
IBM z/VSE

z/VSE TCP/IP Support
Version 5

SC34-2640-03

���

IBM z/VSE

z/VSE TCP/IP Support
Version 5

SC34-2640-03

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page
xiii.

This edition applies to the following programs
v Version 5 of IBM z/Virtual Storage Extended (z/VSE), Program Number 5609-ZV5

v Version 1 Release 5 of TCP/IP for VSE/ESA, Program Number 5686-A04

v Version 1 Release 1 of IPv6/VSE, Program Number 5686-BS1

and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC34-2640-02.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:
IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:
Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1997, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

Notices xiii
Trademarks xiii

Accessibility xv
Using Assistive Technologies xv
Documentation Format xv

About This Publication xvii
Where to Find More Information. xvii
Understanding Syntax Diagrams xvii

Summary of Changes xxi

Important Considerations - Read this
First! xxiii

Part 1. Using TCP/IP for VSE/ESA . . 1

Chapter 1. Overview 3
Documentation for the TCP/IP for VSE/ESA
(5686-A04) Program 3
General Considerations on the TCP/IP for VSE/ESA
Program Setup. 3
The Demo Mode for TCP/IP for VSE/ESA 4
Supplying the Product Key 5
Installing Product Keys 6
Defining Customer Information 6
Migration Considerations 6

Chapter 2. TCP/IP for VSE/ESA
Configuration 9
How TCP/IP for VSE/ESA is Installed 9
TCP/IP for VSE/ESA Partition Startup 9
Configuring CICS 10

Example for CICS/TS 1.1 12
HTMLINST.Z. 13

Chapter 3. TCP/IP for VSE/ESA
Configuration Dialogs 15
Configuring TCP/IP Using the Configuration
Dialogs 15

Configuring TCP/IP Using the IUI-based
Configuration Dialog 16

Chapter 4. Security Manager
Exploitation by TCP/IP for VSE/ESA . . 23
Using BSM Capabilities for TCP/IP Security Checks 23
Activation of The Security Exit 24

Deactivation of the Security Exit 25
Using Pre- and Postprocessing Exits 25

Chapter 5. InfoPrint Manager Support
of TCP/IP for VSE/ESA 29
Setting the Parameters for the IPM Support . . . 30
Customizing the InfoPrint Manager 31
Changing the Properties of the Actual Destination 31
Technical Background Information. 32
Software Prerequisites 32

Chapter 6. z/VSE Related Hardware
Functions Supported by TCP/IP for
VSE/ESA 1.5 33

Chapter 7. Performance Considerations 35
Changing Performance Parameters 35
General Performance Issues 35
Principal Performance Dependencies for TCP/IP for
VSE/ESA 36

Part 2. Using IPv6/VSE 39

Chapter 8. IPv6/VSE Overview. 41
IPv6 TCP/IP Stack 41
Dual Stack Support 41
IPv6-Enabled Utility Applications 41
Documentation for the IPv6/VSE (5686-BS1)
Program 43
IPv6/VSE Installation Requirements 43

Part 3. Programming Interfaces. . . 45

Chapter 9. Introducing Socket
Programming 47
What is a TCP/IP Socket Connection ? 47
Socket Application Programming Interfaces
Available with z/VSE 48
Portability Aspects 49
Which API to use? 50
Exploiting the LE/VSE Socket API. 52

C Language 52
Assembler Language 53
PL/I. 54
COBOL. 55

Exploiting the EZASMI/EZASOKET Programming
Interfaces 60
LE/VSE 1.4 C Socket Programming 69

General C Programming Considerations 69
Messages 70

TCP/IP Functions Supported by z/VSE 71
ERRNO Values 74
CICS Considerations 83

© Copyright IBM Corp. 1997, 2014 iii

CICS Considerations for the EZA Interfaces . . . 83
Executing TCP/IP Application Programs 84

Chapter 10. TCP/IP Support for the
LE/VSE C Socket Interface 85
TCP/IP Callable Functions — Function Descriptions 85

accept() — Accept a New Connection on a Socket 85
aio_cancel() — Cancel an Asynchronous I/O
Request. 88
aio_error() — Retrieve Error Status for an
Asynchronous I/O Operation 89
aio_read() — Asynchronous Read from a Socket 90
aio_return() — Retrieve Status for an
Asynchronous I/O Operation 92
aio_suspend() — Wait for an Asynchronous I/O
Request. 93
aio_write() — Asynchronous Write to a Socket. . 94
bind() — Bind a Name to a Socket. 96
close() — Close a Socket 99
connect() — Connect a Socket 100
endhostent() — Work with a Host Entry . . . 103
endnetent() — Close Network Information Data
Sets 103
endprotoent() — Work with a Protocol Entry 103
endservent() — Close Network Services
Information Data Sets 104
fcntl() — Control Open Socket Descriptors . . 104
freeaddrinfo() — Free addrinfo storage 105
gai_strerror() — Address and name information
error description 106
getaddrinfo() — Get address information . . . 106
getclientid() — Get the Identifier for the Calling
Application 110
gethostbyaddr() — Get a Host Entry by Address 111
gethostbyname() — Get a Host Entry by Name 113
gethostent() — Get the Next Host Entry . . . 114
gethostid() — Get the Unique Identifier of the
Current Host 115
gethostname() — Get the Name of the Host
Processor 115
getibmopt() — Get IBM TCP/IP image 116
getnameinfo() — Get name information . . . 117
getnetbyaddr() — Get a Network Entry by
Address 119
getnetbyname() — Get a Network Entry by
Name 120
getnetent() — Get the Next Network Entry . . 121
getpeername() — Get the Name of the Peer
Connected to a Socket 121
getprotobyname() — Get a Protocol Entry by
Name 123
getprotobynumber() — Get a Protocol Entry by
Number 123
getprotoent() — Get the Next Protocol Entry 124
getservbyname() — Get a Service Entry by
Name 125
getservbyport() — Get a Service Entry by Port 125
getservent() — Get the Next Service Entry. . . 126
getsockname() — Get the Name of a Socket . . 127
getsockopt() — Get the Options Associated with
a Socket 128

givesocket() — Make the Specified Socket
Available 133
gsk_free_memory() — Free memory allocated
for SSL 135
gsk_get_cipher_info() — Query Cipher Related
Information 135
gsk_get_dn_by_label() — Get Distinguished
Name Based on the Label 137
gsk_initialize() — Initialize the SSL Environment 137
gsk_secure_soc_close() — Close a Secure Socket
Connection 139
gsk_secure_soc_init() — Initialize Data Areas for
a Secure Socket Connection. 140
gsk_secure_soc_read() — Receive Data on a
Secure Socket Connection 143
gsk_secure_soc_reset() — Refresh the Security
Parameters 144
gsk_secure_soc_write() — Send Data on a
Secure Socket Connection 145
gsk_uninitialize() — Remove Current Settings
for the SSL Environment 146
gsk_user_set() — Provide Callback Routines . . 146
htonl() — Translate Address Host to Network
Long 147
htons() — Translate an Unsigned Short Integer
into Network Byte Order 147
if_freenameindex() — Free the Memory
Allocated by if_nameindex() 148
if_indextoname() — Map a Network Interface
Index to its Corresponding Name 148
if_nameindex() — Return all Network Interface
Names and Indexes 149
if_nametoindex() — Map a Network Interface
Name to its Corresponding Index 150
inet_addr() — Translate an Internet Address into
Network Byte Order 150
inet_lnaof() — Translate a Local Network
Address into Host Byte Order 151
inet_makeaddr() — Create an Internet Host
Address 152
inet_netof() — Get the Network Number from
the Internet Host Address 152
inet_network() — Get the Network Number
from the Decimal Host Address 153
inet_ntoa() — Get the Decimal Internet Host
Address 153
inet_ntop() — Convert Internet Address Format
from Binary to Text 154
inet_pton() — Convert Internet Address Format
from Text to Binary 155
initapi() — Initialize Socket API for a Subtask 156
ioctl() — Control Socket 156
listen() — Prepare the Server for Incoming
Client Requests 158
maxdesc() — Get Socket Numbers to Extend
Beyond the Default Range 159
ntohl() — Translate a Long Integer into Host
Byte Order 160
ntohs() — Translate an Unsigned Short Integer
into Host Byte Order 160
poll() — Monitor Activity on Socket Descriptors 161

iv z/VSE V5R2 TCP/IP Support

read() — Read From a Socket 162
readv() — Read Data on a Socket and Store in a
Set of Buffers 164
recv() — Receive Data on a Socket 165
recvfrom() — Receive Messages on a Socket . . 167
recvmsg() — Receive Messages on a Socket and
Store in an Array of Message Headers 168
select() — Monitor Activity on Sockets 170
selectex() — Monitor Activity on Sockets . . . 174
send() — Send Data on a Socket 176
sendmsg() — Send Messages on a Socket . . . 177
sendto() — Send Data on a Socket 179
sethostent() — Open the Host Information Data
Set 181
setibmopt() — Set IBM TCP/IP Image 181
setnetent() — Open the Network Information
Data Set 182
setprotoent() — Open the Protocol Information
Data Set 182
setservent() — Open the Network Services
Information Data Set 183
setsockopt() — Set Options Associated with a
Socket 183
shutdown() — Shut Down a Connection . . . 189
socket() — Create a Socket 190
socketpair() — Create a Pair of Sockets 193
takesocket() — Acquire a Socket from Another
Program 193
termapi() — Terminate the Socket API for a
Subtask 194
write() — Write Data on a Socket. 195
writev() — Write Data on a Socket from an
Array 196

Chapter 11. Using the CALL
Instruction Application Programming
Interface (EZASOKET API) 199
Environmental Restrictions and Programming
Requirements 199
CALL Instruction Application Programming
Interface (API) 199
Understanding COBOL, Assembler, and PL/I Call
Formats 200
Converting Parameter Descriptions 201
Error Messages and Return Codes 201
Debugging 201
Code CALL Instructions 201

ACCEPT 201
BIND 204
CLOSE 206
CONNECT 207
FCNTL 209
FREEADDRINFO 211
GETADDRINFO 211
GETCLIENTID 218
GETHOSTBYADDR 219
GETHOSTBYNAME 221
GETHOSTID 222
GETHOSTNAME 223
GETIBMOPT 224

GETNAMEINFO 225
GETPEERNAME 229
GETSOCKNAME 230
GETSOCKOPT 232
GIVESOCKET 234
GSKFREEMEM. 236
GSKGETCIPHINF 237
GSKGETDNBYLAB 238
GSKINIT 239
GSKSSOCCLOSE 240
GSKSSOCINIT 241
GSKSSOCREAD 244
GSKSSOCRESET 245
GSKSSOCWRITE 245
GSKUNINIT. 246
INITAPI 247
IOCTL. 249
LISTEN 250
NTOP 251
PTON 253
READ 254
READV 255
RECV 257
RECVFROM. 258
SELECT 261
SELECTEX 265
SEND 267
SENDTO 268
SETSOCKOPT 270
SHUTDOWN 274
SOCKET 275
TAKESOCKET 276
TERMAPI 278
WRITE 278
WRITEV 279

Using Data Translation Programs for Socket Call
Interface 280

EZACIC04 281
EZACIC05 281
EZACIC06 282
EZACIC08 284
EZACIC09 286

Chapter 12. Using the Macro
Application Programming Interface
(EZASMI API) 291
Environmental Restrictions and Programming
Requirements 291
EZASMI Macro Application Programming Interface
(API) 292
Defining Storage for the API Macro 292
Understanding Common Parameter Descriptions 293
Characteristics of Stream Sockets 294
Task Management and Asynchronous Function
Processing 294
Error Messages and Return Codes 295
Debugging 295
Macros for Assembler Programs 295

ACCEPT 296
BIND 298

Contents v

CANCEL 300
CLOSE 301
CONNECT 302
FCNTL 305
FREEADDRINFO 306
GETADDRINFO 307
GETCLIENTID 314
GETHOSTBYADDR 315
GETHOSTBYNAME 317
GETHOSTID 319
GETHOSTNAME 320
GETIBMOPT 321
GETNAMEINFO 322
GETPEERNAME 326
GETSOCKNAME 328
GETSOCKOPT 330
GIVESOCKET 333
GSKFREEMEM. 335
GSKGETCIPHINF 335
GSKGETDNBYLAB 336
GSKINIT 337
GSKSSOCCLOSE 338
GSKSSOCINIT 339
GSKSSOCREAD 343
GSKSSOCRESET 344
GSKSSOCWRITE 345
GSKUNINIT. 345
INITAPI 346
IOCTL. 348
LISTEN 350
NTOP 351
PTON 352
READ 354
READV 355
RECV 357
RECVFROM. 358
SELECT 360
SELECTEX 365
SEND 367
SENDTO 368
SETSOCKOPT 371
SHUTDOWN 375
SOCKET 376
TAKESOCKET 379
TASK 381
TERMAPI 381
WRITE 382
WRITEV 383

Part 4. Using Fast Path to Linux 385

Chapter 13. Running z/VSE With a
Linux Fast Path 387
Overview of Linux Fast Path 387
Prerequisites for Using Linux Fast Path. 388
Restrictions When Using Linux Fast Path 389
Communication Flow When Not Using Linux Fast
Path 389
Communication Flow When Using Linux Fast Path
in a z/VM Environment 390

Communication Flow When Using Linux Fast Path
in an LPAR Environment 391
Preparing Linux on System z to Use Linux Fast
Path 393
Preparing to use Socket APIs with Linux Fast Path
on z/VSE 395
Configuring Linux Fast Path 397

z/VM 397
Linux on System z 398
z/VSE. 402
Sample configurations 405

Starting and Stopping Linux Fast Path 407
z/VSE. 407
Linux on System z 408

Administrative Tasks 411
z/VSE 411
Linux on System z 414

Chapter 14. z/VSE - z/VM IP Assist 417
Communication Flow when Using z/VSE VIA . . 417
z/VSE VIA z/VM guest configuration 418
z/VSE VIA Linux Fast Path Configuration . . . 419
z/VSE VIA Linux Fast Path Administration . . . 420

LFPD Command 420
LFPD-ADMIN Command 421

Chapter 15. OpenSSL 423
Key store considerations. 424

Creating the Key Store Using Keyman/VSE . . 424
Programming z/VSE Applications for OpenSSL 427

Include Files. 427
Passed Socket Number 428
Callback routines 429
Socket Calls 429
Switching between gsk and OpenSSL Socket
Calls 430
Specifying the Key Ring 430
Using a Password Protected Keyring 431
Supported Cipher Suites. 432
Specifying Cipher Suites. 433
Supported RSA Key Lengths 433
Debugging 434
Hardware Crypto Support 434

Performing the OpenSSL speed test 435
z/OS SSL API 436

Part 5. CICS Listener Support . . . 439

Chapter 16. Setting Up and
Configuring CICS Listener Support . . 441
CICS — Defining CICS Resources 441

Transaction Definitions 441
Program Definitions 442
File Definitions 443
Transient Data Definition 443

CICS Monitoring 444
CICS Program List Table (PLT) 445
Configuring the CICS TCP/IP Environment . . . 445

vi z/VSE V5R2 TCP/IP Support

Building the Configuration data set with the
Configuration Macro (EZACICD). 446
Customizing the Configuration Dataset. . . . 451

Chapter 17. Configuring the CICS
Domain Name Server Cache 469
Function Components 469
How the DNS Cache Handles Requests 470
Using the DNS Cache 471

Step 1: Create the Initialization Module. . . . 471
Step 2: Define the Cache File to CICS 473
Step 3: Execute EZACIC25 473

Chapter 18. Starting and Stopping the
CICS Listener Support 475
Starting/Stopping CICS Listener Support
Automatically 475
Starting/Stopping CICS Manually 475

START Function 476
STOP Function 478

Starting/Stopping CICS Listener Support with
Program Link 480

Chapter 19. Writing Your Own Listener 483
Using IBM's Environmental Support. 483

Chapter 20. External Data Structures 487
Configuration Data Set Record Formats 487
Global Work Area 488
Parameter List (COMMAREA) for EZACIC20 . . 491
Listener Control Area (LCA) 492

Chapter 21. CICS Listener
Programming Considerations 493
Writing CICS TCP/IP Applications 493

1. The Client-Listener-Child-Server Application
Set 494
2. Writing Your Own Concurrent Server . . . 496
3. The Iterative Server CICS TCP/IP Application 498

4. The Client CICS TCP/IP Application. . . . 499
Socket Addresses 499
GETCLIENTID, GIVESOCKET, and TAKESOCKET 501
The Listener 502

Listener Input Format (Standard Listener only) 502
Listener Output Format 504
Writing Your Own Security Link Module for the
Listener 505

Data Conversion Routines 507

Part 6. Appendixes 509

Appendix A. Examples to be used
with TCP/IP for VSE/ESA 511
Autonomous FTP 511
AUTOLPR – Printing with the CICS Report
Controller Feature (RCF) 512
GPS and RCF 513
TELNET and Subnetting in a Class-C Network . . 514
TELNET daemons and logmode 515
VSAMCAT Usage 515
Using the Command preprocessor 516

Sample Programs 517
Compiling Your Program 521

Appendix B. Debugging Facility for
EZASMI and EZASOKET Interfaces
(EZAAPI Trace). 525

Appendix C. Advanced OSAX Device
Driver Configuration 527
Configurable QDIO Buffers. 527
VLAN Support 527

Index 529

Glossary 539

Contents vii

viii z/VSE V5R2 TCP/IP Support

Figures

1. TCP/IP Configuration Panel CON$SEL 16
2. TCP/IP Configuration Panel: Set IPADDR and

MASK 17
3. TCP/IP Configuration Panel: Link List . . . 17
4. TCP/IP Configuration: Link 18
5. TCP/IP Configuration Panel: Adapter List 18
6. TCP/IP Configuration Panel: Adapter. . . . 19
7. TCP/IP Configuration Panel: Route List 19
8. TCP/IP Configuration Panel: Define Route 20
9. TCP/IP Configuration Panel: TELNET LIST 20

10. TCP/IP Configuration Panel: TELNET
DAEMON 21

11. LPR-Job on TCP/IP for VSE/ESA 30
12. Control Flow when using LE/VSE C Sockets

with different TCP/IP stacks. 52
13. Sample Program Using EZASMI Macro

(Synchronously) 60
14. Sample Program Using EZASMI Macro

(Asynchronously) 62
15. Sample Program Using EZASOKET Call Using

COBOL 66
16. Storage Definition Statement Examples 201
17. HOSTENT Structure Returned by the

GETHOSTBYADDR Call 220
18. HOSTENT Structure Returned by the

GETHOSTYBYNAME Call 222
19. ECB Input Parameter 295
20. HOSTENT Structure Returned by the

GETHOSTBYADDR Macro 316
21. HOSTENT Structure Returned by the

GETHOSTBYNAME Macro 318
22. Communication Between VM Guests via

HiperSockets. 390
23. Communication Between VM Guests via a

Linux Fast Path 391
24. Communication Between LPARs via

HiperSockets. 392

25. z/VSE LFP via IUCV Configuration Example 405
26. Linux LFP via IUCV Configuration Example 406
27. z/VSE LFP via HiperSockets Configuration

Example 406
28. Linux LFP via HiperSockets Configuration

Example 407
29. Linux System Log Output Example 410
30. Linux System Log Output Example of a

Disconnected z/VSE System 410
31. Active Instance List Output Example 411
32. LFP Instance on z/VSE via IUCV Connection

Output Example 411
33. LFP Instance on z/VSE via HiperSockets

Connection Output Example 413
34. Socket Diagnosis Output Example 414
35. lfpd-admin via IUCV Connection Output

Example 414
36. lfpd-admin via HS CQ Connection Output

Example 415
37. Communication using z/VSE VIA and an

IUCV connection 417
38. z/VSE VIAAdministrative Command Output

Example 420
39. z/VSE VIA startdbg Command Output

Example 421
40. Addition to the DCT Required by CICS

TCP/IP 443
41. The Monitor Control Table (MCT) for Listener 444
42. The DNS Hostent 474
43. The Sequence of Sockets Calls 495
44. Sequence of Socket Calls with an Iterative

Server 498
45. Sequence of Socket Calls between a CICS

Client and a Remote Iterative Server 499
46. Transfer of CLIENTID Information 501

© Copyright IBM Corp. 1997, 2014 ix

x z/VSE V5R2 TCP/IP Support

Tables

1. Principal Performance Parameters 36
2. TCP/IP Performance-Relevant Parameters 37
3. Supported call functions by Interface and

TCP/IP Stack 71
4. ERRNO Values Sorted by Value 74
5. EZASMI/EZASOKET only - ERRNO Values

Sorted by Value 79
6. ERRNO Values sorted by Name. 79
7. COMMAREA parameter list 83
8. NUM_IMAGES Field Settings 321
9. IOCTL Macro Arguments 349

10. Specifying Instance IDs 396
11. OpenSSL Cipher Suites 432
12. Listener action based on RTYTIME and stack

state 450

13. Conditions for Translation of Tranid and User
Data 451

14. Configuration File Format 487
15. Global Work Area Format 489
16. COMMAREA Format for EZACIC20 491
17. Listener Control Area (LCA) 492
18. Calls for the Client Application 495
19. Calls for the Server Application 496
20. Calls for the Concurrent Server Application 497
21. Listener Output Format - using the IPv4

protocol 504
22. Output from EZA Listener to the Child Server

- Enhanced mode - using the IPv6 protocol . 504
23. Output from EZA Listener to the Security /

Transaction Exit 505

© Copyright IBM Corp. 1997, 2014 xi

xii z/VSE V5R2 TCP/IP Support

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM websites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM websites specifically mentioned in
this publication or accessed through an IBM website that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Deutschland GmbH
Dept. M358
IBM-Allee 1
71139 Ehningen
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

© Copyright IBM Corp. 1997, 2014 xiii

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

xiv z/VSE V5R2 TCP/IP Support

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/VSE enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/VSE. Consult the assistive technology documentation for
specific information when using such products to access z/VSE interfaces.

Documentation Format
The publications for this product are in Adobe Portable Document Format (PDF)
and should be compliant with accessibility standards. If you experience difficulties
when you use the PDF files and want to request a web-based format for a
publication, you can either write an email to s390id@de.ibm.com, or use the Reader
Comment Form in the back of this publication or direct your mail to the following
address:
IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 1997, 2014 xv

xvi z/VSE V5R2 TCP/IP Support

About This Publication

This publication describes how to communicate with an IBM® z/VSE host using
TCP/IP and the programs that enable the connection and interchange.

Before using this publication read the section “Important Considerations - Read
this First!” on page xxiii. It gives you a brief overview on the content and structure
of this manual.

Where to Find More Information
z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new z/VSE functions, and
other items of interest to VSE users.

You can find the z/VSE home page at

http://www.ibm.com/systems/z/os/zvse/

You can also find VSE User Examples (in zipped format) at

http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

Understanding Syntax Diagrams
This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and
top to bottom.
v The ��─── symbol indicates the beginning of a syntax diagram.
v The ───� symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.
v The �─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.
v The ───�� symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:
v Directly on the line (required)
v Above the line (default)
v Below the line (optional)

Uppercase Letters
Uppercase letters denote the shortest possible abbreviation. If an item
appears entirely in uppercase letters, it can not be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any
combination. For example:

© Copyright IBM Corp. 1997, 2014 xvii

http://www.ibm.com/systems/z/os/zvse/
http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

�� KEYWOrd ��

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in any
combination of uppercase and lowercase letters.

Symbols
You must code these symbols exactly as they appear in the syntax diagram

* Asterisk

: Colon

, Comma

= Equal Sign

- Hyphen

// Double slash

() Parenthesis

. Period

+ Add

For example:
* $$ LST

Variables
Highlighted lowercase letters denote variable information that you must
substitute with specific information. For example:

��
,USER= user_id

��

Here you must code USER= as shown and supply an ID for user_id. You
may, of course, enter USER in lowercase, but you must not change it
otherwise.

Repetition
An arrow returning to the left means that the item can be repeated.

�� � repeat ��

A character within the arrow means you must separate repeated items with
that character.

�� �

,

repeat ��

A footnote (1) by the arrow references a limit that tells how many times
the item can be repeated.

�� �
(1)

repeat ��

xviii z/VSE V5R2 TCP/IP Support

Notes:

1 Specify repeat up to 5 times.

Defaults
Defaults are above the line. The system uses the default unless you
override it. You can override the default by coding an option from the
stack below the line. For example:

��
A

B
C

��

In this example, A is the default. You can override A by choosing B or C.

Required Choices
When two or more items are in a stack and one of them is on the line, you
must specify one item. For example:

�� A
B
C

��

Here you must enter either A or B or C.

Optional Choice
When an item is below the line, the item is optional. Only one item may be
chosen. For example:

��
A
B
C

��

Here you may enter either A or B or C, or you may omit the field.

Required Blank Space
A required blank space is indicated as such in the notation. For example:
* $$ EOJ

This indicates that at least one blank is required before and after the
characters $$.

About This Publication xix

xx z/VSE V5R2 TCP/IP Support

Summary of Changes

This publication has been updated to reflect enhancements and changes that are
implemented with z/VSE 5.2. It also includes terminology, maintenance, and
editorial changes.

These are the enhancements that have been made available with z/VSE 5.2

v The TCP/IP for VSE/ESA product provided by Connectivity Systems
Incorporated is now installed in library PRD2.TCPIPC and no longer in
PRD1.BASE. Therefore, jobs that use TCP/IP for VSE/ESA must now
have PRD2.TCPIPC as the first library in their library search chain.

v CICS Listener Support has been enhanced to support IPv6, specification
of an TCP/IP stack, and more. For details refer to Part 5, “CICS Listener
Support,” on page 439.

These are the enhancements that have been made available via the June 2013
Service Upgrade of z/VSE 5.1

v z/VSE now supports OpenSSL. For details refer to Chapter 15,
“OpenSSL,” on page 423.

v Appendix C, “Advanced OSAX Device Driver Configuration,” on page
527 has been added to this publication.

These are the enhancements that have been made available via the June 2012
Service Upgrade of z/VSE 5.1:

v The Linux Fast Path can now connect z/VSE and Linux images running
in LPAR environments.
– The communication flow is described in “Communication Flow When

Using Linux Fast Path in an LPAR Environment” on page 391.
– The new configuration parameters are described in “Configuring

Linux Fast Path” on page 397.
v An additional chapter has been added to reflect the new z/VSE - z/VM

IP Assist function. This function is intended for customers who want run
a z/VM guest image without running a Linux on System z system. For
details refer to Chapter 14, “z/VSE - z/VM IP Assist,” on page 417.

With z/VSE 5.1
The following EZASMI/EZASOKET interfaces support new options,
especially for IPv6 support:
v GETSOCKOPT (refer to “GETSOCKOPT” on page 330 and

“GETSOCKOPT” on page 232 for details.)
v GETSOCKOPT (refer to “SETSOCKOPT” on page 371 and

“SETSOCKOPT” on page 270 for details.)

© Copyright IBM Corp. 1997, 2014 xxi

xxii z/VSE V5R2 TCP/IP Support

Important Considerations - Read this First!

This publication describes how to communicate with an IBM z/VSE host using
TCP/IP and the programs that enable the connection and interchange. You can run
z/VSE with the following TCP/IP products:
v TCP/IP for VSE/ESA (5686-A04), which supports the IPv4 protocol.
v IPv6/VSE (5686-BS1), which supports the IPv4 and the IPv6 protocol.

IBM provides extensions that can be used with these programs. They are described
in detail and include the LE/VSE C socket interface, the EZASMI macro interface,
the EZASOKET call interface, the Linux Fast Path to System z® function, the CICS®

Listener Support and more. Be aware that these extensions in its external interfaces
might describe more functionality than really provided by the TCP/IP stacks.
Check the individual function descriptions for such exceptions.

This publication is divided into 5 parts:
v Part 1, “Using TCP/IP for VSE/ESA,” on page 1 describes how to setup and use

the TCP/IP for VSE/ESA (5686-A04) product.
v Part 2, “Using IPv6/VSE,” on page 39 gives an overview on the IPv6/VSE

(5686-BS1) product.
v Part 3, “Programming Interfaces,” on page 45 describes the various connection

methods to a z/VSE host and how to interchange data with the system.
v Part 4, “Using Fast Path to Linux,” on page 385 describes the Fast Path to

Linux on System z and z/VSE - z/VM IP Assist functions.
v Part 5, “CICS Listener Support,” on page 439 shows how to configure the CICS

Listener Support.

© Copyright IBM Corp. 1997, 2014 xxiii

Read this First!

xxiv z/VSE V5R2 TCP/IP Support

Part 1. Using TCP/IP for VSE/ESA

© Copyright IBM Corp. 1997, 2014 1

2 z/VSE V5R2 TCP/IP Support

Chapter 1. Overview

TCP/IP is a communication facility that permits bidirectional communication
between VSE-based software and software running on other platforms equipped
with TCP/IP.

Before using the TCP/IP for VSE/ESA program read the following very carefully.

Documentation for the TCP/IP for VSE/ESA (5686-A04) Program
The product description of the TCP/IP for VSE/ESA 1.5 product (IBM product
number 5686-A04) is available in PDF format on the z/VSE Homepage and in the
online collection kit that is available in compressed format for download from the
IBM publication center (SK3T-8348).

The TCP/IP for VSE/ESA product documentation consists of 6 publications with
the original product description from Connectivity Systems Inc., the provider of
the TCP/IP for VSE product, plus one publication describing the setup of the
TCP/IP for VSE/ESA product IBM provides – this publication.

The 7 publications are as follows:
v z/VSE TCP/IP Support (this publication)
v TCP/IP for VSE 1.5 Installation Guide

v TCP/IP for VSE 1.5 User's Guide

v TCP/IP for VSE 1.5 Commands

v TCP/IP for VSE 1.5 Programmer's Reference

v TCP/IP for VSE 1.5 Messages and Codes

v TCP/IP for VSE 1.5 Optional Features

You can use the Adobe Acrobat Reader to view and print these publications. If you
do not already have Acrobat Reader installed, or if you need information on
installing and using Acrobat Reader, see the Adobe website at
http://www.adobe.com.

The Secure Sockets Layer (SSL) setup used in z/VSE is described in z/VSE
Administration.

You can find more information about the support of HiperSockets and OSA
Express® in z/VSE Planning.

General Considerations on the TCP/IP for VSE/ESA Program Setup
As described above the product documentation for the TCP/IP for VSE/ESA 1.5
product (IBM product number 5686-A04) is available on the z/VSE DVD collection
(SK3T-8348) in PDF format only. This DVD contains 6 original publications on the
product from Connectivity Systems Inc., the provider of the TCP/IP for VSE/ESA
product.

When you read the product description from Connectivity Systems Inc. (CSI) note
the following differences when using the TCP/IP for VSE/ESA product from IBM:

© Copyright IBM Corp. 1997, 2014 3

http://www.ibm.com/systems/z/os/zvse/

v The 'TCP/IP for VSE/ESA' product from IBM (product number 5686-A04) is in
general the same as the product 'TCP/IP for VSE' from CSI; the differences and
additional functions exploiting TCP/IP for VSE/ESA are listed in this
publication.

v The TCP/IP for VSE/ESA product provided by Connectivity Systems
Incorporated is now installed in library PRD2.TCPIPC and no longer in
PRD1.BASE. Therefore, batch jobs that use TCP/IP for VSE/ESA must now have
PRD2.TCPIPC as the first library in their library search chain.

v TCP/IP for VSE/ESA from IBM is preinstalled in the PRD2.TCPIPC library;
therefore all references in the documentation from CSI which describe product
installation tasks (for example restoring the product) do not apply.

v TCP/IP for VSE/ESA from IBM uses a specific key verification procedure. How
to install the IBM product key for TCP/IP for VSE/ESA is described below.

v There are two types of REXX support for TCP/IP for VSE/ESA available:
– The REXX Socket API support within REXX/VSE. The description of this

REXX Socket API is in the online manual REXX/VSE Reference.
– The REXX support within TCP/IP for VSE/ESA (for example REXX Socket

API). The documentation of this REXX support can be found in the TCP/IP for
VSE 1.5 Programmer's Reference manual.

v The CAF (CICS Access Facility) of TCP/IP for VSE is not yet available from
IBM; therefore all references to CAF do not apply.

v Connectivity Systems Inc. provides interim service to their TCP/IP for VSE
product using 'alpha and beta service packs'. These service packs contain
updates to the TCP/IP for VSE product which are not officially available from
IBM.
If a customer is using an 'alpha' or 'beta' version of a CSI service pack, the
VSE-TCP/IP environment has to be considered in general as 'unsupported' for
purposes of interfacing with IBM products that exploit TCP/IP for VSE/ESA.
This is true regardless of whether the customer is an IBM TCP/IP customer or a
CSI TCP/IP customer. Further information can be found in Information APAR
II11836.
When CSI provides such a service pack in production mode IBM provides a PTF
for the same service pack. Go to the z/VSE® Home page for the latest TCP/IP
for VSE/ESA APARs and PTFs: http://www.ibm.com/systems/z/os/zvse/
support/tcpip.html.

v In case of problems with TCP/IP for VSE see the Connectivity Systems Inc. web
page for TCP/IP support at http://www.csi-international.com/ for any available
fix that might resolve your problem.

v When you have licensed the TCP/IP for VSE/ESA product from IBM you have
to use the normal IBM service channel to get support in case of problems. Tapes
and problem documentation have to be provided to the appropriate service
center. Therefore special Technical Support Considerations in CSI's
documentation do not apply.

The Demo Mode for TCP/IP for VSE/ESA
TCP/IP for VSE/ESA as shipped to all customers is configured to run in
demonstration mode. Demonstration mode is intended to be used to configure and
test TCP/IP for VSE/ESA in customer environments and it is not suitable for
production use. TCP/IP for VSE/ESA has the following characteristics while
running in demonstration mode:
v TCP/IP for VSE/ESA will shut itself down every hour.

4 z/VSE V5R2 TCP/IP Support

http://www.ibm.com/systems/z/os/zvse/support/tcpip.html
http://www.ibm.com/systems/z/os/zvse/support/tcpip.html

v You are limited to one (1) concurrent FTP session.
v You are limited to one (1) concurrent TELNET session.
v You are limited to one (1) concurrent Line Printer Daemon.
v You can only establish one (1) concurrent session with the TCP/IP for VSE/ESA

web server.

NFS, GPS, and SSL are not usable in demonstration mode.

You can enable production use of TCP/IP for VSE/ESA by installing a product key
that you can obtain from IBM after licensing the product.

To run the TCP/IP for VSE/ESA in demo mode, a VSE partition of at least 20 MB
size is required.

Note that you must run TCP/IP in a VSE partition with high priority. As TCP/IP
is like VTAM® a timing dependent product, it is recommended to use a partition
with a PRTY about equal to VTAM.

Supplying the Product Key
TCP/IP for VSE/ESA, the native TCP/IP solution for VSE, is preinstalled in the
z/VSE base, and is available as an optional-priced IBM program. IBM has licensed
this program from Connectivity Systems Incorporated.

The Application Pak, which is the basic TCP/IP for VSE/ESA function set, requires
a key. The Network File System (NFS) feature and the General Print Server (GPS)
feature are optional-priced additional applications on top of the TCP/IP for
VSE/ESA Application Pak and require a separate key.

SSL for VSE is part of TCP/IP for VSE/ESA and is also key protected. It cannot be
used in demo mode, because it is used in conjunction with the Application Pak for
TCP/IP for VSE/ESA.

The different keys for the Application Pak, NFS or GPS, are delivered to the
customer when the product is licensed. To license the TCP/IP for VSE/ESA
product and its features, you have to use the normal IBM ordering process using
CFSW for example.

The Application Pak includes the Socket Application Programming Interface (API),
the TCP/IP Protocol stack and handles all layers of the TCP/IP communication
from the physical layer up to the application functions. It also includes the
following TCP/IP Applications:
v TN3270 server and Telnet/TN3270 client
v FTP server and client
v Web server (HTTP daemon)
v Line Printer Requestor (LPR) and Line Printer Daemon (LPD)

NFS and GPS are not included in the Application Pak.

TCP/IP for VSE/ESA is shipped with a "demonstration mode" product key. This
key is installed into the sublibrary PRD2.TCPIPC together with the product's
phases. Prior to running TCP/IP for VSE/ESA in production mode, it is necessary
to supply a permanent product key. This product key is based upon the license
you have signed. It is recommended that you place your production product key
in the sublibrary allocated to "configuration" data (for example PRD2.CONFIG)

Chapter 1. Overview 5

and that this sublibrary is first in the LIBDEF search order. In this way, application
of maintenance or a product reinstallation will not overlay your production key.

The product enabling is driven by two different phases which can be generated
using the job streams shown in the examples below.

If you plan to use NFS (Network File System), you have to install a separate
product key for NFS in addition to the key for the Application Pak.

If you plan to use GPS (General Print Server), you have to install a separate
product key for GPS in addition to the key for the Application Pak.

Installing Product Keys
// JOB KEY
// LIBDEF *,SEARCH=PRD2.TCPIPC
// LIBDEF PHASE,CATALOG=PRD2.CONFIG
// OPTION CATAL
// EXEC ASMA90,SIZE=(ASMA90,50K)

PRODKEY 1234-5678-9012-3456-7890 /* APPLICATION PAK */
PRODKEY 1234-4567-9123-5678-9012 /* NFS */
PRODKEY 3456-7890-1234-5678-9012 /* GPS */
END

/*
// EXEC LNKEDT
/&

Defining Customer Information
// JOB TCPCUS
// LIBDEF *,SEARCH=(PRD2.TCPIPC)
// LIBDEF PHASE,CATALOG=PRD2.CONFIG
// OPTION CATAL
// EXEC ASSEMBLY

CUSTDEF DEFINE, X
NAME=’IBM z/VSE Development’, X
NUMBER=C123-456-7890

END
/*
// EXEC LNKEDT
/&

Note:

1. In the preceding example, PRD2.CONFIG is the name of the library into which
the configuration data ofTCP/IP for VSE/ESA is being installed.

2. Once you have completed a license agreement for the software, you can replace
the string shown in the example with a real product key. The keys that appear
here in this example are only for illustrative purposes.

3. The customer number used by TCP/IP for VSE/ESA (as shown in the second
example above) is not the IBM customer number. The customer number to be
used in the CUSTDEF macro is provided on the same memo where the key for
the product is specified.

Migration Considerations
TCP/IP for VSE/ESA preinstalled with z/VSE can be used with TCP/IP for z/OS®

and TCP/IP for z/VM in a VM/VSE environment. Either product can be used as a
gateway to an intranet or the internet in general. Check your TCP/IP
documentation for the configuration necessary to couple to those products. For

6 z/VSE V5R2 TCP/IP Support

example, you could use a CTCA connection. TCP/IP for VSE/ESA could also be
used to connect to any TCP/IP product on a non-VSE system, as long as this
TCP/IP implementation follows the TCP/IP standards.

If you chose to purchase TCP/IP for VSE/ESA from IBM and intend to use it
concurrently with a different non-IBM/non-Connectivity Systems
TCP/IP-implementation on the z/VSE system, you are running in an environment
which has not been tested explicitly. In this case both products must be carefully
configured to avoid any problems. For example, the products may use the same
file names where it is not predictable how they will behave if the LIBDEF chains
are not properly set up (for example duplicate SOCKET.H C language header file).

If you decide to run any other than the preinstalled TCP/IP together with z/VSE ,
run the IBM supplied delete job (see skeleton DELTCPIP in ICCF library 59) to
make sure that this TCP/IP does not interfere with the preinstalled TCP/IP for
VSE/ESA.

If you are migrating to TCP/IP for VSE/ESA from any other TCP/IP product than
the one from Connectivity Systems, follow the configuration steps as supplied with
the product, and use your current TCP/IP specific parameters like the host IP
address to ease the product setup.

If you have been using TCP/IP for VSE from Connectivity Systems or one of its
distributors before migrating to TCP/IP for VSE/ESA on z/VSE, consider the
following:
v z/VSE preinstalls TCP/IP for VSE/ESA in the PRD2.TCPIPC system library. If

you have followed the installation recommendation from Connectivity Systems
and installed TCP/IP in its private sublibrary, remove this sublibrary from your
default LIBDEF chains.

v TCP/IP for VSE/ESA is stored in PRD2.TCPIPC. Jobs referring to any other
TCP/IP sublibrary need to be changed. This includes the TCP/IP startup job
itself, as well as any job performing for example LPR, FTP, or TELNET sessions
from within a batch job. If you perform TCP/IP related development yourself,
the respective development procedures may also be affected.

v If you do not have stored your TCP/IP specific configuration files like
IPINITxx.L and NETWORK.L in a separate sublibrary (as recommended by
Connectivity Systems), you should move these modified files into
PRD2.CONFIG to ensure they will not be replaced with the next z/VSE service
refresh. This includes any enhancements/modifications you may have done to
your IPXLATE translation phase as well as Telnet related terminal definitions in
the supplied TCPAPPL source book or specific replacement of it.

v Rename the PRODKEYS phase you had assembled with product keys from
Connectivity Systems, and generate a new PRODKEYS phase with the product
keys as supplied by IBM.
While product keys from Connectivity Systems only require to generate phase
PRODKEYS, IBM supplied keys additionally require the generation of phase
CUSTDEF as described under “Defining Customer Information” on page 6. The
validation of the IBM supplied keys requires that the LE/VSE C runtime
environment must be accessible. Include PRD2.SCEEBASE in the LIBDEF
definition of the startup job of TCP/IP for this purpose.

v Your TCP/IP defined virtual file system may have changed by migrating to
z/VSE. Update your IPINITxx.L configuration member accordingly.

v TCP/IP for VSE/ESA provided with z/VSE is fully MSHP controlled, i.e. you
must not apply any Connectivity Systems Inc. provided service pack to the

Chapter 1. Overview 7

system as you may have done with your previous product setup. Instead you
should only install IBM supplied PTFs. Otherwise you may be running in an
unsupported environment. Applying other kind of fixes than PTFs may
downgrade your system and cause unpredictable effects.

v If you have self written TCP/IP for VSE/ESA applications:
– you may need to re-assemble your assembler application(s) if they were using

the TCP/IP for VSE/ESA SOCKET macro. This macro contains inline code
which may have been refreshed with IBM's TCP/IP for VSE/ESA.

– you may need to relink your application(s) if they had been using the BSD-C
socket interface as provided with the product or when using the product's
preprocessor for resolving EXEC TCP source statements in COBOL, PL/I or
assembler programs. This may be necessary because the IPNxxxx.OBJ files
linked to the application may have been serviced.

8 z/VSE V5R2 TCP/IP Support

Chapter 2. TCP/IP for VSE/ESA Configuration

How TCP/IP for VSE/ESA is Installed
TCP/IP for VSE/ESA is preinstalled with z/VSE in the PRD2.TCPIPC library. Do
not keep any personalized information, for example the key and customer
definition or the TCP/IP startup member in PRD2.TCPIPC. This is necessary
because some modules might be serviced by applying a PTF or by a system
refresh, a Fast Service Upgrade (FSU).

TCP/IP for VSE/ESA Partition Startup
z/VSE defines the default partition F7 to TCP/IP for VSE/ESA. A default partition
startup member TCPSTART.Z can be found in PRD2.TCPIPC. You can adjust it
according to your configuration and put it into the VSE/POWER RDR queue using
the DTRIINIT utility (see the following example). You can store the updated
member in PRD2.CONFIG.

The default partition for TCP/IP is F7 and is 20 MB per default. It is highly
recommended to use TCP/IP for VSE/ESA in a partition with at least 30 MB to
benefit from the 31–bit exploitation of the product.

Note that TCP/IP requires a VSE partition with a high priority. As for any other
timing dependent product such as VTAM it is therefore highly recommended to
use a partition with a PRTY about equal to VTAM. This is especially true if, for
example, TCP/IP has to service CICS for the use of Telnet or MQSeries®.

Example

The following job stream can be used to load the TCP/IP for VSE/ESA startup
member TCPSTART.Z to the POWER® RDR queue:
* $$ JOB JNM=TCPLOAD,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB TCPLOAD LOAD TCPIP STARTUP INTO POWER
// LIBDEF *,SEARCH=IJSYSRS.SYSLIB
// EXEC DTRIINIT
ACCESS PRD2.TCPIPC
LOAD TCPSTART.Z
/*
/&
* $$ EOJ

TCPSTART.Z looks as follows:
* $$ JOB JNM=TCPSTART,CLASS=7,DISP=K
* $$ LST CLASS=A,DISP=D
// JOB TCPIP
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD2.TCPIPC,PRD2.SCEEBASE)
// EXEC PROC=DTRICCF
// SETPFIX LIMIT=(400K,2100K)
// EXEC IPNET,SIZE=IPNET,PARM=’ID=00,INIT=IPINIT00’,DSPACE=2M
/&
* $$ EOJ

© Copyright IBM Corp. 1997, 2014 9

Note:

1. In the example PRD2.TCPIPC is the library where TCP/IP for VSE/ESA is
preinstalled and PRD2.CONFIG is the library where you have placed your
installation-dependent values (initialization member and authorization code).

2. The PRD2.SCEEBASE library contains the LE/VSE C runtime environment and
is necessary for IBM product key verification.

3. Be sure that the LIBDEF statement specifies “*”. If you specify “phase”,
TCP/IP for VSE/ESA is unable to locate the initialization member IPINIT00.L.

4. If you do not use the system supplied TCP/IP startup job, make sure that the
LIBDEF definition includes the LE/VSE C runtime contained in
PRD2.SCEEBASE. This is essential for proper IBM product key validation.

Configuring CICS
TCP/IP for VSE/ESA includes several CICS-based clients. These clients provide
CICS users with the ability to use TCP/IP for example to:
v Logon (from CICS) to other platforms and applications via Telnet. For example,

a user could logon to a UNIX system from CICS.
v Initiate a file transfer between the TCP/IP for VSE/ESA FTP server and a

remote FTP server.
v Printing files using LPR.
v Check the network connection using the Ping client.

Setup CICS
v Ensure that TCP/IP for VSE/ESA is set in your CICS partition’s search chain.

This may be accomplished by modifying your CICS startup JCL as follows:
// LIBDEF *,SEARCH=(lib,lib,PRD2.TCPIPC)

v Define the Programs and Transactions to your CICS which should be used with
TCP/IP.

Note:

1. The use of group “TCPIP” and list “VSELIST” is arbitrary. You can make any
adjustments that your site requires.

2. The DFHPPTIP.A shipped with the TCP/IP for VSE/ESA product looks as
follows:
DFHPPTIP — CICS Processing Program Table
PPTIP TITLE ’DFHPPTIP - Cics Processing Program Table’

DFHPPT TYPE=INITIAL, *
SUFFIX=IP

DFHPPT TYPE=ENTRY, Entry *
PROGRAM=TELNET01, Program Identification *
RSL=PUBLIC, Public Program *
PGMLANG=ASSEMBLER Assembler

DFHPPT TYPE=ENTRY, Entry *
PROGRAM=FTP01, Program Identification *
RSL=PUBLIC, Public Program *
PGMLANG=ASSEMBLER Assembler

DFHPPT TYPE=ENTRY, Entry *
PROGRAM=CLIENT01, Program Identification *
RSL=PUBLIC, Public Program *
PGMLANG=ASSEMBLER Assembler

DFHPPT TYPE=FINAL
END

3. The DFHPCTIP.A shipped with the TCP/IP for VSE/ESA product looks as
follows:

TCP/IP for VSE/ESA Configuration

10 z/VSE V5R2 TCP/IP Support

DFHPCTIP — CICS Transaction Table
PCTIP TITLE ’DFHPCTIP - Cics Transaction Table’

DFHPCT TYPE=INITIAL, *
SUFFIX=IP

DFHPCT TYPE=ENTRY, Entry *
TRANSID=TELN, Transaction Name *
PROGRAM=TELNET01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=teln, Transaction Name *
PROGRAM=TELNET01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=TELC, Transaction Name *
PROGRAM=TELNET01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=TELW, Transaction Name *
PROGRAM=TELNET01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=TELR, Transaction Name *
PROGRAM=TELNET01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=FTP, Transaction Name *
PROGRAM=FTP01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=ftp, Transaction Name *
PROGRAM=FTP01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=FTPC, Transaction Name *
PROGRAM=FTP01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=FTPW, Transaction Name *
PROGRAM=FTP01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=FTPR, Transaction Name *
PROGRAM=FTP01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=LPR, Transaction Name *
PROGRAM=CLIENT01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=lpr, Transaction Name *
PROGRAM=CLIENT01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=PING, Transaction Name *
PROGRAM=CLIENT01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=ping, Transaction Name *
PROGRAM=CLIENT01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=TCPC, Transaction Name *
PROGRAM=CLIENT01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=ENTRY, Entry *
TRANSID=TCPW, Transaction Name *
PROGRAM=CLIENT01, Program Identification *

TCP/IP for VSE/ESA Configuration

Chapter 2. TCP/IP for VSE/ESA Configuration 11

RSL=PUBLIC Public
DFHPCT TYPE=ENTRY, Entry *

TRANSID=TCPR, Transaction Name *
PROGRAM=CLIENT01, Program Identification *
RSL=PUBLIC Public

DFHPCT TYPE=FINAL
END

Example for CICS/TS 1.1
Use member IPNCSD.Z to define the programs and transactions to your CICS.
Additionally a member IPNCSDUP.Z is available to use IPNCSD.Z. Following is an
example of IPNCSDUP.Z:

* $$ JOB JNM=IPNCSDUP,CLASS=0,DISP=D
// JOB IPNCSDUP
* SHUT DOWN CICS FIRST
// PAUSE CLOSE DFHCSD FILE IF CICS IS UP : CEMT SE FI(DFHCSD) CLOSE
/*
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD1.BASE,PRD2.SCEEBASE)
// EXEC DFHCSDUP,SIZE=600K INIT AND LOAD CICS

DELETE GROUP(TCPIP)
* $$ SLI MEM=IPNCSD.Z,S=(PRD1.BASE)

ADD GROUP(TCPIP) LIST(VSELIST)
LIST ALL

/*
/&
* $$ EOJ

Note:

1. The use of group “TCPIP” and list “VSELIST” is arbitrary. You can make any
adjustments that your site requires.

2. The IPNCSD.Z shipped with the TCP/IP for VSE/ESA product looks as
follows:
IPNCSD.Z shipped with TCP/IP for VSE/ESA

* FOLLOWING ARE THE PPT ENTRIES REQUIRED FOR TCP/IP for VSE/ESA *

DEFINE PROGRAM(TELNET01) GROUP(TCPIP)
LANGUAGE(ASSEMBLER)

DEFINE PROGRAM(FTP01) GROUP(TCPIP)
LANGUAGE(ASSEMBLER)

DEFINE PROGRAM(CLIENT01) GROUP(TCPIP)
LANGUAGE(ASSEMBLER)

* FOLLOWING ARE THE PCT ENTRIES REQUIRED FOR TCP/IP for VSE/ESA *

DEFINE TRANSACTION(TRAC) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(trac) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(REXE) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(rexe) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(DISC) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(disc) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(EMAI) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(emai) GROUP(TCPIP)
PROGRAM(CLIENT01)

DEFINE TRANSACTION(PING) GROUP(TCPIP)

TCP/IP for VSE/ESA Configuration

12 z/VSE V5R2 TCP/IP Support

PROGRAM(CLIENT01)
DEFINE TRANSACTION(ping) GROUP(TCPIP)

PROGRAM(CLIENT01)
DEFINE TRANSACTION(TELN) GROUP(TCPIP)

PROGRAM(TELNET01)
DEFINE TRANSACTION(teln) GROUP(TCPIP)

PROGRAM(TELNET01)
DEFINE TRANSACTION(TELC) GROUP(TCPIP)

PROGRAM(TELNET01)
DEFINE TRANSACTION(TELW) GROUP(TCPIP)

PROGRAM(TELNET01)
DEFINE TRANSACTION(TELR) GROUP(TCPIP)

PROGRAM(TELNET01)
DEFINE TRANSACTION(FTP) GROUP(TCPIP)

PROGRAM(FTP01)
DEFINE TRANSACTION(ftp) GROUP(TCPIP)

PROGRAM(FTP01)
DEFINE TRANSACTION(FTPC) GROUP(TCPIP)

PROGRAM(FTP01)
DEFINE TRANSACTION(FTPW) GROUP(TCPIP)

PROGRAM(FTP01)
DEFINE TRANSACTION(FTPR) GROUP(TCPIP)

PROGRAM(FTP01)
DEFINE TRANSACTION(TCPC) GROUP(TCPIP)

PROGRAM(CLIENT01)
DEFINE TRANSACTION(TCPW) GROUP(TCPIP)

PROGRAM(CLIENT01)
DEFINE TRANSACTION(TCPR) GROUP(TCPIP)

PROGRAM(CLIENT01)
DEFINE TRANSACTION(LPR) GROUP(TCPIP)

PROGRAM(CLIENT01)
DEFINE TRANSACTION(lpr) GROUP(TCPIP)

PROGRAM(CLIENT01)

* END OF TCP/IP MEMBER *

HTMLINST.Z
To interchange Hyper Text Markup Language (HTML) documents, HTTP is used.
An HTML document is a file that contains printable text, interspersed with HTML
“tags” that describe the document to be displayed. Additional elements of HTML
allow you to include links to other documents, embedded graphics, and special
effects.

TCP/IP for VSE/ESA provides special HTML files for security reasons:
v PASSWORD.HTML
v VIOLATED.HTML
v BLANKING.HTML

The member HTMLINST.Z in PRD2.TCPIPC contains a job stream which generates
default members of these special HTML files. The member HTMLINST.Z can be
loaded into the VSE/POWER RDR queue using the DTRIINIT utility. An example
is shown in the following.

Example
* $$ JOB JNM=HTMLLOAD,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB HTMLLOAD LOAD HTMLINST.Z INTO POWER
// LIBDEF *,SEARCH=IJSYSRS.SYSLIB
// EXEC DTRIINIT
ACCESS PRD2.TCPIPC

TCP/IP for VSE/ESA Configuration

Chapter 2. TCP/IP for VSE/ESA Configuration 13

LOAD HTMLINST.Z
/*
/&
* $$ EOJ

Details on how to use the single HTML members can be found in the section
'Security' of chapter 'Configuring the HTTP Daemon' in the TCP/IP for VSE 1.5
Installation Guide.

TCP/IP for VSE/ESA Configuration

14 z/VSE V5R2 TCP/IP Support

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs

It is important that you have read Chapter 1, “Overview,” on page 3 before you
start configuring your system for TCP/IP for VSE/ESA!

Before you can use TCP/IP for VSE/ESA, some configuration work should be done.

This can be done either manually by providing the necessary definitions in the
related TCP/IP for VSE/ESA library members and definition jobs. To assist you
some configuration members are provided, for example TCPSTART.Z (see “TCP/IP
for VSE/ESA Partition Startup” on page 9 for details), TCPAPP00.B (sample VTAM
definitions for Telnet daemons), and IPINIT00.L (sample TCP/IP for VSE/ESA
initialization member). Or you can use the “Configuring TCP/IP Using the
IUI-based Configuration Dialog” on page 16.

Prior to running TCP/IP for VSE/ESA in production mode, you must have
installed your product key as described under “Supplying the Product Key” on
page 5.

Configuring TCP/IP Using the Configuration Dialogs
Before starting TCP/IP for VSE/ESA, you must provide information about your
configuration. The following can be specified:

General information
Some general configuration is necessary. For example, you must specify the
HOST IP address of TCP/IP for VSE/ESA.

Links You need to identify each device, controller, and connection mechanism
that TCP/IP for VSE/ESA will use for external communication.

Daemons
A definition of the service Daemons must be provided. Daemons are the
routines that provide services to the end user. For example, FTP is a
service daemon that provides access to the VSE file system.

Routing information
Depending on your configuration, it may be necessary to define routing
information to the TCP/IP for VSE/ESA product. This information is used
to control connections with other TCP/IP platforms.

How To Do It

All configuration information is specified by a series of console operator
commands. For this reason, you may simply start the TCP/IP for VSE/ESA
product and then provide all configuration data by command or more
conveniently — you may place your configuration commands in an initialization
library member IPINITxx.L. This is described in detail in the TCP/IP for VSE 1.5
Installation Guide.

Most conveniently, you can use the IUI-based Configuration Dialog described in
“Configuring TCP/IP Using the IUI-based Configuration Dialog” on page 16.

© Copyright IBM Corp. 1997, 2014 15

A default member IPINIT00.L is shipped with z/VSE in VSE library PRD2.TCPIPC.
It contains many configuration parameters set to their default values. This a good
starting point in developing your own configuration.

Your initialization member should be placed in a sublibrary that you have reserved
for configuration data, for example PRD2.CONFIG. Thus, your member is not
accidentally replaced during application of maintenance to the TCP/IP product or
to the z/VSE system.

Configuring TCP/IP Using the IUI-based Configuration Dialog
The Interactive Interface has been enhanced with the TCP/IP Configuration panel
(Fast Path245) to help you configure your TCP/IP environment. After completing
your definitions for the TCP/IP parameters shown in the panel below, you must
press PF5 (PROCESS) to create a job stream which updates the related
configuration members such as IPINIT00.L in system library PRD2.CONFIG. If no
member exists in PRD2.CONFIG, the system default member IPINIT00 from
PRD2.TCPIPC is used. The following description shows a list of panels where you
can define the values for the parameters shown in the TCP/IP Configuration panel
(Figure 1) below. Press PF5 (PROCESS) in this panel after you have entered the
required values.

If TELNET daemons are added, press PF9=VTAM to update member TCPAPP00.B
(see page 21 for more information).

If SET is selected, the TCP/IP Configuration: Set IPADDR and MASK panel
CON$SIP is displayed. The panel shows the already defined values for the SET
IPADDR and SET MASK statement and for the DEFINE NAME statement for this
z/VSE client. These values can be changed.

CON$SEL TCP/IP CONFIGURATION

Enter the required data and press ENTER.

To modify one or more of the following TCP/IP parameters,
place a 1 next to it.

_ SET Modify SET IPADDR or SET MASK command
_ LINK Modify DEFINE LINK command
_ ADAPTER Modify DEFINE ADAPTER command
_ ROUTE Modify DEFINE ROUTE command
_ TELNETD Modify DEFINE TELNETD command

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS
9=VTAM

Figure 1. TCP/IP Configuration Panel CON$SEL

Performing Configuration Work

16 z/VSE V5R2 TCP/IP Support

If LINK is selected in the TCP/IP Configuration panel (Figure 1 on page 16), a list
of all defined links is displayed in the TCP/IP Configuration: Link List panel.

If option 1 ADD LINK is entered, the following panel is displayed.

CONP$SIP TCP/IP CONFIGURATION: SET IPADDR AND MASK

Enter the required data and press ENTER.

Specify the parameters for the SET IPADDR and the SET MASK command.

IPADDR..... ___ ___ ___ ___ default network address

MASK....... ___ ___ ___ ___ value of the mask

NAME....... _____________________ this z/VSE client

PF1=HELP 2=REDISPLAY 3=END

Figure 2. TCP/IP Configuration Panel: Set IPADDR and MASK

CON$LNKS TCP/IP CONFIGURATION: LINK LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD LINK 2 = ALTER LINK 3 = ADD ROUTE
4 = ADD ADAPTER 5 = DELETE LINK

OPT LINKID DEVICE TYPE DATAPATH IPADDR PORT
* OSAFE 500 OSAX 502 F14FEL1
_
_
_
_
_
_
_
_
_

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 3. TCP/IP Configuration Panel: Link List

Performing Configuration Work

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs 17

If the input was correct, the dialog goes back to panel TCP/IP Configuration: LINK
LIST (Figure 3 on page 17).

Select ADAPTER on panel TCP/IP Configuration (Figure 1 on page 16) to get the
following panel (note that this panel is only possible for links of type OSA or
3172):

If option 1 ADD ADAPTER is entered, the following panel is displayed.

CON$LNK TCP/IP CONFIGURATION: LINK

Enter the required data and press ENTER.

LINK ID............. ________________ Enter the unique name of the link.

TYPE........................ ________ Specify the link type.

DEVICE...................... ___ Enter the unit address at which the
network connection device resides.

DATAPATH.................... ___ Enter the unit address of the data-
path.

IPADDR..... ___ ___ ___ ___ Associated IP address.

OSAPORT.................... __________ Specify the port name or OSAPORT.

PF1=HELP 2=REDISPLAY 3=END

Figure 4. TCP/IP Configuration: Link

CON$APTS TCP/IP CONFIGURATION: ADAPTER LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD ADAPTER 2 = ALTER ADAPTER
5 = DELETE ADAPTER

OPT LINKID TYPE NUMBER
_ ELKEL FDDI 01
_ F234567890123456 FODI 02
_
_

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 5. TCP/IP Configuration Panel: Adapter List

Performing Configuration Work

18 z/VSE V5R2 TCP/IP Support

If the input was correct, the dialog goes back to panel TCP/IP Configuration:
CON$SEL (Figure 1 on page 16).

You can now select ROUTE on panel TCP/IP Configuration (Figure 1 on page 16)
and get the following panel:

Enter Option 1=ADD ROUTE to get the DEFINE ROUTE panel. You can get the
same panel by entering 3=ADD ROUTE in panel TCP/IP Configuration: LINK
LIST (Figure 3 on page 17). In this case the LINKID has already been specified.

CON$APT TCP/IP CONFIGURATION: ADAPTER

Enter the required data and press ENTER.

LINK ID............. ________________ Enter the link id

TYPE........................ ________ Specify the type of adapter.

NUMBER...................... __ Enter the adapter number.

PF1=HELP 2=REDISPLAY 3=END

Figure 6. TCP/IP Configuration Panel: Adapter

CON$RTS TCP/IP CONFIGURATION: ROUTE LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD ROUTE
5 = DELETE ROUTE

OPT ROUTEID LINKID IPADDR GATEWAY
_ ALL VM_TCPIP 0.0.0.0 9.164.186.5
_ R234567890123456 L234567890123456 155.155.155.155 111.222.33.0
_ R2 ELKEL2 9.9.9.9 121.231.34.0
_
_
_
_
_
_
_

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 7. TCP/IP Configuration Panel: Route List

Performing Configuration Work

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs 19

If TELNET DAEMON is selected on the TCP/IP Configuration panel (Figure 1 on
page 16), the TELNET LIST panel is displayed.

Enter option 1=ADD TELNET DAEMON to get the following panel:

CON$ROUT TCP/IP CONFIGURATION: DEFINE ROUTE

Enter the required data and press ENTER.

ROUTE ID............ ________________ Unique name of the route.

LINK ID............. ________________ Name of the associated link.

IPADDR..... ___ ___ ___ ___ Associated IP address.

GATEWAY.... ___ ___ ___ ___ Full network address of a gateway

PF1=HELP 2=REDISPLAY 3=END

Figure 8. TCP/IP Configuration Panel: Define Route

CON$TELS TCP/IP CONFIGURATION: TELNET LIST

Enter the required data and press ENTER.

OPTIONS: 1 = ADD TELNET DAEMON 2 = ALTER TELNET DAEMON
5 = DELETE DAEMON

OPT DAEMONID TARGET TERMNAME COUNT LOGMODE
_ MYTEL DBDCCICS T1000 20 U
_
_
_
_
_
_
_
_
_

PF1=HELP 2=REDISPLAY 3=END 5=PROCESS

Figure 9. TCP/IP Configuration Panel: TELNET LIST

Performing Configuration Work

20 z/VSE V5R2 TCP/IP Support

When a TELNET daemon is added, the TERMname must be defined as a VTAM
application. Therefor the book TCPAPP00 is included in the VTAM configuration
member ATCCON00.B. The dialog offers the possibility to automatically add the
application definition to TCPAPP00.B. The creation is triggered by pressing
PF9=VTAM.You have to press PF5=PROCESS on the TCP/IP Configuration panel
(Figure 1 on page 16) to activate the updates. Then a job is created which catalogs
the updated TCP/IP startup member IPINIT00.L in PRD2.CONFIG and, if
requested, the VTAM book TCPAPP00.B.

CON$TELD TCP/IP CONFIGURATION: TELNET DAEMON

Enter the required data and press ENTER.

DAEMON ID........... ________________ Enter the unique name of the daemon

TARGET...................... ________ Enter the name of the VTAM applica-
tion id you are connecting to

TERMNAME.................... ________ Enter the VTAM LU name assigned to
the remote terminal.

COUNT....................... __ Count for multiple telnet daemons.

LOGMODE..................... _ VTAM LOGMODEs for the LU session.

PF1=HELP 2=REDISPLAY 3=END

Figure 10. TCP/IP Configuration Panel: TELNET DAEMON

Performing Configuration Work

Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs 21

22 z/VSE V5R2 TCP/IP Support

Chapter 4. Security Manager Exploitation by TCP/IP for
VSE/ESA

This chapter shows how the Basic Security Manager's (BSM) functionality is
exploited by TCP/IP for VSE/ESA. This implementation applies to z/VSE.

Using BSM Capabilities for TCP/IP Security Checks
TCP/IP allows various platforms to communicate with VSE. With this new
openness for VSE, new security requirements arise. This is the reason why TCP/IP
for VSE/ESA provides a number of functions to protect VSE resources (see TCP/IP
for VSE 1.5 Commands).

The security concept of TCP/IP for VSE/ESA is described in the TCP/IP for VSE
1.5 Installation Guide.

Details of VSE security can be found in z/VSE Planning and z/VSE Administration.

One of the security functions is the TCP/IP security exit point. It can be used via
the TCP/IP provided code sample SECEXIT. But neither the TCP/IP internal
security functions nor the sample exit code exploits the security functions of the
VSE operating system, i.e. the Basic Security Manager (BSM). As a result, the
customer has to define and administrate the user IDs and VSE resources twice,
once in TCP/IP and once in the security system of the VSE operating system.

To improve this situation phase BSSTISX was introduced to replace the TCP/IP
provided code sample SECEXIT.

The following figure shows the integration of BSSTISX as a link between TCP/IP
and BSM.

TCP/IP

for

VSE/ESA

B

S

S

T

I

S

X

Pre-
processing

exit

Post-
processing

exit

RACROUTE
Basic Security

Manager

(BSM)

BSSTIXE
Exception-

List

The phase BSSTISX exploits the BSM capabilities. It issues RACROUTE requests to
process user identification and user authentication, and resource access control for
VSE files, libraries, and members. It also allows limited access control to POWER
spool files and the SITE command.

© Copyright IBM Corp. 1997, 2014 23

Access to POWER spool files will be allowed for administrators and users, where
v the user ID matches the FROM or TO user ID of the requested spool file, or
v TO=ANY was specified.

Note that the user ID assigned to ANONYMOUS does not have access to these
files.

The SITE command can only be used by an administrator.

There are various other checks possible via the TCP/IP exit point, which are not
covered by BSSTISX. Therefore BSSTISX provides a pre- and post-processing exit
interface. Customers who need additional checks, can write their own
pre-/post-processing routines for BSSTISX.

Exception List BSSTIXE

The exit BSSTISX rejects in general ALL access requests which could not be
evaluated by this exit. But it might be necessary to not reject certain requests.
These requests can be specified in this exception list by the customer. The
exception list has to be assembled and linked as phase BSSTIXE (see SKEXCLST in
library 59).

The IBM distributed phase and the related source member BSSTIXE.A is located in
IJSYSRS.SYSLIB.

A request is defined by the SXBLOK fields SXTYPE and SXFTYPE. The SXBLOK
describes the interface between TCP/IP and BSSTISX. The layout of the SXBLOK is
distributed together with TCP/IP for VSE/ESA.

