream as 8 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The long integer to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteObject – Write Object
Interface:

xmsRC xmsStreamMsgWriteObject(xmsHMsg message,
xmsSBYTE *value,
xmsINT length,
xmsOBJECT_TYPE objectType,
xmsHErrorBlock errorBlock);

Write a value, with a specified data type, to the message stream.

Parameters:

message (input)
The handle for the message.

value (input)
An array of bytes containing the value to be written.

length (input)
The number of bytes in the array.

objectType (input)
The data type of the value, which must be one of the following
objecttypes:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

Chapter 12. C classes 257

XMS_OBJECT_TYPE_STRING

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsStreamMsgWriteShort – Write Short Integer
Interface:

xmsRC xmsStreamMsgWriteShort(xmsHMsg message,
xmsSHORT value,
xmsHErrorBlock errorBlock);

Write a short integer to the message stream as 2 bytes, high order byte first.

Parameters:

message (input)
The handle for the message.

value (input)
The short integer to be written.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

xmsStreamMsgWriteString – Write String
Interface:

xmsRC xmsStreamMsgWriteString(xmsHMsg message,
xmsCHAR *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Write a string to the message stream.

Parameters:

message (input)
The handle for the message.

value (input)
A character array containing the string to be written.

length (input)
The length of the string in bytes. If the string is null terminated
with no embedded null characters, you can specify
XMSC_CALCULATE_STRING_SIZE instead and allow XMS to calculate
its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

258 WebSphere MQ: Message Service Client for C/C++

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

TextMessage
A text message is a message whose body comprises a string.

Functions
Summary of functions:

Function Description
xmsTextMsgGetText Get the string that forms the body of the text message.
xmsTextMsgSetText Set the string that forms the body of the text message.

xmsTextMsgGetText – Get Text
Interface:

xmsRC xmsTextMsgGetText(xmsHMsg message,
xmsCHAR *buffer,
xmsINT bufferLength,
xmsINT *actualLength,
xmsHErrorBlock errorBlock);

Get the string that forms the body of the text message. If required, XMS converts
the characters in the string into the local code page.

For more information about how to use this function, see “C functions that return
a string by value” on page 58.

Parameters:

message (input)
The handle for the message.

buffer (output)
The buffer to contain the string. If data conversion is required, this
is the string after conversion.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the string is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the string in bytes. If data conversion is required,
this is the length of the string after conversion. If you specify a
null pointer on input, the length is not returned.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Notes:

Chapter 12. C classes 259

1. If the buffer is not large enough to store the whole string, XMS returns the
string truncated to the length of the buffer, sets the actualLength parameter to
the actual length of the string, and returns an error.

2. If any other error occurs while attempting to get the string, XMS reports the
error but does not set the actualLength parameter.

xmsTextMsgSetText – Set Text
Interface:

xmsRC xmsTextMsgSetText(xmsHMsg message,
xmsCHAR *value,
xmsINT length,
xmsHErrorBlock errorBlock);

Set the string that forms the body of the text message.

Parameters:

message (input)
The handle for the message.

value (input)
A character array containing the string to be set.

length (input)
The length of the string in bytes. If the string is null terminated
with no embedded null characters, you can specify
XMSC_CALCULATE_STRING_SIZE instead and allow XMS to calculate
its length.

errorBlock (input)
The handle for an error block or a null handle.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

260 WebSphere MQ: Message Service Client for C/C++

Chapter 13. Additional C functions

This topic documents the C functions that do not belong to any class.

The topic contains the following subtopic:
v “Process CCSID functions”

Process CCSID functions
This topic documents the functions for getting and setting the process coded
character set identifier (CCSID) for an application.

For information about how to use these functions, see “Coded character set
identifiers” on page 46.

Functions
Summary of functions:

Function Description
xmsGetClientCCSID Get the process CCSID for the application.
xmsSetClientCCSID Set the process CCSID for the application.

xmsGetClientCCSID – Get Process CCSID
Interface:

xmsRC xmsGetClientCCSID(xmsINT *ccsid,
xmsHErrorBlock errorBlock);

Get the process CCSID for the application.

Parameters:

ccsid (output)
The process CCSID.

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

xmsSetClientCCSID – Set Process CCSID
Interface:

xmsRC xmsSetClientCCSID(xmsINT ccsid,
xmsHErrorBlock errorBlock);

Set the process CCSID for the application.

Parameters:

© Copyright IBM Corp. 2005, 2013 261

ccsid (input)
The process CCSID.

The following named constants are defined for the specified
Unicode CCSIDs:

Named constant CCSID
XMSC_CCSID_UTF8 The UTF-8 representation of Unicode data
XMSC_CCSID_UTF16 The UTF-16 representation of Unicode data
XMSC_CCSID_UTF32 The UTF-32 representation of Unicode data

errorBlock (input)
The handle for an error block or a null handle.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

262 WebSphere MQ: Message Service Client for C/C++

Chapter 14. C++ classes

This topic documents the C++ classes and their methods.

The following table summarizes all the classes.

Table 34. Summary of the C++ classes

Class Description

“BytesMessage” on page 265 A bytes message is a message whose body comprises a
stream of bytes.

“Connection” on page 275 A Connection object represents an application's active
connection to a broker.

“ConnectionFactory for the C++ class” on page 280 An application uses a connection factory to create a
connection.

“ConnectionMetaData” on page 283 A ConnectionMetaData object provides information
about a connection.

“Destination for the C++ class” on page 285 A destination is where an application sends messages, or
it is a source from which an application receives
messages, or both.

“Exception” on page 288 If XMS detects an error while processing a call to a
method, XMS throws an exception. An exception is an
object that encapsulates information about the error.

There are different types of XMS exception, and an
Exception object is just one type of exception. However,
the Exception class is a superclass of the other XMS
exception classes. XMS throws an Exception object in
situations where none of the other types of exception are
appropriate.

“ExceptionListener” on page 292 An application uses an exception listener to be notified
asynchronously of a problem with a connection.

“IllegalStateException” on page 293 XMS throws this exception if an application calls a
method at an incorrect or inappropriate time, or if XMS
is not in an appropriate state for the requested operation.

“InitialContext” on page 293 An application uses an InitialContext object to create
objects from object definitions that are retrieved from a
repository of administered objects.

“InvalidClientIDException” on page 296 XMS throws this exception if an application attempts to
set a client identifier for a connection, but the client
identifier is not valid or is already in use.

“InvalidDestinationException” on page 296 XMS throws this exception if an application specifies a
destination that is not valid.

“InvalidSelectorException” on page 296 XMS throws this exception if an application provides a
message selector expression whose syntax is not valid.

“Iterator” on page 297 An iterator encapsulates a list of objects. An application
uses an iterator to access object in turn.

“MapMessage” on page 299 A map message is a message whose body comprises a
set of name-value pairs, where each value has an
associated data type.

© Copyright IBM Corp. 2005, 2013 263

Table 34. Summary of the C++ classes (continued)

Class Description

“Message” on page 311 A Message object represents a message that an
application sends or receives.

“MessageConsumer” on page 323 An application uses a message consumer to receive
messages sent to a destination.

“MessageEOFException” on page 327 XMS throws this exception if XMS encounters the end of
a bytes message stream when an application is reading
the body of a bytes message.

“MessageFormatException” on page 328 XMS throws this exception if XMS encounters a message
with a format that is not valid.

“MessageListener” on page 328 An application uses a message listener to receive
messages asynchronously.

“MessageNotReadableException” on page 329 XMS throws this exception if an application attempts to
read the body of a message that is write-only.

“MessageNotWritableException” on page 329 XMS throws this exception if an application attempts to
write to the body of a message that is read-only.

“MessageProducer” on page 329 An application uses a message producer to send
messages to a destination.

“ObjectMessage” on page 338 An object message is a message whose body comprises a
serialized Java object.

“Property” on page 340 A Property object represents a property of an object.

“PropertyContext” on page 353 PropertyContext is an abstract superclass that contains
methods that get and set properties. These methods are
inherited by other classes.

“QueueBrowser” on page 365 An application uses a queue browser to browse messages
on a queue without removing them.

“Requestor” on page 368 An application uses a requestor to send a request
message and then wait for, and receive, the reply.

“ResourceAllocationException” on page 370 XMS throws this exception if XMS cannot allocate the
resources required by a method.

“SecurityException” on page 371 XMS throws this exception if the user identifer and
password provided to authenticate an application are
rejected. XMS also throws this exception if an authority
check fails and prevents a method from completing.

“Session” on page 371 A session is a single threaded context for sending and
receiving messages.

“StreamMessage” on page 384 A stream message is a message whose body comprises a
stream of values, where each value has an associated
data type.

“String” on page 394 A String object encapsulates a string.

“TextMessage” on page 398 A text message is a message whose body comprises a
string.

“TransactionInProgressException” on page 400 XMS throws this exception if an application requests an
operation that is not valid because a transaction is in
progress.

“TransactionRolledBackException” on page 400 XMS throws this exception if an application calls
Session.commit() to commit the current transaction, but
the transaction is subsequently rolled back.

264 WebSphere MQ: Message Service Client for C/C++

The definition of each method lists the exception codes that XMS might return if it
detects an error while processing a call to the method. Each exception code is
represented by its named constant. The following table lists the exception codes
and their corresponding C++ exceptions.

Table 35. Exception codes and their corresponding C++ exceptions

Exception code Corresponding C++ exception

XMS_X_GENERAL_EXCEPTION “Exception” on page 288

XMS_X_ILLEGAL_STATE_EXCEPTION “IllegalStateException” on page 293

XMS_X_INVALID_CLIENTID_EXCEPTION “InvalidClientIDException” on page 296

XMS_X_INVALID_DESTINATION_EXCEPTION “InvalidDestinationException” on page 296

XMS_X_INVALID_SELECTOR_EXCEPTION “InvalidSelectorException” on page 296

XMS_X_MESSAGE_EOF_EXCEPTION “MessageEOFException” on page 327

XMS_X_MESSAGE_FORMAT_EXCEPTION “MessageFormatException” on page 328

XMS_X_MESSAGE_NOT_READABLE_EXCEPTION “MessageNotReadableException” on page 329

XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION “MessageNotWritableException” on page 329

XMS_X_RESOURCE_ALLOCATION_EXCEPTION “ResourceAllocationException” on page 370

XMS_X_SECURITY_EXCEPTION “SecurityException” on page 371

XMS_X_TRANSACTION_IN_PROGRESS_EXCEPTION “TransactionInProgressException” on page 400

XMS_X_TRANSACTION_ROLLED_BACK_EXCEPTION “TransactionRolledBackException” on page 400

BytesMessage
A bytes message is a message whose body comprises a stream of bytes.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Message

|
+----xms::BytesMessage

Methods
Summary of methods:

Method Description
getBodyLength Get the length of the body of the message when the body of the

message is read-only.
readBoolean Read a boolean value from the bytes message stream.
readByte Read the next byte from the bytes message stream as a signed 8-bit

integer.
readBytes Read an array of bytes from the bytes message stream starting from

the current position of the cursor.
readChar Read the next 2 bytes from the bytes message stream as a character.
readDouble Read the next 8 bytes from the bytes message stream as a double

precision floating point number.
readFloat Read the next 4 bytes from the bytes message stream as a floating

point number.
readInt Read the next 4 bytes from the bytes message stream as a signed

32-bit integer.

Chapter 14. C++ classes 265

Method Description
readLong Read the next 8 bytes from the bytes message stream as a signed

64-bit integer.
readShort Read the next 2 bytes from the bytes message stream as a signed

16-bit integer.
readUnsignedByte Read the next byte from the bytes message stream as an unsigned

8-bit integer.
readUnsignedShort Read the next 2 bytes from the bytes message stream as an

unsigned 16-bit integer.
readUTF Read a string, encoded in UTF-8, from the bytes message stream.
reset Put the body of the message into read-only mode and reposition the

cursor at the beginning of the bytes message stream.
writeBoolean Write a boolean value to the bytes message stream.
writeByte Write a byte to the bytes message stream.
writeBytes Write an array of bytes to the bytes message stream.
writeChar Write a character to the bytes message stream as 2 bytes, high order

byte first.
writeDouble Convert a double precision floating point number to a long integer

and write the long integer to the bytes message stream as 8 bytes,
high order byte first.

writeFloat Convert a floating point number to an integer and write the integer
to the bytes message stream as 4 bytes, high order byte first.

writeInt Write an integer to the bytes message stream as 4 bytes, high order
byte first.

writeLong Write a long integer to the bytes message stream as 8 bytes, high
order byte first.

writeShort Write a short integer to the bytes message stream as 2 bytes, high
order byte first.

writeUTF Write a string, encoded in UTF-8, to the bytes message stream.

getBodyLength – Get Body Length
Interface:

xmsLONG getBodyLength() const;

Get the length of the body of the message when the body of the message is
read-only.

Parameters:
None

Returns:
The length of the body of the message in bytes. The method returns the
length of the whole body regardless of where the cursor for reading the
message is currently positioned.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

readBoolean – Read Boolean Value
Interface:

xmsBOOL readBoolean() const;

Read a boolean value from the bytes message stream.

266 WebSphere MQ: Message Service Client for C/C++

Parameters:
None

Returns:
The boolean value that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readByte – Read Byte
Interface:

xmsSBYTE readByte() const;

Read the next byte from the bytes message stream as a signed 8-bit integer.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readBytes – Read Bytes
Interface:

xmsINT readBytes(xmsSBYTE *buffer,
const xmsINT bufferLength,
xmsINT *returnedLength) const;

Read an array of bytes from the bytes message stream starting from the current
position of the cursor.

Parameters:

buffer (output)
The buffer to contain the array of bytes that is read. If the number
of bytes remaining to be read from the stream before the call is
greater than or equal to the length of the buffer, the buffer is filled.
Otherwise, the buffer is partially filled with all the remaining
bytes.

If you specify a null pointer on input, the method skips over the
bytes without reading them. If the number of bytes remaining to
be read from the stream before the call is greater than or equal to
the length of the buffer, the number of bytes skipped is equal to
the length of the buffer. Otherwise, all the remaining bytes are
skipped.

Chapter 14. C++ classes 267

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, no bytes are read into the buffer, but the number of bytes
remaining in the stream, starting from the current position of the
cursor, is returned in the returnedLength parameter, and the cursor
is not advanced.

returnedLength (output)
The number of bytes that are read into the buffer. If the buffer is
partially filled, the value is less than the length of the buffer,
indicating that there are no more bytes remaining to be read. If
there are no bytes remaining to be read from the stream before the
call, the value is XMSC_END_OF_STREAM.

If you specify a null pointer on input, the method returns no value.

Returns:
See the description of the returnedLength parameter.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

readChar – Read Character
Interface:

xmsCHAR16 readChar() const;

Read the next 2 bytes from the bytes message stream as a character.

Parameters:
None

Returns:
The character that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readDouble – Read Double Precision Floating Point Number
Interface:

xmsDOUBLE readDouble() const;

Read the next 8 bytes from the bytes message stream as a double precision floating
point number.

Parameters:
None

Returns:
The double precision floating point number that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

268 WebSphere MQ: Message Service Client for C/C++

v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readFloat – Read Floating Point Number
Interface:

xmsFLOAT readFloat() const;

Read the next 4 bytes from the bytes message stream as a floating point number.

Parameters:
None

Returns:
The floating point number that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readInt – Read Integer
Interface:

xmsINT readInt() const;

Read the next 4 bytes from the bytes message stream as a signed 32-bit integer.

Parameters:
None

Returns:
The integer that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readLong – Read Long Integer
Interface:

xmsLONG readLong() const;

Read the next 8 bytes from the bytes message stream as a signed 64-bit integer.

Parameters:
None

Returns:
The long integer that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 269

v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readShort – Read Short Integer
Interface:

xmsSHORT readShort() const;

Read the next 2 bytes from the bytes message stream as a signed 16-bit integer.

Parameters:
None

Returns:
The short integer that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readUnsignedByte – Read Unsigned Byte
Interface:

xmsBYTE readUnsignedByte() const;

Read the next byte from the bytes message stream as an unsigned 8-bit integer.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readUnsignedShort – Read Unsigned Short Integer
Interface:

xmsUSHORT readUnsignedShort() const;

Read the next 2 bytes from the bytes message stream as an unsigned 16-bit integer.

Parameters:
None

Returns:
The unsigned short integer that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

270 WebSphere MQ: Message Service Client for C/C++

v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readUTF – Read UTF String
Interface:

String readUTF() const;

Read a string, encoded in UTF-8, from the bytes message stream. If required, XMS
converts the characters in the string from UTF-8 into the local code page.

Parameters:
None

Returns:
A String object encapsulating the string that is read. If data conversion is
required, this is the string after conversion.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

reset – Reset
Interface:

xmsVOID reset() const;

Put the body of the message into read-only mode and reposition the cursor at the
beginning of the bytes message stream.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION

writeBoolean – Write Boolean Value
Interface:

xmsVOID writeBoolean(const xmsBOOL value);

Write a boolean value to the bytes message stream.

Parameters:

value (input)
The boolean value to be written.

Returns:
Void

Chapter 14. C++ classes 271

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeByte – Write Byte
Interface:

xmsVOID writeByte(const xmsSBYTE value);

Write a byte to the bytes message stream.

Parameters:

value (input)
The byte to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeBytes – Write Bytes
Interface:

xmsVOID writeBytes(const xmsSBYTE *value,
const xmsINT length);

Write an array of bytes to the bytes message stream.

Parameters:

value (input)
The array of bytes to be written.

length (input)
The number of bytes in the array.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeChar – Write Character
Interface:

xmsVOID writeChar(const xmsCHAR16 value);

Write a character to the bytes message stream as 2 bytes, high order byte first.

Parameters:

272 WebSphere MQ: Message Service Client for C/C++

value (input)
The character to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeDouble – Write Double Precision Floating Point Number
Interface:

xmsVOID writeDouble(const xmsDOUBLE value);

Convert a double precision floating point number to a long integer and write the
long integer to the bytes message stream as 8 bytes, high order byte first.

Parameters:

value (input)
The double precision floating point number to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeFloat – Write Floating Point Number
Interface:

xmsVOID writeFloat(const xmsFLOAT value);

Convert a floating point number to an integer and write the integer to the bytes
message stream as 4 bytes, high order byte first.

Parameters:

value (input)
The floating point number to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeInt – Write Integer
Interface:

xmsVOID writeInt(const xmsINT value);

Chapter 14. C++ classes 273

Write an integer to the bytes message stream as 4 bytes, high order byte first.

Parameters:

value (input)
The integer to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeLong – Write Long Integer
Interface:

xmsVOID writeLong(const xmsLONG value);

Write a long integer to the bytes message stream as 8 bytes, high order byte first.

Parameters:

value (input)
The long integer to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeShort – Write Short Integer
Interface:

xmsVOID writeShort(const xmsSHORT value);

Write a short integer to the bytes message stream as 2 bytes, high order byte first.

Parameters:

value (input)
The short integer to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeUTF – Write UTF String
Interface:

xmsVOID writeUTF(const String & value);

274 WebSphere MQ: Message Service Client for C/C++

Write a string, encoded in UTF-8, to the bytes message stream. If required, XMS
converts the characters in the string from the local code page into UTF-8.

Parameters:

value (input)
A String object encapsulating the string to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Inherited methods
The following methods are inherited from the Message class:

clearBody, clearProperties, getHandle,
getJMSCorrelationID,getJMSDeliveryMode, getJMSDestination,
getJMSExpiration, getJMSMessageID, getJMSPriority, getJMSRedelivered,
getJMSReplyTo, getJMSTimestamp, getJMSType, getProperties, isNull,
propertyExists, setJMSCorrelationID, setJMSDeliveryMode, setJMSDestination,
setJMSExpiration, setJMSMessageID, setJMSPriority, setJMSRedelivered,
setJMSReplyTo, setJMSTimestamp, setJMSType

The following methods are inherited from the PropertyContext class:
getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

Connection
A Connection object represents an application's active connection to a broker.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Connection

For a list of the XMS defined properties of a Connection object, see “Properties of
Connection” on page 401.

Methods
Summary of methods:

Method Description
close Close the connection.
createSession Create a session.
getClientID Get the client identifier for the connection.
getExceptionListener Get a pointer to the exception listener that is registered with the

connection.
getHandle Get the handle that a C application would use to access the

connection.

Chapter 14. C++ classes 275

Method Description
getMetaData Get the metadata for the connection.
isNull Determine whether the Connection object is a null object.
setClientID Set a client identifier for the connection.
setExceptionListener Register an exception listener with the connection.
start Start, or restart, the delivery of incoming messages for the

connection.
stop Stop the delivery of incoming messages for the connection.

close – Close Connection
Interface:

xmsVOID close();

Close the connection.

If an application tries to close a connection that is already closed, the call is
ignored.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createSession – Create Session
Interface:

Session createSession(const xmsBOOL transacted,
const xmsINT acknowledgeMode);

Create a session.

Parameters:

transacted (input)
The value xmsTRUE means that the session is transacted. The value
xmsFALSE means that the session is not transacted.

For a real-time connection to a broker, the value must be xmsFALSE.

acknowledgeMode (input)
Indicates how messages received by an application are
acknowledged. The value must be one of the following
acknowledgement modes:

XMSC_AUTO_ACKNOWLEDGE

XMSC_CLIENT_ACKNOWLEDGE

XMSC_DUPS_OK_ACKNOWLEDGE

For a real-time connection to a broker, the value must be
XMSC_AUTO_ACKNOWLEDGE or XMSC_DUPS_OK_ACKNOWLEDGE

276 WebSphere MQ: Message Service Client for C/C++

This parameter is ignored if the session is transacted. For more
information about acknowledgement modes, see “Message
acknowledgement” on page 29.

Returns:
The Session object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getClientID – Get Client ID
Interface:

String getClientID() const;

Get the client identifier for the connection.

This method is not valid for a real-time connection to a broker.

Parameters:
None

Returns:
A String object encapsulating the client identifier.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getExceptionListener – Get Exception Listener
Interface:

ExceptionListener * getExceptionListener() const;

Get a pointer to the exception listener that is registered with the connection.

For more information about using exception listeners, see “Exception listeners in
C++” on page 74.

Parameters:
None

Returns:
A pointer to the exception listener. If no exception listener is registered
with the connection, the method returns a null pointer.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHConn getHandle() const;

Get the handle that a C application would use to access the connection.

Chapter 14. C++ classes 277

Parameters:
None

Returns:
The handle for the connection.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getMetaData – Get Metadata
Interface:

ConnectionMetaData getMetaData() const;

Get the metadata for the connection.

Parameters:
None

Returns:
The ConnectionMetaData object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Connection object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Connection object is a null object.
v xmsFALSE, if the Connection object is not a null object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setClientID – Set Client ID
Interface:

xmsVOID setClientID(const String & clientID);

Set a client identifier for the connection. A client identifier is used only to support
durable subscriptions in the publish/subscribe domain, and is ignored in the
point-to-point domain.

If an application calls this method to set a client identifier for a connection, the
application must do so immediately after creating the connection, and before

278 WebSphere MQ: Message Service Client for C/C++

performing any other operation on the connection. If the application tries to call
the method after this point, the call throws exception
XMS_X_ILLEGAL_STATE_EXCEPTION.

This method is not valid for a real-time connection to a broker.

Parameters:

clientID (input)
A String object encapsulating the client identifier.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION
v XMS_X_INVALID_CLIENTID_EXCEPTION

setExceptionListener – Set Exception Listener
Interface:

xmsVOID setExceptionListener(const ExceptionListener *lsr);

Register an exception listener with the connection.

For more information about using exception listeners, see “Exception listeners in
C++” on page 74.

Parameters:

lsr (input)
A pointer to the exception listener.

If an exception listener is already registered with the connection,
you can cancel the registration by specifying a null pointer instead.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

start – Start Connection
Interface:

xmsVOID start() const;

Start, or restart, the delivery of incoming messages for the connection. The call is
ignored if the connection is already started.

Parameters:
None

Returns:
Void

Exceptions:

Chapter 14. C++ classes 279

v XMS_X_GENERAL_EXCEPTION

stop – Stop Connection
Interface:

xmsVOID stop() const;

Stop the delivery of incoming messages for the connection. The call is ignored if
the connection is already stopped.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

ConnectionFactory for the C++ class
An application uses a connection factory to create a connection.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::ConnectionFactory

For a list of the XMS defined properties of a ConnectionFactory object, see
“Properties of ConnectionFactory” on page 402.

Constructors
Summary of constructors:

Constructor Description
ConnectionFactory Create a connection factory with the default properties.

ConnectionFactory – Create Connection Factory
Interface:

ConnectionFactory();

Create a connection factory with the default properties.

Parameters:
None

280 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Methods
Summary of methods:

Method Description
~ConnectionFactory Delete the connection factory.
createConnection Create a connection using the default user identity.
createConnection Create a connection using a specified user identity.
getHandle Get the handle that a C application would use to access the

connection factory.
isNull Determine whether the ConnectionFactory object is a null object.

~ConnectionFactory – Delete Connection Factory
Interface:

virtual ~ConnectionFactory();

Delete the connection factory.

If an application tries to delete a connection factory that is already deleted, the call
is ignored.

Parameters:
None

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createConnection – Create Connection (using the default user
identity)
Interface:

Connection createConnection();

Create a connection using the default user identity.

The connection factory properties XMSC_USERID and XMSC_PASSWORD, if they
are set, are used to authenticate the application. If these properties are not set, the
connection is created without authenticating the application, provided the
messaging server permits a connection without authentication. The properties are
ignored if the application connects to a WebSphere MQ queue manager in bindings
mode.

The connection is created in stopped mode. No messages are delivered until the
application calls Connection.start().

Parameters:
None

Returns:
The Connection object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 281

v XMS_X_SECURITY_EXCEPTION

createConnection – Create Connection (using a specified user
identity)
Interface:

Connection createConnection(const String & userID,
const String & password);

Create a connection using a specified user identity.

The specified user identifier and password are used to authenticate the application.
The connection factory properties XMSC_USERID and XMSC_PASSWORD, if they
are set, are ignored. The user identifier and password are ignored if the application
connects to a WebSphere MQ queue manager in bindings mode.

The connection is created in stopped mode. No messages are delivered until the
application calls Connection.start().

Parameters:

userID (input)
A String object encapsulating the user identifier to be used to
authenticate the application. If you specify a null String object, the
connection factory property XMSC_USERID is used instead.

password (input)
A String object encapsulating the password to be used to
authenticate the application. If you specify a null String object, the
connection factory property XMSC_PASSWORD is used instead.

Returns:
The Connection object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_SECURITY_EXCEPTION

getHandle – Get Handle
Interface:

xmsHConnFact getHandle() const;

Get the handle that a C application would use to access the connection factory.

Parameters:
None

Returns:
The handle for the connection factory.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

282 WebSphere MQ: Message Service Client for C/C++

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the ConnectionFactory object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the ConnectionFactory object is a null object.
v xmsFALSE, if the ConnectionFactory object is not a null object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

ConnectionMetaData
Inheritance hierarchy:

xms::PropertyContext
|
+----xms::ConnectionMetaData

A ConnectionMetaData object provides information about a connection.

For a list of the XMS defined properties of a ConnectionMetaData object, see
“Properties of ConnectionMetaData” on page 406.

Methods
Summary of methods:

Method Description
getHandle Get the handle that a C application would use to access the

connection metadata.
getJMSXProperties Get a list of the names of the JMS defined message properties

supported by the connection.
isNull Determine whether the ConnectionMetaData object is a null object.

getHandle – Get Handle
Interface:

xmsHConnMetaData getHandle() const;

Get the handle that a C application would use to access the connection metadata.

Chapter 14. C++ classes 283

Parameters:
None

Returns:
The handle for the connection metadata.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSXProperties – Get JMS Defined Message Properties
Interface:

Iterator getJMSXProperties() const;

Get a list of the names of the JMS defined message properties supported by the
connection.

The method returns an iterator that encapsulates a list of Property objects, where
each Property object encapsulates the name of a JMS defined message property.
The application can then use the iterator to retrieve the name of each JMS defined
message property in turn.

JMS defined message properties are not supported by a real-time connection to a
broker.

Note: The equivalent JMS method performs a slightly different function. The JMS
method returns an enumeration of the names of the JMS defined message
properties.

Parameters:
None

Returns:
The Iterator object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the ConnectionMetaData object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the ConnectionMetaData object is a null object.
v xmsFALSE, if the ConnectionMetaData object is not a null object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

284 WebSphere MQ: Message Service Client for C/C++

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

Destination for the C++ class
A destination is where an application sends messages, or it is a source from which
an application receives messages, or both.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Destination

For a list of the XMS defined properties of a Destination object, see “Properties of
Destination” on page 407.

Constructors
Summary of constructors:

Constructor Description
Destination Create a destination using the specified destination type and name.
Destination Create a destination using the specified uniform resource identifier

(URI).

Destination – Create Destination (specifying a type and name)
Interface:

Destination(const xmsDESTINATION_TYPE destinationType,
const String & destinationName);

Create a destination using the specified destination type and name.

For a destination that is a queue, this constructor does not create the queue in the
messaging server. You must create the queue before an application can call this
constructor.

Parameters:

destinationType (input)
The type of the destination, which must be one of the following
values:

XMS_DESTINATION_TYPE_QUEUE

XMS_DESTINATION_TYPE_TOPIC

destinationName (input)
A String object encapsulating the name of the destination, which
can be the name of a queue or the name of a topic.

If the destination is a WebSphere MQ queue, you can specify the
name of the destination in either of the following ways:

Chapter 14. C++ classes 285

QName

QMgrName/QName

where QName is the name of a WebSphere MQ queue, and QMgrName
is the name of a WebSphere MQ queue manager. The WebSphere
MQ queue name resolution process uses the values of QName and
QMgrName to determine the actual destination queue. For more
information about the queue name resolution process, see the
WebSphere MQ Application Programming Guide.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Destination – Create Destination (using a URI)
Interface:

Destination(const String & URI);

Create a destination using the specified uniform resource identifier (URI).
Properties of the destination that are not specified by the URI take the default
values.

For a destination that is a queue, this constructor does not create the queue in the
messaging server. You must create the queue before an application can call this
constructor.

Parameters:

URI (input)
A String object encapsulating the URI.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Methods
Summary of methods:

Method Description
~Destination Delete the destination.
getHandle Get the handle that a C application would use to access the

destination.
getName Get the name of the destination.
getTypeId Get the type of the destination.
isNull Determine whether the Destination object is a null object.
toString Get the name of the destination in the format of a uniform resource

identifier (URI).

~Destination – Delete Destination
Interface:

virtual ~Destination();

Delete the destination.

For a destination that is a queue, this method does not delete the queue in the
messaging server unless the queue was created for an XMS temporary queue.

286 WebSphere MQ: Message Service Client for C/C++

If an application tries to delete a destination that is already deleted, the call is
ignored.

Parameters:
None

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHDest getHandle() const;

Get the handle that a C application would use to access the destination.

Parameters:
None

Returns:
The handle for the destination.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getName – Get Destination Name
Interface:

String getName() const;

Get the name of the destination.

Parameters:
None

Returns:
A String object encapsulating the name of the destination. The name is
either the name of a queue or the name of a topic.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getTypeId – Get Destination Type
Interface:

xmsDESTINATION_TYPE getTypeId();

Get the type of the destination.

Parameters:
None

Returns:
The type of the destination, which is one of the following values:

XMS_DESTINATION_TYPE_QUEUE

Chapter 14. C++ classes 287

XMS_DESTINATION_TYPE_TOPIC

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Destination object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Destination object is a null object.
v xmsFALSE, if the Destination object is not a null object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

toString – Get Destination Name as URI
Interface:

String toString() const;

Get the name of the destination in the format of a uniform resource identifier
(URI).

Parameters:
None

Returns:
A String object encapsulating the URI. The URI is either a queue URI or a
topic URI.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

Exception
If XMS detects an error while processing a call to a method, XMS throws an
exception. An exception is an object that encapsulates information about the error.

Inheritance hierarchy:

288 WebSphere MQ: Message Service Client for C/C++

std::exception
|
+----xms::Exception

There are different types of XMS exception, and an Exception object is just one
type of exception. However, the Exception class is a superclass of the other XMS
exception classes. XMS throws an Exception object in situations where none of the
other types of exception are appropriate.

Methods
Summary of methods:

Method Description
~Exception Delete the exception and any linked exceptions.
dump Dump the exception to the specified C++ output stream as

formatted text.
getErrorCode Get the error code.
getErrorData Get the free format data that provides additional information about

the error.
getErrorString Get the string of characters that describes the error.
getHandle Get the handle for the internal error block that XMS creates for the

exception.
getJMSException Get the exception code.
getLinkedException Get a pointer to the next exception in the chain of exceptions.
isNull Determine whether the Exception object is a null object.

~Exception – Delete Exception
Interface:

virtual ~Exception() throw();

Delete the exception and any linked exceptions.

Parameters:
None

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

dump – Dump Exception
Interface:

xmsVOID dump(std::ostream outputStream) const;

Dump the exception to the specified C++ output stream as formatted text.

Parameters:

outputStream (input)
The C++ output stream.

Returns:
Void

Chapter 14. C++ classes 289

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getErrorCode – Get Error Code
Interface:

xmsINT getErrorCode() const;

Get the error code.

Parameters:
None

Returns:
The error code.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getErrorData – Get Error Data
Interface:

String getErrorData() const;

Get the free format data that provides additional information about the error.

Parameters:
None

Returns:
A String object encapsulating the error data.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getErrorString – Get Error String
Interface:

String getErrorString() const;

Get the string of characters that describes the error. The characters in the string are
the same as those in the named constant that represents the error code.

Parameters:
None

290 WebSphere MQ: Message Service Client for C/C++

Returns:
A String object encapsulating the error string.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHErrorBlock getHandle() const;

Get the handle for the internal error block that XMS creates for the exception.

Parameters:
None

Returns:
The handle for the error block.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSException – Get Exception Code
Interface:

xmsJMSEXP_TYPE getJMSException() const;

Get the exception code.

Parameters:
None

Returns:
The exception code.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getLinkedException – Get Linked Exception
Interface:

Exception * getLinkedException() const;

Get a pointer to the next exception in the chain of exceptions.

Parameters:
None

Chapter 14. C++ classes 291

Returns:
A pointer to an exception. The method returns a null pointer if there are no
more exceptions in the chain.

Note: Because the getLinkedException() method returns a pointer to a
linked exception, the application must release the object using the C++
delete operator.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Exception object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Exception object is a null object.
v xmsFALSE, if the Exception object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

ExceptionListener
An application uses an exception listener to be notified asynchronously of a
problem with a connection.

Inheritance hierarchy:
None

If an application uses a connection only to consume messages asynchronously, and
for no other purpose, then the only way the application can learn about a problem
with the connection is by using an exception listener. In other situations, an
exception listener can provide a more immediate way of learning about a problem
with a connection than waiting until the next synchronous call to XMS.

Methods
Summary of methods:

Method Description
onException Notify the application of a problem with a connection.

292 WebSphere MQ: Message Service Client for C/C++

onException – On Exception
Interface:

virtual xmsVOID onException(Exception *exception);

Notify the application of a problem with a connection.

onException() is a method of the exception listener that is registered with the
connection. The name of the method must be onException.

For more information about using exception listeners, see “Exception listeners in
C++” on page 74.

Parameters:

exception (input)
A pointer to an exception created by XMS.

Returns:
Void

IllegalStateException
XMS throws this exception if an application calls a method at an incorrect or
inappropriate time, or if XMS is not in an appropriate state for the requested
operation.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::IllegalStateException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

InitialContext
An application uses an InitialContext object to create objects from object definitions
that are retrieved from a repository of administered objects.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::InitialContext

For a list of the XMS defined properties of an InitialContext object, see “Properties
of InitialContext” on page 408.

Constructors
Summary of constructors:

Constructor Description
InitialContext Create an InitialContext object.

Chapter 14. C++ classes 293

InitialContext – Create Initial Context
Interface:

InitialContext(const String & uri);
InitialContext & create(const String & uri);

Create an InitialContext object.

Note: The creation of the InitialContext object is done separately from the
connection to the repository containing administered objects. This allows properties
to be set on the InitialContext object prior to connection. For further details, see
“InitialContext properties” on page 81.

Parameters:

uri (input)
A String object encapsulating a URI that identifies the name and
location of a repository containing administered objects. The exact
syntax of the URI depends on the context type. For further
information, see “URI format for XMS initial contexts” on page 81.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Methods
Summary of methods:

Method Description
~InitialContext Delete the InitialContext object. This frees all resources associated

with the InitialContext object.
getHandle Get the handle that a C application would use to access the

InitialContext object.
isNull Determine whether the InitialContext object is a null object.
lookup Create an object from an object definition that is retrieved from the

repository of administered objects.

~InitialContext – Delete Initial Context
Interface:

InitialContext:: ~InitialContext();

Delete the InitialContext object. This frees all resources associated with the
InitialContext object.

If an application tries to delete an InitialContext object that is already deleted, the
call is ignored.

Parameters:
None

Exceptions:

v XMS_X_GENERAL_EXCEPTION

294 WebSphere MQ: Message Service Client for C/C++

getHandle – Get Handle
Interface:

xmsHInitialContext getHandle() const;

Get the handle that a C application would use to access the InitialContext object.

Parameters:
None

Returns:
The handle for the InitialContext object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the InitialContext object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the InitialContext object is a null object.
v xmsFALSE, if the InitialContext object is not a null object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

lookup – Look Up Object in Initial Context
Interface:

PropertyContext * lookup(const String & objectName) const;

Create an object from an object definition that is retrieved from the repository of
administered objects.

Parameters:

objectName (input)
A String object encapsulating the name of the administered object.
The name can be either a simple name or a complex name. For
further details, see “Retrieval of administered objects” on page 83.

Returns:
A pointer to the object that is created.

Note: Because the method returns a pointer to an object the application
must release the object using the C++ delete operator.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 295

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

InvalidClientIDException
XMS throws this exception if an application attempts to set a client identifier for a
connection, but the client identifier is not valid or is already in use.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::InvalidClientIDException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

InvalidDestinationException
XMS throws this exception if an application specifies a destination that is not valid.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::InvalidDestinationException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

InvalidSelectorException
XMS throws this exception if an application provides a message selector expression
whose syntax is not valid.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::InvalidSelectorException

Inherited methods
The following methods are inherited from the Exception class:

296 WebSphere MQ: Message Service Client for C/C++

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

Iterator
An iterator encapsulates a list of objects. An application uses an iterator to access
object in turn.

Inheritance hierarchy:
None

An iterator also encapsulates a cursor that maintains the current position in the
list. When an iterator is created, the position of the cursor is before the first object.

An application cannot create an iterator directly using a constructor. An iterator is
created only by certain methods in order to pass a list of objects back to the
application.

This class is a helper class.

Methods
Summary of methods:

Method Description
~Iterator Delete the iterator.
getHandle Get the handle that a C application would use to access the iterator.
getNext Move the cursor to the next object and get the object at the new

position of the cursor.
hasNext Check whether there are any more objects beyond the current

position of the cursor.
isNull Determine whether the Iterator object is a null object.
reset Move the cursor back to a position before the first object.

~Iterator – Delete Iterator
Interface:

virtual ~Iterator();

Delete the iterator.

If an application tries to delete an iterator that is already deleted, the call is
ignored.

Parameters:
None

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHIterator getHandle() const;

Chapter 14. C++ classes 297

Get the handle that a C application would use to access the iterator.

Parameters:
None

Returns:
The handle for the iterator.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getNext – Get Next Object
Interface:

xmsVOID * getNext() const;

Move the cursor to the next object and get the object at the new position of the
cursor.

Parameters:
None

Returns:
A pointer to the object.

Note: Because the method returns a pointer to an object the application
must release the object using the C++ delete operator.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

hasNext – Check for More Objects
Interface:

xmsBOOL hasNext();

Check whether there are any more objects beyond the current position of the
cursor. The call does not move the cursor.

Parameters:
None

Returns:

v xmsTRUE, if there are more objects beyond the current position of the
cursor.

v xmsFALSE, if there are no more objects beyond the current position of the
cursor.