Warning: Define only requests in the exception list which could not be evaluated
by BSSTISX. The requests defined in the exception list will NOT be security
checked. Be sure to add ONLY these requests to the exception list which will not
affect your security requirements of your installation. Instead of the exception list
you could use the BSSTISX PRE and POST-PROCESSING EXITS to add your
installation specific security checks.

Activation of The Security Exit
To activate the security exit, you have to enter the following TCP/IP commands:

DEFINE SECURITY,DRIVER=BSSTISX[,DATA='data']
The DEFINE SECURITY command loads the security exit BSSTISX.PHASE
into the TCP/IP partition.

SET SECURITY =ON
The SET SECURITY=ON command activates the security processing and
gives control to BSSTISX for initialization. BSSTISX loads additional parts
into storage and initializes its control blocks according to the parameters
specified in data. From now on TCP/IP passes information to the exit
routine BSSTISX for verification.

SET SECURITY =ONX
Specify ONX if the security exit BSSTISX is to be used for FTPBATCH as
well.

The parameter DATA= of the DEFINE SECURITY command contains the
initialization parameter for BSSTISX. The syntax is described below.

Basic Security Manager

24 z/VSE V5R2 TCP/IP Support

DATA='[anonym_uid][,[anonym_pwd][,[preproc][,[postproc]]]]'

anonym_uid
Here you can specify a user ID, which is defined to BSM. Each time a
client logs on with user ID ANONYMOUS your specified user ID and its
access rights will be used.

anonym_pwd
With this parameter you can specify the password of the BSM defined user
ID for user ANONYMOUS.

preproc
If you like to use a self-written preprocessing exit, specify here the name of
your preprocessing exit phase.

postproc
For a self-written post-processing exit you have to specify here the name of
your post-processing exit phase.

Deactivation of the Security Exit
To deactivate the security exit, you have to enter the following TCP/IP commands:

SET SECURITY=OFF
The SET SECURITY=OFF command stops the security processing and
gives control to BSSTISX for cleanup and termination. BSSTISX clears its
control blocks and frees the storage of its additional parts.

DELETE SECURITY
The DELETE SECURITY frees the security exit BSSTISX.PHASE.

Note: If you want to use a new version of the security exit, you should
shut down TCP/IP and restart it again before you enter DEFINE
SECURITY.

Using Pre- and Postprocessing Exits
The preprocessing exit gets control after the BSSTISX initialization and later on at
the beginning of each request. The postprocessing exit gets control at the end of
each request except the termination request. Both exits get the required information
from the TCP/IP created SXBLOK.

The SXBLOK describes the interface between TCP/IP's exit point and the security
exit. The mapping of the SXBLOK is shipped with TCP/IP for VSE/ESA. Be sure
that you use the actual level of the SXBLOK of the TCP/IP you are using for the
BSSTISX pre- and postprocessing exits.

Both, preprocessing exit and postprocessing exit have to be:
v reentrant
v AMODE(31)
v RMODE(24)

The general register usage is described below.

Register Settings for Preprocessing Exit

On entry:

R1 Address of SXBLOK

Basic Security Manager

Chapter 4. Security Manager Exploitation by TCP/IP for VSE/ESA 25

R13 Standard save area

R14 Return address

R15 Entry point of preprocessing exit phase

The preprocessing exit must restore registers prior to return. Register 15 shows the
result:

On return:

R15 = 0
BSSTISX should continue normal processing

R15 = 'E0'x
BSSTISX should skip all checks and terminate with R15=0 (no violation)

R15 = 4
BSSTISX should skip all checks and terminate with R15=4 (security
violation)

Register Settings for Postprocessing Exit

On entry:

R0 Current return code value of BSSTISX

R1 Address of SXBLOK

R2 Reason code from BSSTISX.

R13 Standard save area

R14 Return address

R15 Entry point of postprocessing exit phase

The postprocessing exit must restore registers prior to return. Register 15 shows
the result:

On return:

R15 = 0
BSSTISX should terminate with R15=0 (no violation)

R15 = n
BSSTISX should terminate with R15=n. n=4 indicates a security violation

R15 = 4
BSSTISX should skip all checks and terminate with R15=4 (security
violation)

Reason codes from BSSTISX for the post-processing exit:

X'00' No specific reason code provided

X'10' Access allowed - user is an administrator

X'11' Access allowed by exception list entry

X'12' Access allowed by RACROUTE AUTH request

X'13' Access allowed - ICCF option specified

X'14' Access allowed by pre-processing exit

X'15' Access allowed - to be checked by OPEN

Basic Security Manager

26 z/VSE V5R2 TCP/IP Support

X'16' Access always allowed by BSSTISX

X'17' Access allowed by POWER. It is a from/to or ANY user.

X'18' Access allowed by the right to open a master console.

X'19' Access allowed because it is a $NULL file request.

X'20' Access denied - user is not an administrator

X'21' Access denied - unsupported request

X'22' Access denied by RACROUTE AUTH request

X'23' Access denied due to option code 4

X'24' Access denied due to option code 8

X'25' Access denied due to internal error

X'26' Access denied by pre-processing exit

X'27' Access denied. It is not a read request to POWER.

X'28' Access denied by POWER. It is not a from/to or ANY user.

Performance Hints

Depending on the TCP/IP usage, BSSTISX may have to issue a high number of
user verifications with the same user IDs. For this condition it is useful to activate
the BSM cache via:
MSG xx,DATA=DBSTARTCACHE

where xx stands for the partition ID of the security server partition (default is FB).

External Security Managers

The TCP/IP security exit BSSTISX can also be used together with External Security
Managers (ESMs), if these ESMs support the RACROUTE requests issued by
BSSTISX. CA-Top Secret (for example, distributed by CA Inc.) supports these
RACROUTE calls.

Basic Security Manager

Chapter 4. Security Manager Exploitation by TCP/IP for VSE/ESA 27

28 z/VSE V5R2 TCP/IP Support

Chapter 5. InfoPrint Manager Support of TCP/IP for VSE/ESA

The InfoPrint Manager (IPM) support allows to transfer print files in EBCDIC
mode to the AIX® or Windows workstation where the IPM is running. Due to the
EBCDIC transfer this support maintains the control characters in the document to
be printed. The prerequisites for this support are described in “Software
Prerequisites” on page 32.

The following table provides an overview of the support provided for the InfoPrint
Manager (IPM) on AIX, Windows NT, Windows 2000 or Windows XP.

Support LPR Script $$ LST specification*

EBCDIC SET INFOPRINT=YES/NO
(or =ON/OFF)

n/a

Pagedef SET PAGEDEF=pdef 1 PAGEDEF=pdef 1, 2

Formdef SET FORMDEF=fdef 3 FORMDEF=fdef 3, 4

Forms SET FNO=fno 5 FNO=fno 5

1 pdef= the maximum number of alphanumeric characters is 6
2 The following definition is required in the POWER generation:

DEFINE L,PAGEDEF,1F,1,6,C

3 fdef= the maximum number of alphanumeric characters is 6
4 The following definition is required in the POWER generation:

DEFINE L,FORMDEF,1D,1,6,C

5 fno= the maximum number of alphanumeric characters is 4
* only usable with AUTOLPR

For 1 and 3, the actual values can be checked in z/VSE with the POWER command
D AUSTMT .

Note:

1. EBCDIC support is only available by using LPR/LPD.
2. If values are defined in $$ LST and SET, the values from the SET commands

are used.
3. Supported alphanumeric characters are: A-Z, 0-9, #, @, $

The following example shows how this support can be used:

© Copyright IBM Corp. 1997, 2014 29

Setting the Parameters for the IPM Support
Description of the SET Parameters

SET HOST=9.66.110.67
With this setting the system (AIX or Windows) containing the InfoPrint
Manager with the IP address 9.66.110.67 is addressed. Note that the system is
addressed, not the IP address of a specific printer.

SET PRINTER=ipheft
With this setting a Logical Destination (LD) with the name ipheft is addressed.
The Logical Destination of the InfoPrint Manager can be compared in general
to a printer queue. Note that in AIX no real AIX printer queue with this ipheft
name should exist, otherwise this queue would be addressed instead of the LD
of the IPM.

With LPR, the LPD of the AIX is addressed. Because the LPD does not know a
printer queue with that specific name (ipheft), the LPD is routing the print job
automatically to the IPM. IPM then acknowledges the name (ipheft) as a
known LD back to the LPD and assigns the print job to this LD.

SET PAGEDEF=b111 and SET FORMDEF=a222
With these settings the PAGEDEF and FORMDEF names can be specified
which are required for the AFP print formatting. These definitions are
automatically extended with a preceding P1, or F1 and overwrite the default
specifications of PAGEDEF and FORMDEF in the addressed LD. These
PAGEDEF and FORMDEF resources should be available at the IPM site. In the
example shown above, the PAGEDEF definition named P1b111 should be
available at the IPM site.

SET INFOPRINT=YES
With this setting the transmission of the print data and its associated control
characters is done in EBCDIC. This allows the transmission of machine or ASA
codes as well as AFP structured fields. AFP commands (x'5A' data records) can
be imbedded, for example, to directly call COPYGROUPS with the IMM
command or to control the individual stitching using BDT/EDT commands.

* $$ JOB JNM=TRLTSTPR,CLASS=0,PRI=5,USER=TEST
* $$ LST CLASS=L,DEST=(*,ANY)
// JOB TRLTSTLPR *** LPR to AIX queue ***
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD2.TCPIPC,PRD2.SCEEBASE)
// EXEC CLIENT,PARM=’APPL=LPR,ID=00’
SET HOST=9.66.110.67
SET PRINTER=ipheft
SET PAGEDEF=b111
SET FORMDEF=a222
SET INFOPRINT=YES
SET CC=YES
SET CRLF=UNIX
SET NOEJECT=ON
SET DISP=KEEP
PRINT POWER.LST.L.TRLUH003
QUIT
/*
/&
* $$ EOJ

Figure 11. LPR-Job on TCP/IP for VSE/ESA

InfoPrint Manager Support

30 z/VSE V5R2 TCP/IP Support

SET CC=YES
This setting is required to transmit the print control characters or AFP control
characters (x'5A').

SET CRLF=UNIX, SET NOEJECT=ON, SET DISP=KEEP
These parameters are required to ensure a proper data transfer and to put the
transmitted data set into disposition KEEP.

Using the SET FNO= Parameter with IPM

To use the forms parameter SET FNO=fno, you must define the following:
1. In the file /etc/environment of IPM, include one line with: PD_FORMS=true
2. Prepare an actual destination of IPM to use. This is done with 2 parameter

changes to the actual destination as described in the following section.

Customizing the InfoPrint Manager
A Logical Destination (LD) must be defined in the InfoPrint Manager on your AIX
or Windows system. In the example shown in Figure 11 on page 30, this LD has
the name ipheft.

The document defaults of this LD must be defined as follows:

Document Other: Format = line-data
This definition is required for line data transfer using the LPR or LPD
communication. It is also valid for line data with imbedded AFP structured
fields records, that is, mixed mode AFP print applications.

Document Processing: Transform Options = INDEXOBJ=BDTLY
This setting should only be used if stitching is required when using, for
example, the following IBM printers: IP2000, IP60, and IP70. Note that
otherwise indexing by using ACIF will not be possible.

Document Line Data: Location of page definitions = /usr/lpp/psf/user/
ppfalib

This directory specifies, for example, where the defined PAGEDEF resource
resides.

Type of carriage control characters = machine
This definition describes whether machine or ASA print control codes will be
used.

Convert to EBCDIC = No
This definition specifies that the data is being transferred in EBCDIC.

Document AFP Resources: Location of form definitions = /usr/lpp/psf/user/
ppfalib

This directory specifies, for example, where the defined FORMDEF resource
resides.

Changing the Properties of the Actual Destination
Define the following to change the properties of the actual destination:
Load Balancing: Disable on Job mismatch = No

Load balancing: Job-Batches-Ready ADD = fno-value

(The maximum fno-value is 4 characters).

InfoPrint Manager Support

Chapter 5. InfoPrint Manager Support of TCP/IP for VSE/ESA 31

Note: Several fno-values can be added for this actual destination.

If a job with matching fno-value=Job-Batches-Ready-value is received by IPM, the
print job starts printing immediately. The operator of IPM makes sure that the
print job has job-batch-value=fno-value assigned. If a job with no matching
fno-value=Job-Batches-Ready-value is received by IPM, the print job goes into
hold and a message indicating 'resources not ready' is displayed. In this case, the
operator must load the printer with the requested forms paper, and then change
Job-Batches-Ready-value of the actual destination to the requested one, and set
the actual destination ready. The hold print job starts automatically.

The operator can use a shortcut by right clicking on the actual destination and
choosing Job-Batches-Ready. Select ADD or REMOVE the values as needed. The
fno-value received from the VSE system is moved into the JOB-BATCH value of the
print job, and displayed accordingly. The JOB-BATCH value of the print job is finally
compared to the Job-Batches-Ready value of the actual destination and IPM is
acting accordingly. In addition, the parameter fno-value is passed to the
-opassthru=forms value and is printed on the job separator sheet as 'FORMS:
fno-value'.

Technical Background Information
If SET INFOPRINT=YES is used, the LPR of TCP/IP for VSE/ESA also transfers the
parameter -ofileformat=record. With this setting, every record is preceded by a
field with a length of 2 bytes. This field is detected automatically by IPM and is
removed before printing.

In the LPD/LPR control file of the file to be transferred, the following settings can
be found, for example, when investigating a TCP/IP trace.

Support LPR Script translated to -o option(s)

EBCDIC SET INFOPRINT=YES/NO
(or =ON/OFF)

-ofileformat=record and
-odatatype=line

Pagedef SET PAGEDEF=pdef -opagedef=P1pdef

Formdef SET FORMDEF=fdef -oformdef=F1fdef

Forms SET FNO=fno -opassthru=forms=fno and
-oforms=fno

Software Prerequisites
The InfoPrint Manager support requires the following minimum software level:
v IPM for AIX 3.2, APAR IY17446 / PTF U475406, or

IPM for Windows NT or Windows 2000 1.1, CSD level 1.1.0.10

InfoPrint Manager Support

32 z/VSE V5R2 TCP/IP Support

Chapter 6. z/VSE Related Hardware Functions Supported by
TCP/IP for VSE/ESA 1.5

The following hardware-related functions are supported by TCP/IP for VSE/ESA
1.5:
v Hardware Crypto
v HiperSockets
v OSA Express2 and OSA Express

Hardware Crypto Support

The z/VSE hardware encryption assist support (referred to as hardware Crypto
support) requires a crypto card, such as Crypto Express2 or Crypto Express3 or
equivalent. The cards are available in IBM System z environments. It provides
encryption assist support and can help to increase the throughput in a TCP/IP
network using SSL (Secure Sockets Layer).

If z/VSE runs under z/VM, z/VM 4.2 or higher is required.

Refer to z/VSE Planning for further details.

HiperSockets

z/VSE supports high-speed TCP/IP communication among logical partitions
(LPAR) and virtual machines using HiperSockets. The HiperSockets support is
available in IBM System z environments.

Refer to z/VSE Planning for further details.

OSA Express Support

The OSA Express support is provided as integrated hardware feature (OSA
Express3, OSA Express2 and OSA Express adapters) in IBM System z
environments. The support provides direct connectivity between z/VSE
applications and other platforms on the attached network. It is based on the
Queued Direct Input/Output (QDIO) architecture which allows a highly efficient
data transfer and results in an accelerated TCP/IP data packet transmission.

Refer to z/VSE Planning for further details.

For advanced OSAX device driver configuration refer to Appendix C, “Advanced
OSAX Device Driver Configuration,” on page 527.

© Copyright IBM Corp. 1997, 2014 33

34 z/VSE V5R2 TCP/IP Support

Chapter 7. Performance Considerations

Changing Performance Parameters
It is highly important to have an optimal selection of performance-relevant setup
or operational parameters. There are

product defaults
Product defaults apply whenever the value has not been explicitly
assigned.

shipped defaults
Shipped defaults apply whenever the customer has not changed or
overwritten the startup values in the shipped startup job for TCP/IP for
VSE/ESA. The shipped specific startup values for a parameter usually
represent a good starting point. However, based on specific loads or
configurations, there may be good reasons for a change.

Both values often do not coincide. Be aware before you change a parameter which
does not influence the workload(s), you will not see any change.

TCP/IP for VSE/ESA performance is influenced by many different parameters that
can be tailored for the specific operating environment.

In general these tuning parameters can be grouped into
v operating system tuning
v TCP/IP tuning
v communication tuning (mainframe end and workstation end)
v TCP/IP application tuning

As operating system tuning is familiar to most z/VSE customers, it need not be
addressed in more detail here.

To better understand potential effects of TCP/IP tuning, it is very helpful to
understand some basic TCP/IP concepts. These concepts include
v frames, datagrams and segments
v fragmentation and reassembly
v send and receive buffer management via window sizes and acknowledgements

Communication tuning is closely related to TCP/IP for VSE/ESA tuning. It refers
to the configuration (including links etc) of the network and also the parameter
selection on the other side, which also is TCP/IP.

As it is true for any type of tuning, make only one change at a time. Changing a
parameter in your environment may not produce any improvement as another
value may dominate performance. Having changed this value, the same change
may improve performance considerably.

General Performance Issues
The following types of performance data exist:

© Copyright IBM Corp. 1997, 2014 35

Resource consumption of an activity
How much CPU-time, I/Os are required to perform a certain TCP/IP
activity. For example to use TELNET for CICS transactions, or to transfer
1M of data.

Achievable Throughput/Performance Values
How many terminals can be concurrently supported with TN3270, or, what
data rate can be achieved for 1 concurrent FTP activity in a certain
environment.

Principal Performance Dependencies for TCP/IP for VSE/ESA
The performance you get with TCP/IP applications is very dependent on all the
hardware and software products involved. The following is a list of principal
parameters which tries to globally categorize performance/tuning impacts. Overall
performance is determined by the components shown:

Table 1. Principal Performance Parameters

Parameter (type) Host CPU
time

Host storage Transfer time DASD time

Host CPU speed X - - -

S/390® System Control
Program and setup

X X - x

MTU/MSS used X x X -

Window size - x X -

Transfer buffers - X x -

Type of Comm. Adapter - - X -

Network/Line speed - - X -

Network reliability X x X -

#Appl. bytes in/out X X X X (application
dependent)

TCP/IP implementation X X X X

TCP/IP application X X X X

Other TCP/IP parms X X X X

DASD I/O subsystem - - - X

DASD I/O blocking x - - X

Note:

X means major impact.

x means smaller or secondary impact.

- means no or negligible impact.

Transfer time includes wait for transfer.

DASD time only applicable if DASD involved (for example FTP).

Overall Capacity is also of interest and of specific importance for multiple
concurrent sessions (for example Telnet3270).

Performance Considerations

36 z/VSE V5R2 TCP/IP Support

The following is a list of principal parameters showing performance-relevant
settings in TCP/IP for VSE/ESA. It also shows which TCP/IP activities a
parameter can influence.

Table 2. TCP/IP Performance-Relevant Parameters

Scope of TCP/IP Activity

TCP/IP Parameter / Setting Any Outbound
TCP

Inbound
TN3270

Out + In
FTP

Out+In

DEFINE ADAPTER | LINK MTU
TELNETD POOL

X X

SET ALL_BOUND
REDISPATCH
ARP_TIME
REUSE_SIZE
FULL_SCAN
GATEWAY
CHECKSUM

X
X
X
x
X
X
x

Set MAX_SEGMENT
WINDOW_DEPTH
CLOSE_DEPTH
WINDOW_RESTART

X1
X1
X1
X1

SET RETRANSMIT
FIXED_RETRANS
WINDOW
ADDITIONAL_WINDOW

X1
x1
X1
x1

SET TELNETD_BUFFERS
TRANSFER_BUFFERS
MAX_BUFFERS

X2 X
X

X means major impact
x means smaller or secondary impact
X1 only for TCP loads (includes FTP, but not NFS)
X2 only for POOL=YES TELNET daemons/sessions

More specific TCP/IP for VSE/ESA performance information and performance
results are available on the z/VSE Internet home page at http://www.ibm.com/
systems/z/os/zvse/.

Refer also to the IBM TCP/IP Performance Tuning Guide SC31-7188, which addresses
concepts, tuning and benchmark data for TCP/IP for MVS™, VM, AIX, OS/2, DOS,
and OS/400®.

See TCP/IP for VSE 1.5 Commands for a description of operation and default values
of the individual commands.

Performance Considerations

Chapter 7. Performance Considerations 37

38 z/VSE V5R2 TCP/IP Support

Part 2. Using IPv6/VSE

© Copyright IBM Corp. 1997, 2014 39

40 z/VSE V5R2 TCP/IP Support

Chapter 8. IPv6/VSE Overview

Part 2, “Using IPv6/VSE,” on page 39 of this publication gives an overview of the
IPv6/VSE (5686-BS1) program. IPv6/VSE is a native implementation of
Transmission Control Protocol/Internet Protocol (TCP/IP) providing an IPv6
solution for z/VSE.

IPv6/VSE provides an IPv6 TCP/IP stack, IPv6 application programming interfaces
(APIs), and IPv6-enabled applications. IPv6/VSE V1R1 supports the IPv4 and the
IPv6 protocol.

The IPv6 TCP/IP stack of IPv6/VSE can be run concurrently with an IPv4 TCP/IP
stack within one z/VSE system.

IBM provides extensions that can be used with this program. They are described in
detail and include the EZASMI macro interface and the EZASOKET call interface.
Be aware that these extensions in its external interfaces might describe more
functionality than really provided by the IPv6/VSE program. Check the IPv6/VSE
documentation for such exceptions.

For advanced OSAX device driver configuration refer to Appendix C, “Advanced
OSAX Device Driver Configuration,” on page 527.

Before using the IPv6/VSE program read the following very carefully.

IPv6 TCP/IP Stack
The IPv6 TCP/IP stack of IPv6/VSE runs in a separate partition using its own
stack ID. This allows both an IPv4 and IPv6 stack to run concurrently within one
z/VSE system. Running separate IPv4 and IPv6 stacks concurrently within one
z/VSE system addresses both performance and reliability aspects. Existing IPv4
applications continue to run unchanged using the IPv4 TCP/IP stack, thus
protecting and leveraging existing client investments. New IPv6-enabled
applications can gradually be introduced using the IPv6 stack of IPv6/VSE.

Dual Stack Support
Dual stack support allows an application to connect to both the IPv4 and IPv6
network simultaneously. With the implementation of dual stack support, a single
IPv6-enabled CICS transaction or batch application can communicate with partners
via either the IPv4 or IPv6 network. Enhanced socket APIs are provided that can
be used to introduce IPv6-enabled applications.

IPv6-Enabled Utility Applications
IPv6/VSE provides utility applications that run outside the IPv6/VSE stack
partition. Running these applications external to the IPv6/VSE stack partition
provides greater stability and better performance.

FTP server
The IPv6/VSE FTP server supports access to z/VSE resources, like POWER
queues, VSAM catalogs, SAM file and z/VSE libraries, by remote host FTP
clients.

© Copyright IBM Corp. 1997, 2014 41

Batch FTP client
The IPv6/VSE batch FTP client runs as a z/VSE batch job providing access
to remote host FTP servers. Data can interchanged with these remote FTP
servers.

TN3270E server
The IPv6/VSE TN3270E server supports TN3270/TN3270E terminal
sessions and TN3270E printer sessions. In addition, DIRECT, LPR, and FTP
printer sessions are supported.

NTP server
The IPv6/VSE NTP server is a Network Time Protocol server that allows
remote hosts to query the time of day (TOD) clock of z/VSE to
synchronize their clocks with the z/VSE clock.

NTP client
The IPv6/VSE NTP client allows z/VSE to set its TOD clock to an external
source.

System Logger client
This application is used to log selected z/VSE console messages to a
remote Linux syslog-ng daemon. Once a message is sent to the syslog-ng
daemon, Linux automation processing can be used to trigger events.

Batch email client
The IPv6/VSE batch email client is used to send an email to an SMTP
server. In turn, the SMTP server will send the email to a destination user.
Any number of recipients are permitted and files can be attached to an
outgoing email message.

Batch LPR
The IPv6/VSE Batch LPR application extracts data from POWER queues
and transfers it to a remote host LPD. The LPD can be in a printer or
running as a server on a remote host.

Batch Remote Execution Client
The IPv6/VSE Remote EXEC Client allows a job running in a z/VSE
partition to trigger a script to run on a remote host. Any output from the
script is returned to the client and scanned for completion information.

Batch PING
The IPv6/VSE Batch PING application is used to ping a remote host.

GZIP data compression
IPv6/VSE provides a simple gzip data compression application. Data can
be read, compressed, and written to a SAM file or library member. The
compressed data can then be transferred to a remote host for processing.
The reverse of this process can also be performed.

REXX automation
IPv6/VSE uses z/VSE REXX EXECs for automation. Automatic FTP of data
is handled with a sample REXX EXEC that is provided. Automatic LPR or
automatic email of data is handled in the same way. Invoking IPv6/VSE
applications with a REXX EXEC allows dynamic creation of commands
and parameters, for example file names and dates.

BSTTPRXY / BSTTATLS
IPv6/VSE provides two servers providing SSL for z/VSE server and client
applications. Both servers provide SSL/TLS transparently to the
application. They support both batch and CICS applications written in any

IPv6/VSE Overview

42 z/VSE V5R2 TCP/IP Support

supported API including applications using the ASM SOCKET macro,
EZASMI, EZASOKET and LE/C APIs.
v The SSL proxy server (BSTTPRXY) is a simple proxy server. It allows

only a single PROXY command. To proxy multiple connections you must
run multiple BSTTPRXY partitions. BSTTPRXY performs IPv4 to IPv6 or
IPv6 to IPv4 translation.

v The AT-TLS server (BSTTATLS) Automatic Transport Layer Security is a
facility that is similar to the z/OS AT-TLS (Application Transparent -
Transport Layer Security) facility. BSTTATLS allows many AT-TLS
definitions and monitors incoming and outgoing connections,
intercepting and converting sockets from clear text to SSL or vice versa
as necessary. However, BSTTATLS do not perform IPv4 to IPv6 or IPv6
to IPv4 translation.

The IPv6/VSE utility applications FTP server, FTP client, LPR, Batch email client,
and GZIP support Double Byte Character Set (DBCS).

Documentation for the IPv6/VSE (5686-BS1) Program
The product description of the IPv6/VSE product (IBM product number: 5686-BS1)
is only available in PDF format on the z/VSE DVD collection (SK3T-8348) and on
the Internet at http://www.ibm.com/systems/z/os/zvse/documentation.

The IPv6/VSE product documentation consists of 8 publications with the original
product description from Barnard Software Inc., the provider of the IPv6/VSE
product, plus one publication provided by IBM giving an overview of the
IPv6/VSE product – this publication.

The publications are as follows:
v z/VSE TCP/IP Support (this publication)
v IPv6/VSE IPv6 Installation Guide

v IPv6/VSE IPv4 Installation Guide

v IPv6/VSE IPv6 User's Guide

v IPv6/VSE IPv4 User's Guide

v IPv6/VSE Programming Guide

v IPv6/VSE Migration Guide

v IPv6/VSE Messages and Codes

v IPv6/VSE SSL Installation, Programming and User's Guide

You can use the Adobe Acrobat Reader to view and print these publications. If you
do not already have Acrobat Reader installed, or if you need information on
installing and using Acrobat Reader, see the Adobe website at
http://www.adobe.com.

IPv6/VSE Installation Requirements
Operating System Requirements

IPv6/VSE requires z/VSE 4.2 and later. The minimum required service level is
APAR DY47077 or z/VSE 4.2.2.

IPv6/VSE Overview

Chapter 8. IPv6/VSE Overview 43

http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip

Processor Requirements

IPv6/VSE runs on any hardware configuration supported by z/VSE 4.2 and later.

Preventive Service Planning

Before installing IPv6/VSE check with your IBM Support Center or refer to the
VSE Homepage if additional service is available.

User Access Key

IPv6/VSE the native IPv6 solution for z/VSE is available as an optional-priced
IBM program (5686-BSI). IBM has licensed this program from Barnard Software,
Inc.

IPv6/VSE is also available as a stand-alone product. IPv6/VSE is not preinstalled
in the z/VSE base.

IPv6/VSE can be used for 30 days after activation without a key. After the 30 day
trial period IPv6/VSE requires a unique user access key which depends on the
machine's CPUID.

To request a unique user access key, contact the IBM Copenhagen Key Center by
email (speckeys@dk.ibm.com) or phone (+45 48 10 15 30) (non-toll free). When you
receive the license key from the Key Center by email, you have to create a
BSTTPARM.A phase and include the following lines, completed with your personal
data, exactly as shown in the example:
COMPANY name
CPUID xxxxxx MODEL xxxx
LICENSE TCP/IP-TOOLS ABCDEFGHL6Z date vcode
*
TCP/IP-TOOLS ENABLE

Refer to the IPv6/VSE Installation Guide for detailed installation instructions.

Security Manager Exploitation by IPv6/VSE

IBM provides a security exit routine called BSSTISX. The BSI FTP server security
exit routine BSTTFTS1.PHASE can be set up to call the IBM security exit to verify
userid and password. For details refer to the IPv6/VSE User's Guide.

z/VSE Related Hardware Functions Supported by IPv6/VSE -
Processor Requirements

With the z/VSE 5.1 Service Upgrade the IPv6/VSE BSTT6NET TCP/IP stack
requires a processor listed in z/VSE Planning under Hardware Support.

Network Interface Requirements

IPv6/VSE supports CTCA, 6in4 tunnels, OSA Express and HiperSockets network
interfaces. Only OSA Express adapters running in QDIO mode or HiperSockets
network interfaces are supported.

IPv6/VSE Overview

44 z/VSE V5R2 TCP/IP Support

http://www.ibm.com/systems/z/os/zvse/
http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip
http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip

Part 3. Programming Interfaces

© Copyright IBM Corp. 1997, 2014 45

46 z/VSE V5R2 TCP/IP Support

Chapter 9. Introducing Socket Programming

This section introduces socket programming as provided by the TCP/IP stacks
supported by z/VSE.

You can connect to and from a VSE host and interchange data with the system
with different access methods. Check the product information of your TCP/IP
stack to verify, which access methods are supported.

Telnet
Telnet can be used from remote hosts to connect to VTAM applications
running on the local z/VSE. On the local z/VSE host it can be used to
connect to other remote systems running Telnet daemons, connecting to a
UNIX workstation

File Transfer Protocol (FTP)
FTP is used to get/put data files from/to a remote host system

Web Server
The web server can be accessed by web browsers retrieving data defined
by HTML (Hypertext Markup Language) pages.
v Static page contents : HTML only
v Dynamic page contents : HTML, including JavaScript, Java™ Applets or

calling CGI (Common Gateway Interface) programs.

Client/Server applications
Distributed applications communicating over an enterprise intranet or the
Internet. The application establishes a peer-to-peer communication
exploiting the TCP/IP socket programming interface.

This section focuses on the requirements of TCP/IP socket based Client/Server
applications. It intends to show what aspects are to be considered before deciding
which programming interface to use and how to use them.

What is a TCP/IP Socket Connection ?
A socket programming interface provides the routines required for interprocess
communication between applications, either on the local system or spread in a
distributed, TCP/IP based network environment. Once a peer-to-peer connection is
established, a socket descriptor is used to uniquely identify the connection. The
socket descriptor itself is a task specific numerical value.

One end of a peer-to-peer connection of a TCP/IP based distributed network
application described by a socket is uniquely defined by
v Internet address

for example 127.0.0.1 (in an IPv4 network) or FF01::101 (in an IPv6 network).
v Communication protocol

– User Datagram Protocol (UDP)
– Transmission Control Protocol (TCP)

v Port
A numerical value, identifying an application. We distinguish between
– "well known" ports, for example port 23 for Telnet

© Copyright IBM Corp. 1997, 2014 47

– user defined ports

Socket applications were usually C or C++ applications using a variation of the
socket API originally defined by the Berkeley Software Distribution (BSD). The
JAVA language also provides a socket API. JAVA based Client/Server applications
exploit those socket services.

Socket programming interfaces have been standardized for ease of portability by
The Open Group for example.

Besides TCP/IP based sockets, UNIX systems provide socket interfaces for
interprocess communication (IPC) within the local UNIX host itself. Those UNIX
sockets use the local file system for interprocess communication.

z/VSE provides TCP/IP based socket services. They can be used for IPC too,
although they are primarily aimed for network communication only.

Socket Application Programming Interfaces Available with z/VSE
z/VSE provides a series of different socket application programming interfaces
(APIs) These interfaces are supported by TCP/IP for VSE/ESA, IPv6/VSE, and the
Fast Path to Linux function (LFP). For details, please refer to the corresponding
product information.
v EZA interfaces

– z/VSE provides the EZASMI macro interface for HLASM programmers and
the EZASOKET call interface for COBOL, PL/I and HLASM programmers.
These interfaces are widely compatible with the corresponding z/OS
interfaces and are supported by TCP/IP for VSE/ESA, IPv6/VSE and LFP.
Refer to Chapter 11, “Using the CALL Instruction Application Programming
Interface (EZASOKET API),” on page 199 and Chapter 12, “Using the Macro
Application Programming Interface (EZASMI API),” on page 291 for a
description of these interfaces.
Asynchronous function processing with the EZASMI interface is provided on
z/VSE as well. But compared to z/OS, only the ECB method is available, and
the ECB area must have a length of 160 bytes (compared to 104 bytes in
z/OS).

v TCP/IP APIs using Language Environment for z/VSE
– LE/VSE 1.4 C socket interface dynamically determines the runtime

environment (CICS or Batch). Refer to “PL/I” on page 54 and “COBOL” on
page 55 for details.

– The REXX/VSE Socket API support within REXX/VSE. Refer to REXX/VSE
Reference, SC33-6642 for details.

v TCP/IP for VSE/ESA 'native' APIs
– Assembler SOCKET macro interface

This interface supports coding socket applications, but also dynamically
connecting to remote systems using TCP/IP built-in Telnet, FTP and LPR
application level protocol support. It needs to be specified if used in a batch
or CICS environment.

– COBOL and PL/I preprocessor interface
It needs to be specified if used in a batch or CICS environment.

– BSD-C socket interface

Introducing Socket Programming

48 z/VSE V5R2 TCP/IP Support

You can make the application dynamically determine the runtime
environment (CICS or Batch). Refer to “CICS Considerations” on page 83 for
details.

– REXX socket APIs There are two types of REXX support for TCP/IP for
VSE/ESA available:
- The REXX support within TCP/IP for VSE/ESA (i.e. REXX Socket API).

The documentation of this REXX support can be found in the TCP/IP for
VSE 1.5 Programmer's Reference manual.

- The REXX/VSE Socket API support within REXX/VSE is described in more
detail below.

Refer to TCP/IP for VSE 1.5 Programmer's Guide for a detailed description of these
interfaces.

Portability Aspects
Assembler

Usage of the TCP/IP for VSE/ESA Assembler SOCKET Macro Interface ties the
program to z/VSE. Programs written in Assembler, using the SOCKET macro
interface are not portable to non z/VSE operating system environments as there is
no API standard for this language.

The EZASMI macro interface and EZASOKET call interface are also available
within z/OS, with minor differences. Applications using these interfaces on z/OS
can easily be ported to z/VSE and vice versa.

COBOL and PL/I

While COBOL and PL/I are the dominant programming languages in the z/VSE
environment, the "native" language for writing TCP/IP based socket applications is
C. Interfaces for languages other than C might exist in specific environments or
might be provided by product specific programming toolkits, which potentially are
available for multiple platforms.

If portability to non z/VSE systems is not essential, you can choose the TCP/IP for
VSE/ESA preprocessor API, described in the TCP/IP for VSE 1.5 Programmer's
Reference manual. If portability to z/OS or z/VM is essential, read section
“Language Environment” on page 50 below for further details. If portability to
z/OS is essential, consider using the EZASOKET call interface.

C Language

As mentioned before, C is the only programming language besides JAVA where
very similar programming interfaces are provided in arbitrary operating system
environments.

While the C socket interfaces are standardized by the Berkeley Software
Distribution (BSD), there are other standards to assure cross-system and
cross-platform portability, for example by The Open Group in their CAE
specification : "System Interfaces and Headers, Issue 4, Version 2", in the literature
also being referred to as XPG4.2. The Open Group can be found on the Internet at:
http://www.opengroup.org/.

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 49

Language Environment®

The Language Environment (LE) on the IBM System z platform assures portability
across z/OS, z/VM and z/VSE. Depending on specific needs and portability issues
one of the following languages
v C
v COBOL
v PL/I
v Assembler
v REXX

is appropriate for writing TCP/IP socket interface based Client/Server
applications.

LE supports the usage of LE services using any LE enabled High Level Language
(C, COBOL, PL/I) or from within an LE conforming Assembler program. This
includes support for mixed-language applications.

While LE based programs, using socket services and written in a programming
language other than C are not portable to a System z system, LE on System z
provides cross system compatibility.

LE Enabled Applications

An application is considered to be "LE enabled" (or " LE Conforming" or "LE
Compliant"), if it conforms to the common execution environment (CEE) model
and conforms to this runtime linkage, storage and condition handling model. This
is true if the application is compiled, or assembled, using LE conforming compilers
or prologue/epilogue macros. These are basically all C for VSE, COBOL for VSE,
and PL/I for VSE compiled programs and Assembler programs using
CEEENTRY/CEETERM macros. C for VSE subroutines including assembler
programs using the C prologue/epilogue assembler macros also fulfill this
requirement.

Which API to use?
As discussed already, the selection of the appropriate language and API to use
depends on:
v Portability

Ease of cross-platform development (single source code).
v Compatibility

The System z platform provides source compatibility between z/OS, z/VM and
z/VSE when using LE programming interfaces.
LE/VSE focuses on the interfaces defined by the C feature test macro
_XOPEN_SOURCE_EXTENDED, where for example z/OS additionally provides
slightly different interfaces, enabled by the feature test macro OE_SOCKETS.

v Serviceability
By decoupling the socket application from the TCP/IP product allows
maintaining (servicing) both parts independently.

Portability, compatibility and serviceability aspects show up differently, depending
on the programming language chosen.

Introducing Socket Programming

50 z/VSE V5R2 TCP/IP Support

Assembler

The SOCKET macro provided by TCP/IP not only supports writing socket based
applications, but grants access to the built-in Telnet, FTP and LPR application level
protocols as well. If Telnet, FTP and LPR protocol access isn't required, an LE
conforming Assembler program can call the LE/VSE C socket interfaces instead of
using the SOCKET macro to gain independence from the TCP/IP service level.

TCP/IP service affecting the SOCKET macro might require to reassemble the
application.

The EZASMI macro and the EZASOKET call interface are mostly compatible with
the corresponding z/OS interfaces. This eases cross-platform development. With
both interfaces, socket applications are decoupled from the TCP/IP product, which
allows both parts to be serviced independently.

COBOL and PL/I

Using the TCP/IP preprocessor API (EXEC TCP ...) a stub routine linked edited
with the user application
v COBOL - IPNETXCO.OBJ
v PL/I - IPNETXP.OBJ

TCP/IP service affecting those modules might require to re-link the application.

The following screen shows an example of the usage of the preprocessor interface.

*
* Attempt to open a connection
*
EXEC TCP OPEN FOREIGNPORT(2000)

FOREIGNIP(IPADDRESS)
LOCALPORT(0)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
ACTIVE
WAIT(YES)
ERROR(SECOND-TEST)

END-EXEC.

Note that the EZASOKET call interface can be used with COBOL for VSE and PL/I
for VSE programs as well.

C Language

Acknowledging the dominance of C in TCP/IP environments, LE/VSE provides C
socket interfaces only. However, LE/VSE as well as the Language Environments in
z/OS and z/VM, allows to call LE services from Assembler, COBOL and PL/I too.
In addition you can also use the EZASOKET interface from COBOL and PL/1
programs.

The figure below shows the logical control flow of a LE/VSE C based socket
application. The LE/C runtime decouples the application from a specific TCP/IP
product. The LE/C TCP/IP Socket API Multiplexer allows to select an appropriate
TCP/IP stack at runtime. Per default, the $EDCTCPV.PHASE is used to work with
the TCP/IP stack partition. To use other LE/C TCP/IP Interface routines you can
configure the LE/C TCP/IP Socket API Multiplexer. For example, phase IJBLFPLE
to use the LFP LE/C TCP/IP interface or phase BSTTTCPV/BSTTTCP6 to use the

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 51

IPv6/VSE interface. To configure the multiplexer, use skeleton EDCTCPMC in
ICCF library 62.

Note:

1. If you use the C for VSE compiler, you should use the socket API provided by
the Language Environment 1.4. The C header files required are provided in
VSE library PRD2.SCEEBASE.

2. If you use a non-LE enabled C compiler, for example C/370™, you are restricted
to use the native TCP/IP for VSE/ESA BSD-C interface. This includes the usage
of the socket.h include file shipped in VSE library PRD2.TCPIPC.

The LE/C Socket Interface can be used with TCP/IP for VSE/ESA, IPv6/VSE, and
Linux Fast Path. For details refer to the corresponding product information.

Exploiting the LE/VSE Socket API
Applications using LE runtime services (C, COBOL and PL/I) or LE enabled
Assembler programs can use the LE/VSE C socket routines, either directly (C) or
using the LE Interlanguage Communication (ILC) support. In addition, you can
also use the EZASOKET interface from COBOL and PL/1 programs.

C Language
LE/VSE provides socket programming interfaces for C. These are described in
detail in Chapter 10, “TCP/IP Support for the LE/VSE C Socket Interface,” on
page 85. Per default, these interfaces use the $EDCTCPV.PHASE to work with the
TCP/IP stack partition. If TCP/IP for VSE/ESA is installed on your VSE system
you will find the $EDCTCPV.PHASE in your TCP/IP for VSE/ESA library. To use
other LE/C TCP/IP Interface routines you can configure the LE/C TCP/IP Socket

User code

LE/VSE stub routine

LE/VSE C-runtime

LE/C Socket
API Multiplexer

$EDCTCPV.PHASE
(TCP/IP for VSE/ESA)

LE/VSE 1.4

Socket Application

call

call

BSTTTCPV.PHASE
or

BSTTTCP6.PHASE
(IPv6/VSE)

IJBLFPLE.PHASE
(Linux Fast Path)

calldefault

Figure 12. Control Flow when using LE/VSE C Sockets with different TCP/IP stacks.

Introducing Socket Programming

52 z/VSE V5R2 TCP/IP Support

API Multiplexer. For example, phase IJBLFPLE to use the LFP LE/C TCP/IP
interface or phase BSTTTCPV to use the IPv6/VSE interface. To configure the
multiplexer, use skeleton EDCTCPMC in ICCF library 62.

While the TCP/IP HLL interfaces basically provide a OPEN, SEND, RECEIVE,
CLOSE interface, the C language calls provide a higher granularity. The calls
necessary depend on writing a server or a client program.

Client

The following example shows a simplified code logic for a client application:
socket() - create a socket

↓
connect() - bind and connect to server

↓
send() / receive() - data interchange

↓
close() - destroy socket

Server

The following example shows a simplified code logic for a server (Daemon)
application:
socket() - create a socket using a specific protocol

↓
bind() - bind the socket to a port

↓
listen() - make it a passive socket

↓
[select()] - wait for incoming connections

↓
accept() - connect to caller

↓
getsockname() - determine caller

↓
send() / receive() - data interchange

↓
close() - destroy socket

The select() call in brackets shown above can be used to operate multiple clients
concurrently. It can be used to wait for activity on a series of sockets, similar to a
WAITM (wait multiple) operating system call. Therefore the server application can
wait for new clients to connect (accept() call) and concurrently wait for requests
from clients already connected (receive() call).

Assembler Language
LE/VSE supports calling C subroutines from an Assembler program.

Assembler source

The code snippet in the following example uses LE macro CEEENTRY to enable
the Language Environment. Then it calls TCP/IP subroutine GETHNAM. At the
end of the routine it calls CEETERM to disable the Language Environment as not
required any longer.

Note: It is recommended to enable LE at the very beginning and terminate it at
the end of your application. Do not call this sequence more than required or there
will be high overhead introduced by starting/terminating LE more than necessary.

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 53

*
GETHOSTN CEEENTRY PPA=MAINPPA,MAIN=YES
*
*

LA 1,PARMSTR
CALL GETHNAM

*
LTR 15,15
BZ RETOK
WTO ’GETHOSTNAME() FAILED’
B RTNEND

RETOK WTO ’GETHOSTNAME() SUCCESSFUL’
*
RTNEND CEETERM
*
CBUFLEN EQU 20
PARMSTR DC A(HNAME)

DC F(CBUFLEN)
HNAME DS CL(CBUFLEN)

C subroutine with OS linkage called from Assembler

The following example shows how to write a stub routine with OS linkage
convention calling the C routine gethostname().
#include <types.h>
#include <unistd.h>

#pragma linkage(GETHOSTNAME, OS)
#pragma map(GETHOSTNAME, GETHNAM)

int GETHOSTNAME(char *buffer,
size_t size)

{

return(gethostname(buffer, size));
}

PL/I
LE/VSE Interlanguage Communication (ILC) between C and PL/I is only provided
for PL/I for VSE/ESA.

The manual Writing Interlanguage Communication Applications, SC33-6686, provides
details on how to use ILC calls.

Similar to the Assembler example, there must be a C stub routine with PL/I
linkage. Note the following:
v A NULL in C is x'00000000' where NULL in PL/I is x'FF000000'. Therefore PL/I

programs should check for SYSNULL (x'00000000') where appropriate.
v A character string in C is logically unbound with a x'00' end indicator (last byte).

The stub routine for calling gethostname() could therefore look like this:
#include <types.h>
#include <unistd.h>

#pragma linkage(GETHOSTNAME, PLI)
#pragma map(GETHOSTNAME, GETHNAM)

int GETHOSTNAME(char **buffer,
size_t size)

{

Introducing Socket Programming

54 z/VSE V5R2 TCP/IP Support

return(gethostname(*buffer, size));

}

The matching PL/I code fragment, calling the subroutine could look like this:
...
DCL GETHNAM EXTERNAL ENTRY

RETURNS(FIXED BIN(31));
DCL HOSTNAME CHAR(20);
DCL HNSIZE FIXED BIN(31);
DCL CRC FIXED BIN(31);
...
HNSIZE = 20;
CRC = GETHNAM(ADDR(HOSTNAME),(HNSIZE));
...

COBOL
LE/VSE Interlanguage Communication (ILC) between C and COBOL is provided
for COBOL for VSE/ESA Release 1

The manual Writing Interlanguage Communication Applications, SC33-6686, provides
details on how to use ILC calls.

The following example shows how to call the LE C routine gethostname() to
retrieve the name of the local host:
IDENTIFICATION DIVISION.

PROGRAM-ID. C2COB2.
AUTHOR. INGO ADLUNG.

INSTALLATION. BOEBLINGEN GERMANY.
DATE-WRITTEN. MAY 19, 1999.

DATE-COMPILED.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 RESULTS.

05 RVALUE PIC S9(9) BINARY.
05 RDETAIL PIC S9(9) BINARY.

01 BUFSIZE PIC S9(9) BINARY.
01 BUFFER.

05 WORKAREA PICTURE X(64).

PROCEDURE DIVISION.

MAIN.
*
* Display the name of the host we are running on
*

MOVE 64 TO BUFSIZE.

DISPLAY ’Calling C gethostname()’ UPON CONSOLE.

CALL ’COBGHNAM’ USING BY REFERENCE WORKAREA
BY CONTENT BUFSIZE
BY REFERENCE RVALUE, RDETAIL.

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 55

DISPLAY WORKAREA UPON CONSOLE.

STOP RUN.

The matching C stub routine for calling gethostname() with COBOL linkage could
look like this:
#include <types.h>
#include <unistd.h>
#pragma linkage(cobol_gethostname, COBOL)
#pragma map(cobol_gethostname, COBGHNAM)

void cobol_gethostname(char *buffer,
size_t size,
int *return)

{

*return = gethostname(buffer, size);

}

A COBOL Example using LE C Socket Services

The next example is based on LE's ability to write interlanguage communication
applications.

The complete source code can be obtained as cobsock.zip from the z/VSE home
page at http://www.ibm.com/systems/z/os/zvse/downloads/samples.html
following the FTP download link.

The figure shown below contains the COBOL source code for a very basic server
application. To reduce complexity it handles a single client only and doesn't
include the error recovery necessary if communication problems show up.
IDENTIFICATION DIVISION.

PROGRAM-ID. C2COB1.
AUTHOR. INGO ADLUNG.

INSTALLATION. BOEBLINGEN GERMANY.
DATE-WRITTEN. MAY 4, 1998.

DATE-COMPILED.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SOCKET-DATA.

05 DOMAIN PIC S9(9) BINARY.
05 SOCKTYPE PIC S9(9) BINARY.
05 PROTOCOL PIC S9(9) BINARY.
05 LSOCKET PIC S9(9) BINARY.
05 RSOCKET PIC S9(9) BINARY.

01 SOCKADDR-IN.
05 SIN-FAMILY PIC S9(2) BINARY.
05 SIN-PORT PICTURE S9(4) BINARY.
05 SIN-ADDR PIC S9(9) BINARY.
05 SIN-ZERO PIC S9(2) BINARY OCCURS 4 TIMES VALUE 0.

01 RESULTS.
05 RVALUE PIC S9(9) BINARY.
05 RDETAIL PIC S9(9) BINARY.

01 BUFSIZE PIC S9(9) BINARY.

Introducing Socket Programming

56 z/VSE V5R2 TCP/IP Support

http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

01 L-COUNT PIC S9(9) BINARY.
01 BUFFER.

05 WORKAREA PICTURE X(512).

PROCEDURE DIVISION.

MAIN.

*
* Create a TCP stream socket. The socket value will be
* returned in variable RVALUE.
*
* domain type AF_INET is 2
* socket type SOCK_STREAM is 1
* protocol IPPROTO_TCP is 6
*

MOVE 2 TO DOMAIN.
MOVE 1 TO SOCKTYPE.
MOVE 6 TO PROTOCOL.

DISPLAY ’Calling C socket()’.

CALL ’TCPSOCKT’ USING BY CONTENT DOMAIN, SOCKTYPE, PROTOCOL
BY REFERENCE RVALUE, RDETAIL.

MOVE RVALUE TO LSOCKET.

*
* Bind the socket to the local port
*
* domain type AF_INET is 2
* local port is 2000
*

MOVE 2 TO SIN-FAMILY.
MOVE 2000 TO SIN-PORT.
MOVE 0 TO SIN-ADDR.
MOVE 16 TO BUFSIZE.

DISPLAY ’Calling C bind()’.

CALL ’TCPBIND’ USING BY CONTENT LSOCKET
BY REFERENCE SOCKADDR-IN
BY CONTENT BUFSIZE
BY REFERENCE RVALUE, RDETAIL.

*
* Convert socket to passive mode.
*

MOVE 1 TO L-COUNT.

DISPLAY ’Calling C listen()’.

CALL ’TCPLIST’ USING BY CONTENT LSOCKET, L-COUNT
BY REFERENCE RVALUE, RDETAIL.

*
* Wait for incoming clients.
*

INITIALIZE SOCKADDR-IN.
MOVE 16 TO BUFSIZE.

DISPLAY ’Calling C accept()’.

CALL ’TCPACCP’ USING BY CONTENT LSOCKET,
BY REFERENCE SOCKADDR-IN, BUFSIZE,

RVALUE, RDETAIL.

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 57

*
* Receive a piece of data.
*

MOVE RVALUE TO RSOCKET.
MOVE 512 TO BUFSIZE.

DISPLAY ’Calling C read()’.

CALL ’TCPREAD’ USING BY CONTENT RSOCKET
BY REFERENCE WORKAREA
BY CONTENT BUFSIZE
BY REFERENCE RVALUE, RDETAIL.

*
* Send the data back to the caller
*

MOVE RVALUE TO BUFSIZE.

DISPLAY ’Calling C write()’.

CALL ’TCPWRITE’ USING BY CONTENT RSOCKET
BY REFERENCE WORKAREA
BY CONTENT BUFSIZE
BY REFERENCE RVALUE, RDETAIL.

*
* Close the connection
*

DISPLAY ’Calling C close()’.

CALL ’TCPCLOSE’ USING BY CONTENT RSOCKET
BY REFERENCE RVALUE, RDETAIL.

*
* Release the listen socket too.
*

DISPLAY ’Calling C close()’.

CALL ’TCPCLOSE’ USING BY CONTENT LSOCKET
BY REFERENCE RVALUE, RDETAIL.

STOP RUN.

The next example shows the corresponding C source, providing the mapping for
the socket routines. The generated object deck needs to be link-edited with the
generated COBOL object deck.

#include <types.h>
#include <unistd.h>
#include <in.h>
#include <socket.h>
#include <errno.h>
#include <stdio.h>

#pragma linkage(cob2c_socket, COBOL)
#pragma linkage(cob2c_bind, COBOL)
#pragma linkage(cob2c_listen, COBOL)
#pragma linkage(cob2c_accept, COBOL)
#pragma linkage(cob2c_read , COBOL)
#pragma linkage(cob2c_write, COBOL)
#pragma linkage(cob2c_close, COBOL)

#pragma map(cob2c_socket, "TCPSOCKT")
#pragma map(cob2c_bind, "TCPBIND")
#pragma map(cob2c_listen, "TCPLIST")
#pragma map(cob2c_accept, "TCPACCP")

Introducing Socket Programming

58 z/VSE V5R2 TCP/IP Support

#pragma map(cob2c_read, "TCPREAD")
#pragma map(cob2c_write, "TCPWRITE")
#pragma map(cob2c_close, "TCPCLOSE")

void cob2c_socket(int domain,
int type,
int protocol,
int *psocket,
int *perr)

{

printf(
"socket() called, domain : %d, type : %d, protocol : %d\n",
domain, type, protocol);

*psocket = socket(domain, type, protocol);
*perr = errno;

}

void cob2c_bind(int socket,
const struct sockaddr *address,
size_t len,
int *pvalue,
int *perr)

{
struct sockaddr_in * sockin = (struct sockaddr_in *)address;

*pvalue = bind(socket, address, len);
*perr = errno;

}

void cob2c_listen(int socket,
int backlog,
int *pvalue,
int *perr)

{
*pvalue = listen(socket, backlog);
*perr = errno;

}

void cob2c_accept(int socket,
struct sockaddr *address,
size_t *len,
int *pvalue,
int *perr)

{
*pvalue = accept(socket, address, len);
*perr = errno;

}

void cob2c_read(int socket,
void *buffer,
size_t len,
size_t *pvalue,
int *perr)

{
*pvalue = read(socket, buffer, len);
*perr = errno;

}

void cob2c_write(int socket,
const void *buffer,
size_t len,
size_t *pvalue,
int *perr)

{
*pvalue = write(socket, buffer, len);

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 59

*perr = errno;
}

void cob2c_close(int socket,
size_t *pvalue,
int *perr)

{
*pvalue = close(socket);
*perr = errno;

}

Exploiting the EZASMI/EZASOKET Programming Interfaces
Applications on z/VSE can use the EZASMI and / or EZASOKET programming
interfaces. These programming interfaces are provided both for programming in a
batch environment and in a CICS Transaction Server environment.

Following are a few sample programs that show a simple usage of these interfaces.
To reduce complexity they do not include any error recovery necessary, if
communication problems show up. The first sample shows a client assembler
program, which uses the EZASMI macro interface:

* PRINT NOGEN

* *
* MODULE NAME: SAMPCLIE *
* *
* FUNCTION: Sample program for usage of EZASMI macro *
* (Client part) *
* *
* ATTRIBUTES: NON-REUSABLE *
* *
* REGISTER USAGE: *
* R3 = BASE REG *
* R13 = SAVE AREA *
* *
* INPUT: NONE *
* OUTPUT: NONE *
* *
**
---*
* START OF EXECUTABLE CODE *

SAMPCLIE START X’78’ adjust addr behind part savearea
SAMPCLIE AMODE ANY
SAMPCLIE RMODE ANY

USING *,R15 Use Entry Register for base
B SAMPCLST
DC C’SAMPCLST-00/06/23’

*
SAMPCLST DS 0H

STM R14,R12,12(R13) Save Caller’s Registers
LR R3,R15 Change base register to R3
DROP R15 Done with this register
USING SAMPCLIE,R3 Tell assembler about new base
LA R15,MYSAVE Get addr of own save area
ST R13,MYSAVE+4 Save caller’s save area addr
ST R15,8(R13) Save own save area addr
LR R13,R15 Load Reg13

* *
* Issue INITAPI to connect to interface *

Figure 13. Sample Program Using EZASMI Macro (Synchronously)

Introducing Socket Programming

60 z/VSE V5R2 TCP/IP Support

EZASMI TYPE=INITAPI, Issue INITAPI Macro X

MAXSOC=MAXSOC, Max number of sockets (in) X
MAXSNO=MAXSNO, Greatest Descr Number used (out)X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*

* Issue SOCKET call *

EZASMI TYPE=SOCKET, Issue SOCKET call X
AF=’INET’, INTERNET family X
SOCTYPE=’STREAM’, Stream socket X
PROTO=PROTOCOL, protocol X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

MVC SOCKET1,RETCODE Save the socket descriptor
*

* Issue CONNECT *

EZASMI TYPE=CONNECT, Issue CONNECT call X
S=SOCKET1+2, socket descriptor (halfword) X
NAME=SAMPSERV, to SAMPSERV program X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*

* Issue WRITE on connected socket *

EZASMI TYPE=WRITE, Issue WRITE call X
S=SOCKET1+2, on this socket X
NBYTE=MSG1L, Length of first message X
BUF=MSG1, Text of first message X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

B READ1 go and read
*
MSG1L DC F’40’
MSG1 DC CL40’DATA SENT FROM SAMPCLIE.’

* Issue READ on connected socket *

READ1 EZASMI TYPE=READ, Issue READ call X

S=SOCKET1+2, on this socket X
NBYTE=READBL, length of read buffer X
BUF=READB, address of read buffer X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*

* Issue CLOSE on connected socket *

EZASMI TYPE=CLOSE, Issue CLOSE call X
S=SOCKET1+2, on this socket X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*

* *
* Issue TERMAPI to disconnect interface *

EZASMI TYPE=TERMAPI Issue TERMAPI call
*

EOJ
EJECT

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 61

* CONSTANTS/VARIABLES USED BY THIS PROGRAM *

EZASMI TYPE=TASK,STORAGE=CSECT Task Storage Area
MYSAVE DC 18F’0’ Register Save Area
ERRNO DC F’0’
RETCODE DC F’0’

* INITAPI macro parms *

MAXSOC DC H’256’ MAXSOC parm value
MAXSNO DC F’0’ Highest socket descriptor avail

* SOCKET macro parms *

PROTOCOL DC F’0’ default protocol
SOCKET1 DC F’0’ save area for socket descriptor
*

* CONNECT Macro Parms*

CNOP 0,4
SAMPSERV DC 0CL16’ ’ SOCKET NAME structure of SERVER

DC AL2(2) FAMILY (AF-INET)
DC H’4000’ Port of SAMPSERV
DC AL1(9),AL1(164),AL1(155),AL1(122) IP-Addr of SAMPSERV
DC XL8’00’ RESERVED

*

* READ MACRO PARMS *

READBL DC F’40’ SIZE OF READ BUFFER
READB DC CL40’ ’ READ BUFFER
**---- register equates --*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

END SAMPCLIE

The second sample shows a server assembler program using the asynchronous
EZASMI macro interface:

* PRINT NOGEN

* *
* MODULE NAME: SAMPSERV *
* *
* FUNCTION: Sample Program for EZASMI (asynchronous) macro usage *
* (Server Part) *
* *

Figure 14. Sample Program Using EZASMI Macro (Asynchronously)

Introducing Socket Programming

62 z/VSE V5R2 TCP/IP Support

* ATTRIBUTES: NON-REUSABLE *
* NON-LE Enabled *
* *
* REGISTER USAGE: *
* R3 = BASE REG 1 *
* R13 = SAVE AREA *
* *
* INPUT: NONE *
* OUTPUT: NONE *
* *

* START OF EXECUTABLE CODE *

SAMPSERV START X’78’ adjust addr behind part savearea
SAMPSERV AMODE 31
SAMPSERV RMODE ANY

USING *,R15 Use Entry Register for base
B SAMPSTRT
DC C’SAMPSEST-00/06/23’

*
SAMPSTRT DS 0H

STM R14,R12,12(R13) Save Caller’s Registers
LR R3,R15 Change base register to R3
DROP R15 Done with this register
USING SAMPSERV,R3 Tell assembler about new base
LA R15,MYSAVE Get addr of own save area
ST R13,MYSAVE+4 Save caller’s save area addr
ST R15,8(R13) Save own save area addr
LR R13,R15 Load Reg13

* Issue INITAPI to connect to interface *

EZASMI TYPE=INITAPI, Issue INITAPI Macro X
MAXSOC=MAXSOC, Max number of sockets (in) X
MAXSNO=MAXSNO, Greatest Descr Number used (out)X
ASYNC=’ECB’, asynchronous ECB processing X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*

* Issue SOCKET call *

XC ECB,ECB
EZASMI TYPE=SOCKET, Issue SOCKET call X

AF=’INET’, INTERNET family X
SOCTYPE=’STREAM’, Stream socket X
PROTO=PROTOCOL, protocol X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB
MVC SOCKET1,RETCODE Save the socket descriptor

* Issue BIND call *

XC ECB,ECB Clear ECB
EZASMI TYPE=BIND, Issue BIND call X

S=SOCKET1+2, socket descriptor X
NAME=MYNAME, Name structure X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 63

* Issue LISTEN *

XC ECB,ECB Clear ECB
EZASMI TYPE=LISTEN, Issue LISTEN call X

S=SOCKET1+2, socket descriptor X
BACKLOG=BACKLOG, max number of backlog msgs X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB

* Issue ACCEPT *

XC ECB,ECB Clear ECB
EZASMI TYPE=ACCEPT, Issue ACCEPT call X

S=SOCKET1+2, socket descriptor X
NAME=NAMECLIE, Name structure of client X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB
MVC SOCKETN,RETCODE Save RETCODE (New Socket Descr.)

* Issue READ *

XC ECB,ECB Clear ECB
EZASMI TYPE=READ, Issue READ call X

S=SOCKETN+2, on this socket X
NBYTE=READBUFL, length of read buffer X
BUF=READBUF, address of read buffer X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB

* Issue WRITE on connected socket *

XC ECB,ECB Clear ECB
EZASMI TYPE=WRITE, Issue WRITE call X

S=SOCKETN+2, on this socket X
NBYTE=MSGL, Length of first message X
BUF=MSG, Text of first message X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB

B CLOSE1
*
MSGL DC F’40’
MSG DC CL40’SAMPSERV RECEIVED YOUR DATA.’

* Issue CLOSE socket *

CLOSE1 XC ECB,ECB Clear ECB

EZASMI TYPE=CLOSE, Issue CLOSE call X
S=SOCKETN+2, on this socket X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB

* Issue CLOSE socket *

Introducing Socket Programming

64 z/VSE V5R2 TCP/IP Support

XC ECB,ECB Clear ECB
EZASMI TYPE=CLOSE, Issue CLOSE call X

S=SOCKET1+2, on this socket X
ECB=*ECBA, wait on this ECB X
ERRNO=ERRNO, ERRNO field X
RETCODE=RETCODE RETCODE field

*
WAIT ECB Wait on ECB

* Issue TERMAPI to disconnect interface *

EZASMI TYPE=TERMAPI Issue TERMAPI Call
EOJ
EJECT

* CONSTANTS/VARIABLES USED BY THIS PROGRAM *

EZASMI TYPE=TASK,STORAGE=CSECT Task Storage Area
MYSAVE DC 18F’0’ Register Save Area
ERRNO DC F’0’
RETCODE DC F’0’
ECBA DC A(ECB) POINTER to ECB
ECB DC F’0’ ECB
ECBX DC XL156’00’ ECB Extension Area
*

* INITAPI macro parms *

MAXSOC DC H’80’ MAXSOC PARM VALUE
MAXSNO DC F’0’ Highest Socket Descriptor avail
*

* SOCKET macro parms *

PROTOCOL DC F’0’ default protocol
SOCKET1 DC F’0’ savearea for socket descriptor
SOCKETN DC F’0’ savearea for socket descriptor
*

* BIND MACRO PARMS *

CNOP 0,4
MYNAME DC 0CL16’ ’ SOCKET NAME STRUCTURE

DC AL2(2) FAMILY (AF-INET)
MYPORT DC H’4000’ bind to this port
MYADDR DC AL1(9),AL1(164),AL1(155),AL1(122) and IP address

DC XL8’00’ RESERVED

* LISTEN PARMS *

BACKLOG DC F’5’ BACKLOG

* ACCEPT PARMS *

NAMECLIE DC 0CL16’ ’ SOCKET NAME STRUCTURE of client

DC AL2(2) FAMILY
PORTCLIE DC H’0’
ADDRCLIE DC F’0’

DC XL8’00’ RESERVED

* READ MACRO PARMS *

READBUFL DC F’40’ SIZE OF READ BUFFER
READBUF DC CL40’none’ READ BUFFER
* ------ register equates --
R0 EQU 0

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 65

R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

END SAMPSERV

Of course, there is no real need for this simple program to use the asynchronous
interface. Asynchronous processing can be helpful, if the program wants to
perform other tasks while waiting on a socket call to complete.