Thread context:
Any

Exceptions:

298 WebSphere MQ: Message Service Client for C/C++

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Iterator object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Iterator object is a null object.
v xmsFALSE, if the Iterator object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

reset – Reset Iterator
Interface:

xmsVOID reset();

Move the cursor back to a position before the first object.

Parameters:
None

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

MapMessage
A map message is a message whose body comprises a set of name-value pairs,
where each value has an associated data type.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Message

|
+----xms::MapMessage

When an application gets the value of name-value pair, the value can be converted
by XMS into another data type. For more information about this form of implicit
conversion, see “Map messages” on page 98.

Chapter 14. C++ classes 299

Methods
Summary of methods:

Method Description
getBoolean Get the boolean value identified by name from the body of the map

message.
getByte Get the byte identified by name from the body of the map message.
getBytes Get the array of bytes identified by name from the body of the map

message.
getChar Get the character identified by name from the body of the map

message.
getDouble Get the double precision floating point number identified by name

from the body of the map message.
getFloat Get the floating point number identified by name from the body of

the map message.
getInt Get the integer identified by name from the body of the map

message.
getLong Get the long integer identified by name from the body of the map

message.
getMap Get a list of the name-value pairs in the body of the map message.
getObject Get the value of a name-value pair, and its data type, from the body

of the map message.
getShort Get the short integer identified by name from the body of the map

message.
getString Get the string identified by name from the body of the map

message.
itemExists Check whether the body of the map message contains a name-value

pair with the specified name.
setBoolean Set a boolean value in the body of the map message.
setByte Set a byte in the body of the map message.
setBytes Set an array of bytes in the body of the map message.
setChar Set a 2-byte character in the body of the map message.
setDouble Set a double precision floating point number in the body of the map

message.
setFloat Set a floating point number in the body of the map message.
setInt Set an integer in the body of the map message.
setLong Set a long integer in the body of the map message.
setObject Set a value, with a specified data type, in the body of the map

message.
setShort Set a short integer in the body of the map message.
setString Set a string in the body of the map message.

getBoolean – Get Boolean Value
Interface:

xmsBOOL getBoolean(const String & name) const;

Get the boolean value identified by name from the body of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the boolean
value.

Returns:
The boolean value retrieved from the body of the map message.

300 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getByte – Get Byte
Interface:

xmsSBYTE getByte(const String & name) const;

Get the byte identified by name from the body of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the byte.

Returns:
The byte retrieved from the body of the map message. No data conversion
is performed on the byte.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getBytes – Get Bytes
Interface:

xmsINT getBytes(const String & name,
xmsSBYTE *buffer,
const xmsINT bufferLength,
xmsINT *actualLength) const;

Get the array of bytes identified by name from the body of the map message.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

name (input)
A String object encapsulating the name that identifies the array of
bytes.

buffer (output)
The buffer to contain the array of bytes. No data conversion is
performed on the bytes that are returned.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the array of bytes is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The number of bytes in the array. If you specify a null pointer on
input, the length of the array is not returned.

Returns:
The number of bytes in the array.

Exceptions:

Chapter 14. C++ classes 301

v XMS_X_GENERAL_EXCEPTION

getChar – Get Character
Interface:

xmsCHAR16 getChar(const String & name) const;

Get the character identified by name from the body of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the character.

Returns:
The character retrieved from the body of the map message.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getDouble – Get Double Precision Floating Point Number
Interface:

xmsDOUBLE getDouble(const String & name) const;

Get the double precision floating point number identified by name from the body
of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the double
precision floating point number.

Returns:
The double precision floating point number retrieved from the body of the
map message.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getFloat – Get Floating Point Number
Interface:

xmsFLOAT getFloat(const String & name) const;

Get the floating point number identified by name from the body of the map
message.

Parameters:

name (input)
A String object encapsulating the name that identifies the floating
point number.

Returns:
The floating point number retrieved from the body of the map message.

302 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getInt – Get Integer
Interface:

xmsINT getInt(const String & name) const;

Get the integer identified by name from the body of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the integer.

Returns:
The integer retrieved from the body of the map message.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getLong – Get Long Integer
Interface:

xmsLONG getLong(const String & name) const;

Get the long integer identified by name from the body of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the long
integer.

Returns:
The long integer retrieved from the body of the map message.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getMap – Get Name-Value Pairs
Interface:

Iterator getMap() const;

Get a list of the name-value pairs in the body of the map message.

The method returns an iterator that encapsulates a list of Property objects, where
each Property object encapsulates a name-value pair. The application can then use
the iterator to access each name-value pair in turn.

Note: The equivalent JMS method performs a slightly different function. The JMS
method returns an enumeration of only the names, not the values, in the body of
the map message.

Chapter 14. C++ classes 303

Parameters:
None

Returns:
The Iterator object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getObject – Get Object
Interface:

xmsOBJECT_TYPE getObject(const String & name,
xmsSBYTE *buffer,
const xmsINT bufferLength,
xmsINT *actualLength) const;

Get the value of a name-value pair, and its data type, from the body of the map
message. The name-value pair is identified by name.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

name (input)
A String object encapsulating the name of the name-value pair.

buffer (output)
The buffer to contain the value, which is returned as an array of
bytes. If the value is a string and data conversion is required, this
is the value after conversion.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the value is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the value in bytes. If the value is a string and data
conversion is required, this is the length after conversion. If you
specify a null pointer on input, the length is not returned.

Returns:
The data type of the value, which is one of the following object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

304 WebSphere MQ: Message Service Client for C/C++

Exceptions:
XMS_X_GENERAL_EXCEPTION

getShort – Get Short Integer
Interface:

xmsSHORT getShort(const String & name) const;

Get the short integer identified by name from the body of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the short
integer.

Returns:
The short integer retrieved from the body of the map message.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getString – Get String
Interface:

String getString(const String & name) const;

Get the string identified by name from the body of the map message.

Parameters:

name (input)
A String object encapsulating the name that identifies the string in
the body of the map message.

Returns:
A String object encapsulating the string retrieved from the body of the map
message. If data conversion is required, this is the string after conversion.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

itemExists – Check Name-Value Pair Exists
Interface:

xmsBOOL itemExists(const String & name) const;

Check whether the body of the map message contains a name-value pair with the
specified name.

Parameters:

name (input)
A String object encapsulating the name of the name-value pair.

Returns:

Chapter 14. C++ classes 305

v xmsTRUE, if the body of the map message contains a name-value pair
with the specified name.

v xmsFALSE, if the body of the map message does not contain a name-value
pair with the specified name.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setBoolean – Set Boolean Value
Interface:

xmsVOID setBoolean(const String & name,
const xmsBOOL value);

Set a boolean value in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the boolean
value in the body of the map message.

value (input)
The boolean value to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setByte – Set Byte
Interface:

xmsVOID setByte(const String & name,
const xmsSBYTE value);

Set a byte in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the byte in the
body of the map message.

value (input)
The byte to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setBytes – Set Bytes
Interface:

306 WebSphere MQ: Message Service Client for C/C++

xmsVOID setBytes(const String & name,
const xmsSBYTE *value,
const xmsINT length);

Set an array of bytes in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the array of
bytes in the body of the map message.

value (input)
The array of bytes to be set.

length (input)
The number of bytes in the array.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setChar – Set Character
Interface:

xmsVOID setChar(const String & name,
const xmsCHAR16 value);

Set a 2-byte character in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the character in
the body of the map message.

value (input)
The character to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setDouble – Set Double Precision Floating Point Number
Interface:

xmsVOID setDouble(const String & name,
const xmsDOUBLE value);

Set a double precision floating point number in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the double
precision floating point number in the body of the map message.

Chapter 14. C++ classes 307

value (input)
The double precision floating point number to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setFloat – Set Floating Point Number
Interface:

xmsVOID setFloat(const String & name,
const xmsFLOAT value);

Set a floating point number in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the floating
point number in the body of the map message.

value (input)
The floating point number to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setInt – Set Integer
Interface:

xmsVOID setInt(const String & name,
const xmsINT value);

Set an integer in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the integer in
the body of the map message.

value (input)
The integer to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

308 WebSphere MQ: Message Service Client for C/C++

setLong – Set Long Integer
Interface:

xmsVOID setLong(const String & name,
const xmsLONG value);

Set a long integer in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the long integer
in the body of the map message.

value (input)
The long integer to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setObject – Set Object
Interface:

xmsVOID setObject(const String & name,
const xmsOBJECT_TYPE objectType,
const xmsSBYTE *value,
const xmsINT length);

Set a value, with a specified data type, in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the value in the
body of the map message.

objectType (input)
The data type of the value, which must be one of the following
object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

value (input)
An array of bytes containing the value to be set.

length (input)
The number of bytes in the array.

Chapter 14. C++ classes 309

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setShort – Set Short Integer
Interface:

xmsVOID setShort(const String & name,
const xmsSHORT value);

Set a short integer in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the short integer
in the body of the map message.

value (input)
The short integer to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setString – Set String
Interface:

xmsVOID setString(const String & name,
const String value);

Set a string in the body of the map message.

Parameters:

name (input)
A String object encapsulating the name to identify the string in the
body of the map message.

value (input)
A String object encapsulating the string to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the Message class:

clearBody, clearProperties, getHandle,
getJMSCorrelationID,getJMSDeliveryMode, getJMSDestination,
getJMSExpiration, getJMSMessageID, getJMSPriority, getJMSRedelivered,

310 WebSphere MQ: Message Service Client for C/C++

getJMSReplyTo, getJMSTimestamp, getJMSType, getProperties, isNull,
propertyExists, setJMSCorrelationID, setJMSDeliveryMode, setJMSDestination,
setJMSExpiration, setJMSMessageID, setJMSPriority, setJMSRedelivered,
setJMSReplyTo, setJMSTimestamp, setJMSType

The following methods are inherited from the PropertyContext class:
getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

Message
A Message object represents a message that an application sends or receives.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Message

For a list of the JMS message header fields in a Message object, see “Header fields
in an XMS message” on page 91. For a list of the JMS defined properties of a
Message object, see “JMS-defined properties of a message” on page 93. For a list of
the IBM defined properties of a Message object, see “IBM-defined properties of a
message” on page 94.

Methods
Summary of methods:

Method Description
~Message Delete the message.
acknowledge Acknowledge this message and all previously unacknowledged

messages received by the session.
clearBody Clear the body of the message.
clearProperties Clear the properties of the message.
getHandle Get the handle that a C application would use to access the

message.
getJMSCorrelationID Get the correlation identifier of the message.
getJMSDeliveryMode Get the delivery mode of the message.
getJMSDestination Get the destination of the message.
getJMSExpiration Get the expiration time of the message.
getJMSMessageID Get the message identifier of the message.
getJMSPriority Get the priority of the message.
getJMSRedelivered Get an indication of whether the message is being re-delivered.
getJMSReplyTo Get the destination where a reply to the message is to be sent.
getJMSTimestamp Get the time when the message was sent.
getJMSType Get the type of the message.
getProperties Get a list of the properties of the message.
isNull Determine whether the Message object is a null object.
propertyExists Check whether the message has a property with the specified name.
setJMSCorrelationID Set the correlation identifier of the message.
setJMSDeliveryMode Set the delivery mode of the message.
setJMSDestination Set the destination of the message.
setJMSExpiration Set the expiration time of the message.

Chapter 14. C++ classes 311

Method Description
setJMSMessageID Set the message identifier of the message.
setJMSPriority Set the priority of the message.
setJMSRedelivered Indicate whether the message is being re-delivered.
setJMSReplyTo Set the destination where a reply to the message is to be sent.
setJMSTimestamp Set the time when the message is sent.
setJMSType Set the type of the message.

~Message – Delete Message
Interface:

virtual ~Message();

Delete the message.

If an application tries to delete a message that is already deleted, the call is
ignored.

Parameters:
None

Exceptions:

v XMS_X_GENERAL_EXCEPTION

acknowledge – Acknowledge
Interface:

xmsVOID acknowledge();

Acknowledge this message and all previously unacknowledged messages received
by the session.

An application can call this method if the acknowledgement mode of the session is
XMSC_CLIENT_ACKNOWLEDGE. Calls to the method are ignored if the session
has any other acknowledgement mode or is transacted.

Messages that have been received but not acknowledged might be re-delivered.

For more information about acknowledging messages, see “Message
acknowledgement” on page 29.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

312 WebSphere MQ: Message Service Client for C/C++

clearBody – Clear Body
Interface:

xmsVOID clearBody();

Clear the body of the message. The header fields and message properties are not
cleared.

If an application clears a message body, the body is left in the same state as an
empty body in a newly created message. The state of an empty body in a newly
created message depends on the type of message body. For more information, see
“The body of an XMS message” on page 95.

An application can clear a message body at any time, no matter what state the
body is in. If a message body is read-only, the only way that an application can
write to the body is for the application to clear the body first.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

clearProperties – Clear Properties
Interface:

xmsVOID clearProperties();

Clear the properties of the message. The header fields and the message body are
not cleared.

If an application clears the properties of a message, the properties become readable
and writable.

An application can clear the properties of a message at any time, no matter what
state the properties are in. If the properties of a message are read-only, the only
way that the properties can become writable is for the application to clear the
properties first.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHMsg getHandle() const;

Chapter 14. C++ classes 313

Get the handle that a C application would use to access the message.

Parameters:
None

Returns:
The handle for the message.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSCorrelationID – Get JMSCorrelationID
Interface:

String getJMSCorrelationID() const;

Get the correlation identifier of the message.

Parameters:
None

Returns:
A String object encapsulating the correlation identifier.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSDeliveryMode – Get JMSDeliveryMode
Interface:

xmsINT getJMSDeliveryMode() const;

Get the delivery mode of the message. The delivery mode is set by the
MessageProducer.send() call when the message is sent.

Parameters:
None

Returns:
The delivery mode of the message, which is one of the following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a newly created message that has not been sent, the delivery mode is
XMSC_DELIVERY_PERSISTENT, except for a real-time connection to a broker for
which the delivery mode is XMSC_DELIVERY_NOT_PERSISTENT. For a message
that has been received, the method returns the delivery mode that was set
by the MessageProducer.send() call when the message was sent unless the
receiving application changes the delivery mode by calling
setJMSDeliveryMode().

Exceptions:

v XMS_X_GENERAL_EXCEPTION

314 WebSphere MQ: Message Service Client for C/C++

getJMSDestination – Get JMSDestination
Interface:

Destination getJMSDestination() const;

Get the destination of the message. The destination is set by the
MessageProducer.send() call when the message is sent.

Parameters:
None

Returns:
The Destination object.

For a newly created message that has not been sent, the method returns a
null Destination object and throws an exception unless the sending
application sets a destination by calling setJMSDestination(). For a message
that has been received, the method returns a Destination object for the
destination that was set by the MessageProducer.send() call when the
message was sent unless the receiving application changes the destination
by calling setJMSDestination().

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSExpiration – Get JMSExpiration
Interface:

xmsLONG getJMSExpiration() const;

Get the expiration time of the message.

The expiration time is set by the MessageProducer.send() call when the message is
sent. Its value is calculated by adding the time to live, as specified by the sending
application, to the time when the message is sent. The expiration time is expressed
in milliseconds since 00:00:00 GMT on the 1 January 1970.

If the time to live is 0, the MessageProducer.send() call sets the expiration time to 0
to indicate that the message does not expire.

XMS discards expired messages and does not deliver them to applications.

Parameters:
None

Returns:
The expiration time of the message.

For a newly created message that has not been sent, the expiration time is
0 unless the sending application sets a different expiration time by calling
setJMSExpiration(). For a message that has been received, the method
returns the expiration time that was set by the MessageProducer.send() call
when the message was sent unless the receiving application changes the
expiration time by calling setJMSExpiration().

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 315

getJMSMessageID – Get JMSMessageID
Interface:

String getJMSMessageID() const;

Get the message identifier of the message. The message identifier is set by the
MessageProducer.send() call when the message is sent.

Parameters:
None

Returns:
A String object encapsulating the message identifier.

For a message that has been received, the method returns the message
identifier that was set by the MessageProducer.send() call when the
message was sent unless the receiving application changes the message
identifier by calling setJMSMessageID().

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Notes:

1. If a message has no message identifier, the method throws an exception.

getJMSPriority – Get JMSPriority
Interface:

xmsINT getJMSPriority() const;

Get the priority of the message. The priority is set by the MessageProducer.send()
call when the message is sent.

Parameters:
None

Returns:
The priority of the message. The value is an integer in the range 0, the
lowest priority, to 9, the highest priority.

For a newly created message that has not been sent, the priority is 4 unless
the sending application sets a different priority by calling setJMSPriority().
For a message that has been received, the method returns the priority that
was set by the MessageProducer.send() call when the message was sent
unless the receiving application changes the priority by calling
setJMSPriority().

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSRedelivered – Get JMSRedelivered
Interface:

xmsBOOL getJMSRedelivered() const;

316 WebSphere MQ: Message Service Client for C/C++

Get an indication of whether the message is being re-delivered. The indication is
set by the MessageConsumer.receive() call when the message is received.

Parameters:
None

Returns:

v xmsTRUE, if the message is being re-delivered.
v xmsFALSE, if the message is not being re-delivered.

For a real-time connection to a broker, the method always returns
xmsFALSE.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSReplyTo – Get JMSReplyTo
Interface:

Destination getJMSReplyTo() const;

Get the destination where a reply to the message is to be sent.

Parameters:
None

Returns:
A Destination object for the destination where a reply to the message is to
be sent. A null Destination object means that no reply is expected.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getJMSTimestamp – Get JMSTimestamp
Interface:

xmsLONG getJMSTimestamp() const;

Get the time when the message was sent. The time stamp is set by the
MessageProducer.send() call when the message is sent and is expressed in
milliseconds since 00:00:00 GMT on the 1 January 1970.

Parameters:
None

Returns:
The time when the message was sent.

For a newly created message that has not been sent, the time stamp is 0
unless the sending application sets a different time stamp by calling
setJMSTimestamp(). For a message that has been received, the method
returns the time stamp that was set by the MessageProducer.send() call
when the message was sent unless the receiving application changes the
time stamp by calling setJMSTimestamp().

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 317

Notes:

1. If the time stamp is undefined, the method returns 0 but throws no exception.

getJMSType – Get JMSType
Interface:

String getJMSType() const;

Get the type of the message.

Parameters:
None

Returns:
A String encapsulating the type of the message. If data conversion is
required, this is the type after conversion.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getProperties – Get Properties
Interface:

Iterator getProperties() const;

Get a list of the properties of the message.

The method returns an iterator that encapsulates a list of Property objects. The
application can then use the iterator to access each property in turn.

Note: The equivalent JMS method performs a slightly different function. The JMS
method returns an enumeration of only the names of the properties of the
message, not their values.

Parameters:
None

Returns:
The Iterator object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Message object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Message object is a null object.

318 WebSphere MQ: Message Service Client for C/C++

v xmsFALSE, if the Message object is not a null object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

propertyExists – Check Property Exists
Interface:

xmsBOOL propertyExists(const String & propertyName) const;

Check whether the message has a property with the specified name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:

v xmsTRUE, if the message has a property with the specified name.
v xmsFALSE, if the message does not have a property with the specified

name.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSCorrelationID – Set JMSCorrelationID
Interface:

xmsVOID setJMSCorrelationID(const String correlID);

Set the correlation identifier of the message.

Parameters:

correlID (input)
A String object encapsulating the correlation identifier.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSDeliveryMode – Set JMSDeliveryMode
Interface:

xmsVOID setJMSDeliveryMode(const xmsINT deliveryMode);

Set the delivery mode of the message.

A delivery mode set by this method before the message is sent is ignored and
replaced by the MessageProducer.send() call when the message is sent. However,
you can use this method to change the delivery mode of a message that has been
received.

Chapter 14. C++ classes 319

Parameters:

deliveryMode (input)
The delivery mode of the message, which must be one of the
following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSDestination – Set JMSDestination
Interface:

xmsVOID setJMSDestination(const Destination & destination);

Set the destination of the message.

A destination set by this method before the message is sent is ignored and replaced
by the MessageProducer.send() call when the message is sent. However, you can
use this method to change the destination of a message that has been received.

Parameters:

destination (input)
A Destination object representing the destination of the message.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSExpiration – Set JMSExpiration
Interface:

xmsVOID setJMSExpiration(const xmsLONG expiration);

Set the expiration time of the message.

An expiration time set by this method before the message is sent is ignored and
replaced by the MessageProducer.send() call when the message is sent. However,
you can use this method to change the expiration time of a message that has been
received.

Parameters:

expiration (input)
The expiration time of the message expressed in milliseconds since
00:00:00 GMT on the 1 January 1970.

Returns:
Void

Exceptions:

320 WebSphere MQ: Message Service Client for C/C++

v XMS_X_GENERAL_EXCEPTION

setJMSMessageID – Set JMSMessageID
Interface:

xmsVOID setJMSMessageID(const String & msgID);

Set the message identifier of the message.

A message identifier set by this method before the message is sent is ignored and
replaced by the MessageProducer.send() call when the message is sent. However,
you can use this method to change the message identifier of a message that has
been received.

Parameters:

msgID (input)
A String object encapsulating the message identifier.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSPriority – Set JMSPriority
Interface:

xmsVOID setJMSPriority(const xmsINT priority);

Set the priority of the message.

A priority set by this method before the message is sent is ignored and replaced by
the MessageProducer.send() call when the message is sent. However, you can use
this method to change the priority of a message that has been received.

Parameters:

priority (input)
The priority of the message. The value can be an integer in the
range 0, the lowest priority, to 9, the highest priority.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSRedelivered – Set JMSRedelivered
Interface:

xmsVOID setJMSRedelivered(const xmsBOOL redelivered);

Indicate whether the message is being re-delivered.

Chapter 14. C++ classes 321

An indication of re-delivery set by this method before the message is sent is
ignored by the MessageProducer.send() call when the message is sent, and is
ignored and replaced by the MessageConsumer.receive() call when the message is
received. However, you can use this method to change the indication for a message
that has been received.

Parameters:

redelivered (input)
The value xmsTRUE means that the message is being re-delivered.
The value xmsFALSE means that the message is not being
re-delivered.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSReplyTo – Set JMSReplyTo
Interface:

xmsVOID setJMSReplyTo(const Destination & destination);

Set the destination where a reply to the message is to be sent.

Parameters:

destination (input)
A Destination object representing the destination where a reply to
the message is to be sent. A null Destination object means that no
reply is expected.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSTimestamp – Set JMSTimestamp
Interface:

xmsVOID setJMSTimestamp(const xmsLONG timeStamp);

Set the time when the message is sent.

A time stamp set by this method before the message is sent is ignored and
replaced by the MessageProducer.send() call when the message is sent. However,
you can use this method to change the time stamp of a message that has been
received.

Parameters:

timeStamp (input)
The time when the message is sent expressed in milliseconds since
00:00:00 GMT on the 1 January 1970.

322 WebSphere MQ: Message Service Client for C/C++

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setJMSType – Set JMSType
Interface:

xmsVOID setJMSType(const String & type);

Set the type of the message.

Parameters:

type (input)
A String object encapsulating the type of the message.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

MessageConsumer
An application uses a message consumer to receive messages sent to a destination.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::MessageConsumer

For a list of the XMS defined properties of a MessageConsumer object, see
“Properties of MessageConsumer” on page 414.

Methods
Summary of methods:

Method Description
close Close the message consumer.
getHandle Get the handle that a C application would use to access the

message consumer.
getMessageListener Get a pointer to the message listener that is registered with the

message consumer.
getMessageSelector Get the message selector for the message consumer.
isNull Determine whether the MessageConsumer object is a null object.

Chapter 14. C++ classes 323

Method Description
receive Receive the next message for the message consumer. The call waits

indefinitely for a message, or until the message consumer is closed.
receive Receive the next message for the message consumer. The call waits

only a specified period of time for a message, or until the message
consumer is closed.

receiveNoWait Receive the next message for the message consumer if one is
available immediately.

setMessageListener Register a message listener with the message consumer.

close – Close Message Consumer
Interface:

xmsVOID close();

Close the message consumer.

If an application tries to close a message consumer that is already closed, the call is
ignored.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHMsgConsumer getHandle() const;

Get the handle that a C application would use to access the message consumer.

Parameters:
None

Returns:
The handle for the message consumer.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getMessageListener – Get Message Listener
Interface:

MessageListener * getMessageListener() const;

Get a pointer to the message listener that is registered with the message consumer.

324 WebSphere MQ: Message Service Client for C/C++

For more information about using message listeners, see “Message listeners in
C++” on page 72.

Parameters:
None

Returns:
A pointer to the message listener. If no message listener is registered with
the message consumer, the method returns a null pointer.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getMessageSelector – Get Message Selector
Interface:

String getMessageSelector() const;

Get the message selector for the message consumer.

Parameters:
None

Returns:
A String object encapsulating the message selector expression. If data
conversion is required, this is the message selector expression after
conversion. If the message consumer does not have a message selector, the
method returns a null String object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the MessageConsumer object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the MessageConsumer object is a null object.
v xmsFALSE, if the MessageConsumer object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 325

receive – Receive
Interface:

Message * receive() const;

Receive the next message for the message consumer. The call waits indefinitely for
a message, or until the message consumer is closed.

Parameters:
None

Returns:
A pointer to the Message object. If the message consumer is closed while
the call is waiting for a message, the method returns a pointer to a null
Message object.

Note: Because the method returns a pointer to an object the application
must release the object using the C++ delete operator.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

receive – Receive (with a wait interval)
Interface:

Message * receive(const xmsLONG waitInterval) const;

Receive the next message for the message consumer. The call waits only a specified
period of time for a message, or until the message consumer is closed.

Parameters:

waitInterval (input)
The time, in milliseconds, that the call waits for a message. If you
specify a wait interval of 0, the call waits indefinitely for a
message.

Returns:
A pointer to the Message object. If no message arrives during the wait
interval, or if the message consumer is closed while the call is waiting for a
message, the method returns a pointer to a null Message object but throws
no exception.

Note: Because the method returns a pointer to an object the application
must release the object using the C++ delete operator.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

receiveNoWait – Receive with No Wait
Interface:

Message * receiveNoWait() const;

Receive the next message for the message consumer if one is available
immediately.

326 WebSphere MQ: Message Service Client for C/C++

Parameters:
None

Returns:
A pointer to a Message object. If no message is available immediately, the
method returns a pointer to a null Message object.

Note: Because the method returns a pointer to an object the application
must release the object using the C++ delete operator.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setMessageListener – Set Message Listener
Interface:

xmsVOID setMessageListener(const MessageListener *lsr);

Register a message listener with the message consumer.

For more information about using message listeners, see “Message listeners in
C++” on page 72.

Parameters:

lsr (input)
A pointer to the message listener. If a message listener is already
registered with the message consumer, you can cancel the
registration by specifying a null pointer instead.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

MessageEOFException
XMS throws this exception if XMS encounters the end of a bytes message stream
when an application is reading the body of a bytes message.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::MessageEOFException

Chapter 14. C++ classes 327

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

MessageFormatException
XMS throws this exception if XMS encounters a message with a format that is not
valid.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::MessageFormatException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

MessageListener
An application uses a message listener to receive messages asynchronously.

Inheritance hierarchy:
None

Methods
Summary of methods:

Method Description
onMessage Deliver a message asynchronously to the message consumer.

onMessage – On Message
Interface:

virtual xmsVOID onMessage(Message *message);

Deliver a message asynchronously to the message consumer.

onMessage() is a method of the message listener that is registered with the
message consumer. The name of the method must be onMessage.

For more information about using message listeners, see “Message listeners in
C++” on page 72.

Parameters:

message (input)
A pointer to the Message object.

Returns:
Void

328 WebSphere MQ: Message Service Client for C/C++

MessageNotReadableException
XMS throws this exception if an application attempts to read the body of a
message that is write-only.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::MessageNotReadableException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

MessageNotWritableException
XMS throws this exception if an application attempts to write to the body of a
message that is read-only.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::MessageNotWritableException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

MessageProducer
An application uses a message producer to send messages to a destination.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::MessageProducer

For a list of the XMS defined properties of a MessageProducer object, see
“Properties of MessageProducer” on page 414.

Methods
Summary of methods:

Method Description
close Close the message producer.
getDeliveryMode Get the default delivery mode for messages sent by the message

producer.
getDestination Get the destination for the message producer.

Chapter 14. C++ classes 329

Method Description
getDisableMsgID Get an indication of whether a receiving application requires

message identifiers to be included in messages sent by the message
producer.

getDisableMsgTS Get an indication of whether a receiving application requires time
stamps to be included in messages sent by the message producer.

getHandle Get the handle that a C application would use to access the
message producer.

getPriority Get the default priority for messages sent by the message producer.
getTimeToLive Get the default length of time that a message exists before it expires.
isNull Determine whether the MessageProducer object is a null object.
send Send a message to the destination that was specified when the

message producer was created. Send the message using the message
producer's default delivery mode, priority, and time to live.

send Send a message to the destination that was specified when the
message producer was created. Send the message using the
specified delivery mode, priority, and time to live.

send Send a message to a specified destination if you are using a
message producer for which no destination was specified when the
message producer was created. Send the message using the message
producer's default delivery mode, priority, and time to live.

send Send a message to a specified destination if you are using a
message producer for which no destination was specified when the
message producer was created. Send the message using the
specified delivery mode, priority, and time to live.

setDeliveryMode Set the default delivery mode for messages sent by the message
producer.

setDisableMsgID Indicate whether a receiving application requires message identifiers
to be included in messages sent by the message producer.

setDisableMsgTS Indicate whether a receiving application requires time stamps to be
included in messages sent by the message producer.

setPriority Set the default priority for messages sent by the message producer.
setTimeToLive Set the default length of time that a message exists before it expires.

close – Close Message Producer
Interface:

xmsVOID close();

Close the message producer.

If an application tries to close a message producer that is already closed, the call is
ignored.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getDeliveryMode – Get Default Delivery Mode
Interface:

xmsINT getDeliveryMode() const;

330 WebSphere MQ: Message Service Client for C/C++

Get the default delivery mode for messages sent by the message producer.

Parameters:
None

Returns:
The default delivery mode, which is one of the following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the method always returns
XMSC_DELIVERY_NOT_PERSISTENT.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getDestination – Get Destination
Interface:

Destination getDestination() const;

Get the destination for the message producer.

Parameters:
None

Returns:
The Destination object. If the message producer does not have a
destination, the method returns a null Destination object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getDisableMsgID – Get Disable Message ID Flag
Interface:

xmsBOOL getDisableMsgID() const;

Get an indication of whether a receiving application requires message identifiers to
be included in messages sent by the message producer.

Parameters:
None

Returns:

v xmsTRUE, if a receiving application does not require message identifiers to
be included in messages sent by the message producer.

v xmsFALSE, if a receiving application does require message identifiers to be
included in messages sent by the message producer.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 331

getDisableMsgTS – Get Disable Time Stamp Flag
Interface:

xmsBOOL getDisableMsgTS() const;

Get an indication of whether a receiving application requires time stamps to be
included in messages sent by the message producer.

Parameters:
None

Returns:

v xmsTRUE, if a receiving application does not require time stamps to be
included in messages sent by the message producer.

v xmsFALSE, if a receiving application does require time stamps to be
included in messages sent by the message producer.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHMsgProducer getHandle() const;

Get the handle that a C application would use to access the message producer.

Parameters:
None

Returns:
The handle for the message producer.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getPriority – Get Default Priority
Interface:

xmsINT getPriority() const;

Get the default priority for messages sent by the message producer.

Parameters:
None

Returns:
The default message priority. The value is an integer in the range 0, the
lowest priority, to 9, the highest priority.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

332 WebSphere MQ: Message Service Client for C/C++

getTimeToLive – Get Default Time to Live
Interface:

xmsLONG getTimeToLive() const;

Get the default length of time that a message exists before it expires. The time is
measured from when the message producer sends the message.

Parameters:
None

Returns:
The default time to live in milliseconds. A value of 0 means that a message
never expires.

For a real-time connection to a broker, the method always returns 0.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the MessageProducer object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the MessageProducer object is a null object.
v xmsFALSE, if the MessageProducer object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

send – Send
Interface:

xmsVOID send(const Message & message) const;

Send a message to the destination that was specified when the message producer
was created. Send the message using the message producer's default delivery
mode, priority, and time to live.

Parameters:

message (input)
The Message object.

Returns:
Void

Exceptions:

Chapter 14. C++ classes 333

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

send – Send (specifying a delivery mode, priority, and time to
live)
Interface:

xmsVOID send(const Message & message,
const xmsINT deliveryMode,
const xmsINT priority,
const xmsLONG timeToLive) const;

Send a message to the destination that was specified when the message producer
was created. Send the message using the specified delivery mode, priority, and
time to live.

Parameters:

message (input)
The Message object.

deliveryMode (input)
The delivery mode for the message, which must be one of the
following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the value must be
XMSC_DELIVERY_NOT_PERSISTENT.

priority (input)
The priority of the message. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. On a
real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0
means that the message never expires. For a real-time connection
to a broker, the value must be 0.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

send – Send (to a specified destination)
Interface:

xmsVOID send(const Destination & destination,
const Message & message) const;

334 WebSphere MQ: Message Service Client for C/C++

Send a message to a specified destination if you are using a message producer for
which no destination was specified when the message producer was created. Send
the message using the message producer's default delivery mode, priority, and
time to live.

Typically, you specify a destination when you create a message producer but, if
you do not, you must specify a destination every time you send a message.

Parameters:

destination (input)
The Destination object.

message (input)
The Message object.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

send – Send (to a specified destination, specifying a delivery
mode, priority, and time to live)
Interface:

xmsVOID send(const Destination & destination,
const Message & message,
const xmsINT deliveryMode,
const xmsINT priority,
const xmsLONG timeToLive) const;

Send a message to a specified destination if you are using a message producer for
which no destination was specified when the message producer was created. Send
the message using the specified delivery mode, priority, and time to live.

Typically, you specify a destination when you create a message producer but, if
you do not, you must specify a destination every time you send a message.

Parameters:

destination (input)
The Destination object.

message (input)
The Message object.

deliveryMode (input)
The delivery mode for the message, which must be one of the
following values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the value must be
XMSC_DELIVERY_NOT_PERSISTENT.

Chapter 14. C++ classes 335

priority (input)
The priority of the message. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. On a
real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0
means that the message never expires. For a real-time connection
to a broker, the value must be 0.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_FORMAT_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

setDeliveryMode – Set Default Delivery Mode
Interface:

xmsVOID setDeliveryMode(const xmsINT deliveryMode);

Set the default delivery mode for messages sent by the message producer.

Parameters:

deliveryMode (input)
The default delivery mode, which must be one of the following
values:

XMSC_DELIVERY_PERSISTENT

XMSC_DELIVERY_NOT_PERSISTENT

For a real-time connection to a broker, the value must be
XMSC_DELIVERY_NOT_PERSISTENT.

The default value is XMSC_DELIVERY_PERSISTENT, except for a
real-time connection to a broker for which the default value is
XMSC_DELIVERY_NOT_PERSISTENT.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setDisableMsgID – Set Disable Message ID Flag
Interface:

xmsVOID setDisableMsgID(const xmsBOOL msgIDDisabled);

Indicate whether a receiving application requires message identifiers to be included
in messages sent by the message producer.

336 WebSphere MQ: Message Service Client for C/C++

On a connection to a queue manager, or on a real-time connection to a broker, this
flag is ignored. On a connection to a service integration bus, the flag is honoured.

Parameters:

msgIDDisabled (input)
The value xmsTRUE means that a receiving application does not
require message identifiers to be included in messages sent by the
message producer. The value xmsFALSE means that a receiving
application does require message identifiers. The default value is
xmsFALSE.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setDisableMsgTS – Set Disable Time Stamp Flag
Interface:

xmsVOID setDisableMsgTS(const xmsBOOL timeStampDisabled);

Indicate whether a receiving application requires time stamps to be included in
messages sent by the message producer.

On a real-time connection to a broker, this flag is ignored. On a connection to a
queue manager, or on a connection to a service integration bus, the flag is
honoured.

Parameters:

timeStampDisabled (input)
The value xmsTRUE means that a receiving application does not
require time stamps to be included in messages sent by the
message producer. The value xmsFALSE means that a receiving
application does require time stamps. The default value is
xmsFALSE.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setPriority – Set Default Priority
Interface:

xmsVOID setPriority(const xmsINT priority);

Set the default priority for messages sent by the message producer.

On a real-time connection to a broker, the priority of a message is ignored.

Parameters:

Chapter 14. C++ classes 337

priority (input)
The default message priority. The value can be an integer in the
range 0, for the lowest priority, to 9, for the highest priority. The
default value is 4.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setTimeToLive – Set Default Time to Live
Interface:

xmsVOID setTimeToLive(const xmsLONG timeToLive);

Set the default length of time that a message exists before it expires. The time is
measured from when the message producer sends the message.

Parameters:

timeToLive (input)
The default time to live in milliseconds. The default value is 0,
which means that a message never expires. For a real-time
connection to a broker, the value must be 0.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

ObjectMessage
An object message is a message whose body comprises a serialized Java object.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Message

|
+----xms::ObjectMessage

338 WebSphere MQ: Message Service Client for C/C++

Methods
Summary of methods:

Method Description
getObject Get the object that forms the body of the object message.
setObject Set the string that forms the body of the object message.

getObject – Get Object as Bytes
Interface:

xmsINT getObject(xmsSBYTE *buffer,
xmsINT bufferLength,
xmsINT *actualLength);

Get the object that forms the body of the object message.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

buffer (output)
The buffer to contain the object, which is returned as an array of
bytes.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the object is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the object in bytes. If you specify a null pointer on
input, the length is not returned.

Returns:
The length of the object in bytes.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Notes:

1. If the buffer is not large enough to store the whole object, XMS returns the
object truncated to the length of the buffer, sets the actualLength parameter to
the actual length of the object, and returns an error.

2. If any other error occurs while attempting to get the object, XMS reports the
error but does not set the actualLength parameter.

setObject – Set Object as Bytes
Interface:

xmsVOID setObject(xmsSBYTE *value,
xmsINT length);

Set the string that forms the body of the object message.

Chapter 14. C++ classes 339

Parameters:

value (input)
An array of bytes representing the object to be set.

length (input)
The number of bytes in the array.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Inherited methods
The following methods are inherited from the Message class:

clearBody, clearProperties, getHandle,
getJMSCorrelationID,getJMSDeliveryMode, getJMSDestination,
getJMSExpiration, getJMSMessageID, getJMSPriority, getJMSRedelivered,
getJMSReplyTo, getJMSTimestamp, getJMSType, getProperties, isNull,
propertyExists, setJMSCorrelationID, setJMSDeliveryMode, setJMSDestination,
setJMSExpiration, setJMSMessageID, setJMSPriority, setJMSRedelivered,
setJMSReplyTo, setJMSTimestamp, setJMSType

The following methods are inherited from the PropertyContext class:
getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

Property
A Property object represents a property of an object.

Inheritance hierarchy:
None

A Property object has three attributes:

Property name
The name of the property

Property value
The value of the property

Property type
The data type of the value of the property

If an application sets the property value attribute of a Property object, the property
value replaces any previous value the attribute had.

This class is a helper class.

340 WebSphere MQ: Message Service Client for C/C++

Constructors
Summary of constructors:

Constructor Description
Property Copy the Property object.
Property Create a Property object with a property name, a property value,

and a property type.
Property Create a Property object with no property value or property type.

Property – Copy Property
Interface:

Property(const Property & property);

Property & duplicate(const Property & property);

Copy the Property object.

Parameters:

property (input)
The Property object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Property – Create Property
Interface:

Property(const String & propertyName,
const xmsBOOL propertyValue);

Property(const String & propertyName,
const xmsSBYTE *propertyValue,
xmsINT length);

Property(const String & propertyName,
const xmsSBYTE propertyValue);

Property(const String & propertyName,
const xmsCHAR16 propertyValue);

Property(const String & propertyName,
const xmsDOUBLE propertyValue);

Property(const String & propertyName,
const xmsFLOAT propertyValue);

Property(const String & propertyName,
const xmsINT propertyValue);

Property(const String & propertyName,
const xmsLONG propertyValue);

Property(const String & propertyName,
const xmsSHORT propertyValue);

Chapter 14. C++ classes 341

Property(const String & propertyName,
const String & propertyValue);

Create a Property object with a property name, a property value, and a property
type.

Parameters:

propertyName (input)
A String object encapsulating the property name.

propertyValue (input)
The property value. The property type is determined by the data
type of the property value.

length (input)
The length of the property value in bytes. This parameter is
applicable only if the property value is an array of bytes.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Property – Create Property (with no property value or property
type)
Interface:

Property(const String & propertyName);

Property & create(const String & propertyName);

Create a Property object with no property value or property type.

Parameters:

propertyName (input)
A String object encapsulating the property name.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Methods
Summary of methods:

Method Description
~Property Delete the Property object.
getBoolean Get the boolean property value from the Property object.
getByte Get the byte property value from the Property object.
getByteArray Get the byte array property value from the Property object.
getChar Get the 2-byte character property value from the Property object.
getDouble Get the double precision floating point property value from the

Property object.
getFloat Get the floating point property value from the Property object.

342 WebSphere MQ: Message Service Client for C/C++

Method Description
getHandle Get the handle that a C application would use to access the

Property object.
getInt Get the integer property value from the Property object.
getLong Get the long integer property value from the Property object.
getShort Get the short integer property value from the Property object.
getString Get the string property value from the Property object.
getTypeId Get the property type from the Property object.
isNull Determine whether the Property object is a null object.
isTypeId Check whether the Property object has the specified property type.
name Get the property name from the Property object.
setBoolean Set a boolean property value in the Property object and set the

property type.
setByte Set a byte property value in the Property object and set the property

type.
setByteArray Set a byte array property value in the Property object and set the

property type.
setChar Set a 2-byte character property value in the Property object and set

the property type.
setDouble Set a double precision floating point property value in the Property

object and set the property type.
setFloat Set a floating point property value in the Property object and set the

property type.
setInt Set an integer property value in the Property object and set the

property type.
setLong Set a long integer property value in the Property object and set the

property type.
setShort Set a short integer property value in the Property object and set the

property type.
setString Set a string property value in the Property object and set the

property type.

~Property – Delete Property
Interface:

virtual ~Property();

Delete the Property object.

If an application tries to delete a Property object that is already deleted, the call is
ignored.

Parameters:
None

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getBoolean – Get Boolean Property Value
Interface:

xmsBOOL getBoolean() const;

Chapter 14. C++ classes 343

Get the boolean property value from the Property object.

Parameters:
None

Returns:
The boolean property value.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getByte – Get Byte Property Value
Interface:

xmsSBYTE getByte() const;

Get the byte property value from the Property object.

Parameters:
None

Returns:
The byte property value.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getByteArray – Get Byte Array Property Value
Interface:

xmsINT getByteArray(xmsSBYTE *propertyValue,
const xmsINT length,
xmsINT *actualLength) const;

Get the byte array property value from the Property object.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

propertyValue (output)
The buffer to contain the property value, which is an array of
bytes.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the property value is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the property value in bytes. If you specify a null
pointer on input, the length is not returned.

344 WebSphere MQ: Message Service Client for C/C++

Returns:
The length of the property value in bytes.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getChar – Get Character Property Value
Interface:

xmsCHAR16 getChar() const;

Get the 2-byte character property value from the Property object.

Parameters:
None

Returns:
The 2-byte character property value.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getDouble – Get Double Precision Floating Point Property Value
Interface:

xmsDOUBLE getDouble() const;

Get the double precision floating point property value from the Property object.

Parameters:
None

Returns:
The double precision floating point property value.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getFloat – Get Floating Point Property Value
Interface:

xmsFLOAT getFloat() const;

Get the floating point property value from the Property object.

Parameters:
None

Chapter 14. C++ classes 345

Returns:
The floating point property value.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHProperty getHandle() const;

Get the handle that a C application would use to access the Property object.

Parameters:
None

Returns:
The handle for the Property object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getInt – Get Integer Property Value
Interface:

xmsINT getInt() const;

Get the integer property value from the Property object.

Parameters:
None

Returns:
The integer property value.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getLong – Get Long Integer Property Value
Interface:

xmsLONG getLong() const;

Get the long integer property value from the Property object.

Parameters:
None

Returns:
The long integer property value.

346 WebSphere MQ: Message Service Client for C/C++

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getShort – Get Short Integer Property Value
Interface:

xmsSHORT getShort() const;

Get the short integer property value from the Property object.

Parameters:
None

Returns:
The short integer property value.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getString – Get String Property Value
Interface:

String getString() const;

Get the string property value from the Property object.

Parameters:
None

Returns:
A String object encapsulating the string property value. If data conversion
is required, this is the string after conversion.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getTypeId – Get Property Type
Interface:

xmsPROPERTY_TYPE getTypeId() const;

Get the property type from the Property object.

Parameters:
None

Chapter 14. C++ classes 347

Returns:
The property type, which is one of the following values:

XMS_PROPERTY_TYPE_UNKNOWN

XMS_PROPERTY_TYPE_BOOL

XMS_PROPERTY_TYPE_BYTE

XMS_PROPERTY_TYPE_BYTEARRAY

XMS_PROPERTY_TYPE_CHAR

XMS_PROPERTY_TYPE_STRING

XMS_PROPERTY_TYPE_SHORT

XMS_PROPERTY_TYPE_INT

XMS_PROPERTY_TYPE_LONG

XMS_PROPERTY_TYPE_FLOAT

XMS_PROPERTY_TYPE_DOUBLE

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Property object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Property object is a null object.
v xmsFALSE, if the Property object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isTypeId – Check Property Type
Interface:

xmsBOOL isTypeId(const xmsPROPERTY_TYPE propertyType) const;

Check whether the Property object has the specified property type.

Parameters:

propertyType (input)
The property type, which must be one of the following values:

XMS_PROPERTY_TYPE_UNKNOWN

XMS_PROPERTY_TYPE_BOOL

348 WebSphere MQ: Message Service Client for C/C++

XMS_PROPERTY_TYPE_BYTE

XMS_PROPERTY_TYPE_BYTEARRAY

XMS_PROPERTY_TYPE_CHAR

XMS_PROPERTY_TYPE_STRING

XMS_PROPERTY_TYPE_SHORT

XMS_PROPERTY_TYPE_INT

XMS_PROPERTY_TYPE_LONG

XMS_PROPERTY_TYPE_FLOAT

XMS_PROPERTY_TYPE_DOUBLE

Returns:

v xmsTRUE, if the Property object has the specified property type.
v xmsFALSE, if the Property object does not have the specified property

type.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

name – Get Property Name
Interface:

String name() const;

Get the property name from the Property object.

Parameters:
None

Returns:
A String object encapsulating the property name.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setBoolean – Set Boolean Property Value
Interface:

xmsVOID setBoolean(const xmsBOOL propertyValue);

Set a boolean property value in the Property object and set the property type.

Parameters:

propertyValue (input)
The boolean property value.

Returns:
Void

Chapter 14. C++ classes 349

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setByte – Set Byte Property Value
Interface:

xmsVOID setByte(const xmsSBYTE propertyValue);

Set a byte property value in the Property object and set the property type.

Parameters:

propertyValue (input)
The byte property value.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setByteArray – Set Byte Array Property Value
Interface:

xmsVOID setByteArray(const xmsBYTE *propertyValue,
const xmsINT length);

Set a byte array property value in the Property object and set the property type.

Parameters:

propertyValue (input)
The property value, which is an array of bytes.

length (input)
The length of the property value in bytes.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setChar – Set Character Property Value
Interface:

xmsVOID setChar(const xmsCHAR16 propertyValue);

350 WebSphere MQ: Message Service Client for C/C++

Set a 2-byte character property value in the Property object and set the property
type.

Parameters:

propertyValue (input)
The 2-byte character property value.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setDouble – Set Double Precision Floating Point Property Value
Interface:

xmsVOID setDouble(const xmsDOUBLE propertyValue);

Set a double precision floating point property value in the Property object and set
the property type.

Parameters:

propertyValue (input)
The double precision floating point property value.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setFloat – Set Floating Point Property Value
Interface:

xmsVOID setFloat(const xmsFLOAT propertyValue);

Set a floating point property value in the Property object and set the property type.

Parameters:

propertyValue (input)
The floating point property value.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 351

setInt – Set Integer Property Value
Interface:

xmsVOID setInt(const xmsINT propertyValue);

Set an integer property value in the Property object and set the property type.

Parameters:

propertyValue (input)
The integer property value.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setLong – Set Long Integer Property Value
Interface:

xmsVOID setLong(const xmsLONG propertyValue);

Set a long integer property value in the Property object and set the property type.

Parameters:

propertyValue (input)
The long integer property value.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setShort – Set Short Integer Property Value
Interface:

xmsVOID setShort(const xmsSHORT propertyValue);

Set a short integer property value in the Property object and set the property type.

Parameters:

propertyValue (input)
The short integer property value.

Returns:
Void

352 WebSphere MQ: Message Service Client for C/C++

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setString – Set String Property Value
Interface:

xmsVOID setString(const String & propertyValue);

Set a string property value in the Property object and set the property type.

Parameters:

propertyValue (input)
A String object encapsulating the string property value.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

PropertyContext
PropertyContext is an abstract superclass that contains methods that get and set
properties. These methods are inherited by other classes.

Inheritance hierarchy:
None

Methods
Summary of methods:

Method Description
getBooleanProperty Get the value of the boolean property identified by name.
getByteProperty Get the value of the byte property identified by name.
getBytesProperty Get the value of the byte array property identified by name.
getCharProperty Get the value of the 2-byte character property identified by name.
getDoubleProperty Get the value of the double precision floating point property

identified by name.
getFloatProperty Get the value of the floating point property identified by name.
getIntProperty Get the value of the integer property identified by name.
getLongProperty Get the value of the long integer property identified by name.
getObjectProperty Get the value and data type of the property identified by name.
getProperty Get a Property object for the property identified by name.
getShortProperty Get the value of the short integer property identified by name.
getStringProperty Get the value of the string property identified by name.
setBooleanProperty Set the value of the boolean property identified by name.
setByteProperty Set the value of the byte property identified by name.
setBytesProperty Set the value of the byte array property identified by name.
setCharProperty Set the value of the 2-byte character property identified by name.

Chapter 14. C++ classes 353

Method Description
setDoubleProperty Set the value of the double precision floating point property

identified by name.
setFloatProperty Set the value of the floating point property identified by name.
setIntProperty Set the value of the integer property identified by name.
setLongProperty Set the value of the long integer property identified by name.
setObjectProperty Set the value and data type of a property identified by name.
setProperty Set the value of a property using a Property object.
setShortProperty Set the value of the short integer property identified by name.
setStringProperty Set the value of the string property identified by name.

getBooleanProperty – Get Boolean Property
Interface:

xmsBOOL getBooleanProperty(const String & propertyName) const;

Get the value of the boolean property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getByteProperty – Get Byte Property
Interface:

xmsSBYTE getByteProperty(const String & propertyName) const;

Get the value of the byte property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getBytesProperty – Get Byte Array Property
Interface:

354 WebSphere MQ: Message Service Client for C/C++

xmsINT getBytesProperty(const String & propertyName,
xmsSBYTE *propertyValue,
const xmsINT length,
xmsINT *actualLength) const;

Get the value of the byte array property identified by name.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (output)
The buffer to contain the value of the property, which is an array
of bytes.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the array of bytes is not returned, but its length is returned
in the actualLength parameter.

actualLength (output)
The number of bytes in the array. If you specify a null pointer on
input, the length of the array is not returned.

Returns:
The number of bytes in the array.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getCharProperty – Get Character Property
Interface:

xmsCHAR16 getCharProperty(const String & propertyName) const;

Get the value of the 2-byte character property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 355

getDoubleProperty – Get Double Precision Floating Point
Property
Interface:

xmsDOUBLE getDoubleProperty(const String & propertyName) const;

Get the value of the double precision floating point property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getFloatProperty – Get Floating Point Property
Interface:

xmsFLOAT getFloatProperty(const String & propertyName) const;

Get the value of the floating point property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getIntProperty – Get Integer Property
Interface:

xmsINT getIntProperty(const String & propertyName) const;

Get the value of the integer property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

Thread context:
Determined by the subclass

356 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getLongProperty – Get Long Integer Property
Interface:

xmsLONG getLongProperty(const String & propertyName) const;

Get the value of the long integer property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getObjectProperty – Get Object Property
Interface:

xmsOBJECT_TYPE getObjectProperty(const String & propertyName,
xmsSBYTE *propertyValue,
const xmsINT length,
xmsINT *actualLength);

Get the value and data type of the property identified by name.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (output)
The buffer to contain the value of the property, which is returned
as an array of bytes. If the value is a string and data conversion is
required, this is the value after conversion.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the value of the property is not returned, but its length is
returned in the actualLength parameter.

actualLength (output)
The length of the value of the property in bytes. If the value is a
string and data conversion is required, this is the length after
conversion. If you specify a null pointer on input, the length is not
returned.

Chapter 14. C++ classes 357

Returns:
The data type of the value of the property, which is one of the following
object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getProperty – Get Property
Interface:

virtual Property getProperty(const String & propertyName) const;

Get a Property object for the property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The Property object.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getShortProperty – Get Short Integer Property
Interface:

xmsSHORT getShortProperty(const String & propertyName) const;

Get the value of the short integer property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
The value of the property.

358 WebSphere MQ: Message Service Client for C/C++

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getStringProperty – Get String Property
Interface:

String getStringProperty(const String & propertyName) const;

Get the value of the string property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Returns:
A String object encapsulating the string that is the value of the property. If
data conversion is required, this is the string after conversion.

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION

setBooleanProperty – Set Boolean Property
Interface:

xmsVOID setBooleanProperty(const String & propertyName,
const xmsBOOL propertyValue);

Set the value of the boolean property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setByteProperty – Set Byte Property
Interface:

Chapter 14. C++ classes 359

xmsVOID setByteProperty(const String & propertyName,
const xmsSBYTE propertyValue);

Set the value of the byte property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setBytesProperty – Set Byte Array Property
Interface:

xmsVOID setBytesProperty(const String & propertyName,
const xmsSBYTE *propertyValue,
const xmsINT length);

Set the value of the byte array property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property, which is an array of bytes.

length (input)
The number of bytes in the array.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setCharProperty – Set Character Property
Interface:

xmsVOID setCharProperty(const String & propertyName,
const xmsCHAR16 propertyValue);

360 WebSphere MQ: Message Service Client for C/C++

Set the value of the 2-byte character property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setDoubleProperty – Set Double Precision Floating Point
Property
Interface:

xmsVOID setDoubleProperty(const String & propertyName,
const xmsDOUBLE propertyValue);

Set the value of the double precision floating point property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setFloatProperty – Set Floating Point Property
Interface:

xmsVOID setFloatProperty(const String & propertyName,
const xmsFLOAT propertyValue);

Set the value of the floating point property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

Chapter 14. C++ classes 361

propertyValue (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setIntProperty – Set Integer Property
Interface:

xmsVOID setIntProperty(const String & propertyName,
const xmsINT propertyValue);

Set the value of the integer property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setLongProperty – Set Long Integer Property
Interface:

xmsVOID setLongProperty(const String & propertyName,
const xmsLONG propertyValue);

Set the value of the long integer property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property.

Returns:
Void

362 WebSphere MQ: Message Service Client for C/C++

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setObjectProperty – Set Object Property
Interface:

xmsVOID setObjectProperty(const String & propertyName,
const xmsOBJECT_TYPE objectType,
const xmsSBYTE *propertyValue,
const xmsINT length);

Set the value and data type of a property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

objectType (input)
The data type of the value of the property, which must be one of
the following object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

propertyValue (input)
The value of the property as an array of bytes.

length (input)
The number of bytes in the array.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Chapter 14. C++ classes 363

setProperty – Set Property
Interface:

virtual xmsVOID setProperty(const Property & property);

Set the value of a property using a Property object.

Parameters:

property (input)
The Property object.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setShortProperty – Set Short Integer Property
Interface:

xmsVOID setShortProperty(const String & propertyName,
const xmsSHORT propertyValue);

Set the value of the short integer property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

propertyValue (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

setStringProperty – Set String Property
Interface:

xmsVOID setStringProperty(const String & propertyName,
const String & propertyValue);

Set the value of the string property identified by name.

Parameters:

propertyName (input)
A String object encapsulating the name of the property.

364 WebSphere MQ: Message Service Client for C/C++

propertyValue (input)
A String object encapsulating the string that is the value of the
property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

QueueBrowser
An application uses a queue browser to browse messages on a queue without
removing them.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::QueueBrowser

Methods
Summary of methods:

Method Description
close Close the queue browser.
getEnumeration Get a list of the messages on the queue.
getHandle Get the handle that a C application would use to access the queue

browser.
getMessageSelector Get the message selector for the queue browser.
getQueue Get the queue associated with the queue browser.
isNull Determine whether the QueueBrowser object is a null object.

close – Close Queue Browser
Interface:

xmsVOID close();

Close the queue browser.

If an application tries to close a queue browser that is already closed, the call is
ignored.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 365

getEnumeration – Get Messages
Interface:

Iterator getEnumeration() const;

Get a list of the messages on the queue.

The method returns an iterator that encapsulates a list of Message objects. The
order of the Message objects in the list is the same as the order in which the
messages would be retrieved from the queue. The application can then use the
iterator to browse each message in turn.

The iterator is updated dynamically as messages are put on the queue and
removed from the queue. Each time the application calls Iterator.getNext() to
browse the next message on the queue, the message returned reflects the current
contents of the queue.

If an application calls this method more than once for a given queue browser, each
call returns a new iterator. The application can therefore use more than one iterator
to browse the messages on a queue and maintain multiple positions within the
queue.

Parameters:
None

Returns:
The Iterator object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHQueueBrowser getHandle() const;

Get the handle that a C application would use to access the queue browser.

Parameters:
None

Returns:
The handle for the queue browser.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getMessageSelector – Get Message Selector
Interface:

String getMessageSelector() const;

Get the message selector for the queue browser.

366 WebSphere MQ: Message Service Client for C/C++

Parameters:
None

Returns:
A String object encapsulating the message selector expression. If data
conversion is required, this is the message selector expression after
conversion. If the queue browser does not have a message selector, the
method returns a null String object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getQueue – Get Queue
Interface:

Destination getQueue() const;

Get the queue associated with the queue browser.

Parameters:
None

Returns:
A Destination object representing the queue.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the QueueBrowser object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the QueueBrowser object is a null object.
v xmsFALSE, if the QueueBrowser object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

Chapter 14. C++ classes 367

Requestor
An application uses a requestor to send a request message and then wait for, and
receive, the reply.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Requestor

Constructors
Summary of constructors:

Constructor Description
Requestor Create a requestor.

Requestor – Create Requestor
Interface:

Requestor(const Session & session,
const Destination & destination);

Create a requestor.

Parameters:

session (input)
A Session object. The session must not be transacted and must
have one of the following acknowledgement modes:

XMSC_AUTO_ACKNOWLEDGE

XMSC_DUPS_OK_ACKNOWLEDGE

destination (input)
A Destination object representing the destination where the
application can send request messages.

Thread context:
The session associated with the requestor

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Methods
Summary of methods:

Method Description
close Close the requestor.
getHandle Get the handle that a C application would use to access the

requestor.
isNull Determine whether the Requestor object is a null object.
request Send a request message and then wait for, and receive, a reply from

the application that receives the request message.

close – Close Requestor
Interface:

xmsVOID close();

368 WebSphere MQ: Message Service Client for C/C++

Close the requestor.

If an application tries to close a requestor that is already closed, the call is ignored.

Note: When an application closes a requestor, the associated session does not close
as well. In this respect, XMS behaves differently compared to JMS.

Parameters:
None

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHRequestor getHandle() const;

Get the handle that a C application would use to access the requestor.

Parameters:
None

Returns:
The handle for the requestor.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Requestor object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Requestor object is a null object.
v xmsFALSE, if the Requestor object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 369

request – Request
Interface:

Message * request(const Message & requestMessage) const;

Send a request message and then wait for, and receive, a reply from the application
that receives the request message.

A call to this method blocks until a reply is received or until the session ends,
whichever is the sooner.

Parameters:

requestMessage (input)
The Message object encapsulating the request message.

Returns:
A pointer to the Message object encapsulating the reply message.

Note: Because the method returns a pointer to an object the application
must release the object using the C++ delete operator.

Thread context:
The session associated with the requestor

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

ResourceAllocationException
XMS throws this exception if XMS cannot allocate the resources required by a
method.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::ResourceAllocationException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

370 WebSphere MQ: Message Service Client for C/C++

SecurityException
XMS throws this exception if the user identifer and password provided to
authenticate an application are rejected. XMS also throws this exception if an
authority check fails and prevents a method from completing.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::SecurityException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

Session
A session is a single threaded context for sending and receiving messages.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Session

For a list of the XMS defined properties of a Session object, see “Properties of
Session” on page 414.

Methods
Summary of methods:

Method Description
close Close the session.
commit Commit all messages processed in the current transaction.
createBrowser Create a queue browser for the specified queue.
createBrowser Create a queue browser for the specified queue using a message

selector.
createBytesMessage Create a bytes message.
createConsumer Create a message consumer for the specified destination.
createConsumer Create a message consumer for the specified destination using a

message selector.
createConsumer Create a message consumer for the specified destination using a

message selector and, if the destination is a topic, specifying
whether the message consumer receives the messages published by
its own connection.

createDurableSubscriber Create a durable subscriber for the specified topic.
createDurableSubscriber Create a durable subscriber for the specified topic using a message

selector and specifying whether the durable subscriber receives the
messages published by its own connection.

createMapMessage Create a map message.
createMessage Create a message that has no body.
createObjectMessage Create an object message.
createProducer Create a message producer to send messages to the specified

destination.

Chapter 14. C++ classes 371

Method Description
createQueue Create a Destination object to represent a queue in the messaging

server.
createStreamMessage Create a stream message.
createTemporaryQueue Create a temporary queue.
createTemporaryTopic Create a temporary topic.
createTextMessage Create a text message with an empty body.
createTextMessage Create a text message whose body is initialized with the specified

text.
createTopic Create a Destination object to represent a topic.
getAcknowledgeMode Get the acknowledgement mode for the session.
getHandle Get the handle that a C application would use to access the session.
getTransacted Determine whether the session is transacted.
isNull Determine whether the Session object is a null object.
recover Recover the session.
rollback Rollback all messages processed in the current transaction.
unsubscribe Delete a durable subscription.

close – Close Session
Interface:

xmsVOID close();

Close the session. If the session is transacted, any transaction in progress is rolled
back.

All objects dependent on the session are deleted. For information about which
objects are deleted, see “Object Deletion” on page 42.

If an application tries to close a session that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

commit – Commit
Interface:

xmsVOID commit();

Commit all messages processed in the current transaction.

The session must be a transacted session.

Parameters:
None

Returns:
Void

372 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION
v XMS_X_TRANSACTION_ROLLED_BACK_EXCEPTION

createBrowser – Create Queue Browser
Interface:

QueueBrowser createBrowser(const Destination & queue) const;

Create a queue browser for the specified queue.

Parameters:

queue (input)
A Destination object representing the queue.

Returns:
The QueueBrowser object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

createBrowser – Create Queue Browser (with message selector)
Interface:

QueueBrowser createBrowser(const Destination & queue
const String & messageSelector) const;

Create a queue browser for the specified queue using a message selector.

Parameters:

queue (input)
A Destination object representing the queue.

messageSelector (input)
A String object encapsulating a message selector expression. Only
those messages with properties that match the message selector
expression are delivered to the queue browser.

A null String object means that there is no message selector for the
queue browser.

Returns:
The QueueBrowser object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

Chapter 14. C++ classes 373

createBytesMessage – Create Bytes Message
Interface:

BytesMessage createBytesMessage() const;

Create a bytes message.

Parameters:
None

Returns:
The BytesMessage object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createConsumer – Create Consumer
Interface:

MessageConsumer createConsumer(const Destination & destination) const;

Create a message consumer for the specified destination.

Parameters:

destination (input)
The Destination object.

Returns:
The MessageConsumer object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

createConsumer – Create Consumer (with message selector)
Interface:

MessageConsumer createConsumer(const Destination & destination,
const String & messageSelector) const;

Create a message consumer for the specified destination using a message selector.

Parameters:

destination (input)
The Destination object.

messageSelector (input)
A String object encapsulating a message selector expression. Only
those messages with properties that match the message selector
expression are delivered to the message consumer.

A null String object means that there is no message selector for the
message consumer.

Returns:
The MessageConsumer object.

374 WebSphere MQ: Message Service Client for C/C++

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

createConsumer – Create Consumer (with message selector and
local message flag)
Interface:

MessageConsumer createConsumer(const Destination & destination,
const String & messageSelector,
const xmsBOOL noLocal) const;

Create a message consumer for the specified destination using a message selector
and, if the destination is a topic, specifying whether the message consumer
receives the messages published by its own connection.

Parameters:

destination (input)
The Destination object.

messageSelector (input)
A String object encapsulating a message selector expression. Only
those messages with properties that match the message selector
expression are delivered to the message consumer.

A null String object means that there is no message selector for the
message consumer.

noLocal (input)
The value xmsTRUE means that the message consumer does not
receive the messages published by its own connection. The value
xmsFALSE means that the message consumer does receive the
messages published by its own connection. The default value is
xmsFALSE.

Returns:
The MessageConsumer object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

createDurableSubscriber – Create Durable Subscriber
Interface:

MessageConsumer
createDurableSubscriber(const Destination & topic,

const String & subscriptionName) const;

Create a durable subscriber for the specified topic.

This method is not valid for a real-time connection to a broker.

Chapter 14. C++ classes 375

For more information about durable subscribers, see “Durable subscribers” on page
37.

Parameters:

topic (input)
A Destination object representing the topic. The topic must not be a
temporary topic.

subscriptionName (input)
A String object encapsulating a name that identifies the durable
subscription. The name must be unique within the client identifier
for the connection.

Returns:
The MessageConsumer object representing the durable subscriber.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

createDurableSubscriber – Create Durable Subscriber (with
message selector and local message flag)
Interface:

MessageConsumer createDurableSubscriber(const Destination & topic,
const String & subscriptionName;
const String & messageSelector,
const xmsBOOL noLocal) const;

Create a durable subscriber for the specified topic using a message selector and
specifying whether the durable subscriber receives the messages published by its
own connection.

This method is not valid for a real-time connection to a broker.

For more information about durable subscribers, see “Durable subscribers” on page
37.

Parameters:

topic (input)
A Destination object representing the topic. The topic must not be a
temporary topic.

subscriptionName (input)
A String object encapsulating a name that identifies the durable
subscription. The name must be unique within the client identifier
for the connection.

messageSelector (input)
A String object encapsulating a message selector expression. Only
those messages with properties that match the message selector
expression are delivered to the durable subscriber.

A null String object means that there is no message selector for the
durable subscriber.

noLocal (input)
The value xmsTRUE means that the durable subscriber does not

376 WebSphere MQ: Message Service Client for C/C++

receive the messages published by its own connection. The value
xmsFALSE means that the durable subscriber does receive the
messages published by its own connection. The default value is
xmsFALSE.

Returns:
The MessageConsumer object representing the durable subscriber.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_INVALID_SELECTOR_EXCEPTION

createMapMessage – Create Map Message
Interface:

MapMessage createMapMessage() const;

Create a map message.

Parameters:
None

Returns:
The MapMessage object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createMessage – Create Message
Interface:

Message createMessage() const;

Create a message that has no body.

Parameters:
None

Returns:
The Message object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createObjectMessage – Create Object Message
Interface:

ObjectMessage createObjectMessage() const;

Create an object message.

Parameters:
None

Chapter 14. C++ classes 377

Returns:
The ObjectMessage object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createProducer – Create Producer
Interface:

MessageProducer createProducer(const Destination & destination) const;

Create a message producer to send messages to the specified destination.

Parameters:

destination (input)
The Destination object.

If you specify a null Destination object, the message producer is
created without a destination. In this case, the application must
specify a destination every time it uses the message producer to
send a message.

Returns:
The MessageProducer object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION

createQueue – Create Queue
Interface:

Destination createQueue(const String & queueName) const;

Create a Destination object to represent a queue in the messaging server.

This method does not create the queue in the messaging server. You must create
the queue before an application can call this method.

Parameters:

queueName (input)
A String object encapsulating the name of the queue, or
encapsulating a uniform resource identifier (URI) that identifies the
queue.

Returns:
The Destination object representing the queue.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

378 WebSphere MQ: Message Service Client for C/C++

createStreamMessage – Create Stream Message
Interface:

StreamMessage createStreamMessage() const;

Create a stream message.

Parameters:
None

Returns:
The StreamMessage object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createTemporaryQueue – Create Temporary Queue
Interface:

Destination createTemporaryQueue() const;

Create a temporary queue.

The scope of the temporary queue is the connection. Only the sessions created by
the connection can use the temporary queue.

The temporary queue remains until it is explicitly deleted, or the connection ends,
whichever is the sooner.

For more information about temporary queues, see “Temporary destinations” on
page 36.

Parameters:
None

Returns:
The Destination object representing the temporary queue.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createTemporaryTopic – Create Temporary Topic
Interface:

Destination createTemporaryTopic() const;

Create a temporary topic.

The scope of the temporary topic is the connection. Only the sessions created by
the connection can use the temporary topic.

The temporary topic remains until it is explicitly deleted, or the connection ends,
whichever is the sooner.

For more information about temporary topics, see “Temporary destinations” on
page 36.

Chapter 14. C++ classes 379

Parameters:
None

Returns:
The Destination object representing the temporary topic.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createTextMessage – Create Text Message
Interface:

TextMessage createTextMessage() const;

Create a text message with an empty body.

Parameters:
None

Returns:
The TextMessage object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createTextMessage – Create Text Message (initialized)
Interface:

TextMessage createTextMessage(const String & text) const;

Create a text message whose body is initialized with the specified text.

Parameters:

text (input)
A String object encapsulating the text to initialize the body of the
text message.

None

Returns:
The TextMessage object.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

createTopic – Create Topic
Interface:

Destination createTopic(const String & topicName) const;

Create a Destination object to represent a topic.

Parameters:

380 WebSphere MQ: Message Service Client for C/C++

topicName (input)
A String object encapsulating the name of the topic, or
encapsulating a uniform resource identifier (URI) that identifies the
topic.

Returns:
The Destination object representing the topic.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getAcknowledgeMode – Get Acknowledgement Mode
Interface:

xmsINT getAcknowledgeMode() const;

Get the acknowledgement mode for the session. The acknowledgement mode is
specified when the session is created.

A session that is transacted has no acknowledgement mode.

For more information about acknowledgement modes, see “Message
acknowledgement” on page 29.

Parameters:
None

Returns:
The acknowledgement mode. Provided the session is not transacted, the
acknowledgement mode is one of the following values:

XMSC_AUTO_ACKNOWLEDGE

XMSC_CLIENT_ACKNOWLEDGE

XMSC_DUPS_OK_ACKNOWLEDGE

If the session is transacted, the method returns XMSC_SESSION_TRANSACTED
instead.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

getHandle – Get Handle
Interface:

xmsHSess getHandle() const;

Get the handle that a C application would use to access the session.

Parameters:
None

Returns:
The handle for the session.

Thread context:
Any

Exceptions:

Chapter 14. C++ classes 381

v XMS_X_GENERAL_EXCEPTION

getTransacted – Determine Whether Transacted
Interface:

xmsBOOL getTransacted() const;

Determine whether the session is transacted.

Parameters:
None

Returns:

v xmsTRUE, if the session is transacted.
v xmsFALSE, if the session is not transacted.

For a real-time connection to a broker, the method always returns
xmsFALSE.

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the Session object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the Session object is a null object.
v xmsFALSE, if the Session object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

recover – Recover
Interface:

xmsVOID recover() const;

Recover the session. Message delivery is stopped and then restarted with the
oldest unacknowledged message.

The session must not be a transacted session.

For more information about recovering a session, see “Message acknowledgement”
on page 29.

382 WebSphere MQ: Message Service Client for C/C++

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

rollback – Rollback
Interface:

xmsVOID rollback() const;

Rollback all messages processed in the current transaction.

The session must be a transacted session.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

unsubscribe – Unsubscribe
Interface:

xmsVOID unsubscribe(const String & subscriptionName) const;

Delete a durable subscription. The messaging server deletes the record of the
durable subscription that it is maintaining and does not send any more messages
to the durable subscriber.

An application cannot delete a durable subscription in any of the following
circumstances:
v While there is an active message consumer for the durable subscription
v While a consumed message is part of a pending transaction
v While a consumed message has not been acknowledged

This method is not valid for a real-time connection to a broker.

Parameters:

subscriptionName (input)
A String object encapsulating the name that identifies the durable
subscription.

Returns:
Void

Exceptions:

Chapter 14. C++ classes 383

v XMS_X_GENERAL_EXCEPTION
v XMS_X_INVALID_DESTINATION_EXCEPTION
v XMS_X_ILLEGAL_STATE_EXCEPTION

Inherited methods
The following methods are inherited from the PropertyContext class:

getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

StreamMessage
A stream message is a message whose body comprises a stream of values, where
each value has an associated data type.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Message

|
+----xms::StreamMessage

The contents of the body are written and read sequentially.

When an application reads a value from the message stream, the value can be
converted by XMS into another data type. For more information about this form of
implicit conversion, see “Stream messages” on page 99.

Methods
Summary of methods:

Method Description
readBoolean Read a boolean value from the message stream.
readByte Read a signed 8-bit integer from the message stream.
readBytes Read an array of bytes from the message stream.
readChar Read a 2-byte character from the message stream.
readDouble Read an 8-byte double precision floating point number from the

message stream.
readFloat Read a 4-byte floating point number from the message stream.
readInt Read a signed 32-bit integer from the message stream.
readLong Read a signed 64-bit integer from the message stream.
readObject Read a value from the message stream, and return its data type.
readShort Read a signed 16-bit integer from the message stream.
readString Read a string from the message stream.
reset Put the body of the message into read-only mode and reposition the

cursor at the beginning of the message stream.
writeBoolean Write a boolean value to the message stream.
writeByte Write a byte to the message stream.
writeBytes Write an array of bytes to the message stream.
writeChar Write a character to the message stream as 2 bytes, high order byte

first.

384 WebSphere MQ: Message Service Client for C/C++

Method Description
writeDouble Convert a double precision floating point number to a long integer

and write the long integer to the message stream as 8 bytes, high
order byte first.

writeFloat Convert a floating point number to an integer and write the integer
to the message stream as 4 bytes, high order byte first.

writeInt Write an integer to the message stream as 4 bytes, high order byte
first.

writeLong Write a long integer to the message stream as 8 bytes, high order
byte first.

writeObject Write a value, with a specified data type, to the message stream.
writeShort Write a short integer to the message stream as 2 bytes, high order

byte first.
writeString Write a string to the message stream.

readBoolean – Read Boolean Value
Interface:

xmsBOOL readBoolean() const;

Read a boolean value from the message stream.

Parameters:
None

Returns:
The boolean value that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readByte – Read Byte
Interface:

xmsSBYTE readByte() const;

Read a signed 8-bit integer from the message stream.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readBytes – Read Bytes
Interface:

Chapter 14. C++ classes 385

xmsINT readBytes(xmsSBYTE *buffer,
const xmsINT bufferLength,
xmsINT *returnedLength) const;

Read an array of bytes from the message stream.

Parameters:

buffer (output)
The buffer to contain the array of bytes that is read.

If the number of bytes in the array is less than or equal to the
length of the buffer, the whole array is read into the buffer. If the
number of bytes in the array is greater than the length of the
buffer, the buffer is filled with part of the array, and an internal
cursor marks the position of the next byte to be read. A subsequent
call to readBytes() reads bytes from the array starting from the
current position of the cursor.

If you specify a null pointer on input, the call skips over the array
of bytes without reading it.

bufferLength (input)
The length of the buffer in bytes.

returnedLength (output)
The number of bytes that are read into the buffer. If the buffer is
partially filled, the value is less than the length of the buffer,
indicating that there are no more bytes in the array remaining to be
read. If there are no bytes remaining to be read from the array
before the call, the value is XMSC_END_OF_BYTEARRAY.

If you specify a null pointer on input, the method returns no value.

Returns:
See the description of the returnedLength parameter.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readChar – Read Character
Interface:

xmsCHAR16 readChar() const;

Read a 2-byte character from the message stream.

Parameters:
None

Returns:
The character that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

386 WebSphere MQ: Message Service Client for C/C++

readDouble – Read Double Precision Floating Point Number
Interface:

xmsDOUBLE readDouble() const;

Read an 8-byte double precision floating point number from the message stream.

Parameters:
None

Returns:
The double precision floating point number that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readFloat – Read Floating Point Number
Interface:

xmsFLOAT readFloat() const;

Read a 4-byte floating point number from the message stream.

Parameters:
None

Returns:
The floating point number that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readInt – Read Integer
Interface:

xmsINT readInt() const;

Read a signed 32-bit integer from the message stream.

Parameters:
None

Returns:
The integer that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

Chapter 14. C++ classes 387

readLong – Read Long Integer
Interface:

xmsLONG readLong() const;

Read a signed 64-bit integer from the message stream.

Parameters:
None

Returns:
The long integer that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readObject – Read Object
Interface:

xmsOBJECT_TYPE readObject(xmsSBYTE *buffer,
const xmsINT bufferLength,
xmsINT *actualLength) const;

Read a value from the message stream, and return its data type.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

buffer (output)
The buffer to contain the value, which is returned as an array of
bytes. If the value is a string and data conversion is required, this
is the value after conversion.

If you specify a null pointer on input, the call skips over the value
without reading it.

bufferLength (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the value is not returned, but its length is returned in the
actualLength parameter.

actualLength (output)
The length of the value in bytes. If the value is a string and data
conversion is required, this is the length after conversion. If you
specify a null pointer on input, the length is not returned.

Returns:
The data type of the value, which is one of the following object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

388 WebSphere MQ: Message Service Client for C/C++

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

Exceptions:
XMS_X_GENERAL_EXCEPTION

readShort – Read Short Integer
Interface:

xmsSHORT readShort() const;

Read a signed 16-bit integer from the message stream.

Parameters:
None

Returns:
The short integer that is read.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

readString – Read String
Interface:

String readString() const;

Read a string from the message stream. If required, XMS converts the characters in
the string into the local code page.

Parameters:
None

Returns:
A String object encapsulating the string that is read. If data conversion is
required, this is the string after conversion.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

reset – Reset
Interface:

xmsVOID reset() const;

Chapter 14. C++ classes 389

Put the body of the message into read-only mode and reposition the cursor at the
beginning of the message stream.

Parameters:
None

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

writeBoolean – Write Boolean Value
Interface:

xmsVOID writeBoolean(const xmsBOOL value);

Write a boolean value to the message stream.

Parameters:

value (input)
The boolean value to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeByte – Write Byte
Interface:

xmsVOID writeByte(const xmsSBYTE value);

Write a byte to the message stream.

Parameters:

value (input)
The byte to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeBytes – Write Bytes
Interface:

390 WebSphere MQ: Message Service Client for C/C++

xmsVOID writeBytes(const xmsSBYTE *value,
const xmsINT length);

Write an array of bytes to the message stream.

Parameters:

value (input)
The array of bytes to be written.

length (input)
The number of bytes in the array.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeChar – Write Character
Interface:

xmsVOID writeChar(const xmsCHAR16 value);

Write a character to the message stream as 2 bytes, high order byte first.

Parameters:

value (input)
The character to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeDouble – Write Double Precision Floating Point Number
Interface:

xmsVOID writeDouble(const xmsDOUBLE value);

Convert a double precision floating point number to a long integer and write the
long integer to the message stream as 8 bytes, high order byte first.