The next sample shows a similar server program written in COBOL using the
EZASOKET call interface:

CBL LIB APOST RMODE(ANY) SAM00010
IDENTIFICATION DIVISION. SAM00020

SAM00030
PROGRAM-ID. SAMPSERV SAM00040
AUTHOR. HEINZ HAGEDORN SAM00050

INSTALLATION. HIER. SAM00060
DATE-WRITTEN. June 23, 2000 SAM00070

DATE-COMPILED. SAM00080
SAM00090

ENVIRONMENT DIVISION. SAM00100
SAM00110

CONFIGURATION SECTION. SAM00120
SAM00130

SOURCE-COMPUTER. IBM-370. SAM00140
OBJECT-COMPUTER. IBM-370. SAM00150

SAM00160
DATA DIVISION. SAM00170

SAM00180
SAM00190

WORKING-STORAGE SECTION. SAM00200
01 SOKET-FUNCTIONS. SAM00210

02 SOKET-ACCEPT PIC X(16) VALUE ’ACCEPT ’. SAM00220
02 SOKET-BIND PIC X(16) VALUE ’BIND ’. SAM00230
02 SOKET-CLOSE PIC X(16) VALUE ’CLOSE ’. SAM00240
02 SOKET-CONNECT PIC X(16) VALUE ’CONNECT ’. SAM00250
02 SOKET-INITAPI PIC X(16) VALUE ’INITAPI ’. SAM00260
02 SOKET-LISTEN PIC X(16) VALUE ’LISTEN ’. SAM00270
02 SOKET-READ PIC X(16) VALUE ’READ ’. SAM00280
02 SOKET-SOCKET PIC X(16) VALUE ’SOCKET ’. SAM00290
02 SOKET-TERMAPI PIC X(16) VALUE ’TERMAPI ’. SAM00300
02 SOKET-WRITE PIC X(16) VALUE ’WRITE ’. SAM00310

01 SOKET-FUNCT PIC X(16) VALUE ’ ’. SAM00320
01 SOKET-ADDR. SAM00330

02 SOCK-FAMILY PIC 9(4) BINARY. SAM00340
02 SOCK-PORT PIC 9(4) BINARY. SAM00350
02 SOCK-IPADDR PIC 9(8) BINARY. SAM00360
02 SOCK-ZERO PIC X(8). SAM00370

01 SOKET-ID PIC 9(4) BINARY. SAM00380

Figure 15. Sample Program Using EZASOKET Call Using COBOL

Introducing Socket Programming

66 z/VSE V5R2 TCP/IP Support

01 SOKET-ID-NEW PIC 9(4) BINARY. SAM00390
01 MAXSOC PIC 9(4) BINARY. SAM00400
01 IDENT. SAM00410

02 TCPNAME PIC X(8). SAM00420
02 ADSNAME PIC X(8). SAM00430

01 SUBTASK PIC X(8). SAM00440
01 MAXSNO PIC 9(8) BINARY. SAM00450

SAM00460
01 INBUFFL PIC 9(8) COMP VALUE 40. SAM00570

SAM00580
01 AF-INET PIC 9(8) COMP VALUE 2. SAM00470
01 SOCTYPE PIC 9(8) COMP VALUE 1. SAM00480
01 PROTO PIC 9(8) COMP VALUE 0. SAM00490
01 BACKLOG PIC 9(8) COMP VALUE 5. SAM00500
01 RETCODE PIC S9(8) BINARY. SAM00510
01 ERRNO PIC 9(8) BINARY. SAM00520
01 MSG001 PIC X(34) SAM00530

VALUE IS ’ ... SAMPSERV received your data.’. SAM00540
01 MSG001L PIC 9(8) COMP VALUE 34. SAM00550
01 INBUFF PIC X(40) VALUE IS ’ ’. SAM00560
PROCEDURE DIVISION. SAM00590

SAM00600
BEGIN. SAM00610

SAM00620
-- SAM00630
* CALL EZASOKET - function = INITAPI * SAM00640
* input = SUBTASK blank * SAM00650
-- SAM00660

SAM00670
MOVE SOKET-INITAPI TO SOKET-FUNCT. SAM00680
MOVE ’ ’ TO TCPNAME. SAM00690
MOVE ’ ’ TO SUBTASK. SAM00700
MOVE 99 TO MAXSOC. SAM00710
MOVE 0 TO RETCODE. SAM00720
MOVE 0 TO ERRNO. SAM00730

SAM00740
CALL ’EZASOKET’ USING SOKET-FUNCT MAXSOC IDENT SUBTASK SAM00750

MAXSNO ERRNO RETCODE. SAM00760
SAM00770

--- SAM00780
* CALL EZASOKET - function = SOCKET * SAM00790
--- SAM00800

SAM00810
MOVE SOKET-SOCKET TO SOKET-FUNCT. SAM00820
MOVE 0 TO RETCODE. SAM00830
MOVE 0 TO ERRNO. SAM00840

SAM00850
CALL ’EZASOKET’ USING SOKET-FUNCT AF-INET SOCTYPE PROTO SAM00860

ERRNO RETCODE. SAM00870
SAM00880

MOVE RETCODE TO SOKET-ID. SAM00890
SAM00900

*-- * SAM00910
* CALL EZASOKET - function = BIND * SAM00920
* input = Soket-id, Soket-addr * SAM00930
--- SAM00940

SAM00950
MOVE SOKET-BIND TO SOKET-FUNCT. SAM00960
MOVE AF-INET TO SOCK-FAMILY. SAM00970
MOVE 4000 TO SOCK-PORT. SAM00980
MOVE 0 TO SOCK-IPADDR. SAM00990
MOVE 0 TO RETCODE. SAM01000
MOVE 0 TO ERRNO. SAM01010

SAM01020
CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID SOKET-ADDR SAM01030

ERRNO RETCODE. SAM01040
SAM01050

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 67

SAM01060
-- SAM01070
* CALL EZASOKET - function = LISTEN * SAM01080
* input = backlog=5 * SAM01090
-- SAM01100

SAM01110
MOVE SOKET-LISTEN TO SOKET-FUNCT. SAM01120
MOVE 0 TO RETCODE. SAM01130
MOVE 0 TO ERRNO. SAM01140

SAM01150
CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID BACKLOG SAM01160

ERRNO RETCODE. SAM01170
SAM01180
SAM01190

--- SAM01200
* CALL EZASOKET - function = ACCEPT * SAM01210
* input = SOKET-ID * SAM01220
--- SAM01230

SAM01240
MOVE SOKET-ACCEPT TO SOKET-FUNCT. SAM01250
MOVE 0 TO RETCODE. SAM01260
MOVE 0 TO ERRNO. SAM01270

SAM01280
CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID SOKET-ADDR SAM01290

ERRNO RETCODE. SAM01300
SAM01310

MOVE RETCODE TO SOKET-ID-NEW. SAM01320
SAM01330

-- SAM01340
* CALL EZASOKET - function = READ * SAM01350
-- SAM01360

SAM01370
MOVE SOKET-READ TO SOKET-FUNCT. SAM01380
MOVE 0 TO RETCODE. SAM01390
MOVE 0 TO ERRNO. SAM01400

SAM01410
MOVE LOW-VALUES TO INBUFF. SAM01420
CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID-NEW INBUFFL SAM01430

INBUFF ERRNO RETCODE. SAM01440
SAM01450

-- SAM01460
* CALL EZASOKET - function = WRITE * SAM01470
-- SAM01480

SAM01490
MOVE SOKET-WRITE TO SOKET-FUNCT. SAM01500
MOVE 0 TO RETCODE. SAM01510
MOVE 0 TO ERRNO. SAM01520

SAM01530
CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID-NEW MSG001L SAM01540

MSG001 ERRNO RETCODE. SAM01550
SAM01560

-- SAM01570
* CALL EZASOKET - function = CLOSE * SAM01580
-- SAM01590

SAM01600
MOVE SOKET-CLOSE TO SOKET-FUNCT. SAM01610
MOVE 0 TO RETCODE. SAM01620
MOVE 0 TO ERRNO. SAM01630

SAM01640
CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID-NEW SAM01650

ERRNO RETCODE. SAM01660
SAM01670

-- SAM01680
* CALL EZASOKET - function = CLOSE * SAM01690
-- SAM01700

SAM01710
MOVE SOKET-CLOSE TO SOKET-FUNCT. SAM01720

Introducing Socket Programming

68 z/VSE V5R2 TCP/IP Support

MOVE 0 TO RETCODE. SAM01730
MOVE 0 TO ERRNO. SAM01740

SAM01750
CALL ’EZASOKET’ USING SOKET-FUNCT SOKET-ID SAM01760

ERRNO RETCODE. SAM01770
SAM01780
SAM01790

-- SAM01800
* CALL EZASOKET - function = TERMAPI * SAM01810
-- SAM01820

SAM01830
MOVE SOKET-TERMAPI TO SOKET-FUNCT. SAM01840

SAM01850
CALL ’EZASOKET’ USING SOKET-FUNCT. SAM01860

SAM01870
SAM01880

STOP RUN. SAM01890
SAM01900

END PROGRAM SAMPSERV. SAM01910

LE/VSE 1.4 C Socket Programming

General C Programming Considerations
While the Language Environment intends to cover the same functionality as
OS/390® and z/OS, VM/ESA and z/VM in their Language Environment based C
runtime libraries, the actual behavior of the C Socket interface routines is
dependent on the TCP/IP product that is used with this interface. Therefore a
programmer porting an application from another System z operating system
environment may eventually find that the VSE socket interfaces require special
attention. However, a programmer porting an application for example from z/OS
might not expect that source code modifications are eventually required.

The following list is aimed to identify the programming areas that might require
special attention, especially when porting applications.
v Applications using the C socket interfaces can safely be written for CICS

environments, because the LE Socket support dynamically determines the
execution environment and uses CICS services where appropriate, for example
EXEC CICS WAIT instead of the VSE WAIT macro. This implies that, in contrast
to z/OS CICS Sockets, no special initialization and termination services need to
be called in a C program intending to run in a CICS environment. It is therefore
possible to write communication routines, either be called from a batch or CICS
application.

v LE/VSE 1.4 does not support multitasking environments if more than a single
subtask is supposed to run LE enabled code. This is caused by the fact that
z/VSE doesn't support POSIX threads, nor does it support more than 31
subtasks per VSE partition. Nor is it possible to fork() a new process as the
necessary UNIX alike system interfaces are not available. Nevertheless, it is
possible to have multiple VSE subtasks running, but only one of them can
execute LE enabled code.
Therefore, if coding Daemon applications, intending to serve multiple clients
concurrently, it is necessary not to become wait bound during an attempt to read
data or when waiting for clients to connect. Instead, it is recommended to use
select() or selectex() and check which socket shows activity before calling recv()
or accept() as these calls may block if the no outstanding requests can be served
on a specific socket connection at the time of the call.

v Other TCP/IP implementations provide ioctl() or fcntl() interfaces that allow to
operate the socket interfaces in blocking or non-blocking mode. In blocking

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 69

mode, a call for example to recv() will suspend the task until data for the Socket
used arrives. In non-blocking mode, the routine would return -1 and the errno
variable would be set to EWOULDBLOCK. The application can then choose
either to process something different, or use select() or selectex() to wait on one
or multiple sockets showing activity.
While TCP/IP for VSE/ESA doesn't provide this mechanism natively, the
TCP/IP support for the LE C socket API provides the necessary support.
However, the following restrictions apply:
– In a fully BSD conforming stack implementation a default send and receive

buffer are allocated for the TCP protocol. If the send buffer was filled faster
than the stack being able to transmit the data over the network the send() or
sendto() calls would block. In non-blocking mode those calls would return an
error value EWOULDBLOCK instead. A call to select() or selectex() with the
write bit string set returns immediately if any buffer space is available.
TCP/IP for VSE/ESA doesn't work that way, but buffers any unsent data in
partition GETVIS until the GETVIS is exhausted. If there isn't any GETVIS
space left to buffer the unsent data the send() or sendto() calls block. Calling
select() or selectex() with the write bit string do not indicate whether any
send buffer space is available, but block until all socket specific unsent data is
put on the network.

v Some LE/VSE C socket routines require special attention, as either the TCP/IP
implementation behaves differently on z/VSE than on other platforms or only a
subset of the functionality is implemented. These differences are described in the
individual function descriptions in Chapter 10, “TCP/IP Support for the LE/VSE
C Socket Interface,” on page 85 as “Stack Characteristics”.

Messages
The following list covers the messages possibly be issued by the LE C Socket
interface routines. The messages may either issued by the C runtime library, or by
phase $EDCTCPV when mapping LE C Socket calls to the TCP/IP for VSE/ESA
BSD-C Socket interface routines.

Messages issued by the LE/VSE 1.4 C runtime Library
v EDCT001I Unable to load phase $EDCTCPV

Phase $EDCTCPV could not be loaded. Application is canceled with message
CEE3322C.
Most probably the TCP/IP product library (PRD2.TCPIPC) is missing in the
application's partition LIBDEF search chain.

v EDCT002I xxxxxxxxx implementation not found
Phase $EDCTCPV does not contain the body of TCP/IP function xxxxxxxxx due
to a build error. Application is canceled with CEE3322C.

v EDCT003I Unsupported C-Runtime function called
Application contains calls to C runtime functions that are not supported in
LE/VSE 1.4. Application is canceled with CEE3322C.
This should only happen if a program compiled and prelinked on z/OS or
z/VM was link-edited on z/VSE. The precompile step on z/OS or z/VM® has
included a stub routine to a C runtime function not supported in the LE/VSE
1.4 runtime environment.

Message issued by Phase $EDCTCPV
v EDCV001I TCP/IP function xxxxxxxxx not implemented

Introducing Socket Programming

70 z/VSE V5R2 TCP/IP Support

The application has called a TCP/IP socket routine that is not implemented by
the TCP/IP programming interface. The application is passed back an
appropriate function specific return code. Program execution continues.
Either the function is currently not supported by TCP/IP for VSE/ESA or the
partition LIBDEF chain doesn't list the TCP/IP product library prior to the LE
product library. Phase $EDCTCPV from the TCP/IP for VSE/ESA product
library (PRD2.TCPIPC) must be found prior to the same phase found in the
LE/VSE product library (PRD2.SCEEBASE).

v EDCV002I Unexpected TCP/IP error code: nnnn
The TCP/IP product returned an unexpected error code, the TCP/IP support for
the LE C interfaces is not capable to handle. Error value EOPNOTSUPP is
passed back to the calling application instead.

TCP/IP Functions Supported by z/VSE
As mentioned in previous chapters, the C socket interface provided by the VSE
Language Environment 1.4 is not implemented in the Language Environment (LE)
itself, but is mapped to the programming interfaces that come with your TCP/IP
stack.

Table 3 covers the LE C Socket routines documented in Chapter 10, “TCP/IP
Support for the LE/VSE C Socket Interface,” on page 85, and shows if they are
currently available through one of the following TCP/IP stacks:
v TCP/IP for VSE/ESA
v IPv6/VSE
v Linux Fast Path

The table only states, if a function is generally supported. For details on differences
and special characteristics refer to the individual stack and function descriptions.

Table 3 also lists the corresponding EZASMI macros and EZASOKET calls
supported by z/VSE. These interfaces are also available within z/OS, with minor
differences. For details refer to:
v Chapter 11, “Using the CALL Instruction Application Programming Interface

(EZASOKET API),” on page 199
v Chapter 12, “Using the Macro Application Programming Interface (EZASMI

API),” on page 291

Table 3. Supported call functions by Interface and TCP/IP Stack

Call Function Interface TCP/IP Stack

EZASMI EZASOCKET LE/VSE TCP/IP
for
VSE/ESA

IPv6/VSE Linux Fast
Path

accept() ACCEPT ACCEPT yes yes yes yes

aio_cancel() CANCEL no yes yes yes yes

aio_error() no no yes no yes yes

aio_read() no no yes no yes yes

aio_return() no no yes no yes yes

aio_suspend() no no yes no yes yes

aio_write() no no yes no yes yes

bind() BIND BIND yes yes yes yes

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 71

Table 3. Supported call functions by Interface and TCP/IP Stack (continued)

Call Function Interface TCP/IP Stack

EZASMI EZASOCKET LE/VSE TCP/IP
for
VSE/ESA

IPv6/VSE Linux Fast
Path

close() CLOSE CLOSE yes yes yes yes

connect() CONNECT CONNECT yes yes yes yes

endhostent() no no yes no no yes

endnetent() no no yes no no yes

endprotoent() no no yes no no yes

endservent() no no yes no no yes

fcntl() FCNTL FCNTL yes yes yes yes

freeaddrinfo() FREEADDRINFO FREEADDRINFO yes no yes yes

gai_strerror() no no yes no yes yes

getaddrinfo() GETADDRINFO GETADDRINFO yes no yes yes

getclientid() GETCLIENTID GETCLIENTID yes yes yes yes

gethostbyaddr() GETHOSTBYADDR GETHOSTBYADDR yes yes yes yes

gethostbyname() GETHOSTBYNAME GETHOSTBYNAME yes yes yes yes

gethostent() no no yes no no yes

gethostid() GETHOSTID GETHOSTID yes yes yes yes

gethostname() GETHOSTNAME GETHOSTNAME yes yes yes yes

getibmopt() GETIBMOPT GETIBMOPT yes no yes yes

getnameinfo() GETNAMEINFO GETNAMEINFO yes no yes yes

getnetbyaddr() no no yes no no yes

getnetbyname() no no yes no no yes

getnetent() no no yes no no yes

getpeername() GETPEERNAME GETPEERNAME yes yes yes yes

getprotobyname() no no yes no no yes

getprotobynumber() no no yes no no yes

getprotoent() no no yes no no yes

getservbyname() no no yes no yes yes

getservbyport() no no yes no yes yes

getservent() no no yes no no yes

getsockname() GETSOCKNAME GETSOCKNAME yes yes yes yes

getsockopt() GETSOCKOPT GETSOCKOPT yes yes yes yes

givesocket() GIVESOCKET GIVESOCKET yes yes yes yes

gsk_free_memory() GSKFREEMEM GSKFREEMEM yes yes no yes

gsk_get_cipher_info() GSKGETCIPHINF GSKGETCIPHINF yes yes no yes

gsk_get_dn_by_label() GSKGETDNBYLAB GSKGETDNBYLAB yes yes no yes

gsk_initialize() GSKINIT GSKINIT yes yes no yes

gsk_secure_soc_close() GSKSSOCCLOSE GSKSSOCCLOSE yes yes no yes

gsk_secure_soc_init() GSKSSOCINIT GSKSSOCINIT yes yes no yes

Introducing Socket Programming

72 z/VSE V5R2 TCP/IP Support

Table 3. Supported call functions by Interface and TCP/IP Stack (continued)

Call Function Interface TCP/IP Stack

EZASMI EZASOCKET LE/VSE TCP/IP
for
VSE/ESA

IPv6/VSE Linux Fast
Path

gsk_secure_soc_read() GSKSSOCREAD GSKSSOCREAD yes yes no yes

gsk_secure_soc_reset() GSKSSOCRESET GSKSSOCRESET yes yes no yes

gsk_secure_soc_write() GSKSSOCWRITE GSKSSOCWRITE yes yes no yes

gsk_uninitialize() GSKUNINIT GSKUNINIT yes yes no yes

gsk_user_set() no no yes no no yes

htonl() no no yes yes yes yes

htons() no no yes yes yes yes

if_freenameindex() no no yes no no yes

if_indextoname() no no yes no no yes

if_nameindex() no no yes no no yes

if_nametoindex() no no yes no no yes

inet_addr() no no yes yes yes yes

inet_lnaof() no no yes yes no yes

inet_makeaddr() no no yes yes no yes

inet_netof() no no yes yes no yes

inet_network() no no yes yes no yes

inet_ntoa() no no yes yes yes yes

inet_ntop() NTOP NTOP yes no yes yes

inet_pton() PTON PTON yes no yes yes

initapi() INITAPI INITAPI yes yes yes yes

ioctl() IOCTL IOCTL yes yes yes yes

listen() LISTEN LISTEN yes yes yes yes

maxdesc() no no yes no yes yes

ntohl() no no yes yes yes yes

ntohs() no no yes yes yes yes

poll() no no yes no no yes

read() READ READ yes yes yes yes

readv() READV READV yes yes yes yes

recv() RECV RECV yes yes yes yes

recvfrom() RECVFROM RECVFROM yes yes yes yes

recvmsg() no no yes no no yes

select() SELECT SELECT yes yes yes yes

selectex() SELECTEX SELECTEX yes yes yes yes

send() SEND SEND yes yes yes yes

sendmsg() no no yes no no yes

sendto() SENDTO SENDTO yes yes yes yes

sethostent() no no yes no no yes

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 73

Table 3. Supported call functions by Interface and TCP/IP Stack (continued)

Call Function Interface TCP/IP Stack

EZASMI EZASOCKET LE/VSE TCP/IP
for
VSE/ESA

IPv6/VSE Linux Fast
Path

setibmopt() no no yes no yes yes

setnetent() no no yes no no yes

setprotoent() no no yes no no yes

setservent() no no yes no no yes

setsockopt() SETSOCKOPT SETSOCKOPT yes yes yes yes

shutdown() SHUTDOWN SHUTDOWN yes yes yes yes

socket() SOCKET SOCKET yes yes yes yes

socketpair() no no yes no no yes

takesocket() TAKESOCKET TAKESOCKET yes yes yes yes

TASK no no yes yes yes

termapi() TERMAPI TERMAPI yes yes yes yes

write() WRITE WRITE yes yes yes yes

writev() WRITEV WRITEV yes yes yes yes

ERRNO Values
This section gives an overview on all ERRNO values that are returned by the
TCP/IP LE/C, the EZASMI/EZASOKET socket interfaces, or both.
v Table 4 shows the ERRNO values sorted by their decimal value.
v Table 5 on page 79 shows the ERRNO values that apply only to

EZASMI/EZASOKET socket interfaces sorted by their decimal value.
v Table 6 on page 79 shows the values sorted by ERRNO names.

Table 4. ERRNO Values Sorted by Value

ERRNO ERRNO Value
from LE/C or
EZASMI/
EZASOKET

Description

EDOM 1 Domain error.

ERANGE 2 Range error.

ELOAD 83 Load error.

EACCES 111 Permission denied.

EAGAIN 112 Resource temporarily unavailable.

EBADF 113 Bad socket descriptor.

EBUSY 114 Resource busy.

ECHILD 115 No child processes.

EDEADLK 116 Resource deadlock avoided.

EEXIST 117 File exists.

EFAULT 118 Bad address or buffer address not
accessible.

Introducing Socket Programming

74 z/VSE V5R2 TCP/IP Support

Table 4. ERRNO Values Sorted by Value (continued)

ERRNO ERRNO Value
from LE/C or
EZASMI/
EZASOKET

Description

EFBIG 119 File too large.

EINTR 120 Interrupted function call.

EINVAL 121 Invalid parameter.

EIO 122 Socket closed.

EISDIR 123 Is a directory.

EMFILE 124 Too many open files.

EMLINK 125 Too many links.

ENAMETOOLONG 126 File name too long.

ENFILE 127 Too many open sockets.

ENODEV 128 No such device.

ENOENT 129 No such socket.

ENOEXEC 130 Exec format error.

ENOLCK 131 No locks available.

ENOMEM 132 Not enough memory to fulfill the
request.

ENOSPC 133 No space left on device.

ENOSYS 134 Function not implemented.

ENOTDIR 135 Not a directory.

ENOTEMPTY 136 Directory not empty.

ENOTTY 137 Inappropriate I/O control operation.

ENXIO 138 No such device or address.

EPERM 139 Operation not permitted.

EPIPE 140 Broken pipe.

EROFS 141 Read-only file system.

ESPIPE 142 Invalid seek.

ESRCH 143 No such process.

EXDEV 144 A link to a file on another file system
was attempted.

E2BIG 145 Argument list too long.

ELOOP 146 A loop exists in symbolic links
encountered during resolution of the
path argument.

EILSEQ 147 Illegal byte sequence.

ENODATA 148 No message available.

EOVERFLOW 149 Value too large to be stored in data type.

EMVSNOTUP 150 OpenEdition is not active.

EMVSDYNALC 151 Dynamic allocation error.

EMVSCVAF 152 Catalog Volume Access Facility error.

EMVSCATLG 153 Catalog obtain error.

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 75

Table 4. ERRNO Values Sorted by Value (continued)

ERRNO ERRNO Value
from LE/C or
EZASMI/
EZASOKET

Description

EMVSINITIAL 156 Process initialization error.

EMVSERR 157 An internal error has occurred.

EMVSPARM 158 Bad parameters.

EMVSPFSFILE 159 Permanent file error.

EMVSBADCHAR 160 Bad character in environment variable
name.

EMVSPFSPERM 162 System error.

EMVSSAFEXTRERR 163 SAF/RACF extract error.

EMVSSAF2ERR 164 SAF/RACF error.

EMVSTODNOTSET 165 System TOD clock not set.

EMVSPATHOPTS 166 Access mode argument conflicts with
PATHOPTS parameter.

EMVSNORTL 167 Access to the OpenEdition version of the
C RTL is denied.

EMVSEXPIRE 168 Password has expired.

EMVSPASSWORD 169 Password is invalid.

EVSE 183 Not supported under VSE.

ELENOFORK 200 Language Environment member
language cannot tolerate a fork().

ELEMSGERR 201 Message file was not found in the
hierarchical file system.

EIBMBADCALL 1000 A bad socket call constant in IUCV
header.

EIBMBADPARM 1001 Other IUCV header error.

EIBMSOCKOUTOFRANGE 1002 Assigned socket number out of range.

EIBMSOCKINUSE 1003 Assigned socket number already in use.

EIBMIUCVERR 1004 Request failed due to IUCV error.

EOFFLOADboxERROR 1005 Offload box error.

EOFFLOADboxRESTART 1006 Offload box restarted.

EOFFLOADboxDOWN 1007 Offload box down.

EIBMCONFLICT 1008 Conflicting call outstanding on socket.

EIBMCANCELLED 1009 Request cancelled.

ENOTBLK 1100 Block device required.

ETXTBSY 1101 Text file busy.

EWOULDBLOCK 1102 Request would block. An operation on a
socket marked as non blocking has
encountered a situation such as no data
available that otherwise would have
caused the function to suspend
execution.

Introducing Socket Programming

76 z/VSE V5R2 TCP/IP Support

Table 4. ERRNO Values Sorted by Value (continued)

ERRNO ERRNO Value
from LE/C or
EZASMI/
EZASOKET

Description

EINPROGRESS 1103 Socket connection in progress.
O_NONBLOCK is set for the socket
descriptor and the connection cannot be
immediately established.

EALREADY 1104 Connection request already in progress.
A connection request is already in
progress for the specified socket.

ENOTSOCK 1105 Descriptor does not refer to a socket.

EDESTADDRREQ 1106 Destination address required. No bind
address was specified.

EMSGSIZE 1107 Message too long.

EPROTOTYPE 1108 The socket type is not supported by the
protocol.

ENOPROTOOPT 1109 No Option recognized. The option
specified to setsockopt() is not supported.

EPROTONOSUPPORT 1110 The protocol is not supported by the
address family, or the protocol is not
supported by the implementation.

ESOCKTNOSUPPORT 1111 Socket type not supported.

EOPNOTSUPP 1112 Socket call not supported.

EPFNOSUPPORT 1113 Protocol family not supported.

EAFNOSUPPORT 1114 Address family not supported (other
than AF_INET). The implementation
does not support the specified address
family, or the specified address is not a
valid address for the address family of
the specified socket.

EADDRINUSE 1115 Specified address or port is already in
use.

EADDRNOTAVAIL 1116 Address not available.

ENETDOWN 1117 The local interface to use or reach the
destination is down.

ENETUNREACH 1118 Network unreachable.

ENETRESET 1119 Network dropped connection on reset.

ECONNABORTED 1120 Connection aborted.

ECONNRESET 1121 Connection was forcibly closed/reset by
the peer.

ENOBUFS 1122 No buffers available. Insufficient buffer
resources were available in the system to
perform the socket operation.

EISCONN 1123 Specified socket is already connected.

ENOTCONN 1124 Socket is not connected.

ESHUTDOWN 1125 Cannot send after socket shutdown.

ETOMANYREFS 1126 Too many references, cannot splice.

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 77

Table 4. ERRNO Values Sorted by Value (continued)

ERRNO ERRNO Value
from LE/C or
EZASMI/
EZASOKET

Description

ETIMEDOUT 1127 Connection request timed out. The
connection to a remote machine has
timed out. If the connection timed out
during execution of the function that
reported this error (as opposed to timing
out prior to the function being called), it
is unspecified whether the function has
completed some or all of the behavior
associated with a successful completion
of the function.

ECONNREFUSED 1128 Connection refused.

EHOSTDOWN 1129 Host is down.

EHOSTUNREACH 1130 Destination host cannot be reached.

EPROCLIM 1131 Too many processes.

EUSERS 1132 Too many users.

EDQUOT 1133 Reserved.

ESTALE 1134 The file handle has expired.

EREMOTE 1135 Too many levels of remote in path.

ENOSTR 1136 Not a stream.

ETIME 1137 Stream ioctl() timeout.

ENOSR 1138 No stream resource.

ENOMSG 1139 No message of desired type.

EBADMSG 1140 Bad message.

EIDRM 1141 Identifier removed.

ENONET 1142 Machine is not on the network.

ERREMOTE 1143 Object is remote.

ENOLINK 1144 The link has been cut.

EADV 1145 advertise error.

ESRMNT 1146 srmount error.

ECOMM 1147 Communication error on send.

EPROTO 1148 Protocol error.

EMULTIHOP 1149 Multihop is not allowed.

EDOTDOT 1150 Cross mount point (not an error).

EREMCHG 1151 Remote address changed.

ECANCELED 1152 The asynchronous I/O request has been
canceled.

Introducing Socket Programming

78 z/VSE V5R2 TCP/IP Support

Table 5. EZASMI/EZASOKET only - ERRNO Values Sorted by Value

ERRNO ERRNO Value
from
EZASMI/
EZASOKET

Description See
Note

EZAINVFU 20000 Invalid Function used with
EZASOKET call.

1

EZAINVPA 20001 Incorrect Parameter with
EZASOKET call.

1

EZAERL00 20100 Error loading phase EZASOH00.

EZAERGTV 20107 Not enough partition GETVIS.

EZAERNIN 20108 First call not INITAPI.

EZAERREC 20111 Recursive entry of EZA interface.

EZAETRNA 20112 EZATRUE not active (CICS only).

EZAERLIF 20113 LOAD of TCP/IP interface routine
failed.

EZAERBRI 20114 Bad return code from TCP/IP I/F
routine.

Note:

1. Used by EZASOKET interface only.

Programming Notes:

1. C Language definitions for ERRNOs (other than those returned by
EZASMI/EZASOKET) can be found in ERRNO.H as shipped in
PRD2.SCEEBASE.

2. Assembler equates for ERRNOs that may be returned from the EZASMI macro
or the EZASOKET call interface can be included in your assembler program by
EZASMI TYPE=TASK,STORAGE=DSECT.

Table 6. ERRNO Values sorted by Name

ERRNO Value

EACCESS 111

EADDRINUSE 1115

EADDRNOTAVAIL 1116

EAFNOSUPPORT 1114

EAGAIN 112

EALREADY 1104

EBADF 113

EBADMSG 1140

EBUSY 114

ECANCELED 1152

ECHILD 115

ECOMM 1147

ECONNABORTED 1120

ECONNREFUSED 1128

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 79

Table 6. ERRNO Values sorted by Name (continued)

ERRNO Value

ECONNRESET 1121

EDEADLK 116

EDESTADDRREQ 1106

EDOM 1

EDOTEDOT 1150

EDQUOT 1133

EEXIST 117

EFAULT 118

EFBIG 119

EHOSTDOWN 1129

EHOSTUNREACH 1130

EIBMBADCALL 1000

EIBMBADPARM 1001

EIBMCANCELLED 1009

EIBMCONFLICT 1008

EIBMIUCVERR 1004

EIBMSOCKINUSE 1003

EIBMSOCKOUTOFRANGE 1002

EIDRM 1141

EILSEQ 147

EINPROGRESSS 1103

EINTR 120

EINVAL 121

EIO 122

EISCONN 1123

EISDIR 123

ELEMSGERR 201

ELENOFORK 200

ELOAD 83

ELOOP 146

EMFILE 124

EMLINK 125

EMSGSIZE 1107

EMULTIHOP 1149

EMVSBADCHAR 160

EMVSCATLG 153

EMVSCVAF 152

EMVSSDYNALC 151

EMVSERR 157

EMVSEXPIRE 168

Introducing Socket Programming

80 z/VSE V5R2 TCP/IP Support

Table 6. ERRNO Values sorted by Name (continued)

ERRNO Value

EMVSINITIAL 156

EMVSNORTL 167

EMVSNOTUP 150

EMVSPARM 158

EMVSPASSWORD 169

EMVSPATHOPTS 166

EMVSPFSFILE 159

EMVSPFSPERM 162

EMVSSAF2ERR 164

EMVSSAFEXTRERR 163

EMVSTODNOTSET 165

ENAMETOOLONG 126

ENETDOWN 1117

ENETRESET 1119

ENETUNREACH 1118

ENFILE 127

ENOBUFS 1122

ENODATA 148

ENODEV 128

ENOENT 129

ENOEXEC 130

ENOLINK 1144

ENOLCK 131

ENOMEM 132

ENOMSG 1139

ENONET 1142

ENOPROTOOPT 1109

ENOSPC 133

ENOSR 1138

ENOSTR 1136

ENOSYS 134

ENOTBLK 1100

ENOTCONN 1124

ENOTDIR 135

ENOTEMPTY 136

ENOTSOCK 1105

ENOTTY 137

ENXIO 138

EOFFLOADboxDOWN 1007

EOFFLOADboxERROR 1005

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 81

Table 6. ERRNO Values sorted by Name (continued)

ERRNO Value

EOFFLOADboxRESTART 1006

EOPNOTSUPP 1112

EOVERFLOW 149

EPERM 139

EPFNOSUPPORT 1113

EPIPE 140

EPROCLIM 1131

EPROTO 1148

EPROTONOSUPPORT 1110

EPROTOTYPE 1108

ERANGE 2

EREMCHG 1151

EREMOTE 1135

EROFS 141

ERREMOTE 1143

ESHUTDOWN 1125

ESOCKTNOSUPPORT 1111

ESPIPE 142

ESRCH 143

ESRMNT 1146

ESTALE 1134

ETIME 1137

ETIMEDOUT 1127

ETOOMANYREFS 1126

ETXTBSY 1101

EUSERS 1132

EVSE 183

EWOULDBLOCK 1102

EXDEV 144

E2BIG 145

EZAERBRI 20114

EZAERGTV 20107

EZAERL00 20100

EZAERLIF 20113

EZAERNIN 20108

EZAERREC 20111

EZAETRNA 20112

EZAINVFU 20000

EZAINVPA 20001

Introducing Socket Programming

82 z/VSE V5R2 TCP/IP Support

CICS Considerations
The C Socket programming interface supports writing applications for either a
CICS or batch execution environment. This is also true for the EZASMI macro and
the EZASOKET call interface.

However, while the Assembler SOCKET macro and the TCP/IP for VSE/ESA HLL
preprocessor (resolving EXEC TCP calls) allow to explicitly specify the execution
environments, this is not possible with the BSD-C socket interfaces.

A programmer can write bimodal modules or applications, being called from either
a CICS or batch program. The TCP/IP runtime services will act according to the
execution environment's requirements, i.e. they will eventually use CICS services
(for example EXEC CICS WAIT) where appropriate.

To force an application to dynamically determine the environment it is running in,
you need to include the following 2 OBJ files in the application's link-edit step:
v IPCICSRQ (TCP/IP for VSE/ESA only)
v DFHECI

Omitting those two files will cause the application to act CICS unfriendly even if
running under CICS' control, for example by issuing VSE GETVIS requests instead
of CICS GETMAIN.

Note: This is true for non-LE socket applications using the BSD-C interface of
TCP/IP for VSE/ESA. Using the C socket interfaces provided by the VSE
Language Environment 1.4 C runtime does not require these modules to be linked
for the purpose described above. This is already covered by the TCP/IP for
VSE/ESA support for the LE/VSE 1.4 C socket interfaces, transparently to the
application. This support is described in Chapter 10, “TCP/IP Support for the
LE/VSE C Socket Interface,” on page 85.

CICS Considerations for the EZA Interfaces
Before the EZA API (EZASMI macro and EZASOKET call interface) can be used in
a CICS TS Transaction Environment, its "task-related-user-exit" (TRUE) routine has
to be started. This EZA "task-related-user-exit" is named EZATRUE. It is
responsible for allocating task-related working storage to the EZA API processing
environment and for possible cleanup processing during CICS end-of-task
processing.

The "task-related-user-exit" EZATRUE is started/stopped with program
EZASTRUE by one of the following means:
v transaction EZAT (EZAT START starts EZATRUE, EZAT STOP stops it)
v entry of EZASTRUE to the PLTPI (for auto-startup during CICS startup) and to

the PLTSD (for auto-shutdown during CICS shutdown)
v an EXEC CICS LINK to program EZASTRUE with the following COMMAREA

parameter list:

Table 7. COMMAREA parameter list

Offset Length Description

0 8 Eyecatcher "EZATRUE"

Introducing Socket Programming

Chapter 9. Introducing Socket Programming 83

Table 7. COMMAREA parameter list (continued)

Offset Length Description

8 1 Request Type:

"S" Start Request

"T" Termination Request

9 1 Return Code from EZASTRUE:

0 EZATRUE start/termination successful

4 EZATRUE already in requested state

8 Failure to start/terminate EZATRUE

16 Invalid parameter list

Executing TCP/IP Application Programs
Connecting to TCP/IP

By default, your TCP/IP application will attempt to connect with the TCP/IP
partition that has been assigned ID=00. Refer to the corresponding TCP/IP stack
documentation on how to assign the ID to your TCP/IP stack. The default ID
value is "00". If you want to connect to a TCP/IP partition with an ID not equal to
"00", you can do so by including an appropriate OPTION statement in your JCL:
// OPTION SYSPARM=’xx’

In the above, xx is the two-digit ID number, coded exactly as in the TCP/IP
startup JCL or parameters.

Preparation and Setup for SSL

Before using the LE/VSE C, EZASMI and EZASOKET function calls for secured
socket communication, the VSE system must be prepared to use SSL for VSE.

Note: SSL for VSE can only be used together with TCP/IP for VSE/ESA.

This preparation work includes
v (Optional) Creation of the library and sublibrary where private key and

certificates are to be stored (if default files on disk are not to be used).
v (Optional) Definition of library, sublibrary and member name to be used for

private key and certificates (if default files on disk are not to be used)
v Creation of private key.
v Creation of server certificate.
v Creation of root certificate.
v (Optional) Verification of SSL for VSE Certificate.

Refer to z/VSE e-business Connectors User's Guide for default SSL setup and to
TCP/IP for VSE 1.5 Optional Features for a detailed description of this preparation
work.

Introducing Socket Programming

84 z/VSE V5R2 TCP/IP Support

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface

Overview

BSD or "Berkeley" Sockets is a method for using TCP/IP programming interfaces
that was developed for UNIX platforms. Only a subset of the routines you might
know from other, especially UNIX alike platforms is implemented. The BSD-C
alike interfaces provided by TCP/IP for VSE/ESA are primarily aimed for users of
non-LE enabled C compilers, for example, the IBM C/370 compiler. This interface
is described in the TCP/IP for VSE 1.5 Programmer's Reference.

If you use the IBM C for VSE/ESA Release 1 (5686-A01) compiler together with the
IBM Language Environment for z/VSE (LE/VSE) 1.4 C runtime environment we
strongly recommend the usage of the LE/VSE 1.4 socket interfaces. These are
compatible with the OS/390 X/Open (XPG4.2) compliant socket interfaces. This
assures the maximum on compatibility and portability for cross platform
development.

Note:

1. The LE/VSE 1.4 runtime environment does not implement the socket routines
itself, but dynamically calls phase $EDCTCPV which is part of the TCP/IP for
VSE/ESA product stored in PRD2.TCPIPC. Therefore, the socket application is
decoupled from the TCP/IP product (see Figure 12 on page 52 for details). The
LE/VSE 1.4 runtime dynamically picks up new service levels, by calling this
phase, while applications using the native TCP/IP BSD- C socket routines
eventually need to be relinked when TCP/IP service is applied.

2. LE/VSE 1.4 C base ships a default $EDCTCPV phase in PRD2.SCEEBASE
aimed for systems where TCP/IP for VSE/ESA is either not installed or
deleted. This default phase does nothing but defining a function-specific return
code and issuing message EDCV001I, stating that the called function is not
implemented.
If you receive this message, check your application's LIBDEF for correctness
and check whether the routine is supposed to be available.

3. While the LE/VSE 1.4 C runtime provides the same range of socket routines as
OS/390, TCP/IP for VSE/ESA has only implemented a subset. This means that
when you use a LE/VSE C runtime interface, you need this for reference and
implementation details.

TCP/IP Callable Functions — Function Descriptions

accept() — Accept a New Connection on a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int accept(int socket, struct sockaddr *address, size_t *address_len);

General Description

The accept() call is used by a server to accept a connection request from a client.
For details, refer to the functional description of your TCP/IP provider. When a

© Copyright IBM Corp. 1997, 2014 85

connection is available, the socket created is ready for use to read data from the
process that requested the connection. The call accepts the first connection on its
queue of pending connections for the given socket socket. The accept() call creates
a new socket descriptor with the same properties as socket and returns it to the
caller. The original socket, socket, remains available to accept more connection
requests.

Parameter
Description

socket The socket descriptor.

address The socket address of the connecting client that is filled in by accept()
before it returns. The format of address is determined by the domain that
the client resides in. This parameter can be NULL if the caller is not
interested in the client address.

address_len
Must initially point to an integer that contains the size in bytes of the
storage pointed to by address. On return that integer contains the size of
the data returned in the storage pointed to by address. If address is NULL,
address_len is ignored.

The socket parameter is a stream socket descriptor created with the socket() call. It
is usually bound to an address with the bind() call. The listen() call marks the
socket as one that accepts connections and allocates a queue to hold pending
connection requests. The listen() call places an upper boundary on the size of the
queue.

The address parameter is a pointer to a buffer into which the connection requester's
address is placed. The address parameter is optional and can be set to be the NULL
pointer. If set to NULL, the requester's address is not copied into the buffer. The
exact format of address depends on the addressing domain from which the
communication request originated.

For example, if the connection request originated in the AF_INET domain, address
points to a sockaddr_in structure, or if the connection request originated in the
AF_INET6 domain, address points to a sockaddr_in6 structure. The sockaddr_in
and sockaddr_in6 structures are defined in in.h.. The address_len parameter is used
only if name is not NULL. Before calling accept(), you must set the integer
pointed to by address_len to the size of the buffer, in bytes, pointed to by address.
On successful return, the integer pointed to by address_len contains the actual
number of bytes copied into the buffer. If the buffer is not large enough to hold the
address, up to address_len bytes of the requester's address are copied. If the actual
length of the address is greater than the length of the supplied sockaddr, the
stored address is truncated. The sa_len member of the store structure contains the
length of the untruncated address.

Note: This call is used only with SOCK_STREAM sockets. There is no way to
screen requesters without calling accept(). The application cannot tell the system
the requesters from which it will accept connections. However, the caller can
choose to close a connection immediately after discovering the identity of the
requester.

A socket can be checked for incoming connection requests using the select() call.

accept

86 z/VSE V5R2 TCP/IP Support

Returned Value

A nonnegative socket descriptor indicates success; the value -1 indicates an error.
The value of the error code indicates the specific error.

Error Code
Description

EBADF
The socket parameter is not within the acceptable range for a socket
descriptor.

EFAULT
Using address and address_len would result in an attempt to copy the
address into a portion of the caller's address space into which information
cannot be written.

EINVAL
listen() was not called for socket descriptor socket.

ENFILE
The maximum number of socket descriptors in the system are already
open.

ENOBUFS
Insufficient buffer space is available to create the new socket.

EOPNOTSUPP
The socket type of the specified socket does not support accepting
connections.

EWOULDBLOCK
The socket descriptor socket is in nonblocking mode, and no connections
are in the queue.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EOPNOTSUPP. In this
case the message EDCV001I or EDCT002I is issued.

Example

The following are two examples of the accept() call. In the first, the caller wishes
to have the requester's address returned. In the second, the caller does not wish to
have the requester's address returned.
int clientsocket;
int s;
struct sockaddr clientaddress;
int address_len;
int accept(int s, struct sockaddr *addr, int *address_len);
/* socket(), bind(), and listen() have been called */

/* EXAMPLE 1: I want the address now */
address_len = sizeof(clientaddress);
clientsocket = accept(s, &clientaddress, &address_len);

/* EXAMPLE 2: I can get the address later using getpeername() */
clientsocket = accept(s, (struct sockaddr *) 0,
(int *) 0);

accept

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 87

aio_cancel() — Cancel an Asynchronous I/O Request
Format
#define _OPEN_SYS_SOCK_EXT
#include <aio.h>

int aio_cancel(int socket, struct aiocb *aiocbp);

General Description

The aio_cancel() function attempts to cancel one or more asynchronous I/O
requests currently outstanding against socket descriptor socket. The aiocbp
argument points to an aiocb structure for a particular request to be canceled, or is
NULL to cancel all outstanding cancelable requests against socket.

Normal asynchronous notification occurs for asynchronous I/O operations that are
successfully canceled. The associated error status is set to ECANCELED and the return
status is set to -1 for the canceled requests.

For requests that cannot be canceled, the normal asynchronous completion process
takes place when their I/O completes. In this case the aiocb is not modified by
aio_cancel().

An asynchronous operation is cancelable if it is currently blocked or becomes
blocked. Once an outstanding request can be completed, it is allowed to complete.
For example, an aio_read() is cancelable if there is no data available when
aio_cancel() is called.

socket must be a valid socket descriptor, but when aiocbp is not NULL, socket does not
have to match the socket descriptor with which the asynchronous operation was
initiated. However, for maximum portability it should match.

The aio_cancel() function always waits for the request being canceled to either
complete or be canceled. When control returns from aio_cancel(), the program
may safely free the original request's aiocb and buffer.

Canceling all requests on a given descriptor does not stop new requests from being
made or otherwise effect the descriptor. The program may start again or close the
descriptor depending on why it issued the cancel.

An individual request can only be canceled once. Subsequent attempts to explicitly
cancel the same request will fail with EALREADY.

Returned Value

The aio_cancel() function returns one of the following values:

Return Value
Description

AIO_CANCELED
The requested operations were canceled.

AIO_NOTCANCELED
At least one of the requested operations cannot be canceled because it is in
progress. In this case, the state of the other operations, if any, referenced in

aio_cancel

88 z/VSE V5R2 TCP/IP Support

the call to aio_cancel() is not indicated by the return value of
aio_cancel(). The application can determine the status of these operations
by using aio_error().

AIO_ALLDONE
The operations have already completed. This is returned when there are no
outstanding requests found that match the criteria specified. This is also
the result returned when a file associated with socket does not support the
asynchronous I/O function because there are no outstanding requests to be
found that match the criteria specified.

-1 An error has occurred. errno is set to indicate the type of error.

The aio_cancel() function will fail if:

errno Description

EBADF
The socket argument is not a valid socket descriptor.

EALREADY
The operation to be canceled is already being canceled.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EBADF. In this case the
message EDCV001I or EDCT002I is issued.

aio_error() — Retrieve Error Status for an Asynchronous I/O
Operation

Format
#define _OPEN_SYS_SOCK_EXT
#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

General Description

The aio_error() function returns the error status associated with the aiocb
structure referenced by the aiocbp argument. The error status for an asynchronous
I/O operation is the errno value that would be set by the corresponding read(), or
write() operation. If the operation has not yet completed, the error status is equal
to EINPROGRESS.

Returned Value

If the asynchronous I/O operation has completed successfully, then 0 is returned. If
the asynchronous I/O operation has completed unsuccessfully, then the error
status as described for read(), or write() is returned. If the asynchronous I/O
operation has not yet completed, then EINPROGRESS is returned.

The aio_error() function does not set errno.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1. In this case the message EDCV001I or
EDCT002I is issued.

aio_cancel

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 89

aio_read() — Asynchronous Read from a Socket
Format
#define _OPEN_SYS_SOCK_EXT
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

General Description

The aio_read() function initiates an asynchronous read operation as described by
the aiocb structure (the asynchronous I/O control block).

The aiocbp argument points to the aiocb structure. This structure contains the
following members:

aio_ filedes
socket descriptor

aio_offset
file offset

aio_buf location of buffer

aio_nbytes
length of transfer

aio_reqprio
request priority offset

aio_sigevent
signal number and value

aio_lio_opcode
operation to be performed

The operation reads up to aio_nbytes from the socket associated with aio_ filedes
into the buffer pointed to by aio_buf. The call to aio_read() returns when the
request has been initiated or queued (even if the data cannot be delivered
immediately).

Asynchronous I/O is currently only supported for sockets. The aio_offset field can
be set but is ignored.

With a stream socket an asynchronous read may be completed when the first
packet of data arrives and the application may have to issue additional reads,
either asynchronously or synchronously, to get all the data it wants. A datagram
socket has message boundaries and the operation will not complete until an entire
message has arrived.

The aiocbp value may be used as an argument to aio_error() and aio_return()
functions in order to determine the error status and return status, respectively, of
the asynchronous operation. While the operation is proceeding, the error status
retrieved by aio_error() is EINPROGRESS; the return status retrieved by
aio_return() however is unpredictable.

If an error condition is encountered during the queuing, the function call returns
without having initiated or queued the request.

aio_read

90 z/VSE V5R2 TCP/IP Support

The program can occasionally poll the aiocb with aio_error() until the result is no
longer EINPROGRESS.

Be aware that the operation might complete, before control returns from the call to
aio_read(). Even if the operation does complete this quickly, the return value from
the call to aio_read() is zero, reflecting the queueing of the I/O request not the
results of the I/O itself.

An asynchronous operation may be canceled with aio_cancel() prior to its
completion. Canceled operations complete with an error status of ECANCELED. Due
to timing, the operation may still complete naturally, either successfully or
unsuccessfully, before it can be canceled by aio_cancel().

If the socket descriptor of this operation is closed, the operation will be deleted if it
has not completed or is not just about to complete. Close() will wait for
asynchronous operations in progress for the descriptor to be deleted or completed.

You can use aio_suspend() to wait for the completion of asynchronous operations.

Sockets must be in blocking state or the operation may fail with EWOULDBLOCK.

If the control block pointed by aiocbp or the buffer pointed to by aio_buf becomes
an illegal address prior to the asynchronous I/O completion, then the behavior of
aio_read() is unpredictable.

Simultaneous asynchronous operations using the same aiocbp, asynchronous
operations using an invalid aiocbp, or any system action that changes the process
memory space while asynchronous I/O is outstanding to that address range, will
produce unpredictable results.

The aio_lio_opcode field is set to LIO_READ by the function aio_read().

_POSIX-PRIORITIZED_IO is not supported. The aio_reqprio field can be set but is
ignored.

_POSIX_SYNCHRONIZED_IO is not supported.

Returned Value

The aio_read() function returns the value of zero to the calling process if the I/O
operation is successfully queued; otherwise, the function returns the value -1 and
sets errno to indicate the error. The aio_read() function will fail if:

errno Description

ENOSYS
The file associated with aio_filedes does not support the aio_read()
function.

Each of the following conditions might be detected synchronously at the time of
the call to aio_read(), or asynchronously. If any of the conditions below are
detected synchronously, the aio_read() function returns -1 and sets the errno to
the corresponding value. If any of the conditions below are detected
asynchronously, the return status of the asynchronous operation is set to -1, and
the error status of the asynchronous operation is set to the corresponding value.

aio_read

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 91

Error Status
Description

EBADF
The aio_ filedes argument is not a valid socket descriptor open for reading.

EWOULDBLOCK
The file associated with aio_ filedes is in non-blocking state and there is no
data available.

EINVAL
aio_sigevent contains an invalid value.

If the aio_read() function successfully queues the I/O operation but the operation
is subsequently canceled or encounters an error, the return status of the
asynchronous operations is set to -1, and the error status of the asynchronous
operation is set to the error status normally set by the read() function call, or to
the following value:

Error Status
Description

ECANCELED
The requested I/O was canceled before the I/O completed due to an
explicit call to aio_cancel().

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to ENOSYS. In this case the
message EDCV001I or EDCT002I is issued.

aio_return() — Retrieve Status for an Asynchronous I/O
Operation

Format
#define _OPEN_SYS_SOCK_EXT
#include <aio.h>

int aio_return(const struct aiocb *aiocbp);

General Description

The aio_return() function returns the return status associated with the aiocb
structure referenced by the aiocbp argument. The return status for an asynchronous
I/O operation is the value that would be set by the corresponding read() or
write() operation. While the operation is proceeding, the error status retrieved by
aio_error() is EINPROGRESS; the return status retrieved by aio_return() however is
unpredictable. The aio_return() function may be called to retrieve the return
status of a given asynchronous operation; once aio_error() has returned with 0.

Returned Value

If the asynchronous I/O operation has completed successfully, then the return
status as described for read() or write() is returned. If the asynchronous I/O
operation has not yet completed, then the return status is unpredictable.

The aio_return() does not set errno.

aio_read

92 z/VSE V5R2 TCP/IP Support

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1. In this case the message EDCV001I or
EDCT002I is issued.

aio_suspend() — Wait for an Asynchronous I/O Request
Format
#define _OPEN_SYS_SOCK_EXT
#include <aio.h>

int aio_suspend(const struct aiocb * const list[],
int nent, const struct timespec * timeout);

General Description

The aio_suspend() function suspends the calling thread when the timeout is a null
pointer until at least one of the asynchronous I/O operations referenced by the list
argument has completed. Or, if timeout is not null, it is suspended until the time
interval specified by timeout has passed. If the time interval indicated in the
timespec structure pointed to by timeout passes before any of the I/O operations
referenced by list, then aio_suspend() returns with an error. If any of the aoicb
structures in the list correspond to completed asynchronous I/O operations (that is,
the error status for the operation is not equal to EINPROGRESS) at the time of the
call, the function returns without suspending the calling thread.

The list argument is an array of pointers to asynchronous I/O control blocks
(AIOCBs). The nent argument indicates the number of elements in the array. Each
aiocb structure pointed to will have been used in initiating an asynchronous I/O
request. This array may contain null pointers, which are ignored. If this array
contains pointers that refer to aiocb structures that have not been used in
submitting asynchronous I/O or aiocb structures that are not valid, the results are
unpredictable.

Returned Value

If the aio_suspend() function returns after one or more asynchronous I/O
operation have completed, the function returns zero. Otherwise, the function
returns a value of -1 and sets errno to indicate the error. The application may
determine which asynchronous I/O completed by scanning the associated error
and return status using aio_error() or aio_return(), respectively. The value of
errno indicates the specific error.

errno Description

ENOSYS
z/VSE does not support the aio_suspend function.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to ENOSYS. In this case the
message EDCV001I or EDCT002I is issued.

Usage Notes
1. The AIOCBs represented by the list of AIOCB pointers must reside in the same

storage key as the key of the invoker of aio_suspend. If the AIOCB Pointer List
or any of the AIOCBs represented in the list are not accessible by the invoker
an EFAULT may occur.

aio_return

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 93

2. AIOCB pointers in the list with a value of zero are ignored.
3. A timeout value of zero (seconds+nanoseconds) means that the aio_suspend()

call will not wait at all. It will check for any completed asynchronous I/O
requests. If none are found it will return with a EAGAIN. If at least one is
found aio_suspend() will return with success.

4. A timeout value of a timespec with the tv_sec field set with INT_MAX, as defined
in <limits.h> will cause the aio_suspend service to wait until a asynchronous
I/O request completes.

5. The AIOCBs passed to aio_suspend() must not be freed or reused while this
service is still in progress. This service may use the AIOCBs even after the
asynchronous I/O completes. Modifying the AIOCB during an aio_suspend()
will produce unpredictable results.

aio_write() — Asynchronous Write to a Socket
Format
#define _OPEN_SYS_SOCK_EXT
#include <aio.h>

int aio_write(struct aiocb *aiocbp);

General Description

The aio_write() function initiates an asynchronous write operation as described
by the aiocb structure (the asynchronous I/O control block).

The aiocbp argument points to the aiocb structure. This structure contains the
following members:

aio_ filedes
socket descriptor

aio_offset
file offset

aio_buf location of buffer

aio_nbytes
length of transfer

aio_reqprio
request priority offset

aio_sigevent
signal number and value

aio_lio_opcode
operation to be performed

The operation will write aio_nbytes from the buffer pointed to by aio_buf to the
socket associated with aio_ filedes. The call to aio_write() returns when the request
has been initiated or queued (even if the data cannot be delivered immediately).

Asynchronous I/O is currently only supported for sockets. The aio_offset field may
be set but is ignored.

The aiocbp value may be used as an argument to aio_error() and aio_return()
functions in order to determine the error status and return status, respectively, of

aio_suspend

94 z/VSE V5R2 TCP/IP Support

the asynchronous operation. While the operation is proceeding, the error status
retrieved by aio_error() is EINPROGRESS; the return status retrieved by
aio_return() however is unpredictable.

If an error condition is encountered during the queueing, the function call returns
without having initiated or queued the request.

The program can occasionally poll the aiocb with aio_error() until the result is no
longer EINPROGRESS.

Be aware that the operation might complete before control returns from the call to
aio_read(). Even if the operation does complete this quickly, the return value from
the call to aio_read() is zero, reflecting the queueing of the I/O request not the
results of the I/O itself.

An asynchronous operation can be canceled with aio_cancel() prior to its
completion. Canceled operations complete with an error status of ECANCELED. Due
to timing, the operation might still complete naturally, either successfully or
unsuccessfully, before it can be canceled by aio_cancel().

If the socket descriptor of this operation is closed, the operation is deleted if it has
not completed or is not just about to complete. Close() will wait for asynchronous
operations in progress for the descriptor to be deleted or completed.

You can use aio_suspend() to wait for the completion of asynchronous operations.
Sockets must be in blocking state or the operation may fail with EWOULDBLOCK.

If the control block pointed by aiocbp or the buffer pointed to by aio_buf becomes
an illegal address prior to the asynchronous I/O completion, then the behavior of
aio_read() is unpredictable.

Simultaneous asynchronous operations using the same aiocbp, attempting
asynchronous operations using an invalid aiocbp, or any system action that changes
the process memory space while asynchronous I/O is outstanding to that address
range, will produce unpredictable results.

The aio_lio_opcode field must be set to LIO_WRITE .

_POSIX-PRIORITIZED_IO is not supported. The aio_reqprio field may be set but is
ignored.

_POSIX_SYNCHRONIZED_IO is not supported.

Returned Value

The aio_write() function returns the value of zero to the calling process if the I/O
operation is successfully queued; otherwise, the function returns the value -1 and
sets errno to indicate the error. The aio_write() function will fail if:

errno Description

ENOSYS
The file associated with aio_ filedes does not support the aio_write()
function.

Each of the following conditions may be detected synchronously at the time of the
call to aio_write(), or asynchronously. If any of the conditions below are detected

aio_write

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 95

synchronously, the aio_write() function returns -1 and sets the errno to the
corresponding value. If any of the conditions below are detected asynchronously,
the return status of the asynchronous operation is set to -1, and the error status of
the asynchronous operation is set to the corresponding value.

Error Status / errno
Description

EBADF
The aio_ filedes argument is not a valid socket descriptor open for writing.

EWOULDBLOCK
The file associated with aio_ filedes is in non-blocking state and there is no
data available.

EINVAL
The aio_nbytes is not a valid value or aio_sigevent contains an invalid value.

If the aio_write() function successfully queues the I/O operation, but the
operation is subsequently canceled or encounters an error, the return status of the
asynchronous operations is set to -1, and the error status of the asynchronous
operation is set to the error status normally set by the write() function call, or to
the following value:

Error Status
Description

ECANCELED
The requested I/O was canceled before the I/O completed due to an
explicit call to aio_cancel().

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to ENOSYS. In this case the
message EDCV001I or EDCT002I is issued.

bind() — Bind a Name to a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int bind(int socket, const struct sockaddr *name, size_t namelen);

General Description

The bind() call binds a unique local name to the socket with descriptor socket.
After calling socket(), a descriptor does not have a name associated with it.
However, it does belong to a particular address family as specified when socket()
is called. The exact format of a name depends on the address family.

Parameter
Description

socket The socket descriptor returned by a previous socket() call.

name The pointer to a sockaddr structure containing the name that is to be
bound to socket.

namelen
The size of name in bytes.

aio_write

96 z/VSE V5R2 TCP/IP Support

The socket parameter is a socket descriptor of any type created by calling socket().

The name parameter is a pointer to a buffer containing the name to be bound to
socket. The namelen parameter is the size, in bytes, of the buffer pointed to by name.

Socket Descriptor Created in the AF_INET Domain

If the socket descriptor socket was created in the AF_INET domain, the format of
the name buffer is expected to be sockaddr_in, as defined in the include file in.h.
The structure is defined as follows:
struct in_addr
{

ip_addr_t s_addr;
};

struct sockaddr_in {
unsigned char sin_len;
unsigned char sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];

};

The sin_family field must be set to AF_INET.

The sin_port field is set to the port to which the application must bind. It must be
specified in network byte order. If sin_port is set to 0, the caller leaves it to the
system to assign an available port. The application can call getsockname() to
discover the port number assigned.

The sin_addr.s_addr field is set to the Internet address and must be specified in
network byte order. On hosts with more than one network interface (called
multihomed hosts), a caller can select the interface to which it is to bind.
Subsequently, only UDP packets and TCP connection requests from this interface
(which match the bound name) are routed to the application. If this field is set to
the constant INADDR_ANY, as defined in in.h, the caller is requesting that the
socket be bound to all network interfaces on the host. Subsequently, UDP packets
and TCP connections from all interfaces (which match the bound name) are routed
to the application. This becomes important when a server offers a service to
multiple networks. By leaving the address unspecified, the server can accept all
UDP packets and TCP connection requests made for its port, regardless of the
network interface on which the requests arrived.

The sin_zero field is not used and must be set to all zeros.

Socket Descriptor Created in the AF_INET6 Domain

If the socket descriptor socket was created in the AF_INET6 domain, the format of
the name buffer is expected to be sockaddr_in6, as defined in the include file in.h.
The structure is defined as follows:
struct sockaddr_in6 {

uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

bind

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 97

The sin6_len field is set to the size of this structure. The SIN6_LEN macro is
defined to indicate the version of the sockaddr_in6 structure being used.

The sin6_family field identifies this as a sockaddr_in6 structure. This field overlays
the sa_family field, if the buffer is cast to a sockaddr structure. The value of this
field must be AF_INET6.

The sin6_port field contains the 16-bit UDP or TCP port number. This field is used
in the same way as the sin_port field of the sockaddr_in structure. The port
number is stored in network byte order.

The sin6_flowinfo field is a 32-bit field that contains the traffic class and the flow
label.

The sin6_addr field is a single in6_addr structure. This field holds one 128-bit IPv6
address. The address is stored in network byte order.

The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as
appropriate for the scope of the address carried in the sin6_addr field. For a link
scope sin6_addr, sin6_scope_id, this would be an interface index. For a site scope
sin6_addr, sin6_scope_id, this would be a site identifier.

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EADDRINUSE
The address is already in use.

EAFNOSUPPORT
The address family is not supported (it is not AF_INET or AF_INET6).

EBADF
The socket parameter is not a valid socket descriptor.

EINVAL
The socket is already bound to an address—for example, trying to bind a
name to a socket that is already connected. Or the socket was shut down.

ENOBUFS
bind() is unable to obtain a buffer due to insufficient storage.

EOPNOTSUPP
The socket type of the specified socket does not support binding to an
address.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EOPNOTSUPP. In this
case the message EDCV001I or EDCT002I is issued.

Example

The following example illustrates the bind() call binding to interfaces in the
AF_INET domain. The Internet address and port must be in network byte order.

bind

98 z/VSE V5R2 TCP/IP Support

To put the port into network byte order, the htons() utility routine is called to
convert a short integer from host byte order to network byte order. The address
field is set using another utility routine, inet_addr(), which takes a character
string representing the dotted-decimal address of an interface and returns the
binary Internet address representation in network byte order. It is a good idea to
zero the structure before using it to ensure that the name requested does not set
any reserved fields.
int rc;
int s;
struct sockaddr_in myname;

/* Bind to a specific interface in the Internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = inet_addr("129.5.24.1");
/* specific interface */
myname.sin_port = htons(1024);...
rc = bind(s, (struct sockaddr *) &myname,
sizeof(myname));
/* Bind to all network interfaces in the Internet domain */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = INADDR_ANY; /* specific interface */
myname.sin_port = htons(1024);...
rc = bind(s, (struct sockaddr *) &myname,
sizeof(myname));
aslr.* Bind to a specific interface in the Internet domain.

Let the system choose a port */
/* make sure the sin_zero field is cleared */
memset(&myname, 0, sizeof(myname));
myname.sin_family = AF_INET;
myname.sin_addr.s_addr = inet_addr("129.5.24.1");
/* specific interface */
myname.sin_port = 0;...
rc = bind(s, (struct sockaddr *) &myname,
sizeof(myname));

close() — Close a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <unistd.h>

int close(int socket);

General Description

close() call shuts down the socket associated with the socket descriptor socket, and
frees resources allocated to the socket. If socket refers to an open TCP connection,
the connection is closed. If a stream socket is closed when there is input data
queued, the TCP connection is reset rather than being cleanly closed.

Parameter
Description

socket The descriptor of the socket to be closed.

Note: All sockets should be closed before the end of your process.

bind

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 99

For AF_INET and AF_INET6 stream sockets (SOCK_STREAM) using SO_LINGER
socket option, the socket does not immediately end if data is still present when a
close is issued. The following structure is used to set or unset this option, it is
defined in socket.h. It is to be used with the setsockopt routine.
struct linger {

int l_onoff; /* zero=off, nonzero=on */
int l_linger; /* time is seconds to linger */

};

If the l_onoff switch is nonzero, the system attempts to deliver any unsent
messages. If a linger time is specified, the system waits for n seconds before
flushing the data and terminating the socket.

Returned Value

If successful, close() returns 0. If unsuccessful, it returns -1 and sets errno to one of
the following:

EBADF
The socket parameter is not a valid socket descriptor.

EIO An I/O error occurred while reading from or writing to the socket.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EBADF. In this case the
message EDCV001I or EDCT002I is issued.

connect() — Connect a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int connect(int socket, const struct sockaddr *name, size_t namelen);

General Description

For stream sockets, the connect() call attempts to establish a connection between
two sockets. For datagram sockets, the connect() call specifies the peer for a
socket. The socket parameter is the socket used to originate the connection request.
The connect() call performs two tasks when called for a stream socket. First, it
completes the binding necessary for a stream socket (in case it has not been
previously bound using the bind() call). Second, it attempts to make a connection
to another socket.

Parameter
Description

socket The socket descriptor.

name The pointer to a socket address structure containing the address of the
socket to which a connection is attempted.

namelen
The size of the socket address pointed to by name in bytes.

The connect() call on a stream socket is used by the client application to establish
a connection to a server. The server must have a passive open pending. A server

close

100 z/VSE V5R2 TCP/IP Support

that is using sockets must successfully call bind() and listen() before a
connection can be accepted by the server with accept().

If socket is in blocking mode, the connect() call blocks the caller until the
connection is set up, or until an error is received. If the socket is in nonblocking
mode, connect() returns -1 with the error code set to EINPROGRESS to indicate
that the connection has been initiated but is not yet complete (if no errors
occurred). The caller can test the completion of the connection setup by calling
select() and testing for the ability to write to the socket.

When called for a datagram socket, connect() specifies the peer with which this
socket is associated. This gives the application the ability to use data transfer calls
reserved for sockets that are in the connected state. In this case, read(), write(),
readv(), writev(), send(), and recv() calls are then available in addition to
sendto() and recvfrom() calls. Stream sockets can call connect() only once, but
datagram sockets can call connect() multiple times to change their association.
Datagram sockets can dissolve their association by connecting to an incorrect
address, such as the null address (all fields zeroed).

The name parameter is a pointer to a buffer containing the name of the peer to
which the application needs to connect. The namelen parameter is the size, in bytes,
of the buffer pointed to by name.

Servers in the AF_INET domain

If the server is in the AF_INET domain, the format of the name buffer is expected
to be sockaddr_in, as defined in the include file in.h.
struct in_addr
{

ip_addr_t s_addr;
};

struct sockaddr_in {
unsigned char sin_len;
unsigned char sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];

};

The sin_family field must be set to AF_INET. The sin_port field is set to the port to
which the server is bound. It must be specified in network byte order. The sin_zero
field is not used and must be set to all zeros.

Servers in the AF_INET6 domain

If the server is in the AF_INET6 domain, the format of the name buffer is expected
to be sockaddr_in6, as defined in the include filein.h.
:
struct sockaddr_in6 {

uint8_t char sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

];

connect

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 101

The sin6_family must be set to AF_INET6.

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EAFNOSUPPORT
The address family is not supported.

EALREADY
The socket descriptor socket is marked nonblocking, and a previous
connection attempt has not completed.

EBADF
The socket parameter is not a valid socket descriptor.

EFAULT
Using name and namelen would result in an attempt to copy the address
into a portion of the caller's address space to which data cannot be written.

EINPROGRESS
O_NONBLOCK is set for the socket descriptor for the socket, and the
connection cannot be established immediately. The connection is
established asynchronously. The EINPROGRESS value does not indicate an
error condition.

EINVAL
The namelen parameter is not a valid length.

EISCONN
The socket descriptor socket is already connected.

EOPNOTSUPP
The socket parameter is not of type SOCK_STREAM.

ETIMEDOUT
The connection establishment timed out before a connection was made.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EOPNOTSUPP. In this
case the message EDCV001I or EDCT002I is issued.