Parameters:

value (input)
The double precision floating point number to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Chapter 14. C++ classes 391

writeFloat – Write Floating Point Number
Interface:

xmsVOID writeFloat(const xmsFLOAT value);

Convert a floating point number to an integer and write the integer to the message
stream as 4 bytes, high order byte first.

Parameters:

value (input)
The floating point number to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeInt – Write Integer
Interface:

xmsVOID writeInt(const xmsINT value);

Write an integer to the message stream as 4 bytes, high order byte first.

Parameters:

value (input)
The integer to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeLong – Write Long Integer
Interface:

xmsVOID writeLong(const xmsLONG value);

Write a long integer to the message stream as 8 bytes, high order byte first.

Parameters:

value (input)
The long integer to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

392 WebSphere MQ: Message Service Client for C/C++

v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeObject – Write Object
Interface:

xmsVOID writeObject(const xmsOBJECT_TYPE objectType,
const xmsSBYTE *value,
const xmsINT length);

Write a value, with a specified data type, to the message stream.

Parameters:

objectType (input)
The data type of the value, which must be one of the following
object types:

XMS_OBJECT_TYPE_BOOL

XMS_OBJECT_TYPE_BYTE

XMS_OBJECT_TYPE_BYTEARRAY

XMS_OBJECT_TYPE_CHAR

XMS_OBJECT_TYPE_DOUBLE

XMS_OBJECT_TYPE_FLOAT

XMS_OBJECT_TYPE_INT

XMS_OBJECT_TYPE_LONG

XMS_OBJECT_TYPE_SHORT

XMS_OBJECT_TYPE_STRING

value (input)
An array of bytes containing the value to be written.

length (input)
The number of bytes in the array.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION

writeShort – Write Short Integer
Interface:

xmsVOID writeShort(const xmsSHORT value);

Write a short integer to the message stream as 2 bytes, high order byte first.

Parameters:

value (input)
The short integer to be written.

Returns:
Void

Exceptions:

Chapter 14. C++ classes 393

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

writeString – Write String
Interface:

xmsVOID writeString(const String & value);

Write a string to the message stream.

Parameters:

value (input)
A String object encapsulating the string to be written.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Inherited methods
The following methods are inherited from the Message class:

clearBody, clearProperties, getHandle,
getJMSCorrelationID,getJMSDeliveryMode, getJMSDestination,
getJMSExpiration, getJMSMessageID, getJMSPriority, getJMSRedelivered,
getJMSReplyTo, getJMSTimestamp, getJMSType, getProperties, isNull,
propertyExists, setJMSCorrelationID, setJMSDeliveryMode, setJMSDestination,
setJMSExpiration, setJMSMessageID, setJMSPriority, setJMSRedelivered,
setJMSReplyTo, setJMSTimestamp, setJMSType

The following methods are inherited from the PropertyContext class:
getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

String
A String object encapsulates a string. This class is a helper class.

Inheritance hierarchy:
None

Constructors
Summary of constructors:

Constructor Description
String Create a String object that encapsulates a null string.
String Create a String object from an array of bytes.
String Create a String object from an array of characters.

394 WebSphere MQ: Message Service Client for C/C++

String – Create String
Interface:

String();

Create a String object that encapsulates a null string.

Parameters:
None

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

String – Create String (from a byte array)
Interface:

String(const xmsSBYTE *value,
const xmsINT length);

Create a String object from an array of bytes.

Parameters:

value (input)
The array of bytes that is copied to form the string encapsulated by
the String object.

length (input)
The number of bytes in the array.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

String – Create String (from a character array)
Interface:

String(const xmsCHAR *value);

Create a String object from an array of characters.

Parameters:

value (input)
The null terminated array of characters that is copied to form the
string encapsulated by the String object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

Chapter 14. C++ classes 395

Methods
Summary of methods:

Method Description
~String Delete the String object.
c_str Get a pointer to the string encapsulated by the String object.
concatenate Concatenate the string encapsulated by the String object with the

string encapsulated by a second String object.
equalTo Determine whether the string encapsulated by the String object is

equal to the string encapsulated by a second String object.
get Get the string encapsulated by the String object.
isNull Determine whether the String object is a null object.

~String – Delete String
Interface:

virtual ~String();

Delete the String object.

Parameters:
None

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

c_str – Get Pointer to String
Interface:

xmsCHAR * c_str() const;

Get a pointer to the string encapsulated by the String object.

Parameters:
None

Returns:
A pointer to the string encapsulated by the String object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

concatenate – Concatenate Strings
Interface:

String & concatenate(const String & string) const;

Concatenate the string encapsulated by the String object with the string
encapsulated by a second String object.

396 WebSphere MQ: Message Service Client for C/C++

Parameters:

string (input)
The second String object.

Returns:
The original String object encapsulating the concatenated strings.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

equalTo – Compare Strings
Interface:

xmsBOOL equalTo(const String & string) const;

Determine whether the string encapsulated by the String object is equal to the
string encapsulated by a second String object.

Parameters:

string (input)
The second String object.

Returns:

v xmsTRUE, if the two strings are equal.
v xmsFALSE, if the two strings are not equal.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

get – Get String
Interface:

xmsVOID get(xmsSBYTE *value,
const xmsINT length,
xmsINT *actualLength) const;

Get the string encapsulated by the String object.

For more information about how to use this method, see “C++ methods that return
a byte array” on page 67.

Parameters:

value (output)
The buffer to contain the string.

length (input)
The length of the buffer in bytes. If you specify XMSC_QUERY_SIZE
instead, the string is not returned, but its length is returned in the
actualLength parameter.

Chapter 14. C++ classes 397

actualLength (output)
The length of the string in bytes. If you specify a null pointer on
input, the length is not returned.

Returns:
Void

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

isNull – Check Whether Null
Interface:

xmsBOOL isNull() const;

Determine whether the String object is a null object.

Parameters:
None

Returns:

v xmsTRUE, if the String object is a null object.
v xmsFALSE, if the String object is not a null object.

Thread context:
Any

Exceptions:

v XMS_X_GENERAL_EXCEPTION

TextMessage
A text message is a message whose body comprises a string.

Inheritance hierarchy:
xms::PropertyContext

|
+----xms::Message

|
+----xms::TextMessage

Methods
Summary of methods:

Method Description
getText Get the string that forms the body of the text message.
setText Set the string that forms the body of the text message.

getText – get Text
Interface:

String getText() const;

398 WebSphere MQ: Message Service Client for C/C++

Get the string that forms the body of the text message. If required, XMS converts
the characters in the string into the local code page.

Parameters:
None

Returns:
A String object encapsulating the string that is read. If data conversion is
required, this is the string after conversion.

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_READABLE_EXCEPTION
v XMS_X_MESSAGE_EOF_EXCEPTION

setText – Set Text
Interface:

xmsVOID setText(const String & value);

Set the string that forms the body of the text message.

Parameters:

value (input)
A String object encapsulating the string to be set.

Returns:
Void

Exceptions:

v XMS_X_GENERAL_EXCEPTION
v XMS_X_MESSAGE_NOT_WRITABLE_EXCEPTION

Inherited methods
The following methods are inherited from the Message class:

clearBody, clearProperties, getHandle,
getJMSCorrelationID,getJMSDeliveryMode, getJMSDestination,
getJMSExpiration, getJMSMessageID, getJMSPriority, getJMSRedelivered,
getJMSReplyTo, getJMSTimestamp, getJMSType, getProperties, isNull,
propertyExists, setJMSCorrelationID, setJMSDeliveryMode, setJMSDestination,
setJMSExpiration, setJMSMessageID, setJMSPriority, setJMSRedelivered,
setJMSReplyTo, setJMSTimestamp, setJMSType

The following methods are inherited from the PropertyContext class:
getBooleanProperty, getByteProperty, getBytesProperty, getCharProperty,
getDoubleProperty, getFloatProperty, getIntProperty, getLongProperty,
getObjectProperty, getProperty, getShortProperty, getStringProperty,
setBooleanProperty, setByteProperty, setBytesProperty, setCharProperty,
setDoubleProperty, setFloatProperty, setIntProperty, setLongProperty,
setObjectProperty, setProperty, setShortProperty, setStringProperty

Chapter 14. C++ classes 399

TransactionInProgressException
XMS throws this exception if an application requests an operation that is not valid
because a transaction is in progress.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::TransactionInProgressException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

TransactionRolledBackException
XMS throws this exception if an application calls Session.commit() to commit the
current transaction, but the transaction is subsequently rolled back.

Inheritance hierarchy:
std::exception

|
+----xms::Exception

|
+----xms::TransactionRolledBackException

Inherited methods
The following methods are inherited from the Exception class:

dump, getErrorCode, getErrorData, getErrorString, getHandle, getJMSException,
getLinkedException, isNull

400 WebSphere MQ: Message Service Client for C/C++

Chapter 15. Properties of XMS objects

This chapter documents the object properties defined by XMS.

The chapter contains the following sections:
v “Properties of Connection”
v “Properties of ConnectionFactory” on page 402
v “Properties of ConnectionMetaData” on page 406
v “Properties of Destination” on page 407
v “Properties of InitialContext” on page 408
v “Properties of Message” on page 409
v “Properties of MessageConsumer” on page 414
v “Properties of MessageProducer” on page 414
v “Properties of Session” on page 414

Each section lists the properties of an object of the specified type and provides a
short description of each property.

This section also contains the following subsections:
v “Property definitions” on page 414

which provides a definition of each property.

If an application defines its own properties of the objects discussed in this section,
it does not cause an error, but it might cause unpredictable results.

Properties of Connection
An overview of the properties of the Connection object, with links to more detailed
reference information.

Table 36. Properties of Connection

Name of property Description

XMSC_CLIENT_CCSID The identifier (CCSID) of the coded character set, or code
page, used by a connection, session, message producer, or
message consumer.

XMSC_WPM_CONNECTION_PROTOCOL The communications protocol used for the connection to the
messaging engine. This property is read-only.

XMSC_WPM_HOST_NAME The host name or IP address of the system that contains the
messaging engine to which the application is connected. This
property is read-only.

XMSC_WPM_ME_NAME The name of the messaging engine to which the application is
connected. This property is read-only.

XMSC_WPM_PORT The number of the port listened on by the messaging engine
to which the application is connected. This property is
read-only.

A Connection object also has read-only properties that are derived from the
properties of the connection factory that was used to create the connection. These

© Copyright IBM Corp. 2005, 2013 401

properties are derived not only from the connection factory properties that were
set at the time the connection was created, but also from the default values of the
properties that were not set. The properties include only those that are relevant for
the type of messaging server that the application is connected to. The names of the
properties are the same as the names of the connection factory properties.

Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more
detailed reference information.

Table 37. Properties of ConnectionFactory

Name of property Description

XMSC_ASYNC_EXCEPTIONS This property determines whether XMS informs an
ExceptionListener only when a connection is broken, or when
any exception occurs asynchronously to a XMS API call. This
applies to all Connections created from this
ConnectionFactory that have an ExceptionListener registered.

XMSC_CLIENT_CCSID The identifier (CCSID) of the coded character set, or code
page, used by a connection, session, message producer, or
message consumer.

XMSC_CLIENT_ID The client identifier for a connection.

XMSC_CONNECTION_TYPE The type of messaging server to which an application
connects.

XMSC_PASSWORD A password that can be used to authenticate the application
when it attempts to connect to a messaging server.

XMSC_RTT_CONNECTION_PROTOCOL The communications protocol used for a real-time connection
to a broker.

XMSC_RTT_HOST_NAME The host name or IP address of the system on which a broker
resides.

XMSC_RTT_LOCAL_ADDRESS The host name or IP address of the local network interface to
be used for a real-time connection to a broker.

XMSC_RTT_PORT The number of the port on which a broker listens for
incoming requests.

XMSC_USERID A user identifier that can be used to authenticate the
application when it attempts to connect to a messaging server.

XMSC_WMQ_BROKER_CONTROLQ The name of the control queue used by a broker.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_BROKER_PUBQ The name of the queue monitored by a broker where
applications send messages that they publish.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

402 WebSphere MQ: Message Service Client for C/C++

Table 37. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WMQ_BROKER_QMGR The name of the queue manager to which a broker is
connected.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_BROKER_SUBQ The name of the subscriber queue for a nondurable message
consumer.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_BROKER_VERSION The type of broker used by the application for a connection or
for the destination.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_CHANNEL The name of the channel to be used for a connection.

XMSC_WMQ_CONNECTION_MODE The mode by which an application connects to a queue
manager.

XMSC_WMQ_FAIL_IF_QUIESCE Whether calls to certain methods fail if the queue manager to
which the application is connected is in a quiescing state.

XMSC_WMQ_HOST_NAME The host name or IP address of the system on which a queue
manager resides.

XMSC_WMQ_LOCAL_ADDRESS For a connection to a queue manager, this property specifies
the local network interface to be used, or the local port or
range of local ports to be used, or both.

XMSC_WMQ_MESSAGE_SELECTION Determines whether message selection is done by the XMS
client or by the broker.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_MSG_BATCH_SIZE The maximum number of messages to be retrieved from a
queue in one batch when using asynchronous message
delivery.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

Chapter 15. Properties of XMS objects 403

Table 37. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WMQ_POLLING_INTERVAL If each message listener within a session has no suitable
message on its queue, this is the maximum interval, in
milliseconds, that elapses before each message listener tries
again to get a message from its queue.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_PORT The number of the port on which a queue manager listens for
incoming requests.

XMSC_WMQ_PROVIDER_VERSION The version, release, modification level and fix pack of the
queue manager to which the application intends to connect.

XMSC_WMQ_PUB_ACK_INTERVAL The number of messages published by a publisher before the
XMS client requests an acknowledgement from the broker.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 and above queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_QMGR_CCSID The identifier (CCSID) of the coded character set, or code
page, in which fields of character data defined in the Message
Queue Interface (MQI) are exchanged between the XMS client
and the WebSphere MQ client.

XMSC_WMQ_QUEUE_MANAGER The name of the queue manager to connect to.

XMSC_WMQ_RECEIVE_EXIT Identifies a channel receive exit, or a sequence of channel
receive exits, to be run in succession.

XMSC_WMQ_RECEIVE_EXIT_INIT The user data that is passed to channel receive exits when
they are called.

XMSC_WMQ_SECURITY_EXIT Identifies a channel security exit.

XMSC_WMQ_SECURITY_EXIT_INIT The user data that is passed to a channel security exit when it
is called.

XMSC_WMQ_SEND_EXIT Identifies a channel send exit, or a sequence of channel send
exits, to be run in succession.

XMSC_WMQ_SEND_EXIT_INIT The user data that is passed to channel send exits when they
are called.

XMSC_WMQ_SEND_CHECK_COUNT The number of send calls to allow between checking for
asynchronous put errors, within a single non-transacted XMS
session.

XMSC_WMQ_SHARE_CONV_ALLOWED Whether a client connection can share its socket with other
top-level XMS connections from the same process to the same
queue manager, if the channel definitions match. This
property is provided to allow complete isolation of
Connections in separate sockets if required for application
development, maintenance or operational reasons.

XMSC_WMQ_SSL_CERT_STORES The locations of the servers that hold the certificate revocation
lists (CRLs) to be used on an SSL connection to a queue
manager.

XMSC_WMQ_SSL_CIPHER_SPEC The name of the cipher spec to be used on a secure
connection to a queue manager.

404 WebSphere MQ: Message Service Client for C/C++

Table 37. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WMQ_SSL_CIPHER_SUITE The name of the CipherSuite to be used on an SSL or TLS
connection to a queue manager. The protocol used in
negotiating the secure connection depends on the specified
CipherSuite.

XMSC_WMQ_SSL_CRYPTO_HW Configuration details for the cryptographic hardware
connected to the client system.

XMSC_WMQ_SSL_FIPS_REQUIRED The value of this property determines whether an application
can or cannot use non-FIPS compliant cipher suites. If this
property is set to true, only FIPS algorithms are used for the
client-server connection.

XMSC_WMQ_SSL_KEY_REPOSITORY The location of the key database file in which keys and
certificates are stored.

XMSC_WMQ_SSL_KEY_RESETCOUNT The KeyResetCount represents the total number of
unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated.

XMSC_WMQ_SSL_PEER_NAME The peer name to be used on an SSL connection to a queue
manager.

XMSC_WMQ_SYNCPOINT_ALL_GETS Whether all messages must be retrieved from queues within
syncpoint control.

XMSC_WMQ_TEMP_Q_PREFIX The prefix used to form the name of the WebSphere MQ
dynamic queue that is created when the application creates an
XMS temporary queue.

XMSC_WMQ_TEMP_TOPIC_PREFIX When creating temporary topics, XMS will generate a topic
string of the form “TEMP/TEMPTOPICPREFIX/unique_id”,
or if this property is left with the default value, just
“TEMP/unique_id”. Specifying a non-empty value allows
specific model queues to be defined for creating the managed
queues for subscribers to temporary topics created under this
connection.

XMSC_WMQ_TEMPORARY_MODEL The name of the WebSphere MQ model queue from which a
dynamic queue is created when the application creates an
XMS temporary queue.

XMSC_WMQ_WILDCARD_FORMAT This property determines which version of wildcard syntax is
to be used.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service integration
bus that the application connects to or, for a destination, the
name of the service integration bus in which the destination
exists.

XMSC_WPM_CONNECTION_PROXIMITY The connection proximity setting for the connection.

XMSC_WPM_DUR_SUB_HOME The name of the messaging engine where all durable
subscriptions for a connection or a destination are managed.

XMSC_WPM_LOCAL_ADDRESS For a connection to a service integration bus, this property
specifies the local network interface to be used, or the local
port or range of local ports to be used, or both.

XMSC_WPM_NON_PERSISTENT_MAP The reliability level of nonpersistent messages that are sent
using the connection.

XMSC_WPM_PERSISTENT_MAP The reliability level of persistent messages that are sent using
the connection.

XMSC_WPM_PROVIDER_ENDPOINTS A sequence of one or more endpoint addresses of bootstrap
servers.

Chapter 15. Properties of XMS objects 405

Table 37. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WPM_SSL_CIPHER_SUITE The name of the CipherSuite to be used on an SSL or TLS
connection to a WebSphere service integration bus messaging
engine. The protocol used in negotiating the secure
connection depends on the specified CipherSuite.

XMSC_WPM_SSL_KEY_REPOSITORY A path to the file that is the keyring file containing the public
or private keys to be used in the secure connection.

XMSC_WPM_SSL_KEYRING_LABEL The certificate to be used when authenticating with the server.

XMSC_WPM_SSL_KEYRING_PW The password for the keyring file.

XMSC_WPM_SSL_KEYRING_STASH_FILE The name of a binary file containing the password of the key
repository file.

XMSC_WPM_SSL_FIPS_REQUIRED The value of this property determines whether an application
can or cannot use non-FIPS compliant cipher suites. If this
property is set to true, only FIPS algorithms are used for the
client-server connection.

XMSC_WPM_TARGET_GROUP The name of a target group of messaging engines.

XMSC_WPM_TARGET_SIGNIFICANCE The significance of the target group of messaging engines.

XMSC_WPM_TARGET_TRANSPORT_CHAIN The name of the inbound transport chain that the application
must use to connect to a messaging engine.

XMSC_WPM_TARGET_TYPE The type of the target group of messaging engines.

XMSC_WPM_TEMP_Q_PREFIX The prefix used to form the name of the temporary queue
that is created in the service integration bus when the
application creates an XMS temporary queue.

XMSC_WPM_TEMP_TOPIC_PREFIX The prefix used to form the name of a temporary topic that is
created by the application.

Properties of ConnectionMetaData
An overview of the properties of the ConnectionMetaData object, with links to
more detailed reference information.

Table 38. Properties of ConnectionMetaData

Name of property Description

XMSC_JMS_MAJOR_VERSION The major version number of the JMS specification upon
which XMS is based. This property is read-only.

XMSC_JMS_MINOR_VERSION The minor version number of the JMS specification upon
which XMS is based. This property is read-only.

XMSC_JMS_VERSION The version identifier of the JMS specification upon which
XMS is based. This property is read-only.

XMSC_MAJOR_VERSION The version number of the XMS client. This property is
read-only.

XMSC_MINOR_VERSION The release number of the XMS client. This property is
read-only.

XMSC_PROVIDER_NAME The provider of the XMS client. This property is read-only.

XMSC_VERSION The version identifier of the XMS client. This property is
read-only.

406 WebSphere MQ: Message Service Client for C/C++

Properties of Destination
An overview of the properties of the Destination object, with links to more detailed
reference information.

Table 39. Properties of Destination

Name of property Description

XMSC_DELIVERY_MODE The delivery mode of messages sent to the destination.

XMSC_PRIORITY The priority of messages sent to the destination.

XMSC_TIME_TO_LIVE The time to live for messages sent to the destination.

XMSC_WMQ_BROKER_VERSION The type of broker used by the application for a connection or
for the destination.

XMSC_WMQ_CCSID The identifier (CCSID) of the coded character set, or code
page, that the strings of character data in the body of a
message will be in when the XMS client forwards the
message to the destination.

XMSC_WMQ_DUR_SUBQ The name of the subscriber queue for a durable subscriber
that is receiving messages from the destination.
Note: This property has no effect for an application
connected to a WebSphere MQ V7.0 (and above) queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version number
less than 7.

XMSC_WMQ_ENCODING How numerical data in the body of a message will be
represented when the XMS client forwards the message to the
destination.

XMSC_WMQ_FAIL_IF_QUIESCE Whether calls to certain methods fail if the queue manager to
which the application is connected is in a quiescing state.

XMSC_WMQ_MESSAGE_BODY This property determines whether a XMS application
processes the MQRFH2 of a WebSphere MQ message as part
of the message payload (that is, as part of the message body).

XMSC_WMQ_MQMD_MESSAGE_CONTEXT Determines what level of message context is to be set by the
XMS application. The application must be running with
appropriate context authority for this property to take effect.

XMSC_WMQ_MQMD_READ_ENABLED This property determines whether a XMS application can
extract the values of MQMD fields or not.

XMSC_WMQ_MQMD_WRITE_ENABLED This property determines whether a XMS application can set
the values of MQMD fields or not.

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY This property determines, for messages being delivered to an
asynchronous message listener, what happens to messages in
the internal read ahead buffer when the message consumer is
closed.

XMSC_WMQ_READ_AHEAD_ALLOWED This property determines whether message consumers and
queue browsers are allowed to use read ahead to get
non-persistent, non-transactional messages from this
destination into an internal buffer before receiving them.

XMSC_WMQ_PUT_ASYNC_ALLOWED This property determines whether message producers are
allowed to use asynchronous puts to send messages to this
destination.

XMSC_WMQ_WILDCAD_FORMAT This property determines which version of wildcard syntax is
to be used.

Chapter 15. Properties of XMS objects 407

Table 39. Properties of Destination (continued)

Name of property Description

XMSC_WMQ_TARGET_CLIENT Whether messages sent to the destination contain an
MQRFH2 header.

XMSC_WMQ_TEMP_TOPIC_PREFIX When creating temporary topics, XMS will generate a topic
string of the form “TEMP/TEMPTOPICPREFIX/unique_id”,
or if this property is left with the default value, just
“TEMP/unique_id”. Specifying a non-empty value allows
specific model queues to be defined for creating the managed
queues for subscribers to temporary topics created under this
connection.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service integration
bus that the application connects to or, for a destination, the
name of the service integration bus in which the destination
exists.

XMSC_WPM_TOPIC_SPACE The name of the topic space that contains the topic.

Properties of InitialContext
An overview of the properties of the InitialContext object, with links to more
detailed reference information.

Table 40. Properties of InitialContext

Name of property Description

XMSC_IC_URL For LDAP and FileSystem contexts, the address of the
repository containing administered objects.

Table 41. Properties of InitialContext

Name of property Description

XMSC_IC_PROVIDER_URL Used to locate the JNDI naming directory so that the COS
naming service does not need to be on the same machine as
the web service.

XMSC_IC_SECURITY_AUTHENTICATION Based on the Java Context interface
SECURITY_AUTHENTICATION. This property is only
applicable to the COS naming context.

XMSC_IC_SECURITY_CREDENTIALS Based on the Java Context interface
SECURITY_CREDENTIALS. This property is only applicable
to the COS naming context.

XMSC_IC_SECURITY_PRINCIPAL Based on the Java Context interface SECURITY_PRINCIPAL.
This property is only applicable to the COS naming context.

XMSC_IC_SECURITY_PROTOCOL Based on the Java Context interface SECURITY_PROTOCOL
This property is only applicable to the COS naming context.

XMSC_IC_URL For LDAP and FileSystem contexts, the address of the
repository containing administered objects. For COS naming
contexts, the address of the web service that looks up the
objects in the directory.

408 WebSphere MQ: Message Service Client for C/C++

Properties of Message
An overview of the properties of the Message object, with links to more detailed
reference information.

Table 42. Properties of Message

Name of property Description

“JMS_IBM_ArmCorrelator” on page 417 The Open Group Application Response Measurement
Correlator property, set on a message. This IBM-defined
property associates a unique Id with the application data in
the message. Use JMS_TOG_ARM_Correlator in preference to
this property.

JMS_IBM_CHARACTER_SET The identifier (CCSID) of the coded character set, or code
page, that the strings of character data in the body of the
message will be in when the XMS client forwards the
message to its intended destination. In XMS this property has
a numeric value and maps to CCSID. However, this property
is based on a JMS property so has a string type value and
maps to the Java character set that represents this numeric
CCSID.

JMS_IBM_ENCODING How numerical data in the body of the message will be
represented when the XMS client forwards the message to its
intended destination.

JMS_IBM_EXCEPTIONMESSAGE Text that describes why the message was sent to the exception
destination. This property is read-only.

JMS_IBM_EXCEPTIONPROBLEMDESTINATION The name of the destination that the message was at before
the message was sent to the exception destination.

JMS_IBM_EXCEPTIONREASON A reason code indicating the reason why the message was
sent to the exception destination.

JMS_IBM_EXCEPTIONTIMESTAMP The time when the message was sent to the exception
destination.

JMS_IBM_FEEDBACK A code that indicates the nature of a report message.

JMS_IBM_FORMAT The nature of the application data in the message.

JMS_IBM_LAST_MSG_IN_GROUP Indicate whether the message is the last message in a message
group.

JMS_IBM_MSGTYPE The type of the message.

JMS_IBM_PUTAPPLTYPE The type of application that sent the message.

JMS_IBM_PUTDATE The date when the message was sent.

JMS_IBM_PUTTIME The time when the message was sent.

JMS_IBM_REPORT_COA Request confirm on arrival report messages, specifying how
much application data from the original message must be
included in a report message.

JMS_IBM_REPORT_COD Request confirm on delivery report messages, specifying how
much application data from the original message must be
included in a report message.

JMS_IBM_REPORT_DISCARD_MSG Request that the message is discarded if it cannot be delivered
to its intended destination.

JMS_IBM_REPORT_EXCEPTION Request exception report messages, specifying how much
application data from the original message must be included
in a report message.

Chapter 15. Properties of XMS objects 409

Table 42. Properties of Message (continued)

Name of property Description

JMS_IBM_REPORT_EXPIRATION Request expiration report messages, specifying how much
application data from the original message must be included
in a report message.

JMS_IBM_REPORT_NAN Request negative action notification report messages.

JMS_IBM_REPORT_PAN Request positive action notification report messages.

JMS_IBM_REPORT_PASS_CORREL_ID Request that the correlation identifier of any report or reply
message is the same as that of the original message.

JMS_IBM_REPORT_PASS_MSG_ID Request that the message identifier of any report or reply
message is the same as that of the original message.

JMS_IBM_RETAIN Setting this property indicates to the queue manager to treat a
message as Retained Publication.

JMS_IBM_SYSTEM_MESSAGEID An identifier that identifies the message uniquely within the
service integration bus. This property is read-only.

“JMS_TOG_ARM_Correlator” on page 427 The Open Group Application Response Measurement
Correlator property, set on a message. Associates a unique Id
with the application data in the message.

JMSX_APPID The name of the application that sent the message.

JMSX_DELIVERY_COUNT The number of attempts to deliver the message.

JMSX_GROUPID The identifier of the message group to which the message
belongs.

JMSX_GROUPSEQ The sequence number of the message within a message
group.

JMSX_USERID The user identifier associated with the application that sent
the message.

JMS_IBM_MQMD* properties

IBM Message Service Client for C/C++ enables client applications to read/write
MQMD fields using APIs. It also allows access to MQ message data. By default
access to MQMD is disabled and must be enabled explicitly by the application
using Destination properties XMSC_WMQ_MQMD_WRITE_ENABLED and
XMSC_WMQ_MQMD_READ_ENABLED. These two properties are independent of
each other.

All MQMD fields except StrucId and Version are exposed as additional Message
object properties and are prefixed JMS_IBM_MQMD.

JMS_IBM_MQMD* properties take higher precedence over other properties like
JMS_IBM* described in the above table.

Sending messages

All MQMD fields except StrucId and Version are represented. These properties
refer only to the MQMD fields; where a property occurs both in the MQMD and in
the MQRFH2 header, the version in the MQRFH2 is not set or extracted. Any of
these properties can be set, except JMS_IBM_MQMD_BackoutCount. Any value set
for JMS_IBM_MQMD_BackoutCount is ignored.

410 WebSphere MQ: Message Service Client for C/C++

If a property has a maximum length and you supply a value that is too long, the
value is truncated.

For certain properties, you must also set the WMQ_MQMD_MESSAGE_CONTEXT
property on the Destination object. The application must be running with
appropriate context authority for this property to take effect. If you do not set
WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value, the property value
is ignored. If you set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate
value but you do not have sufficient context authority for the queue manager, an
exception is issued. Properties requiring specific values of
WMQ_MQMD_MESSAGE_CONTEXT are as follows.

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to
WMQ_MDCTX_SET_IDENTITY_CONTEXT or
WMQ_MDCTX_SET_ALL_CONTEXT:
v JMS_IBM_MQMD_UserIdentifier
v JMS_IBM_MQMD_AccountingToken
v JMS_IBM_MQMD_ApplIdentityData

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to
WMQ_MDCTX_SET_ALL_CONTEXT:
v JMS_IBM_MQMD_PutApplType
v JMS_IBM_MQMD_PutApplName
v JMS_IBM_MQMD_PutDate
v JMS_IBM_MQMD_PutTime
v JMS_IBM_MQMD_ApplOriginData

Receiving messages

All these properties are available on a received message if
WMQ_MQMD_READ_ENABLED property is set to true, irrespective of the actual
properties the producing application has set. An application cannot modify the
properties of a received message unless all properties are cleared first, according to
the JMS specification. The received message can be forwarded without modifying
the properties.

Note: If your application receives a message from a destination with
WMQ_MQMD_READ_ENABLED property set to true, and forwards it to a
destination with WMQ_MQMD_WRITE_ENABLED set to true, this results in all
the MQMD field values of the received message being copied into the forwarded
message. Table of properties

Table 43. Properties of the Message object representing the MQMD fields

Property Description Type

JMS_IBM_MQMD_REPORT Options for report messages xmsINT

JMS_IBM_MQMD_MSGTYPE Message type xmsINT

JMS_IBM_MQMD_EXPIRY message lifetime xmsINT

JMS_IBM_MQMD_FEEDBACK Feedback or reason code xmsINT

JMS_IBM_MQMD_ENCODING Numeric encoding of message data xmsINT

JMS_IBM_MQMD_CODEDCHARSETID Character set identifier of message
data

xmsINT

Chapter 15. Properties of XMS objects 411

Table 43. Properties of the Message object representing the MQMD fields (continued)

Property Description Type

JMS_IBM_MQMD_FORMAT Format name of message data String

JMS_IBM_MQMD_PRIORITY
Note: If you assign a value to
JMS_IBM_MQMD_PRIORITY that is not
within the range 0-9, this violates the JMS
specification.

Message priority xmsINT

JMS_IBM_MQMD_PERSISTENCE Message persistence xmsINT

JMS_IBM_MQMD_MSGID
Note: The JMS specification states that the
message ID must be set by the JMS provider
and that it must either be unique or null. If
you assign a value to
JMS_IBM_MQMD_MSGID, this value is
copied to the JMSMessageID. Thus it is not
set by the JMS provider and might not be
unique: this violates the JMS specification.

Message identifier Byte Array
Note: The use of byte array
properties on a message
violates the JMS
specification.

JMS_IBM_MQMD_CORRELID
Note: If you assign a value to
JMS_IBM_MQMD_CORRELID that starts
with the string 'ID:', this violates the JMS
specification.

Correlation identifier Byte Array
Note: The use of byte array
properties on a message
violates the JMS
specification.

JMS_IBM_MQMD_BACKOUTCOUNT Backout counter xmsINT

JMS_IBM_MQMD_REPLYTOQ Name of reply queue String

JMS_IBM_MQMD_REPLYTOQMGR Name of reply queue manager String

JMS_IBM_MQMD_USERIDENTIFIER User identifier String

JMS_IBM_MQMD_ACCOUNTINGTOKEN Accounting token Byte Array
Note: The use of byte array
properties on a message
violates the JMS
specification.

JMS_IBM_MQMD_APPLIDENTITYDATA Application data relating to identity String

JMS_IBM_MQMD_PUTAPPLTYPE Type of application that put the
message

xmsINT

JMS_IBM_MQMD_PUTAPPLNAME Name of the application that put the
message

String

JMS_IBM_MQMD_PUTDATE Date when message was put String

JMS_IBM_MQMD_PUTTIME Time when message was put String

JMS_IBM_MQMD_APPLORIGINDATA Application data relating to origin String

JMS_IBM_MQMD_GROUPID Group identifier Byte Array
Note: The use of byte array
properties on a message
violates the JMS
specification.

JMS_IBM_MQMD_MSGSEQNUMBER Sequence number of local message
within group

xmsINT

JMS_IBM_MQMD_OFFSET Offset of data in physical message
from start of logical message

xmsINT

JMS_IBM_MQMD_MSGFLAGS Message flags xmsINT

412 WebSphere MQ: Message Service Client for C/C++

Table 43. Properties of the Message object representing the MQMD fields (continued)

Property Description Type

JMS_IBM_MQMD_ORIGINALLENGTH Length of original message xmsINT

For further details on MQMD please refer WebSphere MQ v7.0 Application
Programming Reference.

Examples

This example results in a message being put to a queue or topic with
MQMD.UserIdentifier set to “JoeBloggs”.

// Create a ConnectionFactory, connection, session, producer, message
// ...

// Create a destination
// ...

// Enable MQMD write
dest.setBooleanProperty(XMSC_WMQ_MQMD_WRITE_ENABLED, XMSC_WMQ_MQMD_WRITE_ENABLED_YES);

// Optionally, set a message context if applicable for this MD field
dest.setIntProperty(XMSC_WMQ_MQMD_MESSAGE_CONTEXT,

XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT);

// On the message, set property to provide custom UserId
msg.setStringProperty(JMS_IBM_MQMD_USERIDENTIFIER, "JoeBloggs");

// Send the message
// ...

It is necessary to set XMSC_WMQ_MQMD_MESSAGE_CONTEXT before setting
JMS_IBM_MQMD_USERIDENTIFIER. For more information about the use of
XMSC_WMQ_MQMD_MESSAGE_CONTEXT, see Message object properties.

Similarly, you can extract the contents of the MQMD fields by setting
XMSC_WMQ_MQMD_READ_ENABLED to true before receiving a message and
then using the get methods of the message, such as getStringProperty. Any
properties received are read-only.

This example results in the value field holding the value of the
MQMD.ApplIdentityData field of a message got from a queue or a topic.

// Create a ConnectionFactory, connection, session, consumer
// ...

// Create a destination
// ...

// Enable MQMD read
dest.setBooleanProperty(XMSC_WMQ_MQMD_READ_ENABLED, XMSC_WMQ_MQMD_READ_ENABLED_YES);

// Receive a message
// ...

// Get desired MQMD field value using a property
String value = rcvMsg.getStringProperty(JMS_IBM_MQMD_APPLIDENTITYDATA);

Chapter 15. Properties of XMS objects 413

Properties of MessageConsumer
An overview of the properties of the MessageConsumer object, with links to more
detailed reference information.

Table 44. Properties of MessageConsumer

Name of property Description

XMSC_CLIENT_CCSID The identifier (CCSID) of the coded character set, or code
page, used by a connection, session, message producer,
or message consumer.

Properties of MessageProducer
An overview of the properties of the MessageProducer object, with links to more
detailed reference information.

Table 45. Properties of MessageProducer

Name of property Description

XMSC_CLIENT_CCSID The identifier (CCSID) of the coded character set, or code
page, used by a connection, session, message producer, or
message consumer.

Properties of Session
An overview of the properties of the Session object, with links to more detailed
reference information.

Table 46. Properties of Session

Name of property Description

XMSC_CLIENT_CCSID The identifier (CCSID) of the coded character set, or code
page, used by a connection, session, message producer, or
message consumer.

Property definitions
This topic provides a definition of each object property.

Each property definition includes the following information:
v The data type of the property
v The types of object that have the property
v For a property of Destination, the name that can be used in a uniform resource

identifier (URI)
v A more detailed description of the property
v The valid values of the property
v The default value of the property

Properties whose names commence with one of the following prefixes are relevant
only for the specified type of connection:

414 WebSphere MQ: Message Service Client for C/C++

XMSC_RTT
The properties are relevant only for a real-time connection to a broker. The
names of the properties are defined as named constants in the header file
xmsc_rtt.h.

XMSC_WMQ
The properties are relevant only when an application connects to a
WebSphere MQ queue manager. The names of the properties are defined as
named constants in the header file xmsc_wmq.h.

XMSC_WPM
The properties are relevant only when an application connects to a
WebSphere service integration bus. The names of the properties are defined
as named constants in the header file xmsc_wpm.h.

Unless stated otherwise in their definitions, the remaining properties are relevant
for all types of connection. The names of the properties are defined as named
constants in the header file xmsc.h. Properties whose names commence with the
prefix JMSX are JMS defined properties of a message, and properties whose names
commence with the prefix JMS_IBM are IBM defined properties of a message. For
more information about the properties of messages, see “Properties of an XMS
message” on page 92.

Unless stated otherwise in its definition, each property is relevant in both the
point-to-point and publish/subscribe domains.

An application can get and set the value of any property, unless the property is
designated as read-only.