Example

The following are examples of the connect() call. The Internet address and port
must be in network byte order. To put the port into network byte order, the
htons() utility routine is called to convert a short integer from host byte order to
network byte order. The address field is set using another utility routine,
inet_addr(), which takes a character string representing the dotted-decimal
address of an interface and returns the binary Internet address representation in
network byte order. Finally, it is a good idea to zero the structure before using it to
ensure that the name requested does not set any reserved fields. These examples
could be used to connect to the servers shown in the examples listed with the call,
“bind() — Bind a Name to a Socket” on page 96.

connect

102 z/VSE V5R2 TCP/IP Support

#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>
#include <in.h>

int s;
struct sockaddr_in inet_server;
int rc;

/* Connect to server bound to a specific interface in the
Internet domain */
/* make sure the sin_zero field is cleared */
memset(&inet_server, 0, sizeof(inet_server));
inet_server.sin_family = AF_INET;
inet_server.sin_addr = inet_addr("129.5.24.1");
/* specific interface */
inet_server.sin_port = htons(1024);...
rc = connect(s, (struct sockaddr *) &inet_server, sizeof(inet_server));

endhostent() — Work with a Host Entry
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void endhostent(void);

General Description

The endhostent() call closes the data set which contains information about known
hosts.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

endnetent() — Close Network Information Data Sets
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void endnetent(void);

General Description

The endnetent() call closes the data set, which contains information about known
networks.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

endprotoent() — Work with a Protocol Entry
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void endprotoent(void);

connect

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 103

General Description

The endprotoent() call closes the data set which contains information about the
networking protocols.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

endservent() — Close Network Services Information Data Sets
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void endservent(void);

General Description

The endservent() call closes the data set which contains information about
network services. Example services are name server, File Transfer Protocol (FTP),
and telnet.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

fcntl() — Control Open Socket Descriptors
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <types.h>
#include <unistd.h>
#include <fcntl.h>

int fcntl(int socket, int cmd, ... /* arg */);

General Description

The operating characteristics of sockets can be controlled with the fcntl() call. The
operations to be controlled are determined by cmd. The arg parameter is a variable
with a meaning that depends on the value of the cmd parameter.

Parameter
Description

socket The socket descriptor.

cmd The command to perform.

arg The data associated with cmd.

The cmd argument can be one of the following symbols:

F_GETFL
This command gets the status flags of socket descriptor socket. With the
_XOPEN_SOURCE_EXTENDED 1 feature test macro you can query the
O_NDELAY flag. The O_NDELAY flagsmarks socket as being in
nonblocking mode. If data is not present on calls that can block, such as
read(), readv(), and recv(), the call returns with -1, and the error code is
set to EWOULDBLOCK.

endprotoent

104 z/VSE V5R2 TCP/IP Support

F_SETFL
This command sets the status flags of socket descriptor socket. With the
_XOPEN_SOURCE_EXTENDED 1 feature test macro you can set the O_NDELAY
flag.

Returned Value

If successful, the value returned will depend on the cmd that was specified. If
unsuccessful, fcntl() returns -1 and sets errno to one of the following:

Error Code
Description

EBADF
The socket parameter is not a valid socket descriptor.

EINVAL
The arg parameter is no a valid flag, or the cmd parameter is not a valid
command.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

Example
#define _XOPEN_SOURCE_EXTENDED 1
#include <types.h>
#include <unistd.h>
#include <fcntl.h>
int s;
int rc;
int flags;...
/* Place the socket into nonblocking mode */
rc = fcntl(s, F_SETFL, O_NDELAY);

/* See if asynchronous notification is set */
flags = fcntl(s, F_GETFL, 0);
if (flags & O_NDELAY)

/* it is set */
else

/* it is not */

freeaddrinfo() — Free addrinfo storage
Format
#define _OPEN_SYS_SOCK_IPV6
#include <socket.h>
#include <netdb.h>

void *freeaddrinfo(struct addrinfo *ai);

General Description

The freeaddrinfo() function frees one or more addrinfo structures returned by
getaddrinfo(), along with any additional storage associated with those structures. If
the ai_next field of the structure is not null, the entire list of structures is freed.

fcntl

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 105

Returned Value

No return value is defined.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

gai_strerror() — Address and name information error
description

Format
#define _OPEN_SYS_SOCK_IPV6
#include <netdb.h>

char *gai_strerror(int ecode);

General Description

The gai_strerror() function returns a pointer to a text string describing the error
value returned by a failure return from either the getaddrinfo() or getnameinfo()
function. If the ecode is not one of the EAI_xxx values from the <netdb.h> header,
then gai_strerror() returns a pointer to a string indicating an unknown error.

Subsequent calls to gai_strerror() will overwrite the buffer containing the text
string.

Returned Value

If successful, gai_strerror() returns a pointer to a string describing the error. Upon
failure, gai_strerror() will return NULL and set errno to one of the following:

Error Code
Description

ENOMEM
Insufficient memory to allocate buffer for text string describing the error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

getaddrinfo() — Get address information
Format
#define _OPEN_SYS_SOCK_IPV6
#include <socket.h>
#include <netdb.h>

int getaddrinfo(const char *nodename,
const char *servname,
const struct addrinfo *hints,
struct addrinfo **res);

freeaddrinfo

106 z/VSE V5R2 TCP/IP Support

General Description

The getaddrinfo() function translates the name of a service location (for example, a
host name) and/or service name and returns a set of socket addresses and
associated information to be used in creating a socket with which to address the
specified service.

The nodename and servname arguments are either pointers to null-terminated strings
or null pointers. One or both of these two arguments must be specified as a
non-null pointer.

The format of a valid name depends on the protocol family or families. If a specific
family is not given and the name could be interpreted as valid within multiple
supported families, the function attempts to resolve the name in all supported
families. When no errors are detected, all successful results are returned.

If the nodename argument is not null, it can be a descriptive name or it can be an
address string. If the specified address family is AF_INET, AF_INET6, or
AF_UNSPEC, valid descriptive names include host names. If the specified address
family is AF_INET or AF_UNSPEC, address strings using standard dot notation as
specified in inet_addr() are valid. If the specified address family is AF_INET6 or
AF_UNSPEC, standard IPv6 text forms described in inet_pton() are valid. In
addition, scope information can be appended to the descriptive name or the
address string using the format nodename%scope information. Scope information
can be either an interface name or the numeric representation of an interface index
suitable for use on this system.

If nodename is not null, the requested service location is named by nodename;
otherwise, the requested service location is local to the caller.

If servname is null, the call returns network-level addresses for the specified
nodename. If servname is not null, it is a null-terminated character string identifying
the requested service. This can be either a descriptive name or a numeric
representation suitable for use with the address family or families. If the specified
address family is AF_INET, AF_INET6, or AF_UNSPEC, the service can be
specified as a string specifying a decimal port number.

If the argument hints is not null, it refers to a structure containing input values that
may direct the operation by providing options and by limiting the returned
information to a specific socket type, address family and/or protocol. In the hints
structure every member other than ai_flags, ai_family, ai_socktype, and ai_protocol
must be zero or a null pointer. A value of AF_UNSPEC for ai_family means that
the caller will accept any protocol family. A value of zero for ai_socktype means
that the caller will accept any socket type. A value of zero for ai_protocol means
that the caller will accept any protocol. If hints is a null pointer, the behavior must
be as if it referred to a structure containing the value zero for the ai_flags,
ai_socktype, and ai_protocol fields, and AF_UNSPEC for the ai_family field.

The ai_flags member to which the hints argument points can be set to 0 or be the
bitwise inclusive OR of one or more of the following values:
v AI_PASSIVE
v AI_CANONNAME
v AI_NUMERICHOST
v AI_NUMERICSERV
v AI_V4MAPPED

getaddrinfo

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 107

v AI_ALL
v AI_ADDRCONFIG
v AI_EXTFLAGS

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, then the
caller plans to use the returned socket address structure in a call to bind(). In this
case, if the nodename argument is a null pointer, then the IP address portion of the
socket address structure is set to INADDR_ANY for an IPv4 address or
IN6ADDR_ANY_INIT for an IPv6 address. If the AI_PASSIVE bit is not set in the
ai_flags member of the hints structure, then the returned socket address structure
is ready for a call to connect() (for a connection-oriented protocol) or either
connect(), sendto(), or sendmsg() (for a connectionless protocol). In this case, if the
nodename argument is a null pointer, then the IP address portion of the socket
address structure is set to the loopback address.

If the AI_CANONNAME bit is set in the ai_flags member of the hints structure,
then upon successful return the ai_canonname member of the first addrinfo
structure in the linked list will point to a null-terminated string containing the
canonical name of the specified nodename.

If the AI_NUMERICHOST bit is set in the ai_flags member of the hints structure,
then a non-null nodename string must be a numeric host address string. Otherwise
an error code of EAI_NONAME is returned. This flag prevents any type of name
resolution service (for example, the DNS) from being called.

If the AI_NUMERICSERV flag is specified then a non-null servname string must be
a numeric port string. Otherwise an error code EAI_NONAME is returned. This
flag prevents any type of name resolution service, for example, NIS+ from being
invoked.

If the AI_V4MAPPED flag is specified along with the AF field with the value of
AF_INET6, or a value of AF_UNSPEC when IPv6 is supported on the system, then
the caller will accept IPv4-mapped IPv6 addresses. When the AI_ALL flag is not
also specified and no IPv6 addresses are found, then a query is made for IPv4
addresses. If any IPv4 addresses are found, they are returned as IPv4-mapped IPv6
addresses.

If the AF field does not have a value of AF_INET6 or the AF field contains
AF_UNSPEC but IPv6 is not supported on the system, this flag is ignored. When
the AF field has a value of AF_INET6 and AI_ALL is set, the AI_V4MAPPED flag
must also be set to indicate that the caller will accept all addresses (IPv6 and
IPv4-mapped IPv6 addresses).

If the AF field has a value of AF_UNSPEC when the system supports IPv6 and
AI_ALL is set, the caller accepts IPv6 addresses and either IPv4 (if AI_V4MAPPED
is not set) or IPv4-mapped IPv6 (if AI_V4MAPPED is set) addresses. A query is
first made for IPv6 addresses and if successful, the IPv6 addresses are returned.
Another query is then made for IPv4 addresses and any found are returned as
IPv4 addresses (if AI_V4MAPPED was not set) or as IPv4-mapped IPv6 addresses
(if AI_V4MAPPED was set). If the AF field does not have the value of AF_INET6,
or the value of AF_UNSPEC when the system supports IPv6, the flag is ignored.

If the AI_ADDRCONFIG flag is specified then a query for IPv6 address records
should occur only if the node has at least one IPv6 source address configured. A

getaddrinfo

108 z/VSE V5R2 TCP/IP Support

query for IPv4 address records will always occur, whether or not any IPv4
addresses are configured. The loopback address is not considered for this case as
valid as a configured sources address.

All of the information returned by getaddrinfo() is dynamically allocated: the
addrinfo structures, and the socket address structures and canonical node name
strings pointed to by the addrinfo structures. To return this information to the
system the function freeaddrinfo() is called.

Usage Notes
1. If the caller handles only TCP and not UDP, for example, then the ai_protocol

member of the hints structure should be set to IPPROTO_TCP when
getaddrinfo() is called.

2. If the caller handles only IPV4 and not IPv6, then the ai_family member of the
hints structure should be set to AF_INET when getaddrinfo() is called.

3. Scope information is only pertinent to IPv6 link-local addresses. It is ignored
for resolved IPv4 addresses and IPv6 addresses that are not link-local
addresses.

Returned Value

If successful, getaddrinfo() returns 0 and a pointer to a linked list of one or more
addrinfo structures through the res argument. The caller can process each addrinfo
structure in this list by following the ai_next pointer, until a null pointer is
encountered. In each returned addrinfo structure the three members ai_family,
ai_socktype, and ai_protocol are the corresponding arguments for a call to the
socket() function. In each addrinfo structure the ai_addr member points to a
filled-in socket address structure whose length is specified by the ai_addrlen
member. Upon failure, getaddrinfo() returns a non-zero error code. The error codes
are as follows:

Error Code
Description

EAI_AGAIN
The name specified by the Node_Name or Service_Name parameter could
not be resolved within the configured time interval, or the resolver address
space has not been started. The request can be retried later. .

EAI_BADEXTFLAGS
The extended flags parameter had an incorrect setting.

EAI_BADFLAGS
The flags parameter had an incorrect setting.

EAI_FAIL
An unrecoverable error occurred.

EAI_FAMILY
The family parameter had an incorrect setting.

EAI_MEMORY
A memory allocation failure occurred during an attempt to acquire an
Addr_Info structure.

EAI_NONAME
One of the following conditions occurred:
1. The name does not resolve for the specified parameters. At least one of

the Name or Service operands must be specified.

getaddrinfo

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 109

2. The request name parameter is valid, but it does not have a record at
the name server.

EAI_SERVICE
The service that was passed was not recognized for the specified socket
type.

EAI_SOCKTYPE
The intended socket type was not recognized.

EAI_SYSTEM
A system error occurred.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

getclientid() — Get the Identifier for the Calling Application
Format
#define _OPEN_SYS_SOCK_EXT
#include <socket.h>
#include <types.h>

int getclientid(int domain, struct clientid *clientid);

General Description

The getclientid() function call returns the identifier by which the calling
application is known to the TCP/IP partition. The clientid can be used in the
givesocket() and takesocket() calls.

Parameter
Description

domain The address domain requested.

clientid The pointer to a clientid structure to be filled.

The clientid structure is filled in by the call and returned as follows:

The clientid structure:
struct clientid {

int domain;
union {
char name[8];
struct {

int NameUpper;
pid_t pid;

} c_pid;
} c_name;
char subtaskname[8];

struct {
char type;
union {

char specific[19];
struct {

char unused[3];
int SockToken;

} c_func;
} c_reserved;

};

getaddrinfo

110 z/VSE V5R2 TCP/IP Support

Element
Description

domain The input domain value returned in the domain field of the clientid
structure.

c_name.name
The application program's partition name, left-justified and padded with
blanks.

subtaskname
The calling program's task identifier.

c_reserved
Specifies binary zeros.

Returned Value

The value 0 indicates success. The value -1 indicates an error. The value of errno
indicates the specific error.

errno Description

EFAULT
Using the clientid parameter as specified would result in an attempt to
access storage outside the caller's partition, or storage not modifiable by
the caller.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is to EFAULT. In this case the
message EDCV001I or EDCT002I is issued.

gethostbyaddr() — Get a Host Entry by Address
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>
extern int h_errno;

struct hostent *gethostbyaddr(const void *address,
size_t address_len,
int domain);

General Description

The gethostbyaddr() call tries to resolve the host address through a name server, if
one is present.

Parameter
Description

address The pointer to a structure containing the address of the host. (An unsigned
long for AF_INET or AF_INET6.)

address_len
The size of address in bytes.

domain The address domain supported (AF_INET or AF_INET6).

The gethostbyaddr() call returns a pointer to a hostent structure for the host
address specified on the call.

getclientid

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 111

gethostbyaddr(), and gethostbyname() all use the same static area to return the
hostent structure. This static area is only valid until the next one of these functions
is called on the same thread.

The netdb.h include file defines the hostent structure and contains the following
elements:

Element
Description

h_addr A pointer to the network address of the host.

h_addrtype
The type of address returned (AF_INET or AF_INET6).

h_aliases
A zero-terminated array of alternative names for the host.

h_length
The length of the address in bytes.

h_name
The official name of the host.

The following function is defined in netdb.h and should be used by multithreaded
applications when attempting to reference h_errno return on error:
int *__h_errno(void);

This function returns a pointer to a thread-specific value for the h_errno variable.

Returned Value

The return value points to static data that is overwritten by subsequent calls. A
pointer to a hostent structure indicates success. A NULL pointer indicates an error
or end-of-file.

On unsuccessful completion, this function sets h_errno to indicate the error as
follows:

Error Code
Description

HOST_NOT_FOUND
No such host is known.

TRY_AGAIN
A temporary error such as no response from a server, indicating the
information is not available now but may be at a later time.

NO_RECOVERY
An unexpected server failure occurred from which there is no recovery.

NO_DATA
The server recognized the request and the name but no address is
available. Another type of request to the name server might return an
answer.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer, and sets h_errno to NO_RECOVERY
and errno to EVSE. In this case the message EDCV001I or EDCT002I is issued.

gethostbyaddr

112 z/VSE V5R2 TCP/IP Support

gethostbyname() — Get a Host Entry by Name
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>
extern int h_errno;

struct hostent *gethostbyname(const char *name);

General Description

The gethostbyname() call tries to resolve the host name through a name server, if
one is present. When a call is made to convert a symbolic name to an IP address,
TCP/IP for VSE/ESA searches the local names table (created by DEFINE NAME)
first. If this search fails, the name is passed to the specified DNSs (set with SET
DNSx). TCP/IP for VSE/ESA will try each DNS, beginning with DNS1, until a
response is received or all servers have been polled. The first server to respond
determines if the request succeeds or fails. If the search within a DNS fails, the
default domain string (as specified with SET DEFAULT_DOMAIN) is appended to
the name (following a period) and the DNS is consulted the last time for the name
resolution.

Parameter
Description

name The name of the host.

The gethostbyname() call returns a pointer to a hostent structure for the host name
specified on the call.

gethostent(), gethostbyaddr(), and gethostbyname() all use the same static area to
return the hostent structure. This static area is only valid until the next one of
these functions is called on the same thread.

The netdb.h include file defines the hostent structure and contains the following
elements:

Element
Description

h_addr A pointer to the network address of the host.

h_addrtype
The type of address returned; currently, it is always set to AF_INET.

h_aliases
A zero-terminated array of alternative names for the host.

h_length
The length of the address in bytes.

h_name
The official name of the host.

The following function is defined in netdb.h and should be used by multithreaded
applications when attempting to reference h_errno return on error:
int *__h_errno(void);

gethostbyname

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 113

Returned Value

The return value points to static data that is overwritten by subsequent calls. A
pointer to a hostent structure indicates success. A NULL pointer indicates an error
or end-of-file.

On unsuccessful completion, this function sets h_errno to indicate the error as
follows:

Error Code
Description

HOST_NOT_FOUND
No such host is known.

TRY_AGAIN
A temporary error such as no response from a server, indicating the
information is not available now but may be at a later time.

NO_RECOVERY
An unexpected server failure occurred from which there is no recovery.

NO_DATA
The server recognized the request and the name but no address is
available. Another type of request to the name server might return an
answer.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer, and sets h_errno to NO_RECOVERY
and errno to EVSE. In this case the message EDCV001I or EDCT002I is issued.

gethostent() — Get the Next Host Entry
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct hostent *gethostent(void);

General Description

The gethostent() call reads the next line of the data set which contains
information about known hosts.

The netdb.h include file defines the hostent structure which contains the following
elements:

Element
Description

h_name
The official name of the host.

h_aliases
A zero-terminated array of alternative names for host.

h_addrtype
The type of address.

h_length
The length of the address in bytes.

gethostbyname

114 z/VSE V5R2 TCP/IP Support

h_addr
A pointer to the network address of the host.

Returned Value

A pointer to a hostent structure indicates success. A NULL pointer indicates an
error or end-of-file.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

gethostid() — Get the Unique Identifier of the Current Host
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <unistd.h>

long gethostid(void);

General Description

The gethostid() call gets the unique 32-bit identifier for the current host. This
value is the default home Internet address.

Returned Value

The gethostid() call returns the 32-bit identifier of the current host, which should
be unique across all hosts.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value 0. In this case the message EDCV001I or
EDCT002I is issued.

gethostname() — Get the Name of the Host Processor
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <unistd.h>

int gethostname(char *name, size_t namelen);

General Description

The gethostname() call returns the name of the host processor that the program is
running on. Up to namelen characters are copied into the name array. The returned
name is null-terminated unless there is insufficient room in the name array.

Parameter
Description

name The character array to be filled with the host name.

namelen
The length of name.

gethostent

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 115

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EFAULT
Using name and namelen would result in an attempt to copy the address
into a portion of the caller's address space to which data cannot be written.

EMVSPARM
Incorrect parameters were passed to the service or function is not
implemented.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EMVSPARM. In this case
the message EDCV001I or EDCT002I is issued.

getibmopt() — Get IBM TCP/IP image
Format
#define _OPEN_SYS_SOCK_EXT
#include <socket.h>

int getibmopt(int cmd, struct ibm_gettcpinfo *bfrp);

General Description

The getibmopt() call returns the number of TCP/IP images installed on a given
z/VSE system and their status, versions, and names. With this information, the
caller can dynamically choose the TCP/IP image with which to connect by using
the setibmopt() call. The getibmopt() call is optional. If you do not use the
getibmopt() call, follow the standard method to determine the connecting TCP/IP
image.

Parameter
Description

cmd A value or the address of a fullword binary number specifying the
command to be processed. The only valid value is 1.

bfrp The pointer to an ibm_gettcpinfo structure.

To set the TCP/IP image for a socket, the application should set values in the
ibm_tpcimage structure as follows:

Element
Description

status 0 means is not known and need not be checked. Currently, this is the only
value with meaning.

version
0 means the version is to be set on return if known.

name The name must be left justified, uppercase, padded with blanks, and be the
name of an active TCP stack.

gethostname

116 z/VSE V5R2 TCP/IP Support

Returned Value

On successful return, the struct ibm_tcpimage buffer contains the status, version,
and name of up to eight active TCP/IP images.

Error Code
Description

EOPNOTSUPP
This function is not supported.

EFAULT
The name parameter specified an address outside of the caller address
space.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

getnameinfo() — Get name information
Format
#define _OPEN_SYS_SOCK_IPV6
#include <socket.h>
#include <netdb.h>

int getnameinfo(cons struct sockaddr *sa, socklen_t salen,
char *host, socklen_t hostlen,
char *serv, socklen_t servlen,
int flags);

General Description

The getnameinfo() function translates a socket address to a node name and service
location. The getnameinfo() function looks up an IP address and port number
provided by the caller in the DNS and system-specific database, and returns text
strings for both in buffers provided by the caller.

The sa argument points to either a sockaddr_in structure (for IPv4) or a
sockaddr_in6 structure (for IPv6) that holds the IP address and port number. The
sockaddr_in6 structure may also contain a zone index value, if the IPv6 address
represented by this sockaddr_in6 structure is a link-local address. The salen
argument gives the length of the sockaddr_in or sockaddr_in6 structure.

If the socket address structure contains an IPv4-mapped IPv6 address or an
IPv4-compatible IPv6 address, the embedded IPv4 address is extracted and the the
lookup is performed on the IPv4 address.

Note: The IPv6 unspecified address (“::”) and the IPv6 loopback address (“::1”) are
not IPv4-compatible addresses. If the address is the IPv6 unspecified address, a
lookup is not performed, and the EAI_NONAME error code is returned.

The node name associated with the IP address is returned in the buffer pointed to
by the host argument. The caller provides the size of this buffer in the hostlen
argument. The caller specifies not to return the node name by specifying a zero
value for hostlen or a null host argument. If the node's name cannot be located, the
numeric form of the node's address is returned instead of its name. If a zone index
value was present in the sockaddr_in6 structure, the numeric form of the zone

getibmopt

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 117

index, or the interface name associated with the zone index, is appended to the
node name returned, using the format node name%scope information.

If the size of the buffer specified in the hostlen argument is insufficient to contain
the entire node name, or node name and scope information combination, up to
hostlen characters are copied into the buffer as a null terminated string.

The service name associated with the port number is returned in the buffer pointed
to by the serv argument, and the servlen argument gives the length of this buffer.
The caller specifies not to the service name by specifying a zero value for servlen or
a null serv argument. If the service's name cannot be located, the numeric of the
service address (for example, its port number) is returned instead of its name.

If the size of the buffer specified in the servlen argument is insufficient to contain
the entire service name, up to servlen characters are copied into the buffer as a null
terminated string.

The final argument, flags, is a flag that changes the default actions of this function.
By default the fully-qualified domain name (FQDN) for the host is returned.

If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN is
returned for local hosts.

If the flag bit NI_NUMERICHOST is set, the numeric form of the host's address is
returned instead of its name.

If the flag bit NI_NAMEREQD is set, an error is returned if the host's name cannot
be located.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is
returned (for example, its port number) instead of its name.

If the flag bit NI_NUMERICSCOPE is set, the numeric form of the scope identifier
is returned (for example, zone index) instead of its name. This flag is ignored if the
sa argument is not an IPv6 address.

If the flag bit NI_DGRAM is set, this specifies that the service is a datagram
service, and causes getservbyport() to be called with a second argument of "udp"
instead of its default of "tcp". This flag is required for the few ports (for example,
[512,514]) that have different services for UDP and TCP.

Note: The three NI_NUMERICxxx flags are required to support the "-n" flag that
many commands provide.

Returned Value

Upon successful completion, getnameinfo() returns the node and service names, if
requested, in the buffers provided. The returned names are always null-terminated
strings. A zero return value for getnameinfo() indicates successful completion; a
non-zero return value indicates failure. The possible values for the failures are as
follows:

Error Code
Description

getnameinfo

118 z/VSE V5R2 TCP/IP Support

EAI_AGAIN
The specified host address could not be resolved within the configured
time interval, or the resolver address space has not been started. The
request can be retried later.

EAI_BADFLAGS
The flags parameter had an incorrect value.

EAI_FAIL
An unrecoverable error occurred.

EAI_FAMILY
The address family was not recognized, or the address length was not
valid for the specified family.

EAI_MEMORY
A memory allocation failure occurred.

EAI_NONAME
The name does not resolve for the supplied parameter. One of the
following occurred:
1. NI_NAMEREQD is set, and the host name cannot be located.
2. Both host name and service name were null.
3. The requested address is valid, but it does not have a record at the

name server.

EAI_OVERFLOW
An argument buffer overflowed. The buffer specified for the host name or
the service name was not sufficient to contain the entire resolved name,
and the caller previously specified _EDC_SUSV3=1, indicating that
truncation was not permitted.

EAI_SYSTEM
An unrecoverable error occurred.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

getnetbyaddr() — Get a Network Entry by Address
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct netent *getnetbyaddr(ip_addr_t net, int type);

General Description

The getnetbyaddr() call searches the data set which contains information about
known networks for the specified network address.

Parameter
Description

net The network address.

type The address domain.

The netent structure is defined in the netdb.h include file and contains the
following elements:

getnameinfo

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 119

Element
Description

n_addrtype
The type of network address.

n_aliases
An array, terminated with a NULL pointer, of alternative names for the
network.

n_name
The official name of the network.

n_net The network number, returned in host byte order.

Returned Value

A pointer to a netent structure indicates success. A NULL pointer indicates an
error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getnetbyname() — Get a Network Entry by Name
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct netent *getnetbyname(const char *name);

General Description

The getnetbyname() call searches the data set which contains information about
known networks for the specified network name.

Parameter
Description

name The pointer to a network name.

The netent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

n_addrtype
The type of network address.

n_aliases
An array, terminated with a NULL pointer, of alternative names for the
network.

n_name
The official name of the network.

n_net The network number, returned in host byte order.

getnetbyaddr

120 z/VSE V5R2 TCP/IP Support

Returned Value

A pointer to a netent structure indicates success. A NULL pointer indicates an
error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getnetent() — Get the Next Network Entry
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct netent *getnetent(void);

General Description

The getnetent() call reads the next entry of the data set which contains
information about known networks.

The netent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

n_addrtype
The type of network address.

n_aliases
An array, terminated with a NULL pointer, of alternative names for the
network.

n_name
The official name of the network.

n_net The network number, returned in host byte order.

Returned Value

A pointer to a netent structure indicates success. A NULL pointer indicates an
error or end-of-file.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getpeername() — Get the Name of the Peer Connected to a
Socket

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int getpeername(int socket, struct sockaddr *name, size_t *namelen);

getnetbyname

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 121

General Description

The getpeername() call returns the name of the peer connected to socket descriptor
socket. namelen must be initialized to indicate the size of the space pointed to by
name and is set to the number of bytes copied into the space before the call returns.
The size of the peer name is returned in bytes. If the actual length of the address is
greater than the length of the supplied sockaddr, the stored address is truncated.
The sa_len field of structure sockaddr contains the length of the untruncated
address.

Parameter
Description

socket The socket descriptor.

name The Internet address of the connected socket that is filled by getpeername()
before it returns. The exact format of name is determined by the domain in
which communication occurs.

namelen
The size of the address structure pointed to by name in bytes.

Sockets in the AF_INET6 domain: For an AF_INET6 socket, the address is
returned in a sockaddr_in6 address structure. The sockaddr_in6 structure is
defined in the header file in.h.

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EBADF
The socket parameter is not a valid socket descriptor.

EFAULT
Using the name and namelen parameters as specified would result in an
attempt to access storage outside of the caller's address space.

EINVAL
The namelen parameter is not a valid length.

ENOBUFS
getpeername() is unable to process the request due to insufficient storage.

ENOTCONN
The socket is not in the connected state.

EOPNOTSUPP
The operation is not supported for the socket protocol.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EBADF. In this case the
message EDCV001I or EDCT002I is issued.

getpeername

122 z/VSE V5R2 TCP/IP Support

getprotobyname() — Get a Protocol Entry by Name
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct protoent *getprotobyname(const char *name);

General Description

The getprotobyname() call searches the data set, which contains information about
known protocols, for the specified protocol name.

Parameter
Description

name The name of the protocol.

The protoent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

p_aliases
An array, terminated with a NULL pointer, of alternative names for the
protocol.

p_name
The official name of the protocol.

p_proto
The protocol number.

Returned Value

A pointer to a protoent structure indicates success. A NULL pointer indicates an
error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getprotobynumber() — Get a Protocol Entry by Number
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct protoent *getprotobynumber(int proto);

General Description

The getprotobynumber() call searches the data set which contains information
about known protocols for the specified protocol number.

Parameter
Description

proto The protocol number.

getprotobyname

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 123

The protoent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

p_aliases
An array, terminated with a NULL pointer, of alternative names for the
protocol.

p_name
The official name of the protocol.

p_proto
The protocol number.

Returned Value

A pointer to a protoent structure indicates success. A NULL pointer indicates an
error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getprotoent() — Get the Next Protocol Entry
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct protoent *getprotoent(void);

General Description

The getprotoent() call reads the data set which contains information about known
protocols. The getprotoent() call returns a pointer to the next entry in the data set.

The protoent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

p_aliases
An array, terminated with a NULL pointer, of alternative names for the
protocol.

p_name
The official name of the protocol.

p_proto
The protocol number.

Returned Value

A pointer to a protoent structure indicates success. A NULL pointer indicates an
error or end-of-file.

getprotobynumber

124 z/VSE V5R2 TCP/IP Support

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getservbyname() — Get a Service Entry by Name
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);

General Description

The getservbyname() call searches the data set, which contains information about
known services for the first entry that matches the specified service name and
protocol name. If proto is NULL, only the service name must match.

Parameter
Description

name The service name.

proto The protocol name.

The servent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

s_aliases
An array, terminated with a NULL pointer, of alternative names for the
service.

s_name
The official name of the service.

s_port The port number of the service.

s_proto The protocol required to contact the service.

Returned Value

A pointer to a servent structure indicates success. A NULL pointer indicates an
error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getservbyport() — Get a Service Entry by Port
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct servent *getservbyport(int port, const char *proto);

getprotoent

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 125

General Description

The getservbyport() call searches the data set, which contains information about
services, for the first entry that matches the specified port number and protocol
name. If proto is NULL, only the port number must match.

Parameter
Description

port The port number.

proto The protocol name.

The servent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

s_aliases
An array, terminated with a NULL pointer, of alternative names for the
service.

s_name
The official name of the service.

s_port The port number of the service.

s_proto The protocol required to contact the service.

Returned Value

A pointer to a servent structure indicates success. A NULL pointer indicates an
error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getservent() — Get the Next Service Entry
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

struct servent *getservent(void);

General Description

The getservent() call reads the next line of the data set and returns a pointer to
the next entry in the data set which contains information about services.

The servent structure is defined in the netdb.h include file and contains the
following elements:

Element
Description

s_aliases
An array, terminated with a NULL pointer, of alternative names for the
service.

getservbyport

126 z/VSE V5R2 TCP/IP Support

s_name
The official name of the service.

s_port The port number of the service.

s_proto The protocol required to contact the service.

Returned Value

A pointer to a servent structure indicates success. A NULL pointer indicates an
error or end-of-file.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

getsockname() — Get the Name of a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int getsockname(int socket, struct sockaddr *name, size_t *namelen);

General Description

The getsockname() call stores the current name for the socket specified by the
socket parameter into the structure pointed to by the name parameter. It returns the
address to the socket that has been bound. If the socket is not bound to an address,
the call returns with the family set, and the rest of the structure set to zero. For
example, an unbound socket in the Internet domain would cause the name to
point to a sockaddr_in structure with the sin_family field set to AF_INET and all
other fields zeroed.

If the actual length of the address is greater than the length of the supplied
sockaddr, the stored address is truncated. The sa_len field of structure sockaddr
contains the length of the untruncated address.

Parameter
Description

socket The socket descriptor.

name The address of the buffer into which getsockname() copies the name of
socket.

namelen
Must initially point to an integer that contains the size in bytes of the
storage pointed to by name. Upon return that integer contains the size of
the data returned in the storage pointed to by name.

Sockets in the AF_INET6 domain: For an AF_INET6 socket, the address is
returned in a sockaddr_6 address structure. The sockaddr_in6 structure is defined
in the header file in.h.

The getsockname() call is often used to discover the port assigned to a socket after
the socket has been implicitly bound to a port. For example, an application can call
connect() without previously calling bind(). In this case, the connect() call
completes the binding necessary by assigning a port to the socket. This assignment

getservent

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 127

can be discovered with a call to getsockname().

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EBADF
The socket parameter is not a valid socket descriptor.

EFAULT
Using the name and namelen parameters as specified would result in an
attempt to access storage outside of the caller's address space.

ENOBUFS
getsockname() is unable to process the request due to insufficient storage.

ENOTCONN
The socket is not in the connected state.

EOPNOTSUPP
The operation is not supported for the socket protocol.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EOPNOTSUPP. In this
case the message EDCV001I or EDCT002I is issued.

getsockopt() — Get the Options Associated with a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int getsockopt(int socket,
int level,
int option_name,
void *option_value,
size_t *option_len);

General Description

The getsockopt() call gets options associated with a socket. Not all options are
supported by all address families. See each option for details. Options can exist at
multiple protocol levels; they are always present at the highest socket level.

Parameter
Description

socket The socket descriptor.

level The level for which the option is set.

option_name
The name of a specified socket option.

option_value
The pointer to option data.

getsockname

128 z/VSE V5R2 TCP/IP Support

option_len
The pointer to the length of the option data.

If manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level, the
level parameter must be set to SOL_SOCKET as defined in socket.h. To manipulate
options at the IPv4 or IPv6 level, the level parameter must be set to IPPROTO_IP
as defined in socket.h or IPPROTO_IPV6 as defined in in.h. To manipulate options
at any other level, such as the TCP level, supply the appropriate protocol number
for the protocol controlling the option. The getprotobyname() call can be used to
return the protocol number for a named protocol.

The option_value and option_len parameters are used to return data used by the
particular get command. The option_value parameter points to a buffer that is to
receive the data requested by the get command. The option_len parameter points to
the size of the buffer pointed to by the option_value parameter. It must be initially
set to the size of the buffer before calling getsockopt(). On return it is set to the
actual size of the data returned.

All the socket level options except SO_LINGER, SO_RCVTIMEO, and
SO_SNDTIMEO expect option_value to point to an integer and option_len to be set
to the size of an integer. When the integer is nonzero, the option is enabled. When
it is zero, the option is disabled. The SO_LINGER option expects option_value to
point to a linger structure as defined in socket.h. This structure is defined in the
following example:
struct linger
{

int l_onoff; /* option on/off */
int l_linger; /* linger time */

};

The l_onoff field is set to zero if the SO_LINGER option is being disabled. A
nonzero value enables the option. The l_linger field specifies the amount of time to
linger on close.

The following options are recognized at the socket level:

Option Description

SO_ACCEPTCONN
The socket had a listen() call.

SO_BROADCAST
Toggles the ability to broadcast messages. If this option is enabled, it
allows the application to send broadcast messages over socket, if the
interface specified in the destination supports the broadcasting of packets.
This option has no meaning for stream sockets. This option is valid only
for the AF_INET domain.

SO_DEBUG
Reports whether debugging information is being recorded. This option
stores an int value.

SO_ERROR
Returns any pending error on the socket and clears the error status. You
can use SO_ERROR to check for asynchronous errors on connected
datagram sockets or for other asynchronous errors (errors that are not
returned explicitly by one of the socket calls).

getsockopt

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 129

SO_KEEPALIVE
Toggles the TCP keep-alive mechanism for a stream socket. When
activated, the keep-alive mechanism periodically sends a packet on an
otherwise idle connection. If the remote TCP does not respond to the
packet or to retransmissions of the packet, the connection is ended with the
error ETIMEDOUT. Processes writing to that socket are notified with a
SIGPIPE signal. This option stores an int value. This option is valid only
for the AF_INET and AF_INET6 domains.

SO_LINGER
Lingers on close, if data is present. If this option is enabled and there is
unsent data present when close() is called, the calling application is
blocked during the close() call until the data is transmitted or the
connection has timed out. If this option is disabled, the TCP/IP address
space waits to try to send the data. Although the data transfer is usually
successful, it cannot be guaranteed, because the TCP/IP address space
waits only a finite amount of time trying to send the data. The close() call
returns without blocking the caller. This option has meaning only for
stream sockets.

SO_OOBINLINE
Toggles reception of out-of-band data. If this option is enabled, out-of-band
data is placed in the normal data input queue as it is received. It is then
available to recv(), recvfrom(), and recvmsg() without the need to specify
the MSG_OOB flag in those calls. If this option is disabled, out-of-band
data is placed in the priority data input queue as it is received. It is then
available to recv(), recvfrom(), and recvmsg() only if the MSG_OOB flag is
specified in those calls. This option has meaning only for stream sockets.

SO_RCVTIMEO
Reports the timeout value with the amount of time an input function waits
until it completes. If a receive operation has blocked for this much time
without receiving additional data, it returns with a partial count or errno
set to EWOULDBLOCK if no data is received. The default for this option is
zero, which indicates that a receive operation does not time out.

SO_REUSEADDR
Toggles local address reuse. If enabled, this option allows local addresses
that are already in use to be bound. SO_REUSEADDR alters the normal
algorithm used in the bind() call. The system checks at connect time to
ensure that the local address and port do not have the same foreign
address and port. The error EADDRINUSE is returned if the association
already exists. If the 'SO_REUSEADDR' option is active, the following
situation is supported: A server can bind() the same port multiple times as
long as every invocation uses a different local IP address and the wildcard
address INADDR_ANY is used only one time per port. This option is valid
only for the AF_INET and AF_INET6 domains.

SO_SNDBUF
Reports send buffer size information. This option stores an int value.

SO_SNDTIMEO
Reports the timeout value specifying the amount of time that an output
function blocks due to flow control preventing data from being sent. If a
send operation has blocked for this time, it returns with a partial count or
with errno set to EWOULDBLOCK if no data is sent. The default for this
option is zero, which indicates that a send operation does not time out.

getsockopt

130 z/VSE V5R2 TCP/IP Support

SO_TYPE
This option returns the type of the socket. On return, the integer pointed to
by option_value is set to SOCK_STREAM or SOCK_DGRAM. This option
is valid for the AF_INET and AF_INET6 domains.

The following options are recognized at the IPv4 level:

Option Description

IP_MULTICAST_IF
Returns the interface IP address used for sending outbound multicast
datagrams. The IP address is passed back using struct in_addr.

IP_MULTICAST_LOOP
Determines whether loopback is enabled or disabled. The loopback
indicator is passed back as u_char. 0 means loopback is disabled and 1
means it is enabled.

IP_MULTICAST_TTL
Returns the IP time-to-live of outgoing multicast datagrams. The TTL value
is passed back as u_char.

The following options are recognized at IPv6 level:

Option Description

IPV6_MULTICAST_HOPS
Returns the hop limit value for outbound multicast datagrams. The hop
limit value is passed back as int.

IPV6_MULTICAST_IF
Returns the interface index for the interface used for sending outbound
multicast datagrams. The interface index is passed back using struct u_int.

IPV6_MULTICAST_LOOP
Determines whether loopback of outgoing multicast packets is enabled or
disabled. The loopback indicator is passed back as u_int. 0 means the
function is disabled and 1 means it is enabled.

IPV6_UNICAST_HOPS
Returns the hop limit value for outbound unicast datagrams. The hop limit
value is passed back as int.

IPV6_V6ONLY
Determines whether a socket is restricted to IPv6 communications only.
The option value is passed back as int. A nonzero value means the option
is enabled (socket can only be used for IPv6 communications). 0 means the
option is disabled.

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EBADF
The socket parameter is not a valid socket descriptor.

getsockopt

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 131

EFAULT
Using option_value and option_len parameters would result in an attempt to
access storage outside the caller's address space.

EINVAL
The specified option is invalid at the specified socket level.

ENOBUFS
Buffer space is not available to send the message.

ENOPROTOOPT
The option_name parameter is unrecognized, or the level parameter is not
SOL_SOCKET.

ENOSYS
The function is not implemented. You attempted to use a function that is
not yet available.

EOPNOTSUPP
The operation is not supported by the socket protocol.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time returns the value -1 and errno is set to EOPNOTSUPP. In this case the
message EDCV001I or EDCT002I is issued.

Stack characteristics

TCP/IP for VSE/ESA supports option SO_LINGER only.

Example

The following are examples of the getsockopt() call. See “setsockopt() — Set
Options Associated with a Socket” on page 183 for examples of how the
setsockopt() call options are set.
int rc;
int s;
int option_value;
int option_len;
struct linger l;

...
/* Do I linger on close? */
option_len = sizeof(l);
rc = getsockopt(s,

SOL_SOCKET,
SO_LINGER,
(char *)&l,
&option_len);

if (rc == 0)
{

if (option_len == sizeof(l))
{

if (l.l_onoff)
/* yes I linger */

else
/* no I do not */

}
}

getsockopt

132 z/VSE V5R2 TCP/IP Support

givesocket() — Make the Specified Socket Available
Format
#define _OPEN_SYS_SOCK_EXT
#include <socket.h>

int givesocket(int d,struct clientid *clientid);

General Description

The givesocket() call makes the specified socket available to a takesocket() call
issued by another program. Any socket can be given. Typically, givesocket() is
used by a master program that obtains sockets by means of accept(), and gives
them to application programs that handle one socket at a time.

Parameter
Description

socket The descriptor of a socket to be given to another application.

clientid A pointer to a client ID structure which specifies the program to which the
socket is to be given.

To pass a socket, the giving program first calls givesocket() with the client ID
structure filled in as follows:

The clientid structure:
struct clientid {

int domain;
union {

char name[8];
struct {

int NameUpper;
pid_t pid;

} c_pid;
} c_name;
char subtaskname[8];

struct {
char type;
union {

char specific[19];
struct {

char unused[3];
int SockToken;

} c_close;
} c_func;

} c_reserved;
};

Element Description

Element
Description

domain The domain of the input socket descriptor.

c_name.name
If the clientid was set by a getclientid() call, c_name.name can be:
v set to the application program's partition name, left-justified and padded

with blanks. The application program can run in the same partition as
the master program, in which case this field is set to the master
program's partition.

givesocket

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 133

v set to blanks, so any z/VSE partition can take the socket.

subtaskname
If the clientid was set by a getclientid() call, subtaskname can be:
v set to the task identifier of the taker. This, combined with a c_name.name

value, allows only a process with this c_name.name and subtaskname to
take the socket.

v set to blanks. If c_name.name has a value and subtaskname is blank, any
task with that c_name.name can take the socket.

v if c_name_name is set to blanks, the subtaskname parameter is set to
blanks.

c_reserved.type
When set to SO_CLOSE, this indicates the socket should be automatically
closed by givesocket(), and a unique socket identifying token is to be
returned in c_close.SockToken. The c_close.SockToken should be passed to the
taking program to be used as input to takesocket() instead of the socket
descriptor. The now closed socket descriptor could be re-used by the time
the takesocket() is called, so the c_close.SockToken should be used for
takesocket().

c_close.SockToken
The unique socket identifying token returned by givesocket to be used as
input to takesocket(), instead of the socket descriptor when c_reserved.type
has been set to SO_CLOSE.

c_reserved
Specifies binary zeros if an automatic close of a socket is not to be done by
givesocket().

Using Name and Subtaskname for Givesocket/Takesocket
1. The giving program calls getclientid() to obtain its client ID. The giving

program calls givesocket() to make the socket available for a takesocket()
call. The giving program passes its client ID along with the descriptor of the
socket to be given to the taking program by the taking program's startup
parameter list.

2. The taking program calls takesocket(), specifying the giving program's client
ID and socket descriptor.

3. Waiting for the taking program to take the socket, the giving program uses
select() to test the given socket for an exception condition. When select()
reports that an exception condition is pending, the giving program calls
close() to free the given socket.

4. If the giving program closes the socket before a pending exception condition is
indicated, the connection is immediately reset, and the taking program's call to
takesocket() is unsuccessful. Calls other than the close() call issued on a
given socket return -1, with errno set to EBADF.

Note: For backward compatibility, a client ID can point to the struct client ID
structure obtained when the target program calls getclientid(). In this case, only
the target program, and no other programs in the target program's partition, can
take the socket.

Returned Value

The value 0 indicates success. The value -1 indicates an error. The value of errno
indicates the specific error.

givesocket

134 z/VSE V5R2 TCP/IP Support

Error Code
Description

EBADF
The d parameter is not a valid socket descriptor. The socket has already
been given.

EFAULT
Using the clientid parameter as specified would result in an attempt to
access storage outside the caller's partition.

EINVAL
The clientid parameter does not specify a valid client identifier or the
clientid domain does not match the domain of the input socket descriptor.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

gsk_free_memory() — Free memory allocated for SSL
Format
#include <gskssl.h>

void gsk_free_memory(void *pointer,
void *future_use);

General Description

gsk_free_memory() frees the memory that is allocated for SSL.

Note: The distinguished name returned in the null-terminated string by the
gsk_get_dn_by_label() call must be freed using gsk_free_memory().

Parameter
Description

pointer The address of the memory, returned to the application from a previous
call to a SSL function that is to be freed.

future_use
Reserved for future use by SSL.

gsk_get_cipher_info() — Query Cipher Related Information
Format
#include <gskssl.h>

int gsk_get_cipher_info(int level,
gsk_sec_level *sec_level,
void *Reserved_for_future_use);

General Description

Queries cipher related information for SSL. gsk_get_cipher_info() determines the
encryption level that the system can support and returns a list of cipher specs SSL
can use. This allows an application to determine, at runtime, the level of SSL
encryption that the installed application can request. This function is useful for
programs that run on systems running across the globe.

givesocket

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 135

You can use gsk_get_cipher_info() to determine the valid values that may be
specified in the cipher specs of the gsk_soc_init_data structure used by
gsk_secure_soc_init().

Parameter
Description

level Determines the type of cipher information returned. Specify either
GSK_LOW_SECURITY or GSK_HIGH_SECURITY. GSK_LOW_SECURITY
causes only exportable cipher information to be returned.
GSK_HIGH_SECURITY causes exportable and domestic cipher information
to be returned. GSK_LOW_SECURITY is useful when setting up SSL
communications with systems that may be located outside of the US and
Canada where strong cryptographic functions are not available.

sec_level
The pointer to a gsk_sec_level structure.

Reserved_for_future_use
Reserved for future use by SSL.

The gsk_sec_level structure is defined in the gskssl.h header file as follows:
typedef struct _gsk_sec_level {

int version; /* Output - SSL toolkit version */
char v3cipher_specs [64]; /* Output - The sslv3 cipher specs */
char v2cipher_specs [32]; /* Output - The sslv2 cipher specs */
int security_level; /* Output - initially one of */

/* GSK_SEC_LEVEL_US, */
/* GSK_SEC_LEVEL_EXPORT, */
/* GSK_SEC_LEVEL_EXPORT_FR */

} gsk_sec_level;

The gsk_sec_level structure specifies information about the level of cryptography
that is available on the system. The application must allocate the memory
necessary for this structure. On successful return, the contents of the structure is
set.

Returned Value

The gsk_get_cipher_info() call returns an integer. A value greater or equal to 0
indicates sucessful completion. A negative value indicates an error.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of
errno indicates the specific error.

Note: errno might change during this operation. However, errno is not explicitly
used by the SSL interface nor can errno be used to determine the cause of the
error. The return value is the exclusive indicator of any potential errors from a SSL
API.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value GSK_ERROR_UNSUPPORTED, and errno is set to
EOPNOTSUPP. In this case the message EDCV001I or EDCT002I is issued.

gsk_get_cipher_info

136 z/VSE V5R2 TCP/IP Support

gsk_get_dn_by_label() — Get Distinguished Name Based on
the Label

Format
#include <gskssl.h>

char * gsk_get_dn_by_label(char *label);

General Description

Returns the distinguished name for a key based on the label. The
gsk_initialize() routine must be called before the gsk_get_dn_by_label() routine
can be called. You can use this value for the DName field of the gsk_soc_init_data
structure, which is used on calls to gsk_secure_soc_init().

Note: The distinguished name returned in the null-terminated string must be freed
using gsk_free_memory().

Parameter
Description

label Specifies a null-terminated character string that contains the label for the
key.

Returned Value

The gsk_get_dn_by_label() call returns a pointer to the distinguished name upon
successful completion. A NULL value is returned if an error is encountered finding
the specified label.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value NULL, and errno is set to EOPNOTSUPP. In this
case the message EDCV001I or EDCT002I is issued.

gsk_initialize() — Initialize the SSL Environment
Format
#include <gskssl.h>

int gsk_initialize(gsk_init_data *init_data);

General Description

Sets up the overall SSL environment for the current partition. Upon successful
completion of gsk_initialize(), the application is ready to call SSL interfaces and
to begin creating and using secure socket connections.

Note: Multiple calls to gsk_initialize() can be made as long as the existing SSL
environment is cleaned up by a call to gsk_uninitialize() before the next call to
gsk_initialize() is made.

Parameter
Description

init_data
The pointer to a gsk_init_data structure.

The gsk_init_data structure is defined in the gskssl.h header file as follows:

gsk_get_dn_by_label

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 137

typedef struct _gsk_init_data { /* Basic gsk SSL Toolkit
* initialization data
*/

char * sec_types; /* Security protocol choice */
/* (SSLV2|SSLV3|...|ALL */

char * keyring; /* Keyring file name */
/* Default roots used when NULL */

char * keyring_pw; /* Keyring password */
/* Ignored when keyring=NULL */

char * keyring_stash;
long V2_session_timeout; /* Number of seconds for SSLV2 */

/* session data to time out. 0-100 */
long V3_session_timeout; /* Number of seconds for SSLV3 */

/* session data to time out. */
/* 0-86400 (1 day) */

char * LDAP_server; /* Name or IP address of X500 host */
int LDAP_port; /* Port number of X500 host */
char * LDAP_user; /* User name for X500 host */
char * LDAP_password; /* Password of X500 host */
gsk_ca_roots LDAP_CA_roots; /* Which CA roots to use */
gsk_auth_type auth_type; /* Client authentication type */

} gsk_init_data;

The sec_types field specifies a null-terminated character string that identifies the
security protocols that are to be used.

Note: SSLV2 is currently not used under VSE.

The keyring field specifies a null-terminated character string that identifies the sub
library (format: "lib.sublib") used for keys and certificates.

The keyring_pw field is currently not used under VSE.

The keyring_stash field is currently not used under VSE.

The V2_session_timeout field is currently not used under VSE.

The V3_session_timeout field specifies the number of seconds for the SSLV3 session
identifier to expire. The range is 0-86400 seconds (1 day).

The LDAP_server field is currently not used under VSE.

The LDAP_port field is currently not used under VSE.

The LDAP_user field is currently not used under VSE.

The LDAP_password field is currently not used under VSE.

The LDAP_CA_roots field specifies which CA roots to use for certificate verification.
The supported values are: GSK_CA_ROOTS_LOCAL_ONLY and
GSK_CA_ROOTS_LOCAL_AND_X500.

The auth_type field specifies the method to use for verifying the client's certificate.
This field is only used when the LDAP_CA_roots field is set to
GSK_CA_ROOTS_LOCAL_AND_X500. The supported values are:
GSK_CLIENT_AUTH_LOCAL, GSK_CLIENT_AUTH_STRONG_OVER_SSL,
GSK_CLIENT_AUTH_STRONG and GSK_CLIENT_AUTH_PASSTHRU.

Note: The gsk_init_data structure, along with the data it refers to, should remain
accessible for the entire time the application makes use of SSL. In particular,

gsk_initialize

138 z/VSE V5R2 TCP/IP Support

pointers in the gsk_init_data structure should not point to storage that is freed by
the application or that is on the call stack.

Returned Value

The gsk_initialize() call returns an integer. The value GSK_INITIALIZE_OK
indicates successful SSL initialization.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of
errno indicates the specific error.

Note: errno may change during this operation. However, errno is not explicitly
used by the SSL interface nor can errno be used to determine the cause of the
error. The return value is the exclusive indicator of any potential errors from a SSL
API.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value GSK_ERROR_UNSUPPORTED, and errno is set to
EOPNOTSUPP. In this case the message EDCV001I or EDCT002I is issued.

gsk_secure_soc_close() — Close a Secure Socket Connection
Format
#include <gskssl.h>

void gsk_secure_soc_close(gsk_soc_data *user_socket);

General Description

The function gsk_secure_soc_close() ends a secure socket connection and frees all
the SSL resources for that secure socket connection.

Note:

1. If you do not call gsk_secure_soc_close(), the storage referenced by the
user_socket parameter is not be freed.

2. The user application must close all socket descriptors opened by any socket
API. gsk_secure_soc_close() does not close any open socket descriptors.

Parameter
Description

user_socket
The pointer to a gsk_soc_data structure.

Returned Value

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the message EDCV001I or EDCT002I is
issued.

gsk_initialize

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 139

gsk_secure_soc_init() — Initialize Data Areas for a Secure
Socket Connection

Format
#include <gskssl.h>

gsk_soc_data * gsk_secure_soc_init(gsk_soc_init_data *soc_init_data);

General Description

The function gsk_secure_soc_init() initializes the data areas necessary for SSL to
initiate or accept a secure socket connection. Upon successful completion of
gsk_secure_soc_init(), a handle is returned to the application. Then other calls
using this secure socket connection can use this handle.

A complete SSL handshake is performed during this call based on the input
specified in the gsk_soc_init_data structure. While SSL performs the mechanics of
the SSL handshake, the application must supply the routines necessary to transport
the SSL data during the SSL handshake, as well as for all subsequent read/write
operations.

Note: These routines must be supplied as an external entry-point generated with
fetchep().

Parameter
Description

soc_init_data
The pointer to a gsk_soc_init_data structure.

The gsk_soc_init_data structure is defined in the gskssl.h header file as follows:
typedef struct _gsk_soc_init_data {

int fd; /* file descriptor */
gsk_handshake hs_type; /* client or server handshake */
char * DName; /* keyring entry Distinguished */

/* name. When NULL the default */
/* keyring entry is used */

char * sec_type; /* Type of security protocol used */
/* to protect this socket */

char * cipher_specs; /* SSLV2 cipher specs preference */
char * v3cipher_specs; /* SSLV3 cipher specs preference */

/* and order */
int (* skread) /* User supplied READ function ptr */

(int fd, void * buffer, int num_bytes);
int (* skwrite) /* User supplied WRITE function ptr */

(int fd, void * buffer, int num_bytes);
unsigned char cipherSelected[3]; /* Cipher Spec used */
unsigned char v3cipherSelected[2]; /* Cipher Spec used */
int failureReasonCode; /* failure reason code */
gsk_cert_info * cert_info; /* This information is read from */

/* from the client certificate */
/* when client authentication is */
/* enabled */

gsk_init_data * gsk_data;
} gsk_soc_init_data;

The gsk_soc_init_data structure specifies information about the characteristics for the
secure sockets connection. In addition, SSL uses this structure to return information
about the secure socket connection after it has been established.

gsk_secure_soc_init

140 z/VSE V5R2 TCP/IP Support

The fd field specifies the socket descriptor for this connection. The socket
descriptor is passed to the application routines specified in the skread and skwrite
fields. These application-supplied routines can use the socket descriptor to perform
the required reading/writing of the SSL data.

Note: The socket must be created, opened, and connected prior to calling
gsk_secure_soc_init(). This implies that a client must perform the socket() and
connect() calls prior to calling gsk_secure_soc_init(). For servers, this imples
that the server must perform the socket(), bind(), listen(), and accept() calls
prior to calling gsk_secure_soc_init().

The hs_type field specifies how to perform the SSL handshake. The supported
values are:
v GSK_AS_CLIENT to perform the SSL handshake as a client with authentication.
v GSK_AS_SERVER to perform the SSL handshake as a server.
v GSK_AS_SERVER_WITH_CLIENT_AUTH to perform the SSL handshake as a

server that requires client authentication.
v GSK_AS_CLIENT_NO_AUTH to perform the SSL handshake as a client without

authentication.

The DName field specifies a character string that is the Distinguished Name or
label of the desired entry (certificate) in the key database file. The default key
database file entry can be used by specifying a NULL.

The sec_type field specifies a null-terminated character string that identifies the
security protocol that is used.

The cipher_specs field is currently not used under VSE.

The v3cipher_specs field specifies a null-terminated character string that contains the
list of SSL Version 3.0 ciphers in the order of usage preference. Some values may
not be valid depending on the level of cryptography that is installed on the
system. Any combination of valid values may be used in any order. Refer to
“gsk_get_cipher_info() — Query Cipher Related Information” on page 135 for
information about determining the cipher specs supported by the system. If you
specify a NULL value for cipher_specs, the default SSL Version 3.0 cipher specs are
used.

The skread field specifies an entry point of an application provided I/O routine that
performs a read function for SSL. This application must use fetchep() to register
the entry point of this I/O routine, if this routine or any called subroutine refers to
writable static or global variables. Parameters for this routine must be defined as
specified in skread. SSL uses the skread routine while performing the SSL handshake
during the gsk_secure_soc_init() call and the gsk_secure_soc_read() call. The
skread routine can be implemented as follows:
int skread(int fd, void *data, int len){
return(recv(fd, data, len, 0));
}

The skwrite field specifies an entry point of an application provided I/O routine
that performs a write function for SSL. This application must use fetchep() to
register the entry point of this I/O routine, if this routine or any called subroutine
refers to writable static or global variables. Parameters for this routine must be as
defined as specified in skwrite. SSL uses the skwrite routine while performing the

gsk_secure_soc_init

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 141

SSL handshake during the gsk_secure_soc_init() call and the
gsk_secure_soc_write() call. The skwrite routine can be implemented as follows:
int skwrite(int fd, void *data, int len){
return(send(fd, data, len, 0));
}

The cipherSelected field is currently not used under VSE.

The v3cipherSelected field specifies the architected SSL version 3.0 cipher spec value
selected for this session.

The failureReasonCode field specifies the failure reason code for
gsk_secure_soc_init().

The cert_info field specifies the Distinguished Name components from the client's
certificate. This parameter is only valid when client authentication is requested for
a server using SSL. The gsk_cert_info structure is defined in the gskssl.h header file
as follows:
typedef struct _gsk_cert_info { /* Client certificate information */

char * cert_body; /* Certificate body */
int cert_body_len; /* Lenth of certificate body */
char * sessionID; /* Current session ID */
int newSessionID; /* TRUE if sid is new */
char * serial_num; /* Serial number */
char * common_name; /* Common name of client */
char * locality; /* Locality */
char * state_or_province; /* State or Province */
char * country; /* Country */
char * org; /* Organization */
char * org_unit; /* Organizational Unit */
char * issuer_common_name; /* Issuer’s common name */
char * issuer_locality; /* Issuer’s locality */
char * issuer_state_or_province; /* Issuer’s state or province */
char * issuer_country; /* Issuer’s country */
char * issuer_org; /* Issuer’s organization */
char * issuer_org_unit; /* Issuer’s organizational unit */

} gsk_cert_info;

The gsk_data field specifies the gsk_init_data structure pointer. This field should
point to the same gsk_init_data structure that was used during the
gsk_initialize() function call.

Returned Value

Upon successful completion, gsk_secure_soc_init() returns a pointer to a
structure of type gsk_soc_data. Save this pointer because this structure is used in
subsequent SSL operations. The gsk_soc_data structure is defined in the gskssl.h
header file as follows:
typedef struct _gsk_soc_data {

void * sk_SSLHandle; /* gskssl connector to SSLHandlestr */
} gsk_soc_data;

If an error occurs the failureReasonCode field of the gsk_soc_init_data structure is
used to indicate the error.

If the failureReasonCode field is set to GSK_ERROR_IO, a general I/O error occurred
and the value of errno indicates the specific error.

gsk_secure_soc_init

142 z/VSE V5R2 TCP/IP Support

Note: errno may change during this operation. However, errno is not explicitly
used by the SSL interface nor can errno be used to determine the cause of the
error. The failureReasonCode field of the gsk_soc_init_data structure is the exclusive
indicator of any potential errors from a SSL API.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value NULL, and errno is set to EOPNOTSUPP. In this
case the message EDCV001I or EDCT002I is issued.

gsk_secure_soc_read() — Receive Data on a Secure Socket
Connection

Format
#include <gskssl.h>

int gsk_secure_soc_read(gsk_soc_data *user_socket,
void *data_buffer,
int buffer_length);

General Description

The function gsk_secure_soc_read() receives data on a secure socket connection
using the application specified read routine.

Parameter
Description

user_socket
The pointer to gsk_soc_data returned from gsk_secure_soc_init() that
initialized the secure socket connection over which data is to be read.

data_buffer
The pointer to the user-supplied buffer in which the data is to be stored.

buffer_length
The number of bytes to be read. This must be less or equal to the length of
the data_buffer.

The maximum length of the data returned will not exceed 32KB because SSL is a
record level protocol and the largest record allowed is 32KB minus the necessary
SSL record headers.

Improperly mixing calls to gsk_secure_soc_read() and any of the sockets read
functions (recv(), read(), readv(), ...), while possible, is not recommended. This
requires very close matching of operations between client and server programs. If
any portion of an SSL record is read using a socket read function, a fatal SSL
protocol error is detected when the next gsk_secure_soc_read() is performed.

SSL and socket reads and writes can be mixed, but they must be performed in
matched sets. If a client application writes 100 bytes of data using one or more of
the socket send() calls, the server application must read exactly 100 bytes of data
using one or more of the socket recv() calls. This is also true for
gsk_secure_soc_read() and gsk_secure_soc_write().

Since SSL is a record-oriented protocol, SSL must receive an entire record before it
can be decrypted and any data returned to the application. Thus, a select() may
indicate that data is available to be read, but a subsequent gsk_secure_soc_read()
may hang waiting for the remainder of the SSL record to be received.

gsk_secure_soc_init

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 143

Returned Value

The gsk_secure_soc_read() call returns an integer. A value of 0 or greater indicates
the number of bytes read. A value of less than 0 indicates that an error occurred.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of
errno indicates the specific error.

Note: errno may change during this operation. However, errno is not explicitly
used by the SSL interface nor can errno be used to determine the cause of the
error. The return value is the exclusive indicator of any potential errors from a SSL
API.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value GSK_ERROR_UNSUPPORTED, and errno is set to
EOPNOTSUPP. In this case the message EDCV001I or EDCT002I is issued.

gsk_secure_soc_reset() — Refresh the Security Parameters
Format
#include <gskssl.h>

int gsk_secure_soc_reset(gsk_soc_data *user_socket);

General Description

The function gsk_secure_soc_reset() refreshes the security parameters, such as
encryption keys, for this session.

Use gsk_secure_soc_reset() when a client or server needs to reset the SSL
environment. Call gsk_secure_soc_reset() only after a successful call to
gsk_secure_soc_init(). Also, use gsk_secure_soc_reset() when resuming or
restarting a connection for an SSL session that was cached and when resetting the
keys used for that connection.

Parameter
Description

user_socket
The pointer to gsk_soc_data structure returned from gsk_secure_soc_init().

Returned Value

The gsk_secure_soc_reset() call returns an integer. A value of 0 indicates success.
A value less than 0 indicates that an error occurred.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value GSK_ERROR_UNSUPPORTED, and errno is set to
EOPNOTSUPP. In this case the message EDCV001I or EDCT002I is issued.

Related Information
v “gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection”

on page 140
v For more details refer to TCP/IP for VSE 1.5 Optional Features.

gsk_secure_soc_read

144 z/VSE V5R2 TCP/IP Support

gsk_secure_soc_write() — Send Data on a Secure Socket
Connection

Format
#include <gskssl.h>

int gsk_secure_soc_write(gsk_soc_data *user_socket,
void *data_buffer,
int buffer_length);

General Description

The function gsk_secure_soc_write() sends data on a secure socket connection
using the application specified write routine is used to send the data over the
secure socket connection.

Parameter
Description

user_socket
The pointer to gsk_soc_data returned from gsk_secure_soc_init() that
initialized the secure socket connection over which data is to be written.

data_buffer
The pointer to the user-supplied buffer in which the data to be written is
stored.

buffer_length
The the number of bytes to be written. This must be less or equal to the
length of the data_buffer.

Note: SSL for VSE currently supports a maximum of 64KB to be sent with
one gsk_secure_soc_write() call.

If the application data sent to a SSL application is greater than 32KB, multiple calls
to gsk_secure_soc_read() must be made in order to read the entire block of
application data.

SSL and socket reads and writes can be mixed, but they must be performed in
matched sets. If a client application writes 100 bytes of data using one or more of
the socket send calls, the server application must read exactly 100 bytes of data
using one or more of the socket receive calls. This is also true for
gsk_secure_soc_read() and gsk_secure_soc_write(). If a write buffer is separated
into multiple buffers, the remote site of the secure socket connection must perform
enough gsk_secure_soc_read() operations to read the complete buffer.

Returned Value

The gsk_secure_soc_write() call returns an integer. A value of 0 or greater
indicates the number of bytes written. A value of less than 0 indicates that an error
occurred.

If GSK_ERROR_IO is returned, a general I/O error occurred and the value of
errno indicates the specific error.

Note: errno may change during this operation. However, errno is not explicitly
used by the SSL interface nor can errno be used to determine the cause of the
error. The return value is the exclusive indicator of any potential errors from a SSL
API.

gsk_secure_soc_write

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 145

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value GSK_ERROR_UNSUPPORTED, and errno is set to
EOPNOTSUPP. In this case the message EDCV001I or EDCT002I is issued.

gsk_uninitialize() — Remove Current Settings for the SSL
Environment

Format
#include <gskssl.h>

int gsk_uninitialize(void);

General Description

The function gsk_uninitialize() removes the current overall settings for the SSL
environment. gsk_uninitialize() removes settings such as session timeout values,
and SSL protocols.

Use gsk_uninitialize() when it is required to reset the SSL environment settings.
Then, use gsk_initialize() to create a new set of SSL environment settings.

Note: Before calling gsk_uninitialize(), all SSL sessions created using the current
SSL environment should be closed.

Returned Value

The gsk_uninitialize() call returns an integer. A value of 0 indicates success. A
value less than 0 indicates that an error occurred.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value GSK_ERROR_UNSUPPORTED, and is set to
EOPNOTSUPP. In this case the message EDCV001I or EDCT002I is issued.

gsk_user_set() — Provide Callback Routines
Format
#include <gskssl.h>

int gsk_user_set(int user_data_fid,
void *user_input_data,
void *reserved);

General Description

The function gsk_user_set() allows the SSL application to provide callbacks rather
than using the default SSL implementation.

Note: The function gsk_user_set() is currently not used under VSE.

Parameter
Description

user_data_fid
The integer value to specify the action to perform.

user_input_data
The pointer to specify the action specific information.

gsk_secure_soc_write

146 z/VSE V5R2 TCP/IP Support

reserved
Reserved for future use by SSL and should be specified as NULL.

Returned Value

The gsk_user_set() call returns an integer. A value of 0 indicates success. A value
less than 0 indicates that an error occurred.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific SSL function, the corresponding dummy routine in C
Run-Time always returns the value GSK_ERROR_UNSUPPORTED, and errno is set to
EOPNOTSUPP. In this case the message EDCV001I or EDCT002I is issued.

htonl() — Translate Address Host to Network Long
Format
#define _XOPEN_SOURCE_EXTENDED 1

#include <inet.h>
in_addr_t htonl (in_addr_t hostlong);

General Description

The htonl() call translates a long integer from host byte order to network byte
order.

Parameter
Description

hostlong
Is typed to the unsigned long integer to be put into network byte order.

Note: For System z, host byte order and network byte order are the same.
However, for cross platform portability reasons, it is recommended to use the
routine whenever host to network byte order translation is required.

Returned Value

htonl() returns the translated long integer.

htons() — Translate an Unsigned Short Integer into Network
Byte Order

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

in_port_t htons(in_port_t hostshort);

General Description

The htons() call translates a short integer from host byte order to network byte
order.

Parameter
Description

hostshort
Is typed to the unsigned short integer to be put into network byte order.

gsk_user_set

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 147

Note: For System z, host byte order and network byte order are the same.
However, for cross platform portability reasons, it is recommended to use the
routine whenever host to network byte order translation is required.

Returned Value

htons() returns the translated short integer.

if_freenameindex() — Free the Memory Allocated by
if_nameindex()

Format
#define _OPEN_SYS_SOCK_IPV6
#include <net/if.h>

void if_freenameindex(struct if_nameindex *ptr);

General Description

The if_freenameindex() function frees the memory allocated by if_nameindex(). The
ptr argument must be a pointer that was returned by if_nameindex().

Returned Value

No return value is defined.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

if_indextoname() — Map a Network Interface Index to its
Corresponding Name

Format
#define _OPEN_SYS_SOCK_IPV6
#include <net/if.h>

char *if_indextoname(unsigned int ifindex, char *ifname);

General Description

The if_indextoname() function maps an interface index to its corresponding
interface name. When this function is called, ifname must point to a buffer of at
least IF_NAMESIZE bytes into which the interface name corresponding to interface
index ifindex is returned. Otherwise, the function shall return a NULL pointer and
set errno to indicate the error.

Returned Value

Error Code
Description

EINVAL
The ifindex parameter was zero, or the ifname parameter was NULL, or
both.

htons

148 z/VSE V5R2 TCP/IP Support

ENOMEM
Insufficient storage is available to obtain the information for the interface
name.

ENXIO
The ifindex does not yield an interface name.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

if_nameindex() — Return all Network Interface Names and
Indexes

Format
#define _OPEN_SYS_SOCK_IPV6
#include <net/if.h>

struct if_nameindex *if_nameindex(void);

General Description

The if_nameindex() function returns an array of if_nameindex structures, one
structure per interface. The end of the array is indicated by a structure with an
if_index of zero and an if_name of NULL. The if_nameindex structure holds the
information about a single interface and is defined as a result of including the
<net/if.h> header.
struct if_nameindex {

unsigned int if_index; /* 1, 2, ... */
char *if_name; /* null terminated name: "le0", ... */

};

The memory used for this array of structures along with the interface names
pointed to by the if_name members is obtained dynamically. This memory is freed
by calling the if_freenameindex() function.

Returned Value

If successful, if_nameindex() returns a pointer to an array of if_nameindex
structures. Upon failure, if_nameindex() returns NULL and sets errno to one of the
following:

Error Code
Description

ENOMEM
Insufficient storage is available to supply the array.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

if_indextoname

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 149

if_nametoindex() — Map a Network Interface Name to its
Corresponding Index

Format
#define _OPEN_SYS_SOCK_IPV6
#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);

General Description

The if_nametoindex() function returns the interface index corresponding to the
interface name ifname.

Returned Value

If successful, if_nametoindex() returns the interface index corresponding to the
interface name ifname. Upon failure, if_nametoindex() returns zero and sets errno
to one of the following:

Error Code
Description

EINVAL
Non-valid parameter was specified. The ifname parameter was NULL.

ENOMEM
Insufficient storage is available to obtain the information for the interface
name.

ENXIO
The specified interface name provided in the ifname parameter does not
exist.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

inet_addr() — Translate an Internet Address into Network Byte
Order

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>
#include <in.h>

in_addr_t inet_addr(const char *cp);

General Description

The inet_addr() call interprets character strings representing host addresses
expressed in standard dotted-decimal notation and returns host addresses suitable
for use as an Internet address.

Parameter
Description

cp A character string in standard dotted-decimal (.) notation.

if_nameindex

150 z/VSE V5R2 TCP/IP Support

Values specified in standard dotted-decimal notation take one of the following
forms:
a.b.c.d
a.b.c
a.b
a

When a 4-part address is specified, each part is interpreted as a byte of data and
assigned, from left to right, to one of the 4 bytes of an Internet address.

When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the two rightmost bytes of the network address. This makes
the three-part address format convenient for specifying class-B network addresses
as 128.net.host.

When a two-part address is specified, the last part is interpreted as a 24-bit
quantity and placed in the three rightmost bytes of the network address. This
makes the two-part address format convenient for specifying class-A network
addresses as net.host.

When a one-part address is specified, the value is stored directly in the network
address space without any rearrangement of its bytes.

Numbers supplied as address parts in standard dotted-decimal notation can be
decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax. A
leading 0x implies hexadecimal; a leading 0 implies octal. A number without a
leading 0 implies decimal.

Returned Value

The Internet address is returned in network byte order. If the Internet address is
returned in error—for example, not in the correct format—INADDR_NONE (-1) is
the returned value. INADDR_NONE is defined in the in.h include file.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
runtime always returns the value INADDR_NONE (-1).

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value INADDR_NONE (-1). In this case the message
EDCV001I or EDCT002I is issued.

inet_lnaof() — Translate a Local Network Address into Host
Byte Order

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

in_addr_t inet_lnaof(struct in_addr in);

General Description

The inet_lnaof() call breaks apart the Internet host address and returns the local
network address portion.

inet_addr

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 151

Parameter
Description

in The host Internet address.

Returned Value

The local network address is returned in host byte order.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1. In this case the message EDCV001I or
EDCT002I is issued.

inet_makeaddr() — Create an Internet Host Address
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);

General Description

The inet_makeaddr() call takes a network number and a local network address and
constructs an Internet address.

Parameter
Description

net The network number.

lna The local network address.

Returned Value

The Internet address is returned in network byte order.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns an in_addr struct where the field s_addr is set to -1. In
this case the message EDCV001I or EDCT002I is issued.

inet_netof() — Get the Network Number from the Internet Host
Address

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

in_addr_t inet_netof(struct in_addr in);

General Description

The inet_netof() call breaks apart the Internet host address and returns the
network number portion.

Parameter
Description

inet_lnaof

152 z/VSE V5R2 TCP/IP Support

in The Internet address in network byte order.

Returned Value

The network number is returned in host byte order.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1. In this case the message EDCV001I or
EDCT002I is issued.

inet_network() — Get the Network Number from the Decimal
Host Address

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

in_addr_t inet_network(const char *cp);

General Description

The inet_network() call interprets character strings representing addresses
expressed in standard dotted-decimal notation and returns numbers suitable for
use as a network number.

Parameter
Description

cp A character string in standard, dotted decimal (.) notation.

Returned Value

The network number is returned in host byte order.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1. In this case the message EDCV001I or
EDCT002I is issued.

inet_ntoa() — Get the Decimal Internet Host Address
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

char *inet_ntoa(struct in_addr in);

General Description

The inet_ntoa() call returns a pointer to a string expressed in the dotted-decimal
notation. inet_ntoa() accepts an Internet address expressed as a 32-bit quantity in
network byte order and returns a string expressed in dotted-decimal notation.

Parameter
Description

in The host Internet address.

inet_netof

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 153

Returned Value

Returns a pointer to the Internet address expressed in dotted-decimal notation. The
storage pointed to exists on a per-thread basis and is overwritten by subsequent
calls.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns a NULL pointer. In this case the message EDCV001I or
EDCT002I is issued.

inet_ntop() — Convert Internet Address Format from Binary to
Text

Format
#define _OPEN_SYS_SOCK_IPV6
#include <inet.h>

const char *inet_ntop(int af, const void *src, char *dst, socklen_t size);

General Description

The inet_ntop() function converts from an Internet address in binary format,
specified by src, to standard text format, and places the result in dst, if size, the
space available in dst, is sufficient. The argument af specifies the family of the
Internet address. This can be AF_INET or AF_INET6.

The argument src points to a buffer holding an IPv4 Internet address, if the af
argument is AF_INET, or an IPv6 Internet address, if the af argument is AF_INET6.
The address must be in network byte order.

The argument dst points to a buffer where the function will store the resulting text
string. The size argument specifies the size of this buffer. The application must
specify a non-NULL dst argument. For IPv6 addresses, the buffer must be at least
46 bytes. For IPv4 addresses, the buffer must be at least 16 bytes.

To allow applications to easily declare buffers of the proper size to store IPv4 and
IPv6 addresses in string form, the following two constants are defined in in.h.
#define INET_ADDRSTRLEN 16
#define INET6_ADDRSTRLEN 46

Note: The inet_ntop() function has a dependency on the level of the Enhanced
ASCII Extensions.

Returned Value

If successful, inet_ntop() returns a pointer to the buffer containing the converted
address. If unsuccessful, inet_ntop() returns NULL and sets errno to one of the
following values:

Error Code
Description

EAFNOSUPPORT
The address family specified in af is unsupported.

inet_ntoa

154 z/VSE V5R2 TCP/IP Support

ENOSPC
The destination buffer size is too small.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

inet_pton() — Convert Internet Address Format from Text to
Binary

Format
#define _OPEN_SYS_SOCK_IPV6
#include <inet.h>

int inet_pton(int af, const char *src, void *dst);

General Description

The inet_pton() function converts an Internet address in its standard text format
into its numeric binary form. The argument af specifies the family of the address.

Note: AF_INET and AF_INET6 address families are currently supported.

The argument src points to the string being passed in. The argument dst points to a
buffer into which inet_pton() stores the numeric address. The address is returned
in network byte order. The caller must ensure that the buffer pointed to by dst is
large enough to hold the numeric address.

If the af argument is AF_INET, inet_pton() accepts a string in the standard IPv4
dotted-decimal form:
ddd.ddd.ddd.ddd

where ddd is a 1 to 3 digit decimal number between 0 and 255.

If the af argument is AF_INET6, the src string must be in one of the following
standard IPv6 text forms:
1. The preferred form is x:x:x:x:x: x:x: x:x:, where the x's are the hexadecimal

values of the eight 16-bit pieces of the address. Leading zeros in individual
fields can be omitted, but there should be at least one numeral in every field.

2. A string of contiguous zero fields in the preferred form can be shown as :: The
:: can only appear once in an address. Unspecified addresses (0:0:0:0:0:0:0:0:)
can be represented simply as ::.

3. A third form that is sometimes more convenient when dealing with a mixed
environment of IPv4 and IPv6 is x:x:x:x:x:x:d.d.d.d., where x's are the
hexadecimal values of the six high-order 16-bit pieces of the address, and the
d's are the decimal values of the four low-order 8-bit pieces of the address
(standard IPv4 representation).

Note: The inet_pton() function has a dependency on the level of the Enhanced
ASCII Extensions.

Returned Value

If successful, inet_pton() returns 1 and stores the binary form of the Internet
address in the buffer pointed to by dst.

inet_ntop

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 155

If unsuccessful, because the input buffer pointed to by src is not a valid string,
inet_pton() returns 0.

If unsuccessful, because the af argument is unknown, inet_pton() returns -1 and
sets errno to one of the following values:

Error Code
Description

EAFNOSUPPORT
The address family specified in af is unsupported.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

initapi() — Initialize Socket API for a Subtask
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int initapi(int maxsock, const char *taskid);

General Description

The initapi() function initializes the socket API and sets the maximum number of
sockets and the ID for a VSE subtask.

Parameter
Description

maxsock
Maximum number of sockets to use for the subtask.

taskid Name to set as ID for the subtask.

Returned Value

The function initapi returns the greatest descriptor number that could be assigned
to the application. A positive value indicates success; the value -1 indicates an
error. The value of errno indicates the specific error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

ioctl() — Control Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <ioctl.h>
int ioctl(int socket, int cmd, ... /* arg */);

General Description

ioctl() performs a variety of control functions on sockets.

The cmd argument selects the control function to be performed and will depend on
the socket being addressed.

inet_pton

156 z/VSE V5R2 TCP/IP Support

The arg argument represents additional information that is needed by this specific
device to perform the requested function. The type of arg depends upon the
particular control request, but it is either an integer or a pointer to a
request-specific data structure.

Sockets

The following ioctl() commands are used with sockets:

Command
Description

FIONBIO
Sets or clears nonblocking I/O for a socket. arg is a pointer to an integer. If
the integer is 0, nonblocking I/O on the socket is cleared. Otherwise, the
socket is set for nonblocking I/O.

SIOCGHOMEIF6
Gets the IPv6 home interfaces. arg is a pointer to a NetConfHdr structure,
as defined in ioctl.h. A pointer to a HomeIf structure that contains a list of
home interfaces is returned in the NetConfHdr pointed to by the
argument.

SIOCGIFADDR
Gets the network interface address. arg is a pointer to an ifreq structure, as
defined in if.h. The interface address is returned in the argument. This
option is valid only for the AF_INET domain. This macro is protected by
the _OPEN_SYS_IF_EXT feature.

SIOCGIFBRDADDR
Gets the network interface broadcast address. arg is a pointer to an ifreq
structure, as defined in if.h. The interface broadcast address is returned in
the argument. This option is valid only for the AF_INET domain. This
macro is protected by the _OPEN_SYS_IF_EXT feature.

SIOCGIFCONF
Gets the network interface configuration. arg is a pointer to an ifconf
structure, as defined in if.h. The interface configuration is returned in the
buffer pointed to by the ifconf structure. The returned data's length is
returned in the field that originally contained the length of the buffer. This
option is valid only for the AF_INET domain. This macro is protected by
the _OPEN_SYS_IF_EXT feature.

SIOCGIFDSTADDR
Gets the network interface destination address. arg is a pointer to an ifreq
structure, as defined in if.h. The interface destination (point-to-point)
address is returned in the argument. This option is valid only for the
AF_INET domain. This macro is protected by the _OPEN_SYS_IF_EXT
feature.

Terminal and Sockets Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EBADF
The socket parameter is not a valid socket descriptor.

ioctl

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 157

EINVAL
The request is invalid or not supported.

EMVSPARM
Incorrect parameters were passed to the service.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

Example

The following is an example of the ioctl() call.
int s;
int dontblock;
int rc;...
/* Place the socket into nonblocking mode */
dontblock = 1;
rc = ioctl(s, FIONBIO, (char *) &dontblock);...

listen() — Prepare the Server for Incoming Client Requests
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int listen(int socket, int backlog);

General Description

The listen() call applies only to stream sockets. It establishes a readiness to accept
client connection requests, and creates a connection request queue of length backlog
to queue incoming connection requests. Once full, additional connection requests
are rejected.

Parameter
Description

socket The socket descriptor.

backlog Defines the maximum length for the queue of pending connections. This
parameter is ignored. A value of 1 is always assumed.

The listen() call indicates a readiness to accept client connection requests. It
transforms an active socket into a passive socket. Once called, socket can never be
used as an active socket to initiate connection requests. Calling listen() is the
third of four steps that a server performs to accept a connection. It is called after
allocating a stream socket with socket(), and after binding a name to socket with
bind(). It must be called before calling accept().

If the backlog is less than 0, backlog is set to 0. If the backlog is greater than
SOMAXCONN, as defined in socket.h, backlog is set to SOMAXCONN.

The value cannot exceed the maximum number of connections allowed by the
installed TCP/IP.

ioctl

158 z/VSE V5R2 TCP/IP Support

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EBADF
The socket parameter is not a valid socket descriptor.

EDESTADDRREQ
The socket is not bound to a local address, and the protocol does not
support listening on an unbound socket.

EINVAL
An invalid argument was supplied. The socket is not named (a bind() has
not been done), or the socket is ready to accept connections (a listen()
has already been done). The socket is already connected.

ENOBUFS
Insufficient system resources are available to complete the call.

EOPNOTSUPP
The socket parameter is not a socket descriptor that supports the listen()
call.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EOPNOTSUPP. In this case
the message EDCV001I or EDCT002I is issued.

maxdesc() — Get Socket Numbers to Extend Beyond the
Default Range

Format
#define _OPEN_SYS_SOCK_EXT
#include <types.h>
#include <socket.h>

int maxdesc(int *totdesc, int *inetdesc);

General Description

Bulk mode sockets are not supported. Do not use this function.

Returned Value

If successful, maxdesc() returns 0.

If unsuccessful, maxdesc() returns -1 and sets errno to one of the following values:

Error Code
Description

EALREADY
Your program called maxdesc() after creating a socket, after a call to
setibmsockopt(), or after a previous call to maxdesc().

listen

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 159

EFAULT
Using the totdesc parameter as specified results in an attempt to access
storage outside of the caller's address space, or storage not modifiable by
the caller.

ENOMEM
Your address space has insufficient storage.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

ntohl() — Translate a Long Integer into Host Byte Order
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

in_addr_t ntohl(in_addr_t netlong);

General Description

The ntohl() call translates a long integer from network byte order to host byte
order.

Parameter
Description

netlong
Is typed to the unsigned long integer to be put into host byte order.

Note: For System z, host byte order and network byte order are the same.
However, for cross platform portability reasons, it is recommended to use the
routine whenever host to network byte order translation is required.

Returned Value

ntohl() returns the translated long integer.

ntohs() — Translate an Unsigned Short Integer into Host Byte
Order

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <inet.h>

in_port_t ntohs(in_port_t netshort);

General Description

The ntohs() call translates a short integer from network byte order to host byte
order.

Parameter
Description

netshort
Is typed to the unsigned short integer to be put into host byte order.

maxdesc

160 z/VSE V5R2 TCP/IP Support

Note: For System z, host byte order and network byte order are the same.
However, for cross platform portability reasons, it is recommended to use the
routine whenever host to network byte order translation is required.

Returned Value

ntohs() returns the translated short integer.

poll() — Monitor Activity on Socket Descriptors
Format 1
#define _XOPEN_SOURCE_EXTENDED 1
#include <poll.h>

int poll(struct pollfd listptr[], nfds_t nmsgsfds, int timeout);

Format 2
#define _XOPEN_SOURCE_EXTENDED 1
#define _OPEN_MSGQ_EXT
#include <types.h>
#include <time.h>
#include <poll.h>

int poll(void *listptr, nmsgsfds_t nmsgsfds, int timeout);

General Description

The poll() function provides applications with a mechanism for multiplexing
input/output over socket descriptors.

For each member of the array(s) pointed to by listptr, poll() examines the given
socket descriptor for the event(s) specified in the member. The number of pollfd
structures in the arrays are specified by nmsgsfds. The poll() function identifies
those socket descriptors on which an application can read or write data, or on
which an error event has occurred.

Parameter
Description

listptr A pointer to an array of pollfd structures. Each structure specifies a socket
descriptor and the events of interest for this socket. To monitor socket
descriptors, set the high-order halfword of nmsgsfds to 0, the low-order
halfword to the number of pollfd structures to be provided, and pass a
pointer to an array of pollfd structures.

nmsgsfds
The number of pollfd structures pointed to by listptr. This parameter is
divided into two parts. The first half (the high-order 16 bits) is reserved for
message queue identifiers. The second half (the low-order 16 bits) gives the
number of pollfd structures containing socket descriptors to check. If either
half of the nmsgsfds parameter is equal to a value of 0, the corresponding
structures is assumed not to be present.

timeout
The amount of time, in milliseconds, to wait for an event to occur. If none
of the defined events have occurred on any selected descriptor, poll()
waits at least timeout milliseconds for an event to occur on any of the
selected descriptors. If the value of timeout is 0, poll() returns
immediately. If the value of timeout is -1, poll() blocks until a requested
event occurs or until the call is interrupted.

ntohs

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 161

Each pollfd structure contains the following fields:
fd open socket descriptor
events requested events
revents

returned events

The events and revents fields are bitmasks constructed by OR-ing a combination of
event flags.

The following macros are provided to manipulate the nmsgsfds parameter and the
return value from poll():

Macro Description

_SET_FDS_MSGS(nmsgsfds, nmsgs, nfds)
Sets the high-order halfword of nmsgsfds to nmsgs, and sets the low-order
halfword of nmsgsfds to nfds.

_NFDS(n)
If the return value n from poll() is non-negative, returns the number of
socket descriptors that meet the read, write, and exception criteria. A
descriptor may be counted multiple times if it meets more than one given
criterion.

_NMSGS(n)
If the return value n from poll() is non-negative, returns the number of
message queues that meet the read, write, and exception criteria. A
message queue may be counted multiple times if it meets more than one
given criterion.

Returned Value

Upon successful completion, poll() returns a non-negative value. A positive value
indicates the total number of events that were found to be ready among the socket
descriptors. The return value is similar to nmsgsfds in that the high-order 16 bits of
the return value give the number associated with message queues, and the
low-order 16 bits give the number associated with socket descriptors.

A value of 0 indicates that the call timed out and no socket descriptors have been
selected. Upon failure, poll() returns -1 and sets errno to indicate the error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

read() — Read From a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <unistd.h>

ssize_t read(int fs, void *buf, ssize_t N);

poll

162 z/VSE V5R2 TCP/IP Support

General Description

From the socket indicated by the socket descriptor fs, the read() function reads N
bytes of input into the memory area indicated by buf. If successful, read() changes
the file offset by the number of bytes read. N should not be greater than INT_MAX
(defined in the limits.h header file).

Read() is equivalent to recv() with no flags set.

Parameter
Description

fs The socket descriptor.

buf The pointer to the buffer that receives the data.

N The length in bytes of the buffer pointed to by the buf parameter.

Behavior for Sockets

The read() call reads data on a socket with descriptor fs and stores it in a buffer.
The read() all applies only to connected sockets. This call returns up to N bytes of
data. If there are fewer bytes available than requested, the call returns the number
currently available. If data is not available for the socket fs, and the socket is in
blocking mode, the read() call blocks the caller until data arrives. If data is not
available, and the socket is in nonblocking mode, read() returns a -1 and sets the
error code to EWOULDBLOCK. See “ioctl() — Control Socket” on page 156 or
“fcntl() — Control Open Socket Descriptors” on page 104 for a description of how
to set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided
that the datagram fits into the specified buffer. Excess datagram data is discarded.
Stream sockets act like streams of information with no boundaries separating data.
For example, if applications A and B are connected with a stream socket and
application A sends 1000 bytes, each call to this function can return 1 byte, or 10
bytes, or the entire 1000 bytes. Therefore, applications using stream sockets should
place this call in a loop, calling this function until all data has been received.

Returned Value

If successful, read() returns the number of bytes actually read and placed in buf.
This number is less than or equal to N. The value -1 indicates an error. The value 0
indicates the connection is closed.

If read() fails, it returns the value -1 and sets errno to one of the following:

EBADF
fs is not a valid socket descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EFAULT
Using the buf and N parameters would result in an attempt to access
memory outside the caller's address space.

EINVAL
N contains a value that is less than 0, or the request is invalid or not
supported, or the STREAM or multiplexer referenced by fs is linked
(directly or indirectly) downstream from a multiplexer.

read

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 163

EIO An I/O error occurred.

ENOBUFS
Insufficient system resources are available to complete the call.

ENOTCONN
A receive was attempted on a connection-oriented socket that is not
connected.

ETIMEDOUT
The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

EWOULDBLOCK
The socket is in nonblocking mode and data is not available to read.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

Example

The following are examples of the read() call.
#include <stdio.h>

/* Read from the socket aSocket
and print number of byte read and string read.
Return number of bytes read or -1 for no success.

*/
int readFromSocket(int aSocket)
{ int numberOfBytesReceived;

char dataBuffer 255 ; /* data to read */

numberOfBytesReceived=
read(aSocket, dataBuffer, sizeof(dataBuffer));

if (numberOfBytesReceived < 0)
{ perror("read"); return -1; }
else
{ dataBuffer numberOfBytesReceived =0;

printf("Read string ’%s’ (length %d).\n",
dataBuffer,numberOfBytesReceived);

return numberOfBytesReceived;
}

}

readv() — Read Data on a Socket and Store in a Set of Buffers
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <uio.h>

ssize_t readv(int fs, const struct iovec *iov, int iovcnt);

General Description

The readv() call reads data from a socket with descriptor fs and stores it in a set of
buffers. The data is scattered into the buffers specified by iov[0]...iov[iovcnt-1].

Parameter
Description

fs The socket descriptor.

read

164 z/VSE V5R2 TCP/IP Support

iov A pointer to an iovec structure.

iovcnt The number of buffers pointed to by the iov parameter.

The iovec structure is defined in uio.h and contains the following fields:

Element
Description

iov_base
The pointer to the buffer.

iov_len The length of the buffer.

The descriptor refers to a connected socket.

This call returns a number of bytes of data equal to but not exceeding the sum of
all the iov_len fields. If less than the number of bytes requested is available, the call
returns the number currently available. If data is not available for the socket fs, and
the socket is in blocking mode, readv() call blocks the caller until data arrives. If
data is not available and fs is in nonblocking mode, readv() returns a -1 and sets
the error code to EWOULDBLOCK.

Returned Value

If successful, the number of bytes read into the buffer is returned. The value -1
indicates an error. The value of errno indicates the specific error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

recv() — Receive Data on a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

ssize_t recv(int socket,
void *buf,
size_t len,
int flags);

General Description

The recv() call receives data on a socket with descriptor socket and stores it in a
buffer. The recv() call applies only to connected sockets.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
data is not available for the socket socket, and socket is in blocking mode, the recv()
call blocks the caller until data arrives. If data is not available and socket is in
nonblocking mode, recv() returns a -1 and sets the error code to EWOULDBLOCK.
See “fcntl() — Control Open Socket Descriptors” on page 104 or “ioctl() — Control
Socket” on page 156 for a description of how to set nonblocking mode.

For datagram sockets, this call returns the entire datagram that was sent, provided
that the datagram fits into the specified buffer. Stream sockets act like streams of

readv

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 165

information with no boundaries separating data. For example, if applications A
and B are connected with a stream socket and application A sends 1000 bytes, each
call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes.
Therefore, applications using stream sockets should place this call in a loop, calling
this function until all data has been received.

Parameter
Description

socket The socket descriptor.

buf The pointer to the buffer that receives the data.

len The length in bytes of the buffer pointed to by the buf parameter.

flags reserved zero

Returned Value

If successful, the length of the message or datagram in bytes is returned. The value
-1 indicates an error. The value 0 indicates the connection is closed. The value of
the error code indicates the specific error.

Error Code
Description

EBADF
socket is not a valid socket descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EFAULT
Using the buf and len parameters would result in an attempt to access
storage outside the caller's address space.

EINVAL
The request is invalid or not supported. The MSG_OOB flag is set and no
out-of-band data is available.

ENOBUFS
Insufficient system resources are available to complete the call.

ENOTCONN
A receive is attempted on a connection-oriented socket that is not
connected.

EOPNOTSUPP
The specified flags are not supported for this socket type or protocol.

ETIMEDOUT
The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

EWOULDBLOCK
socket is in nonblocking mode and data is not available to read.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

recv

166 z/VSE V5R2 TCP/IP Support

Stack characteristics

TCP/IP for VSE/ESA doesn't support the MSG_PEEK and MSG_OOB options.

recvfrom() — Receive Messages on a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int recvfrom(int socket,
void *buffer,
size_t length,
int flags,
struct sockaddr *name,
size_t *namelen);

General Description

The recvfrom() call receives data on a socket named by descriptor socket and stores
it in a buffer. The recvfrom() call applies to any socket, whether connected or
unconnected.

Parameter
Description

socket The socket descriptor.

buffer The pointer to the buffer that receives the data.

length The length in bytes of the buffer pointed to by the buffer parameter.

flags reserved zero

name A pointer to a socket address structure from which data is received. If name
is a nonzero value, the source address is returned.

namelen
The size of name in bytes.

If name is nonzero, the source address of the message is filled. namelen must first be
initialized to the size of the buffer associated with name, and is then modified on
return to indicate the actual size of the address stored there.

This call returns the length of the incoming message or data. If a datagram packet
is too long to fit in the supplied buffer, datagram sockets discard excess bytes. If
data is not available for the socket socket, and socket is in blocking mode, the
recvfrom() call blocks the caller until data arrives. If data is not available and
socket is in nonblocking mode, recvfrom() returns a -1 and sets the error code to
EWOULDBLOCK. See “fcntl() — Control Open Socket Descriptors” on page 104 or
“ioctl() — Control Socket” on page 156 for a description of how to set nonblocking
mode.

For datagram sockets, this call returns the entire datagram that was sent, provided
that the datagram fits into the specified buffer. Stream sockets act like streams of
information with no boundaries separating data. For example, if applications A
and B are connected with a stream socket and application A sends 1000 bytes, each
call to this function can return 1 byte, or 10 bytes, or the entire 1000 bytes.
Therefore, applications using stream sockets should place this call in a loop, calling
this function until all data has been received.

recv

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 167

Socket address structure for IPv6: For an AF_INET6 socket, the address is
returned in a sockaddr_in6 address structure. The sockaddr_in6 structure is
defined in the header file in.h.

Returned Value

If successful, the length of the message or datagram in bytes is returned. The value
0 indicates the connection is closed, the value -1 indicates an error. The value of
the error code indicates the specific error.

Error Code
Description

EBADF
socket is not a valid socket descriptor.

ECONNRESET
The connection was forcibly closed by a peer.

EFAULT
Using the buffer and length parameters would result in an attempt to access
storage outside the caller's address space.

EINVAL
The request is invalid or not supported. The MSG_OOB flag is set and no
out-of-band data is available.

ENOBUFS
Insufficient system resources are available to complete the call.

ENOTCONN
A receive is attempted on a connection-oriented socket that is not
connected.

EOPNOTSUPP
The specified flags are not supported for this socket type.

ETIMEDOUT
The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

EWOULDBLOCK
socket is in nonblocking mode and data is not available to read.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

recvmsg() — Receive Messages on a Socket and Store in an
Array of Message Headers

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

ssize_t recvmsg(int socket, struct msghdr *msg,int flags);

recvfrom

168 z/VSE V5R2 TCP/IP Support

General Description

The recvmsg() call receives messages on a socket with descriptor socket and stores
them in an array of message headers.

Parameter
Description

socket The socket descriptor.

msg An array of message headers into which messages are received.

flags The flags parameter is set by specifying one or more flags. If more than one
flag is specified, the logical OR operator (|) must be used to separate
them.

A message header is defined by a msghdr structure. A definition of this structure
can be found in the socket.h include file and contains the following elements:

Element
Description

msg_iov
An array of iovec buffers into which the message is placed.

msg_iovlen
The number of elements in the msg_iov array.

msg_name
A pointer to a buffer where the sender's address is stored.

msg_namelen
The size of the address buffer.

msg_control
Ancillary data, see below.

msg_controllen
Ancillary data buffer length.

msg_flags
Flags on received message.

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr
structure followed by a data array. The data array contains the ancillary data
message, and the cmsghdr structure contains descriptive information that allows
an application to correctly parse the data.

Element
Description

cmsg_len
Data byte count, including header.

cmsg_level
Originating protocol.

cmsg_type
Protocol-specific type.

The socket.h header file defines the following macros to gain access to the data
arrays in the ancillary data associated with a message header:

recvmsg

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 169

CMSG_DATA(cmsg)
If the argument is a pointer to a cmsghdr structure, this macro returns an
unsigned character pointer to the data array associated with the cmsghdr
structure.

CMSG_NXTHDR(mhdr,cmsg)
If the first argument is a pointer to a msghdr structure and the second
argument is a pointer to a cmsghdr structure in the ancillary data, pointed
to by the msg_control field of that msghdr structure, this macro returns a
pointer to the next cmsghdr structure, or a null pointer if this structure is
the last cmsghdr in the ancillary data.

CMSG_FIRSTHDR(mhdr)
If the argument is a pointer to a msghdr structure, this macro returns a
pointer to the first cmsghdr structure in the ancillary data associated with
this msghdr structure, or a null pointer if there is no ancillary data
associated with the msghdr structure.

The recvmsg() call applies to sockets, regardless of whether they are in the
connected state.

This call returns the length of the data received. If data is not available for the
socket socket, and socket is in blocking mode, the recvmsg() call blocks the caller
until data arrives. If data is not available and socket is in nonblocking mode,
recvmsg() returns a -1 and sets the error code to EWOULDBLOCK.

On successful completion, the msg_flags member for the message header is the
bitwise-inclusive OR of all flags that indicate conditions detected for the received
message.

Socket address structure for IPv6: For an AF_INET6 socket, the address is
returned in a sockaddr_in6 address structure. The sockaddr_in6 structure is
defined in the header file in.h.

Returned Value

If successful, the length of the message in bytes is returned. The value -1 indicates
an error. The value of errno indicates the specific error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

select() — Monitor Activity on Sockets
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <types.h>
#include <time.h>

int select(int nmsgsfds,
fd_set *readlist,
fd_set *writelist,
fd_set *exceptlist,
struct timeval *timeout);

recvmsg

170 z/VSE V5R2 TCP/IP Support

General Description

The select() call monitors activity on a set of sockets until a timeout occurs, to
see if any of the sockets have read, write, or exception processing conditions
pending.

Parameter
Description

num The number of socket descriptors to check.

If your application allocates sockets 3, 4, 5, 6, and 7 and you want to check
all of your allocations, num should be set to 8, the highest descriptor you
specified + 1. If your application checks sockets 3 and 4, num should be set
to 5.

readlist,writelist,exceptlist
Pointers to fd_set types, arrays of message queue identifiers, or sellist
structures to check for reading, writing, and exceptional conditions,
respectively. The type of parameter to pass depends on whether you want
to monitor socket descriptors, message queue identifiers, or both. To
monitor socket descriptors, set the high-order halfword of nmsgsfds to 0,
the low-order halfword to (highest descriptor number + 1), and use fd_set
pointers.

timeout
The pointer to the time to wait for the select() call to complete.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a NULL pointer, the select() call blocks until a
socket or message becomes ready. To poll the sockets and return immediately,
timeout should be a non-NULL pointer to a zero-valued timeval structure.

To allow you to test more than one socket at a time, the sockets to test are placed
into a bit set of type fd_set. A bit set is a string of bits such that if x is an element
of the set, the bit representing x is set to 1. If x is not an element of the set, the bit
representing x is set to 0. For example, if socket 33 is an element of a bit set, bit 33
is set to 1. If socket 33 is not an element of a bit set, bit 33 is set to 0.

Because the bit sets contain a bit for every socket that a process can allocate, the
size of the bit sets is constant. If your program needs to allocate a large number of
sockets, you may need to increase the size of the bit sets. Increasing the size of the
bit sets should be done when you compile the program. To increase the size of the
bit sets, define FD_SETSIZE before including time.h. FD_SETSIZE is the largest
value of any socket that your program expects to use select() on. It is defined to
be 2048 in time.h. However, TCP/IP for VSE allows for 8000 sockets.

Note:

1. FD_SETSIZE may only be defined by the application program if the extended
version of select() is used (by defining _OPEN_MSGQ_EXT). Do NOT define
FD_SETSIZE in your program if a sellist structure is used.

2. If your application program requires a large number of socket descriptors, you
should protect your code from possible runtime errors by:
v Adding a check before your select() or selectex() calls to see if num is

larger than FD_SETSIZE.
v Dynamically allocate bit strings large enough to hold the largest descriptor

value in your application program, rather than rely on the static bit strings

select

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 171

created at compile time. When allocating your own bit strings, use malloc()
to define an area large enough to represent each bit, rounded up to the next
4-byte multiple. For example, if your largest descriptor value is 31, you need
4 bytes; if your largest descriptor is 32, you need 8 bytes.

v If you dynamically allocate your own bit strings, the FD_ZERO() macro will
not work. The application must zero that storage, by using the memset
function—that is, memset(ptr,0,mallocsize). The other macros can be used
with the dynamically allocated bit strings, as long as the descriptor you are
manipulating is within the bit string. If the descriptor number is larger than
the bit string, unpredictable results can occur.

The application program must make sure that the parameters readlist, writelist, and
exceptlist point to bit strings that are as large as the bit string size in parameter
num. TCP/IP services will try to access bits 0 through num-1-1, for each of the bit
strings. If the bit strings are too short, you will receive unpredictable results when
you run your application program.

The following macros are provided to manipulate bit sets.

Macro Description

FD_ZERO(&fdset)
Sets all bits in the bit set fdset to zero. After this operation, the bit set does
not contain sockets as elements. This macro should be called to initialize
the bit set before calling FD_SET() to set a socket as a member.

Note: If you used malloc() to dynamically allocate a new area, the
FD_ZERO() macro can cause unpredictable results and should not be used.
You should zero the area using the memset() function.

FD_SET(sock, &fdset)
Sets the bit for the socket sock to a 1, making sock a member of the bit set
fdset.

FD_CLR(sock, &fdset)
Clears the bit for the socket sock in bit set fdset. This operation sets the
appropriate bit to a zero.

FD_ISSET(sock, &fdset)
Returns nonzero if sock is a member of the bit set fdset. Returns zero if sock
is not a member of fdset. (This operation returns the 32-bit value which
includes the bit representing sock.)

The following macros are provided to manipulate the nmsgsfds parameter and the
return value from select():

Macro Description

_SET_FDS_MSGS(nmsgsfds, nmsgs, nfds)
Sets the high-order halfword of nmsgsfds to nmsgs, and sets the low-order
halfword of nmsgsfds to nfds.

_NFDS(n)
If the return value n from select() is non-negative, returns the number of
descriptors that meet the read, write, and exception criteria. A descriptor
may be counted multiple times if it meets more than one given criterion.

_NMSGS(n)
If the return value n from select() is non-negative, returns the number of
message queues that meet the read, write, and exception criteria.

select

172 z/VSE V5R2 TCP/IP Support

A socket is ready for reading when incoming data is buffered for it or when a
connection request is pending. To test whether any sockets are ready for reading,
use either FD_ZERO() or memset(), if the function was dynamically allocated, to
initialize the fdset bit set in readlist and invoke FD_SET() for each socket to test.

A socket is ready for writing if there is buffer space for outgoing data. A
nonblocking stream socket in the process of connecting (connect() returned
EINPROGRESS) is selected for write when the connect() completes. A call to
write(), send(), or sendto() does not block provided that the amount of data is
less than the amount of buffer space. To test whether any sockets are ready for
writing, initialize the fdset bit set in writelist with either FD_ZERO() or memset(), if
dynamically allocated, and use FD_SET() for each socket to test.

The programmer can pass NULL for any of the readlist, writelist, and exceptlist
parameters. However, when they are not NULL, they must all point to the same
type of structures.

Because the sets of sockets passed to select() are bit sets, the select() call must
test each bit in each bit set before polling the socket for its status. The select() call
tests only sockets in the range 0 to num-1.

Returned Value

The value -1 indicates the error code should be checked for an error. The value
zero indicates an expired time limit.

When the return value is greater than 0, it is similar to nmsgsfds in that the
high-order 16 bits give the number of message queues, and the low-order 16 bits
give the number of descriptors. These values indicate the sum total that meet each
of the read, write, and exception criteria. If the return value for socket descriptors
is greater than 65,535, only 65,535 is reported.

If the return value is greater than zero, the sockets that are ready in each bit set are
set to 1. Sockets in each bit set that are not ready are set to zero. Use the macro
FD_ISSET() with each socket to test its status.

Error Code
Description

EBADF
One of the bit sets specified an invalid socket or a message queue identifier
is invalid. FD_ZERO() was probably not called to clear the bit set before
the sockets were set.

EFAULT
One of the parameters contained an invalid address.

EINVAL
One of the fields in the timeval structure is invalid, or there was an invalid
nmsgsfds value.

EIO One of the sockets being selected has become inoperative due to a network
problem. This can occur for a socket if TCP/IP is shutdown. To find out
which descriptor is bad, you can code a loop to individually select() on
each descriptor, without waiting, until you get a failure.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C

select

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 173

Run-Time always returns the value -1, and errno is set to EIO. In this case the
message EDCV001I or EDCT002I is issued.

Example

The following are examples of the select() call.
#define _OPEN_MSGQ_EX /* needed for _SET_FDS_MSGS macro */
#include <time.h>
#include <types.h>
#include <stdio.h>

/* This function returns
-1 if an error occurred
0 if aSocket is NOT ready for read
1 if aSocket is ready for read.

*/
int testSocketReadyForRead(int aSocket)
{

fd_set socketSet;
struct timeval timeout;
int rc, number;

/* Initialize timeout structure. */
timeout.tv_sec=1; */ seconds */

/* Initialize socket set bits and add sockets to be examined. */
FD_ZERO(&socketSet)
FD_SET(aSocket, &socketSet);

/* Set the number parameter. */
_SET_FDS_MSGS(number,

0, /* don’t monitor message queues */
aSocket+1);

/* check for READ availability on this socket */
rc=select(number,

&socketSet, /* set of sockets to check for readability */
NULL, /* set of sockets to check whether ready to write */
NULL, /* set of sockets to check for pending exceptions */
&timeout);

if (rc<0)
{ perror("select");

return rc;
}
else return (FD_ISSET(aSocket,&socketSet) != 0);

}

selectex() — Monitor Activity on Sockets
Format
#define _XOPEN_SOURCE_EXTENDED 1
#define _ALL_SOURCE
#include <types.h>
#include <time.h>

int selectex(int nmsgsfds,
fd_set *readlist,
fd_set *writelist,
fd_set *exceptlist,
struct timeval *timeout,
int *ecbptr);

select

174 z/VSE V5R2 TCP/IP Support

General Description

The selectex() call provides an extension to the select() call by allowing you to
use an ECB that defines an event not described by readlist, writelist, or exceptlist.

The selectex() call monitors activity on a set of sockets until a timeout occurs, or
until the ECB is posted, to see if any of the sockets have read, write, or exception
processing conditions pending.

See select() for more information.

Parameter
Description

num The number of socket descriptors to check. (Refer to select() for a full
description of this and other parameters below.)

readlist A pointer to an fd_set type to check for reading.

writelist
A pointer to an fd_set type to check for writing.

exceptlist
A pointer to an fd_set type to be checked for exceptional pending
conditions.

timeout
The pointer to the time to wait for the selectex() call to complete.

ecbptr This variable can contain one of the following values:
1. A pointer to a user event control block. To specify this usage of ecbptr,

the high-order bit must be set to ’0’B.
2. A pointer to a list of ECB pointers. To specify this usage of ecbptr, the

high order bit must be set to ’1’B.
The list can contain the pointers for up to 254 ECBs. The high-order bit
of the last pointer in the list must be set to ’1’B.

3. A NULL pointer. This indicates no ECBs are specified.

Returned Value

The value -1 indicates the error code should be checked for an error. The value 0
indicates an expired time limit or that the ECB is posted.

When the return value is greater than 0, this value indicates the sum total that
meet each of the read, write, and exception criteria. Note that a descriptor may be
counted multiple times if it meets more than one requested criterion.If the return
value for socket descriptors is greater than 65,535, only 65,535 is reported.

If the return value is greater than zero, the sockets that are ready in each bit set are
set to 1. Sockets in each bit set that are not ready are set to zero. Use the macro
FD_ISSET() with each socket to test its status.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EIO. In this case the
message EDCV001I or EDCT002I is issued.

selectex

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 175

send() — Send Data on a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

ssize_t send(int socket, const void *msg, size_t length, int flags);

General Description

The send() call sends data on the socket with descriptor socket. The send() call
applies to all connected sockets.

Parameter
Description

socket The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

length The length of the message pointed to by the msg parameter. Unless the PTF
for APAR PQ55591 is installed, the maximum number of bytes to be
specified is 64K.

flags reserved zero

If there is not enough available buffer space to hold the socket data to be
transmitted, and the socket is in blocking mode, send() blocks the caller until
additional buffer space becomes available. If the socket is in nonblocking mode,
send() returns a -1 and sets the error code to EWOULDBLOCK. See “fcntl() —
Control Open Socket Descriptors” on page 104 or “ioctl() — Control Socket” on
page 156 for a description of how to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, provided that the
datagram fits into the TCP/IP buffers. Stream sockets act like streams of
information with no boundaries separating data. For example, if an application
wishes to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or
the entire 1000 bytes. Therefore, applications using stream sockets should place this
call in a loop, calling this function until all data has been sent.

Returned Value

The value -1 indicates locally detected errors. The value of the error code indicates
the specific error. No indication of failure to deliver is implicit in a send() routine.

A value of 0 or greater indicates the number of bytes sent, however, this does not
assure that data delivery was complete.

Error Code
Description

EBADF
socket is not a valid socket descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EDESTADDRREQ
The socket is not connection-oriented and no peer address is set.

send

176 z/VSE V5R2 TCP/IP Support

EFAULT
Using the msg and length parameters would result in an attempt to access
storage outside the caller's address space.

ENOBUFS
Buffer space is not available to send the message.

ENOTCONN
The socket is not connected.

EOPNOTSUPP
The socket argument is associated with a socket that does not support one
or more of the values set in flags.

EWOULDBLOCK
socket is in nonblocking mode and no data buffers are available.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EOPNOTSUPP. In this case
the message EDCV001I or EDCT002I is issued.

Stack characteristics

TCP/IP for VSE/ESA doesn't support the MSG_OOB and MSG_DONTROUTE
options.

sendmsg() — Send Messages on a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

ssize_t sendmsg(int socket, struct msghdr *msg, int flags);

General Description

The sendmsg() call sends messages on a socket with descriptor socket passed in an
array of message headers.

Parameter
Description

socket The socket descriptor.

msg An array of message headers from which messages are sent.

flags The flags parameter is set by specifying 0, or one or more flags. If more
than one flag is specified, the logical OR operator (|) must be used to
separate them.

A message header is defined by the msghdr structure, which can be found
in the socket.h include file and contains the following elements:

Element
Description

msg_iov
An array of iovec buffers containing the message.

msg_iovlen
The number of elements in the msg_iov array.

send

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 177

msg_name
The pointer to the buffer containing the recipient's address.

msg_namelen
The size of the address buffer.

msg_control
Ancillary data, see below.

msg_controllen
Ancillary data buffer length.

msg_flags
Flags on received message.

Ancillary data consists of a sequence of pairs, each consisting of a cmsghdr
structure followed by a data array. The data array contains the ancillary
data message, and the cmsghdr structure contains descriptive information
that allows an application to correctly parse the data.

The socket.h header file defines the cmsghdr structure that includes at
least the following members:

Element
Description

cmsg_len
Data byte count, including header.

cmsg_level
Originating protocol.

cmsg_type
Protocol-specific type.

The socket.h header file defines the following macros to gain access to the data
arrays in the ancillary data associated with a message header:

CMSG_DATA(cmsg)
If the argument is a pointer to a cmsghdr structure, this macro returns an
unsigned character pointer to the data array associated with the cmsghdr
structure.

CMSG_NXTHDR(mhdr,cmsg)
If the first argument is a pointer to a msghdr structure and the second
argument is a pointer to a cmsghdr structure in the ancillary data, pointed
to by the msg_control field of that msghdr structure, this macro returns a
pointer to the next cmsghdr structure, or a null pointer if this structure is
the last cmsghdr in the ancillary data.

CMSG_FIRSTHDR(mhdr)
If the argument is a pointer to a msghdr structure, this macro returns a
pointer to the first cmsghdr structure in the ancillary data associated with
this msghdr structure, or a null pointer if there is no ancillary data
associated with the msghdr structure.

The sendmsg() call applies to sockets regardless of whether they are in the
connected state.

This call returns the length of the data sent. If there is not enough available buffer
space to hold the socket data to be transmitted, and the socket is in blocking mode,

sendmsg

178 z/VSE V5R2 TCP/IP Support

sendmsg() blocks the caller until additional buffer space becomes available. If the
socket is in nonblocking mode, sendmsg() returns a -1 and sets the error code to
EWOULDBLOCK.

Socket Address Structure for IPv6 For an AF_INET6 socket, if msg_name is
specified the address should be in a sockaddr_in6 address structure. The
sockaddr_in6 structure is defined in the header file in.h.

Returned Value

If successful, the length of the message in bytes is returned. The value -1 indicates
an error. The value of errno indicates the specific error.

A value of 0 or greater indicates the number of bytes sent, however, this does not
assure that data delivery was complete.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EOPNOTSUPP. In this case
the message EDCV001I or EDCT002I is issued.

sendto() — Send Data on a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

ssize_t sendto(int socket,
const void *msg,
size_t length,
int flags,
const struct sockaddr *address,
size_t address_length);

General Description

The sendto() call sends data on the socket with descriptor socket. The sendto() call
applies to either connected or unconnected sockets.

Parameter
Description

socket The socket descriptor.

msg The pointer to the buffer containing the message to transmit.

length The length of the message in the buffer pointed to by the msg
parameter.Unless the PTF for APAR PQ55591 is installed, the maximum
number of bytes to be specified is 64K.

flags reserved zero

address The address of the target.

address_length
The size of the address pointed to by address.

If there is not enough available buffer space to hold the socket data to be
transmitted, and the socket is in blocking mode, sendto() blocks the caller until
additional buffer space becomes available. If the socket is in nonblocking mode,
sendto() returns a -1 and sets the error code to EWOULDBLOCK. See “fcntl() —

sendmsg

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 179

Control Open Socket Descriptors” on page 104 or “ioctl() — Control Socket” on
page 156 for a description of how to set nonblocking mode.

For datagram sockets, this call sends the entire datagram, provided that the
datagram fits into the TCP/IP buffers. Stream sockets act like streams of
information with no boundaries separating data. For example, if an application
wishes to send 1000 bytes, each call to this function can send 1 byte, or 10 bytes, or
the entire 1000 bytes. Therefore, applications using stream sockets should place this
call in a loop, calling this function until all data has been sent.

Socket address structure for IPv6: The sockaddr_in6 structure is added to the in.h
header. It is used to pass IPv6 specific addresses between applications and the
system.

Returned Value

If successful, the number of characters sent is returned. The value -1 indicates an
error. The value of errno indicates the specific error. No indication of failure to
deliver is implied in the return value of this call when used with datagram sockets.

A value of 0 or greater indicates the number of bytes sent, however, this does not
assure that data delivery was complete.

Error Code
Description

EAFNOSUPPORT
The address family is not supported (it is not AF_INET or AF_INET6).

EBADF
socket is not a valid socket descriptor.

ECONNRESET
A connection was forcibly closed by a peer.

EFAULT
Using the msg and length parameters would result in an attempt to access
storage outside the caller's address space.

EINVAL
address_length is not the size of a valid address for the specified address
family.

ENOBUFS
Buffer space is not available to send the message.

ENOTCONN
The socket is not connected.

EOPNOTSUPP
The socket argument is associated with a socket that does not support one
or more of the values set in flags.

EWOULDBLOCK
socket is in nonblocking mode and no data buffers are available.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1, and errno is set to EOPNOTSUPP. In this case
the message EDCV001I or EDCT002I is issued.

sendto

180 z/VSE V5R2 TCP/IP Support

sethostent() — Open the Host Information Data Set
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void sethostent(int stayopen);

General Description

The sethostent() call opens and rewinds the data set which contains information
about known hosts. If the stayopen flag is nonzero, the data set remains open after
each call.

Returned Value

sethostent() returns no values.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

setibmopt() — Set IBM TCP/IP Image
Format
#define _OPEN_SYS_SOCK_EXT
#include <socket.h>

int setibmopt(int cmd, struct ibm_tcpimage *bfrp);

General Description

The setibmopt() function call is used to set TCP/IP options. Currently, the only
supported command is IBMTCP_IMAGE which allows the setibmopt() to choose
the active TCP/IP image stack the application will connect to.

To reset ibm_tcpimage to nothing chosen, set the name to all blanks.

Parameter
Description

cmd The value in cmd must be set to the command to be performed. Currently,
only IBMTCP_IMAGE is supported and must be paired with the bfrp
parameter as described.

bfrp The pointer to an ibm_tcpimage structure.

To set the TCP/IP image for a socket, the application should set values in the
ibm_tpcimage structure as follows:

Element
Description

status 0 means is not known and need not be checked. Currently, this is the only
value with meaning.

version
0 means the version is to be set on return if known.

name The name must be left justified, uppercase, padded with blanks, and be the
name of an active TCP stack.

sethostent

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 181

Returned Value

If successful, setibmopt() returns 0. If unsuccessful, setibmopt() returns -1 and sets
errno to one of the following values:

Error Code
Description

EFAULT
Using the bfrp supplied would result in access of a storage location that is
inaccessible.

EIBMBADTCPNAME
A name of a PFS was specified that either is not configured or is not a
Sockets PFS.

EOPNOTSUPP
The cmd is a function that is not supported.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

setnetent() — Open the Network Information Data Set
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void setnetent(int stayopen);

General Description

The setnetent() call opens and rewinds the data set, which contains information
about known networks. If the stayopen flag is nonzero, the data set remains open
after each call to setnetent().

Returned Value

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

setprotoent() — Open the Protocol Information Data Set
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void setprotoent(int stayopen);

General Description

The setprotoent() call opens and rewinds the data set which contains information
about known protocols. If the stayopen flag is nonzero, the data set remains open
after each call.

Returned Value

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

setibmopt

182 z/VSE V5R2 TCP/IP Support

setservent() — Open the Network Services Information Data
Set

Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <netdb.h>

void setservent(int stayopen);

General Description

The setservent() call opens and rewinds the data set which contains information
about known services. If the stayopen flag is nonzero, the data set remains open
after each call to setservent().

Returned Value

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

setsockopt() — Set Options Associated with a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int setsockopt(int socket,
int level,
int option_name,
const void *option value,
size_t option_length);

IPv6: To include support for IPv6 socket options, add the following code:
#define _OPEN_SYS_SOCK_IPV6 1
#include <in.h>

General Description

The setsockopt() call sets options associated with a socket. Options can exist at
multiple protocol levels; they are always present at the highest socket level.

Parameter
Description

socket The socket descriptor.

level The level for which the option is being set.

option_name
The name of a specified socket option.

option_value
The pointer to option data.

option_length
The length of the option data.

When manipulating socket options, you must specify the level at which the option
resides and the name of the option. To manipulate options at the socket level, the
level parameter must be set to SOL_SOCKET, as defined in socket.h. To manipulate

setservent

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 183

options at the IPv4 or IPv6 level, the level parameter must be set to IPPROTO_IP
as defined in socket.h or IPPROTO_IPV6 as defined in in.h.

The option_value and option_length parameters are used to pass data used by the
particular set command. The option_value parameter points to a buffer containing
the data needed by the set command. The option_value parameter is optional and
can be set to the NULL pointer, if data is not needed by the command. The
option_length parameter must be set to the size of the data pointed to by
option_value.

All of the socket-level options except SO_LINGER, SO_RCVTIMEO and
SO_SNDTIMEO expect option_value to point to an integer and option_length to be
set to the size of an integer. When the integer is nonzero, the option is enabled.
When it is zero, the option is disabled. The SO_LINGER option expects
option_value to point to a linger structure, as defined in socket.h. This structure is
defined in the following example:
struct linger
{

int l_onoff; /* option on/off */
int l_linger; /* linger time */

};

The l_onoff field is set to 0, if the SO_LINGER option is disabled. A nonzero value
enables the option. The l_linger field specifies the amount of time to linger on
close. The units of l_linger are seconds.

The following options are recognized at the socket level:

Option Description

SO_LINGER
Lingers on close if data is present. If this option is enabled and there is
unsent data present when close() is called, the calling application
program is blocked during the close() call, until the data is transmitted or
the connection has timed out. If this option is disabled, the TCP/IP address
space waits to try to send the data. Although the data transfer is usually
successful, it cannot be guaranteed, because the TCP/IP address space
waits only a finite amount of time trying to send the data. The close() call
returns without blocking the caller. This option has meaning only for
stream sockets.

SO_KEEPALIVE
This option is provided for source compatibility reasons only. It will not
perform any action, but the user should instead use the common TCP/IP
setting : SET PULSE_TIME=nnn. This TCP/IP option has the same effect on
the entire TCP/IP partition as SO_KEEPALIVE is supposed to have for a
single TCP connection.

SO_REUSEADDR
This option is provided for source compatibility reasons only. It will not
perform any action, but TCP/IP implicitly allows for immediate address
reuse.

The following options are recognized at the IPv4 level:

Option Description

IP_ADD_MEMBERSHIP
This option is used to join a multicast group on a specific interface (an

setsockopt

184 z/VSE V5R2 TCP/IP Support

interface has to be specified with this option). Only applications that want
to receive multicast datagrams need to join multicast groups. Applications
that only transmit do not need to do so.

The multicast IP address and the interface IP address are passed in the
following structure available in in.h:
struct ip_mreq
{

struct in_addr imr_multiaddr; /* IP multicast addr of group */
struct in_addr imr_interface; /* local IP addr of interface */

};

If INADDR_ANY is specified on the interface address of the mreq
structure passed, a default interface will be chosen as follows:
v If the group address specified in the mreq structure was specified on a

GATEWAY statement, use that interface.
v If 224.0.0.0 was specified on GATEWAY statement, use that interface.
v If DEFAULTNET was specified and is multicast capable, use that

interface.

IP_ADD_SOURCE_MEMBERSHIP
This option is used to join a source-specific multicast group specified by
the ip_mreq_source structure. The ip_mreq_source structure is defined in
in.h.

IP_BLOCK_SOURCE
This option is used to block from a given source to a given multicast group
(e.g., if the user "mutes" that source). The source multicast group is
specified by the ip_mreq_source structure which is defined in in.h.

IP_DROP_MEMBERSHIP
This option is used to leave a multicast group.

The multicast IP address and the interface IP address are passed in the
following structure available in in.h:
struct ip_mreq
{

struct in_addr imr_multiaddr; /* IP multicast addr of group */
struct in_addr imr_interface; /* local IP addr of interface */

};

If INADDR_ANY is specified on the interface address of the mreq
structure passed, the system will drop the first group that matches the
group (class D) address without regard to the interface.

IP_DROP_SOURCE_MEMBERSHIP
This option is used to leave a source-specific multicast group specified by
the ip_mreq_source structure. The ip_mreq_source structure is defined in
in.h.

IP_MULTICAST_IF
Sets the interface for sending outbound multicast datagrams from this
socket application. Multicast datagrams are transmitted only on one
interface at a time. An IP address is passed using struct in_addr.

If INADDR_ANY is specified for the interface address passed, a default
interface is chosen as follows:
v If 224.0.0.0 was specified on GATEWAY statement, use that interface.
v If DEFAULTNET was specified and is multicast capable, use that

interface.

setsockopt

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 185

IP_MULTICAST_LOOP
Enables/disables loopback of outgoing multicast datagrams. Default is
enable. If it is enabled, multicast applications that have joined the outgoing
multicast group can receive a copy of the multicast datagrams destined for
that address/port pair. The loopback indicator is passed in as u_char. 0 is
specified to disable loopback. 1 is specified to enable loopback.

IP_MULTICAST_TTL
Sets the IP time-to-live of outgoing multicast datagrams. The default value
is 1 (that is, multicast only to the local subnet). The TTL value is passed in
as u_char.

IP_UNBLOCK_SOURCE
This option is used to undo the operation performed with the
IP_BLOCK_SOURCE option (e.g., if the user "mutes" that source). The
source group is specified by the ip_mreq_source structure which is defined
in in.h.

MCAST_BLOCK_SOURCE
This option is used to block data from a given source to a given group (for
example, if the user "mutes" that source). The source is specified by the
group_source_req structure which is defined in in.h.

MCAST_JOIN_GROUP
This option is used to join an any-source group. The group is specified by
the group_req structure. The group_req structure is defined in in.h.

MCAST_JOIN_SOURCE_GROUP
This option is used to join a source-specific group. The source is specified
by the group_source_req structure which is defined in in.h.

MCAST_LEAVE_GROUP
This option is used to leave an any-source group. The group is specified by
the group_req structure. The group_req structure is defined in in.h.

MCAST_LEAVE_SOURCE_GROUP
This option is used to leave a source-specific group. The source is specified
by the group_source_req structure which is defined in in.h.

MCAST_UNBLOCK_SOURCE
This option is used to undo the operation performed with the
MCAST_BLOCK_SOURCE option (for example, if the user then "unmutes"
the source). The source is specified by the group_source_req structure
which is defined in in.h.

The following options are recognized at IPv6 level:

Option Description

IPV6_JOIN_GROUP
Controls the receipt of multicast packets by joining the multicast group
specified by the ipv6_mreq structure that is passed. The ipv6_mreq
structure is defined in in.h.

IPV6_LEAVE_GROUP
Controls the receipt of multicast packets by leaving the multicast group
specified by the ipv6_mreq structure that is passed. The ipv6_mreq
structure is defined in in.h.

IPV6_MULTICAST_HOPS
Sets the hop limit for outgoing multicast packets. The hop limit value is
passed in as an int.

setsockopt

186 z/VSE V5R2 TCP/IP Support

IPV6_MULTICAST_IF
Sets the interface for outgoing multicast packets. An interface index is used
to specify the interface. It is passed in as a u_int.

IPV6_MULTICAST_LOOP
If a multicast datagram is sent to a group to which the sending host itself
belongs (on the outgoing interface), a copy of the datagram is looped back
by the IP layer for local delivery, if this option is set to one. If this option is
set to zero, a copy is not looped back. Other option values return an errno
of EINVAL. The default is one (loopback). The option value is passed in as
an int.

IPV6_UNICAST_HOPS
Controls the hop limit in outgoing unicast IPv6 packets. The hop limit
value is passed in as an int.

IPV6_V6ONLY
Determines whether a socket is restricted to IPv6 communications only.
The default setting is off. The option value is passed in as an int. A
nonzero value means the option is enabled (socket can only be used for
IPv6 communications). 0 means the option is disabled.

Note: To use these options, you must use the feature test macro #define
_OPEN_SYS_SOCK_IPV6.

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EBADF
The socket parameter is not a valid socket descriptor.

EFAULT
Using option_value and option_length parameters would result in an attempt
to access storage outside the caller's address space.

EINVAL
The specified option is invalid at the specified socket level or the socket
has been shut down.

ENOBUFS
Insufficient system resources are available to complete the call.

ENOPROTOOPT
The option_name parameter is unrecognized, or the level parameter is not
SOL_SOCKET.

ENOSYS
The function is not implemented. You attempted to use a function that is
not yet available.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to ENOSYS. In this case the
message EDCV001I or EDCT002I is issued.

setsockopt

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 187

Stack characteristics

TCP/IP for VSE/ESA supports option SO_LINGER only. Emulation support for
SO_KEEPALIVE and SO_REUSEADDR is granted too.
v SO_KEEPALIVE

Support for this option is provided for source code compatibility reasons only.
Indeed, setting a keep alive value has no effect on the TCP connection. Instead
the user should use the SET PULSE_TIME TCP/IP setting which manages the
keep-alive mechanism for the owning TCP/IP partition, rather than for a single
connection only.

v SO_REUSEADDR
This option is used to allow for immediate local address reuse. TCP/IP always
allows for immediate reuse, therefor this socket is provided for compatibility
reasons only. There is no way to disable socket reuse.

shutdown()
The shutdown() options SHUT_RD and SHUT_WR to shut down a
particular end of a duplex connection are not supported by TCP/IP for
VSE/ESA. Only SHUT_RDWR is supported to shut down both ends.
Further, while on other platforms after a call to shutdown() the socket
descriptor remains valid, TCP/IP for VSE/ESA acts as if a call to close()
has also been issued. Calling close() after shutdown() by the application
therefore would cause error EBADF. For compatibility reasons the TCP/IP
support for the LE socket API remembers the pending close request after
the call to shutdown() and doesn't raise the EBADF error code. However, if
a new call to socket() was issued between calling shutdown() and close()
the socket descriptor may have been reused by the TCP/IP stack already.
This is true for the CICS runtime environment especially, where another
transaction outside the program's control may have allocated a socket
already. For compatibility reasons and to allow for portability it is therefore
not recommended to close a socket by using shutdown(), but close() should
be used instead. The call to shutdown() should be avoided all together.

socket()
TCP/IP for VSE/ESA supports TCP and UDP connections in the AF_INET
domain, i.e. only the IPPROTO_TCP and IPPROTO_UDP protocol options
are supported. IPPROTO_IP (numeric value 0) causes special processing.
According to the socket type, the matching protocol is automatically
chosen.
v SOCK_DGRAM causes protocol IPPROTO_UDP to be chosen.
v SOCK_STREAM causes protocol IPPROTO_TCP to be chosen.

Sockets of type SOCK_RAW are not supported by TCP/IP for VSE/ESA.

Example

The following are examples of the setsockopt() call. See “getsockopt() — Get the
Options Associated with a Socket” on page 128 for examples of how the
getsockopt() options set are queried.
#include <socket.h>

int rc;
int s;
int option_value;
struct linger l;...
/* I want to linger on close */

setsockopt

188 z/VSE V5R2 TCP/IP Support

l.l_onoff = 1;
l.l_linger = 100;
rc = setsockopt(s, SOL_SOCKET, SO_LINGER, &l, sizeof(l));

shutdown() — Shut Down a Connection
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

long shutdown(int socket, int how);

General Description

The shutdown() call shuts down a connection.

Parameter
Description

socket The socket descriptor.

how The condition of the shutdown. how can have a value of :
v SHUT_RD which ends communication from the socket indicated by

socket.
v SHUT_WR which ends communication to the socket indicated by socket.
v SHUT_RDWRwhich ends communication both to and from socket

indicated by socket.

Returned Value

The value 0 indicates success; the value -1 indicates an error. The value of the error
code indicates the specific error.

Error Code
Description

EBADF
socket is not a valid socket descriptor.

EINVAL
The how parameter was not set to one of the valid values.

ENOBUFS
Insufficient system resources are available to complete the call.

ENOTCONN
The socket is not connected.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to ENOTCONN. In this case
the message EDCV001I or EDCT002I is issued.

Stack characteristics

TCP/IP for VSE/ESA does not support the shutdown() options SHUT_RD and
SHUT_WR that are used to shut down a particular end of a duplex connection.
Only SHUT_RDWR is supported to shut down both ends. Further, while on other
platforms after a call to shutdown() the socket descriptor remains valid, TCP/IP
for VSE/ESA acts as if a call to close() has also been issued. Calling close() after

setsockopt

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 189

shutdown() by the application therefore would cause error EBADF. For
compatibility reasons the TCP/IP support for the LE socket API remembers the
pending close request after the call to shutdown() and doesn't raise the EBADF
error code. However, if a new call to socket() was issued between calling
shutdown() and close() the socket descriptor may have been reused by the TCP/IP
stack already. This is true for the CICS runtime environment especially, where
another transaction outside the program's control may have allocated a socket
already. For compatibility reasons and to allow for portability it is therefore not
recommended to close a socket by using shutdown(), but close() should be used
instead. The call to shutdown() should be avoided all together.

socket()
TCP/IP for VSE/ESA supports TCP and UDP connections in the AF_INET
domain, i.e. only the IPPROTO_TCP and IPPROTO_UDP protocol options
are supported. IPPROTO_IP (numeric value 0) causes special processing.
According to the socket type, the matching protocol is automatically
chosen.
v SOCK_DGRAM causes protocol IPPROTO_UDP to be chosen.
v SOCK_STREAM causes protocol IPPROTO_TCP to be chosen.