The following properties are defined:
“JMS_IBM_CHARACTER_SET” on page 417
“JMS_IBM_ENCODING” on page 418
“JMS_IBM_EXCEPTIONMESSAGE” on page 419
“JMS_IBM_EXCEPTIONPROBLEMDESTINATION” on page 419
“JMS_IBM_EXCEPTIONREASON” on page 419
“JMS_IBM_EXCEPTIONTIMESTAMP” on page 419
“JMS_IBM_FEEDBACK” on page 420
“JMS_IBM_FORMAT” on page 420
“JMS_IBM_LAST_MSG_IN_GROUP” on page 420
“JMS_IBM_MSGTYPE” on page 421
“JMS_IBM_PUTAPPLTYPE” on page 421
“JMS_IBM_PUTDATE” on page 421
“JMS_IBM_PUTTIME” on page 422
“JMS_IBM_REPORT_COA” on page 422
“JMS_IBM_REPORT_COD” on page 423
“JMS_IBM_REPORT_DISCARD_MSG” on page 423
“JMS_IBM_REPORT_EXCEPTION” on page 423
“JMS_IBM_REPORT_EXPIRATION” on page 424
“JMS_IBM_REPORT_NAN” on page 425
“JMS_IBM_REPORT_PAN” on page 425
“JMS_IBM_REPORT_PASS_CORREL_ID” on page 425
“JMS_IBM_REPORT_PASS_MSG_ID” on page 426
“JMS_IBM_SYSTEM_MESSAGEID” on page 427
“JMSX_APPID” on page 427
“JMSX_DELIVERY_COUNT” on page 428
“JMSX_GROUPID” on page 428
“JMSX_GROUPSEQ” on page 428

Chapter 15. Properties of XMS objects 415

“JMSX_USERID” on page 429
“XMSC_CLIENT_CCSID” on page 429
“XMSC_CLIENT_ID” on page 430
“XMSC_CONNECTION_TYPE” on page 430
“XMSC_DELIVERY_MODE” on page 431
“XMSC_IC_PROVIDER_URL” on page 432
“XMSC_IC_SECURITY_AUTHENTICATION” on page 432
“XMSC_IC_SECURITY_CREDENTIALS” on page 432
“XMSC_IC_SECURITY_PRINCIPAL” on page 432
“XMSC_IC_SECURITY_PROTOCOL” on page 433
“XMSC_IC_URL” on page 433
“XMSC_JMS_MAJOR_VERSION” on page 433
“XMSC_JMS_MINOR_VERSION” on page 433
“XMSC_JMS_VERSION” on page 433
“XMSC_MAJOR_VERSION” on page 434
“XMSC_MINOR_VERSION” on page 434
“XMSC_PASSWORD” on page 434
“XMSC_PRIORITY” on page 434
“XMSC_PROVIDER_NAME” on page 435
“XMSC_RTT_CONNECTION_PROTOCOL” on page 435
“XMSC_RTT_HOST_NAME” on page 435
“XMSC_RTT_LOCAL_ADDRESS” on page 436
“XMSC_RTT_PORT” on page 436
“XMSC_TIME_TO_LIVE” on page 437
“XMSC_USERID” on page 437
“XMSC_VERSION” on page 437
“XMSC_WMQ_BROKER_CONTROLQ” on page 438
“XMSC_WMQ_BROKER_PUBQ” on page 438
“XMSC_WMQ_BROKER_QMGR” on page 438
“XMSC_WMQ_BROKER_SUBQ” on page 438
“XMSC_WMQ_BROKER_VERSION” on page 439
“XMSC_WMQ_CCSID” on page 439
“XMSC_WMQ_CHANNEL” on page 440
“XMSC_WMQ_CONNECTION_MODE” on page 441
“XMSC_WMQ_DUR_SUBQ” on page 442
“XMSC_WMQ_ENCODING” on page 443
“XMSC_WMQ_FAIL_IF_QUIESCE” on page 444
“XMSC_WMQ_HOST_NAME” on page 450
“XMSC_WMQ_LOCAL_ADDRESS” on page 450
“XMSC_WMQ_MESSAGE_SELECTION” on page 451
“XMSC_WMQ_MSG_BATCH_SIZE” on page 451
“XMSC_WMQ_POLLING_INTERVAL” on page 452
“XMSC_WMQ_PORT” on page 452
“XMSC_WMQ_PUB_ACK_INTERVAL” on page 454
“XMSC_WMQ_QMGR_CCSID” on page 454
“XMSC_WMQ_QUEUE_MANAGER” on page 454
“XMSC_WMQ_RECEIVE_EXIT” on page 455
“XMSC_WMQ_RECEIVE_EXIT_INIT” on page 455
“XMSC_WMQ_SECURITY_EXIT” on page 456
“XMSC_WMQ_SECURITY_EXIT_INIT” on page 456
“XMSC_WMQ_SEND_EXIT” on page 456
“XMSC_WMQ_SEND_EXIT_INIT” on page 457
“XMSC_WMQ_SYNCPOINT_ALL_GETS” on page 463
“XMSC_WMQ_TARGET_CLIENT” on page 464
“XMSC_WMQ_TEMP_Q_PREFIX” on page 464
“XMSC_WMQ_TEMPORARY_MODEL” on page 465

416 WebSphere MQ: Message Service Client for C/C++

“XMSC_WPM_BUS_NAME” on page 466
“XMSC_WPM_CONNECTION_PROTOCOL” on page 466
“XMSC_WPM_CONNECTION_PROXIMITY” on page 467
“XMSC_WPM_DUR_SUB_HOME” on page 467
“XMSC_WPM_HOST_NAME” on page 467
“XMSC_WPM_LOCAL_ADDRESS” on page 468
“XMSC_WPM_ME_NAME” on page 469
“XMSC_WPM_NON_PERSISTENT_MAP” on page 469
“XMSC_WPM_PERSISTENT_MAP” on page 469
“XMSC_WPM_PORT” on page 470
“XMSC_WPM_PROVIDER_ENDPOINTS” on page 470
“XMSC_WPM_TARGET_GROUP” on page 474
“XMSC_WPM_TARGET_SIGNIFICANCE” on page 474
“XMSC_WPM_TARGET_TRANSPORT_CHAIN” on page 475
“XMSC_WPM_TARGET_TYPE” on page 475
“XMSC_WPM_TEMP_Q_PREFIX” on page 476
“XMSC_WPM_TEMP_TOPIC_PREFIX” on page 476
“XMSC_WPM_TOPIC_SPACE” on page 476

JMS_IBM_ArmCorrelator
Data type:

String

Property of:
Message

The Open Group Application Response Measurement Correlator property, set on a
message. This IBM-defined property associates a unique Id with the application
data in the message. Use JMS_TOG_ARM_Correlator in preference to this property.

JMS_IBM_ArmCorrelator is a synonym of JMS_TOG_ARM_Correlator. This
property is available for compatibility with some existing JMS programs.

This property can be set by using the xmsSetStringProperty method:

xmsSetStringProperty(xmsHMsg, JMS_IBM_ArmCorrelator, “ARM_Correlator”,
sizeof(“ARM_Correlator”), xmsHError);

By default, the property is not set.

The value for this property can be obtained using the GetStringProperty method.

This property is not valid for Real Time Transport.

JMS_IBM_CHARACTER_SET
Data type:

xmsINT

Property of:
Message

The identifier (CCSID) of the coded character set, or code page, that the strings of
character data in the body of the message will be in when the XMS client forwards
the message to its intended destination. In XMS this property has a numeric value
and maps to CCSID. However, this property is based on a JMS property so has a

Chapter 15. Properties of XMS objects 417

string type value and maps to the Java character set that represents this numeric
CCSID. This property overrides any CCSID specified for the destination by the
XMSC_WMQ_CCSID property.

By default, the property is not set.

This property is not relevant when an application connects to a service integration
bus.

JMS_IBM_ENCODING
Data type:

xmsINT

Property of:
Message

How numerical data in the body of the message will be represented when the XMS
client forwards the message to its intended destination. This property overrides
any encoding specified for the destination by the XMSC_WMQ_ENCODING
property. The property specifies the representation of binary integers, packed
decimal integers, and floating point numbers.

The valid values of the property are the same as the values that can be specified in
the Encoding field of a message descriptor. For more information about the
Encoding field, see the WebSphere MQ Application Programming Reference.

An application can use the following named constants to set the property:

Named constant Meaning
MQENC_INTEGER_NORMAL Normal integer encoding
MQENC_INTEGER_REVERSED Reversed integer encoding
MQENC_DECIMAL_NORMAL Normal packed decimal encoding
MQENC_DECIMAL_REVERSED Reversed packed decimal encoding
MQENC_FLOAT_IEEE_NORMAL Normal IEEE floating point encoding
MQENC_FLOAT_IEEE_REVERSED Reversed IEEE floating point encoding
MQENC_FLOAT_S390 zSeries (System/390®) architecture floating

point encoding
MQENC_NATIVE Native machine encoding

To form a value for the property, the application can add together three of these
constants as follows:
v A constant whose name commences with MQENC_INTEGER, to specify the

representation of binary integers
v A constant whose name commences with MQENC_DECIMAL, to specify the

representation of packed decimal integers
v A constant whose name commences with MQENC_FLOAT, to specify the

representation of floating point numbers

Alternatively, the application can set the property to MQENC_NATIVE, whose
value is environment dependent.

By default, the property is not set.

418 WebSphere MQ: Message Service Client for C/C++

This property is not relevant when an application connects to a service integration
bus.

JMS_IBM_EXCEPTIONMESSAGE
Data type:

String

Property of:
Message

Text that describes why the message was sent to the exception destination. This
property is read-only.

This property is relevant only when an application connects to a service integration
bus and receives a message from an exception destination.

JMS_IBM_EXCEPTIONPROBLEMDESTINATION
Data type:

String

Property of:
Message

The name of the destination that the message was at before the message was sent
to the exception destination.

This property is relevant only when an application connects to a service integration
bus and receives a message from an exception destination.

JMS_IBM_EXCEPTIONREASON
Data type:

xmsINT

Property of:
Message

A reason code indicating the reason why the message was sent to the exception
destination.

For a list of all possible reason codes, see the definition of the
com.ibm.websphere.sib.SIRCConstants class in the documentation generated by the
Javadoc tool, as supplied with WebSphere Application Server.

This property is relevant only when an application connects to a service integration
bus and receives a message from an exception destination.

JMS_IBM_EXCEPTIONTIMESTAMP
Data type:

xmsLONG

Property of:
Message

The time when the message was sent to the exception destination.

Chapter 15. Properties of XMS objects 419

The time is expressed in milliseconds since 00:00:00 GMT on the 1 January 1970.

This property is relevant only when an application connects to a service integration
bus and receives a message from an exception destination.

JMS_IBM_FEEDBACK
Data type:

xmsINT

Property of:
Message

A code that indicates the nature of a report message.

The valid values of the property are the feedback codes and reason codes that can
be specified in the Feedback field of a message descriptor. For more information
about the Feedback field, see the WebSphere MQ Application Programming Reference.

By default, the property is not set.

JMS_IBM_FORMAT
Data type:

String

Property of:
Message

The nature of the application data in the message.

The valid values of the property are the same as the values that can be specified in
the Format field of a message descriptor. For more information about the Format
field, see the WebSphere MQ Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration
bus.

JMS_IBM_LAST_MSG_IN_GROUP
Data type:

xmsBOOL

Property of:
Message

Indicate whether the message is the last message in a message group.

Set the property to xmsTRUE if the message is the last message in a message
group. Otherwise, set the property to xmsFALSE, or do not set the property. By
default, the property is not set.

The value xmsTRUE corresponds to the status flag
MQMF_LAST_MSG_IN_GROUP, which can be specified in the MsgFlags field of a
message descriptor. For more information about this flag, see the WebSphere MQ
Application Programming Reference.

420 WebSphere MQ: Message Service Client for C/C++

This property is ignored in the publish/subscribe domain and is not relevant when
an application connects to a service integration bus.

JMS_IBM_MSGTYPE
Data type:

xmsINT

Property of:
Message

The type of the message.

The valid values of the property are as follows:

Valid value Meaning
MQMT_DATAGRAM The message is one that does not require a reply.
MQMT_REQUEST The message is one that requires a reply.
MQMT_REPLY The message is a reply message.
MQMT_REPORT The message is a report message.

These values correspond to the message types that can be specified in the MsgType
field of a message descriptor. For more information about the MsgType field, see the
WebSphere MQ Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration
bus.

JMS_IBM_PUTAPPLTYPE
Data type:

xmsINT

Property of:
Message

The type of application that sent the message.

The valid values of the property are the application types that can be specified in
the PutApplType field of a message descriptor. For more information about the
PutApplType field, see the WebSphere MQ Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration
bus.

JMS_IBM_PUTDATE
Data type:

String

Property of:
Message

The date when the message was sent.

Chapter 15. Properties of XMS objects 421

The valid values of the property are the same as the values that can be specified in
the PutDate field of a message descriptor. For more information about the PutDate
field, see the WebSphere MQ Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration
bus.

JMS_IBM_PUTTIME
Data type:

String

Property of:
Message

The time when the message was sent.

The valid values of the property are the same as the values that can be specified in
the PutTime field of a message descriptor. For more information about the PutTime
field, see the WebSphere MQ Application Programming Reference.

By default, the property is not set.

This property is not relevant when an application connects to a service integration
bus.

JMS_IBM_REPORT_COA
Data type:

xmsINT

Property of:
Message

Request confirm on arrival report messages, specifying how much application data
from the original message must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning
MQRO_COA Request confirm on arrival report messages,

with no application data from the original
message included in a report message.

MQRO_COA_WITH_DATA Request confirm on arrival report messages,
with the first 100 bytes of application data
from the original message included in a report
message.

MQRO_COA_WITH_FULL_DATA Request confirm on arrival report messages,
with all the application data from the original
message included in a report message.

These values correspond to report options that can be specified in the Report field
of a message descriptor. For more information about these options, see the
WebSphere MQ Application Programming Reference.

422 WebSphere MQ: Message Service Client for C/C++

By default, the property is not set.

JMS_IBM_REPORT_COD
Data type:

xmsINT

Property of:
Message

Request confirm on delivery report messages, specifying how much application
data from the original message must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning
MQRO_COD Request confirm on delivery report messages,

with no application data from the original
message included in a report message.

MQRO_COD_WITH_DATA Request confirm on delivery report messages,
with the first 100 bytes of application data
from the original message included in a report
message.

MQRO_COD_WITH_FULL_DATA Request confirm on delivery report messages,
with all the application data from the original
message included in a report message.

These values correspond to report options that can be specified in the Report field
of a message descriptor. For more information about these options, see the
WebSphere MQ Application Programming Reference.

By default, the property is not set.

JMS_IBM_REPORT_DISCARD_MSG
Data type:

xmsINT

Property of:
Message

Request that the message is discarded if it cannot be delivered to its intended
destination.

Set the property to MQRO_DISCARD_MSG to request that the message is
discarded if it cannot be delivered to its intended destination. If you require the
message to be put on a dead letter queue instead, or sent to an exception
destination, do not set the property. By default, the property is not set.

The value MQRO_DISCARD_MSG corresponds to a report option that can be
specified in the Report field of a message descriptor. For more information about
this option, see the WebSphere MQ Application Programming Reference.

JMS_IBM_REPORT_EXCEPTION
Data type:

xmsINT

Chapter 15. Properties of XMS objects 423

Property of:
Message

Request exception report messages, specifying how much application data from the
original message must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning
MQRO_EXCEPTION Request exception report messages,

with no application data from the
original message included in a report
message.

MQRO_EXCEPTION_WITH_DATA Request exception report messages,
with the first 100 bytes of application
data from the original message
included in a report message.

MQRO_EXCEPTION_WITH_FULL_DATA Request exception report messages,
with all the application data from the
original message included in a report
message.

These values correspond to report options that can be specified in the Report field
of a message descriptor. For more information about these options, see the
WebSphere MQ Application Programming Reference.

By default, the property is not set.

JMS_IBM_REPORT_EXPIRATION
Data type:

xmsINT

Property of:
Message

Request expiration report messages, specifying how much application data from
the original message must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning
MQRO_EXPIRATION Request expiration report messages,

with no application data from the
original message included in a report
message.

MQRO_EXPIRATION_WITH_DATA Request expiration report messages,
with the first 100 bytes of application
data from the original message
included in a report message.

MQRO_EXPIRATION_WITH_FULL_DATA Request expiration report messages,
with all the application data from the
original message included in a report
message.

These values correspond to report options that can be specified in the Report field

424 WebSphere MQ: Message Service Client for C/C++

of a message descriptor. For more information about these options, see the
WebSphere MQ Application Programming Reference.

By default, the property is not set.

JMS_IBM_REPORT_NAN
Data type:

xmsINT

Property of:
Message

Request negative action notification report messages.

Set the property to MQRO_NAN to request negative action notification report
messages. If you do not require negative action notification report messages, do
not set the property. By default, the property is not set.

The value MQRO_NAN corresponds to a report option that can be specified in the
Report field of a message descriptor. For more information about this option, see
the WebSphere MQ Application Programming Reference.

JMS_IBM_REPORT_PAN
Data type:

xmsINT

Property of:
Message

Request positive action notification report messages.

Set the property to MQRO_PAN to request positive action notification report
messages. If you do not require positive action notification report messages, do not
set the property. By default, the property is not set.

The value MQRO_PAN corresponds to a report option that can be specified in the
Report field of a message descriptor. For more information about this option, see
the WebSphere MQ Application Programming Reference.

JMS_IBM_REPORT_PASS_CORREL_ID
Data type:

xmsINT

Property of:
Message

Request that the correlation identifier of any report or reply message is the same as
that of the original message.

The valid values of the property are as follows:

Valid value Meaning
MQRO_PASS_CORREL_ID Request that the correlation identifier

of any report or reply message is the
same as that of the original message.

Chapter 15. Properties of XMS objects 425

Valid value Meaning
MQRO_COPY_MSG_ID_TO_CORREL_ID Request that the correlation identifier

of any report or reply message is the
same as the message identifier of the
original message.

These values correspond to report options that can be specified in the Report field
of a message descriptor. For more information about these options, see the
WebSphere MQ Application Programming Reference.

The default value of the property is MQRO_COPY_MSG_ID_TO_CORREL_ID.

JMS_IBM_REPORT_PASS_MSG_ID
Data type:

xmsINT

Property of:
Message

Request that the message identifier of any report or reply message is the same as
that of the original message.

The valid values of the property are as follows:

Valid value Meaning
MQRO_PASS_MSG_ID Request that the message identifier of any report or

reply message is the same as that of the original
message.

MQRO_NEW_MSG_ID Request that a new message identifier is generated for
each report or reply message.

These values correspond to report options that can be specified in the Report field
of a message descriptor. For more information about these options, see the
WebSphere MQ Application Programming Reference.

The default value of the property is MQRO_NEW_MSG_ID.

JMS_IBM_RETAIN
Data type:

xmsINT

Property of:
Message

Setting this property indicates to the queue manager to treat a message as Retained
Publication. When a subscriber receives messages from topics, it may receive
additional messages immediately after subscribing, beyond those that would have
been received in previous releases. These are the optional retained publication(s)
for the topic(s) subscribed. For each topic matching the subscription, if there is a
retained publication it will be made available for delivery to the subscribing
message consumer.

RETAIN_PUBLICATION is the only valid value for this property. By default this
property is not set.

426 WebSphere MQ: Message Service Client for C/C++

Note: This property is relevant only in publish/subscribe domain only

JMS_IBM_SYSTEM_MESSAGEID
Data type:

String

Property of:
Message

An identifier that identifies the message uniquely within the service integration
bus. This property is read-only.

This property is relevant only when an application connects to a service integration
bus.

JMS_TOG_ARM_Correlator
Data type:

String

Property of:
Message

The Open Group Application Response Measurement Correlator property, set on a
message. Associates a unique Id with the application data in the message.

This is a JMS property and is a synonym of JMS_IBM_ArmCorrelator.

Use JMS_TOG_ARM_Correlator in preference to JMS_IBM_ArmCorrelator.
JMS_IBM_ArmCorrelator is available for compatibility with some existing JMS
programs.

This property can be set by using the xmsSetStringProperty method:

xmsSetStringProperty(xmsHMsg, JMS_TOG_ARM_Correlator, “ARM_Correlator”,
sizeof(“ARM_Correlator”), xmsHError);

By default, the property is not set.

The value for this property can be obtained using the GetStringProperty method.

This property is not valid for Real Time Transport.

JMSX_APPID
Data type:

String

Property of:
Message

The name of the application that sent the message.

This property is the JMS defined property with the JMS name JMSXAppID. For
more information about the property, see the Java Message Service Specification,
Version 1.1.

Chapter 15. Properties of XMS objects 427

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_DELIVERY_COUNT
Data type:

xmsINT

Property of:
Message

The number of attempts to deliver the message.

This property is the JMS defined property with the JMS name JMSXDeliveryCount.
For more information about the property, see the Java Message Service Specification,
Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_GROUPID
Data type:

String

Property of:
Message

The identifier of the message group to which the message belongs.

This property is the JMS defined property with the JMS name JMSXGroupID. For
more information about the property, see the Java Message Service Specification,
Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_GROUPSEQ
Data type:

xmsINT

Property of:
Message

The sequence number of the message within a message group.

This property is the JMS defined property with the JMS name JMSXGroupSeq. For
more information about the property, see the Java Message Service Specification,
Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

428 WebSphere MQ: Message Service Client for C/C++

JMSX_USERID
Data type:

String

Property of:
Message

The user identifier associated with the application that sent the message.

This property is the JMS defined property with the JMS name JMSXUserID. For
more information about the property, see the Java Message Service Specification,
Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

XMSC_ASYNC_EXCEPTIONS
Data type:

xmsINT

Property of:
ConnectionFactory

This property determines whether XMS informs an ExceptionListener only when a
connection is broken, or when any exception occurs asynchronously to a XMS API
call. This applies to all Connections created from this ConnectionFactory that have
an ExceptionListener registered.

Valid values for this property are:

XMSC_ASYNC_EXCEPTIONS_ALL
Any exception detected asynchronously, outside the scope of a
synchronous API call, and all connection broken exceptions are sent to the
ExceptionListener.

XMSC_ASYNC_EXCEPTIONS_CONNECTIONBROKEN
Only exceptions indicating a broken connection are sent to the
ExceptionListener. Any other exceptions occurring during asynchronous
processing are not reported to the ExceptionListener, and hence the
application is not informed of these exceptions.

By default this property is set to XMSC_ASYNC_EXCEPTIONS_ALL.

XMSC_CLIENT_CCSID
Data type:

xmsINT

Property of:
Connection, ConnectionFactory, Session, MessageProducer, and
MessageConsumer

The identifier (CCSID) of the coded character set, or code page, used by a
connection, session, message producer, or message consumer. This property is used
in C and C++ only. For further information, see “Coded character set identifiers”
on page 46.

Chapter 15. Properties of XMS objects 429

The following named constants are defined for certain Unicode CCSIDs and can be
used when setting the property:

Named constant CCSID
XMSC_CCSID_UTF8 The UTF-8 representation of Unicode data
XMSC_CCSID_UTF16 The UTF-16 representation of Unicode data
XMSC_CCSID_UTF32 The UTF-32 representation of Unicode data

Instead of a CCSID, the property can have one of the following special values:

XMSC_CCSID_PROCESS
The object is using the code page identified by the process CCSID.

XMSC_CCSID_HOST
The object is using the code page identified by the CCSID that is derived
from the environment in which the application is running.

XMSC_CCSID_NO_CONVERSION
The character data in messages received by the object is not converted.

For more information about the property, including how it is set, see “Coded
character set identifiers” on page 46.

XMSC_CLIENT_ID
Data type:

String

Property of:
ConnectionFactory

The client identifier for a connection.

A client identifier is used only to support durable subscriptions in the
publish/subscribe domain, and is ignored in the point-to-point domain. For further
information about setting client identifiers, see “ConnectionFactories and
Connection objects” on page 26.

This property is not relevant for a real-time connection to a broker.

XMSC_CONNECTION_TYPE
Data type:

xmsINT

Property of:
ConnectionFactory

The type of messaging server to which an application connects.

The valid values of the property are as follows:

Valid value Meaning
XMSC_CT_RTT A real-time connection to a broker.
XMSC_CT_WMQ A connection to a WebSphere MQ queue

manager.

430 WebSphere MQ: Message Service Client for C/C++

Valid value Meaning
XMSC_CT_WPM A connection to a WebSphere service integration

bus.

By default, the property is not set.

XMSC_DELIVERY_MODE
Data type:

xmsINT

Property of:
Destination

Name used in a URI:

persistence (for a WebSphere MQ destination)
deliveryMode (for a WebSphere default messaging provider destination)

The delivery mode of messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning
XMSC_DELIVERY_NOT_PERSISTENT A message sent to the destination is

nonpersistent. The default delivery
mode of the message producer, or any
delivery mode specified on the Send
call, is ignored. If the destination is a
WebSphere MQ queue, the value of the
queue attribute DefPersistence is also
ignored.

XMSC_DELIVERY_PERSISTENT A message sent to the destination is
persistent. The default delivery mode of
the message producer, or any delivery
mode specified on the Send call, is
ignored. If the destination is a
WebSphere MQ queue, the value of the
queue attribute DefPersistence is also
ignored.

XMSC_DELIVERY_AS_APP A message sent to the destination has
the delivery mode specified on the Send
call. If the Send call specifies no delivery
mode, the default delivery mode of the
message producer is used instead. If the
destination is a WebSphere MQ queue,
the value of the queue attribute
DefPersistence is ignored.

Chapter 15. Properties of XMS objects 431

Valid value Meaning
XMSC_DELIVERY_AS_DEST If the destination is a WebSphere MQ

queue, a message put on the queue has
the delivery mode specified by the value
of the queue attribute DefPersistence.
The default delivery mode of the
message producer, or any delivery mode
specified on the Send call, is ignored.

If the destination is not a WebSphere
MQ queue, the meaning is the same as
that of XMSC_DELIVERY_AS_APP.

The default value is XMSC_DELIVERY_AS_APP.

XMSC_IC_PROVIDER_URL
Data type:

String

Property of:
InitialContext

Used to locate the JNDI naming directory so that the COS naming service does not
need to be on the same machine as the web service.

XMSC_IC_SECURITY_AUTHENTICATION
Data type:

String

Property of:
InitialContext

Based on the Java Context interface SECURITY_AUTHENTICATION. This
property is only applicable to the COS naming context.

XMSC_IC_SECURITY_CREDENTIALS
Data type:

String

Property of:
InitialContext

Based on the Java Context interface SECURITY_CREDENTIALS. This property is
only applicable to the COS naming context.

XMSC_IC_SECURITY_PRINCIPAL
Data type:

String

Property of:
InitialContext

Based on the Java Context interface SECURITY_PRINCIPAL. This property is only
applicable to the COS naming context.

432 WebSphere MQ: Message Service Client for C/C++

XMSC_IC_SECURITY_PROTOCOL
Data type:

String

Property of:
InitialContext

Based on the Java Context interface SECURITY_PROTOCOL This property is only
applicable to the COS naming context.

XMSC_IC_URL
Data type:

String

Property of:
InitialContext

For LDAP and FileSystem contexts, the address of the repository containing
administered objects.

For COS naming contexts, the address of the web service that looks up the objects
in the directory.

XMSC_JMS_MAJOR_VERSION
Data type:

xmsINT

Property of:
ConnectionMetaData

The major version number of the JMS specification upon which XMS is based. This
property is read-only.

XMSC_JMS_MINOR_VERSION
Data type:

xmsINT

Property of:
ConnectionMetaData

The minor version number of the JMS specification upon which XMS is based. This
property is read-only.

XMSC_JMS_VERSION
Data type:

String

Property of:
ConnectionMetaData

The version identifier of the JMS specification upon which XMS is based. This
property is read-only.

Chapter 15. Properties of XMS objects 433

XMSC_MAJOR_VERSION
Data type:

xmsINT

Property of:
ConnectionMetaData

The version number of the XMS client. This property is read-only.

XMSC_MINOR_VERSION
Data type:

xmsINT

Property of:
ConnectionMetaData

The release number of the XMS client. This property is read-only.

XMSC_PASSWORD
Data type:

Byte array

Property of:
ConnectionFactory

A password that can be used to authenticate the application when it attempts to
connect to a messaging server. The password is used in conjunction with the
XMSC_USERID property.

By default, the property is not set.

If you are connecting to WebSphere MQ, and you set the XMSC_USERID property
of the connection factory, it must match the userid of the logged on user. If you do
not set these properties, the queue manager will use the userid of the logged on
user by default. If you require further connection-level authentication of individual
users you can write a client authentication exit which is configured in WebSphere
MQ. You can learn more about creating a client authentication exit in the
Authentication topic in the WebSphere MQ Clients manual.

XMSC_PRIORITY
Data type:

xmsINT

Property of:
Destination

Name used in a URI:
priority

The priority of messages sent to the destination.

The valid values of the property are as follows:

434 WebSphere MQ: Message Service Client for C/C++

Valid value Meaning
An integer in the range 0, the
lowest priority, to 9, the
highest priority

A message sent to the destination has the specified
priority. The default priority of the message
producer, or any priority specified on the Send call,
is ignored. If the destination is a WebSphere MQ
queue, the value of the queue attribute DefPriority
is also ignored.

XMSC_PRIORITY_AS_APP A message sent to the destination has the priority
specified on the Send call. If the Send call specifies
no priority, the default priority of the message
producer is used instead. If the destination is a
WebSphere MQ queue, the value of the queue
attribute DefPriority is ignored.

XMSC_PRIORITY_AS_DEST If the destination is a WebSphere MQ queue, a
message put on the queue has the priority specified
by the value of the queue attribute DefPriority.
The default priority of the message producer, or
any priority specified on the Send call, is ignored.

If the destination is not a WebSphere MQ queue,
the meaning is the same as that of
XMSC_PRIORITY_AS_APP.

The default value is XMSC_PRIORITY_AS_APP.

WebSphere MQ Real-Time Transport and WebSphere MQ Multicast Transport take
no action based upon the priority of a message.

XMSC_PROVIDER_NAME
Data type:

String

Property of:
ConnectionMetaData

The provider of the XMS client. This property is read-only.

XMSC_RTT_CONNECTION_PROTOCOL
Data type:

xmsINT

Property of:
ConnectionFactory

The communications protocol used for a real-time connection to a broker.

The value of the property must be XMSC_RTT_CP_TCP, which means a real-time
connection to a broker over TCP/IP. The default value is XMSC_RTT_CP_TCP.

XMSC_RTT_HOST_NAME
Data type:

String

Chapter 15. Properties of XMS objects 435

Property of:
ConnectionFactory

The host name or IP address of the system on which a broker resides.

This property is used in conjunction with the XMSC_RTT_PORT property to
identify the broker.

By default, the property is not set.
Related reference:
“Network stack selection mechanism” on page 49
This section describes the network stack selection mechanism when both IPv4 and
IPv6 network stacks are enabled on a machine.

XMSC_RTT_LOCAL_ADDRESS
Data type:

String

Property of:
ConnectionFactory

The host name or IP address of the local network interface to be used for a
real-time connection to a broker.

This property is useful only if the system on which the application is running has
two or more network interfaces and you need to be able to specify which interface
must be used for a real-time connection. If the system has only one network
interface, only that interface can be used. If the system has two or more network
interfaces and the property is not set, the interface is selected at random.

By default, the property is not set.
Related reference:
“Network stack selection mechanism” on page 49
This section describes the network stack selection mechanism when both IPv4 and
IPv6 network stacks are enabled on a machine.

XMSC_RTT_PORT
Data type:

xmsINT

Property of:
ConnectionFactory

The number of the port on which a broker listens for incoming requests. On the
broker, you must configure a Real-timeInput or Real-timeOptimizedFlow message
processing node to listen on this port.

This property is used in conjunction with the XMSC_RTT_HOST_NAME property
to identify the broker.

The default value of the property is XMSC_RTT_DEFAULT_PORT, or 1506.

436 WebSphere MQ: Message Service Client for C/C++

XMSC_TIME_TO_LIVE
Data type:

xmsINT

Property of:
Destination

Name used in a URI:

expiry (for a WebSphere MQ destination)
timeToLive (for a WebSphere default messaging provider destination)

The time to live for messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning
0 A message sent to the destination never expires.
A positive integer A message sent to the destination has the

specified time to live in milliseconds. The default
time to live of the message producer, or any time
to live specified on the Send call, is ignored.

XMSC_TIME_TO_LIVE_AS_APP A message sent to the destination has the time to
live specified on the Send call. If the Send call
specifies no time to live, the default time to live
of the message producer is used instead.

The default value is XMSC_TIME_TO_LIVE_AS_APP.

XMSC_USERID
Data type:

String

Property of:
ConnectionFactory

A user identifier that can be used to authenticate the application when it attempts
to connect to a messaging server. The user identifier is used in conjunction with
the XMSC_PASSWORD property.

By default, the property is not set.

If you are connecting to WebSphere MQ, and you set the XMSC_USERID property
of the connection factory, it must match the userid of the logged on user. If you do
not set these properties, the queue manager will use the userid of the logged on
user by default. If you require further connection-level authentication of individual
users you can write a client authentication exit which is configured in WebSphere
MQ. You can learn more about creating a client authentication exit in the
Authentication topic in the WebSphere MQ Clients manual.

XMSC_VERSION
Data type:

String

Property of:
ConnectionMetaData

Chapter 15. Properties of XMS objects 437

The version identifier of the XMS client. This property is read-only.

XMSC_WMQ_BROKER_CONTROLQ
Data type:

String

Property of:
ConnectionFactory

The name of the control queue used by a broker.

The default value of the property is SYSTEM.BROKER.CONTROL.QUEUE.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_PUBQ
Data type:

String

Property of:
ConnectionFactory

The name of the queue monitored by a broker where applications send messages
that they publish.

The default value of the property is SYSTEM.BROKER.DEFAULT.STREAM.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_QMGR
Data type:

String

Property of:
ConnectionFactory

The name of the queue manager to which a broker is connected.

By default, the property is not set.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_SUBQ
Data type:

String

Property of:
ConnectionFactory

The name of the subscriber queue for a nondurable message consumer.

The name of the subscriber queue must start with the following characters:
SYSTEM.JMS.ND.

438 WebSphere MQ: Message Service Client for C/C++

If you want all nondurable message consumers to share the same subscriber queue,
specify the complete name of the shared queue. A queue with the specified name
must exist before an application can create a nondurable message consumer.

If you want each nondurable message consumer to retrieve messages from its own
exclusive subscriber queue, specify a queue name that ends with an asterisk (*).
Subsequently, when an application creates a nondurable message consumer, the
XMS client creates a dynamic queue for exclusive use by the message consumer.
The XMS client uses the value of the property to set the contents of the
DynamicQName field in the object descriptor that is used to create the dynamic
queue.

The default value of the property is SYSTEM.JMS.ND.SUBSCRIBER.QUEUE, which
means that XMS uses the shared queue approach by default.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_VERSION
Data type:

xmsINT

Property of:
ConnectionFactory and Destination

Name used in a URI:
brokerVersion

The type of broker used by the application for a connection or for the destination.
Only a destination that is a topic can have this property.

The valid values of the property are as follows:

Valid value Meaning
XMSC_WMQ_BROKER_V1 The application is using a WebSphere MQ Publish/Subscribe

broker.

The application can also use this value if you have migrated
from WebSphere MQ Publish/Subscribe to WebSphere Event
Broker or WebSphere Message Broker but have not changed
the application.

XMSC_WMQ_BROKER_V2 The application is using a broker of WebSphere Event Broker
or WebSphere Message Broker.

XMSC_WMQ_BROKER_UNSPECIFIED After the broker has been migrated from Version 6 to Version
7, set this property so that RFH2 headers are no longer used.
After migration this property is no longer relevant.

The default value for a connectionfactory is
XMSC_WMQ_BROKER_UNSPECIFIED but, by default, the property is not set for
a destination. Setting the property for a destination overrides any value specified
by the connection factory property.

XMSC_WMQ_CCSID
Data type:

xmsINT

Chapter 15. Properties of XMS objects 439

Property of:
Destination

Name used in a URI:
CCSID

The identifier (CCSID) of the coded character set, or code page, that the strings of
character data in the body of a message will be in when the XMS client forwards
the message to the destination. If set for an individual message, the
JMS_IBM_CHARACTER_SET property overrides the CCSID specified for the
destination by this property.

The default value of the property is 1208.

This property is relevant only to messages sent to the destination, not to messages
received from the destination.

XMSC_WMQ_CHANNEL
Data type:

String

Property of:
ConnectionFactory

The name of the channel to be used for a connection.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in
client mode.

XMSC_WMQ_CLIENT_RECONNECT_OPTIONS
Data type:

xmsINT

Property of:
ConnectionFactory

This property determines if a connection is reconnectable. The valid values of the
property and meaning are as follows:

Table 47. Values for client reconnection

Valid value Meaning

XMSC_WMQ_CLIENT_RECONNECT_Q_MGR This option requests that in case of failure
a reconnect to exactly the same Queue
Manager is required.

XMSC_WMQ_CLIENT_RECONNECT This option requests that in case of failure
a reconnect is made by the system.
Application can reconnect to any of the
queue managers specified in the
connection name list.

XMSC_WMQ_CLIENT_RECONNECT_DISABLEDBy specifying this option, the application
cannot be reconnected. This is the default
value.

440 WebSphere MQ: Message Service Client for C/C++

Table 47. Values for client reconnection (continued)

Valid value Meaning

XMSC_WMQ_CLIENT_RECONNECT_AS_DEF The reconnection option is resolved to its
default value. The default value is set in
CHANNELS stanza of mqclient.ini file.

DefRecon=NO|YES|QMGR|DISABLED

The DefRecon attribute enable client
programs to automatically reconnect, or
to disable the automatic reconnection of a
client program that has been written to
reconnect automatically.

The interpretation of the DefRecon
options depends on whether an
XMSC_WMQ_CLIENT_RECONNECT_OPTIONS
is also set in the client program, and what
value is set.

If the client program sets the
XMSC_WMQ_CLIENT_RECONNECT_AS_DEF
option on ConnectionFactory, the
reconnect value set by DefRecon takes
effect. If no reconnect value is set in the
program, or by the DefRecon option, the
client program is not reconnected
automatically.

NO : Unless overridden by
ConnectionFactory Client Reconnect
Options, the client is not reconnected
automatically.

YES : Unless overridden by
ConnectionFactory Client Reconnect
Option, the client reconnects
automatically.

QMGR : Unless overridden by
ConnectionFactory Client Reconnect
Options, the client reconnects
automatically, but only to the same queue
manager. This has the same effect as
XMSC_WMQ_CLIENT_RECONNECT_Q_MGR
option.

DISABLED : Reconnection is disabled,
even if requested by the client program
using the ConnectionFactory Client
Reconnect Options.

XMSC_WMQ_CONNECTION_MODE
Data type:

xmsINT

Property of:
ConnectionFactory

Chapter 15. Properties of XMS objects 441

The mode by which an application connects to a queue manager.

The valid values of the property are as follows:

Valid value Meaning
XMSC_WMQ_CM_BINDINGS A connection to a queue manager in bindings mode, for

optimal performance. This is the default value for C/C++.
XMSC_WMQ_CM_CLIENT A connection to a queue manager in client mode, to ensure

a fully managed stack.
XMSC_WMQ_CM_CLIENT_UNMANAGED A connection to a queue manager which forces an

unmanaged client stack.

XMSC_WMQ_CONNECTION_NAME_LIST
Data type:

String

Property of:
ConnectionFactory

The connection name list is a comma separated list of host/IP port pairs. If port
part is omitted, it will assume the default port value as 1414.

Note: If XMSC_WMQ_CONNECTION_NAME_LIST is provided along with the
XMSC_WMQ_HOST_NAME and XMSC_WMQ_PORT, in this case
XMSC_WMQ_HOST_NAME and XMSC_WMQ_PORT property is ignored and the
XMSC_WMQ_CONNECTION_NAME_LIST will be used.

For example, 127.0.0.1(1414), MACH1.ABC.COM(1400)

XMSC_WMQ_DUR_SUBQ
Data type:

String

Property of:
Destination

The name of the subscriber queue for a durable subscriber that is receiving
messages from the destination. Only a destination that is a topic can have this
property.

The name of the subscriber queue must start with the following characters:
SYSTEM.JMS.D.

If you want all durable subscribers to share the same subscriber queue, specify the
complete name of the shared queue. A queue with the specified name must exist
before an application can create a durable subscriber.

If you want each durable subscriber to retrieve messages from its own exclusive
subscriber queue, specify a queue name that ends with an asterisk (*).
Subsequently, when an application creates a durable subscriber, the XMS client
creates a dynamic queue for exclusive use by the durable subscriber. The XMS
client uses the value of the property to set the contents of the DynamicQName field in
the object descriptor that is used to create the dynamic queue.

442 WebSphere MQ: Message Service Client for C/C++

The default value of the property is SYSTEM.JMS.D.SUBSCRIBER.QUEUE, which
means that XMS uses the shared queue approach by default.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_ENCODING
Data type:

xmsINT

Property of:
Destination

How numerical data in the body of a message will be represented when the XMS
client forwards the message to the destination. If set for an individual message, the
JMS_IBM_ENCODING property overrides the encoding specified for the
destination by this property. The property specifies the representation of binary
integers, packed decimal integers, and floating point numbers.

The valid values of the property are the same as the values that can be specified in
the Encoding field of a message descriptor. For more information about the
Encoding field, see the WebSphere MQ Application Programming Reference.