Sockets of type SOCK_RAW are not supported by TCP/IP for VSE/ESA.

socket() — Create a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>
#include <in.h>

int socket(int domain, int type, int protocol);

General Description

The socket() call creates an endpoint for communication and returns a socket
descriptor representing the endpoint. Different types of sockets provide different
communication services.

Parameter
Description

domain The address domain requested, either AF_INET or AF_INET6.

type The type of socket created, either SOCK_STREAM or SOCK_DGRAM.

protocol
The protocol requested. Some possible values are 0, IPPROTO_UDP, or
IPPROTO_TCP.

The domain parameter specifies a communication domain within which
communication is to take place. This parameter selects the address family (format
of addresses within a domain) that is used. The families supported are AF_INET or
AF_INET6, which is the Internet domain. This constant is defined in the socket.h
include file.

The type parameter specifies the type of socket created. The type is analogous with
the semantics of the communication requested. These socket type constants are
defined in the socket.h include file. The types supported are:

Socket Type
Description

shutdown

190 z/VSE V5R2 TCP/IP Support

SOCK_DGRAM
Provides datagrams, which are connectionless messages of a fixed
maximum length whose reliability is not guaranteed. Datagrams can be
corrupted, received out of order, lost, or delivered multiple times. This
type is supported in the AF_INET or AF_INET6 domains.

SOCK_STREAM
Provides sequenced, two-way byte streams that are reliable and
connection-oriented. They support a mechanism for out-of-band data. This
type is supported in the AF_INET or AF_INET6 domains.

Note: RAW sockets are not supported.

Understanding the socket() Parameters

The protocol parameter specifies a particular protocol to be used with the socket. In
most cases, a single protocol exists to support a particular type of socket in a
particular address family. If the protocol parameter is set to 0, the system selects the
default protocol number for the domain and socket type requested. The
getprotobyname() call can be used to get the protocol number for a protocol with a
known name.

SOCK_STREAM sockets model duplex-byte streams. They provide reliable,
flow-controlled connections between peer application programs. Stream sockets are
either active or passive. Active sockets are used by clients who start connection
requests with connect(). By default, socket() creates active sockets. Passive
sockets are used by servers to accept connection requests with the connect() call.
You can transform an active socket into a passive socket by binding a name to the
socket with the bind() call and by indicating a willingness to accept connections
with the listen() call. After a socket is passive, it cannot be used to start
connection requests.

In the AF_INET and or AF_INET6 domains, the bind() call applied to a stream
socket lets the application program specify the networks from which it is willing to
accept connection requests. The application program can fully specify the network
interface by setting the Internet address field in the address structure to the Internet
address of a network interface. Alternatively, the application program can use a
wildcard to specify that it wants to receive connection requests from any network.
For AF_INET sockets, this is done by setting the Internet address field in the
address structure to the constant INADDR_ANY, as defined in in.h. For AF_INET6
sockets, this is done by setting the Internet address field in the address structure to
IN6ADDR_ANY as defined in in.h.

After a connection has been established between stream sockets, any of the data
transfer calls can be used: (read(), readv(), recv(), recvfrom(),, send(), ,
sendto(), write(), and writev()). Usually, the read()-write() or send()-recv()
pairs are used for sending data on stream sockets. If out-of-band data is to be
exchanged, the send()-recv() pair is normally used.

SOCK_DGRAM sockets model datagrams. They provide connectionless message
exchange without guarantees of reliability. Messages sent have a maximum size.

There is no active or passive analogy to stream sockets with datagram sockets.
Servers must still call bind() to name a socket and to specify from which network
interfaces it wishes to receive packets. Wildcard addressing, as described for stream

socket()

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 191

sockets, applies for datagram sockets also. Because datagram sockets are
connectionless, the listen() call has no meaning for them and must not be used
with them.

After an application program has received a datagram socket, it can exchange
datagrams using the sendto() and recvfrom(), or sendmsg() and recvmsg(), calls.
If the application program goes one step further by calling connect() and fully
specifying the name of the peer with which all messages will be exchanged, the
other data transfer calls read(), write(), readv(), writev(), send(), and recv() can
also be used. For more information on placing a socket into the connected state,
see “connect() — Connect a Socket” on page 100.

Datagram sockets allow messages to be broadcast to multiple recipients. Setting the
destination address to be a broadcast address is network-interface-dependent (it
depends on the class of address and whether subnets—logical networks divided
into smaller physical networks to simplify routing—are used).

Sockets are deallocated with the close() call.

Returned Value

A nonnegative socket descriptor indicates success. The value -1 indicates an error.
The value of the error code indicates the specific error.

Error Code
Description

EAFNOSUPPORT
The address family is not supported (it is not AF_INET or AF_INET6).

EINVAL
The request is invalid or not supported.

ENOBUFS
Insufficient system resources are available to complete the call.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

Stack characteristics

TCP/IP for VSE/ESA supports TCP and UDP connections in the AF_INET domain,
only the IPPROTO_TCP and IPPROTO_UDP protocol options are supported.
IPPROTO_IP (numeric value 0) causes special processing. According to the socket
type, the matching protocol is automatically chosen.
v SOCK_DGRAM causes protocol IPPROTO_UDP to be chosen.
v SOCK_STREAM causes protocol IPPROTO_TCP to be chosen.

Sockets of type SOCK_RAW are not supported by TCP/IP for VSE/ESA.

Example

The following is an example of the socket() call.

socket()

192 z/VSE V5R2 TCP/IP Support

int s;
char *name;...
/* Get stream socket in Internet domain with default protocol */
s = socket (AF_INET, SOCK_STREAM, 0);...

socketpair() — Create a Pair of Sockets
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

int socketpair(int *domain, int type, int protocol, int sv[2]);

General Description

The socketpair() call acquires a pair of sockets of the type specified that are
unnamed and connected in the specified domain and using the specified protocol.

Parameter
Description

domain The domain in which to open the socket.

type The type of socket created.

protocol
The protocol requested.

sv The descriptors used to refer to the obtained sockets.

Returned Value

A nonnegative socket descriptor indicates success. The value -1 indicates an error.
The value of errno indicates the specific error.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

takesocket() — Acquire a Socket from Another Program
Format
#define _OPEN_SYS_SOCK_EXT
#include <types.h>
#include <socket.h>

int takesocket(struct clientid *clientid,int sdesc);

General Description

The takesocket() call acquires a socket from another program. Typically, the other
program passes its client ID and socket descriptor to your program through your
program's startup parameter list.

Parameter
Description

clientid A pointer to the clientid of the application from which you are taking a
socket.

socket()

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 193

sdesc The descriptor of the socket to be taken.

If the c_reserved.type field of the clientid structure was set to SO_CLOSE on the
givesocket() call, c_close.SockToken of clientid structure should be used as input to
takesocket(), instead of the normal socket descriptor. See “givesocket() — Make
the Specified Socket Available” on page 133 for a description of the clientid
structure.

Returned Value

The value -1 indicates an error. The value of errno indicates the specific error. If
not -1, the return value is the new socket descriptor.

Error Code
Description

EBADF
The sdesc parameter does not specify a valid socket descriptor owned by
the other application, or the socket has already been taken.

EFAULT
Using the clientid parameter as specified would result in an attempt to
access storage outside the caller's partition.

EINVAL
The clientid parameter does not specify a valid client identifier. Either the
client process cannot be found, or the client exists but has no outstanding
givesockets.

ENFILE
The socket descriptor table is already full.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

termapi() — Terminate the Socket API for a Subtask
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <socket.h>

void termapi(void);

General Description

The termapi() function terminates the socket API for a subtask.

Returned Value

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the message EDCV001I or EDCT002I is issued.

takesocket

194 z/VSE V5R2 TCP/IP Support

write() — Write Data on a Socket
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <unistd.h>

ssize_t write(int fs, const void *buf, ssize_t N);

General Description

The write() call writes data from a buffer on a socket with descriptor fs. The
write() call can only be used with connected sockets. This call writes up to N
bytes of data.

write() is equivalent to send() with no flags set.

Parameter
Description

socket The socket descriptor.

buf The pointer to the buffer holding the data to be written.

N The length in bytes of the buffer pointed to by the buf parameter. Unless
the PTF for APAR PQ55591 is installed, the maximum number of bytes to
be specified is 64K.

If there is not enough available buffer space to hold the socket data to be
transmitted, and the socket is in blocking mode, write() blocks the caller until
additional buffer space becomes available. If the socket is in nonblocking mode,
write() returns a -1 and sets the error code to EWOULDBLOCK. See “fcntl() —
Control Open Socket Descriptors” on page 104 or “ioctl() — Control Socket” on
page 156 for a description of how to set the nonblocking mode.

If the socket is not ready to accept data and the process is trying to write data to
the socket:
v Unless O_NDELAY is set, write() blocks until the socket is ready to accept data.
v If O_NDELAY is set, write() returns a 0.

For datagram sockets, this call sends the entire datagram, provided that the
datagram fits into the TCP/IP buffers. Stream sockets act like streams of
information with no boundaries separating data. For example, if an application
program wishes to send 1000 bytes, each call to this function can send 1 byte or 10
bytes or the entire 1000 bytes. Therefore, application programs using stream
sockets should place this call in a loop, calling this function until all data has been
sent.

Returned Value

If successful, write() returns the number of bytes actually written, less than or
equal to N. If unsuccessful, it returns the value -1 and sets errno to one of the
following:

A value of 0 or greater indicates the number of bytes sent. However, this does not
assure that data delivery was complete.

EBADF
fs is not a valid socket descriptor.

write

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 195

ECONNRESET
A connection was forcibly closed by a peer.

EDESTADDRREQ
The socket is not connection-oriented and no peer address is set.

EFAULT
Using the buf and N parameters would result in an attempt to access
storage outside the caller's address space.

EINVAL
The request is invalid or not supported.

EIO An I/O error occurred.

ENOBUFS
Buffer space is not available to send the message.

ENOTCONN
The socket is not connected.

EWOULDBLOCK
The socket is in nonblocking mode and data is not available to write.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

Example

The following are examples of the write() call.
#include <stdio.h>
#include <string.h>

/*Write the zero terminated string aString to the socket aSocket and
print number of bytes written. Return number of bytes written or -1
for no success.
*/
int writeToSocket(int aSocket, char* aString)
{ int numberOfBytesWritten;

number ofBytesWritten=
write(aSocket, aString, strlen(aString));

if (numberOfBytesWritten < 0)
{ perror("write"); return -1; }
else
{ printf("number of bytes written is %d.\n", numberOfBytesWritten);

return numberOfBytesWritten:
}
}

writev() — Write Data on a Socket from an Array
Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <uio.h>

ssize_t writev(int fs, const struct iovec *iov, int iovcnt);

write

196 z/VSE V5R2 TCP/IP Support

General Description

The writev() call writes data to a socket with descriptor fs from a set of buffers.
The data is gathered from the buffers specified by iov[0]...iov[iovcnt-1]. The
descriptor must refer to a connected socket.

Parameter
Description

fs The socket descriptor.

iov A pointer to an array of iovec buffers.

iovcnt The number of buffers pointed to by the iov parameter.

The iovec structure is defined in uio.h and contains the following fields:

Element
Description

iov_base
Pointer to the buffer.

iov_length
Length of the buffer.

This call writes the sum of the iov_length bytes of data.

If there is not enough available buffer space to hold the socket data to be
transmitted, and the socket is in blocking mode, writev() blocks the caller until
additional buffer space becomes available. If the socket is in a nonblocking mode,
writev() returns a -1 and sets the error code to EWOULDBLOCK.

Returned Value

If successful, the number of bytes written from the buffer is returned. The value -1
indicates an error. The value of errno indicates the specific error.

A value of 0 or greater indicates the number of bytes sent, however, this does not
assure that data delivery was complete.

If there is no TCP/IP product installed or if the TCP/IP product has not
implemented this specific function, the corresponding dummy routine in C
Run-Time always returns the value -1 and errno is set to EINVAL. In this case the
message EDCV001I or EDCT002I is issued.

writev

Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface 197

writev

198 z/VSE V5R2 TCP/IP Support

Chapter 11. Using the CALL Instruction Application
Programming Interface (EZASOKET API)

This chapter describes the CALL Instruction API for TCP/IP Application programs
and includes the following topics:
v Environmental Restrictions and Programming Requirements
v CALL instruction API
v Understanding COBOL, Assembler, and PL/I call formats

Environmental Restrictions and Programming Requirements
The following restrictions apply to the Callable Socket API:
v The EZASOKET API cannot be used with programs running in an ICCF Pseudo

Partition.
v Locks

No locks should be held when issuing these calls.
v INITAPI/TERMAPI macros

The INITAPI/TERMAPI macros must be issued under the same task.
v Storage

Storage acquired for the purpose of containing data returned from a socket call
must be obtained in the same key as the application program status word (PSW)
at the time of the socket call.

v Addressability mode (AMODE) considerations
The EZASOKET Call API must be invoked while the caller is in 31-bit AMODE.

v When using the EZASOKET CALL API in CICS transactions while CICS
operates with storage protection, all programs using the CALL API need to be
defined with EXECKEY(CICS). This is also true for those programs that link to
these programs. TASKDATAKEY(CICS) for the transaction definition is NOT
required.

v When using the CALL API in CICS transactions, the EZA "task-related-user-exit"
(TRUE) has to be activated before these transactions can be run. For details on
how to activate this TRUE, please refer to “CICS Considerations for the EZA
Interfaces” on page 83.

CALL Instruction Application Programming Interface (API)
This section describes the CALL instruction API for TCP/IP application programs
written in the COBOL, PL/I, or High Level Assembler language. The format and
parameters are described for each socket call.

Note:

1. Reentrant code is supported by this interface.
2. For a PL/I program, include the following statement before your first call

instruction.
DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

3. Register conventions:
Register 0, 1, 14, and 15 are used by the interface and must be, if necessary,
saved prior to invocation.

© Copyright IBM Corp. 1997, 2014 199

Register 13 must point to a 72–byte save area provided by the caller.

Understanding COBOL, Assembler, and PL/I Call Formats
This API is invoked by calling the EZASOKET program and performs the same
functions as the C language calls. The parameters look different because of the
differences in the programming languages.

COBOL Language Call Format

�� CALL ‘EZASOKET’ USING SOC-FUNCTION parm1 parm2 ... ERRNO RETCODE. ��

SOC-FUNCTION
A 16-byte character field, left-justified and padded on the right with
blanks. Set to the name of the call. SOC-FUNCTION is case specific. It
must be in uppercase.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Assembler Language Call Format

The following is the ‘EZASOKET’ call format for assembler language programs.

�� CALL EZASOKET,(SOC-FUNCTION, parm1, parm2, ... ERRNO, RETCODE),VL ��

You can use the following call format for reentrant programming.

�� CALL EZASOKET,(SOC-FUNCTION, parm1, parm2, ... ERRNO, RETCODE),VL,MF=(E,list-addr) ��

PL/I Language Call Format

�� CALL EZASOKET (SOC-FUNCTION, parm1, parm2, ... ERRNO, RETCODE); ��

SOC-FUNCTION
A 16-byte character field, left-justified and padded on the right with
blanks. Set to the name of the call.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Using the EZASOKET API

200 z/VSE V5R2 TCP/IP Support

Converting Parameter Descriptions
The parameter descriptions in this chapter are written using the COBOL VSE
language syntax and conventions, but you should use the syntax and conventions
that are appropriate for the language you want to use.

Figure 16 shows examples of storage definition statements for COBOL, PL/I, and
assembler language programs.

Error Messages and Return Codes
For information about error messages, refer to z/VSE Messages and Codes, Volume 1
and TCP/IP for VSE 1.5 Messages and Codes.

For information about error codes that are returned by TCP/IP, refer to “ERRNO
Values” on page 74.

Debugging
See Appendix B, “Debugging Facility for EZASMI and EZASOKET Interfaces
(EZAAPI Trace),” on page 525.

Code CALL Instructions
This section contains the description, syntax, parameters, and other related
information for each call instruction included in this API.

ACCEPT
A server issues the ACCEPT call to accept a connection request from a client.

The call points to a socket that was previously created with a SOCKET call and
marked by a LISTEN call.

The ACCEPT call is a blocking call. When issued, the ACCEPT call:
1. Accepts the first connection on a queue of pending connections

COBOL PIC

PIC S9(4) COMP HALFWORD BINARY VALUE
PIC S9(8) COMP FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

PL/I DECLARE STATEMENT

DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

Figure 16. Storage Definition Statement Examples

Using the EZASOKET API

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 201

2. Creates a new socket with the same properties as s, and returns its descriptor
in RETCODE. The original sockets remain available to the calling program to
accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server
calls.

Note:

1. The blocking or nonblocking mode of a socket affects the operation of certain
commands. The default is blocking; nonblocking mode can be established by
use of the FCNTL and IOCTL calls. If a socket is in blocking mode, an I/O call
waits for the completion of certain events. For example, a READ call will block
until the buffer contains input data. If an I/O call is issued: if the socket is
blocking, program processing is suspended until the event completes; if the
socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket
unless the socket is in nonblocking mode. The socket can be set to nonblocking
by calling FCNTL or IOCTL.

3. If multiple socket calls are issued, a SELECT call can be issued prior to the
ACCEPT to ensure that a connection request is pending. Using this technique
ensures that subsequent ACCEPT calls will not block.

4. TCP/IP does not provide a function for screening clients. It is up to the
application program to control which connection requests it accepts, but it can
close a connection immediately after discovering the identity of the client.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’ACCEPT’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'ACCEPT'. Left justify the field and
pad it on the right with blanks.

S A halfword binary number specifying the descriptor of a socket that was
previously created with a SOCKET call. In a concurrent server, this is the
socket upon which the server listens.

ACCEPT

202 z/VSE V5R2 TCP/IP Support

Parameter Values Returned to the Application

NAME
Initially, the IPv4 or IPv6 application provides a pointer to the IPv4 or IPv6
socket address structure, which is filled on completion of the call with the
socket address of the connection peer. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the
socket address structure. The socket address structure mappings begin at
the SOCKADDR label. The AF_INET socket address structure fields start at
the SOCK_SIN label. The AF_INET6 socket address structure fields start at
the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

ACCEPT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 203

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket
number.

If the RETCODE value is negative, check the ERRNO field for an error
number.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes
the process of creating a new socket.

The BIND call can either specify the required port or let the system choose the
port. A listener program should always bind to the same well-known port, so that
clients know what socket address to use when attempting to connect.

In the AF_INET domain, the BIND call for a stream socket can specify the
networks from which it is willing to accept connection requests. The application
can fully specify the network interface by setting the ADDRESS field to the
internet address of a network interface. Alternatively, the application can use a
wildcard to specify that it wants to receive connection requests from any network
interface. This is done by setting the ADDRESS field to a fullword of zeros.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’BIND’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing BIND. The field is left justified and
padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
to be bound.

NAME
The IPv4 or IPv6 application provides a pointer to an IPv4 or IPv6 socket
address structure. This structure specifies the port number and an IPv4 or
IPv6 IP address from which the application can accept connections. Include
the PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for
the socket address structure. The socket address structure mappings begin

ACCEPT

204 z/VSE V5R2 TCP/IP Support

at the SOCKADDR label. The AF_INET socket address structure fields start
at the SOCK_SIN label. The AF_INET6 socket address structure fields start
at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number. If you
set the port number to zero, TCP/IP assigns the port. The
application can call the GETSOCKNAME macro after the BIND
macro to discover the assigned port.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number. If you
set the port number to zero, TCP/IP assigns the port. The
application can call the GETSOCKNAME macro after the BIND
macro to discover the assigned port.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

BIND

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 205

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See “ERRNO Values” on page 74, for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

CLOSE
The CLOSE call performs the following functions:
v The CLOSE call shuts down a socket and frees all resources allocated to it. If the

socket refers to an open TCP connection, the connection is closed.
v The CLOSE call is also issued by a concurrent server after it gives a socket to a

child server program. After issuing the GIVESOCKET and receiving notification
that the client child has successfully issued a TAKESOCKET, the concurrent
server issues the close command to complete the passing of ownership. In
high-performance, transaction-based systems the timeout associated with the
CLOSE call can cause performance problems.

Note:

1. If a stream socket is closed while input or output data is queued, the TCP
connection is reset and data transmission may be incomplete. The
SETSOCKOPT call can be used to set a linger condition, in which TCP/IP
will continue to attempt to complete data transmission for a specified period
of time after the CLOSE call is issued. See SO-LINGER in the description of
“SETSOCKOPT” on page 270.

2. A concurrent server differs from an iterative server. An iterative server
provides services for one client at a time; a concurrent server receives
connection requests from multiple clients and creates child servers that
actually serve the clients. If a child server is created, the concurrent server
obtains a new socket, passes the new socket to the child server, and
dissociates itself from the connection. The CICS Listener is an example of a
concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new socket
should be opened. An attempt to use the same socket with another call
results in a nonzero return code.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’CLOSE’.
01 S PIC 9(4) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

CALL ’EZASOKET’ USING SOC-FUNCTION S ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

BIND

206 z/VSE V5R2 TCP/IP Support

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte field containing CLOSE. Left justify the field and pad it on the
right with blanks.

S A halfword binary field containing the descriptor of the socket to be
closed.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

CONNECT
The CONNECT call is issued by a client to establish a connection between a local
socket and a remote socket.

Stream Sockets

For stream sockets, the CONNECT call is issued by a client to establish connection
with a server. The call performs two tasks:
1. It completes the binding process for a stream socket if a BIND call has not been

previously issued.
2. It attempts to make a connection to a remote socket. This connection is

necessary before data can be transferred.

UDP Sockets

For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it
allows you to send messages without specifying the destination.

The call sequence issued by the client and server for stream sockets is:
1. The server issues BIND and LISTEN to create a passive open socket.
2. The client issues CONNECT to request the connection.
3. The server accepts the connection on the passive open socket, creating a new

connected socket.

The blocking mode of the CONNECT call conditions its operation.
v If the socket is in blocking mode, the CONNECT call blocks the calling program

until the connection is established, or until an error is received.
v If the socket is in nonblocking mode the return code indicates whether the

connection request was successful.
– A zero RETCODE indicates that the connection was completed.

CLOSE

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 207

– A nonzero RETCODE with an ERRNO EINPROGRESS indicates that the
connection is not completed but since the socket is nonblocking, the
CONNECT call returns normally.

The caller must test the completion of the connection setup by calling SELECT
and testing for the ability to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more
information, see “SELECT” on page 261.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’CONNECT’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte field containing CONNECT. Left justify the field and pad it on
the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket
that is to be used to establish a connection.

NAME
Input parameter. The NAME parameter for CONNECT specifies the IPv4
or IPv6 socket address of the target to which the local, client socket is to be
connected. Include the PRD1.MACLIB(EZBREHST) macro to get the
assembler mappings for the socket address structure. The socket address
structure mappings begin at the SOCKADDR label. The AF_INET socket
address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

CONNECT

208 z/VSE V5R2 TCP/IP Support

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

FCNTL
The blocking mode of a socket can either be queried or set to nonblocking using
the FNDELAY flag described in the FCNTL call.

You can query or set the FNDELAY flag even though it is not defined in your
program.

See “IOCTL” on page 249 for another way to control a socket’s blocking mode.

The following example shows an FCNTL call instruction:

CONNECT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 209

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’FCNTL’.
01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(8) BINARY.
01 REQARG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing FCNTL. The field is left justified and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
that you want to unblock or query.

COMMAND
A fullword binary number with the following values.

Value Description

3 Query the blocking mode of the socket

4 Set the mode to blocking or nonblocking for the socket

REQARG
A fullword binary field containing a mask that TCP/IP uses to set the
FNDELAY flag.
v If COMMAND is set to 3 ('query') the REQARG field should be set to 0.
v If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This places the
socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This places the
socket in blocking mode.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following.
v If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. (The
FNDELAY flag is on).

– If RETCODE contains X'00000000', the socket is blocking. (The
FNDELAY flag is off).

FCNTL

210 z/VSE V5R2 TCP/IP Support

v If COMMAND was set to 4 (set), a successful call is indicated by 0 in
this field. In both cases, a RETCODE of -1 indicates an error (check the
ERRNO field for the error number).

FREEADDRINFO
The FREEADDRINFO call frees all the address information structures returned by
GETADDRINFO in the RES parameter.

Important: This function call is not available with TCP/IP for VSE/ESA.

The following example shows a FREEADDRINFO call instruction:

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'FREEADDRINFO'.
01 ADDRINFO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-FUNCTION ADDRINFO ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing FREEADDRINFO. The field is left
justified and padded on the right with blanks.

ADDRINFO
The address of a set of address information structures returned by the
GETADDRINFO RES argument.

Parameter Values Returned to the Application

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.
See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call.

-1 Check ERRNO for an error code.

GETADDRINFO
The GETADDRINFO call translates the name of a service location (for example, a
host name), a service name, or both, into a set of socket addresses and other
associated information.

This information can be used to create a socket and connect to, or to send a
datagram to, the specified service.

FCNTL

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 211

Important: This function call is not available with TCP/IP for VSE/ESA.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETADDRINFO'.
01 NODE PIC X(255).
01 NODELEN PIC 9(8) BINARY.
01 SERVIC PIC X(32).
01 SERVLEN PIC 9(8) BINARY.
01 AI-PASSIVE PIC 9(8) BINARY VALUE 1.
01 AI-CANONNAMEOK PIC 9(8) BINARY VALUE 2.
01 AI-NUMERICHOST PIC 9(8) BINARY VALUE 4.
01 AI-NUMERICSERV PIC 9(8) BINARY VALUE 8.
01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
01 AI-ALL PIC 9(8) BINARY VALUE 32.
01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.
01 HINTS USAGE IS POINTER.
01 RES USAGE IS POINTER.
01 CANNLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

LINKAGE SECTION.
01 HINTS-ADDRINFO.

03 FLAGS PIC 9(8) BINARY.
03 AF PIC 9(8) BINARY.
03 SOCTYPE PIC 9(8) BINARY.
03 PROTO PIC 9(8) BINARY.
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC X(4).
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC 9(8) BINARY.

01 RES-ADDRINFO.
03 FLAGS PIC 9(8) BINARY.
03 AF PIC 9(8) BINARY.
03 SOCTYPE PIC 9(8) BINARY.
03 PROTO PIC 9(8) BINARY.
03 NAMELEN PIC 9(8) BINARY.
03 FILLER PIC X(4).
03 FILLER PIC X(4).
03 CANONNAME USAGE IS POINTER.
03 FILLER PIC X(4).
03 NAME USAGE IS POINTER.
03 FILLER PIC X(4).
03 NEXTP USAGE IS POINTER.

PROCEDURE DIVISION.
MOVE 'www.hostname.com' TO NODE.
MOVE 16 TO NODELEN.
MOVE 'TELNET' TO SERVIC.
MOVE 6 TO SERVLEN.
SET HINTS TO ADDRESS OF HINTS-ADDRINFO.
CALL 'EZASOKET' USING SOC-FUNCTION NODE NODELEN SERVIC SERVLEN HINTS RES CANNLEN
ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

GETADDRINFO

212 z/VSE V5R2 TCP/IP Support

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing GETADDRINFO. The field is left
justified and padded on the right with blanks.

NODE
Storage up to 255 bytes long that contains the host name being queried. If
the AI_NUMERICHOST flag is specified in the storage pointed to by the
HINTS operand, NODE should contain the queried host IP address in
network byte order presentation form. This is an optional field, but if
specified you must also code NODELEN. The NODE name being queried
consists of up to NODELEN or up to the first binary zero. You can append
scope information to the host name by using the format node%scope
information. The combined information must be 255 bytes or less.

NODELEN
A fullword binary field set to the length of the host name specified in the
NODE field and should not include extraneous blanks. This is an optional
field, but if specified you must also code NODE.

SERVIC
Storage up to 32 bytes long that contains the service name being queried. If
the AI_NUMERICSERV flag is specified in the storage pointed to by the
HINTS operand, SERVIC should contain the queried port number in
presentation form. This is an optional field, but if specified you must also
code SERVLEN. The SERVIC name being queried consists of up to
SERVLEN or up to the first binary zero.

SERVLEN
A fullword binary field set to the length of the service name specified in
the SERVIC field and should not include extraneous blanks. This is an
optional field but if specified you must also code SERVIC.

HINTS
An input parameter. If the HINTS argument is specified, it contains the
address of an addrinfo structure containing input values that may direct
the operation by providing options and limiting the returned information
to a specific socket type, address family, or protocol. If the HINTS
argument is not specified, the information returned will be as if it referred
to a structure containing the value 0 for the FLAGS, SOCTYPE and PROTO
fields, and AF_UNSPEC for the AF field. This is an optional field.

The address information structure has the following fields:

Value Description

FLAGS
A fullword binary field. Must have the value of 0 of the bitwise,
OR of one or more of the following:

AI-PASSIVE (X'00000001') or a decimal value of 1.
Specifies how to fill in the NAME pointed to by the
returned RES.

If this flag is specified, the returned address information is
suitable for use in binding a socket for accepting incoming
connections for the specified service (for example, the
BIND call). In this case, if the NODE argument is not
specified, the IP address portion of the socket address
structure pointed to by the returned RES will be set to

GETADDRINFO

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 213

INADDR_ANY for an IPv4 address or to the IPv6
unspecified address (in6addr_any) for an IPv6 address.

If this flag is not set, the returned address information will
be suitable for the CONNECT call (for a connection-mode
protocol) or for a CONNECT, SENDTO, or SENDMSG call
(for a connectionless protocol). In this case, if the NODE
argument is not specified, the IP address portion of the
socket address structure pointed to by the returned RES
will be set to the default loopback address for an IPv4
address or the default loopback address for an IPv6
address.

This flag is ignored if the NODE argument is specified.

AI-CANONNAMEOK (X'00000002') or a decimal value of 2.
If this flag is specified and the NODE argument is
specified, the GETADDRINFO call attempts to determine
the canonical name corresponding to the NODE argument.

AI-NUMERICHOST (X'00000004') or a decimal value of 4.
If this flag is specified, the NODE argument must be a
numeric host address in presentation form. Otherwise, an
error of host not found [EAI_NONAME] is returned.

AI-NUMERICSERV (X'00000008') or a decimal value of 8.
If this flag is specified, the SERVIC argument must be a
numeric port in presentation form. Otherwise, an error
[EAI_NONAME] is returned.

AI-V4MAPPED (X'00000010') or a decimal value of 16.
If this flag is specified along with the AF field with the
value of AF_INET6 or a value of AF_UNSPEC when IPv6
is supported, the caller will accept IPv4-mapped IPv6
addresses. If the AI-ALL flag is not also specified and no
IPv6 addresses are found, a query is made for IPv4
addresses. If IPv4 addresses are found, they are returned as
IPv4-mapped IPv6 addresses.

If the AF field does not have the value of AF_INET6 or the
AF field contains AF_UNSPEC but IPv6 is not supported
on the system, this flag is ignored.

AI-ALL (X'00000020') or a decimal value of 32.
If the AF field has a value of AF_INET6 and AI-ALL is set,
the AI-V4MAPPED flag must also be set to indicate that
the caller will accept all addresses (IPv6 and IPv4-mapped
IPv6 addresses). If the AF field has a value of AF_UNSPEC
when the system supports IPv6 and AI-ALL is set, the
caller accepts IPv6 addreses and either IPv4 address (if
AI-V4MAPPED is not set), or IPv4-mapped IPv6 addresses
(if AI-V4MAPPED is set). A query is first made for IPv6
addresses and if successful, the IPv6 addresses are
returned. Another query is then made for IPv4 addresses,
and any IPv4 addresses found are returned as either
IPv4-mapped IPv6 addresses (if AI-V4MAPPED is also
specified), or as IPv4 addresses (if AI-V4MAPPED is not
specified).

GETADDRINFO

214 z/VSE V5R2 TCP/IP Support

If the AF field does not have the value of AF_INET6 or
does not have the value of AF_UNSPEC when the system
supports IPv6, this flag is ignored.

AI-ADDRCONFIG (X'00000040') or a decimal value of 64.
If this flag is specified, a query on the name in NODE will
occur if the resolver determines whether either of the
following is true:
v If the system is IPv6 enabled and has at least one IPv6

interface, the resolver will make a query for IPv6
(AAAA or A6 DNS) records.

v If the system is IPv4 enabled and has at least one IPv4
interface, the resolver will make a query for IPv4 (A
DNS) records. The loopback address is not considered in
this case as a valid interface.

Note: To perform the binary ORing of the flags above in a
COBOL program, simply add the necessary COBOL
statements as in the example below. Note that the value of
the FLAGS field after the COBOL ADD is a decimal 80 or a
X'00000050', which is the sum of ORing AI_V4MAPPED
and AI_ADDRCONFIG or X'00000010' and X'00000040':
01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

ADD AI-V4MAPPED TO FLAGS.
ADD AI-ADDRCONFG TO FLAGS.

AF A fullword binary field. Used to limit the returned information to a
specific address family. The value of AF_UNSPEC means that the
caller will accept any protocol family. The value of a decimal 0
indicates AF_UNSPEC. The value of a decimal 2 indicates
AF_INET, and the value of a decimal 19 indicates AF_INET6.

SOCTYPE
A fullword binary field. Used to limit the returned information to a
specific socket type. A value of 0 means that the caller will accept
any socket type. If a specific socket type is not given (for example,
a value of 0), information on all supported socket types will be
returned. The following are the acceptable socket types:

Type name Decimal value Description

SOCK_STREAM 1 for stream socket

SOCK_DGRAM 2 for datagram socket

SOCK_RAW 3 for raw-protocol interface

Anything else will fail with return code EAI_SOCTYPE. Note that
although SOCK_RAW will be accepted, it is only valid if SERVIC is
numeric (for example, SERVIC=23). A lookup for a SERVIC name
will never occur in the appropriate services file using any protocol
value other than SOCK_STREAM or SOCK_DGRAM.

If PROTO is not 0 and SOCTYPE is 0, the only acceptable input
values for PROTO are IPPROTO_TCP and IPPROTO_UDP.
Otherwise, the GETADDRINFO call will be failed with return code
of EAI_BADFLAGS.

GETADDRINFO

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 215

If SOCTYPE and PROTO are both specified as 0, GETADDRINFO
will proceed as follows:
v If SERVIC is null, or if SERVIC is numeric, any returned address

information will default to a specification of SOCTYPE as
SOCK_STREAM.

v If SERVIC is specified as a service name (for example,
SERVIC=FTP), the GETADDRINFO call will search the
appropriate services file twice. The first search will use
SOCK_STREAM as the protocol, and the second search will use
SOCK_DGRAM as the protocol. No default socket type
provision exists in this case.

If both SOCTYPE and PROTO are specified as nonzero, they
should be compatible, regardless of the value specified by SERVIC.
In this context, compatible means one of the following:
v SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
v SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
v SOCTYPE is specified as SOCK_RAW, in which case PROTO can

be anything

PROTO
A fullword binary field. Used to limit the returned information to a
specific protocol. A value of 0 means that the caller will accept any
protocol. The following are the acceptable protocols:

Protocol name Decimal value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 user datagram

If SOCTYPE is 0 and PROTO is nonzero, the only acceptable input
values for PROTO are IPPROTO_TCP and IPPROTO_UDP.
Otherwise, the GETADDRINFO call will be failed with return code
of EAI_BADFLAGS.

If PROTO and SOCTYPE are both specified as 0, GETADDRINFO
will proceed as follows:
v If SERVIC is null, or if SERVIC is numeric, any returned address

information will default to a specification of SOCTYPE as
SOCK_STREAM.

v If SERVIC is specified as a service name (for example,
SERVIC=FTP), the GETADDRINFO will search the appropriate
services file twice. The first search will use SOCK_STREAM as
the protocol, and the second search will use SOCK_DGRAM as
the protocol. No default socket type provision exists in this case.

If both PROTO and SOCTYPE are specified as nonzero, they
should be compatible, regardless of the value specified by SERVIC.
In this context, compatible means one of the following:
v SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
v SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
v SOCTYPE=SOCK_RAW, in which case PROTO can be anything

GETADDRINFO

216 z/VSE V5R2 TCP/IP Support

If the lookup for the value specified in SERVIC fails [for example,
the service name does not appear in an appropriate service file
using the input protocol], the GETADDRINFO call will fail with
return code of EAI_SERVICE.

NAMELEN
A fullword binary field. On input, this field must be 0.

CANNONNAME
A fullword binary field. On input, this field must be 0.

NAME
A fullword binary field. On input, this field must be 0.

NEXT A fullword binary field. On input, this field must be 0.

Note:

v FLAGS can be specified with their corresponding decimal value.
v To perform the binary ORing of the FLAGS in a COBOL program,

simply add the necessary COBOL statements as in the example below.
Note that the value of the FLAGS field after the COBOL ADD is a
decimal 80 or X'00000050', which is the sum of ORing AI_V4MAPPED
and AI_ADDRCONFIG or X'00000010' and X'00000040':
01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.
ADD AI-V4MAPPED TO FLAGS.
ADD AI-ADDRCONFG TO FLAGS.

RES Initially a fullword binary field. On a successful return, this field contains a
pointer to a chain of one or more address information structures. Use the
EZBREHST (from PRD1.MACLIB) macro to establish address information
mapping. The structures are allocated in the key of the calling application.
Do not use or reference these structures between tasks. When you are
finished using the structures, explicitly free their storage by specifying the
returned pointer on a TYPE=FREEADDRINFO call; storage that is not
explicitly freed is released when the task is ended.

CANNLEN
Initially an input parameter. A fullword binary field used to contain the
length of the canonical name returned by the RES CANONNAME field.
This is an optional field.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains a valid
error number. Otherwise, ignore the ERRNO field. See “ERRNO Values” on
page 74 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call.

-1 Check ERRNO for an error code.

The ADDRINFO structure uses indirect addressing to return a variable number of
NAMES. If you are coding in PL/I or assembler language, this structure can be
processed in a relatively straight-forward manner. If you are coding in COBOL,

GETADDRINFO

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 217

this structure might be difficult to interpret. You can use the subroutine
“EZACIC09” on page 286 to simplify interpretation of the information returned by
the GETADDRINFO calls.

GETCLIENTID
The GETCLIENTID call returns the identifier by which the calling application is
known to the TCP/IP address space in the calling program.

The CLIENT parameter is used in the “GIVESOCKET” on page 234and
“TAKESOCKET” on page 276 calls.

If GETCLIENTID is called by a server, the identifier of the caller (not necessarily
the client) is returned.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETCLIENTID’.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION CLIENT ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GETCLIENTID'. The field is left
justified and padded to the right with blanks.

Parameter Values Returned to the Application

CLIENT
A client-ID structure that describes the application that issued the call.

DOMAIN
A fullword binary number specifying the domain of the client. On
input, this is an optional parameter for AF_INET, and a required
parameter for AF_INET6 to specify the domain of the client. For
TCP/IP, the value is a decimal 2 indicating AF_INET, or decimal 19
indicating AF_INET6. On output, this is the returned domain of
the client.

NAME
An 8-byte character field. It is built with the partition's partition
ID, which is left adjusted and padded with blanks.

TASK An 8-byte character field. This task identifier can be specified by
the user with the INITAPI call or defaulted by the system (see the
description of the INITAPI call for details).

GETADDRINFO

218 z/VSE V5R2 TCP/IP Support

RESERVED
Specifies 20-byte character reserved field. This field is required and
internally used by TCP/IP.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

GETHOSTBYADDR
The GETHOSTBYADDR call returns the domain name and alias name of a host
whose internet address is specified in the call.

A given TCP/IP host can have multiple alias names and multiple host internet
addresses.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYADDR’.
01 HOSTADDR PIC 9(8) BINARY.
01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GETHOSTBYADDR'. The field is left
justified and padded on the right with blanks.

HOSTADDR
A fullword binary field set to the internet address (specified in network
byte order) of the host whose name is being sought. See “ERRNO Values”
on page 74 for information about ERRNO return codes.

Parameter Values Returned to the Application

HOSTENT
A fullword containing the address of the HOSTENT structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 An error occurred

GETCLIENTID

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 219

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 17.

This structure contains:
v The address of the host name that is returned by the call. The name length is

variable and is ended by X'00'.
v The address of a list of addresses that point to the alias names returned by the

call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00'.

Important: ALIAS names are not supported with TCP/IP for VSE/ESA.
v The value returned in the FAMILY field is always 2 for AF_INET.
v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 for AF_INET.
v The address of a list of addresses that point to the host internet addresses

returned by the call. The list is ended by the pointer X'00000000'

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/I or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 284.

Hostname

Alias_List

Family

Hostaddr_Len

Hostaddr_List

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

X’00000002’

X’00000004’

X’00000000’

X’00000000’

Name X’00’

List

List

Alias#1 X’00’

Alias#2 X’00’

Alias#3 X’00’

Hostent

INET Addr#1

INET Addr#2

INET Addr#3

Figure 17. HOSTENT Structure Returned by the GETHOSTBYADDR Call

GETHOSTBYADDDR

220 z/VSE V5R2 TCP/IP Support

GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the internet address of a
host whose domain name is specified in the call.

A given TCP/IP host can have multiple alias names and multiple host internet
addresses.

TCP/IP tries to resolve the host name through a name server, if one is present. If a
call is made to convert a symbolic name to an IP address, TCP/IP for VSE/ESA
searches the local names table (created by DEFINE NAME) first. If this search fails,
the name is passed to the specified DNSs (set with SET DNSx). TCP/IP for
VSE/ESA will try each DNS, beginning with DNS1, until an response is received
or all servers have been polled. The first server to respond determines if the
request succeeds or fails. If the search within a DNS fails, the default domain
string (as specified with SET DEFAULT_DOMAIN) is appended to the name
(following a period) and the DNS is consulted the last time for the name
resolution.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTBYNAME’.
01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(24).
01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

HOSTENT RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GETHOSTBYNAME'. The field is left
justified and padded on the right with blanks.

NAMELEN
A value set to the length of the host name.

NAME
A character string, up to 24 characters, set to a host name. This call returns
the address of the HOSTENT structure for this name.

Parameter Values Returned to the Application

HOSTENT
A fullword binary field that contains the address of the HOSTENT
structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 An error occurred

GETHOSTBYNAME

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 221

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 18. This
structure contains:
v The address of the host name that is returned by the call. The name length is

variable and is ended by X'00'.
v The address of a list of addresses that point to the alias names returned by the

call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00'.

Important: Alias names are not supported with TCP/IP for VSE/ESA.
v The value returned in the FAMILY field is always 2 for AF_INET.
v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 for AF_INET.
v The address of a list of addresses that point to the host internet addresses

returned by the call. The list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/I or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 284.

GETHOSTID
The GETHOSTID call returns the 32-bit internet address for the current host.

Hostname

Alias_List

Family

Hostaddr_Len

Hostaddr_List

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

X’00000002’

X’00000004’

X’00000000’

X’00000000’

Name X’00’

List

List

Alias#1 X’00’

Alias#2 X’00’

Alias#3 X’00’

Hostent

INET Addr#1

INET Addr#2

INET Addr#3

Figure 18. HOSTENT Structure Returned by the GETHOSTYBYNAME Call

GETHOSTBYNAME

222 z/VSE V5R2 TCP/IP Support

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTID’.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GETHOSTID'. The field is left justified
and padded on the right with blanks.

RETCODE
Returns a fullword binary field containing the 32-bit internet address of the
host. A –1 in RETCODE indicates an error. A possible reason can be that
TCP/IP has not been started. There is no ERRNO parameter for this call.

GETHOSTNAME
The GETHOSTNAME call returns the domain name of the local host.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETHOSTNAME’.
01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(24).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION NAMELEN NAME

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing GETHOSTNAME. The field is left
justified and padded on the right with blanks.

NAMELEN
A fullword binary field set to the length of the NAME field.

Parameter Values Returned to the Application

NAMELEN
A fullword binary field set to the length of the host name.

NAME
Indicates the receiving field for the host name. TCP/IP for VSE/ESA
allows a maximum length of 64-characters. The internet standard is a
maximum name length of 255 characters. The actual length of the NAME
field is found in NAMELEN.

GETHOSTID

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 223

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

GETIBMOPT
The GETIBMOPT call returns the number of TCP/IP images installed on a given
z/VSE system and their status, versions, and names.

With this information, the caller can dynamically choose the TCP/IP image with
which to connect by using the INITAPI call.

Important: This function call is not available with TCP/IP for VSE/ESA.

Example in COBOL
WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE IS ’GETIBMOPT’.
01 COMMAND PIC 9(8) BINARY VALUE IS 1.
01 BUF.
03 NUM-IMAGES PIC 9(8) COMP.
03 TCP-IMAGE OCCURS 8 TIMES.
05 TCP-IMAGE-STATUS PIC 9(4) BINARY.
05 TCP-IMAGE-VERSION PIC 9(4) BINARY.
05 TCP-IMAGE-NAME PIC X(8)

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION COMMAND BUF ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing GETIBMOPT. The field is left justified
and padded on the right with blanks.

COMMAND
A value or the address of a fullword binary number specifying the
command to be processed. The only valid value is 1.

Parameter Values Returned to the Application

BUF A 100-byte buffer into which each active TCP/IP image status, version, and
name are placed.

On successful return, these buffer entries contain the status, names, and versions of
up to eight active TCP/IP images. The following layout shows the BUF field upon
completion of the call. The NUM_IMAGES field indicates how many entries of
TCP_IMAGE are included in the total BUF field. If the NUM_IMAGES returned is
0, there are no TCP/IP images present.

GETHOSTNAME

224 z/VSE V5R2 TCP/IP Support

Status field
Meaning

X'8xxx'
Active

X'4xxx'
Terminating

X'2xxx'
Down

X'1xxx'
Stopped or stopping

Note: In the above status fields, xxx is reserved for IBM use and can contain any
value.

GETNAMEINFO
The GETNAMEINFO call returns the node name and service location of a socket
address that is specified in the macro.

On successful completion, GETNAMEINFO returns the node and service named, if
requested, in the buffers provided.

Important: This function call is not available with TCP/IP for VSE/ESA.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE IS 'GETNAMEINFO'.
01 NAMELEN PIC 9(8) BINARY.
01 HOST PIC X(255).
01 HOSTLEN PIC 9(8) BINARY.
01 SERVIC PIC X(32).
01 SERVLEN PIC 9(8) BINARY.
01 FLAGS PIC 9(8) BINARY VALUE 0.
01 NI-NOFQDN PIC 9(8) BINARY VALUE 1.
01 NI-NUMERICHOST PIC 9(8) BINARY VALUE 2.
01 NI-NAMEREQD PIC 9(8) BINARY VALUE 4.
01 NI-NUMERICSERVER PIC 9(8) BINARY VALUE 8.
01 NI-DGRAM PIC 9(8) BINARY VALUE 16.
01 NI-NUMERICSCOPE PIC 9(8) BINARY VALUE 32.

* IPv4 socket structure.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket structure.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.

10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.

03 SCOPE-ID PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.

GETIBMOPT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 225

MOVE 28 TO NAMELEN.
MOVE 255 TO HOSTLEN.
MOVE 32 TO SERVLEN.
MOVE NI-NAMEREQD TO FLAGS.
CALL 'EZASOKET' USING SOC-FUNCTION NAME NAMELEN HOST

HOSTLEN SERVIC SERVLEN FLAGS ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing GETNAMEINFO. The field is left
justified and padded on the right with blanks.

NAME
An IPv4 or IPv6 socket address structure to be translated. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the
socket address structure. The socket address structure mappings start at
the SOCKADDR label.

The AF_INET socket address structure fields start at the SOCK_SIN label.
The AF_INET6 socket address structure fields start at the SOCK_SIN6
label. The IPv4 socket address structure must specify the following fields:

Field Description

FAMILY
A halfword binary number specifying the IPv4 addressing family.
For TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary number specifying the port number.

IPv4-ADDRESS
A fullword binary number specifying the 32-bit IPv4 Internet
address.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure specifies the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary number that specifies the port number.

FLOW-INFO
This field is ignored by the TYPE=GETNAMEINFO macro.

IPv6-ADDRESS
A 16-byte binary field that specifies the 128-bit IPv6 Internet
address, in network byte order.

GETNAMEINFO

226 z/VSE V5R2 TCP/IP Support

SCOPE-ID
A fullword binary field that specifies the scope for an IPv6 address
as an interface index. The resolver ignores the SCOPE_ID field,
unless the address in IPv6-ADDRESS is a link-local address and
the HOST parameter is also specified.

NAMELEN
A fullword binary field. The length of the socket address structure pointed
to by the NAME argument.

HOST On input, storage capable of holding the returned resolved host name,
which can be up to 255 bytes long, for the input socket address. If
inadequate storage is specified to contain the resolved host name, the
resolver returns the host name up to the storage specified and truncation
might occur. If the host’s name cannot be located, the numeric form of the
host’s address is returned instead of its name. However, if the
NI_NAMEREQD option is specified and no host name is located, an error
is returned. One or both of the following groups of parameters are
required:
v The HOST and HOSTLEN parameters
v The SERVIC and SERVLEN parameters

Otherwise, an error occurs. The HOST name being queried consists of up
to HOSTLEN or up to the first binary 0.

If the IPv6-ADDRESS value is a link-local address, and the SCOPE_ID
interface index is nonzero, scope information is appended to the resolved
host name using the format host%scope information. The scope information
can be the numeric form of the SCOPE_ID interface index or the interface
name that is associated with the SCOPE_ID interface index. Use the
NI_NUMERICSCOPE option to select which form is returned. The
combined host name and scope information is 255 bytes or less.

HOSTLEN
A fullword binary field that contains the length of the host storage that is
used to contain the returned resolved host name. If HOSTLEN is 0 on
input, the resolved host name is not returned. The HOSTLEN value must
be equal to or greater than the length of the longest host name, or
hostname and scope information combination, to be returned. The
TYPE=GETNAMEINFO returns the host name, or host name and scope
information combination, up to the length specified by the HOSTLEN
value. On output, HOSTLEN contains the length of the returned resolved
host name, or host name and scope information combination. This is an
optional field, but if you specify this field, you also must code the HOST
value. One or both of the following groups of parameters are required:
v The HOST and HOSTLEN parameters
v The SERVIC and SERVLEN parameters

Otherwise, an error occurs.

SERVIC
On input, storage capable of holding the returned resolved service name,
which can be up to 32 bytes long, for the input socket address. If
inadequate storage is specified to contain the resolved service name, the
resolver returns the service name up to the storage specified and
truncation might occur. If the service name cannot be located, or if
NI_NUMERICSERV was specified in the FLAGS operand, the presentation
form of the service address is returned instead of its name. This is an

GETNAMEINFO

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 227

optional field, but if you specify this field, you also must code the
SERVLEN parameter. The SERVIC name being queried consists of up to
SERVLEN or up to the first binary zero. One or both of the following
groups of parameters are required:
v The HOST and HOSTLEN parameters
v The SERVIC and SERVLEN parameters

Otherwise, an error occurs.

SERVLEN
Initially an input parameter. A fullword binary field that contains the
length of the SERVIC storage used to contain the returned resolved service
name. If SERVLEN is 0 on input, the service name information is not
returned. SERVLEN must be equal to or greater than the length of the
longest service name to be returned. The TYPE=GETNAMEINFO returns
the service name up to the length specified by SERVLEN. On output,
SERVLEN contains the length of the returned resolved service name. This
is an optional field, but if you specify it, you must also code the SERVIC
parameter. One or both of the following groups of parameters are required:
v The HOST and HOSTLEN parameters
v The SERVIC and SERVLEN parameters

Otherwise, an error occurs.

FLAGS
A fullword binary field. This is an optional field. The FLAGS argument can
be a literal value or a fullword binary field:

Literal Value Binary Value
Decimal
Value Description

'NI_NOFQDN' X'00000001' 1 Return the NAME portion of the
fully qualified domain name

'NI_NUMERICHOST' X'00000002' 2 Only return the numeric form of
host’s address.

'NI_NAMEREQD' X'00000004' 4 Return an error if the host’s name
cannot be located.

'NI_NUMERICSERV' X'00000008' 8 Only return the numeric form of
the service address.

'NI_DGRAM' X'00000010' 16 Indicates that the service is a
datagram service. The default
behavior is to assume that the
service is a stream service.

'NI_NUMERICSCOPE' X'00000020' 32 Only return the numeric form of
the SCOPE-ID interface index, if
applicable.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

GETNAMEINFO

228 z/VSE V5R2 TCP/IP Support

0 Successful call

-1 Check ERRNO for an error code

GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local
socket is connected.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETPEERNAME’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing GETPEERNAME. The field is left
justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the local socket
connected to the remote peer whose address is required.

Parameter Values Returned to the Application

NAME
Initially points to the peer name structure. It is filled when the call
completes with the IPv4 or IPv6 address structure for the remote socket
connected to the local socket, specified by S. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the
socket address structure. The socket address structure mappings begin at
the SOCKADDR label. The AF_INET socket address structure fields start at
the SOCK_SIN label. The AF_INET6 socket address structure fields start at
the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

GETNAMEINFO

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 229

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified
socket.

If the socket is not currently bound to an address the call returns with the FAMILY
field set, and the rest of the structure set to 0.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

A stream socket is not assigned a name until after a successful call to either BIND,
CONNECT, or ACCEPT, therefore the GETSOCKNAME call can be used after an
implicit bind to discover which port was assigned to the socket.

GETPEERNAME

230 z/VSE V5R2 TCP/IP Support

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKNAME’.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing GETSOCKNAME. The field is left
justified and padded on the right with blanks.

S A halfword binary number set to the descriptor of local socket whose
address is required.

Parameter Values Returned to the Application

NAME
Initially, the application provides a pointer to the IPv4 or IPv6 socket
address structure, which is filled in on completion of the call with the
socket name. Include the PRD1.MACLIB(EZBREHST) macro to get the
assembler mappings for the socket address structure. The socket address
structure mappings begin at the SOCKADDR label. The AF_INET socket
address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the port number bound to this
socket. If the socket is not bound, a zero is returned.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket

GETSOCKNAME

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 231

address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field specifying the port number bound to this
socket. If the socket is not bound, a zero is returned.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

GETSOCKOPT
The GETSOCKOPT call queries the options that are set by the “SETSOCKOPT” on
page 270 call. Several options are associated with each socket. These options are
described below. You must specify the option to be queried when you issue the
GETSOCKOPT call.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GETSOCKOPT’.
01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.

88 SO-LINGER VALUE 128.
01 OPTVAL PIC X(16) BINARY.
01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

GETSOCKNAME

232 z/VSE V5R2 TCP/IP Support

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing GETSOCKOPT. The field is left
justified and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
requiring options.

OPTNAME
Set OPTNAME to the required option before you issue GETSOCKOPT. The
options are as follows:

IP_MULTICAST_IF
Use this option to obtain the IPv4 interface address used for
sending outbound multicast datagrams from the socket application.
This is an IPv4-only socket option.

Note: Multicast datagrams can be transmitted only on one
interface at a time.

IP_MULTICAST_LOOP
Use this option to determine whether a copy of multicast
datagrams are looped back for multicast datagrams sent to a group
to which the sending host itself belongs. The default is to loop the
datagrams back. This is an IPv4-only socket option.

IP_MULTICAST_TTL
Use this option to obtain the IP time-to-live of outgoing multicast
datagrams. The default value is '01'x meaning that multicast is
available only to the local subnet. This is an IPv4-only socket
option.

IPV6_MULTICAST_HOPS
Use this option to obtain the hop limit used for outgoing multicast
packets. This is an IPv6-only socket option.

IPV6_MULTICAST_IF
Use this option to obtain the index of the IPv6 interface used for
sending outbound multicast datagrams from the socket application.
This is an IPv6-only socket option.

IPV6_MULTICAST_LOOP
Use this option to determine whether a multicast datagram is
looped back on the outgoing interface by the IP layer for local
delivery, if datagrams are sent to a group to which the sending
host itself belongs. The default is to loop multicast datagrams back.
This is an IPv6-only socket option.

IPV6_UNICAST_HOPS
Use this option to obtain the hop limit used for outgoing unicast
IPv6 packets. This is an IPv6-only socket option.

IPV6_V6ONLY
Use this option to determine whether the socket is restricted to
send and receive only IPv6 packets. The default is to not restrict
the sending and receiving of only IPv6 packets. This is an
IPv6-only socket option.

GETSOCKOPT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 233

SO-LINGER
Requests the status of LINGER.
v If the LINGER option has been enabled, and data transmission

has not been completed, a CLOSE call blocks the calling
program until the data is transmitted or until the connection has
timed out.

v If LINGER is not enabled, a CLOSE call returns without blocking
the caller. TCP/IP attempts to send the data; although the data
transfer is usually successful, it cannot be guaranteed, because
TCP/IP only attempts to send the data for a specified amount of
time.

Parameter Values Returned to the Application

OPTVAL

v If SO-LINGER is specified in OPTNAME, the following structure is
returned:

ONOFF PIC X(8)
LINGER PIC 9(8)

– A nonzero value returned in ONOFF indicates that the option is
enabled; a zero value indicates that it is disabled.

– The LINGER value indicates the amount of time (in seconds) TCP/IP
will continue to attempt to send the data after the CLOSE call is
issued. To set the Linger time, see “SETSOCKOPT” on page 270.

OPTLEN
A fullword binary field containing the length of the data returned in
OPTVAL.
v For OPTNAME of SO-LINGER, OPTVAL contains two fullwords, so

OPTLEN will be set to 8 (two fullwords).

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

GIVESOCKET
The GIVESOCKET call is used to pass a socket from one process to another.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in
the following sequence:
1. A process issues a GETCLIENTID call to get the jobname of its region and its

VSE subtask identifier. This information is used in a GIVESOCKET call.
2. The process issues a GIVESOCKET call to prepare a socket for use by a child

process.
3. The child process issues a TAKESOCKET call to get the socket. The socket now

belongs to the child process, and can be used by TCP/IP to communicate with
another process.

GETSOCKOPT

234 z/VSE V5R2 TCP/IP Support

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.
The child process must use this new socket descriptor for all calls which use
this socket. The socket descriptor that was passed to the TAKESOCKET call
must not be used.

4. After issuing the GIVESOCKET command, the parent process issues a SELECT
command that waits for the child to get the socket.

5. When the child gets the socket, the parent receives an exception condition that
releases the SELECT command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’GIVESOCKET’.
01 S PIC 9(4) BINARY.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GIVESOCKET'. The field is left
justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
given.

CLIENT
A structure containing the identifier of the application to which the socket
should be given.

DOMAIN
A fullword binary number specifying the domain of the client. For
TCP/IP the value is a decimal 2, indicating AF_INET, or a decimal
19, indicating AF_INET6.

Note: A socket given by GIVESOCKET can only be taken by a
TAKESOCKET with the same DOMAIN, address family (AF_INET
or AF_INET6).

NAME
Specifies an 8-character field, left-justified, padded to the right with
blanks set to the address space name of the application (partition
ID) going to take the socket. If this field is left blank, any z/VSE
partition can take the socket.

GIVESOCKET

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 235

TASK Specifies an eight-character field that can be set to blanks, or to the
identifier of the socket-taking VSE subtask. If this field is set to
blanks, any subtask in the partition specified in the NAME field
can take the socket.

RESERVED
A 20-byte reserved field. This field is required, but only used
internally.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, ERRNO contains a valid
error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

GSKFREEMEM
The GSKFREEMEM call frees memory passed to the application on a previous call
to an SSL function.

Note: The distinguished name returned in the null-terminated string by the
GSKGETDNBYLAB call must be freed using GSKFREEMEM.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKFREEMEM ’.
01 AREA PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION AREA

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKFREEMEM'. The field is
left-justified and padded on the right with blanks.

AREA

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

GIVESOCKET

236 z/VSE V5R2 TCP/IP Support

RETCODE
A fullword binary field that returns one of the following

0 Successful call.

less than 0
An error occurred.

GSKGETCIPHINF
The GSKGETCIPHINF call requests cipher related information for SSL for VSE.

This information determines the encryption level that the system can support and
returns a list of cipher specifications that SSL can use. This allows an application to
determine, at run time, the level of SSL encryption that the installed application
can request.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKGETCIPHINF ’.
01 CIPHLEVEL PIC 9(8) BINARY.
01 SECLEVEL PIC X(104).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION CIPHLEVEL SECLEVEL

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKGETCIPHINF'. The field is
left-justified and padded on the right with blanks.

CIPHLEVEL
A fullword binary field with a number that determines the type of cipher
information to be returned. Valid values are

1 only exportable cipher information is to be returned
(GSK_LOW_SECURITY)

2 exportable and domestic cipher information is to be returned
(GSK_HIGH_SECURITY)

Parameter Values Returned to the Application

SECLEVEL
A 104 byte area where the system returns the following information:

4 bytes
System SSL version (always 3 for GSK_VERSION3)

64 bytes
A character string (terminated with x00) with the SSL Version 3
cipher specs allowed for use on the system (these are passable on
the V3CIPHER parameter on the GSKSSOCINIT call).

GSKFREEMEM

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 237

32 bytes
This field will always be filled with binary zeros because SSL for
VSE does not support SSL Version 2 cipher specs.

4 bytes
One of the following

1 GSK_SEC_LEVEL_US

2 GSK_SEC_LEVEL_EXPORT

3 GSK_SEC_LEVEL_EXPORT_FR

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
A fullword binary field that returns one of the following

0 Successful call.

less than 0
An error occurred. Please refer to VSE library member SSLVSE.A or
to the TCP/IP for VSE 1.5 Optional Features for a detailed
description of error return codes.

GSKGETDNBYLAB
The GSKGETDNBYLAB call returns the complete distinguished name for a key
based on the label the key has in the key database file.

This value can be used for the DNAME field in the GSKSSOCINIT call.

Note: The distinguished name returned in the null-terminated string must be freed
using the GSKFREEMEM call.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKGETDNBYLAB ’.
01 KEYLABEL PIC X(Length of key label).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION KEYLABEL

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKGETDNBYLAB'. The field is
left-justified and padded on the right with blanks.

KEYLABEL

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

GSKGETCIPHINF

238 z/VSE V5R2 TCP/IP Support

RETCODE
A fullword binary field that returns one of the following

greater 0
Successful call. RETCODE denotes a pointer to character string
with the distinguished name.

0 or less than 0
Unsuccessful call.

GSKINIT
The GSKINIT call sets the overall SSL for VSE environment for the current
partition.

After the function completes successfully, the application is ready to call SSL for
VSE interfaces and to create and use secure socket connections.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKINIT ’.
01 SECTYPE.

05 SECTYPE1 PIC X(5) VALUE IS ’SSL30’.
05 SECTPYE2 PIC 9(1) BINARY VALUE 0.

01 KEYRING.
05 KEYRING1 PIC X(11) VALUE IS ’PRIMARY.GSK’.
05 KEYRING2 PIC 9(1) COMP VALUE 0.

01 V3TIMEOUT PIC 9(8) COMP VALUE 86400.
01 CAROOTS PIC 9(8) COMP VALUE 0.
01 AUTHTYPE PIC 9(8) COMP VALUE 0.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION SECTYPE KEYRING

V3TIMEOUT CAROOTS AUTHTYPE
ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKINIT'. The field is left-justified
and padded on the right with blanks.

SECTYPE
A character string that identifies the minimum acceptable security protocol.
The value must be entered in upper case characters and terminated with a
X00. Valid values are (without double-quotes):
v "SSL30" for SSL Version 3.0
v "TLS31" for TLS Version 1.0 (not supported for client applications)

KEYRING
A character string specifying the "lib.sublib" where the private key and
certificates are stored. The string must be terminated with x00. Provide a
string of 8 blanks, if you want to use the default "SSL for VSE" files as
defined in procedure $SSL4VSE.PROC. Refer to TCP/IP for VSE 1.5 Optional
Features for details on this procedure.

GSKGETDNBYLAB

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 239

V3TIMEOUT
The number of seconds for the SSL V3 session Identifier to expire. The
valid range is 0 to 86400 (1 day). If this parameter is not specified, a
default value of 86400 is applied.

CAROOTS
A value that specifies which CA (Certificate Authority) root to use for
certificate verification. The supported values are:

0 Use the CA roots from the local key database file for certificate
verifcation.

1 Allow client authentication with certificates issued by the same
certificate authority as VSE.

AUTHTYPE
A value that specifies the method to use for verifying the client's certificate.
This field is only used, if CAROOTS is set to 1. The supported values are:

0 the client's certificate is verified using the local key database file.

1 the same meaning as with value 0

2 the same meaning as with value 0

3 the client's certificate is not verified.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
A fullword binary field that returns one of the following

0 Successful call.

not equal 0
An error occurred. Please refer to VSE library member SSLVSE.A or
to the TCP/IP for VSE 1.5 Optional Features for a detailed
description of error return codes.

GSKSSOCCLOSE
The GSKSSOCCLOSE call ends a secure socket connection and frees all SSL for
VSE resources for that connection.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCCLOSE ’.
01 SSOCDATA PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

GSKINIT

240 z/VSE V5R2 TCP/IP Support

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKSSOCCLOSE'. The field is
left-justified and padded on the right with blanks.

SSOCDATA
Address of GSKSOCDATA structure as returned in RETCODE by the
GSKSSOCINIT call.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
A fullword binary field that returns one of the following

0 Successful call.

less than 0.
An error occurred. Please refer to VSE library member SSLVSE.A or
to the TCP/IP for VSE 1.5 Optional Features for a detailed
description of error return codes.

GSKSSOCINIT
The GSKSSOCINIT call initializes the data areas for SSL for VSE to initiate or
accept a secure socket connection.

After the function is completed successfully, a pointer to a secured socket control
block (in the following referred to as GSKSOCDATA) is returned to the application.
Other calls using this secure socket connection must refer to this pointer.

During the call a complete handshake is performed based on the input specified
with the GSKSSOCINIT call. While SSL for VSE performs the mechanics of the SSL
handshake, "normal" RECV and SEND routines (provided by the EZAAPI
processing environment) will be used to transport the SSL data during the SSL
handshake, as well as for all subsequent read/write operations.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCINIT ’.
01 S PIC 9(4) BINARY.
01 HANDSHAKE PIC 9(8) BINARY.
01 DNAME.

05 DNAME1 PIC X(n) VALUE IS ’.......’.
05 DNAME2 PIC 9(1) BINARY VALUE 0.

01 V3CIPHER.
05 V3CIPHER1 PIC X(6) VALUE IS ’0A0908’.
05 V3CIPHER2 PIC 9(1) COMP VALUE 0.

01 SECTYPE USAGE IS POINTER.
01 V3CIPHSEL PIC X(2).
01 CERTINFO USAGE IS POINTER.
01 REASCODE PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION S HANDSHAKE DNAME

SECTYPE V3CIPHER V3CIPHSEL CERTINFO REASCODE
ERRNO RETCODE.

GSKSSOCCLOSE

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 241

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKSSOCINIT'. The field is
left-justified and padded on the right with blanks.

S A halfword binary field with the descriptor of the socket that is going to be
used for a secure socket connection.