An application can use the following named constants to set the property:

Named constant Meaning
MQENC_INTEGER_NORMAL Normal integer encoding
MQENC_INTEGER_REVERSED Reversed integer encoding
MQENC_DECIMAL_NORMAL Normal packed decimal encoding
MQENC_DECIMAL_REVERSED Reversed packed decimal encoding
MQENC_FLOAT_IEEE_NORMAL Normal IEEE floating point encoding
MQENC_FLOAT_IEEE_REVERSED Reversed IEEE floating point encoding
MQENC_FLOAT_S390 zSeries (System/390) architecture floating

point encoding
MQENC_NATIVE Native machine encoding

To form a value for the property, the application can add together three of these
constants as follows:
v A constant whose name commences with MQENC_INTEGER, to specify the

representation of binary integers
v A constant whose name commences with MQENC_DECIMAL, to specify the

representation of packed decimal integers
v A constant whose name commences with MQENC_FLOAT, to specify the

representation of floating point numbers

Alternatively, the application can set the property to MQENC_NATIVE, whose
value is environment dependent.

The default value of the property is MQENC_NATIVE.

This property is relevant only to messages sent to the destination, not to messages
received from the destination.

Chapter 15. Properties of XMS objects 443

XMSC_WMQ_FAIL_IF_QUIESCE
Data type:

xmsINT

Property of:
ConnectionFactory and Destination

Name used in a URI:
failIfQuiesce

Whether calls to certain methods fail if the queue manager to which the
application is connected is in a quiescing state.

The valid values of the property are as follows:

Valid value Meaning
XMSC_WMQ_FIQ_YES Calls to certain methods fail if the queue manager is in a quiescing state.

When the application detects that the queue manager is quiescing, the
application can complete its immediate task and close the connection,
allowing the queue manager to stop.

XMSC_WMQ_FIQ_NO No method calls fail because the queue manager is in a quiescing state. If
you specify this value, the application cannot detect that the queue
manager is quiescing. The application might continue to perform
operations against the queue manager and therefore prevent the queue
manager from stopping.

The default value for a connection factory is XMSC_WMQ_FIQ_YES but, by
default, the property is not set for a destination. Setting the property for a
destination overrides any value specified by the connection factory property.

For information about the different ways in which a queue manager can be
stopped, see the WebSphere MQ System Administration Guide.

XMSC_WMQ_MESSAGE_BODY
Data type:

xmsINT

Property of:
Destination

This property determines whether a XMS application processes the MQRFH2 of a
WebSphere MQ message as part of the message payload (that is, as part of the
message body).

Note: When sending messages to a destination, XMSC_WMQ_MESSAGE_BODY
property supersedes existing XMS Destination property
XMSC_WMQ_TARGET_CLIENT.

Valid values for this property are:

XMSC_WMQ_MESSAGE_BODY_JMS
Receive: The inbound XMS message type and body are determined by the
contents of the MQRFH2 (if present) or the MQMD (if there is no
MQRFH2) in the received MQ message.

444 WebSphere MQ: Message Service Client for C/C++

Send: The outbound XMS message body contains a pre-pended and
auto-generated MQRFH2 header based on XMS Message properties and
header fields.

XMSC_WMQ_MESSAGE_BODY_MQ
Receive: The inbound XMS message type is always ByteMessage,
irrespective of the contents of received WebSphere MQ message or the
format field of the received MQMD. The XMS message body is the
unaltered message data returned by the underlying messaging provider
API call. The character set and encoding of the data in the message body is
determined by the CodedCharSetId and Encoding fields of the MQMD.
The format of the data in the message body is determined by the Format
field of the MQMD.

Send: The outbound XMS message body contains the application payload
as-is; and no auto-generated WMQ header is added to the body.

XMSC_WMQ_MESSAGE_BODY_UNSPECIFIED
Receive: The XMS client determines a suitable value for this property. On
receive path, this is simply WMQ_MESSAGE_BODY_JMS property value.

Send: The XMS client determines a suitable value for this property. On
send path, this is the value of XMSC_WMQ_TARGET_CLIENT property.

By default this property is set to XMSC_WMQ_MESSAGE_BODY_UNSPECIFIED.

Note: This property is not relevant only when an application connects to Service
integration bus

XMSC_WMQ_MQMD_MESSAGE_CONTEXT
Data type:

xmsINT

Property of:
Destination

Determines what level of message context is to be set by the XMS application. The
application must be running with appropriate context authority for this property to
take effect.

The valid values for this property are:

XMSC_WMQ_MDCTX_DEFAULT
For outbound messages, the MQOPEN API call and the MQPMO structure
will specify no explicit message context options.

XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_IDENTITY_CONTEXT and the MQPMO structure specifies
MQPMO_SET_IDENTITY_CONTEXT.

XMSC_WMQ_MDCTX_SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_ALL_CONTEXT and the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT.

By default this property will be set to XMSC_WMQ_MDCTX_DEFAULT.

Chapter 15. Properties of XMS objects 445

Note: This property is not relevant when an application connects to System
Integration Bus.

Following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT
property to be set to XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT property
value or XMSC_WMQ_MDCTX_SET_ALL_CONTEXT property value when
sending a message for in order to have desired effect:
v JMS_IBM_MQMD_USERIDENTIFIER
v JMS_IBM_MQMD_ACCOUNTINGTOKEN
v JMS_IBM_MQMD_APPLIDENTITYDATA

Following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT
property to be set to XMSC_WMQ_MDCTX_SET_ALL_CONTEXT property value
when sending a message for in order to have desired effect:
v JMS_IBM_MQMD_PUTAPPLTYPE
v JMS_IBM_MQMD_PUTAPPLNAME
v JMS_IBM_MQMD_PUTDATE
v JMS_IBM_MQMD_PUTTIME
v JMS_IBM_MQMD_APPLORIGINDATA

For further information about the Message Context, see WebSphere MQ
Application Programming Guide book and WebSphere MQ Application
Programming Reference book.

XMSC_WMQ_MQMD_READ_ENABLED
Data type:

xmsINT

Property of:
Destination

This property determines whether a XMS application can extract the values of
MQMD fields or not.

The valid values for this property are:

XMSC_WMQ_READ_ENABLED_NO
When sending messages, the JMS_IBM_MQMD* properties on a sent
message are not updated to reflect the updated field values in the MQMD.

When receiving messages, none of the JMS_IBM_MQMD* properties are
available on a received message, even if the sender had set some or all of
them.

XMSC_WMQ_READ_ENABLED_YES
When sending messages, all of the JMS_IBM_MQMD* properties on a sent
message are updated to reflect the updated field values in the MQMD,
including those that the sender did not set explicitly.

When receiving messages, all of the JMS_IBM_MQMD* properties are
available on a received message, including those that the sender did not
set explicitly.

By default this property is set to XMSC_WMQ_READ_ENABLED_NO.

446 WebSphere MQ: Message Service Client for C/C++

XMSC_WMQ_MQMD_WRITE_ENABLED
Data type:

xmsINT

Property of:
Destination

This property determines whether a XMS application can set the values of MQMD
fields or not.

The valid values for this property are:

XMSC_WMQ_WRITE_ENABLED_NO
All JMS_IBM_MQMD* properties are ignored and their values are not
copied into the underlying MQMD structure.

XMSC_WMQ_WRITE_ENABLED_YES
JMS_IBM_MQMD* properties are processed. Their values are copied into
the underlying MQMD structure.

By default this property is set to XMSC_WMQ_WRITE_ENABLED_NO.

XMSC_WMQ_PUT_ASYNC_ALLOWED
Data type:

xmsINT

Property of:
Destination

This property determines whether message producers are allowed to use
asynchronous puts to send messages to this destination.

The valid values for this property are:

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_DEST
Determine whether asynchronous puts are allowed by referring to the
queue or topic definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_Q_DEF
Determine whether asynchronous puts are allowed by referring to the
queue definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_TOPIC_DEF
Determine whether asynchronous puts are allowed by referring to the topic
definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_DISABLED
Asynchronous puts are not allowed.

XMSC_WMQ _PUT_ASYNC_ALLOWED_ENABLED
Asynchronous puts are allowed.

By default this property is set to XMSC_WMQ
_PUT_ASYNC_ALLOWED_AS_DEST.

Note: This property is not relevant when an application is connecting to System
Integration Bus.

Chapter 15. Properties of XMS objects 447

XMSC_WMQ_READ_AHEAD_ALLOWED
Data type:

xmsINT

Property of:
Destination

This property determines whether message consumers and queue browsers are
allowed to use read ahead to get non-persistent, non-transactional messages from
this destination into an internal buffer before receiving them.

The valid values for this property are:

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_Q_DEF
Determine whether read ahead is allowed by referring to the queue
definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_ TOPIC _DEF
Determine whether read ahead is allowed by referring to the topic
definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_DEST
Determine whether read ahead is allowed by referring to the queue or
topic definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_DISABLED
Read ahead is not allowed while consuming or browsing messages

XMSC_WMQ_READ_AHEAD_ALLOWED_ENABLED
Read ahead is allowed.

By default this property is set to XMSC_WMQ
_READ_AHEAD_ALLOWED_AS_DEST.

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY
Data type:

xmsINT

Property of:
Destination

This property determines, for messages being delivered to an asynchronous
message listener, what happens to messages in the internal read ahead buffer when
the message consumer is closed.

This property is applicable in specifying closing queue options when consuming
messages from a destination and not applicable when sending messages to a
destination.

This property will be ignored for Queue Browsers since during browse the
messages will still be available in the queues.

The valid values for this property are:

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_CURRENT
Only the current message listener invocation completes before returning,
potentially leaving messages in the internal read ahead buffer, which are
then discarded.

448 WebSphere MQ: Message Service Client for C/C++

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_ALL
All messages in the internal read ahead buffer are delivered to the
application’s message listener before returning. Please see Notes below.

By default this property is set to XMSC_WMQ
_READ_AHEAD_CLOSE_POLICY_DELIVER_CURRENT.

Notes:

v Abnormal application termination

All the messages in the read ahead buffer will be lost when a XMS application
terminates abruptly.

v Implications on Transactions

The read ahead will be disabled when the applications use transaction. So, the
application will not be seeing any difference in the behavior when they use
transacted sessions.

v Implications of Session Acknowledgement modes

The read ahead will be enabled when the on a non transacted session when the
acknowledgement modes are either XMSC_AUTO_ACKNOWLEDGE or
XMSC_DUPS_OK_ACKNOWLEDGE. The read ahead will be disabled if the
session acknowledgement mode is XMSC_CLIENT_ACKNOWLEDGE
irrespective of transacted or non transacted sessions.

v Implications on Queue Browsers and Queue Browser Selectors

The Queue Browsers and Queue Browser Selectors, used in XMS applications,
will get the performance advantage from read ahead. Closing the Queue
Browser won’t impact, since the message is still available in the queue for ay
further operations. There will not be any other implication on queue browsers
and queue browser selectors apart from performance benefits of read ahead.

v Implications of read ahead destination properties on WebSphere Message
Broker v6 or earlier queue managers

Specifying destination properties XMSC_WMQ_READ_AHEAD_ALLOWED and
XMSC_WMQ_READ_AHEAD_CLOSE_POLICY, when XMS application uses the
WebSphere Message Broker V6 queue manager will not be able to use the
specified values. These destination property values will be silently ignored and
the applications continue to work without read ahead. There will not be any
errors thrown when used with V6 queue managers.

v Consumer close

Closing a consumer that has been created with
XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_ALL option after
stopping the connection might result in loss of messages which have already
been streamed.

v Connection close

Closing a connection without explicitly closing a consumer which has been
created with XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_ALL
option might result in loss of messages which have already been streamed.

For further information about the Read Ahead, see WebSphere MQ Application
Programming Guide book and WebSphere MQ Application Programming
Reference book.

XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID
Data type:

String

Chapter 15. Properties of XMS objects 449

Property of:
Connection

This property is used to obtain the unique queue manager ID to which it is
connected. This property is read-only.

XMSC_WMQ_HOST_NAME
Data type:

String

Property of:
ConnectionFactory

The host name or IP address of the system on which a queue manager resides.

This property is used only when an application connects to a queue manager in
client mode. The property is used in conjunction with the XMSC_WMQ_PORT
property to identify the queue manager.

The default value of the property is localhost.
Related reference:
“Network stack selection mechanism” on page 49
This section describes the network stack selection mechanism when both IPv4 and
IPv6 network stacks are enabled on a machine.

XMSC_WMQ_LOCAL_ADDRESS
Data type:

String

Property of:
ConnectionFactory

For a connection to a queue manager, this property specifies the local network
interface to be used, or the local port or range of local ports to be used, or both.

The value of the property is a string with the following format:
[host_name][(low_port)[,high_port])]

The meanings of the variables are as follows:

host_name
The host name or IP address of the local network interface to be used for
the connection.

Providing this information is necessary only if the system on which the
application is running has two or more network interfaces and you need to
be able to specify which interface must be used for the connection. If the
system has only one network interface, only that interface can be used. If
the system has two or more network interfaces and you do not specify
which interface must be used, the interface is selected at random.

low_port
The number of the local port to be used for the connection.

If high_port is also specified, low_port is interpreted the lowest port number
in a range of port numbers.

450 WebSphere MQ: Message Service Client for C/C++

high_port
The highest port number in a range of port numbers. One of the ports in
the specified range must be used for the connection.

The maximum length of the string is 48 characters.

Here are some examples of valid values of the property:
JUPITER
9.20.4.98
JUPITER(1000)
9.20.4.98(1000,2000)
(1000)
(1000,2000)
fecc:0:0:a2::2
fecc:0:0:a2::2(1000,2000)

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in
client mode.
Related reference:
“Network stack selection mechanism” on page 49
This section describes the network stack selection mechanism when both IPv4 and
IPv6 network stacks are enabled on a machine.

XMSC_WMQ_MESSAGE_SELECTION
Data type:

xmsINT

Property of:
ConnectionFactory

Determines whether message selection is done by the XMS client or by the broker.

The valid values of the property are as follows:

Valid value Meaning
XMSC_WMQ_MSEL_CLIENT Message selection is done by the XMS client.
XMSC_WMQ_MSEL_BROKER Message selection is done by the broker.

The default value is XMSC_WMQ_MSEL_CLIENT.

This property is relevant only in the publish/subscribe domain. Message selection
by the broker is not supported if the XMSC_WMQ_BROKER_VERSION property is
set to XMSC_WMQ_BROKER_V1.

XMSC_WMQ_MSG_BATCH_SIZE
Data type:

xmsINT

Property of:
ConnectionFactory

Chapter 15. Properties of XMS objects 451

The maximum number of messages to be retrieved from a queue in one batch
when using asynchronous message delivery.

When an application is using asynchronous message delivery, under certain
conditions, the XMS client retrieves a batch of messages from a queue before
forwarding each message individually to the application. This property specifies
the maximum number of messages that can be in the batch.

The value of the property is a positive integer, and the default value is 10. Only
consider setting the property to a different value if you have a specific
performance problem that you need to address.

If an application is connected to a queue manager over a network, raising the
value of this property can reduce network overheads and response times, but
increase the amount of memory required to store the messages on the client
system. Conversely, lowering the value of this property might increase network
overheads and response times, but reduce the amount of memory required to store
the messages.

XMSC_WMQ_POLLING_INTERVAL
Data type:

xmsINT

Property of:
ConnectionFactory

If each message listener within a session has no suitable message on its queue, this
is the maximum interval, in milliseconds, that elapses before each message listener
tries again to get a message from its queue.

If it frequently happens that no suitable message is available for any of the
message listeners in a session, consider increasing the value of this property.

The value of the property is a positive integer. The default value is 5000.

XMSC_WMQ_PORT
Data type:

xmsINT

Property of:
ConnectionFactory

The number of the port on which a queue manager listens for incoming requests.

This property is used only when an application connects to a queue manager in
client mode. The property is used in conjunction with the
XMSC_WMQ_HOST_NAME property to identify the queue manager.

The default value of the property is XMSC_WMQ_DEFAULT_CLIENT_PORT, or
1414.

XMSC_WMQ_PROVIDER_VERSION
Data type:

String

452 WebSphere MQ: Message Service Client for C/C++

Property of:
ConnectionFactory

The version, release, modification level and fix pack of the queue manager to
which the application intends to connect. Valid values for this property are:
v Unspecified

Or a string in one of the following formats
v V.R.M.F
v V.R.M
v V.R
v V

Where V, R, M and F are integer values greater than or equal to zero.

A value of 7 or greater indicates that this is intended as a WebSphere MQ Version
7.0 ConnectionFactory for connections to a WebSphere MQ Version 7.0 queue
manager. A value lower than 7 (for example "6.0.2.0"), indicates that it is intended
for use with queue managers earlier than Version 7.0. The default value,
unspecified, allows connections to any level of queue manager, determining the
applicable properties and functionality available based on the queue manager's
capabilities.

By default this property is set to “unspecified”.

Note:

v No socket sharing happens if XMSC_WMQ_PROVIDER_VERSION is set to 6. 2.
v Connection will fail if XMSC_WMQ_PROVIDER_VERSION is set to 7 and on

the server SHARECNV for the channel has been set 0.
v MQ v7 specific features will be disabled if XMSC_WMQ_PROVIDER_VERSION

is set to UNSPECIFIED and SHARECNV is set to 0.

The version of WebSphere MQ Client also plays major role in whether a XMS
client application can use WebSphere MQ version 7 specific features. The following
table describes the behavior.

Note: A system property XMSC_WMQ_OVERRIDEPROVIDERVERSION has been
provided to override XMSC_WMQ_PROVIDER_VERSION property. This can be
used if you are unable to change connection factory setting.

Table 48. XMS client - Ability to use WebSphere MQ v7 specific features.

XMSC_WMQ_PROVIDER_VERSION WebSphere MQ Client Version WebSphere MQ v7 features

1 unspecified 7 ON

2 unspecified 6 OFF

3 7 7 ON

4 7 6 Exception

5 6 6 OFF

6 6 7 OFF

Chapter 15. Properties of XMS objects 453

XMSC_WMQ_PUB_ACK_INTERVAL
Data type:

xmsINT

Property of:
ConnectionFactory

The number of messages published by a publisher before the XMS client requests
an acknowledgement from the broker.

If you lower the value of this property, the client requests acknowledgements more
often, and therefore the performance of the publisher decreases. If you raise the
value, the client takes a longer time to throw an exception if the broker fails.

The value of the property is a positive integer. The default value is 25.

XMSC_WMQ_QMGR_CCSID
Data type:

xmsINT

Property of:
ConnectionFactory

The identifier (CCSID) of the coded character set, or code page, in which fields of
character data defined in the Message Queue Interface (MQI) are exchanged
between the XMS client and the WebSphere MQ client. This property does not
apply to the strings of character data in the bodies of messages.

When an XMS application connects to a queue manager in client mode, the XMS
client links to the WebSphere MQ client. The information exchanged between the
two clients contains fields of character data that are defined in the MQI. Under
normal circumstances, the WebSphere MQ client assumes that these fields are in
the code page of the system on which the clients are running. If the XMS client
provides and expects to receive these fields in a different code page, you must set
this property to inform the WebSphere MQ client.

When the WebSphere MQ client forwards these fields of character data to the
queue manager, the data in them must be converted if necessary into the code
page used by the queue manager. Similarly, when the WebSphere MQ client
receives these fields from the queue manager, the data in them must be converted
if necessary into the code page in which the XMS client expects to receive the data.
The WebSphere MQ client uses this property to perform these data conversions.

By default, the property is not set.

Setting this property is equivalent to setting the MQCCSID environment variable
for a WebSphere MQ client that is supporting native WebSphere MQ client
applications. For more information about this environment variable, see WebSphere
MQ Clients.

XMSC_WMQ_QUEUE_MANAGER
Data type:

String

454 WebSphere MQ: Message Service Client for C/C++

Property of:
ConnectionFactory

The name of the queue manager to connect to.

By default, the property is not set.

XMSC_WMQ_RECEIVE_EXIT
Data type:

String

Property of:
ConnectionFactory

Identifies a channel receive exit, or a sequence of channel receive exits, to be run in
succession.

The value of the property is a string of one or more items separated by commas,
where each item identifies a channel receive exit and has the following format:

libraryName(entryPointName)

For more information about the format of the string that identifies an individual
channel receive exit, see WebSphere MQ Intercommunication.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in
client mode.

XMSC_WMQ_RECEIVE_EXIT_INIT
Data type:

String

Property of:
ConnectionFactory

The user data that is passed to channel receive exits when they are called.

The value of the property is a string of one or more items of user data separated
by commas. By default, the property is not set.

Note the following rules when specifying user data that is passed to a sequence of
channel receive exits:
v If the number of items of user data in the string is more than the number of

channel receive exits in the sequence, the excess items of user data are ignored.
v If the number of items of user data in the string is less than the number of

channel receive exits in the sequence, each unspecified item of user data is set to
the empty string.

v Two commas is succession within the string, or a comma at the beginning of the
string, also denotes an unspecified item of user data.

This property is relevant only when an application connects to a queue manager in
client mode.

Chapter 15. Properties of XMS objects 455

XMSC_WMQ_SECURITY_EXIT
Data type:

String

Property of:
ConnectionFactory

Identifies a channel security exit.

The value of the property is a string that identifies a channel security exit and has
the following format:

libraryName(entryPointName)

For more information about the format of the string that identifies a channel
security exit, see WebSphere MQ Intercommunication. The maximum length of the
string is 128 characters.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in
client mode.

XMSC_WMQ_SECURITY_EXIT_INIT
Data type:

String

Property of:
ConnectionFactory

The user data that is passed to a channel security exit when it is called.

The maximum length of the string of user data is 32 characters.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in
client mode.

XMSC_WMQ_SEND_EXIT
Data type:

String

Property of:
ConnectionFactory

Identifies a channel send exit, or a sequence of channel send exits, to be run in
succession.

The value of the property is a string of one or more items separated by commas,
where each item identifies a channel send exit and has the following format:

libraryName(entryPointName)

For more information about the format of the string that identifies an individual
channel send exit, see WebSphere MQ Intercommunication.

456 WebSphere MQ: Message Service Client for C/C++

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in
client mode.

XMSC_WMQ_SEND_EXIT_INIT
Data type:

String

Property of:
ConnectionFactory

The user data that is passed to channel send exits when they are called.

The value of the property is a string of one or more items of user data separated
by commas. By default, the property is not set.

The rules for specifying user data that is passed to a sequence of channel send
exits are the same as those for specifying user data that is passed to a sequence of
channel receive exits. For the rules therefore, see
“XMSC_WMQ_RECEIVE_EXIT_INIT” on page 455.

This property is relevant only when an application connects to a queue manager in
client mode.

XMSC_WMQ_SEND_CHECK_COUNT
Data type:

xmsINT

Property of:
ConnectionFactory

The number of send calls to allow between checking for asynchronous put errors,
within a single non-transacted XMS session.

By default this property is set to 0.

XMSC_WMQ_SHARE_CONV_ALLOWED
Data type:

xmsINT

Property of:
ConnectionFactory

Whether a client connection can share its socket with other top-level XMS
connections from the same process to the same queue manager, if the channel
definitions match. This property is provided to allow complete isolation of
Connections in separate sockets if required for application development,
maintenance or operational reasons. Setting this property merely indicates to XMS
to make the underlying socket shared. It does not indicate how many connections
will share a single socket. The number of connections sharing a socket is
determined by SHARECONV value which is negotiated between MQI Client and
WMQ Server.

An application can set the following named constants to set the property:

Chapter 15. Properties of XMS objects 457

v XMSC_WMQ_SHARE_CONV_ALLOWED_DISABLED - Connections will not
share a socket.

v XMSC_WMQ_SHARE_CONV_ALLOWED_ENABLED - Connections share a
socket.

By default the property is set to
XMSC_WMQ_SHARE_CONV_ALLOWED_ENABLED.

This property is relevant only when an application connects to a queue manager in
client mode.

XMSC_WMQ_SSL_CERT_STORES
Data type:

String

Property of:
ConnectionFactory

The locations of the servers that hold the certificate revocation lists (CRLs) to be
used on an SSL connection to a queue manager.

The value of the property is a list of one or more URLs separated by commas.
Each URL has the following format:
[user[/password]@]ldap://[serveraddress][:portnum][,...]

This format is compatible with, but extended from, the basic MQJMS format.

It is valid to have an empty 'serveraddress'. In this case, XMS assumes that the
value is the string "localhost".

An example list is:
myuser/mypassword@ldap://server1.mycom.com:389
ldap://server1.mycom.com
ldap://
ldap://:389

By default, the property is not set.

XMSC_WMQ_SSL_CIPHER_SPEC
Data type:

String

Property of:
ConnectionFactory

The name of the cipher spec to be used on a secure connection to a queue
manager.

The canonical values of this property that apply to XMS are:
v DES_SHA_EXPORT
v DES_SHA_EXPORT1024
v FIPS_WITH_3DES_EDE_CBC_SHA
v FIPS_WITH_DES_CBC_SHA
v NULL_MD5

458 WebSphere MQ: Message Service Client for C/C++

v NULL_SHA
v RC2_MD5_EXPORT
v RC4_MD5_EXPORT
v RC4_MD5_US
v RC4_SHA_US
v TLS_RSA_WITH_3DES_EDE_CBC_SHA
v TLS_RSA_WITH_AES_128_CBC_SHA
v TLS_RSA_WITH_AES_256_CBC_SHA
v TLS_RSA_WITH_DES_CBC_SHA
v TRIPLE_DES_SHA_US
v ECDHE_ECDSA_3DES_EDE_CBC_SHA256
v ECDHE_ECDSA_AES_128_CBC_SHA256
v ECDHE_ECDSA_AES_128_GCM_SHA256
v ECDHE_ECDSA_AES_256_CBC_SHA384
v ECDHE_ECDSA_AES_256_GCM_SHA384
v ECDHE_ECDSA_NULL_SHA256
v ECDHE_ECDSA_RC4_128_SHA256
v ECDHE_RSA_3DES_EDE_CBC_SHA256
v ECDHE_RSA_AES_128_CBC_SHA256
v ECDHE_RSA_AES_128_GCM_SHA256
v ECDHE_RSA_AES_256_CBC_SHA384
v ECDHE_RSA_AES_256_GCM_SHA384
v ECDHE_RSA_NULL_SHA256
v ECDHE_RSA_RC4_128_SHA256
v TLS_RSA_WITH_AES_128_CBC_SHA256
v TLS_RSA_WITH_AES_128_GCM_SHA256
v TLS_RSA_WITH_AES_256_CBC_SHA256
v TLS_RSA_WITH_AES_256_GCM_SHA384
v TLS_RSA_WITH_NULL_SHA256
v TLS_RSA_WITH_RC4_128_SHA256

For additional information about these values, see WebSphere MQ Security.

The following example shows how this value is supplied at the MQI:
strncpy(pChDef->SSLCipherSpec, "TRIPLE_DES_SHA_US", sizeof(pChDef->SSLCipherSpec));

XMS takes a copy of the first 32 bytes of the string in the correct single-byte code
page into the SSLCipherSpec field of the channel definition structure, MQCD
before calling MQCONNX.

If a value is specified for the XMSC_WMQ_SSL_CIPHER_SPEC property, this value
overrides any value that is specified for the XMSC_WMQ_SSL_CIPHER_SUITE
property. If neither of these properties has a specified value, the
MQCD.SSLCipherSpec field is filled with space characters.

The XMSC_WMQ_SSL_CIPHER_SPEC property is relevant only if the application
connects to a queue manager in client mode.

By default, the property is not set.

Chapter 15. Properties of XMS objects 459

XMSC_WMQ_SSL_CIPHER_SUITE
Data type:

String

Property of:
ConnectionFactory

The name of the CipherSuite to be used on an SSL or TLS connection to a queue
manager. The protocol used in negotiating the secure connection depends on the
specified CipherSuite.

This property has the following canonical values:
v SSL_RSA_WITH_DES_CBC_SHA
v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
v SSL_RSA_FIPS_WITH_DES_CBC_SHA
v SSL_RSA_WITH_NULL_MD5
v SSL_RSA_WITH_NULL_SHA
v SSL_RSA_EXPORT_WITH_RC4_40_MD5
v SSL_RSA_WITH_RC4_128_MD5
v SSL_RSA_WITH_RC4_128_SHA
v SSL_RSA_WITH_3DES_EDE_CBC_SHA
v SSL_RSA_WITH_AES_128_CBC_SHA
v SSL_RSA_WITH_AES_256_CBC_SHA
v SSL_RSA_WITH_DES_CBC_SHA
v SSL_RSA_WITH_3DES_EDE_CBC_SHA
v SSL_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
v SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
v SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
v SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
v SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
v SSL_ECDHE_ECDSA_WITH_NULL_SHA
v SSL_ECDHE_ECDSA_WITH_RC4_128_SHA
v SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
v SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256
v SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256
v SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384
v SSL_ECDHE_RSA_WITH_AES_256_GCM_SHA384
v SSL_ECDHE_RSA_WITH_NULL_SHA
v SSL_ECDHE_RSA_WITH_RC4_128_SHA
v SSL_RSA_WITH_AES_128_CBC_SHA256
v SSL_RSA_WITH_AES_128_GCM_SHA256
v SSL_RSA_WITH_AES_256_CBC_SHA256
v SSL_RSA_WITH_AES_256_GCM_SHA384
v SSL_RSA_WITH_NULL_SHA256
v SSL_RSA_WITH_RC4_128_SHA
v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
v SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA

460 WebSphere MQ: Message Service Client for C/C++

This value can be supplied as an alternative to XMSC_WMQ_SSL_CIPHER_SPEC.

If a non-empty value is specified for XMSC_WMQ_SSL_CIPHER_SPEC, this value
overrides the setting for XMSC_WMQ_SSL_CIPHER_SUITE. If
XMSC_WMQ_SSL_CIPHER_SPEC does not have a value, the value of
XMSC_WMQ_SSL_CIPHER_SUITE is used as the cipher suite to be given to GSKit.
In this case, the value is mapped on to the equivalent CipherSpec value, as
described in “CipherSuite and CipherSpec name mappings for connections to a
WebSphere MQ queue manager” on page 86.

If both XMSC_WMQ_SSL_CIPHER_SPEC and XMSC_WMQ_SSL_CIPHER_SUITE
are empty, the field pChDef->SSLCipherSpec is filled with spaces.

By default, the property is not set.

XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B
Data type:

xmsINT

Property of:
ConnectionFactory

The value of this property determines whether an application can use the Suite B
compliant cipher suites. You can enable the Suite B compliance cipher suits by
setting this property to one or more of the following values:
v XMSC_WMQ_SUITE_B_NONE
v XMSC_ WMQ _SUITE_B_128_BIT
v XMSC_ WMQ _SUITE_B_192_BIT

Setting the XMSC_WMQ_SUITE_B_NONE property to any other value is invalid.
Related reference:
“XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B” on page 472

XMSC_WMQ_SSL_CRYPTO_HW
Data type:

String

Property of:
ConnectionFactory

Configuration details for the cryptographic hardware connected to the client
system.

This property has the following canonical values:
v GSK_ACCELERATOR_RAINBOW_CS_OFF
v GSK_ACCELERATOR_RAINBOW_CS_ON
v GSK_ACCELERATOR_NCIPHER_NF_OFF
v GSK_ACCELERATOR_NCIPHER_NF_ON

There is a special format for PKCS11 cryptogragraphic hardware (where
DriverPath, TokenLabel and TokenPassword are user-specified strings):
GSK_PKCS11=PKCS#11 DriverPath; PKCS#11 TokenLabel;PKCS#11 TokenPassword

Chapter 15. Properties of XMS objects 461

For additional information about the format of this property, see WebSphere MQ
Application Programming Reference.

XMS does not interpret or alter the contents of the string. It simply copies the
value supplied, up to a limit of 256 single-byte characters, into the
MQSCO.CryptoHardware field.

By default, the property is not set.

XMSC_WMQ_SSL_FIPS_REQUIRED
Data type:

Boolean

Property of:
ConnectionFactory

The value of this property determines whether an application can or cannot use
non-FIPS compliant cipher suites. If this property is set to true, only FIPS
algorithms are used for the client-server connection.

This property can have the following values, which translate to the two canonical
values for MQSCO.FipsRequired:

Table 49. Table of values for MQSCO.FlipsRequired property

Value Description
Corresponding value of
MQSCO.FipsRequired

xmsFALSE Any CipherSpec can be used. MQSSL_FIPS_NO (the default)

xmsTRUE Only FIPS-certified cryptographic
algorithms can be used in the
CipherSpec applying to this client
connection.

MQSSL_FIPS_YES

XMS copies the relevant value into MQSCO.FipsRequired before calling
MQCONNX.

The parameter MQSCO.FipsRequired is only available from WebSphere MQ
version 6. In the case of WebSphere MQ version 5.3, if this property is set, XMS
does not attempt to make the connection to the queue manager, and throws an
appropriate exception instead.

XMSC_WMQ_SSL_KEY_REPOSITORY
Data type:

String

Property of:
ConnectionFactory

The location of the key database file in which keys and certificates are stored.

XMS copies the string, up to a limit of 256 single-byte characters, into the
MQSCO.KeyRepository field. WebSphere MQ interprets this string as a filename,
including the full path.

By default, the property is not set.

462 WebSphere MQ: Message Service Client for C/C++

XMSC_WMQ_SSL_KEY_RESETCOUNT
Data type:

xmsINT

Property of:
ConnectionFactory

The KeyResetCount represents the total number of unencrypted bytes sent and
received within an SSL conversation before the secret key is renegotiated. The
number of bytes includes control information sent by the MCA.

XMS copies the value that you supply for this property into
MQSCO.KeyResetCount before calling MQCONNX.

The parameter MQSCO.KeyRestCount is only available from WebSphere MQ
version 6. In the case of WebSphere MQ version 5.3, if this property is set, XMS
does not attempt to make the connection to the queue manager, and throws an
appropriate exception instead.

The default value of this property is zero, which means that secret keys are never
renegotiated. For further information, see the WebSphere MQ Application
Programming Reference.

XMSC_WMQ_SSL_PEER_NAME
Data type:

String

Property of:
ConnectionFactory

The peer name to be used on an SSL connection to a queue manager.

There is no list of canonical values for this property. Instead, you must build this
string according to the rules for SSLPEER described in WebSphere MQ Using Java
and WebSphere MQ Security.

An example of a peer name is:
"CN=John Smith, O=IBM ,OU=Test , C=GB"

XMS copies the string into the correct single-byte code page, and places the correct
values into MQCD.SSLPeerNamePtr and MQCD.SSLPeerNameLength before
calling MQCONNX.

This property is relevant only if the application connects to a queue manager in
client mode.

By default, the property is not set.

XMSC_WMQ_SYNCPOINT_ALL_GETS
Data type:

xmsBOOL

Property of:
ConnectionFactory

Chapter 15. Properties of XMS objects 463

Whether all messages must be retrieved from queues within syncpoint control.

The valid values of the property are as follows:

Valid value Meaning
xmsFALSE When the circumstances are appropriate, the

XMS client can retrieve messages from queues
outside of syncpoint control.

xmsTRUE The XMS client must retrieve all messages
from queues within syncpoint control.

The default value is xmsFALSE.

XMSC_WMQ_TARGET_CLIENT
Data type:

xmsINT

Property of:
Destination

Name used in a URI:
targetClient

Whether messages sent to the destination contain an MQRFH2 header.

If an application sends a message containing an MQRFH2 header, the receiving
application must be able to handle the header.

The valid values of the property are as follows:

Valid value Meaning
XMSC_WMQ_TARGET_DEST_JMS Messages sent to the destination contain an MQRFH2 header.

Specify this value if the application is sending the messages to
another XMS application, a WebSphere JMS application, or a
native WebSphere MQ application that has been designed to
handle an MQRFH2 header.

XMSC_WMQ_TARGET_DEST_MQ Messages sent to the destination do not contain an MQRFH2
header. Specify this value if the application is sending the
messages to a native WebSphere MQ application that has not
been designed to handle an MQRFH2 header.

The default value is XMSC_WMQ_TARGET_DEST_JMS.

XMSC_WMQ_TEMP_Q_PREFIX
Data type:

String

Property of:
ConnectionFactory

The prefix used to form the name of the WebSphere MQ dynamic queue that is
created when the application creates an XMS temporary queue.

The rules for forming the prefix are the same as those for forming the contents of
the DynamicQName field in an object descriptor, but the last non blank character

464 WebSphere MQ: Message Service Client for C/C++

must be an asterisk(*). If the property is not set, the value used is CSQ.* on z/OS
and AMQ.* on the other platforms. By default, the property is not set.

This property is relevant only in the point-to-point domain.

XMSC_WMQ_TEMP_TOPIC_PREFIX
Data type:

String

Property of:
ConnectionFactory, Destination

When creating temporary topics, XMS will generate a topic string of the form
“TEMP/TEMPTOPICPREFIX/unique_id”, or if this property is left with the default
value, just “TEMP/unique_id”. Specifying a non-empty value allows specific
model queues to be defined for creating the managed queues for subscribers to
temporary topics created under this connection.

Any non-null string consisting only of valid characters for a WebSphere MQ topic
string is a valid value for this property.

By default this property is set to “” (empty string).

Note: This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_TEMPORARY_MODEL
Data type:

String

Property of:
ConnectionFactory

The name of the WebSphere MQ model queue from which a dynamic queue is
created when the application creates an XMS temporary queue.

The default value of the property is SYSTEM.DEFAULT.MODEL.QUEUE.

This property is relevant only in the point-to-point domain.

XMSC_WMQ_WILDCARD_FORMAT
Data type:

xmsINT

Property of:
ConnectionFactory, Destination

This property determines which version of wildcard syntax is to be used.

When using Publish/Subscribe with WebSphere MQ ‘*’ and ‘?’ are treated as
wildcards. Whereas ‘#’ and ‘+’ are treated as wildcards when using publish
subscribe with WebSphere Message Broker. This property replaces the
XMSC_WMQ_BROKER_VERSION property.

The valid values for this property are:

Chapter 15. Properties of XMS objects 465

XMSC_WMQ_WILDCARD_TOPIC_ONLY
Recognizes the topic level wildcards only i.e. only ‘#’ and ‘+’ are treated as
wildcards. This value is same as XMSC_WMQ_BROKER_V2.

XMSC_WMQ_WILDCARD_CHAR_ONLY
Recognizes the character wildcards only i.e. ‘*’ and ‘?’ are treated as
wildcards. This value is same as XMSC_WMQ_BROKER_V1..

By default this property is set to XMSC_WMQ_WILDCARD_TOPIC_ONLY.

Note: This property is not relevant when doing publish/subscribe using
WebSphere MQ version 6 and below. Instead XMSC_WMQ_BROKER_VERSION
property must be used.

XMSC_WPM_BUS_NAME
Data type:

String

Property of:
ConnectionFactory and Destination

Name used in a URI:
busName

For a connection factory, the name of the service integration bus that the
application connects to or, for a destination, the name of the service integration bus
in which the destination exists.

For a destination that is a topic, this property is the name of the service integration
bus in which the associated topic space exists. This topic space is specified by the
XMSC_WPM_TOPIC_SPACE property.

If the property is not set for a destination, the queue or associated topic space is
assumed to exist in the service integration bus to which the application connects.

By default, the property is not set.

XMSC_WPM_CONNECTION_PROTOCOL
Data type:

xmsINT

Property of:
Connection

The communications protocol used for the connection to the messaging engine.
This property is read-only.

The possible values of the property are as follows:

Value Meaning
XMSC_WPM_CP_HTTP The connection uses HTTP over TCP/IP.
XMSC_WPM_CP_TCP The connection uses TCP/IP.

466 WebSphere MQ: Message Service Client for C/C++

XMSC_WPM_CONNECTION_PROXIMITY
Data type:

xmsINT

Property of:
ConnectionFactory

The connection proximity setting for the connection. This property determines how
close the messaging engine that the application connects to must be to the
bootstrap server.

The valid values of the property are as follows:

Valid value
Connection
proximity setting

XMSC_WPM_CONNECTION_PROXIMITY_BUS Bus
XMSC_WPM_CONNECTION_PROXIMITY_CLUSTER Cluster
XMSC_WPM_CONNECTION_PROXIMITY_HOST Host
XMSC_WPM_CONNECTION_PROXIMITY_SERVER Server

The default value is XMSC_WPM_CONNECTION_PROXIMITY_BUS.