HANDSHAKE
A halfword binary number that specifies how the handshake is performed:

0 Perform the SSL handshake as a client (GSK_AS_CLIENT).

1 Perform the SSL handshake as a server (GSK_AS_SERVER).

2 Perform the SSL handshake as a server that requires client
authentication (GSK_AS_SERVER_WITH_CLIENT_AUTH).

3 Perform the SSL handshake as a client without authentication
(GSK_AS_CLIENT_NO_AUTH).

DNAME
A character that is the Distinguished name or label of the desired entry
(certificate) in the key database file. This character string must be
terminated with x00. To use the default key database file entry, point to a
string of 8 blanks. The distinguished name for a key database file entry
may be determined via the EZASOKET GETDNBYLAB function call.

V3CIPHER
A character string that contains the list of SSL Version 3.0 ciphers in order
of usage preference. Valid values as supported by TCP/IP for VSE are:
v 01 for RSA512_NULL_MD5
v 02 for RSA512_NULL_SHA
v 08 for RSA512_DES40CBC_SHA
v 09 for RSA1024_DESCBC_SHA
v 0A for RSA1024_3DESCBC_SHA
v 62 for RSA1024_EXPORT_DESCBC_SHA

You can use any combination of these values in any order. The list of
values must be terminated with x00. The exportable cipher suites
01,02,08,62 can only be used with SSL30, and will not work with TLS1.0.
To use the default SSL V3 cipher specs (which is 0A0908) specify a string
of 8 blanks.

Parameter Values Returned to the Application

SECTYPE
A fullword binary field where the address of a character string is stored
that identifies the minimum acceptable security protocol. The character
string is terminated with x00. Valid values are (without double-quotes):
v "SSL30" for SSL Version 3.0
v "TLS31" for TLS Version 1.0

GSKSSOCINIT

242 z/VSE V5R2 TCP/IP Support

V3CIPHSEL
A 2-byte area (provided by the application) where the architected SSL
Version 3.0 cipher spec value selected for this session is stored (for
example: x0009).

CERTINFO
A fullword binary field where the address of the Distinguished Name
components from the client's certificate is stored. This parameter is only
valid, if client authentication is requested for a server using SSL. The
layout of this area is as follows:

4 bytes
Pointer to base64 certificate body

4 bytes
Length of base64 certificate body

4 bytes
Pointer to session ID for this connection

4 bytes
Flag to indicate if new session

4 bytes
Pointer to certificate serial number

4 bytes
Pointer to common name of client

4 bytes
Pointer to locality

4 bytes
Pointer to state or province

4 bytes
Pointer to country

4 bytes
Pointer to organization

4 bytes
Pointer to organizational unit

4 bytes
Pointer to issuer's common name

4 bytes
Pointer to issuer's locality

4 bytes
Pointer to issuer's state or province

4 bytes
Pointer to issuer's country

4 bytes
Pointer to issuer's organization

4 bytes
Pointer to issuer's organizational unit

GSKSSOCINIT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 243

REASCODE
A fullword binary field where the failure reason code for the
GSKSSOCINIT call is stored. A value of 0 indicates the successful
completion of the function.

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
If REASCODE is 0, the RETCODE parameter contains the pointer to a
GSKSOCDATA structure which needs to be used in subsequent SSL for
VSE operations.

GSKSSOCREAD
The GSKSSOCREAD call receives data on a secure socket connection.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCREAD ’.
01 SSOCDATA PIC 9(8) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA NBYTE BUF

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKSSOCREAD'. The field is
left-justified and padded on the right with blanks.

SSOCDATA
Address of GSKSOCDATA structure as returned in RETCODE by the
GSKSSOCINIT call.

NBYTE
A fullword binary number set to the size of BUF. GSKSSOCREAD will not
return more than the number of bytes specified in NBYTE even if more
data is available. The length of the data buffer must be either 64 Kb or at
least 32 bytes larger than the largest send buffer that is to be received.

BUF A buffer to be filled by completion of the call. The length of BUF must be
at least as long as the value of NBYTE.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
A fullword binary field that returns one of the following

GSKSSOCINIT

244 z/VSE V5R2 TCP/IP Support

0 or greater 0.
Successful call. RETCODE denotes the number of bytes which have
been received.

less than 0.
An error occurred. Please refer to VSE library member SSLVSE.A or
to the TCP/IP for VSE 1.5 Optional Features for a detailed
description of error return codes.

GSKSSOCRESET
The GSKSSOCRESET call refreshes the security parameters, such as encryption
keys, for a session.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCRESET ’.
01 SSOCDATA PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKSSOCRESET'. The field is
left-justified and padded on the right with blanks.

SSOCDATA
Address of GSKSOCDATA structure as returned in RETCODE by the
GSKSSOCINIT call.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
A fullword binary field that returns one of the following

0 Successful call.

less than 0.
An error occurred. Please refer to VSE library member SSLVSE.A or
to the TCP/IP for VSE 1.5 Optional Features for a detailed
description of error return codes.

GSKSSOCWRITE
The GSKSSOCWRITE call sends data on a secure socket connection.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKSSOCWRITE ’.
01 SSOCDATA PIC 9(8) BINARY.
01 NBYTE PIC 9(8) BINARY.

GSKSSOCREAD

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 245

01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION SSOCDATA NBYTE BUF

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKSSOCWRITE'. The field is
left-justified and padded on the right with blanks.

SSOCDATA
Address of GSKSOCDATA structure as returned in RETCODE by the
GSKSSOCINIT call.

NBYTE
A fullword binary number set to the number of bytes to transmit. The
maximum supported number of bytes is 64K.

BUF Specifies the buffer containing the data to be transmitted. BUF should have
the size specified in NBYTE.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
A fullword binary field that returns one of the following

0 or greater 0.
Successful call. RETCODE denotes the number of bytes which have
been sent.

less than 0.
An error occurred. Please refer to VSE library member SSLVSE.A or
to the TCP/IP for VSE 1.5 Optional Features for a detailed
description of error return codes.

GSKUNINIT
The GSKUNINIT call removes the current overall settings for the SSL environment.

It removes fields such as session timeout values and SSL protocols.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’GSKUNINIT ’.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
CALL ’EZASOKET’ USING SOC-FUNCTION

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

GSKSSOCWRITE

246 z/VSE V5R2 TCP/IP Support

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'GSKUNINIT'. The field is left-justified
and padded on the right with blanks.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. May show detailed error information.

RETCODE
A fullword binary field that returns one of the following

0 Successful call.

not equal 0
An error occurred. Please refer to VSE library member SSLVSE.A or
to the TCP/IP for VSE 1.5 Optional Features for a detailed
description of error return codes.

INITAPI
The INITAPI call connects an application to the TCP/IP interface.

Almost all sockets programs that are written in COBOL, PL/I, or assembler
language must issue the INITAPI macro before they issue other sockets macros.

The exceptions to this rule are the following calls, which, when issued first, will
generate a default INITAPI call.
v GETCLIENTID
v GETHOSTID
v GETHOSTNAME
v SELECT
v SELECTEX
v SOCKET
v TAKESOCKET

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’INITAPI’.
01 MAXSOC PIC 9(4) BINARY.
01 IDENT.

02 TCPNAME PIC X(8).
02 ADSNAME PIC X(8).

01 SUBTASK PIC X(8).
01 MAXSNO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC IDENT SUBTASK
MAXSNO ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

GSKUNINIT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 247

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing INITAPI. The field is left justified and
padded on the right with blanks.

MAXSOC
Input parameter. A halfword binary field specifying the maximum number
of sockets supported for this application. Currently, TCP/IP for VSE/ESA
ignores this input and defaults the maximum number of sockets supported
to 8192. Socket descriptor numbers are in the range 0 – 8191.

IDENT
A structure containing the identities of the TCP/IP address space and the
calling program’s address space. Specify IDENT on the INITAPI call from
an address space.

TCPNAME
Starting with z/VSE 4.2, this parameter can be used to select the
local TCP/IP stack used with this application. This 8-byte
parameter can be set to "SOCKETnn" or just to "nn" (left- or
right-adjusted, padded with 6 blanks). The value "nn" determines
the ID of the selected TCP/IP stack as it is specified with the ID
parameter in the TCP/IP startup JCL.

ADSNAME
The parameter can be used to specify the name of the TCP/IP
Interface Routine used by the EZA processing environment. If
nothing is specified here, the IBM-supplied TCP/IP Interface
Routine EZASOH99 is used. Note that this specification can be
overwritten with the following JCL statement: // SETPARM
[SYSTEM,] EZA$PHA='routine-name'.

SUBTASK
Indicates an eight-byte field, containing a unique subtask identifier which
is used to distinguish between multiple subtasks within a single address
space. Use your own job name as part of your subtask name. This will
ensure that, if you issue more than one INITAPI command from the same
address space, each SUBTASK parameter will be unique. If not specified or
specified as 8 blanks, a default subtask name is used. In a batch
environment we have

byte 0-2
first 3 characters of the JOBNAME

byte 3
hex F0

byte 4-7
the VSE Task Identifier

In a CICS transaction environment we have

byte 0-2
the CICS EIBTRNID (transaction identifier)

byte 3 hex F1

byte 4-7
the CICS EIBTASKN (task number)

INITAPI

248 z/VSE V5R2 TCP/IP Support

Parameter Values Returned to the Application

MAXSNO
Output parameter. A fullword binary field containing the greatest
descriptor number that may get assigned to this application. The socket
descriptor assigned to the application will not be in consecutive order.
Currently, TCP/IP for VSE/ESA always returns 8191.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the
characteristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are
passed to and returned from IOCTL. The length of REQARG and RETARG is
determined by the value that you specify in COMMAND.

Example in COBOL
WORKING-STORAGE SECTION.
01 SOKET-FUNCTION PIC X(16) VALUE ’IOCTL’.
01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(4) BINARY.

01 IFREQ,
3 NAME PIC X(16).
3 FAMILY PIC 9(4) BINARY.
3 PORT PIC 9(4) BINARY.
3 ADDRESS PIC 9(8) BINARY.
3 RESERVED PIC X(8).

01 IFREQOUT,
3 NAME PIC X(16).
3 FAMILY PIC 9(4) BINARY.
3 PORT PIC 9(4) BINARY.
3 ADDRESS PIC 9(8) BINARY.
3 RESERVED PIC X(8).

01 GRP_IOCTL_TABLE(100)
02 IOCTL_ENTRY,
3 NAME PIC X(16).
3 FAMILY PIC 9(4) BINARY.
3 PORT PIC 9(4) BINARY.
3 ADDRESS PIC 9(8) BINARY.
3 NULLS PIC X(8).

01 IOCTL_REQARG POINTER ;
01 IOCTL_RETARG POINTER ;
01 ERRNO PIC 9(8) BINARY.

INITAPI

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 249

01 RETCODE PIC 9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S COMMAND REQARG

RETARG ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing IOCTL. The field is left justified and
padded to the right with blanks.

S A halfword binary number set to the descriptor of the socket to be
controlled.

COMMAND
To control an operating characteristic, set this field to the value shown in
Table 9 on page 349.

REQARG and RETARG
REQARG is used to pass arguments to IOCTL and RETARG receives
arguments from IOC. For the lengths and meanings of REQARG and
RETARG see Table 9 on page 349.

Parameter Values Returned to the Application

RETARG
Returns an array whose size is based on the value in COMMAND.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

LISTEN
The LISTEN call creates a connection-request queue of a specified length for
incoming connection requests.

Important: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from
clients. If a connection request is received, a new socket is created by a subsequent
ACCEPT call, and the original socket continues to listen for additional connection
requests. The LISTEN call converts an active socket to a passive socket and
conditions it to accept connection requests from clients. Once a socket becomes
passive it cannot initiate connection requests. The LISTEN call requires a BIND
request to be issued previously.

IOCTL

250 z/VSE V5R2 TCP/IP Support

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’LISTEN’.
01 S PIC 9(4) BINARY.
01 BACKLOG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing LISTEN. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to
be queued. This parameter is ignored. A value of 1 is always assumed.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

NTOP
The NTOP call converts an IP address from its numeric binary form into a
standard text presentation form.

On successful completion, NTOP returns the converted IP address in the buffer
provided.

Important: This function call is not available with TCP/IP for VSE/ESA.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-ACCEPT-FUNCTION PIC X(16) VALUE IS 'ACCEPT'.
01 SOC-NTOP-FUNCTION PIC X(16) VALUE IS 'NTOP'.
01 S PIC 9(4) BINARY.

* IPv4 socket structure.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.

LISTEN

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 251

03 RESERVED PIC X(8).

* IPv6 socket structure.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.

10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.

03 SCOPE-ID PIC 9(8) BINARY.
01 NTOP-FAMILY PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
01 PRESENTABLE-ADDRESS PIC X(45).
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY.

PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-ACCEPT-FUNCTION S NAME ERRNO RETCODE.
CALL 'EZASOKET' USING SOC-NTOP-FUNCTION NTOP-FAMILY IP-ADDRESS

PRESENTABLE-ADDRESS PRESENTABLE-ADDRESS-LEN ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-NTOP-FUNCTION
A 16-byte character field containing NTOP. The field is left justified and
padded on the right with blanks.

NTOP-FAMILY
The addressing family for the IP address being converted. The value of
decimal 2 must be specified for AF_INET and 19 for AF_INET6.

IP-ADDRESS
A field containing the numeric binary form of the IPv4 or IPv6 address
being converted. For an IPv4 address this field must be a fullword and for
an IPv6 address this field must be 16 bytes. The address must be in
network byte order.

Parameter Values Returned to the Application

PRESENTABLE-ADDRESS
A field used to receive the standard text presentation form of the IPv4 or
IPv6 address being converted. For IPv4 the address will be in
dotted-decimal format and for IPv6 the address will be in colon-hex
format. The size of the IPv4 address will be a maximum of 15 bytes and
the size of the converted IPv6 address will be a maximum of 45 bytes.
Consult the value returned in PRESENTABLE-ADDRESS-LEN for the
actual length of the value in PRESENTABLE-ADDRESS.

PRESENTABLE-ADDRESS-LEN
Initially, an input parameter. The address of a binary halfword field that is
used to specify the length of the PRESENTABLE-ADDRESS field on input
and upon a successful return will contain the length of the converted IP
address.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. Otherwise ignore the ERRNO field. See “ERRNO Values” on
page 74 for information about ERRNO return codes.

NTOP

252 z/VSE V5R2 TCP/IP Support

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

PTON
The PTON call converts an IP address from its standard text presentation form to
its numeric binary form.

On successful completion, PTON returns the converted IP address in the buffer
provided.

Important: This function call is not available with TCP/IP for VSE/ESA.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-BIND-FUNCTION PIC X(16) VALUE IS 'BIND'.
01 SOC-PTON-FUNCTION PIC X(16) VALUE IS 'PTON'.
01 S PIC 9(4) BINARY.

* IPv4 socket structure.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

* IPv6 socket structure.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 FLOWINFO PIC 9(8) BINARY.
03 IP-ADDRESS.

10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.

03 SCOPE-ID PIC 9(8) BINARY.
01 AF-INET PIC 9(8) BINARY VALUE 2.
01 AF-INET6 PIC 9(8) BINARY VALUE 19.

* IPv4 address.
01 PRESENTABLE-ADDRESS PIC X(45).
01 PRESENTABLE-ADDRESS-IPV4 REDEFINES PRESENTABLE-ADDRESS.

05 PRESENTABLE-IPV4-ADDRESS PIC X(15) VALUE '192.26.5.19'.
05 FILLER PIC X(30).

01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 11.

* IPv6 address.
01 PRESENTABLE-ADDRESS PIC X(45) VALUE '12f9:0:0:c30:123:457:9cb:1112'.
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 29.

* IPv4-mapped IPv6 address.
01 PRESENTABLE-ADDRESS PIC X(45) VALUE '12f9:0:0:c30:123:457:192.26.5.19'.
01 PRESENTABLE-ADDRESS-LEN PIC 9(4) BINARY VALUE 32.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE DIVISION.
* IPv4 address.

CALL 'EZASOKET' USING SOC-PTON-FUNCTION AF-INET PRESENTABLE-ADDRESS
PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.

NTOP

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 253

* IPv6 address.
CALL 'EZASOKET' USING SOC-PTON-FUNCTION AF-INET6 PRESENTABLE-ADDRESS

PRESENTABLE-ADDRESS-LEN IP-ADDRESS ERRNO RETURN-CODE.
CALL 'EZASOKET' USING SOC-BIND-FUNCTION S NAME ERRNO RETURN-CODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-PTON-FUNCTION
A 16-byte character field containing PTON. The field is left justified and
padded on the right with blanks.

AF-INET6
The addressing family for the IP address being converted. The value of
decimal 2 must be specified for AF_INET and 19 for AF_INET6.

PRESENTABLE-ADDRESS
A field containing the standard text presentation form of the IPv4 or IPv6
address being converted. For IPv4 the address will be in dotted-decimal
format and for IPv6 the address will be in colon-hex format.

PRESENTABLE-ADDRESS-LEN
The address of a binary halfword field that must contain the length of the
IP address to be converted.

Parameter Values Returned to the Application

IP-ADDRESS
A field containing the numeric binary form of the IPv4 or IPv6 address
being converted. For an IPv4 address this field must be a fullword and for
an IPv6 address this field must be 16 bytes. The address must be in
network byte order.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. Otherwise ignore the ERRNO field. See “ERRNO Values” on
page 74 for information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

READ
The READ call reads the data on sockets.

This is the conventional TCP/IP read data operation. If a datagram packet is too
long to fit in the supplied buffer, datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
this call in a loop that repeats until all data has been received.

PTON

254 z/VSE V5R2 TCP/IP Support

Note: See “EZACIC05” on page 281 for a subroutine that translates ASCII input
data to EBCDIC.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’READ’.
01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing READ. The field is left justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is
going to read the data.

NBYTE
A fullword binary number set to the size of BUF. READ does not return
more than the number of bytes of data in NBYTE even if more data is
available.

Parameter Values Returned to the Application

BUF On input, a buffer to be filled by completion of the call. The length of BUF
must be at least as long as the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the connection is closed and no
data is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

-1 Check ERRNO for an error code.

READV
The READV call reads data on a socket and stores it into a set of buffers.

If a datagram socket is too long to fit into the supplied buffers, the extra bytes are
discarded.

READ

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 255

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’READV’.
01 S PIC 9(4) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
01 IOVCNT PIC 9(8) BINARY.
01 IOV.

03 BUFFER-ENTRY OCCURS 5 TIMES.
05 IOV-POINTER USAGE IS POINTER.
05 RESERVED PIC X(4).
05 IOV-LENGTH PIC 9(8) BINARY.

01 HEAPID PIC S9(9) BINARY VALUE IS 0.

PROCEDURE DIVISION.

MOVE 50 TO IOV-LENGTH(1).
MOVE 50 TO IOV-LENGTH(2).
MOVE 50 TO IOV-LENGTH(3).
MOVE 50 TO IOV-LENGTH(4).
MOVE 50 TO IOV-LENGTH(5).
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(1), IOV-POINTER(1),

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(2), IOV-POINTER(2),

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(3), IOV-POINTER(3),

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(4), IOV-POINTER(4),

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(5), IOV-POINTER(5),

FC.

CALL ’EZASOKET’ USING SOC-FUNCTION S IOV IOVCNT
ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing READV. The field is left justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is
going to read the data.

IOV An array of three fullword structures with the number of structures equal
to the value of IOVCNT.

The format of the structure is as follows:
v Fullword 1: The address of the data buffer. This buffer is filled by the

completion of the call.
v Fullword 2: reserved
v Fullword 3: The length of the data buffer referred to by Fullword 1

IOVCNT
A fullword binary field specifying the number of data buffers provided for
this call. The maximum is 120.

READV

256 z/VSE V5R2 TCP/IP Support

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, this field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 The connection is closed and no data is available.

>0 The number of bytes copied into the buffer.

-1 An error occurred. Check ERRNO for an error code.

RECV
The RECV call, like READ receives data on a socket with descriptor S.

RECV applies only to connected sockets. If a datagram packet is too long to fit in
the supplied buffers, datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV
blocks the caller until data arrives. If data is not available and the socket is in
nonblocking mode, RECV returns a -1 and sets ERRNO EWOULDBLOCK. See
“FCNTL” on page 209 or “IOCTL” on page 249 for a description of how to set
nonblocking mode.

Note: See “EZACIC05” on page 281 for a subroutine that translates ASCII input
data to EBCDIC.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’RECV’.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE BUF

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

READV

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 257

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing RECV. The field is left justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field which must be zet to NO-FLAG or 0.

NBYTE
A value or the address of a fullword binary number set to the size of BUF.
RECV does not receive more than the number of bytes of data in NBYTE
even if more data is available.

Parameter Values Returned to the Application

BUF The input buffer to receive the data.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 The socket is closed

>0 A positive return code indicates the number of bytes copied into
the buffer.

-1 Check ERRNO for an error code

RECVFROM
The RECVFROM call receives data on a socket with descriptor S and stores it in a
buffer.

The RECVFROM call applies to both connected and unconnected sockets. The
socket address is returned in the NAME structure. If a datagram packet is too long
to fit in the supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, recvfrom() returns the source address associated with each
incoming datagram. For connection-oriented protocols like TCP, getpeername()
returns the address associated with the other end of the connection.

If NAME is nonzero, the call returns the address of the sender. The NBYTE
parameter should be set to the size of the buffer.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECVFROM in a loop that repeats until all data has been received.

RECV

258 z/VSE V5R2 TCP/IP Support

If data is not available for the socket, and the socket is in blocking mode,
RECVFROM blocks the caller until data arrives. If data is not available and the
socket is in nonblocking mode, RECVFROM returns a -1 and sets ERRNO
EWOULDBLOCK. See “FCNTL” on page 209 or “IOCTL” on page 249 for a
description of how to set nonblocking mode.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Note: See “EZACIC05” on page 281 for a subroutine that will translate ASCII
input data to EBCDIC.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’RECVFROM’.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS

NBYTE BUF NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing RECVFROM. The field is left justified
and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field which must be set to NO-FLAG or 0.

NBYTE
A fullword binary number specifying the length of the input buffer.

Parameter Values Returned to the Application

BUF Defines an input buffer to receive the input data.

NAME
Initially, the IPv4 or IPv6 application provides a pointer to a structure that
will contain the peer socket name on completion of the call. If the NAME
parameter value is nonzero, the IPv4 or IPv6 source address of the
message is filled. Include the PRD1.MACLIB(EZBREHST) macro to get the
assembler mappings for the socket address structure. The socket address
structure mappings begin at the SOCKADDR label. The AF_INET socket

RECVFROM

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 259

address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the port number of the sending
socket.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field specifying the port number of the sending
socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 The socket is closed.

RECVFROM

260 z/VSE V5R2 TCP/IP Support

>0 A positive return code indicates the number of bytes of data
transferred by the read call.

-1 Check ERRNO for an error code.

SELECT
In a process where multiple I/O operations can occur it is necessary for the
program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose
blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this
problem, but would require polling each socket repeatedly until data became
available. The SELECT call allows you to test several sockets and to execute a
subsequent I/O call only, if one of the tested sockets is ready; thereby ensuring
that the I/O call will not block.

To use the SELECT call as a timer in your program, do one of the following:
v Set the read, write, and except arrays to zeros.
v Specify MAXSOC <= 0.

Defining Which Sockets to Test

The SELECT call monitors for read operations, write operations, and exception
operations:
v If a socket is ready to read, one of the following has occurred:

– A buffer for the specified sockets contains input data. If input data is
available for a given socket, a read operation on that socket will not block.

– A connection has been requested on that socket.
v If a socket is ready to write, TCP/IP can accommodate additional output data. If

TCP/IP can accept additional output for a given socket, a write operation on
that socket will not block.

v If an exception condition has occurred on a specified socket, it is an indication
that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit
represents socket descriptor zero; the leftmost bit represents socket descriptor 31,
and so on. If your process uses 32 or fewer sockets, the bit string is one fullword.
If your process uses 33 sockets, the bit string is two full words. The first fullword
represents socket descriptors 0 to 31, the second fullword is for socket descriptors
32 to 63. You define the sockets that you want to test by turning on bits in the
string.

Note: To simplify string processing in COBOL, you can use the program
EZACIC06 to convert each bit in the string to a character. For more information,
see “EZACIC06” on page 282.

Read Operations

Read operations include ACCEPT, READ, RECV, or RECVFROM calls. A socket is
ready to be read if data has been received for it, or if a connection request has
occurred.

RECVFROM

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 261

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to one before issuing the SELECT call. When the SELECT call
returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write Operations

A socket is selected for writing (ready to be written) if:
v TCP/IP can accept additional outgoing data.
v The socket is marked nonblocking and a previous CONNECT did not complete

immediately. In this case, CONNECT returned an ERRNO with a value
EINPROGRESS. This socket will be selected for write, when the CONNECT
completes.

A call to WRITE, SEND, or SENDTO blocks, if the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a SELECT call to ensure that the socket is ready for writing.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to one before issuing the SELECT call. When the
SELECT call returns, the corresponding bits in the WRETMSK indicate sockets
ready for writing.

Exception Operations

For each socket to be tested, the SELECT call can check for an existing exception
condition. Two exception conditions are supported:
v The calling program (concurrent server) has issued a GIVESOCKET command

and the target child server has successfully issued the TAKESOCKET call. If this
condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

v A socket has received out-of-band data. On this condition, a READ will return
the out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to one. When the SELECT call returns,
the corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC Parameter

The SELECT call must test each bit in each string before returning results. For
efficiency, the MAXSOC parameter can be used to specify the largest socket
descriptor number that needs to be tested for any event type. The SELECT call
tests only bits in the range zero through the MAXSOC value.

TIMEOUT Parameter

If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECT call returns, RETCODE is set to 0.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECT’.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

SELECT

262 z/VSE V5R2 TCP/IP Support

01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(*).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
ERRNO RETCODE.

The following example shows a SELECT call instruction:

* The bit mask lengths can be determined from the expression:
((maximum socket number +32)/32 (drop the remainder))*4

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into
one 32-bit mask [PIC X(4)]. If you have 33 sockets, you must allocate two 32-bit
masks [PIC X(8)].

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing SELECT. The field is left justified and
padded on the right with blanks.

MAXSOC
Input parameter. A fullword binary field specifying the largest socket
descriptor number to be checked plus 1 (remember, TCP/IP for VSE/ESA
supports socket descriptor numbers from 0 to 8191).

TIMEOUT
If TIMEOUT is a positive value, it specifies the maximum interval to wait
for the selection to complete. If TIMEOUT-SECONDS is a negative value,
the SELECT call blocks until a socket becomes ready. To poll the sockets
and return immediately, specify the TIMEOUT value to be zero.

TIMEOUT is specified in the two-word TIMEOUT as follows:
v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds

component of the timeout value.
v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the

microseconds component of the timeout value (0—999999).

For example, if you want SELECT to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
A bit string sent to request read event status.
v For each socket to be checked for pending read events, the

corresponding bit in the string should be set to 1.
v For sockets to be ignored, the value of the corresponding bit should be

set to 0.

SELECT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 263

If this parameter is set to all zeros, the SELECT will not check for read
events.

WSNDMSK
A bit string sent to request write event status.
v For each socket to be checked for pending write events, the

corresponding bit in the string should be set to set.
v For sockets to be ignored, the value of the corresponding bit should be

set to 0.

If this parameter is set to all zeros, the SELECT will not check for write
events.

ESNDMSK
A bit string sent to request exception event status.
v For each socket to be checked for pending exception events, the

corresponding bit in the string should be set to set.
v For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for
exception events.

Parameter Values Returned to the Application

RRETMSK
A bit string returned with the status of read events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that is ready to read, the corresponding bit in the string
will be set to 1; bits that represent sockets that are not ready to read will
be set to 0.

WRETMSK
A bit string returned with the status of write events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that is ready to write, the corresponding bit in the string
will be set to 1; bits that represent sockets that are not ready to be written
will be set to 0.

ERETMSK
A bit string returned with the status of exception events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that has an exception status, the corresponding bit will be
set to 1; bits that represent sockets that do not have exception status will
be set to 0.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

>0 Indicates the sum of all ready sockets in the three masks

0 Indicates that the SELECT time limit has expired

-1 Check ERRNO for an error code

SELECT

264 z/VSE V5R2 TCP/IP Support

SELECTEX
The SELECTEX call monitors a set of sockets, a time value and an ECB or list of
ECBs.

It completes, if either one of the sockets has activity, the time value expires, or one
of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:
v Set the read, write, and except arrays to zeros
v Specify MAXSOC <= 0

For a detailed description on testing sockets, refer to the description of “SELECT”
on page 261.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’SELECTEX’.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MINUTES PIC 9(8) BINARY.

01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(*).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 SELECB PIC X(4).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

where * is the size of the select mask

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
SELECB ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:
((maximum socket number +32)/32 (drop the remainder))*4

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

MAXSOC
Input parameter. A fullword binary field specifying the largest socket
descriptor number to be checked plus 1 (remember, TCP/IP for VSE/ESA
supports socket descriptor numbers from 0 to 8191).

TIMEOUT
If TIMEOUT is a positive value, it specifies a maximum interval to wait for
the selection to complete. If TIMEOUT-SECONDS is a negative value, the
SELECT call blocks until a socket becomes ready. To poll the sockets and
return immediately, set TIMEOUT to be zeros.

TIMEOUT is specified in the two-word TIMEOUT as follows:

SELECTEX

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 265

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECTEX to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
The bit-mask array to control checking for read interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
will not check for read interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

WSNDMSK
The bit-mask array to control checking for write interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
will not check for write interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

ESNDMSK
The bit-mask array to control checking for exception interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
will not check for exception interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

SELECB
An ECB which, if posted, causes completion of the SELECTEX.

If an ECB list is specified, you must set the high-order bit of the last entry
in the ECB list to one to signify it is the last entry, and you must add the
LIST keyword. The ECBs must reside in the caller primary address space.

Note: The maximum number of ECBs that can be specified in a list is 254.

Parameter Values Returned to the Application

ERRNO
A fullword binary field; if RETCODE is negative, this contains an error
number. See “ERRNO Values” on page 74 for information about ERRNO
return codes.

RETCODE
A fullword binary field

Value Meaning

>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value will be
zero) or one of the caller's ECBs has been posted (ECB value will
be non-zero and the caller's descriptor sets will be set to 0). The
caller must initialize the ECB values to zero before issuing the
SELECTEX macro.

-1 Error; check ERRNO.

RRETMSK
The bit-mask array returned by the SELECT if RSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

SELECTEX

266 z/VSE V5R2 TCP/IP Support

WRETMSK
The bit-mask array returned by the SELECT if WSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

ERETMSK
The bit-mask array returned by the SELECT if ESNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

SEND
The SEND call sends data on a specified connected socket.

For datagram sockets, SEND transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes,
with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place this call in a loop, reissuing the call until all data has
been sent.

Note: See “EZACIC04” on page 281 for a subroutine that will translate EBCDIC
input data to ASCII.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’SEND’.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.
88 OOB VALUE IS 1.
88 DONT-ROUTE VALUE IS 4.

01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

BUF ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing SEND. The field is left justified and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket
that is sending data.

FLAGS
A fullword binary field which must be set to 0.

NBYTE
A fullword binary number set to the number of bytes of data to be
transferred.

SELECTEX

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 267

BUF The buffer containing the data to be transmitted. BUF should be the size
specified in NBYTE.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code

SENDTO
SENDTO is similar to SEND, except that it includes the destination address
parameter.

The destination address allows you to use the SENDTO call to send datagrams on
a UDP socket, regardless of whether the socket is connected.

For datagram sockets SENDTO transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes,
with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place SENDTO in a loop that repeats the call until all data
has been sent.

Note: See “EZACIC04” on page 281 for a subroutine that will translate EBCDIC
input data to ASCII.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’SENDTO’.
01 S PIC 9(4) BINARY.
01 FLAGS. PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 NAME

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

SEND

268 z/VSE V5R2 TCP/IP Support

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S FLAGS NBYTE

BUF NAME ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing SENDTO. The field is left justified and
padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket
sending the data.

FLAGS
A fullword field that must be set to 0.

NBYTE
A fullword binary number set to the number of bytes to transmit.

BUF Specifies the buffer containing the data to be transmitted. BUF should be
the size specified in NBYTE.

NAME
Input parameter. The address of the IPv4 or IPv6 target. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the
socket address structure. The socket address structure mappings begin at
the SOCKADDR label. The AF_INET socket address structure fields start at
the SOCK_SIN label. The AF_INET6 socket address structure fields start at
the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

Field Description

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the port number bound to the
socket.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address
of the socket.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

Field Description

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

SENDTO

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 269

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field specifying the port number bound to the
socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address of the socket, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket.

SETSOCKOPT can be called only for sockets in the AF_INET or AF_INET6
domains.

The OPTVAL and OPTLEN parameters are used to pass data used by the
particular set command. The OPTVAL parameter points to a buffer containing the
data needed by the set command. The OPTVAL parameter is optional and can be
set to 0, if data is not needed by the command. The OPTLEN parameter must be
set to the size of the data pointed to by OPTVAL.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’SETSOCKOPT’.
01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.

88 SO-REUSEADDR VALUE 4.
88 SO-KEEPALIVE VALUE 8.
88 SO-LINGER VALUE 128.

01 OPTVAL PIC 9(16) BINARY.
01 OPTLEN PIC 9(8) BINARY.

SENDTO

270 z/VSE V5R2 TCP/IP Support

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'SETSOCKOPT'. The field is left
justified and padded to the right with blanks.

S A halfword binary number set to the socket whose options are to be set.

OPTNAME
Specify one of the following values.

IP_ADD_MEMBERSHIP
Use this option to enable an application to join a multicast group
on a specific interface. An interface has to be specified with this
option. Only applications that want to receive multicast datagrams
need to join multicast groups. This is an IPv4-only socket option.

IP_ADD_SOURCE_MEMBERSHIP
Use this option to enable an application to join a source multicast
group on a specific interface and a specific source address. You
must specify an interface and a source address with this option.
Applications that want to receive multicast datagrams need to join
source multicast groups. This is an IPv4-only socket option.

IP_BLOCK_SOURCE
Use this option to enable an application to block multicast packets
that have a source address that matches the given IPv4 source
address. You must specify an interface and a source address with
this option. The specified multicast group must have been joined
previously. This is an IPv4-only socket option.

IP_DROP_MEMBERSHIP
Use this option to enable an application to exit a multicast group
or to exit all sources for a multicast group. This is an IPv4-only
socket option.

IP_DROP_SOURCE_MEMBERSHIP
Use this option to enable an application to exit a source multicast
group. This is an IPv4-only socket option.

IP_MULTICAST_IF
Use this option to set the IPv4 interface address used for sending
outbound multicast datagrams from the socket application. This is
an IPv4-only socket option.

Note: Multicast datagrams can be transmitted only on one
interface at a time.

IP_MULTICAST_LOOP
Use this option to control whether a copy of multicast datagrams
are looped back for multicast datagrams sent to a group to which

SETSOCKOPT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 271

the sending host itself belongs. The default is to loop the
datagrams back. This is an IPv4-only socket option.

IP_MULTICAST_TTL
Use this option to set the IP time-to-live of outgoing multicast
datagrams. The default value is '01'x meaning that multicast is
available only to the local subnet. This is an IPv4-only socket
option.

IP_UNBLOCK_SOURCE
Use this option to enable an application to unblock a previously
blocked source for a given IPv4 multicast group. You must specify
an interface and a source address with this option. This is an
IPv4-only socket option.

IPV6_JOIN_GROUP
Use this option to control the reception of multicast packets and
specify that the socket join a multicast group. This is an IPv6-only
socket option.

IPV6_LEAVE_GROUP
Use this option to control the reception of multicast packets and
specify that the socket leave a multicast group. This is an IPv6-only
socket option.

IPV6_MULTICAST_HOPS
Use to set the hop limit used for outgoing multicast packets. This
is an IPv6-only socket option.

IPV6_MULTICAST_IF
Use this option to set the index of the IPv6 interface used for
sending outbound multicast datagrams from the socket application.
This is an IPv6-only socket option.

IPV6_MULTICAST_LOOP
Use this option to control whether a multicast datagram is looped
back on the outgoing interface by the IP layer for local delivery, if
datagrams are sent to a group to which the sending host itself
belongs. The default is to loop multicast datagrams back. This is an
IPv6-only socket option.

IPV6_UNICAST_HOPS
Use this option to set the hop limit used for outgoing unicast IPv6
packets. This is an IPv6-only socket option.

IPV6_V6ONLY
Use this option to set whether the socket is restricted to send and
receive only IPv6 packets. The default is to not restrict the sending
and receiving of only IPv6 packets. This is an IPv6-only socket
option.

MCAST_BLOCK_SOURCE
Use this option to enable an application to block multicast packets
that have a source address that matches the given source address.
You must specify an interface index and a source address with this
option. The specified multicast group must have been joined
previously.

MCAST_JOIN_GROUP
Use this option to enable an application to join a multicast group

SETSOCKOPT

272 z/VSE V5R2 TCP/IP Support

on a specific interface. You must specify an interface index.
Applications that want to receive multicast datagrams must join
multicast groups.

MCAST_JOIN_SOURCE_GROUP
Use this option to enable an application to join a source multicast
group on a specific interface and a source address. You must
specify an interface index and the source address. Applications that
want to receive multicast datagrams only from specific source
addresses need to join source multicast groups.

MCAST_LEAVE_GROUP
Use this option to enable an application to exit a multicast group
or exit all sources for a given multicast groups.

MCAST_LEAVE_SOURCE_GROUP
Use this option to enable an application to exit a source multicast
group.

MCAST_UNBLOCK_SOURCE
Use this option to enable an application to unblock a previously
blocked source for a given multicast group. You must specify an
interface index and a source address with this option.

SO-REUSEADDR
This option is provided for source compatibility reasons only. It
will not perform any action. TCP/IP implicitly allows for
immediate address reuse.

SO-KEEPALIVE
This option is provided for source compatibility reasons only. It
will not perform any action. Instead the user should use the
common TCP/IP setting: SET PULSE_TIME=nnn.

SO-LINGER
Controls how TCP/IP deals with data that it has not been able to
transmit when the socket is closed. This option has meaning only
for stream sockets.
v If LINGER is enabled and CLOSE is called, the calling program

is blocked until the data is successfully transmitted or the
connection has timed out.

v If LINGER is disabled, the CLOSE call returns without blocking
the caller, and TCP/IP continues to attempt to send the data for
a specified period of time. Although this usually provides
sufficient time to complete the data transfer, use of the LINGER
option does not guarantee successful completion because
TCP/IP only waits the amount of time specified in OPTVAL
LINGER.

The default is DISABLED.

OPTVAL
Contains data which further defines the option specified in OPTNAME.
v For OPTNAME of SO-REUSEADDR, OPTVAL is a one-word binary

integer. Set OPTVAL to a nonzero positive value to enable the option; set
OPTVAL to zero to disable the option.

v For SO-LINGER, OPTVAL assumes the following structure:
ONOFF PIC X(4).
LINGER PIC 9(8) BINARY.

SETSOCKOPT

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 273

Set ONOFF to a nonzero value to enable the option; set it to zero to
disable the option. Set the LINGER value to the amount of time (in
seconds) TCP/IP will linger after the CLOSE call.

OPTLEN
A fullword binary number specifying the length of the data returned in
OPTVAL.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call, which
attempts to complete all outstanding data transmission requests prior to breaking
the connection.

The HOW parameter determines the direction of traffic to shutdown.

If the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter
determines the amount of time the system will wait before releasing the
connection. For example, with a LINGER value of 30 seconds, system resources
will remain in the system for up to 30 seconds after the CLOSE call is issued. In
high volume, transaction-based systems this can impact performance severely.

If the SHUTDOWN call is issued, when the CLOSE call is received, the connection
can be closed immediately, instead of waiting for the 30 second delay.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’SHUTDOWN’.
01 S PIC 9(4) BINARY.
01 HOW PIC 9(8) BINARY.

88 END-BOTH VALUE 2.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S HOW ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing SHUTDOWN. The field is left justified
and padded on the right with blanks.

SETSOCKOPT

274 z/VSE V5R2 TCP/IP Support

S A halfword binary number set to the socket descriptor of the socket to be
shutdown.

HOW A fullword binary field. The following value can be set:

Value Description

2 (END-BOTH)
Ends further send and receive operations.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’SOCKET’.
01 AF PIC 9(8) COMP VALUE 2.
01 SOCTYPE PIC 9(8) BINARY.

88 STREAM VALUE 1.
88 DATAGRAM VALUE 2.

01 PROTO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION AF SOCTYPE

PROTO ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing 'SOCKET'. The field is left justified and
padded on the right with blanks.

AF A fullword binary field set to the addressing family. Specify one of the
following:

Value Description

SHUTDOWN

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 275

'INET’ or a decimal ’2’
Indicates the address being converted is an IPv4 address.

’INET6’ or a decimal ’19’
Indicates the address being converted is an IPv6 address.

SOCTYPE
A fullword binary field set to the type of socket required. The types are:

Value Description

1 Stream sockets provide sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mechanism for
out-of-band data.

2 Datagram sockets provide datagrams, which are connectionless
messages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out of order,
lost, or delivered multiple times.

Note: RAW sockets are not supported.

PROTO
A fullword binary field set to the protocol to be used for the socket. If this
field is set to 0, the default protocol is used. For streams, the default is
TCP; for datagrams, the default is UDP. If this field is set to 17, the UDP
Protocol is used. If it is set to 6, the TCP protocol is used.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74, for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

> or = 0
Contains the new socket descriptor

-1 Check ERRNO for an error code

TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new
socket.

Typically, a child server issues this call using client ID and socket descriptor data,
which it obtained from the concurrent server. See “GIVESOCKET” on page 234 for
a discussion of the use of GIVESOCKET and TAKESOCKET calls.

Note: If TAKESOCKET is issued, a new socket descriptor is returned in
RETCODE. You should use this new socket descriptor in subsequent calls such as
GETSOCKOPT, which require the S (socket descriptor) parameter.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

SOCKET

276 z/VSE V5R2 TCP/IP Support

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’TAKESOCKET’.
01 SOCRECV PIC 9(4) BINARY.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION SOCRECV CLIENT

ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing TAKESOCKET. The field is left
justified and padded to the right with blanks.

SOCRECV
A halfword binary field set to the descriptor of the socket to be taken. The
socket to be taken is passed by the concurrent server.

CLIENT
Specifies the client ID of the program that is giving the socket. In CICS ,
these parameters are passed by the Listener program to the program that
issues the TAKESOCKET call.
v In CICS, the information is obtained using EXEC CICS RETRIEVE.

DOMAIN
Input parameter. A fullword binary number set to the domain of
the program that is giving the socket. For TCP/IP the value is a
decimal 2, indicating AF_INET, or a decimal 19, indicating
AF_INET6.

Note: TAKESOCKET can only acquire a socket of the same address
family from a GIVESOCKET.

NAME
Specifies an 8-byte character field set to the VSE partition identifier
of the program that gave the socket.

TASK Specifies an eight-byte character field set to the task identifier of
the task that gave the socket.

RESERVED
A 20-byte reserved field. This field is required, and only used
internally.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

TAKESOCKET

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 277

RETCODE
A fullword binary field that returns one of the following:

Value Description

> or =0
Contains the new socket descriptor

-1 Check ERRNO for an error code

TERMAPI
This call terminates the session created by INITAPI.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’TERMAPI’.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing TERMAPI. The field is left justified
and padded to the right with blanks.

WRITE
The WRITE call writes data on a connected socket. This call is similar to SEND,
except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the
receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.
For example, if a program wishes to send 1000 bytes, each call to this function can
send any number of bytes, up to the entire 1000 bytes. The number of bytes sent
will be returned in RETCODE. Therefore, programs using stream sockets should
place this call in a loop, calling this function until all data has been sent.

See “EZACIC04” on page 281 for a subroutine that will translate EBCDIC output
data to ASCII.

Example in COBOL
WORKING STORAGE

01 SOC-FUNCTION PIC X(16) VALUE IS ’WRITE’.
01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL ’EZASOKET’ USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

TAKESOCKET

278 z/VSE V5R2 TCP/IP Support

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing WRITE. The field is left justified and
padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be
transmitted.

BUF Specifies the buffer containing the data to be transmitted.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. A return code greater than zero indicates the
number of bytes of data written.

-1 Check ERRNO for an error code.

WRITEV
The WRITEV call writes data on a socket from a set of buffers.

Example in COBOL
WORKING-STORAGE SECTION.

01 SOC-FUNCTION PIC X(16) VALUE ’WRITEV ’.
01 S PIC 9(4) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
01 IOVCNT PIC 9(8) BINARY.
01 IOV.

03 BUFFER-ENTRY OCCURS 5 TIMES.
05 IOV-POINTER USAGE IS POINTER.
05 RESERVED PIC X(4).
05 IOV-LENGTH PIC 9(8) BINARY.

01 HEAPID PIC S9(9) BINARY VALUE IS 0.

PROCEDURE DIVISION.

MOVE 50 TO IOV-LENGTH(1).
MOVE 50 TO IOV-LENGTH(2).
MOVE 50 TO IOV-LENGTH(3).
MOVE 50 TO IOV-LENGTH(4).
MOVE 50 TO IOV-LENGTH(5).
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(1), IOV-POINTER(1),

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(2), IOV-POINTER(2),

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(3), IOV-POINTER(3),

WRITE

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 279

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(4), IOV-POINTER(4),

FC.
CALL ’CEEGTST’ USING HEAPID, IOV-LENGTH(5), IOV-POINTER(5),

FC.

* Call subroutine to fill the IOV structure
CALL ’subroutine’ USING IOV.

CALL ’EZASOKET’ USING SOC-FUNCTION S IOV IOVCNT
ERRNO RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

SOC-FUNCTION
A 16-byte character field containing WRITEV. The field is left justified and
padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket for
which the data is written.

IOV An array of three fullword structures with the number of structures equal
to the value of IOVCNT.

The format of the structure is as follows:
v Fullword 1: The address of the data buffer.
v Fullword 2: reserved
v Fullword 3: The length of the data buffer referred to by Fullword 1

IOVCNT
A fullword binary field specifying the number of data buffers provided for
this call. The maximum is 120.

Parameter Values Returned to the Application

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an
error number. See “ERRNO Values” on page 74 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 The number of bytes written.

-1 An error occurred. Check ERRNO for an error code.

Using Data Translation Programs for Socket Call Interface
In addition to the socket calls, you can use the following utility programs to
translate data:

Data Translation

TCP/IP hosts and networks use ASCII data notation; TCP/IP for VSE/ESA and its
subsystems use EBCDIC data notation. In situations where data must be translated
from one notation to the other, you can use the following utility programs:

WRITEV

280 z/VSE V5R2 TCP/IP Support

v EZACIC04—Translates EBCDIC data to ASCII data
v EZACIC05—Translates ASCII data to EBCDIC data

Bit String Processing

In C-language, bit strings are often used to convey flags, switch settings, and so
on; TCP/IP makes frequent uses of bit strings. However, since bit strings are
difficult to decode in COBOL, TCP/IP includes:
v EZACIC06—Translates bit-masks into character arrays and character arrays into

bit-masks.
v EZACIC08—Interprets the variable length address list in the HOSTENT structure

returned by GETHOSTBYNAME or GETHOSTBYADDR.
v EZACIC09 interprets the ADDRINFO structure returned by GETADDRINFO.

EZACIC04
The EZACIC04 program is used to translate EBCDIC data to ASCII data.

Example in COBOL
WORKING STORAGE

01 OUT-BUFFER PIC X(length of output).
01 LENGTH PIC 9(8) BINARY.

PROCEDURE
CALL ’EZACIC04’ USING OUT-BUFFER LENGTH.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

OUT-BUFFER
A buffer that contains the following:
v When called – EBCDIC data
v Upon return – ASCII data

LENGTH
Specifies the length of the data to be translated.

EZACIC05
The EZACIC05 program is used to translate ASCII data to EBCDIC data. EBCDIC
data is required by COBOL, PL/I, and assembler language programs.

Example in COBOL
WORKING STORAGE

01 IN-BUFFER PIC X(length of output)
01 LENGTH PIC 9(8) BINARY VALUE

PROCEDURE
CALL ’EZACIC05’ USING IN-BUFFER LENGTH.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Using Data Translation Programs for Socket Call Interface

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 281

Parameter Values Set by the Application

IN-BUFFER
A buffer that contains the following:
v When called – ASCII data
v Upon return – EBCDIC data.

LENGTH
Specifies the length of the data to be translated.

EZACIC06
The SELECT call uses bit strings to specify the sockets to test and to return the
results of the test. Because bit strings are difficult to manage in COBOL, you might
want to use the assembler language program EZACIC06 to translate them to
character strings to be used with the SELECT call.

Example in COBOL
WORKING STORAGE

01 CHAR-MASK.
05 CHAR-STRING PIC X(nn).

01 CHAR-ARRAY REDEFINES CHAR-MASK.
05 CHAR-ENTRY-TABLE OCCURS nn TIMES.

10 CHAR-ENTRY PIC X(1).
01 BIT-MASK.

05 BIT-ARRAY-FWDS PIC 9(16) COMP.

01 BIT-FUNCTION-CODES.
05 CTOB PIC X(4) VALUE ’CTOB’.
05 BTOC PIC X(4) VALUE ’BTOC’.

01 BIT-MASK-LENGTH PIC 9(8) COMP VALUE 50.
01 CHAR-STRING-LENGTH PIC 9(8) COMP VALUE 64.

PROCEDURE CALL (to convert from character to binary)
CALL ’EZACIC06’ USING CTOB

BIT-MASK
CHAR-MASK
CHAR-STRING-LENGTH
RETCODE.

PROCEDURE CALL (to convert from binary to character)
CALL ’EZACIC06’ USING BTOC

BIT-MASK
CHAR-MASK
BIT-MASK-LENGTH
RETCODE.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

TOKEN
Specifies a 16 character identifier. This identifier is required and it must be
the first parameter in the list.

EZACIC05

282 z/VSE V5R2 TCP/IP Support

CHAR-MASK
Specifies the character array where nn is the maximum number of sockets
in the array.

BIT-MASK
Specifies the bit string to be translated for the SELECT call. The bits are
ordered right-to-left with the right-most bit representing socket 0. The
socket positions in the character array are indexed starting with one
making socket zero index number one in the character array. You should
keep this in mind when turning character positions on and off.

COMMAND
BTOC—Specifies bit string to character array translation.

CTOB—Specifies character array to bit string translation.

BIT-MASK-LENGTH
Specifies the length of the bit-mask.

CHAR-STRING-LENGTH
Specifies the length of the char-mask.

Parameter Values Returned to the Application

RETCODE
A binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code.

If you want to use the SELECT call to test sockets zero, five, and nine, and you are
using a character array to represent the sockets, you must set the appropriate
characters in the character array to one. In this example, index positions one, six
and ten in the character array are set to 1. Then you can call EZACIC06 with the
COMMAND parameter set to CTOB. When EZACIC06 returns, BIT-MASK contains
a fullword with bits zero, five, and nine (numbered from the right) turned on as
required by the SELECT call. These instructions process the bit string shown in the
following example.
MOVE ZEROS TO CHAR-STRING.
MOVE ’1’TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(10).
CALL ’EZACIC06’ USING CTOB BIT-MASK CHAR-MASK

CHAR-STRING-LENGTH RETCODE.
MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket
activity, enter the following instructions.
MOVE TO BIT-MASK.
CALL ’EZACIC06’ USING BTOC BIT-MASK CHAR-MASK

BIT-MASK-LENGTH RETCODE.
PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX

FROM 1 BY 1 UNTIL IDX EQUAL 10.

TEST-SOCKET.
IF CHAR-ENTRY(IDX) EQUAL ’1’

THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT
ELSE NEXT SENTENCE.

TEST-SOCKET-EXIT.
EXIT.

EZACIC06

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 283

EZACIC08
The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket
calls that return a structure known as HOSTENT. A given TCP/IP host can have
multiple alias names and host internet addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names
and internet addresses in the HOSTENT structure that is returned by the
GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/I or assembler language, the HOSTENT structure can be
processed in a relatively straight-forward manner. However, if you are coding in
COBOL, HOSTENT can be more difficult to process and you should use the
EZACIC08 subroutine to process it for you.

It works as follows:
v GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that

indirectly addresses the lists of alias names and internet addresses.
v Upon return from GETHOSTBYADDR or GETHOSTBYNAME your program

calls EZACIC08 and passes it the address of the HOSTENT structure. EZACIC08
processes the structure and returns the following:
1. The length of host name, if present
2. The host name
3. The number of alias names for the host
4. The alias name sequence number
5. The length of the alias name
6. The alias name
7. The host internet address type, always two for AF_INET
8. The host internet address length, always 4 for AF_INET
9. The number of host internet addresses for this host

10. The host internet address sequence number
11. The host internet address

v If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one
alias name or host internet address (steps 3 and 9 above), the application
program should repeat the call to EZACIC08 until all alias names and host
internet addresses have been retrieved.

Example in COBOL
WORKING STORAGE

01 HOSTENT-ADDR PIC 9(8) BINARY.
01 HOSTNAME-LENGTH PIC 9(4) BINARY.
01 HOSTNAME-VALUE PIC X(255)
01 HOSTALIAS-COUNT PIC 9(4) BINARY.
01 HOSTALIAS-SEQ PIC 9(4) BINARY.
01 HOSTALIAS-LENGTH PIC 9(4) BINARY.
01 HOSTALIAS-VALUE PIC X(255)
01 HOSTADDR-TYPE PIC 9(4) BINARY.
01 HOSTADDR-LENGTH PIC 9(4) BINARY.
01 HOSTADDR-COUNT PIC 9(4) BINARY.
01 HOSTADDR-SEQ PIC 9(4) BINARY.
01 HOSTADDR-VALUE PIC 9(8) BINARY.
01 RETURN-CODE PIC 9(8) BINARY.

PROCEDURE

EZACIC08

284 z/VSE V5R2 TCP/IP Support

CALL ’EZASOKET’ USING ’GETHOSTBYxxxx’
HOSTENT-ADDR
RETCODE.

Where xxxx is ADDR or NAME.

CALL ’EZACIC08’ USING HOSTENT-ADDR HOSTNAME-LENGTH
HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ
HOSTALIAS-LENGTH HOSTALIAS-VALUE
HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT
HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

HOSTENT-ADDR
This fullword binary field must contain the address of the HOSTENT
structure (as returned by the GETHOSTBYxxxx call). This variable is the
same as the variable HOSTENT in the GETHOSTBYADDR and
GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ
This halfword field is used by EZACIC08 to index the list of alias names.
When EZACIC08 is called, it adds one to the current value of
HOSTALIAS-SEQ and uses the resulting value to index into the table of
alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACIC08. For all subsequent calls
to EZACIC08, this field should contain the HOSTALIAS-SEQ number
returned by the previous invocation.

HOSTADDR-SEQ
This halfword field is used by EZACIC08 to index the list of IP addresses.
When EZACIC08 is called, it adds one to the current value of
HOSTADDR-SEQ and uses the resulting value to index into the table of IP
addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACIC08. For all subsequent calls
to EZACIC08, this field should contain the HOSTADDR-SEQ number
returned by the previous call.

Parameter Values Returned to the Application

HOSTNAME-LENGTH
This halfword binary field contains the length of the host name (if host
name was returned).

HOSTNAME-VALUE
This 255-byte character string contains the host name (if host name was
returned).

HOSTALIAS-COUNT
This halfword binary field contains the number of alias names returned.

HOSTALIAS-SEQ
This halfword binary field is the sequence number of the alias name
currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH
This halfword binary field contains the length of the alias name currently
found in HOSTALIAS-VALUE.

EZACIC08

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 285

HOSTALIAS-VALUE
This 255-byte character string contains the alias name returned by this
instance of the call. The length of the alias name is contained in
HOSTALIAS-LENGTH.

HOSTADDR-TYPE
This halfword binary field contains the type of host address. For FAMILY
type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH
This halfword binary field contains the length of the host internet address
currently found in HOSTADDR-VALUE. For FAMILY type AF_INET,
HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT
This halfword binary field contains the number of host internet addresses
returned by this instance of the call.

HOSTADDR-SEQ
This halfword binary field contains the sequence number of the host
internet address currently found in HOSTADDR-VALUE.

HOSTADDR-VALUE
This fullword binary field contains a host internet address.

RETURN-CODE
This fullword binary field contains the EZACIC08 return code:

Value Description

0 Successful completion

-1 Invalid HOSTENT address

EZACIC09
The GETADDRINFO call was derived from the C socket call that returns a
structure known as RES. A given TCP/IP host can have multiple sets of NAMES.
TCP/IP uses indirect addressing to connect the variable number of NAMES in the
RES structure that is returned by the GETADDRINFO call. If you are coding in
PL/I or assembler language, the RES structure can be processed in a relatively
straight-forward manner. However, if you are coding in COBOL, RES can be more
difficult to process and you should use the EZACIC09 subroutine to process it for
you.

It works as follows:
1. GETADDRINFO returns a RES structure that indirectly addresses the lists of

socket address structures.
2. Upon return from GETADDRINFO, your program calls EZACIC09 and passes

the address of the next address information structure as referenced by the
NEXT argument. EZACIC09 processes the structure and returns the following:
a. The socket address structure
b. The next address information structure.

3. If the GETADDRINFO call returns more than one socket address structure, the
application program should repeat the call to EZACIC09 until all socket
address structures have been retrieved.

EZACIC08

286 z/VSE V5R2 TCP/IP Support

Example in COBOL
WORKING-STORAGE SECTION.
*
* Variables used for the GETADDRINFO call
*
01 getaddrinfo-parms.

02 node-name pic x(255).
02 node-name-len pic 9(8) binary.
02 service-name pic x(32).
02 service-name-len pic 9(8) binary.
02 canonical-name-len pic 9(8) binary.
02 ai-passive pic 9(8) binary value 1.
02 ai-canonnameok pic 9(8) binary value 2.
02 ai-numerichost pic 9(8) binary value 4.
02 ai-numericserv pic 9(8) binary value 8.
02 ai-v4mapped pic 9(8) binary value 16.
02 ai-all pic 9(8) binary value 32.
02 ai-addrconfig pic 9(8) binary value 64.

*
* Variables used for the EZACIC09 call
*
01 ezacic09-parms.

02 res usage is pointer.
02 res-name-len pic 9(8) binary.
02 res-canonical-name pic x(256).
02 res-name usage is pointer.
02 res-next-addrinfo usage is pointer.

*

* Socket address structure
*
01 server-socket-address.

05 server-family pic 9(4) Binary Value 19.
05 server-port pic 9(4) Binary Value 9997.
05 server-flowinfo pic 9(8) Binary Value 0.
05 server-ipaddr.

10 filler pic 9(16) binary value 0.
10 filler pic 9(16) binary value 0.

05 server-scopeid pic 9(8) Binary Value 0.

LINKAGE SECTION.
01 L1.

03 HINTS-ADDRINFO.
05 HINTS-AI-FLAGS PIC 9(8) BINARY.
05 HINTS-AI-FAMILY PIC 9(8) BINARY.
05 HINTS-AI-SOCKTYPE PIC 9(8) BINARY.
05 HINTS-AI-PROTOCOL PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.
05 FILLER PIC 9(8) BINARY.

03 HINTS-ADDRINFO-PTR USAGE IS POINTER.
03 RES-ADDRINFO-PTR USAGE IS POINTER.

*
* RESULTS ADDRESS INFO
*
01 RESULTS-ADDRINFO.

05 RESULTS-AI-FLAGS PIC 9(8) BINARY.
05 RESULTS-AI-FAMILY PIC 9(8) BINARY.
05 RESULTS-AI-SOCKTYPE PIC 9(8) BINARY.
05 RESULTS-AI-PROTOCOL PIC 9(8) BINARY.
05 RESULTS-AI-ADDR-LEN PIC 9(8) BINARY.
05 RESULTS-AI-CANONICAL-NAME USAGE IS POINTER.
05 RESULTS-AI-ADDR-PTR USAGE IS POINTER.
05 RESULTS-AI-NEXT-PTR USAGE IS POINTER.

*
* SOCKET ADDRESS STRUCTURE FROM EZACIC09.

EZACIC09

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 287

*
01 OUTPUT-NAME-PTR USAGE IS POINTER.
01 OUTPUT-IP-NAME.

03 OUTPUT-IP-FAMILY PIC 9(4) BINARY.
03 OUTPUT-IP-PORT PIC 9(4) BINARY.
03 OUTPUT-IP-SOCK-DATA PIC X(24).
03 OUTPUT-IPV4-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.

05 OUTPUT-IPV4-IPADDR PIC 9(8) BINARY.
05 FILLER PIC X(20).

03 OUTPUT-IPV6-SOCK-DATA REDEFINES OUTPUT-IP-SOCK-DATA.
05 OUTPUT-IPV6-FLOWINFO PIC 9(8) BINARY.
05 OUTPUT-IPV6-IPADDR.

10 FILLER PIC 9(16) BINARY.
10 FILLER PIC 9(16) BINARY.

05 OUTPUT-IPV6-SCOPEID PIC 9(8) BINARY.

PROCEDURE DIVISION USING L1.
*
* Get and address from the resolver.
*

move ’yournodename’ to node-name.
move 12 to node-name-len.
move spaces to service-name.
move 0 to service-name-len.
move af-inet6 to hints-ai-family.
move 49 to hints-ai-flags move 0 to hints-ai-socktype.
move 0 to hints-ai-protocol.
set address of results-addrinfo to res-addrinfo-ptr.
set hints-addrinfo-ptr to address of hints-addrinfo.
call ’EZASOKET’ using soket-getaddrinfo node-name node-name-len

mm service-name service-name-len hints-addrinfo-ptr
res-addrinfo-ptr canonical-name-len errno retcode.

*
* Use EZACIC09 to extract the IP address
*

set address of results-addrinfo to res-addrinfo-ptr.
set res to address of results-addrinfo.
move zeros to res-name-len.
move spaces to res-canonical-name.
set res-name to nulls.
set res-next-addrinfo to nulls.
call ’EZACIC09’ using res res-name-len res-canonical-name

res-name res-next-addrinfo retcode.
set address of output-ip-name to res-name.
move output-ipv6-ipaddr to server-ipaddr.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 201.

Parameter Values Set by the Application

RES This fullword binary field must contain the address of the ADDRINFO
structure (as returned by the GETADDRINFO call). This variable is the
same as the RES variable in the GETADDRINFO socket call.

RES-NAME-LEN
A fullword binary field that will contain the length of the socket address
structure as returned by the GETADDRINFO call.

Parameter Values Returned to the Application

RES-CANONICAL-NAME
A field large enough to hold the canonical name. The maximum field size
is 256 bytes. The canonical name length field will indicate the length of the
canonical name as returned by the GETADDRINFO call.

EZACIC09

288 z/VSE V5R2 TCP/IP Support

RES-NAME
The address of the subsequent socket address structure.

RES-NEXT
The address of the next address information structure. RETCODE

RETCODE
Output parameter. This fullword binary field contains the EZACIC09
return code:

Value Description

≥0 Successful call

-1 Invalid RES address

EZACIC09

Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API) 289

EZACIC09

290 z/VSE V5R2 TCP/IP Support

Chapter 12. Using the Macro Application Programming
Interface (EZASMI API)

This chapter describes the macro API for TCP/IP application programs written in
System/390 assembler language.

The macro interface can be used to produce reentrant modules.

The following topics are included:
v Environmental restrictions and programming requirements
v Defining storage for the API macro
v Understanding common parameter descriptions
v Characteristics of stream sockets
v Task management and asynchronous function processing
v Using an unsolicited event exit routine
v Error messages and return codes
v Macros for assembler programs

Environmental Restrictions and Programming Requirements
The following restrictions apply to the Macro Socket API:
v The EZASMI API cannot be used with programs running in an ICCF Pseudo

Partition.
v Locks

No locks should be held when issuing these calls.
v INITAPI/TERMAPI macros

The INITAPI/TERMAPI macros must be issued under the same task.
v Storage

Storage acquired for the purpose of containing data returned from a socket call
must be obtained in the same key as the application program status word (PSW)
at the time of the socket call.

v When using the EZASMI macro API in CICS transactions while CICS operates
with storage protection, all programs using the macro API need to be defined
with EXECKEY(CICS). This is also true for those programs that link to these
programs. TASKDATAKEY(CICS) for the transaction definition is NOT required.

v Addressability mode (AMODE) considerations
The EZASMI macro API must be invoked while the caller is in 31-bit AMODE.

v When using the macro API in CICS transactions, the EZA "task-related-user-exit"
(TRUE) has to be activated before these transactions can be run. For details on
how to activate this TRUE, refer to “CICS Considerations for the EZA Interfaces”
on page 83.

© Copyright IBM Corp. 1997, 2014 291

EZASMI Macro Application Programming Interface (API)
This section describes the EZASMI Macro API for TCP/IP application programs
written in the High Level Assembler language. The format and parameters are
described for each socket call.

Note:

1. Reentrant code is supported by this interface.
2. Register conventions: Register 0, 1, 14, 15 are used by the interface and must

be, if necessary, saved prior to invocation. Register 13 must point to a 72-byte
save area provided by the caller.

Defining Storage for the API Macro
The macro API requires a task storage area.

The task storage area must be known to and addressable by all socket users
communicating across a specified connection. A connection runs between the
application and TCP/IP. The most common way to organize storage is to assign
one connection to each VSE subtask. If there are multiple modules using sockets
within a single task or connection, you must provide the address of the task
storage to every user.

The following describes two alternatives how to define the address of the task
storage:
v Code the instruction EZASMI TYPE=TASK with STORAGE=CSECT as part of

the program code. This makes the program nonreentrant, but simplifies the
code.

v Code the instruction EZASMI TYPE=TASK with STORAGE=DSECT as part of
the program code. The expansion of this instruction generates the equate field,
TIELENTH, which is equal to the length of the storage area. This can be used to
issue a VSE GETVIS request to allocate the required storage. Please make sure
that this storage area is cleared to binary 0's before using it.

The defining program must make the address of this storage available to all other
programs using this connection. Programs running in these tasks must define the
storage mapping with an EZASMI TYPE=TASK with STORAGE=DSECT.

The EZASMI TYPE=TASK macro generates only one parameter list for a
connection. A program can use the following format to build unique parameter list
storage areas for each function call:
BINDPRML EZASMI MF=L This will generate the storage used for

building the parm list in the following BIND call
EZASMI TYPE=BIND, *

S=SOCKDESC, *
NAME=NAMEID, *
ERRNO=ERRNO, *
RETCODE=RETCODE, *
ECB=ECB1, *
MF=(E,BINDPRML)

This example of an asynchronous BIND macro would use the MF=L macro to
generate the parameter list. The fields that are common across all macro calls, for
example, RETCODE and ERRNO, must be unique for each outstanding call.

Using the EZASMI API

292 z/VSE V5R2 TCP/IP Support

You can create multiple connections to TCP/IP from a single task. Each of these
connections functions independently of the other and is identified by its own task
interface element (TIE). The TASK parameter can be used to explicitly reference a
TIE. If you do not include the TASK parameter, the macro uses the TIE generated
by the EZASMI TYPE=TASK macro.
TIE1 DS XL(TIELENTH) Length of TIE

EZASMI TYPE=INITAPI, *
MAXSOC=MAX75, *
ERRNO=ERRNO, *
RETCODE=RETCODE, *
APITYPE=2, *
MAXSNO=MAXS, *
TASK=TIE1 *

EZASMI TYPE=SOCKET, *
AF=’INET’, *
SOCTYPE=’STREAM’, *
ERRNO=ERRNO, *
RETCODE=RETCODE,
TASK=TIE1

In this example, the TIE TIE1 is used for the connection, not the TIE generated by
the EZASMI TYPE=TASK macro.

Understanding Common Parameter Descriptions
This section describes the parameters and concepts common to the macros
described in this section.