For more information about connection proximity, WebSphere Application Server
Information Center.

XMSC_WPM_DUR_SUB_HOME
Data type:

String

Property of:
ConnectionFactory

Name used in a URI:
durableSubscriptionHome

The name of the messaging engine where all durable subscriptions for a
connection or a destination are managed. Messages to be delivered to the durable
subscribers are stored at the publication point of the same messaging engine.

A durable subscription home must be specified for a connection before an
application can create a durable subscriber that uses the connection. Any value
specified for a destination overrides the value specified for the connection.

By default, the property is not set.

This property is relevant only in the publish/subscribe domain.

XMSC_WPM_HOST_NAME
Data type:

String

Property of:
Connection

Chapter 15. Properties of XMS objects 467

The host name or IP address of the system that contains the messaging engine to
which the application is connected. This property is read-only.

XMSC_WPM_LOCAL_ADDRESS
Data type:

String

Property of:
ConnectionFactory

For a connection to a service integration bus, this property specifies the local
network interface to be used, or the local port or range of local ports to be used, or
both.

The value of the property is a string with the following format:
[host_name][(low_port)[,high_port])]

The meanings of the variables are as follows:

host_name
The host name or IP address of the local network interface to be used for
the connection.

Providing this information is necessary only if the system on which the
application is running has two or more network interfaces and you need to
be able to specify which interface must be used for the connection. If the
system has only one network interface, only that interface can be used. If
the system has two or more network interfaces and you do not specify
which interface must be used, the interface is selected at random.

low_port
The number of the local port to be used for the connection.

If high_port is also specified, low_port is interpreted the lowest port number
in a range of port numbers.

high_port
The highest port number in a range of port numbers. One of the ports in
the specified range must be used for the connection.

Here are some examples of valid values of the property:
JUPITER
9.20.4.98
JUPITER(1000)
9.20.4.98(1000,2000)
(1000)
(1000,2000)
fecc:0:0:a2::2
fecc:0:0:a2::2(1000,2000)

By default, the property is not set.

468 WebSphere MQ: Message Service Client for C/C++

Related reference:
“Network stack selection mechanism” on page 49
This section describes the network stack selection mechanism when both IPv4 and
IPv6 network stacks are enabled on a machine.

XMSC_WPM_ME_NAME
Data type:

String

Property of:
Connection

The name of the messaging engine to which the application is connected. This
property is read-only.

XMSC_WPM_NON_PERSISTENT_MAP
Data type:

xmsINT

Property of:
ConnectionFactory

The reliability level of nonpersistent messages that are sent using the connection.

The valid values of the property are as follows:

Valid value Reliability level
XMSC_WPM_MAPPING_AS_DESTINATION Determined by the default

reliability level specified
for the queue or topic
space in the service
integration bus

XMSC_WPM_MAPPING_BEST_EFFORT_NON_
PERSISTENT

Best effort nonpersistent

XMSC_WPM_MAPPING_EXPRESS_NON_
PERSISTENT

Express nonpersistent

XMSC_WPM_MAPPING_RELIABLE_NON_
PERSISTENT

Reliable nonpersistent

XMSC_WPM_MAPPING_RELIABLE_PERSISTENT Reliable persistent
XMSC_WPM_MAPPING_ASSURED_PERSISTENT Assured persistent

The default value is XMSC_WPM_MAPPING_EXPRESS_NON_PERSISTENT.

For more information about message reliability levels, see the WebSphere
Application Server Information Center.

XMSC_WPM_PERSISTENT_MAP
Data type:

xmsINT

Property of:
ConnectionFactory

The reliability level of persistent messages that are sent using the connection.

Chapter 15. Properties of XMS objects 469

The valid values of the property are as follows:

Valid value Reliability level
XMSC_WPM_MAPPING_AS_DESTINATION Determined by the default

reliability level specified
for the queue or topic
space in the service
integration bus

XMSC_WPM_MAPPING_BEST_EFFORT_NON_
PERSISTENT

Best effort nonpersistent

XMSC_WPM_MAPPING_EXPRESS_NON_
PERSISTENT

Express nonpersistent

XMSC_WPM_MAPPING_RELIABLE_NON_
PERSISTENT

Reliable nonpersistent

XMSC_WPM_MAPPING_RELIABLE_PERSISTENT Reliable persistent
XMSC_WPM_MAPPING_ASSURED_PERSISTENT Assured persistent

The default value is XMSC_WPM_MAPPING_RELIABLE_PERSISTENT.

For more information about message reliability levels, see the WebSphere
Application Server Information Center.

XMSC_WPM_PORT
Data type:

xmsINT

Property of:
Connection

The number of the port listened on by the messaging engine to which the
application is connected. This property is read-only.

XMSC_WPM_PROVIDER_ENDPOINTS
Data type:

String

Property of:
ConnectionFactory

A sequence of one or more endpoint addresses of bootstrap servers. The endpoint
addresses are separated by commas.

A bootstrap server is an application server that is responsible for selecting the
messaging engine to which the application connects. The endpoint address of a
bootstrap server has the following format:

host_name:port_number:chain_name

The meanings of the components of an endpoint address are as follows:

host_name
The host name or IP address of the system on which the bootstrap server
resides. If no host name or IP address is specified, the default is localhost.

port_number
The number of the port on which the bootstrap server listens for incoming
requests. If no port number is specified, the default is 7276.

470 WebSphere MQ: Message Service Client for C/C++

chain_name
The name of a bootstrap transport chain used by the bootstrap server. The
valid values are as follows:

Valid value Name of the bootstrap transport chain
XMSC_WPM_BOOTSTRAP_HTTP BootstrapTunneledMessaging
XMSC_WPM_BOOTSTRAP_HTTPS BootstrapTunneledSecureMessaging
XMSC_WPM_BOOTSTRAP_SSL BootstrapSecureMessaging
XMSC_WPM_BOOTSTRAP_TCP BootstrapBasicMessaging

If no name is specified, the default value is
XMSC_WPM_BOOTSTRAP_TCP.

For more information about bootstrap transport chains, see the WebSphere
Application Server Information Center.

If no endpoint address is specified, the default is
localhost:7276:BootstrapBasicMessaging.
Related reference:
“Network stack selection mechanism” on page 49
This section describes the network stack selection mechanism when both IPv4 and
IPv6 network stacks are enabled on a machine.

XMSC_WPM_SSL_CIPHER_SUITE
Data type:

String

Property of:
ConnectionFactory

The name of the CipherSuite to be used on an SSL or TLS connection to a
WebSphere service integration bus messaging engine. The protocol used in
negotiating the secure connection depends on the specified CipherSuite.

Table 50. CipherSuite options for connection to a WebSphere service integration bus messaging engine

Cipher suite
Protocol
used Fips Suit B 128 bit

Suit B 192
Bit

SSL_RSA_WITH_NULL_MD5 SSLv3 No No No

SSL_RSA_EXPORT_WITH_RC4_40_MD5 SSLv3 No No No

SSL_RSA_WITH_RC4_128_MD5 SSLv3 No No No

SSL_RSA_WITH_NULL_SHA SSLv3 No No No

SSL_RSA_WITH_RC4_128_SHA SSLv3 No No No

SSL_RSA_WITH_DES_CBC_SHA SSLv3 No No No

SSL_RSA_FIPS_WITH_DES_CBC_SHA SSLv3 No No No

SSL_RSA_WITH_3DES_EDE_CBC_SHA SSLv3 No No No

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA SSLv3 No No No

TLS_RSA_WITH_DES_CBC_SHA TLSv10 No No No

TLS_RSA_WITH_3DES_EDE_CBC_SHA TLSv10 Yes No No

TLS_RSA_WITH_AES_128_CBC_SHA TLSv10 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA TLSv10 Yes No No

TLS_RSA_WITH_AES_128_CBC_SHA256 TLSv12 Yes No No

Chapter 15. Properties of XMS objects 471

Table 50. CipherSuite options for connection to a WebSphere service integration bus messaging engine (continued)

Cipher suite
Protocol
used Fips Suit B 128 bit

Suit B 192
Bit

TLS_RSA_WITH_AES_256_CBC_SHA256 TLSv12 Yes No No

TLS_RSA_WITH_NULL_SHA256 TLSv12 No No No

TLS_RSA_WITH_AES_128_GCM_SHA256 TLSv12 Yes No No

TLS_RSA_WITH_AES_256_GCM_SHA384 TLSv12 Yes No No

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLSv12 Yes No No

TLS_ECDHE_RSA_WITH_RC4_128_SHA TLSv12 No No No

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLSv12 Yes No No

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLSv12 Yes No No

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLSv12 Yes No No

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLSv12 Yes No No

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLSv12 Yes No No

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLSv12 Yes Yes No

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLSv12 Yes No Yes

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLSv12 Yes No No

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLSv12 Yes No No

TLS_RSA_WITH_RC4_128_SHA TLSv12 No No No

Note: TLS_RSA_WITH_AES_128_CBC_SHA and
TLS_RSA_WITH_AES_256_CBC_SHA CipherSuites are supported on Windows or
Solaris only. (This is dictated by GSKit.)

Note: The available suites are dependant upon what is available on your local
windows system. (This is dictated by Microsoft SChannel)

There is no default for this property. If you want to use SSL or TLS, you must
specify a value for this property, otherwise your application will not be able to
connect successfully to the server.

XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B
Data type:

xmsINT

Property of:
ConnectionFactory

The value of this property determines whether an application can use the Suite B
compliant cipher suites. You can enable the Suite B compliance cipher suits by
setting this property to one or more of the following values:
v XMSC_WPM_SUITE_B_NONE
v XMSC_ WPM _SUITE_B_128_BIT
v XMSC_ WPM _SUITE_B_192_BIT

Setting the XMSC_WMQ_SUITE_B_NONE property to any other value is invalid.

472 WebSphere MQ: Message Service Client for C/C++

Related reference:
“XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B” on page 461

XMSC_WPM_SSL_KEY_REPOSITORY
Data type:

String

Property of:
ConnectionFactory

A path to the file that is the keyring file containing the public or private keys to be
used in the secure connection.

Setting the keyring file property to the special value of
XMSC_WPM_SSL_MS_CERTIFICATE_STORE specifies the use the Microsoft
Windows key database. Using the Microsoft Windows key database, which is
found under Control Panel -> Internet Options -> Content -> Certificates,
removes the need for a separate key file database. Use of this constant on
Windows x64 and other platforms is not permitted.

By default, the property is not set.

XMSC_WPM_SSL_KEYRING_LABEL
Data type:

String

Property of:
ConnectionFactory

The certificate to be used when authenticating with the server. If no value is
specified, the default certificate is used.

By default, the property is not set.

XMSC_WPM_SSL_KEYRING_PW
Data type:

String

Property of:
ConnectionFactory

The password for the keyring file.

This property can be used as an alternative to using
XMSC_WPM_SSL_KEYRING_STASH_FILE to configure the password for the
keyring file.

By default, the property is not set.

XMSC_WPM_SSL_KEYRING_STASH_FILE
Data type:

String

Chapter 15. Properties of XMS objects 473

Property of:
ConnectionFactory

The name of a binary file containing the password of the key repository file.

This property can be used as an alternative to using
XMSC_WPM_SSL_KEYRING_PW to configure the password for the keyring file.

By default, the property is not set.

XMSC_WPM_SSL_FIPS_REQUIRED
Data type:

Boolean

Property of:
ConnectionFactory

The value of this property determines whether an application can or cannot use
non-FIPS compliant cipher suites. If this property is set to true, only FIPS
algorithms are used for the client-server connection.Setting the value of this
property to TRUE prevents the application from using non-FIPS compliant cipher
suites.

By default, the property is set to FALSE (that is, FIPS mode off).

XMSC_WPM_TARGET_GROUP
Data type:

String

Property of:
ConnectionFactory

The name of a target group of messaging engines. The nature of the target group is
determined by the XMSC_WPM_TARGET_TYPE property.

Set this property if you want to restrict the search for a messaging engine to a
subgroup of the messaging engines in the service integration bus. If you want your
application to be able to connect to any messaging engine in the service integration
bus, do not set this property.

By default, the property is not set.

XMSC_WPM_TARGET_SIGNIFICANCE
Data type:

xmsINT

Property of:
ConnectionFactory

The significance of the target group of messaging engines.

The valid values of the property are as follows:

474 WebSphere MQ: Message Service Client for C/C++

Valid value Meaning
XMSC_WPM_TARGET_SIGNIFICANCE_

PREFERRED
A messaging engine in the target
group is selected if one is available.
Otherwise, a messaging engine outside
the target group is selected, provided
it is in the same service integration
bus.

XMSC_WPM_TARGET_SIGNIFICANCE_
REQUIRED

The selected messaging engine must
be in the target group. If a messaging
engine in the target group is not
available, the connection process fails.

The default value of the property is
XMSC_WPM_TARGET_SIGNIFICANCE_PREFERRED.

XMSC_WPM_TARGET_TRANSPORT_CHAIN
Data type:

String

Property of:
ConnectionFactory

The name of the inbound transport chain that the application must use to connect
to a messaging engine.

The value of the property can be the name of any inbound transport chain that is
available in the application server that hosts the messaging engine. The following
named constant is provided for one of the predefined inbound transport chains:

Named constant Name of transport chain
XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC InboundBasicMessaging

The default value of the property is
XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC.

XMSC_WPM_TARGET_TYPE
Data type:

xmsINT

Property of:
ConnectionFactory

The type of the target group of messaging engines. This property determines the
nature of the target group identified by the XMSC_WPM_TARGET_GROUP
property.

The valid values of the property are as follows:

Valid value Meaning
XMSC_WPM_TARGET_TYPE_BUSMEMBER The name of the target group is the

name of a bus member. The target
group is all the messaging engines
in the bus member.

Chapter 15. Properties of XMS objects 475

Valid value Meaning
XMSC_WPM_TARGET_TYPE_CUSTOM The name of the target group is the

name of a user defined group of
messaging engines. The target group
is all the messaging engines that are
registered with the user defined
group.

XMSC_WPM_TARGET_TYPE_ME The name of the target group is the
name of a messaging engine. The
target group is the specified
messaging engine.

By default, the property is not set.

XMSC_WPM_TEMP_Q_PREFIX
Data type:

String

Property of:
ConnectionFactory

The prefix used to form the name of the temporary queue that is created in the
service integration bus when the application creates an XMS temporary queue. The
prefix can contain up to 12 characters.

The name of a temporary queue starts with the characters “_Q” followed by the
prefix. The remainder of the name consists of system generated characters.

By default, the property is not set, which means that the name of a temporary
queue does not have a prefix.

This property is relevant only in the point-to-point domain.

XMSC_WPM_TEMP_TOPIC_PREFIX
Data type:

String

Property of:
ConnectionFactory

The prefix used to form the name of a temporary topic that is created by the
application. The prefix can contain up to 12 characters.

The name of a temporary topic starts with the characters “_T” followed by the
prefix. The remainder of the name consists of system generated characters.

By default, the property is not set, which means that the name of a temporary
topic does not have a prefix.

This property is relevant only in the publish/subscribe domain.

XMSC_WPM_TOPIC_SPACE
Data type:

String

476 WebSphere MQ: Message Service Client for C/C++

Property of:
Destination

Name used in a URI:
topicSpace

The name of the topic space that contains the topic. Only a destination that is a
topic can have this property.

By default, the property is not set, which means that the default topic space is
assumed.

This property is relevant only in the publish/subscribe domain.

Chapter 15. Properties of XMS objects 477

478 WebSphere MQ: Message Service Client for C/C++

Index

A
acknowledging messages 30
administered objects 32, 77

attributes 7
ConnectionFactory properties 78
Destination properties 79
retrieval 82

AIX
compilers 8
installed directories 16
uninstalling Message Service Client

for C/C++ 18
application, unexpected termination 108
applications

building your own 49
data types for elements in message

body 97
sample 102

description 102
running 104

writing
general 25
in C 57
in C++ 65

ASF
Handling poison messages 40

assigning XMS objects in C++ 68
asynchronous message delivery 31
attribute, introduction 6
Automatic WMQ Client reconnection

through XMS 53

B
body types of messages 95
building applications

your own 49
byte array

C functions returning by reference 60
C functions returning by value 59
C++ methods returning 67

bytes message 97
BytesMessage class

interface definition
for C 114
for C++ 265

C
C

additional functions 261
classes 113
compilers 8
functions accepting a string as

input 61
functions returning a byte array by

value 59
functions returning a string by

value 58

C (continued)
functions returning a string or byte

array by reference 60
getting properties 58
handling errors 61
object handles

data types 57
sample applications 105
setting properties 58
using exception listener functions 63
using message listener functions 62
using the PropertyContext class 58
writing applications 57

C++
application, using the C API 74
assigning XMS objects 68
classes 263
compilers 8
getting properties 67
handling errors 70
methods returning a byte array 67
sample applications 105
setting properties 67
using exception listeners 74
using message listeners 72
using namespaces 65
using the PropertyContext class 67
using the String class 66
writing applications 65

CCSID 46
closing a connection 27
coded character set identifier

(CCSID) 46
command line options 14, 15
communications

securing 85
compiler flag settings 49
compilers 8
configuring

for an application that connects to a
queue manager 21

for an application that connects to a
service integration bus 24

for an application that uses a real-time
connection to a broker 23

message server environment 21
connecting to a service integration

bus 28
Connection class

interface definition
for C 127
for C++ 275

object properties 401
connection factory

introduction 26
ConnectionFactory class

interface definition
for C 133
for C++ 280

object properties 402

ConnectionMetaData class
interface definition

for C 135
for C++ 283

object properties 406
connections

closing 27
handling exceptions 27
starting 27
stopping 27

converting a property value to another
data type 43

D
data types compatible with Java 42, 95,

97
deleting objects 42
delivering messages to an application

asynchronously 31
synchronously 32

Destination class
interface definition

for C 136
for C++ 285

object properties 407
destinations

administered objects
property mapping 77

introduction 32
temporary 36

durable subscribers 37

E
environment variables 109
ErrorBlock class

interface definition 141
errors

codes 48
handling in C 61
handling in C++ 70

Exception class
interface definition

for C++ 288
exception codes 48
exception listener functions, using in

C 63
exception listeners, using in C++ 74
ExceptionListener class

interface definition
for C 144
for C++ 292

F
First Failure Data Capture (FFDC) 108

C and C++ applications 109

© Copyright IBM Corp. 2005, 2013 479

G
getting properties

in C 58
in C++ 67

H
handles, object

data types 57
handling exceptions on a connection 27
HTTP tunnelling 28
HTTPS 88

I
IllegalStateException class

interface definition 293
InitialContext class

interface definition
for C 145
for C++ 293

object properties 408
installation wizard 11
installed directories

AIX 16
Linux 16
Solaris 16
Windows (C/C++) 17

installing XMS
from command line 14
Linux 11
silently 15
Solaris 11
Windows 11

InvalidClientIDException class
interface definition 296

InvalidDestinationException class
interface definition 296

InvalidSelectorException class
interface definition 296

Iterator class
interface definition

for C 147
for C++ 297

iterators 45

J
Java compatible data types 42, 95, 97
JMS_IBM_ArmCorrelator property 417
JMS_IBM_CHARACTER_SET

property 417
JMS_IBM_ENCODING property 418
JMS_IBM_EXCEPTIONMESSAGE

property 419
JMS_IBM_EXCEPTIONPROBLEMDESTINATION

property 419
JMS_IBM_EXCEPTIONREASON

property 419
JMS_IBM_EXCEPTIONTIMESTAMP

property 419
JMS_IBM_FEEDBACK property 420
JMS_IBM_FORMAT property 420
JMS_IBM_LAST_MSG_IN_GROUP

property 420

JMS_IBM_MSGTYPE property 421
JMS_IBM_PUTAPPLTYPE property 421
JMS_IBM_PUTDATE property 421
JMS_IBM_PUTTIME property 422
JMS_IBM_REPORT_COA property 422
JMS_IBM_REPORT_COD property 423
JMS_IBM_REPORT_DISCARD_MSG

property 423
JMS_IBM_REPORT_EXCEPTION

property 423
JMS_IBM_REPORT_EXPIRATION

property 424
JMS_IBM_REPORT_NAN property 425
JMS_IBM_REPORT_PAN property 425
JMS_IBM_REPORT_PASS_CORREL_ID

property 425
JMS_IBM_REPORT_PASS_MSG_ID

property 426
JMS_IBM_RETAIN property 426
JMS_IBM_SYSTEM_MESSAGEID

property 427
JMS_TOG_ARM_Correlator

property 427
JMSX_APPID property 427
JMSX_DELIVERY_COUNT property 428
JMSX_GROUPID property 428
JMSX_GROUPSEQ property 428
JMSX_USERID property 429
JNDI Lookup web service

problems with accessing 111
JNDI Lookup Web service 83

L
Linux

compilers 8
installed directories 16
installing XMS 11
uninstalling Message Service Client

for C/C++ 18
log file creation, Linux or Solaris 14
log file, creating 14

M
map message 98
MapMessage class

interface definition
for C 149
for C++ 299

mapping XMS messages onto WebSphere
MQ messages 101

message
body 91, 95, 97
body type

bytes 97
map 98
object 98
stream 99
text 100

bytes 97
delivery

asynchronous 31
synchronous 32

delivery mode 32
header fields 91

message (continued)
map 98
object 98
properties 91

application defined 95
IBM-defined 94
JMS-defined 93

selectors 100
stream 99
text 100

Message class
interface definition

for C 165
for C++ 311

object properties 409
Message consumers 37

asynchronous 39
synchronous 39

message listener functions, using in
C 62

message listeners, using in C++ 72
message model, XMS 8
Message object

body 91
header fields 91
properties 91

application defined 95
IBM-defined 94
JMS-defined 93

Message producers 36
associated destination 37
no associated destination 36

message server environment 21
Message Service Client for C/C++

installing 11
MessageConsumer class

interface definition
for C 180
for C++ 323

object properties 414
MessageEOFException class

interface definition 327
MessageFormatException class

interface definition 328
MessageListener class

interface definition
for C 184
for C++ 328

MessageNotReadableException class
interface definition 329

MessageNotWritableException class
interface definition 329

MessageProducer class
interface definition

for C 185
for C++ 329

object properties 414
messages

acknowledging 30
mapping onto WebSphere MQ

messages 101
messaging

asynchronous delivery 31, 32
point-to-point 4
publish/subscribe 4
styles 4

480 WebSphere MQ: Message Service Client for C/C++

MQMD header
mapping XMS messages onto

WebSphere MQ messages 101
MQRFH2 header

mapping XMS messages onto
WebSphere MQ messages 101

XMSC_WMQ_TARGET_CLIENT
property 464

multithreaded
applications 26
runtime libraries 49

N
namespaces, using in C++ 65
non-durable subscribers

cleanup of queues 38
nonpersistent messages 32

O
object handles

data types 57
object message 98
object model, XMS 5
object properties 401
ObjectMessage class

interface definition
for C 194
for C++ 338

objects 7
administered 77
attributes 7
deleting 42

operating environments 8

P
persistent messages 32
point-to-point messaging 4
Poison messages 39
primitive types 42
problem determination

errors that cannot be handled at run
time 108

FFDC and trace 109
introduction 107
runtime errors 107

process CCSID 47
process CCSID functions 261
properties

Connection object 401
ConnectionFactory object 402
ConnectionMetaData object 406
Destination object 407
getting

in C 58
in C++ 67

InitialContext object 408
introduction 401
Message object

application defined 95
IBM-defined 94
JMS-defined 93
list of properties 409

MessageConsumer object 414

properties (continued)
MessageProducer object 414
Session object 414
setting

in C 58
in C++ 67

properties of objects 401
property

definitions 414
introduction 6
JMS_IBM_ArmCorrelator 417
JMS_IBM_CHARACTER_SET 417
JMS_IBM_ENCODING 418
JMS_IBM_EXCEPTIONMESSAGE 419
JMS_IBM_EXCEPTIONPROBLEMDESTINATION 419
JMS_IBM_EXCEPTIONREASON 419
JMS_IBM_EXCEPTIONTIMESTAMP 419
JMS_IBM_FEEDBACK 420
JMS_IBM_FORMAT 420
JMS_IBM_LAST_MSG_IN_GROUP 420
JMS_IBM_MSGTYPE 421
JMS_IBM_PUTAPPLTYPE 421
JMS_IBM_PUTDATE 421
JMS_IBM_PUTTIME 422
JMS_IBM_REPORT_COA 422
JMS_IBM_REPORT_COD 423
JMS_IBM_REPORT_DISCARD_MSG 423
JMS_IBM_REPORT_EXCEPTION 423
JMS_IBM_REPORT_EXPIRATION 424
JMS_IBM_REPORT_NAN 425
JMS_IBM_REPORT_PAN 425
JMS_IBM_REPORT_PASS_CORREL_ID 425
JMS_IBM_REPORT_PASS_MSG_ID 426
JMS_IBM_RETAIN 426
JMS_IBM_SYSTEM_MESSAGEID 427
JMS_TOG_ARM_Correlator 427
JMSX_APPID 427
JMSX_DELIVERY_COUNT 428
JMSX_GROUPID 428
JMSX_GROUPSEQ 428
JMSX_USERID 429
XMSC_ASYNC_EXCEPTIONS 429
XMSC_CLIENT_CCSID 429

use in code page conversion 46
XMSC_CLIENT_ID 430
XMSC_CONNECTION_TYPE 430
XMSC_DELIVERY_MODE 431
XMSC_IC_PROVIDER_URL 432
XMSC_IC_SECURITY_AUTHENTICATION 432
XMSC_IC_SECURITY_CREDENTIALS 432
XMSC_IC_SECURITY_PRINCIPAL 432
XMSC_IC_SECURITY_PROTOCOL 433
XMSC_IC_URL 433
XMSC_JMS_MAJOR_VERSION 433
XMSC_JMS_MINOR_VERSION 433
XMSC_JMS_VERSION 433
XMSC_MAJOR_VERSION 434
XMSC_MINOR_VERSION 434
XMSC_PASSWORD 434
XMSC_PRIORITY 434
XMSC_PROVIDER_NAME 435
XMSC_RTT_CONNECTION_PROTOCOL 435
XMSC_RTT_HOST_NAME 435
XMSC_RTT_LOCAL_ADDRESS 436
XMSC_RTT_PORT 436
XMSC_TIME_TO_LIVE 437
XMSC_USERID 437

property (continued)
XMSC_VERSION 437
XMSC_WMQ_BROKER_CONTROLQ 438
XMSC_WMQ_BROKER_PUBQ 438
XMSC_WMQ_BROKER_QMGR 438
XMSC_WMQ_BROKER_SUBQ 438
XMSC_WMQ_BROKER_VERSION 439
XMSC_WMQ_CCSID 439
XMSC_WMQ_CHANNEL 440
XMSC_WMQ_CLIENT_RECONNECT_OPTIONS 440
XMSC_WMQ_CONNECTION_MODE 441
XMSC_WMQ_CONNECTION_NAME_LIST 442
XMSC_WMQ_DUR_SUBQ 442
XMSC_WMQ_ENCODING 443
XMSC_WMQ_FAIL_IF_QUIESCE 444
XMSC_WMQ_HOST_NAME 450
XMSC_WMQ_LOCAL_ADDRESS 450
XMSC_WMQ_MESSAGE_BODY 444
XMSC_WMQ_MESSAGE_SELECTION 451
XMSC_WMQ_MQMD_MESSAGE_CONTEXT 445
XMSC_WMQ_MQMD_READ_ENABLED 446
XMSC_WMQ_MQMD_WRITE_ENABLED 447
XMSC_WMQ_MSG_BATCH_SIZE 451
XMSC_WMQ_POLLING_INTERVAL 452
XMSC_WMQ_PORT 452
XMSC_WMQ_PROVIDER_VERSION 452
XMSC_WMQ_PUB_ACK_INTERVAL 454
XMSC_WMQ_PUT_ASYNC_ALLOWED 447
XMSC_WMQ_QMGR_CCSID 454
XMSC_WMQ_QUEUE_MANGER 454
XMSC_WMQ_READ_AHEAD_ALLOWED 448
XMSC_WMQ_READ_AHEAD_CLOSE_POLICY 448
XMSC_WMQ_RECEIVE_EXIT 455
XMSC_WMQ_RECEIVE_EXIT_INIT 455
XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID 449
XMSC_WMQ_SECURITY_EXIT 456
XMSC_WMQ_SECURITY_EXIT_INIT 456
XMSC_WMQ_SEND_CHECK_COUNT 457
XMSC_WMQ_SEND_EXIT 456
XMSC_WMQ_SEND_EXIT_INIT 457
XMSC_WMQ_SHARE_CONV_ALLOWED 457
XMSC_WMQ_SSL_CERT_STORES 458
XMSC_WMQ_SSL_CIPHER_SPEC 458
XMSC_WMQ_SSL_CIPHER_SUITE 460
XMSC_WMQ_SSL_CRYPTO_HW 461
XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B 461
XMSC_WMQ_SSL_FIPS_REQUIRED 462
XMSC_WMQ_SSL_KEY_REPOSITORY 462
XMSC_WMQ_SSL_KEY_RESETCOUNT 463
XMSC_WMQ_SSL_PEER_NAME 463
XMSC_WMQ_SYNCPOINT_ALL_GETS 463
XMSC_WMQ_TARGET_CLIENT 464
XMSC_WMQ_TEMP_Q_PREFIX 464
XMSC_WMQ_TEMP_TOPIC_PREFIX 465
XMSC_WMQ_TEMPORARY_MODEL 465
XMSC_WMQ_WILDCARD_FORMAT 465
XMSC_WPM_BUS_NAME 466
XMSC_WPM_CONNECTION_PROTOCOL 466
XMSC_WPM_CONNECTION_PROXIMITY 467
XMSC_WPM_DUR_SUB_HOME 467
XMSC_WPM_HOST_NAME 467
XMSC_WPM_LOCAL_ADDRESS 468
XMSC_WPM_ME_NAME 469
XMSC_WPM_NON_PERSISTENT_MAP 469
XMSC_WPM_PERSISTENT_MAP 469
XMSC_WPM_PORT 470

Index 481

property (continued)
XMSC_WPM_PROVIDER_ENDPOINTS 470
XMSC_WPM_SSL_CIPHER_SUITE 471
XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B 472
XMSC_WPM_SSL_FIPS_REQUIRED 474
XMSC_WPM_SSL_KEY_REPOSITORY 473
XMSC_WPM_SSL_KEYRING_LABEL 473
XMSC_WPM_SSL_KEYRING_PW 473
XMSC_WPM_SSL_KEYRING_STASH_FILE 473
XMSC_WPM_TARGET_GROUP 474
XMSC_WPM_TARGET_SIGNIFICANCE 474
XMSC_WPM_TARGET_TRANSPORT_CHAIN 475
XMSC_WPM_TARGET_TYPE 475
XMSC_WPM_TEMP_Q_PREFIX 476
XMSC_WPM_TEMP_TOPIC_PREFIX 476
XMSC_WPM_TOPIC_SPACE 476

Property class
interface definition

for C 196
for C++ 340

Property value, converting form one
datatype to another 43

PropertyContext class
interface definition

for C 211
for C++ 353

using in C 58
using in C++ 67

publish/subscribe messaging 4, 38

Q
queue browser, using 41
queue uniform resource identifiers

(URIs) 35
QueueBrowser class

interface definition
for C 228
for C++ 365

R
receiving messages

asynchronously 31
synchronously 32

removing Message Service Client for
C/C++

AIX 18
Linux 18
Windows

by running the uninstaller
program 18

using Add/Remove Programs 19
repository of administered objects

introduction 7
supported types 77

Requestor class
interface definition

for C 230
for C++ 368

requestors, using 41
ResourceAllocationException class

interface definition 370
response files, for samples 102
return codes 61
running the sample applications 104

runtime libraries 49

S
sample applications

building C or C++ 105
description 102
running 104
using 102

securing communications 85
SecurityException class

interface definition 371
selectors, message 100
service integration bus, connecting to 28
Session class

interface definition
for C 232
for C++ 371

object properties 414
sessions

asynchronous message delivery 31
introduction 28
synchronous message delivery 32
transacted 29

setting properties
in C 58
in C++ 67

setup
for an application that connects to a

queue manager 21
for an application that connects to a

service integration bus 24
for an application that uses a real-time

connection to a broker 23
message server environment 21

silent installation 14, 15
Solaris

compilers 8
installed directories 16
installing XMS 11

SSL 85, 88
starting a connection 27
stopping a connection 27
stream message 99
StreamMessage class

interface definition
for C 245
for C++ 384

string
C functions accepting as input 61
C functions returning by reference 60
C functions returning by value 58

String class
interface definition 394
using in C++ 66

styles of messaging 4
subscriber queue 37
synchronous message delivery 32

T
temporary destinations 36
text message 100
TextMessage class

interface definition
for C 259

TextMessage class (continued)
interface definition (continued)

for C++ 398
threading model 26
topic uniform resource identifiers

(URIs) 33
trace, configuration 109
transacted sessions 29
TransactionInProgressException class

interface definition 400
TransactionRolledBackException class

interface definition 400
troubleshooting 107

tips 111

U
uniform resource identifiers (URIs)

introduction 32
queue 35
topic 33

uninstalling Message Service Client for
C/C++

AIX 18
Linux 18
Windows

by running the uninstaller
program 18

using Add/Remove Programs 19
URI 32

W
wildcard characters

in topic URIs 33
Windows

AIX
installing XMS 11

compilers 8
installed directories (C/C++) 17
installing XMS 11
uninstalling Message Service Client

for C/C++
by running the uninstaller

program 18
using Add/Remove Programs 19

writing applications
general 25
in C 57
in C++ 65

X
XMS

compilers 8
installing 11
message model 8
object model 5
operating environments 8
threading model 26

XMSC_ASYNC_EXCEPTIONS
property 429

XMSC_CLIENT_CCSID property 429
use in code page conversion 46

XMSC_CLIENT_ID property 430

482 WebSphere MQ: Message Service Client for C/C++

XMSC_CONNECTION_TYPE
property 430

XMSC_DELIVERY_MODE property 431
XMSC_IC_PROVIDER_URL

property 432
XMSC_IC_SECURITY_AUTHENTICATION

property 432
XMSC_IC_SECURITY_CREDENTIALS

property 432
XMSC_IC_SECURITY_PRINCIPAL

property 432
XMSC_IC_SECURITY_PROTOCOL

property 433
XMSC_IC_URL property 433
XMSC_JMS_MAJOR_VERSION

property 433
XMSC_JMS_MINOR_VERSION

property 433
XMSC_JMS_VERSION property 433
XMSC_MAJOR_VERSION property 434
XMSC_MINOR_VERSION property 434
XMSC_PASSWORD property 434
XMSC_PRIORITY property 434
XMSC_PROVIDER_NAME property 435
XMSC_RTT_CONNECTION_PROTOCOL

property 435
XMSC_RTT_HOST_NAME property 435
XMSC_RTT_LOCAL_ADDRESS

property 436
XMSC_RTT_PORT property 436
XMSC_TIME_TO_LIVE property 437
XMSC_USERID property 437
XMSC_VERSION property 437
XMSC_WMQ_BROKER_CONTROLQ

property 438
XMSC_WMQ_BROKER_PUBQ

property 438
XMSC_WMQ_BROKER_QMGR

property 438
XMSC_WMQ_BROKER_SUBQ

property 438
XMSC_WMQ_BROKER_VERSION

property 439
XMSC_WMQ_CCSID property 439
XMSC_WMQ_CHANNEL property 440
XMSC_WMQ_CLIENT_RECONNECT_OPTIONS

property 440
XMSC_WMQ_CONNECTION_MODE

property 441
XMSC_WMQ_CONNECTION_NAME_LIST

property 442
XMSC_WMQ_DUR_SUBQ property 442
XMSC_WMQ_ENCODING property 443
XMSC_WMQ_FAIL_IF_QUIESCE

property 444
XMSC_WMQ_HOST_NAME

property 450
XMSC_WMQ_LOCAL_ADDRESS

property 450
XMSC_WMQ_MESSAGE_BODY

property 444
XMSC_WMQ_MESSAGE_SELECTION

property 451
XMSC_WMQ_MQMD_MESSAGE_CONTEXT

property 445
XMSC_WMQ_MQMD_READ_ENABLED

property 446

XMSC_WMQ_MQMD_WRITE_ENABLED
property 447

XMSC_WMQ_MSG_BATCH_SIZE
property 451

XMSC_WMQ_POLLING_INTERVAL
property 452

XMSC_WMQ_PORT property 452
XMSC_WMQ_PROVIDER_VERSION

property 452
XMSC_WMQ_PUB_ACK_INTERVAL

property 454
XMSC_WMQ_PUT_ASYNC_ALLOWED

property 447
XMSC_WMQ_QMGR_CCSID

property 454
XMSC_WMQ_QUEUE_MANGER

property 454
XMSC_WMQ_READ_AHEAD_ALLOWED

property 448
XMSC_WMQ_READ_AHEAD_CLOSE_POLICY

property 448
XMSC_WMQ_RECEIVE_EXIT

property 455
XMSC_WMQ_RECEIVE_EXIT_INIT

property 455
XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID

property 449
XMSC_WMQ_SECURITY_EXIT

property 456
XMSC_WMQ_SECURITY_EXIT_INIT

property 456
XMSC_WMQ_SEND_CHECK_COUNT

property 457
XMSC_WMQ_SEND_EXIT property 456
XMSC_WMQ_SEND_EXIT_INIT

property 457
XMSC_WMQ_SHARE_CONV_ALLOWED

property 457
XMSC_WMQ_SSL_CERT_STORES

property 458
XMSC_WMQ_SSL_CIPHER_SPEC

property 458
XMSC_WMQ_SSL_CIPHER_SUITE

property 460
XMSC_WMQ_SSL_CRYPTO_HW

property 461
XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B

property 461
XMSC_WMQ_SSL_FIPS_REQUIRED

property 462
XMSC_WMQ_SSL_KEY_REPOSITORY

property 462
XMSC_WMQ_SSL_KEY_RESETCOUNT

property 463
XMSC_WMQ_SSL_PEER_NAME

property 463
XMSC_WMQ_SYNCPOINT_ALL_GETS

property 463
XMSC_WMQ_TARGET_CLIENT

property 464
XMSC_WMQ_TEMP_Q_PREFIX

property 464
XMSC_WMQ_TEMP_TOPIC_PREFIX

property 465
XMSC_WMQ_TEMPORARY_MODEL

property 465

XMSC_WMQ_WILDCARD_FORMAT
property 465

XMSC_WPM_BUS_NAME property 466
XMSC_WPM_CONNECTION_PROTOCOL

property 466
XMSC_WPM_CONNECTION_PROXIMITY

property 467
XMSC_WPM_DUR_SUB_HOME

property 467
XMSC_WPM_HOST_NAME

property 467
XMSC_WPM_LOCAL_ADDRESS

property 468
XMSC_WPM_ME_NAME property 469
XMSC_WPM_NON_PERSISTENT_MAP

property 469
XMSC_WPM_PERSISTENT_MAP

property 469
XMSC_WPM_PORT property 470
XMSC_WPM_PROVIDER_ENDPOINTS

property 470
XMSC_WPM_SSL_CIPHER_SUITE

property 471
XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B

property 472
XMSC_WPM_SSL_FIPS_REQUIRED

property 474
XMSC_WPM_SSL_KEY_REPOSITORY

property 473
XMSC_WPM_SSL_KEYRING_LABEL

property 473
XMSC_WPM_SSL_KEYRING_PW

property 473
XMSC_WPM_SSL_KEYRING_STASH_FILE

property 473
XMSC_WPM_SSL_MS_CERTIFICATE_STORE 473
XMSC_WPM_TARGET_GROUP

property 474
XMSC_WPM_TARGET_SIGNIFICANCE

property 474
XMSC_WPM_TARGET_TRANSPORT_CHAIN

property 475
XMSC_WPM_TARGET_TYPE

property 475
XMSC_WPM_TEMP_Q_PREFIX

property 476
XMSC_WPM_TEMP_TOPIC_PREFIX

property 476
XMSC_WPM_TOPIC_SPACE

property 476

Index 483

484 WebSphere MQ: Message Service Client for C/C++

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2005, 2013 485

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

486 WebSphere MQ: Message Service Client for C/C++

Programming interface information
Programming interface information, if provided, is intended to help you create
application software for use with this program.

This book contains information on intended programming interfaces that allow the
customer to write programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the
Web at “Copyright and trademark information”www.ibm.com/legal/
copytrade.shtml. Other product and service names might be trademarks of IBM or
other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

This product includes software developed by the Eclipse Project
(http://www.eclipse.org/).

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 487

488 WebSphere MQ: Message Service Client for C/C++

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use 44-1962-816151
– From within the U.K., use 01962-816151

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2005, 2013 489

mailto:idrcf@hursley.ibm.com

490 WebSphere MQ: Message Service Client for C/C++

����

SC34-6984-03

	Contents
	Figures
	Chapter 1. Welcome to the documentation for Message Service Client for C/C++
	What's new in this release

	Chapter 2. Introduction to Message Service Client for C/C++
	What is Message Service Client for C/C++?
	Styles of messaging
	The XMS object model
	Attributes and properties of objects
	Administered objects

	The XMS message model
	Operating environments
	Prerequisites for XMS applications connecting to WebSphere MQ

	Chapter 3. Installing Message Service Client for C/C++
	Installing Message Service Client for C/C++
	Installing Message Service Client for C/C++ using the installation wizard
	Installing from the command line
	Running the installer from the command line
	Installing silently

	What is installed on AIX, Linux, and Solaris
	What is installed on Windows (C/C++)
	Uninstalling Message Service Client for C/C++
	Uninstalling on Message Service Client for C/C++ using Add/Remove Programs

	Chapter 4. Setting up the messaging server environment
	Configuring the queue manager and broker for an application that connects to a WebSphere MQ queue manager
	Configuring the broker for an application that uses a real-time connection to a broker
	Configuring the service integration bus for an application that connects to a WebSphere service integration bus

	Chapter 5. Developing XMS applications
	Writing XMS applications
	The threading model
	ConnectionFactories and Connection objects
	Connection started and stopped mode
	Connection closure
	Exception Handling
	Connection to a WebSphere service integration bus

	Sessions
	Transacted sessions
	Message acknowledgement
	Asynchronous message delivery
	Synchronous message delivery
	Message delivery mode

	Destinations
	Topic uniform resource identifiers
	Queue uniform resource identifiers
	Temporary destinations

	Message producers
	Message producers with no associated destination
	Message producers with associated destination

	Message consumers
	Durable subscribers
	Non-durable subscribers
	Synchronous message consumers
	Asynchronous message consumers
	Poison messages
	Handling poison messages in ASF

	Queue browsers
	Requestors
	Object Deletion
	XMS primitive types
	Implicit conversion of a property value from one data type to another
	Iterators
	Coded character set identifiers
	XMS error and exception codes
	Building your own applications
	Network stack selection mechanism
	Automatic WMQ client reconnection through XMS
	Connecting applications in a multiple installation environment

	Chapter 6. Writing XMS applications in C
	Object handles in C
	Object Properties in C
	C functions that return a string by value
	C functions that return a byte array by value
	C functions that return a string or byte array by reference
	C functions that accept a string as input
	Error handling in C
	Return codes
	The error block

	Message and exception listener functions in C
	Message listener functions in C
	Exception listener functions in C

	Chapter 7. Writing XMS applications in C++
	Namespaces in C++
	String objects in C++
	C++ methods that return a byte array
	Properties in C++
	Assignment of XMS objects to variables in C++
	Error handling in C++
	Message and exception listeners in C++
	Message listeners in C++
	Exception listeners in C++

	Use of C APIs in a C++ application

	Chapter 8. Working with administered objects
	Supported types of administered object repository
	Property mapping for administered objects
	Required properties for administered ConnectionFactory objects
	Required properties for administered Destination objects
	Creating administered objects
	InitialContext objects
	InitialContext properties
	URI format for XMS initial contexts
	JNDI Lookup Web service
	Retrieval of administered objects

	Chapter 9. Securing communications for XMS applications
	Secure connections to a WebSphere MQ queue manager
	CipherSuite and CipherSpec name mappings for connections to a WebSphere MQ queue manager
	Secure connections to a WebSphere service integration bus messaging engine
	CipherSuite and CipherSpec name mappings for connections to a WebSphere service integration bus

	Chapter 10. XMS messages
	Parts of an XMS message
	Header fields in an XMS message
	Properties of an XMS message
	JMS-defined properties of a message
	IBM-defined properties of a message
	Application-defined properties of a message

	The body of an XMS message
	Data types for elements of application data
	Bytes messages
	Map messages
	Object messages
	Stream messages
	Text messages

	Message selectors
	Mapping XMS messages onto WebSphere MQ messages
	Using the XMS sample applications
	The sample applications
	Running the sample applications
	Building the C or C++ sample applications

	Chapter 11. Troubleshooting
	Problem determination for C/C++ applications
	Error conditions that can be handled at run time
	Error conditions that cannot be handled at run time
	Repeatable failures

	FFDC and trace configuration for C/C++ applications
	Tips for troubleshooting

	Chapter 12. C classes
	BytesMessage
	Functions
	xmsBytesMsgGetBodyLength – Get Body Length
	xmsBytesMsgReadBoolean – Read Boolean Value
	xmsBytesMsgReadByte – Read Byte
	xmsBytesMsgReadBytes – Read Bytes
	xmsBytesMsgReadBytesByRef – Read Bytes by Reference
	xmsBytesMsgReadChar – Read Character
	xmsBytesMsgReadDouble – Read Double Precision Floating Point Number
	xmsBytesMsgReadFloat – Read Floating Point Number
	xmsBytesMsgReadInt – Read Integer
	xmsBytesMsgReadLong – Read Long Integer
	xmsBytesMsgReadShort – Read Short Integer
	xmsBytesMsgReadUnsignedByte – Read Unsigned Byte
	xmsBytesMsgReadUnsignedShort – Read Unsigned Short Integer
	xmsBytesMsgReadUTF – Read UTF String
	xmsBytesMsgReset – Reset
	xmsBytesMsgWriteBoolean – Write Boolean Value
	xmsBytesMsgWriteByte – Write Byte
	xmsBytesMsgWriteBytes – Write Bytes
	xmsBytesMsgWriteChar – Write Character
	xmsBytesMsgWriteDouble – Write Double Precision Floating Point Number
	xmsBytesMsgWriteFloat – Write Floating Point Number
	xmsBytesMsgWriteInt – Write Integer
	xmsBytesMsgWriteLong – Write Long Integer
	xmsBytesMsgWriteShort – Write Short Integer
	xmsBytesMsgWriteUTF – Write UTF String

	Connection
	Functions
	xmsConnClose – Close Connection
	xmsConnCreateSession – Create Session
	xmsConnGetClientID – Get Client ID
	xmsConnGetExceptionListener – Get Exception Listener
	xmsConnGetMetaData – Get Metadata
	xmsConnSetClientID – Set Client ID
	xmsConnSetExceptionListener – Set Exception Listener
	xmsConnStart – Start Connection
	xmsConnStop – Stop Connection

	ConnectionFactory for the C class
	Functions
	xmsConnFactCreate – Create Connection Factory
	xmsConnFactCreateConnection – Create Connection (using the default user identity)
	xmsConnFactCreateConnectionForUser – Create Connection (using a specified user identity)
	xmsConnFactDispose – Delete Connection Factory

	ConnectionMetaData
	Functions
	xmsConnMetaDataGetJMSXProperties – Get JMS Defined Message Properties

	Destination for the C class
	Functions
	xmsDestCreate – Create Destination (using a URI)
	xmsDestCreateByType – Create Destination (specifying a type and name)
	xmsDestCreateTemporaryByType – Create Temporary Destination
	xmsDestDispose – Delete Destination
	xmsDestGetName – Get Destination Name
	xmsDestGetTypeId – Get Destination Type
	xmsDestToString – Get Destination Name as URI

	ErrorBlock
	Functions
	xmsErrorClear – Clear Error Block
	xmsErrorCreate – Create Error Block
	xmsErrorDispose – Delete Error Block
	xmsErrorGetErrorCode – Get Error Code
	xmsErrorGetErrorData – Get Error Data
	xmsErrorGetErrorString – Get Error String
	xmsErrorGetJMSException – Get Exception Code
	xmsErrorGetLinkedError – Get Linked Error

	ExceptionListener
	Functions
	onException – On Exception

	InitialContext
	Functions
	xmsInitialContextCreate – Create Initial Context
	xmsInitialContextDispose – Delete Initial Context
	xmsInitialContextLookup – Look Up Object in Initial Context

	Iterator
	Functions
	xmsIteratorDispose – Delete Iterator
	xmsIteratorGetNext – Get Next Object
	xmsIteratorHasNext – Check for More Objects
	xmsIteratorReset – Reset Iterator

	MapMessage
	Functions
	xmsMapMsgGetBoolean – Get Boolean Value
	xmsMapMsgGetByte – Get Byte
	xmsMapMsgGetBytes – Get Bytes
	xmsMapMsgGetBytesByRef – Get Bytes by Reference
	xmsMapMsgGetChar – Get Character
	xmsMapMsgGetDouble – Get Double Precision Floating Point Number
	xmsMapMsgGetFloat – Get Floating Point Number
	xmsMapMsgGetInt – Get Integer
	xmsMapMsgGetLong – Get Long Integer
	xmsMapMsgGetMap – Get Name-Value Pairs
	xmsMapMsgGetObject – Get Object
	xmsMapMsgGetShort – Get Short Integer
	xmsMapMsgGetString – Get String
	xmsMapMsgGetStringByRef – Get String by Reference
	xmsMapMsgItemExists – Check Name-Value Pair Exists
	xmsMapMsgSetBoolean – Set Boolean Value
	xmsMapMsgSetByte – Set Byte
	xmsMapMsgSetBytes – Set Bytes
	xmsMapMsgSetChar – Set Character
	xmsMapMsgSetDouble – Set Double Precision Floating Point Number
	xmsMapMsgSetFloat – Set Floating Point Number
	xmsMapMsgSetInt – Set Integer
	xmsMapMsgSetLong – Set Long Integer
	xmsMapMsgSetObject – Set Object
	xmsMapMsgSetShort – Set Short Integer
	xmsMapMsgSetString – Set String

	Message
	Functions
	xmsMsgAcknowledge – Acknowledge
	xmsMsgClearBody – Clear Body
	xmsMsgClearProperties – Clear Properties
	xmsMsgDispose – Delete Message
	xmsMsgGetJMSCorrelationID – Get JMSCorrelationID
	xmsMsgGetJMSDeliveryMode – Get JMSDeliveryMode
	xmsMsgGetJMSDestination – Get JMSDestination
	xmsMsgGetJMSExpiration – Get JMSExpiration
	xmsMsgGetJMSMessageID – Get JMSMessageID
	xmsMsgGetJMSPriority – Get JMSPriority
	xmsMsgGetJMSRedelivered – Get JMSRedelivered
	xmsMsgGetJMSReplyTo – Get JMSReplyTo
	xmsMsgGetJMSTimestamp – Get JMSTimestamp
	xmsMsgGetJMSType – Get JMSType
	xmsMsgGetProperties – Get Properties
	xmsMsgGetTypeId – Get Type
	xmsMsgPropertyExists – Check Property Exists
	xmsMsgSetJMSCorrelationID – Set JMSCorrelationID
	xmsMsgSetJMSDeliveryMode – Set JMSDeliveryMode
	xmsMsgSetJMSDestination – Set JMSDestination
	xmsMsgSetJMSExpiration – Set JMSExpiration
	xmsMsgSetJMSMessageID – Set JMSMessageID
	xmsMsgSetJMSPriority – Set JMSPriority
	xmsMsgSetJMSRedelivered – Set JMSRedelivered
	xmsMsgSetJMSReplyTo – Set JMSReplyTo
	xmsMsgSetJMSTimestamp – Set JMSTimestamp
	xmsMsgSetJMSType – Set JMSType

	MessageConsumer
	Functions
	xmsMsgConsumerClose – Close Message Consumer
	xmsMsgConsumerGetMessageListener – Get Message Listener
	xmsMsgConsumerGetMessageSelector – Get Message Selector
	xmsMsgConsumerReceive – Receive
	xmsMsgConsumerReceiveNoWait – Receive with No Wait
	xmsMsgConsumerReceiveWithWait – Receive (with a wait interval)
	xmsMsgConsumerSetMessageListener – Set Message Listener

	MessageListener
	Functions
	onMessage – On Message

	MessageProducer
	Functions
	xmsMsgProducerClose – Close Message Producer
	xmsMsgProducerGetDeliveryMode – Get Default Delivery Mode
	xmsMsgProducerGetDestination – Get Destination
	xmsMsgProducerGetDisableMsgID – Get Disable Message ID Flag
	xmsMsgProducerGetDisableMsgTS – Get Disable Time Stamp Flag
	xmsMsgProducerGetPriority – Get Default Priority
	xmsMsgProducerGetTimeToLive – Get Default Time to Live
	xmsMsgProducerSend – Send
	xmsMsgProducerSendDest – Send (to a specified destination)
	xmsMsgProducerSendDestWithAttr – Send (to a specified destination, specifying a delivery mode, priority, and time to live)
	xmsMsgProducerSendWithAttr – Send (specifying a delivery mode, priority, and time to live)
	xmsMsgProducerSetDeliveryMode – Set Default Delivery Mode
	xmsMsgProducerSetDisableMsgID – Set Disable Message ID Flag
	xmsMsgProducerSetDisableMsgTS – Set Disable Time Stamp Flag
	xmsMsgProducerSetPriority – Set Default Priority
	xmsMsgProducerSetTimeToLive – Set Default Time to Live

	ObjectMessage
	Functions
	xmsObjectMsgGetObjectAsBytes – Get Object as Bytes
	xmsObjectMsgSetObjectAsBytes – Set Object as Bytes

	Property
	Functions
	xmsPropertyCreate – Create Property (with no property value or property type)
	xmsPropertyDispose – Delete Property
	xmsPropertyDuplicate – Copy Property
	xmsPropertyGetBoolean – Get Boolean Property Value
	xmsPropertyGetByte – Get Byte Property Value
	xmsPropertyGetByteArray – Get Byte Array Property Value
	xmsPropertyGetByteArrayByRef – Get Byte Array Property Value by Reference
	xmsPropertyGetChar – Get Character Property Value
	xmsPropertyGetDouble – Get Double Precision Floating Point Property Value
	xmsPropertyGetFloat – Get Floating Point Property Value
	xmsPropertyGetInt – Get Integer Property Value
	xmsPropertyGetLong – Get Long Integer Property Value
	xmsPropertyGetName – Get Property Name
	xmsPropertyGetShort – Get Short Integer Property Value
	xmsPropertyGetString – Get String Property Value
	xmsPropertyGetStringByRef – Get String Property Value by Reference
	xmsPropertyGetTypeId – Get Property Type
	xmsPropertyIsTypeId – Check Property Type
	xmsPropertySetBoolean – Set Boolean Property Value
	xmsPropertySetByte – Set Byte Property Value
	xmsPropertySetByteArray – Set Byte Array Property Value
	xmsPropertySetChar – Set Character Property Value
	xmsPropertySetDouble – Set Double Precision Floating Point Property Value
	xmsPropertySetFloat – Set Floating Point Property Value
	xmsPropertySetInt – Set Integer Property Value
	xmsPropertySetLong – Set Long Integer Property Value
	xmsPropertySetShort – Set Short Integer Property Value
	xmsPropertySetString – Set String Property Value

	PropertyContext
	Functions
	xmsGetBooleanProperty – Get Boolean Property
	xmsGetByteArrayProperty – Get Byte Array Property
	xmsGetByteArrayPropertyByRef – Get Byte Array Property by Reference
	xmsGetByteProperty – Get Byte Property
	xmsGetCharProperty – Get Character Property
	xmsGetDoubleProperty – Get Double Precision Floating Point Property
	xmsGetFloatProperty – Get Floating Point Property
	xmsGetHandleTypeId – Get Handle Type
	xmsGetIntProperty – Get Integer Property
	xmsGetLongProperty – Get Long Integer Property
	xmsGetObjectProperty – Get Object Property
	xmsGetProperty – Get Property
	xmsGetShortProperty – Get Short Integer Property
	xmsGetStringProperty – Get String Property
	xmsGetStringPropertyByRef – Get String Property by Reference
	xmsSetBooleanProperty – Set Boolean Property
	xmsSetByteProperty – Set Byte Property
	xmsSetByteArrayProperty – Set Byte Array Property
	xmsSetCharProperty – Set Character Property
	xmsSetDoubleProperty – Set Double Precision Floating Point Property
	xmsSetFloatProperty – Set Floating Point Property
	xmsSetIntProperty – Set Integer Property
	xmsSetLongProperty – Set Long Integer Property
	xmsSetObjectProperty – Set Object Property
	xmsSetProperty – Set Property
	xmsSetShortProperty – Set Short Integer Property
	xmsSetStringProperty – Set String Property

	QueueBrowser
	Functions
	xmsQueueBrowserClose – Close Queue Browser
	xmsQueueBrowserGetEnumeration – Get Messages
	xmsQueueBrowserGetMessageSelector – Get Message Selector
	xmsQueueBrowserGetQueue – Get Queue

	Requestor
	Functions
	xmsRequestorClose – Close Requestor
	xmsRequestorCreate – Create Requestor
	xmsRequestorRequest – Request

	Session
	Functions
	xmsSessClose – Close Session
	xmsSessCommit – Commit
	xmsSessCreateBrowser – Create Queue Browser
	xmsSessCreateBrowserSelector – Create Queue Browser (with message selector)
	xmsSessCreateBytesMessage – Create Bytes Message
	xmsSessCreateConsumer – Create Consumer
	xmsSessCreateConsumerSelector – Create Consumer (with message selector)
	xmsSessCreateConsumerSelectorLocal – Create Consumer (with message selector and local message flag)
	xmsSessCreateDurableSubscriber – Create Durable Subscriber
	xmsSessCreateDurableSubscriberSelector – Create Durable Subscriber (with message selector and local message flag)
	xmsSessCreateMapMessage – Create Map Message
	xmsSessCreateMessage – Create Message
	xmsSessCreateObjectMessage – Create Object Message
	xmsSessCreateProducer – Create Producer
	xmsSessCreateStreamMessage – Create Stream Message
	xmsSessCreateTextMessage – Create Text Message
	xmsSessCreateTextMessageInit – Create Text Message (initialized)
	xmsSessGetAcknowledgeMode – Get Acknowledgement Mode
	xmsSessGetTransacted – Determine Whether Transacted
	xmsSessRecover – Recover
	xmsSessRollback – Rollback
	xmsSessUnsubscribe – Unsubscribe

	StreamMessage
	Functions
	xmsStreamMsgReadBoolean – Read Boolean Value
	xmsStreamMsgReadByte – Read Byte
	xmsStreamMsgReadBytes – Read Bytes
	xmsStreamMsgReadBytesByRef – Read Bytes by Reference
	xmsStreamMsgReadChar – Read Character
	xmsStreamMsgReadDouble – Read Double Precision Floating Point Number
	xmsStreamMsgReadFloat – Read Floating Point Number
	xmsStreamMsgReadInt – Read Integer
	xmsStreamMsgReadLong – Read Long Integer
	xmsStreamMsgReadObject – Read Object
	xmsStreamMsgReadShort – Read Short Integer
	xmsStreamMsgReadString – Read String
	xmsStreamMsgReset – Reset
	xmsStreamMsgWriteBoolean – Write Boolean Value
	xmsStreamMsgWriteByte – Write Byte
	xmsStreamMsgWriteBytes – Write Bytes
	xmsStreamMsgWriteChar – Write Character
	xmsStreamMsgWriteDouble – Write Double Precision Floating Point Number
	xmsStreamMsgWriteFloat – Write Floating Point Number
	xmsStreamMsgWriteInt – Write Integer
	xmsStreamMsgWriteLong – Write Long Integer
	xmsStreamMsgWriteObject – Write Object
	xmsStreamMsgWriteShort – Write Short Integer
	xmsStreamMsgWriteString – Write String

	TextMessage
	Functions
	xmsTextMsgGetText – Get Text
	xmsTextMsgSetText – Set Text

	Chapter 13. Additional C functions
	Process CCSID functions
	Functions
	xmsGetClientCCSID – Get Process CCSID
	xmsSetClientCCSID – Set Process CCSID

	Chapter 14. C++ classes
	BytesMessage
	Methods
	getBodyLength – Get Body Length
	readBoolean – Read Boolean Value
	readByte – Read Byte
	readBytes – Read Bytes
	readChar – Read Character
	readDouble – Read Double Precision Floating Point Number
	readFloat – Read Floating Point Number
	readInt – Read Integer
	readLong – Read Long Integer
	readShort – Read Short Integer
	readUnsignedByte – Read Unsigned Byte
	readUnsignedShort – Read Unsigned Short Integer
	readUTF – Read UTF String
	reset – Reset
	writeBoolean – Write Boolean Value
	writeByte – Write Byte
	writeBytes – Write Bytes
	writeChar – Write Character
	writeDouble – Write Double Precision Floating Point Number
	writeFloat – Write Floating Point Number
	writeInt – Write Integer
	writeLong – Write Long Integer
	writeShort – Write Short Integer
	writeUTF – Write UTF String

	Inherited methods

	Connection
	Methods
	close – Close Connection
	createSession – Create Session
	getClientID – Get Client ID
	getExceptionListener – Get Exception Listener
	getHandle – Get Handle
	getMetaData – Get Metadata
	isNull – Check Whether Null
	setClientID – Set Client ID
	setExceptionListener – Set Exception Listener
	start – Start Connection
	stop – Stop Connection

	Inherited methods

	ConnectionFactory for the C++ class
	Constructors
	ConnectionFactory – Create Connection Factory

	Methods
	~ConnectionFactory – Delete Connection Factory
	createConnection – Create Connection (using the default user identity)
	createConnection – Create Connection (using a specified user identity)
	getHandle – Get Handle
	isNull – Check Whether Null

	Inherited methods

	ConnectionMetaData
	Methods
	getHandle – Get Handle
	getJMSXProperties – Get JMS Defined Message Properties
	isNull – Check Whether Null

	Inherited methods

	Destination for the C++ class
	Constructors
	Destination – Create Destination (specifying a type and name)
	Destination – Create Destination (using a URI)

	Methods
	~Destination – Delete Destination
	getHandle – Get Handle
	getName – Get Destination Name
	getTypeId – Get Destination Type
	isNull – Check Whether Null
	toString – Get Destination Name as URI

	Inherited methods

	Exception
	Methods
	~Exception – Delete Exception
	dump – Dump Exception
	getErrorCode – Get Error Code
	getErrorData – Get Error Data
	getErrorString – Get Error String
	getHandle – Get Handle
	getJMSException – Get Exception Code
	getLinkedException – Get Linked Exception
	isNull – Check Whether Null

	ExceptionListener
	Methods
	onException – On Exception

	IllegalStateException
	Inherited methods

	InitialContext
	Constructors
	InitialContext – Create Initial Context

	Methods
	~InitialContext – Delete Initial Context
	getHandle – Get Handle
	isNull – Check Whether Null
	lookup – Look Up Object in Initial Context

	Inherited methods

	InvalidClientIDException
	Inherited methods

	InvalidDestinationException
	Inherited methods

	InvalidSelectorException
	Inherited methods

	Iterator
	Methods
	~Iterator – Delete Iterator
	getHandle – Get Handle
	getNext – Get Next Object
	hasNext – Check for More Objects
	isNull – Check Whether Null
	reset – Reset Iterator

	MapMessage
	Methods
	getBoolean – Get Boolean Value
	getByte – Get Byte
	getBytes – Get Bytes
	getChar – Get Character
	getDouble – Get Double Precision Floating Point Number
	getFloat – Get Floating Point Number
	getInt – Get Integer
	getLong – Get Long Integer
	getMap – Get Name-Value Pairs
	getObject – Get Object
	getShort – Get Short Integer
	getString – Get String
	itemExists – Check Name-Value Pair Exists
	setBoolean – Set Boolean Value
	setByte – Set Byte
	setBytes – Set Bytes
	setChar – Set Character
	setDouble – Set Double Precision Floating Point Number
	setFloat – Set Floating Point Number
	setInt – Set Integer
	setLong – Set Long Integer
	setObject – Set Object
	setShort – Set Short Integer
	setString – Set String

	Inherited methods

	Message
	Methods
	~Message – Delete Message
	acknowledge – Acknowledge
	clearBody – Clear Body
	clearProperties – Clear Properties
	getHandle – Get Handle
	getJMSCorrelationID – Get JMSCorrelationID
	getJMSDeliveryMode – Get JMSDeliveryMode
	getJMSDestination – Get JMSDestination
	getJMSExpiration – Get JMSExpiration
	getJMSMessageID – Get JMSMessageID
	getJMSPriority – Get JMSPriority
	getJMSRedelivered – Get JMSRedelivered
	getJMSReplyTo – Get JMSReplyTo
	getJMSTimestamp – Get JMSTimestamp
	getJMSType – Get JMSType
	getProperties – Get Properties
	isNull – Check Whether Null
	propertyExists – Check Property Exists
	setJMSCorrelationID – Set JMSCorrelationID
	setJMSDeliveryMode – Set JMSDeliveryMode
	setJMSDestination – Set JMSDestination
	setJMSExpiration – Set JMSExpiration
	setJMSMessageID – Set JMSMessageID
	setJMSPriority – Set JMSPriority
	setJMSRedelivered – Set JMSRedelivered
	setJMSReplyTo – Set JMSReplyTo
	setJMSTimestamp – Set JMSTimestamp
	setJMSType – Set JMSType

	Inherited methods

	MessageConsumer
	Methods
	close – Close Message Consumer
	getHandle – Get Handle
	getMessageListener – Get Message Listener
	getMessageSelector – Get Message Selector
	isNull – Check Whether Null
	receive – Receive
	receive – Receive (with a wait interval)
	receiveNoWait – Receive with No Wait
	setMessageListener – Set Message Listener

	Inherited methods

	MessageEOFException
	Inherited methods

	MessageFormatException
	Inherited methods

	MessageListener
	Methods
	onMessage – On Message

	MessageNotReadableException
	Inherited methods

	MessageNotWritableException
	Inherited methods

	MessageProducer
	Methods
	close – Close Message Producer
	getDeliveryMode – Get Default Delivery Mode
	getDestination – Get Destination
	getDisableMsgID – Get Disable Message ID Flag
	getDisableMsgTS – Get Disable Time Stamp Flag
	getHandle – Get Handle
	getPriority – Get Default Priority
	getTimeToLive – Get Default Time to Live
	isNull – Check Whether Null
	send – Send
	send – Send (specifying a delivery mode, priority, and time to live)
	send – Send (to a specified destination)
	send – Send (to a specified destination, specifying a delivery mode, priority, and time to live)
	setDeliveryMode – Set Default Delivery Mode
	setDisableMsgID – Set Disable Message ID Flag
	setDisableMsgTS – Set Disable Time Stamp Flag
	setPriority – Set Default Priority
	setTimeToLive – Set Default Time to Live

	Inherited methods

	ObjectMessage
	Methods
	getObject – Get Object as Bytes
	setObject – Set Object as Bytes

	Inherited methods

	Property
	Constructors
	Property – Copy Property
	Property – Create Property
	Property – Create Property (with no property value or property type)

	Methods
	~Property – Delete Property
	getBoolean – Get Boolean Property Value
	getByte – Get Byte Property Value
	getByteArray – Get Byte Array Property Value
	getChar – Get Character Property Value
	getDouble – Get Double Precision Floating Point Property Value
	getFloat – Get Floating Point Property Value
	getHandle – Get Handle
	getInt – Get Integer Property Value
	getLong – Get Long Integer Property Value
	getShort – Get Short Integer Property Value
	getString – Get String Property Value
	getTypeId – Get Property Type
	isNull – Check Whether Null
	isTypeId – Check Property Type
	name – Get Property Name
	setBoolean – Set Boolean Property Value
	setByte – Set Byte Property Value
	setByteArray – Set Byte Array Property Value
	setChar – Set Character Property Value
	setDouble – Set Double Precision Floating Point Property Value
	setFloat – Set Floating Point Property Value
	setInt – Set Integer Property Value
	setLong – Set Long Integer Property Value
	setShort – Set Short Integer Property Value
	setString – Set String Property Value

	PropertyContext
	Methods
	getBooleanProperty – Get Boolean Property
	getByteProperty – Get Byte Property
	getBytesProperty – Get Byte Array Property
	getCharProperty – Get Character Property
	getDoubleProperty – Get Double Precision Floating Point Property
	getFloatProperty – Get Floating Point Property
	getIntProperty – Get Integer Property
	getLongProperty – Get Long Integer Property
	getObjectProperty – Get Object Property
	getProperty – Get Property
	getShortProperty – Get Short Integer Property
	getStringProperty – Get String Property
	setBooleanProperty – Set Boolean Property
	setByteProperty – Set Byte Property
	setBytesProperty – Set Byte Array Property
	setCharProperty – Set Character Property
	setDoubleProperty – Set Double Precision Floating Point Property
	setFloatProperty – Set Floating Point Property
	setIntProperty – Set Integer Property
	setLongProperty – Set Long Integer Property
	setObjectProperty – Set Object Property
	setProperty – Set Property
	setShortProperty – Set Short Integer Property
	setStringProperty – Set String Property

	QueueBrowser
	Methods
	close – Close Queue Browser
	getEnumeration – Get Messages
	getHandle – Get Handle
	getMessageSelector – Get Message Selector
	getQueue – Get Queue
	isNull – Check Whether Null

	Inherited methods

	Requestor
	Constructors
	Requestor – Create Requestor

	Methods
	close – Close Requestor
	getHandle – Get Handle
	isNull – Check Whether Null
	request – Request

	Inherited methods

	ResourceAllocationException
	Inherited methods

	SecurityException
	Inherited methods

	Session
	Methods
	close – Close Session
	commit – Commit
	createBrowser – Create Queue Browser
	createBrowser – Create Queue Browser (with message selector)
	createBytesMessage – Create Bytes Message
	createConsumer – Create Consumer
	createConsumer – Create Consumer (with message selector)
	createConsumer – Create Consumer (with message selector and local message flag)
	createDurableSubscriber – Create Durable Subscriber
	createDurableSubscriber – Create Durable Subscriber (with message selector and local message flag)
	createMapMessage – Create Map Message
	createMessage – Create Message
	createObjectMessage – Create Object Message
	createProducer – Create Producer
	createQueue – Create Queue
	createStreamMessage – Create Stream Message
	createTemporaryQueue – Create Temporary Queue
	createTemporaryTopic – Create Temporary Topic
	createTextMessage – Create Text Message
	createTextMessage – Create Text Message (initialized)
	createTopic – Create Topic
	getAcknowledgeMode – Get Acknowledgement Mode
	getHandle – Get Handle
	getTransacted – Determine Whether Transacted
	isNull – Check Whether Null
	recover – Recover
	rollback – Rollback
	unsubscribe – Unsubscribe

	Inherited methods

	StreamMessage
	Methods
	readBoolean – Read Boolean Value
	readByte – Read Byte
	readBytes – Read Bytes
	readChar – Read Character
	readDouble – Read Double Precision Floating Point Number
	readFloat – Read Floating Point Number
	readInt – Read Integer
	readLong – Read Long Integer
	readObject – Read Object
	readShort – Read Short Integer
	readString – Read String
	reset – Reset
	writeBoolean – Write Boolean Value
	writeByte – Write Byte
	writeBytes – Write Bytes
	writeChar – Write Character
	writeDouble – Write Double Precision Floating Point Number
	writeFloat – Write Floating Point Number
	writeInt – Write Integer
	writeLong – Write Long Integer
	writeObject – Write Object
	writeShort – Write Short Integer
	writeString – Write String

	Inherited methods

	String
	Constructors
	String – Create String
	String – Create String (from a byte array)
	String – Create String (from a character array)

	Methods
	~String – Delete String
	c_str – Get Pointer to String
	concatenate – Concatenate Strings
	equalTo – Compare Strings
	get – Get String
	isNull – Check Whether Null

	TextMessage
	Methods
	getText – get Text
	setText – Set Text

	Inherited methods

	TransactionInProgressException
	Inherited methods

	TransactionRolledBackException
	Inherited methods

	Chapter 15. Properties of XMS objects
	Properties of Connection
	Properties of ConnectionFactory
	Properties of ConnectionMetaData
	Properties of Destination
	Properties of InitialContext
	Properties of Message
	Properties of MessageConsumer
	Properties of MessageProducer
	Properties of Session
	Property definitions
	JMS_IBM_ArmCorrelator
	JMS_IBM_CHARACTER_SET
	JMS_IBM_ENCODING
	JMS_IBM_EXCEPTIONMESSAGE
	JMS_IBM_EXCEPTIONPROBLEMDESTINATION
	JMS_IBM_EXCEPTIONREASON
	JMS_IBM_EXCEPTIONTIMESTAMP
	JMS_IBM_FEEDBACK
	JMS_IBM_FORMAT
	JMS_IBM_LAST_MSG_IN_GROUP
	JMS_IBM_MSGTYPE
	JMS_IBM_PUTAPPLTYPE
	JMS_IBM_PUTDATE
	JMS_IBM_PUTTIME
	JMS_IBM_REPORT_COA
	JMS_IBM_REPORT_COD
	JMS_IBM_REPORT_DISCARD_MSG
	JMS_IBM_REPORT_EXCEPTION
	JMS_IBM_REPORT_EXPIRATION
	JMS_IBM_REPORT_NAN
	JMS_IBM_REPORT_PAN
	JMS_IBM_REPORT_PASS_CORREL_ID
	JMS_IBM_REPORT_PASS_MSG_ID
	JMS_IBM_RETAIN
	JMS_IBM_SYSTEM_MESSAGEID
	JMS_TOG_ARM_Correlator
	JMSX_APPID
	JMSX_DELIVERY_COUNT
	JMSX_GROUPID
	JMSX_GROUPSEQ
	JMSX_USERID
	XMSC_ASYNC_EXCEPTIONS
	XMSC_CLIENT_CCSID
	XMSC_CLIENT_ID
	XMSC_CONNECTION_TYPE
	XMSC_DELIVERY_MODE
	XMSC_IC_PROVIDER_URL
	XMSC_IC_SECURITY_AUTHENTICATION
	XMSC_IC_SECURITY_CREDENTIALS
	XMSC_IC_SECURITY_PRINCIPAL
	XMSC_IC_SECURITY_PROTOCOL
	XMSC_IC_URL
	XMSC_JMS_MAJOR_VERSION
	XMSC_JMS_MINOR_VERSION
	XMSC_JMS_VERSION
	XMSC_MAJOR_VERSION
	XMSC_MINOR_VERSION
	XMSC_PASSWORD
	XMSC_PRIORITY
	XMSC_PROVIDER_NAME
	XMSC_RTT_CONNECTION_PROTOCOL
	XMSC_RTT_HOST_NAME
	XMSC_RTT_LOCAL_ADDRESS
	XMSC_RTT_PORT
	XMSC_TIME_TO_LIVE
	XMSC_USERID
	XMSC_VERSION
	XMSC_WMQ_BROKER_CONTROLQ
	XMSC_WMQ_BROKER_PUBQ
	XMSC_WMQ_BROKER_QMGR
	XMSC_WMQ_BROKER_SUBQ
	XMSC_WMQ_BROKER_VERSION
	XMSC_WMQ_CCSID
	XMSC_WMQ_CHANNEL
	XMSC_WMQ_CLIENT_RECONNECT_OPTIONS
	XMSC_WMQ_CONNECTION_MODE
	XMSC_WMQ_CONNECTION_NAME_LIST
	XMSC_WMQ_DUR_SUBQ
	XMSC_WMQ_ENCODING
	XMSC_WMQ_FAIL_IF_QUIESCE
	XMSC_WMQ_MESSAGE_BODY
	XMSC_WMQ_MQMD_MESSAGE_CONTEXT
	XMSC_WMQ_MQMD_READ_ENABLED
	XMSC_WMQ_MQMD_WRITE_ENABLED
	XMSC_WMQ_PUT_ASYNC_ALLOWED
	XMSC_WMQ_READ_AHEAD_ALLOWED
	XMSC_WMQ_READ_AHEAD_CLOSE_POLICY
	XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID
	XMSC_WMQ_HOST_NAME
	XMSC_WMQ_LOCAL_ADDRESS
	XMSC_WMQ_MESSAGE_SELECTION
	XMSC_WMQ_MSG_BATCH_SIZE
	XMSC_WMQ_POLLING_INTERVAL
	XMSC_WMQ_PORT
	XMSC_WMQ_PROVIDER_VERSION
	XMSC_WMQ_PUB_ACK_INTERVAL
	XMSC_WMQ_QMGR_CCSID
	XMSC_WMQ_QUEUE_MANAGER
	XMSC_WMQ_RECEIVE_EXIT
	XMSC_WMQ_RECEIVE_EXIT_INIT
	XMSC_WMQ_SECURITY_EXIT
	XMSC_WMQ_SECURITY_EXIT_INIT
	XMSC_WMQ_SEND_EXIT
	XMSC_WMQ_SEND_EXIT_INIT
	XMSC_WMQ_SEND_CHECK_COUNT
	XMSC_WMQ_SHARE_CONV_ALLOWED
	XMSC_WMQ_SSL_CERT_STORES
	XMSC_WMQ_SSL_CIPHER_SPEC
	XMSC_WMQ_SSL_CIPHER_SUITE
	XMSC_WMQ_SSL_ENCRYPTION_POLICY_SUITE_B
	XMSC_WMQ_SSL_CRYPTO_HW
	XMSC_WMQ_SSL_FIPS_REQUIRED
	XMSC_WMQ_SSL_KEY_REPOSITORY
	XMSC_WMQ_SSL_KEY_RESETCOUNT
	XMSC_WMQ_SSL_PEER_NAME
	XMSC_WMQ_SYNCPOINT_ALL_GETS
	XMSC_WMQ_TARGET_CLIENT
	XMSC_WMQ_TEMP_Q_PREFIX
	XMSC_WMQ_TEMP_TOPIC_PREFIX
	XMSC_WMQ_TEMPORARY_MODEL
	XMSC_WMQ_WILDCARD_FORMAT
	XMSC_WPM_BUS_NAME
	XMSC_WPM_CONNECTION_PROTOCOL
	XMSC_WPM_CONNECTION_PROXIMITY
	XMSC_WPM_DUR_SUB_HOME
	XMSC_WPM_HOST_NAME
	XMSC_WPM_LOCAL_ADDRESS
	XMSC_WPM_ME_NAME
	XMSC_WPM_NON_PERSISTENT_MAP
	XMSC_WPM_PERSISTENT_MAP
	XMSC_WPM_PORT
	XMSC_WPM_PROVIDER_ENDPOINTS
	XMSC_WPM_SSL_CIPHER_SUITE
	XMSC_WPM_SSL_ENCRYPTION_POLICY_SUITE_B
	XMSC_WPM_SSL_KEY_REPOSITORY
	XMSC_WPM_SSL_KEYRING_LABEL
	XMSC_WPM_SSL_KEYRING_PW
	XMSC_WPM_SSL_KEYRING_STASH_FILE
	XMSC_WPM_SSL_FIPS_REQUIRED
	XMSC_WPM_TARGET_GROUP
	XMSC_WPM_TARGET_SIGNIFICANCE
	XMSC_WPM_TARGET_TRANSPORT_CHAIN
	XMSC_WPM_TARGET_TYPE
	XMSC_WPM_TEMP_Q_PREFIX
	XMSC_WPM_TEMP_TOPIC_PREFIX
	XMSC_WPM_TOPIC_SPACE

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

	Notices
	Programming interface information
	Trademarks

	Sending your comments to IBM