Parameter
Description

address The name of the field that contains the value of the parameter. The
following example illustrates a BIND macro where SOCKNO is set to 2.

MVC SOCKNO,=H’2’
EZASMI TYPE=BIND,S=SOCKNO

*indaddr
The name of the address field that contains the address of the field
containing the parameter. The following example produces the same result
as the example above.

MVC SOCKNO,=H’2’
LA 0,SOCKNO
ST 0,SOCKADD
EZASMI TYPE=BIND,S=*SOCKADD

(reg) The name (equated to a number) or the number of a general purpose
register. Do not use a register 0, 1, 14, or 15. The following example
produces the same result as the previous examples.

MVC SOCKNO,=H’2’
LA 3,SOCKNO
EZASMI TYPE=BIND,SOCKNO=(3)

'value' A literal value for the parameter; for example, AF='INET'

Using the EZASMI API

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 293

Characteristics of Stream Sockets
For stream sockets, data is processed as streams of information with no boundaries
separating data. For example, if applications A and B are connected with a stream
socket and application A sends 1000 bytes, each call to the SEND function can
return one byte, ten bytes, or the entire 1000 bytes, with the number of bytes sent
returned in the RETCODE call. Therefore, applications using stream sockets should
place the READ call and the SEND call in a loop that repeats until all of the data
has been sent or received.

Task Management and Asynchronous Function Processing
The EZASMI socket interface allows asynchronous operation, although by default
the task issuing a macro request is put into a WAIT state until the requested
function is completed. At that time, the issuing task resumes and continues
execution.

If you do not want the issuing task to be placed into a WAIT while its request is
processed, use asynchronous function processing.

How It Works

The macro API provides for asynchronous function processing in two forms. Both
forms cause the system to return control to the application immediately after the
function request has been sent to TCP/IP. The difference between the two forms is
in how the application is notified when the function is completed:

ECB method
Enables you to pass an VSE event control block (ECB) on each socket call.
The socket call returns control to the program immediately and posts the
ECB when the call has completed.

EXIT method
Enables you to specify the entry point of an exit routine using the INITAPI
call. The individual socket calls immediately return control to the program
and the socket call drives the specified exit routine when the socket call is
complete.

Restriction: This method is not supported with TCP/IP for VSE/ESA.

In either case, the function is completed when the notification is delivered. Note
that the notification may be delivered at any time, in some cases even before the
application has received control back from the EZASMI macro call. It is therefore
important that the application is ready to handle a notification as soon as it issues
the EZASMI macro call.

Using the EZASMI macro you can specify an APITYPE parameter. APITYPE=2 is
the only supported (and default) type. It allows to have more than one outstanding
asynchronous socket call per socket descriptor (for example, a RECV and a SEND
call).It requires the ECB method, if asynchronous macro calls are used.

The ECB input parameter for asynchronous calls must point to a 160- byte storage
area:

Using the EZASMI API

294 z/VSE V5R2 TCP/IP Support

The 156-byte storage area following the ECB is used during asynchronous function
processing and must not be changed by the application program until the
asynchronous function call completes (that is, until the ECB is posted).

Asynchronous functions are processed in the following sequence:
1. The application must issue the EZASMI TYPE=INITAPI with ASYNC='ECB'.

The ASYNC parameter notifies the API that asynchronous processing is
eventually used for this connection.

2. When an asynchronous function request with an ECB is issued by the
application, the request is queued for processing and the API returns control to
the application immediately. A successful function queuing returns with
RETCODE=0 and ERRNO set to EINPROGRESS.If an error condition is
encountered during function queuing, the API returns with RETCODE=-1 and
ERRNO showing the error status of the asynchronous operation. The ECB is
posted as well.

3. When the function completes (this may even occur before the function call
returns to the application), the ECB is posted and function specific return
(RETCODE) and error (ERRNO) information is returned.

The following example shows how to code an asynchronous macro function:
EZASMI TYPE=READ, READ A BUFFER OF DATA FROM THE *

S=SOCKNO, CONNECTION PEER. I MAY NEED TO *
NBYTES=COUNT, WAIT SO GIVE CONTROL BACK TO ME *
BUF=DATABUF, AND LET ME ISSUE MY OWN WAIT. *
ERRNO=ERROR, IT COULD BE PART OF A WAIT WHICH *
RETCODE=RCODE, WOULD INCLUDE OTHER EVENTS. *
ECB=MYECB, SPECIFY ECB/STORAGE AREA FOR INTERFACE *
ERROR=ERRORRTN

WAIT MYECB TELL VSE TO WAIT UNTIL READ IS DONE

Error Messages and Return Codes
For information about error messages, refer toz/VSE Messages and Codes and TCP/IP
for VSE 1.5 Messages and Codes.

For information about error codes that are returned by TCP/IP, refer to“ERRNO
Values” on page 74.

Debugging
Refer to Appendix B, “Debugging Facility for EZASMI and EZASOKET Interfaces
(EZAAPI Trace),” on page 525.

Macros for Assembler Programs
This section contains the description, syntax, parameters, and other related
information for every macro included in this API.

ECB
(4 bytes)

Storage Area
(156 bytes)

Figure 19. ECB Input Parameter

Using the EZASMI API

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 295

ACCEPT
The ACCEPT macro is issued, if the server receives a connection request from a
client.

ACCEPT points to a socket that was created with a SOCKET macro and marked by
a LISTEN macro. If a process waits for the completion of connection requests from
several peer processes, a later ACCEPT macro can block until one of the
CONNECT macros completes. To avoid this, issue a SELECT macro between the
CONNECT and the ACCEPT macros. Concurrent server programs use the
ACCEPT macro to pass connection requests to subtasks.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

When issued, the ACCEPT macro:
1. Accepts the first connection on a queue of pending connections
2. Creates a new socket with the same properties as the socket used in the macro

and returns the address of the client for use by subsequent server macros. The
new socket cannot be used to accept new connections, but can be used by the
calling program for its own connection. The original socket remains available to
the calling program for more connection requests.

3. Returns the new socket descriptor to the calling program.

Format

�� EZASMI TYPE=ACCEPT ,S = number
address
*indaddr
(reg)

,NAME = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,NS = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value or the address of a halfword binary number
specifying the descriptor of the socket from which the connection is
accepted.

NAME
Initially, the IPv4 or IPv6 application provides a pointer to the IPv4 or IPv6
socket address structure, which is filled on completion of the call with the
socket address of the connection peer. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the

ACCEPT

296 z/VSE V5R2 TCP/IP Support

socket address structure. The socket address structure mappings begin at
the SOCKADDR label. The AF_INET socket address structure fields start at
the SOCK_SIN label. The AF_INET6 socket address structure fields start at
the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number.A
halfword binary field that is set to the port number in network
byte order. For example, if the port number is 5000 in decimal, it is
set to X'1388'.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. If RETCODE is positive, RETCODE is the new socket
number.

If RETCODE is negative, check ERRNO for an error number.

ACCEPT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 297

NS Not supported for TCP/IP for VSE/ESA.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

BIND
In a server program, the BIND macro normally follows a SOCKET macro to
complete the new socket creation process.

The BIND macro can specify the port or let the system choose the port. A listener
program should always bind to the same well-known port so that clients know the
socket address to use when issuing a CONNECT macro.

In the AF_INET domain, the BIND macro for a stream socket can specify the
networks from which it is willing to accept connection requests. Your application
can select the network interface by setting ADDRESS to the internet address of the
network from which you want to accept connection requests. Alternatively, your
application can accept connection requests from any network if you set the address
field to a fullword of zeros.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Format

�� EZASMI TYPE=BIND ,S = number
address
*indaddr
(reg)

,NAME = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value or the address of a halfword binary number
specifying the socket descriptor.

ACCEPT

298 z/VSE V5R2 TCP/IP Support

NAME
The IPv4 or IPv6 application provides a pointer to an IPv4 or IPv6 socket
address structure. This structure specifies the port number and an IPv4 or
IPv6 IP address from which the application can accept connections. Include
the PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for
the socket address structure. The socket address structure mappings begin
at the SOCKADDR label. The AF_INET socket address structure fields start
at the SOCK_SIN label. The AF_INET6 socket address structure fields start
at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number. If you
set the port number to zero, TCP/IP assigns the port. The
application can call the GETSOCKNAME macro after the BIND
macro to discover the assigned port.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number. If you
set the port number to zero, TCP/IP assigns the port. The
application can call the GETSOCKNAME macro after the BIND
macro to discover the assigned port.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

BIND

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 299

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

CANCEL
The CANCEL function terminates a call in progress.

The call being cancelled must have specified ECB .

Format

�� EZASMI TYPE=CANCEL ,CALAREA = address
*indaddr ,ECB= address
(reg) *indaddr

(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

CALAREA
Input parameter. The ECB specified in the call being cancelled.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.

BIND

300 z/VSE V5R2 TCP/IP Support

v A 156-byte storage field used by the interface to save the state
information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field. If RETCODE is 0, the CANCEL
was successful. The error status (ERRNO) of the cancelled call is sent to
ECANCELED. If RETCODE is –1, the CANCEL failed. Check ERRNO for
an error code. For example, ERRNO is set to EINPROGRESS if the selected
request cannot be cancelled because it is in progress, or set to EINVAL if
the selected request cannot be cancelled because it has already been
completed.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

CLOSE
The CLOSE macro shuts down the socket and frees the resources that are allocated
to the socket.

Issue the SHUTDOWN macro before you issue the CLOSE macro.

CLOSE can also be issued by a concurrent server after it gives a socket to a
subtask program. After issuing GIVESOCKET and receiving notification that the
client child has successfully issued TAKESOCKET, the concurrent server issues the
CLOSE macro to complete the transfer of ownership.

Note: If a stream socket is closed while input or output data is queued, the stream
connection is reset and data transmission can be incomplete. SETSOCKET can be
used to set a SO_LINGER condition, in which TCP/IP continues to send data for a
specified period of time after the CLOSE macro is issued. For information about
SO_LINGER, see “SETSOCKOPT” on page 371.

Format

�� EZASMI TYPE=CLOSE ,S = number
address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

CANCEL

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 301

� ,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value or the address of a halfword binary number
specifying the socket to be closed.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive contro, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

CONNECT
The CONNECT macro is used by a client to establish a connection between a local
socket and a remote socket.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

For stream sockets, the CONNECT macro:
v Completes the binding process for a stream socket if BIND has not been

previously issued.
v Attempts connection to a remote socket. This connection must be completed

before data can be transferred.

CLOSE

302 z/VSE V5R2 TCP/IP Support

For datagram sockets, CONNECT is not essential, but you can use it to send
messages without specifying the destination.

For both types of sockets, the following CONNECT macro sequence applies:
1. The server issues BIND and LISTEN (stream sockets only) to create a passive

open socket.
2. The client issues CONNECT to request a connection.
3. The server creates a new connected socket by accepting the connection on the

passive open socket.

If the socket is in blocking mode, CONNECT blocks the calling program until the
connection is established, or until an error is received.

If the socket is in nonblocking mode, the return code indicates the success of the
connection request.
v A zero RETCODE indicates that the connection was completed.
v A nonzero RETCODE with an ERRNO EINPROGRESS indicates that the

connection could not be completed, but since the socket is nonblocking, the
CONNECT macro completes its processing.

The caller must test the completion of the connection setup by calling SELECT and
testing for the ability to write to the socket. The completion cannot be checked by
issuing a second CONNECT.

Format

�� EZASMI TYPE=CONNECT ,S = number
address
*indaddr
(reg)

,NAME = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value or the address of a halfword binary number
specifying the socket descriptor.

NAME
Input parameter. The NAME parameter for CONNECT specifies the IPv4
or IPv6 socket address of the target to which the local, client socket is to be
connected. Include the PRD1.MACLIB(EZBREHST) macro to get the
assembler mappings for the socket address structure. The socket address
structure mappings begin at the SOCKADDR label. The AF_INET socket
address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

CONNECT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 303

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0 , if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

CONNECT

304 z/VSE V5R2 TCP/IP Support

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

FCNTL
The blocking mode for a socket can be queried or set to nonblocking using the
FNDELAY flag.

You can query or set the FNDELAY flag even though it is not defined in your
program.

See “IOCTL” on page 348 for another way to control socket blocking.

Format

�� EZASMI TYPE=FCNTL ,S = number
address
*indaddr
(reg)

,COMMAND = 'F_GETFL'
'F_SETFL'
address
*indaddr
(reg)

�

� ,REQARG = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value or the address of a halfword binary number
specifying the socket descriptor for the socket that you want to unblock or
query.

COMMAND
Input parameter. A fullword binary field or a literal that sets the FNDELAY
flag to one of the following values:

3 or 'F_GETFL'
Query the blocking mode for the socket.

4 or 'F_SETFL'
Set the mode to nonblocking for the socket. REQARG is set by
TCP/IP.

CONNECT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 305

The FNDELAY flag sets the nonblocking mode for the socket. If data is not
present on calls that can block (READ, READV, and RECV), the call returns
a -1, and ERRNO is set to EWOULDBLOCK.

REQARG
A fullword binary field containing a mask that TCP/IP uses to set the
FNDELAY flag.
v If COMMAND is set to 3 (query) the REQARG field should be set to 0.
v If COMMAND is set to 4 (set),

– Set REQARG to 4 to turn the FNDELAY flag on. This places the
socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This places the
socket in blocking mode.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:
v If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. The
FNDELAY flag is on.

– If RETCODE contains X'00000000', the socket is blocking. The
FNDELAY flag is off.

v If the COMMAND field was 4 (set), a successful call returns zero in
RETCODE. For either COMMAND, a RETCODE of -1 indicates an error.
Check ERRNO for the error number.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

FREEADDRINFO
The FREEADDRINFO macro frees all the address information structures returned
by GETADDRINFO in the RES parameter.

Important: This function call is not available with TCP/IP for VSE/ESA.

FCNTL

306 z/VSE V5R2 TCP/IP Support

Format

�� EZASMI TYPE=FREEADDRINFO ,ADDRINFO = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

��

Parameters

ADDRINFO
Input parameter. The address of a set of address information structures
returned by a TYPE=GETADDRINFO RES argument.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call.

-1 Check ERRNO for an error code.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

GETADDRINFO
The GETADDRINFO macro translates the name of a service location (for example,
a host name), a service name, or both, into a set of socket addresses and other
associated information.

This information can be used to create a socket and connect to, or to send a
datagram to, the specified service.

Important: This function call is not available with TCP/IP for VSE/ESA.

Format

�� EZASMI TYPE=GETADDRINFO
,NODE = address

*indaddr
(reg)

�

FREEADDRINFO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 307

�
,NODELEN = number

address
*indaddr
(reg)

,SERVICE = address
*indaddr
(reg)

�

�
,SERVLEN = number

address
*indaddr
(reg)

,HINTS = address
*indaddr
(reg)

�

� ,RES = address
*indaddr
(reg)

,CANNLEN = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

��

Parameters

NODE
An input parameter. Storage up to 255 bytes long that contains the host
name being queried. If the AI_NUMERICHOST flag is specified in the
storage pointed to by the HINTS operand, NODE should contain the
queried host’s IP address in network byte order presentation form. This is
an optional field, but if specified you must also code NODELEN. The
NODE name being queried consists of up to NODELEN or up to the first
binary zero.

You can append scope information to the host name by using the format
node%scope information. The combined information must be 255 bytes or
less.

NODELEN
An input parameter. A fullword binary field set to the length of the host
name specified in the NODE field and should not include extraneous
blanks. This is an optional field, but if specified you must also code
NODE.

SERVICE
An input parameter. Storage up to 32 bytes long that contains the service
name being queried. If the AI_NUMERICSERV flag is specified in the
storage pointed to by the HINTS operand, SERVICE should contain the
queried port number in presentation form. This is an optional field, but if
specified you must also code SERVLEN. The SERVICE name being queried
consists of up to SERVLEN or up to the first binary zero.

SERVLEN
An input parameter. A fullword binary field set to the length of the service

GETADDRINFO

308 z/VSE V5R2 TCP/IP Support

name specified in the SERVICE field and should not include extraneous
blanks. This is an optional field but if specified you must also code
SERVICE.

HINTS
An input parameter. If the HINTS argument is specified, it contains the
address of an addrinfo structure containing input values that may direct
the operation by providing options and limiting the returned information
to a specific socket type, address family, or protocol. If the HINTS
argument is not specified, the information returned will be as if it referred
to a structure containing the value 0 for the FLAGS, SOCTYPE and PROTO
fields, and AF_UNSPEC for the AF field.

The address information structure has the following fields:

FLAGS
A fullword binary field. Must have the value of 0 of the bitwise,
OR of one or more of the following:

AI-PASSIVE (X'00000001') or a decimal value of 1.
Specifies how to fill in the NAME pointed to by the
returned RES.

If this flag is specified, the returned address information
will be suitable for use in binding a socket for accepting
incoming connections for the specified service (for
example, the BIND call). In this case, if the NODE
argument is not specified, the IP address portion of the
socket address structure pointed to by the returned RES
will be set to INADDR_ANY for an IPv4 address or to the
IPv6 unspecified address (in6addr_any) for an IPv6
address.

If this flag is not set, the returned address information will
be suitable for the CONNECT call (for a connection-mode
protocol) or for a CONNECT, SENDTO, or SENDMSG call
(for a connectionless protocol). In this case, if the NODE
argument is not specified, the IP address portion of the
socket address structure pointed to by the returned RES
will be set to the default loopback address for an IPv4
address (127.0.0.0) or the default loopback address for an
IPv6 address (::1).

This flag is ignored if the NODE argument is specified.

AI-CANONNAMEOK (X'00000002') or a decimal value of 2.
If this flag is specified and the NODE argument is
specified, the GETADDRINFO call attempts to determine
the canonical name corresponding to the NODE argument.

AI-NUMERICHOST (X'00000004') or a decimal value of 4.
If this flag is specified, the NODE argument must be a
numeric host address in presentation form. Otherwise, an
error of host not found [EAI_NONAME] is returned.

AI-NUMERICSERV (X'00000008') or a decimal value of 8.
If this flag is specified, the SERVICE argument must be a
numeric port in presentation form. Otherwise, an error
[EAI_NONAME] is returned.

GETADDRINFO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 309

AI-V4MAPPED (X'00000010') or a decimal value of 16.
If this flag is specified along with the AF field with the
value of AF_INET6 or a value of AF_UNSPEC, if IPv6 is
supported, the caller will accept IPv4-mapped IPv6
addresses. If the AI-ALL flag is not also specified, if no
IPv6 addresses are found, a query is made for IPv4
addresses. If IPv4 addresses are found, they are returned as
IPv4-mapped IPv6 addresses.

If the AF field does not have the value of AF_INET6 or the
AF field contains AF_UNSPEC but IPv6 is not supported
on the system, this flag is ignored.

AI-ALL (X'00000020') or a decimal value of 32.
If the AF field has a value of AF_INET6 and AI-ALL is set,
the AI-V4MAPPED flag must also be set to indicate that
the caller will accept all addresses (IPv6 and IPv4-mapped
IPv6 addresses). If the AF field has a value of
AF_UNSPEC, if the system supports IPv6 and AI-ALL is
set, the caller accepts IPv6 addreses and either IPv4
address (if AI-V4MAPPED is not set), or IPv4-mapped IPv6
addresses (if AI-V4MAPPED is set). A query is first made
for IPv6 addresses and if successful, the IPv6 addresses are
returned. Another query is then made for IPv4 addresses,
and any IPv4 addresses found are returned as either
IPv4-mapped IPv6 addresses (if AI-V4MAPPED is also
specified), or as IPv4 addresses (if AI-V4MAPPED is not
specified).

If the AF field does not have the value of AF_INET6 or
does not have the value of AF_UNSPEC, if the system
supports IPv6, this flag is ignored.

AI-ADDRCONFIG (X'00000040') or a decimal value of 64.
If this flag is specified, a query on the name in NODE will
occur if the resolver determines whether either of the
following is true:
v If the system is IPv6 enabled and has at least one IPv6

interface, the resolver will make a query for IPv6
(AAAA or A6 DNS) records.

v If the system is IPv4 enabled and has at least one IPv4
interface, the resolver will make a query for IPv4 (A
DNS) records. The loopback address is not considered in
this case as a valid interface.

Note: To perform the binary ORing of the flags above in a
COBOL program, simply add the necessary COBOL
statements as in the example below. Note that the value of
the FLAGS field after the COBOL ADD is a decimal 80 or a
X'00000050', which is the sum of ORing AI_V4MAPPED
and AI_ADDRCONFIG or X'00000010' and X'00000040':
01 AI-V4MAPPED PIC 9(8) BINARY VALUE 16.
01 AI-ADDRCONFIG PIC 9(8) BINARY VALUE 64.

ADD AI-V4MAPPED TO FLAGS.
ADD AI-ADDRCONFG TO FLAGS.

AF A fullword binary field. Used to limit the returned information to a

GETADDRINFO

310 z/VSE V5R2 TCP/IP Support

specific address family. The value of AF_UNSPEC means that the
caller will accept any protocol family. The value of a decimal 0
indicates AF_UNSPEC. The value of a decimal 2 indicates
AF_INET, and the value of a decimal 19 indicates AF_INET6.

SOCTYPE
A fullword binary field. Used to limit the returned information to a
specific socket type. A value of 0 means that the caller will accept
any socket type. If a specific socket type is not given (for example,
a value of 0), information on all supported socket types will be
returned. The following are the acceptable socket types:

Type name Decimal value Description

SOCK_STREAM 1 for stream socket

SOCK_DGRAM 2 for datagram socket

SOCK_RAW 3 for raw-protocol interface

Anything else will fail with return code EAI_SOCTYPE. Note that
although SOCK_RAW will be accepted, it is only valid, if SERVICE
is numeric (for example, SERVICE=23). A lookup for a SERVICE
name will never occur in the appropriate services file using any
protocol value other than SOCK_STREAM or SOCK_DGRAM.

If PROTO is not 0 and SOCTYPE is 0, the only acceptable input
values for PROTO are IPPROTO_TCP and IPPROTO_UDP.
Otherwise, the GETADDRINFO call will be failed with return code
of EAI_BADFLAGS.

If SOCTYPE and PROTO are both specified as 0, GETADDRINFO
will proceed as follows:
v If SERVICE is null, or if SERVICE is numeric, any returned

addrinfos will default to a specification of SOCTYPE as
SOCK_STREAM.

v If SERVICE is specified as a service name (for example,
SERVICE=FTP), the GETADDRINFO call will search the
appropriate services file twice. The first search will use
SOCK_STREAM as the protocol, and the second search will use
SOCK_DGRAM as the protocol. No default socket type
provision exists in this case.

If both SOCTYPE and PROTO are specified as nonzero, they
should be compatible, regardless of the value specified by
SERVICE. In this context, compatible means one of the following:
v SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
v SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
v SOCTYPE is specified as SOCK_RAW, in which case PROTO can

be anything

PROTO
A fullword binary field. Used to limit the returned information to a
specific protocol. A value of 0 means that the caller will accept any
protocol. The following are the acceptable protocols:

Protocol name Decimal value Description

IPPROTO_TCP 6 TCP

IPPROTO_UDP 17 user datagram

GETADDRINFO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 311

If SOCTYPE is 0 and PROTO is nonzero, the only acceptable input
values for PROTO are IPPROTO_TCP and IPPROTO_UDP.
Otherwise, the GETADDRINFO call will be failed with return code
of EAI_BADFLAGS.

If PROTO and SOCTYPE are both specified as 0, GETADDRINFO
will proceed as follows:
v If SERVICE is null, or if SERVICE is numeric, any returned

addrinfos will default to a specification of SOCTYPE as
SOCK_STREAM.

v If SERVICE is specified as a service name (for example,
SERVICE=FTP), the GETADDRINFO will search the appropriate
services file twice. The first search will use SOCK_STREAM as
the protocol, and the second search will use SOCK_DGRAM as
the protocol. No default socket type provision exists in this case.

If both PROTO and SOCTYPE are specified as nonzero, they
should be compatible, regardless of the value specified by
SERVICE. In this context, compatible means one of the following:
v SOCTYPE=SOCK_STREAM and PROTO=IPPROTO_TCP
v SOCTYPE=SOCK_DGRAM and PROTO=IPPROTO_UDP
v SOCTYPE=SOCK_RAW, in which case PROTO can be anything

If the lookup for the value specified in SERVICE fails [for example,
the service name does not appear in an appropriate service file
using the input protocol], the GETADDRINFO call will be failed
with return code of EAI_SERVICE.

NAMELEN
A fullword binary field. On input, this field must be 0.

CANNONNAME
A fullword binary field. On input, this field must be 0.

NAME
A fullword binary field. On input, this field must be 0.

NEXT A fullword binary field. On input, this field must be 0.

RES Initially a fullword binary field. On a successful return, this field contains a
pointer to a chain of one or more address information structures. The
structures are allocated in the key of the calling application. Do not use or
reference these structures between MVS tasks. When you are finished using
the structures, explicitly free their storage by specifying the returned
pointer on a FREEADDRINFO call. Storage that is not explicitly freed is
released when the task is ended.

The address information structure contains the following fields:

FLAGS
A fullword binary field that is not used as output.

AF A fullword binary field. The value returned in this field can be
used as the AF= argument on the TYPE=SOCKET macro to create
a socket suitable for use with the returned address NAME.

SOCTYPE
A fullword binary field. The value returned in this field can be
used as the SOCTYPE= argument on the TYPE=SOCKET macro to
create a socket suitable for use with the returned address NAME.

GETADDRINFO

312 z/VSE V5R2 TCP/IP Support

PROTO
A fullword binary field. The value returned in this field can be
used as the PROTO= argument on the TYPE=SOCKET macro to
create a socket suitable for use with the returned address NAME.

NAMELEN
A fullword binary field. The length of the NAME socket address
structure. The value returned in this field can be used as the
arguments for the TYPE=CONNECT or TYPE=BIND macros with
such a socket, according to the AI_PASSIVE flag.

CANNONNAME
A fullword binary field. The address of storage containing the
canonical name for the value specified by NODE. Initially, this field
must be 0. If the NODE argument is specified, and if the
AI_CANONNAMEOK flag was specified by the HINTS argument,
the CANONNAME field in the first returned address information
structure contains the address of storage containing the canonical
name corresponding to the input NODE argument. If the canonical
name is not available, the CANONNAME field refers to the NODE
argument or a string with the same contents. The CANNLEN field
contains the length of the returned canonical name.

NAME
A fullword binary field. The address of the returned socket address
structure. The value returned in this field can be used as the
arguments for the TYPE=CONNECT or TYPE=BIND macros with
such a socket, according to the AI_PASSIVE flag.

NEXT A fullword binary field. Contains the address of the next address
information structure on the list, or 0’s if it is the last structure on
the list.

CANNLEN
Initially an input parameter. A fullword binary field used to contain the
length of the canonical name returned by the RES CANONNAME field.
This is an optional field.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

GETADDRINFO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 313

GETCLIENTID
The GETCLIENTID macro returns the identifier by which the calling application is
known to the TCP/IP address space.

The client ID structure returned is used by the GIVESOCKET and TAKESOCKET
macros.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

If GETCLIENTID is called by a server or client, the identifier of the calling
application is returned.

Format

�� EZASMI TYPE=GETCLIENTID ,CLIENT = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

CLIENT
A client-ID structure that describes the application that issued the call.

DOMAIN
A fullword binary number specifying the domain of the client. On
input, this is an optional parameter for AF_INET, and a required
parameter for AF_INET6 to specify the domain of the client. For
TCP/IP, the value is a decimal 2 indicating AF_INET, or decimal 19
indicating AF_INET6. On output, this is the returned domain of
the client.

NAME
An 8-byte character field. It is built with the partition's partition
ID, which is left adjusted and padded with blanks.

TASK An 8-byte character field. This task identifier can be specified by
the user with the INITAPI call or defaulted by the system (see the
description of the INITAPI call for details).

RESERVED
Specifies 20-byte character reserved field. This field is required and
internally used by TCP/IP.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

GETCLIENTID

314 z/VSE V5R2 TCP/IP Support

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted .

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETHOSTBYADDR
The GETHOSTBYADDR macro returns domain and alias names of the host whose
internet address is specified by the macro.

A TCP/IP host can have multiple alias names and host internet addresses.

Format

�� EZASMI TYPE=GETHOSTBYADDR ,HOSTADR = number
address
*indaddr
(reg)

�

� ,HOSTENT = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Note: GETHOSTBYADDR and GETHOSTBYNAME all use the same static area to
return the HOSTENT structure. This static area is only valid until the next one of
these functions is called on the same thread or till TERMAPI.

Parameters

HOSTADR
Input parameter. A fullword unsigned binary field set to the internet
address of the host whose name you want to find.

GETCLIENTID

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 315

HOSTENT
Input parameter. A fullword word containing the address of the HOSTENT
structure returned by the macro. For information about the HOSTENT
structure, see Figure 20.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

>0 Successful call

-1 An error occurred

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 20. This
structure contains:
v The address of the host name returned by the macro. The name length is

variable and is ended by X'00'.
v The address of a list of addresses that point to the alias names returned by the

GETHOSTBYADDR. This list is ended by the pointer X'00000000'. Each alias
name is a variable length field ended by X'00'

Hostname

Alias_List

Family

Hostaddr_Len

Hostaddr_List

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

X’00000002’

X’00000004’

X’00000000’

X’00000000’

Name X’00’

List

List

Alias#1 X’00’

Alias#2 X’00’

Alias#3 X’00’

Hostent

INET Addr#1

INET Addr#2

INET Addr#3

Figure 20. HOSTENT Structure Returned by the GETHOSTBYADDR Macro

GETHOSTBYADDR

316 z/VSE V5R2 TCP/IP Support

Note: Alias names are not supported.
v The value returned in the FAMILY field is always 2 to signify AF_INET.
v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 to signify AF_INET.
v The address of a list of addresses that point to the host internet addresses

returned by the macro. The list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses.

GETHOSTBYNAME
The GETHOSTBYNAME macro returns the alias names and the internet addresses
of a host whose domain name is specified in the macro.

TCP/IP tries to resolve the host name through a name server, if one is present.

If a call is made to convert a symbolic name to an IP address, TCP/IP for
VSE/ESA searches the local names table (created by DEFINE NAME) first. If this
search fails, the name is passed to the specified DNS (set with SET DNSx). TCP/IP
for VSE/ESA will try each DNS, beginning with DNS1, until an response is
received or all servers have been polled. The first server to respond determines if
the request succeeds or fails. If the search within a DNS fails, the default domain
string (as specified with SET DEFAULT_DOMAIN) is appended to the name
(following a period) and the DNS is consulted the last time for the name
resolution.

If the host name is not found, the return code is -1.

Format

�� EZASMI TYPE=GETHOSTBYNAME ,NAMELEN = number
address
*indaddr
(reg)

�

� ,NAME = address
*indaddr
(reg)

,HOSTENT = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Note: GETHOSTBYADDR and GETHOSTBYNAME all use the same static area to
return the hostent structure. This static area is only valid until the next one of
these functions is called on the same thread or till TERMAPI.

Parameters

NAMELEN
Input parameter. A value or the address of a fullword binary field
specifying the length of the name and alias fields. This length has a
maximum value of 255 bytes.

GETHOSTBYADDR

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 317

NAME
A character string, up to 24 characters, set to a host name. This call returns
the address of HOSTENT for this name.

HOSTENT
Output parameter. A fullword word containing the address of HOSTENT
returned by the macro. For information about the HOSTENT structure, see
Figure 21.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 An error occurred

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 21. This
structure contains:
v The address of the host name returned by the macro. The name length is

variable and is ended by X'00'.

Hostname

Alias_List

Family

Hostaddr_Len

Hostaddr_List

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

X’00000002’

X’00000004’

X’00000000’

X’00000000’

Name X’00’

List

List

Alias#1 X’00’

Alias#2 X’00’

Alias#3 X’00’

Hostent

INET Addr#1

INET Addr#2

INET Addr#3

Figure 21. HOSTENT Structure Returned by the GETHOSTBYNAME Macro

GETHOSTBYNAME

318 z/VSE V5R2 TCP/IP Support

v The address of a list of addresses that point to the alias names returned by
GETHOSTBYNAME. This list is ended by the pointer X'00000000'. Each alias
name is a variable length field ended by X'00'.

Note: Alias names are not supported.
v The value returned in the FAMILY field is always 2 to signify AF_INET.
v The length of the host internet address returned in the HOSTADDR_LEN field is

always 4 to signify AF_INET.
v The address of a list of addresses that point to the host internet addresses

returned by the macro. The list is ended by the pointer X'00000000'.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses.

GETHOSTID
The GETHOSTID macro returns the 32-bit identifier for the current host.

This value is the default home internet address.

Format

�� EZASMI TYPE=GETHOSTID ,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

RETCODE
Output parameter. Returns 32-bit internet address of the host. A -1 in
RETCODE indicates an error. There is no ERRNO parameter for this
macro.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETHOSTBYNAME

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 319

GETHOSTNAME
The GETHOSTNAME macro returns the name of the host processor on which the
program is running.

As many as NAMELEN characters are copied into the NAME field.

Format

�� EZASMI TYPE=GETHOSTNAME ,NAMELEN = address
*indaddr
(reg)

�

� ,NAME = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

NAMELEN
Input and output parameter. A fullword set to a value, or the address of a
fullword binary field set to the length of the name field. The maximum
length that can be specified in the field is 255 characters.

NAME
Initially, the application provides a pointer to a receiving field for the host
name. TCP/IP for VSE allows a maximum length of 64 characters. This
field is filled with a host name the length returned in NAMELEN when
the call completes.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

GETHOSTNAME

320 z/VSE V5R2 TCP/IP Support

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted .

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETIBMOPT
The GETIBMOPT macro returns the number of TCP/IP images installed on a given
z/VSE system and the status, version, and name of each image.

With this information, the caller can dynamically choose the TCP/IP image with
which to connect, using the INITAPI macro.

Important: This function call is not available with TCP/IP for VSE/ESA.

Format

�� EZASMI TYPE=GETIBMOPT ,COMMAND = number
address
*indaddr
(reg)

,BUF = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

COMMAND
Input parameter. A value or the address of a fullword binary number
specifying the command to be processed. The only valid value is 1.

BUF Output parameter. A 100-byte buffer into which each active TCP/IP image
status, version, and name are placed. On successful return, these buffer
entries contain the status, name and version of up to eight active TCP/IP
images. The following layout shows BUF upon completion of the call.

Table 8. NUM_IMAGES Field Settings

NUM_IMAGES (4 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

GETHOSTNAME

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 321

Table 8. NUM_IMAGES Field Settings (continued)

NUM_IMAGES (4 bytes)

Status (2 bytes) Version (2 bytes) Name (8 bytes)

The NUM_IMAGES field indicates how many entries of TCP_IMAGE are
included in the total BUF field. If the NUM_IMAGES returned is 0, there
are no TCP/IP images present.

The status field can combine the following information:

Status field
Meaning

X'8xxx'
Active

X'4xxx'
Terminating

X'2xxx'
Down

X'1xxx'
Stopped or stopping

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description
>=0 Successful call.
-1 Check ERRNO for an error code.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETNAMEINFO
The GETNAMEINFO macro returns the node name and service location of a socket
address that is specified in the macro.

On successful completion, GETNAMEINFO returns the node and service named, if
requested, in the buffers provided.

Important: This function call is not available with TCP/IP for VSE/ESA.

Format

�� EZASMI TYPE=GETNAMEINFO ,NAME = address
*indaddr
(reg)

�

GETIBMOPT

322 z/VSE V5R2 TCP/IP Support

� ,NAMELEN = number
address
*indaddr
(reg)

,HOST = address
*indaddr
(reg)

�

�
,HOSTLEN = number

address
*indaddr
(reg)

,SERVICE = address
*indaddr
(reg)

�

�
,SERVLEN = number

address
*indaddr
(reg)

,FLAGS = 'NI_DGRAM'
'NI_NAMEREQD'
'NI_NOFQDN'
'NI_NUMERICHOST'
'NI_NUMERICSCOPE'
'NI_NUMERICSERV'
number
address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

��

Parameters

NAME
An IPv4 or IPv6 socket address structure to be translated. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the
socket address structure. The socket address structure mappings start at
the SOCKADDR label.

The AF_INET socket address structure fields start at the SOCK_SIN label.
The AF_INET6 socket address structure fields start at the SOCK_SIN6
label. The IPv4 socket address structure must specify the following fields:

FAMILY
A halfword binary number specifying the IPv4 addressing family.
For TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary number specifying the port number.

IPv4-ADDRESS
A fullword binary number specifying the 32-bit IPv4 Internet
address.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

The IPv6 socket address structure specifies the following fields:

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket

GETNAMEINFO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 323

address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary number that specifies the port number.

FLOW-INFO
This field is ignored by the TYPE=GETNAMEINFO macro.

IPv6-ADDRESS
A 16-byte binary field that specifies the 128-bit IPv6 Internet
address, in network byte order.

SCOPE-ID
A fullword binary field that specifies the scope for an IPv6 address
as an interface index. The resolver ignores the SCOPE_ID field,
unless the address in IPv6-ADDRESS is a link-local address and
the HOST parameter is also specified.

NAMELEN
An input parameter. A fullword binary field. The length of the socket
address structure pointed to by the NAME argument.

HOST On input, storage capable of holding the returned resolved host name,
which can be up to 255 bytes long, for the input socket address. If
inadequate storage is specified to contain the resolved host name, the
resolver returns the host name up to the storage specified and truncation
might occur. If the host’s name cannot be located, the numeric form of the
host’s address is returned instead of its name. However, if the
NI_NAMEREQD option is specified and no host name is located, an error
is returned. One or both of the following groups of parameters are
required:
v The HOST and HOSTLEN parameters
v The SERVICE and SERVLEN parameters

Otherwise, an error occurs. The HOST name being queried consists of up
to HOSTLEN or up to the first binary 0.

If the IPv6-ADDRESS value is a link-local address, and the SCOPE_ID
interface index is nonzero, scope information is appended to the resolved
host name using the format host%scope information. The scope information
can be the numeric form of the SCOPE_ID interface index or the interface
name that is associated with the SCOPE_ID interface index. Use the
NI_NUMERICSCOPE option to select which form is returned. The
combined host name and scope information is 255 bytes or less.

HOSTLEN
A fullword binary field that contains the length of the host storage that is
used to contain the returned resolved host name. If HOSTLEN is 0 on
input, the resolved host name is not returned. The HOSTLEN value must
be equal to or greater than the length of the longest host name, or
hostname and scope information combination, to be returned. The
TYPE=GETNAMEINFO returns the host name, or host name and scope
information combination, up to the length specified by the HOSTLEN
value. On output, HOSTLEN contains the length of the returned resolved
host name, or host name and scope information combination. This is an

GETNAMEINFO

324 z/VSE V5R2 TCP/IP Support

optional field, but if you specify this field, you also must code the HOST
value. One or both of the following groups of parameters are required:
v The HOST and HOSTLEN parameters
v The SERVICE and SERVLEN parameters

Otherwise, an error occurs.

SERVICE
On input, storage capable of holding the returned resolved service name,
which can be up to 32 bytes long, for the input socket address. If
inadequate storage is specified to contain the resolved service name, the
resolver returns the service name up to the storage specified and
truncation might occur. If the service name cannot be located, or if
NI_NUMERICSERV was specified in the FLAGS operand, the presentation
form of the service address is returned instead of its name. This is an
optional field, but if you specify this field, you also must code the
SERVLEN parameter. The SERVICE name being queried consists of up to
SERVLEN or up to the first binary zero. One or both of the following
groups of parameters are required:
v The HOST and HOSTLEN parameters
v The SERVICE and SERVLEN parameters

Otherwise, an error occurs.

SERVLEN
Initially an input parameter. A fullword binary field that contains the
length of the SERVICE storage used to contain the returned resolved
service name. If SERVLEN is 0 on input, the service name information is
not returned. SERVLEN must be equal to or greater than the length of the
longest service name to be returned. The TYPE=GETNAMEINFO returns
the service name up to the length specified by SERVLEN. On output,
SERVLEN contains the length of the returned resolved service name. This
is an optional field, but if you specify it, you must also code the SERVICE
parameter. One or both of the following groups of parameters are required:
v The HOST and HOSTLEN parameters
v The SERVICE and SERVLEN parameters

Otherwise, an error occurs.

FLAGS
A fullword binary field. This is an optional field. The FLAGS argument can
be a literal value or a fullword binary field:

Literal Value Binary Value
Decimal
Value Description

'NI_NOFQDN' X'00000001' 1 Return the NAME portion of the
fully qualified domain name

'NI_NUMERICHOST' X'00000002' 2 Only return the numeric form of
host’s address.

'NI_NAMEREQD' X'00000004' 4 Return an error if the host’s name
cannot be located.

'NI_NUMERICSERV' X'00000008' 8 Only return the numeric form of
the service address.

GETNAMEINFO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 325

Literal Value Binary Value
Decimal
Value Description

'NI_DGRAM' X'00000010' 16 Indicates that the service is a
datagram service. The default
behavior is to assume that the
service is a stream service.

'NI_NUMERICSCOPE' X'00000020' 32 Only return the numeric form of
the SCOPE-ID interface index, if
applicable.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description
0 Successful call.
-1 Check ERRNO for an error code.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

GETPEERNAME
The GETPEERNAME macro returns the name of the remote socket to which the
local socket is connected.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Format

�� EZASMI TYPE=GETPEERNAME ,S = number
address
*indaddr
(reg)

,NAME = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

GETNAMEINFO

326 z/VSE V5R2 TCP/IP Support

Parameters

S A value, or the address of a halfword binary number specifying the local
socket connected to the remote peer whose address is required.

NAME
Initially points to the peer name structure. It is filled when the call
completes with the IPv4 or IPv6 address structure for the remote socket
connected to the local socket, specified by S. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the
socket address structure. The socket address structure mappings begin at
the SOCKADDR label. The AF_INET socket address structure fields start at
the SOCK_SIN label. The AF_INET6 socket address structure fields start at
the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the client's port number.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field that is set to the client port number.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this
field contains an error number. See “ERRNO Values” on page 74 for
information about ERRNO return codes.

GETPEERNAME

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 327

RETCODE
Output parameter. A fullword binary field.

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETSOCKNAME
The GETSOCKNAME macro stores the name of the socket into the structure
pointed to by NAME and returns the address to the socket that has been bound.

If the socket is not bound to an address, the macro returns with the FAMILY field
completed and the rest of the structure set to zeros.

Stream sockets are not assigned a name until after a successful call to BIND,
CONNECT, or ACCEPT.

Use the GETSOCKNAME macro to determine the port assigned to a socket after
that socket has been implicitly bound to a port. If an application calls CONNECT
without previously calling BIND, the CONNECT macro completes the binding
necessary by assigning a port to the socket. You can determine the port assigned to
the socket by issuing GETSOCKNAME.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Format

�� EZASMI TYPE=GETSOCKNAME ,S = number
address
*indaddr
(reg)

,NAME = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

GETPEERNAME

328 z/VSE V5R2 TCP/IP Support

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket descriptor.

NAME
Initially, the application provides a pointer to the IPv4 or IPv6 socket
address structure, which is filled in on completion of the call with the
socket name. Include the PRD1.MACLIB(EZBREHST) macro to get the
assembler mappings for the socket address structure. The socket address
structure mappings begin at the SOCKADDR label. The AF_INET socket
address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the port number bound to this
socket. If the socket is not bound, a zero is returned.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field specifying the port number bound to this
socket. If the socket is not bound, a zero is returned.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID

GETSOCKNAME

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 329

contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this
field contains an error number. See “ERRNO Values” on page 74 for
information about ERRNO return codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GETSOCKOPT
The GETSOCKOPT macro gets the options associated with a socket that were set
using the “SETSOCKOPT” on page 371 macro.The options for each socket are
described by the following parameters. You must specify the option that you want,
if you issue the GETSOCKOPT macro.

Format

�� EZASMI TYPE=GETSOCKOPT ,S = number
address
*indaddr
(reg)

�

� ,OPTNAME = 'IP_MULTICAST_IF'
'IP_MULTICAST_LOOP'
'IP_MULTICAST_TTL'
'IPV6_MULTICAST_HOPS'
'IPV6_MULTICAST_IF'
'IPV6_MULTICAST_LOOP'
'IPV6_UNICAST_HOPS'
'IPV6_V6ONLY'
'SO_LINGER'
address
*indaddr
(reg)

,OPTVAL = address
*indaddr
(reg)

�

GETSOCKNAME

330 z/VSE V5R2 TCP/IP Support

� ,OPTLEN = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket descriptor of the socket requiring options.

OPTNAME
Input parameter. Set OPTNAME to one of the following options before you
issue GETSOCKOPT.

IP_MULTICAST_IF
Use this option to obtain the IPv4 interface address used for
sending outbound multicast datagrams from the socket application.
This is an IPv4-only socket option.

Note: Multicast datagrams can be transmitted only on one
interface at a time.

IP_MULTICAST_LOOP
Use this option to determine whether a copy of multicast
datagrams are looped back for multicast datagrams sent to a group
to which the sending host itself belongs. The default is to loop the
datagrams back. This is an IPv4-only socket option.

IP_MULTICAST_TTL
Use this option to obtain the IP time-to-live of outgoing multicast
datagrams. The default value is '01'x meaning that multicast is
available only to the local subnet. This is an IPv4-only socket
option.

IPV6_MULTICAST_HOPS
Use this option to obtain the hop limit used for outgoing multicast
packets. This is an IPv6-only socket option.

IPV6_MULTICAST_IF
Use this option to obtain the index of the IPv6 interface used for
sending outbound multicast datagrams from the socket application.
This is an IPv6-only socket option.

IPV6_MULTICAST_LOOP
Use this option to determine whether a multicast datagram is
looped back on the outgoing interface by the IP layer for local
delivery, if datagrams are sent to a group to which the sending
host itself belongs. The default is to loop multicast datagrams back.
This is an IPv6-only socket option.

GETSOCKOPT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 331

IPV6_UNICAST_HOPS
Use this option to obtain the hop limit used for outgoing unicast
IPv6 packets. This is an IPv6-only socket option.

IPV6_V6ONLY
Use this option to determine whether the socket is restricted to
send and receive only IPv6 packets. The default is to not restrict
the sending and receiving of only IPv6 packets. This is an
IPv6-only socket option.

SO_LINGER
Requests the status of SO_LINGER.
v If the SO_LINGER option is enabled, and data transmission has

not been completed, a CLOSE macro blocks the calling program
until the data is transmitted or until the connection has timed
out.

v If SO_LINGER is not enabled, a CLOSE call returns without
blocking the caller and TCP/IP continues to try the send data
function. Normally the send data function completes and the
data is sent, but it cannot be guaranteed because TCP/IP can
timeout before the send has been completed.

OPTVAL
Output parameter.
v If SO_LINGER is specified in OPTNAME, the following structure is

returned:
ONOFF DS F
LINGER DS F

– A nonzero value returned in ONOFF indicates that the option is
enabled and a zero value indicates that it is disabled.

– The LINGER value indicates the time in seconds that TCP/IP
continues to try to send the data after the CLOSE call is issued. For
information about how to set the LINGER time, see “SETSOCKOPT”
on page 270.

OPTLEN
Input parameter. A fullword binary field containing the length of the data
returned in OPTVAL.
v For SO_LINGER, OPTVAL contains two fullwords and OPTLEN is set to

8 (two fullwords).

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this
field contains an error number. See “ERRNO Values” on page 74 for
information about ERRNO return codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.

GETSOCKOPT

332 z/VSE V5R2 TCP/IP Support

v A 156-byte storage field used by the interface to save the state
information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GIVESOCKET
The GIVESOCKET macro makes the socket available for a TAKESOCKET macro
issued by another program.

The GIVESOCKET macro can specify any connected stream socket. Typically, the
GIVESOCKET macro is issued by a concurrent server program that creates sockets
to be passed to a subtask.

After a program has issued a GIVESOCKET macro for a socket, it can only issue a
CLOSE macro for the same socket.

Note: Both concurrent servers and iterative servers use this interface. An iterative
server handles one client at a time. A concurrent server receives connection
requests from multiple clients and creates subtasks that process the client requests.
When a subtask is created, the concurrent server gets a new socket, passes the new
socket to the subtask, and dissociates itself from the connection. The CICS Listener
program is an example of a concurrent server.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Format

�� EZASMI TYPE=GIVESOCKET ,S = number
address
*indaddr
(reg)

,CLIENT = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the descriptor of the socket to be given.

GETSOCKOPT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 333

CLIENT
A structure containing the identifier of the application to which the socket
should be given.

DOMAIN
Input parameter. A fullword binary number specifying the domain
of the client. For TCP/IP the value is a decimal 2, indicating
AF_INET, or a decimal 19, indicating AF_INET6.

Note: A socket given by GIVESOCKET can only be taken by a
TAKESOCKET with the same DOMAIN, address family (AF_INET
or AF_INET6).

NAME
Specifies an 8-character field, left-justified, padded to the right with
blanks set to the address space name of the application (partition
ID) going to take the socket. If this field is left blank, any z/VSE
partition can take the socket.

TASK Specifies an eight-character field that can be set to blanks, or to the
identifier of the socket-taking VSE subtask. If this field is set to
blanks, any subtask in the partition specified in the NAME field
can take the socket.

RESERVED
A 20-byte reserved field. This field is required, but only used
internally.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

GIVESOCKET

334 z/VSE V5R2 TCP/IP Support

GSKFREEMEM
This function frees memory passed to the application on a previous call to an SSL
function.

Format

�� EZASMI TYPE=GSKFREEMEM, AREA= address ,RETCODE= address ,
*indaddr *indaddr
(reg) (reg)

�

� ERRNO= address
*indaddr
(reg)

��

Parameters

AREA Input parameter. Specifies the address of the memory, returned to the
application from a previous SSL call that is to be freed.

RETCODE
Output parameter. A value of 0 indicates the successful completion of the
function. If RETCODE is negative, an error has occurred.

ERRNO
Output parameter. May show detailed error information.

Note: The distinguished name returned in the null-terminated string by the
GSKGETDNBYLAB function must be freed using GSKFREEMEM.

GSKGETCIPHINF
This function requests cipher related information for SSL for VSE.

This information determines the encryption level that the system can support and
returns a list of cipher specifications that SSL can use. This allows an application to
determine, at run time, the level of SSL encryption that the installed application
can request.

Format

�� EZASMI TYPE=GSKGETCIPHINF , CIPHLEVEL= number ,
address
*indaddr
(reg)

�

� SECLEVEL= address ,RETCODE= address ,
*indaddr *indaddr
(reg) (reg)

ERRNO= address
*indaddr
(reg)

��

Parameters

CIPHLEVEL
Input Parameter. A value, or the address of a fullword binary number that
determines the type of cipher information to be returned. Valid values are

1 only exportable cipher information is to be returned
(GSK_LOW_SECURITY)

GSKFREEMEM

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 335

2 exportable and domestic cipher information is to be returned
(GSK_HIGH_SECURITY)

SECLEVEL
Output Parameter. Point to an 104 byte area (to be allocated by the
application) where the system returns the following information:

4 bytes
System SSL version (always 3 for GSK_VERSION3)

64 bytes
A character string (terminated with x00) with the SSL Version 3
cipher specs allowed for use on the system (these are passable on
the V3CIPHER parameter on the GSKSSOCINIT call).

32 bytes
This field will always be filled with binary zeros because SSL for
VSE does not support SSL Version 2 cipher specs.

4 bytes
One of the following

1 GSK_SEC_LEVEL_US

2 GSK_SEC_LEVEL_EXPORT

3 GSK_SEC_LEVEL_EXPORT_FR

RETCODE
Output Parameter. A value of 0 indicates the successful completion of the
function. If RETCODE is not 0, an error occurred (please refer to VSE
library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional Features for
a detailed description of error return codes).

ERRNO
Output Parameter. May show detailed error information.

GSKGETDNBYLAB
This function returns the complete distinguished name for a key based on the label
the key has in the key database file.

This value can be used for the DNAME field in the GSKSSOCINIT call.

Format

�� EZASMI TYPE=GSKGETDNBYLAB , �

� KEYLABEL= address ,RETCODE= address ,
*indaddr *indaddr
(reg) (reg)

ERRNO= address
*indaddr
(reg)

��

Parameters

KEYLABEL
Input Parameter. Point to a character string that contains the label for the
key in the key database file. The string must be terminated with x00.

RETCODE
Output parameter. A value greater 0 indicates the successful completion of
the function and denotes a pointer to the character string with the
distinguished name. A value of 0 indicates an error.

GSKGETCIPHINF

336 z/VSE V5R2 TCP/IP Support

ERRNO
Output parameter. May show detailed error information.

Note: The distinguished name returned in the null-terminated string must be freed
using the GSKFREEMEM function.

GSKINIT
This function sets the overall SSL for VSE environment for the current partition.

After the function completes successfully, the application is ready to call SSL for
VSE interfaces and to create and use secure socket connections.

Format

�� EZASMI TYPE=GSKINIT , �

� SECTYPE= address ,
*indaddr KEYRING= address ,
(reg) *indaddr

(reg)

�

�
V3TIMEOUT= number ,

address
*indaddr
(reg)

�

�
CAROOTS= number ,AUTHTYPE= number ,

address address
*indaddr *indaddr
(reg) (reg)

RETCODE= address ,
*indaddr
(reg)

�

� ERRNO= address
*indaddr
(reg)

��

Parameters

SECTYPE
Input Parameter. Point to a character string that identifies the minimum
acceptable security protocol. The value must be entered in upper case
characters and terminated with x00. Valid values are (without
double-quotes):
v "SSL30" for SSL Version 3.0
v "TLS31" for TLS Version 1.0 (not supported for client applications)

KEYRING
(Optional) Input Parameter. Point to a character string specifying the
"lib.sublib" where the private key and certificates are stored. This string
must be terminated with x00. If this parameter is used, the
GSKGETDNBYLAB call must be used later on to identify the library
member name that is specified in DNAME parameter of the GSKSSOCINIT
call. If this parameter is not specified, the default "SSL for VSE" files as
defined in procedure $SSL4VSE.PROC are used (for details refer to the
manual TCP/IP for VSE 1.5 Optional Features).

GSKGETDNBYLAB

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 337

V3TIMEOUT
(Optional) Input Parameter. A value, or the address of a fullword binary
number that specifies the number of seconds for the SSL V3 session
identifier to expire. The valid range is 0 - 86400 (1 day). If this parameter is
not specified, a default value of 86400 is assumed.

CAROOTS
(Optional) Input Parameter. A value, or the address of a fullword binary
number that specifies which CA (Certificate Authority) root to use for
certificate verification. The supported values are:

0 Use the CA roots from the local key database file for certificate
verification.

1 Allow client authentication with certificates issued by the same
certificate authority as VSE.

If this parameter is not specified, a default value of 0 is assumed.

AUTHTYPE
(Optional) Input Parameter. A value, or the address of a fullword binary
number that specifies the method to use for verifying the client's certificate.
This field is mandatory, if the CAROOTS field is set to 1. It is ignored, if
CAROOTS is set to 0. The supported values are:

0 the client's certificate is verified using the local key database file.

1 the same meaning as with value 0

2 the same meaning as with value 0

3 the client's certificate is not verified.

RETCODE
Output Parameter. A value of 0 indicates the successful completion of the
function. If RETCODE is not 0, an error occurred (please refer to VSE
library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional Features for
a detailed description of error return codes.).

ERRNO
Output Parameter. May show detailed error information.

Note: Subsequent calls for GSKINIT without corresponding GSKUNINIT calls in
between will be rejected.

GSKSSOCCLOSE
This function ends a secure socket connection and frees all SSL for VSE resources
for that connection.

Format

�� EZASMI TYPE=GSKSSOCCLOSE , �

� SSOCDATA= address ,RETCODE= address ,
*indaddr *indaddr
(reg) (reg)

ERRNO= address
*indaddr
(reg)

��

GSKINIT

338 z/VSE V5R2 TCP/IP Support

Parameters

SSOCDATA
Input Parameter. Pointer to GSKSOCDATA as returned in RETCODE by
EZASMI TYPE=GSKSSOCINIT.

RETCODE
Output parameter. A value of 0 indicates the successful completion of the
function. If RETCODE is negative, an error has occurred (please refer to
VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional
Features for a detailed description of error return codes).

ERRNO
Output parameter. May show detailed error information.

GSKSSOCINIT
This function initializes the data areas necessary for SSL for VSE to initiate or
accept a secure socket connection.

After the function is completed successfully, a pointer to a secured socket control
block (in the following referred to as GSKSOCDATA) is returned to the application.
Other calls using this secure socket connection must use this pointer.

During the call a complete handshake is performed based on the input specified
with the GSKSSOCINIT call. While SSL for VSE performs the mechanics of the SSL
handshake, "normal" RECV and SEND routines (either provided by the EZAAPI
processing environment or provided by the application with the SKREAD and
SKWRITE parameters) will be used to transport the SSL data during the SSL
handshake, as well as for all subsequent read/write operations.

Format

�� EZASMI TYPE=GSKSSOCINIT , S= number ,HANDSHAKE= number ,
address address
*indaddr *indaddr
(reg) (reg)

�

� SECTYPE= address ,
DNAME= address , *indaddr

*indaddr (reg)
(reg)

�

� V3CIPHSEL= address ,
V3CIPHER= address , *indaddr

*indaddr (reg)
(reg)

�

� REASCODE= address ,
CERTINFO= address , *indaddr

*indaddr (reg)
(reg)

�

�
SKREAD= address , SKWRITE= address ,

*indaddr *indaddr
(reg) (reg)

�

GSKSSOCCLOSE

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 339

� RETCODE= address ,ERRNO= address
*indaddr *indaddr
(reg) (reg)

��

Parameters

S Input Parameter. A value, or the address of a halfword binary number
specifying the socket descriptor of the socket which is to be initialized for a
secure socket connection.

HANDSHAKE
Input parameter. A value, or the address of a fullword binary number that
specifies how the handshake is performed:

0 Perform the SSL handshake as a client (GSK_AS_CLIENT).

1 Perform the SSL handshake as a server (GSK_AS_SERVER).

2 Perform the SSL handshake as a server that requires client
authentication (GSK_AS_SERVER_WITH_CLIENT_AUTH).

3 Perform the SSL handshake as a client without authentication
(GSK_AS_CLIENT_NO_AUTH).

DNAME
(Optional) Input Parameter. Point to a character string that is the
Distinguished name or label of the desired entry (certificate) in the key
database file. This character string must be terminated with x00. To use the
default key database file entry, omit the parameter. The distinguished name
for a key database file entry may be determined via the EZASMI
TYPE=GETDNBYLAB function call.

SECTYPE
Output Parameter. Point to a fullword where the address of a character
string is stored that identifies the minimum acceptable security protocol.
The character string is terminated with x00. Valid values are (without
double-quotes):
v "SSL30" for SSL Version 3.0
v "TLS31" for TLS Version 1.0

V3CIPHER
(Optional) Input Parameter. Points to a character string that contains the
list of SSL Version 3.0 ciphers in order of usage preference. Valid values as
supported by TCP/IP for VSE are:
v 01 for RSA512_NULL_MD5
v 02 for RSA512_NULL_SHA
v 08 for RSA512_DES40CBC_SHA
v 09 for RSA1024_DESCBC_SHA
v 0A for RSA1024_3DESCBC_SHA
v 62 for RSA1024_EXPORT_DESCBC_SHA

You can use any combination of these values in any order. The list of
values must be terminated with x00. The exportable cipher suites
01,02,08,62 can only be used with SSL30, and will not work with TLS31. To
use the default SSL V3 cipher specs (which is 0A0908) omit this parameter.

GSKSSOCINIT

340 z/VSE V5R2 TCP/IP Support

V3CIPHSEL
Output parameter. Point to a 2-byte area (provided by the application)
where the architected SSL Version 3.0 cipher spec value selected for this
session is stored (for example: x0009).

CERTINFO
(Optional) Output parameter. Point to a fullword where the address of the
Distinguished Name components from the client's certificate is stored. This
parameter is only valid, if client authentication is requested for a server
using SSL. The layout of this area is as follows:
4 bytes

Pointer to base64 certificate body
4 bytes

Length of base64 certificate body
4 bytes

Pointer to session ID for this connection
4 bytes

Flag to indicate if new session
4 bytes

Pointer to certificate serial number
4 bytes

Pointer to common name of client
4 bytes

Pointer to locality
4 bytes

Pointer to state or province
4 bytes

Pointer to country
4 bytes

Pointer to organization
4 bytes

Pointer to organizational unit
4 bytes

Pointer to issuer's common name
4 bytes

Pointer to issuer's locality
4 bytes

Pointer to issuer's state or province
4 bytes

Pointer to issuer's country
4 bytes

Pointer to issuer's organization
4 bytes

Pointer to issuer's organizational unit

SKREAD
(Optional) Input parameter. Point to an application-provided routine that
performs a socket read function for SSL for VSE. This routine must fulfill
the following requirements:
v It must use the EZASMI READ or RECV call for the actual read.
v It must use an own TIE (Task Interface Element) which is in its first

bytes (use the TIECLEN equate from the EZASMI
TYPE=TASK,STORAGE=DSECT/CSECT macro) copied from the TIE
used with the GSK calls.

If this parameter is not provided, a "read" routine provided by the EZAAPI
processing environment will be used.

GSKSSOCINIT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 341

Example:
Main Routine
==
........

EZASMI TYPE=GSKSSOCINIT, Issue GSKSSOCINIT call x
.....
SKREAD=*SKREADA, SKREAD routine x
.....

SKREADA DC V(T9SKREAD)
MAINTIE EZASMI TYPE=TASK,STORAGE=CSECT Task Interface Element

ENTRY MAINTIE
........

Sub Routine (to be linked to main routine)
==
T9SKREAD START X’00’
T9SKREAD AMODE ANY
T9SKREAD RMODE ANY

STM R14,R12,12(R13) Save Caller’s Registers
LR R3,R15 Change base register to R3
USING T9SKREAD,R3
LR R11,R1 Save addr of parameter list

* **
* Allocate our working storage
* **

LA R0,T9SKRDYL Load the length
GETVIS ADDRESS=(1),LENGTH=(0)
LTR R15,R15 Test the return code
BZ T9SKR010 ok
SLR R15,R15 not ok
BCTR R15,0 Set bad return code
B T9SKR090 Back to caller

T9SKR010 ST R13,4(,R1) Save caller’s reg 13
ST R1,8(,R13) Save our save area address
LR R13,R1 Load our save area address
USING T9SKRDYN,R13 Base or work area

* **
* Process request
* **

L R6,AMTIE Load addr of main TIE
MVC T9SKRTIE(TIECLEN),0(R6) Copy first 24 bytes
L R6,0(R11) Get addr of socket descriptor
MVC T9RSOCK,0(R6) Move to local field
L R6,4(R11) Get addr of buffer
ST R6,T9RBUFA Move to local field
L R6,8(R11) Get length of buffer
MVC T9RBUFL,0(R6) Move to local field
EZASMI TYPE=READ, Read request c

S=T9RSOCK+2, for this socket descriptor c
BUF=*T9RBUFA, to this buffer c
NBYTE=T9RBUFL, with this length c
TASK=T9SKRTIE, own task storage c
ERRNO=T9RERRNO, own ERRNO c
RETCODE=T9RRETCD own RETCODE

L R15,T9RRETCD Move RETCODE to reg 15
T9SKR090 L R13,4(,R13) Load caller’s reg 13

L R14,12(R13)
LM R0,R12,20(R13)
BR R14 Back to caller

* --- Constants --
AMTIE DC V(MAINTIE) Address of main TIE

EZASMI TYPE=TASK,STORAGE=DSECT TIE DSECT
* --- Dynamic work area --
T9SKRDYN DSECT Dynamic Storage for this module
T9SKRSAV DS 18F Own savearea (MUST: begin of dyn)
T9SKRTIE DS XL(TIELENTH) Own TIE
T9RSOCK DS F Socket descriptor

GSKSSOCINIT

342 z/VSE V5R2 TCP/IP Support

T9RBUFA DS F Addr of read buffer
T9RBUFL DS F Length of read buffer
T9RERRNO DS F Addr of errno value
T9RRETCD DS F Addr of retcode value
T9SKRDYL EQU *-T9SKRDYN Length of dynamic storage
*---
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
* END T9SKREAD

SKWRITE
(Optional) Input parameter. Point to an application-provided routine that
performs a socket write function for SSL for VSE. This routine must fulfill
the following requirements:
v It must use the EZASMI WRITE or SEND call for the actual write.
v It must use an own TIE (Task Interface Element) which is in its first

bytes (use the TIECLEN equate from the EZASMI
TYPE=TASK,STORAGE=DSECT/CSECT macro) copied from the TIE
used with the GSK calls.

If this parameter is not provided, a "write" routine provided by the
EZAAPI processing environment will be used.

Example:

Similar to the SKREAD example.

REASCODE
Output parameter. Point to a fullword where the failure reason code for
the GSKSSOCINIT call is stored. A value of 0 indicates the successful
completion of the function.

RETCODE
Output parameter. If REASCODE is 0, the RETCODE parameter contains
the pointer to a GSKSOCDATA structure, which needs to be used in
subsequent SSL for VSE operations.

ERRNO
Output parameter. May show detailed error information.

GSKSSOCREAD
This function receives data on a secure socket connection.

Format

�� EZASMI TYPE=GSKSSOCREAD , SSOCDATA= address ,BUF= address ,
*indaddr *indaddr
(reg) (reg)

�

GSKSSOCINIT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 343

� NBYTE= number ,RETCODE= address ,
address *indaddr
*indaddr (reg)
(reg)

ERRNO= address
*indaddr
(reg)

��

Parameters

SSOCDATA
Input parameter. Address of GSKSOCDATA as returned in RETCODE by
EZASMI TYPE=GSKSSOCINIT.

BUF Input parameter. The address of the user-supplied buffer in which the data
is to be stored.

NYBTE
Input parameter. A value, or the address of a fullword binary number
specifying the length of the data buffer. The length of the data buffer must
be either 64Kb or at least 32 bytes larger than the largest send buffer that is
to be received.

RETCODE
Output parameter. A value of 0 or greater 0 indicates the successful
completion of the function and denotes the number of bytes which have
been read. If RETCODE is negative, an error has occurred (please refer to
VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional
Features for a detailed description of error return codes).

ERRNO
Output parameter. May show detailed error information. For nonblocking
sockets, if no data is received, the GSKSSOCREAD may return with
ERRNO set to EWOULDBLOCK.

GSKSSOCRESET
This function refreshes the security parameters, such as encryption keys, for a
session.

Format

�� EZASMI TYPE=GSKSSOCRESET , �

� SSOCDATA= address ,RETCODE= address ,
*indaddr *indaddr
(reg) (reg)

ERRNO= address
*indaddr
(reg)

��

Parameters

SSOCDATA
Input parameter. Address of GSKSOCDATA as returned in RETCODE by
EZASMI TYPE=GSKSSOCINIT.

RETCODE
Output parameter. A value of 0 indicates the successful completion of the
function. If RETCODE is negative, an error has occurred (please refer to
VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional
Features for a detailed description of error return codes).

ERRNO
Output parameter. May show detailed error information.

GSKSSOCREAD

344 z/VSE V5R2 TCP/IP Support

GSKSSOCWRITE
This function sends data on a secure socket connection.

Format

�� EZASMI TYPE=GSKSSOCWRITE , SSOCDATA= address ,BUF= address ,
*indaddr *indaddr
(reg) (reg)

�

� NBYTE= number ,RETCODE= address ,
address *indaddr
*indaddr (reg)
(reg)

ERRNO= address
*indaddr
(reg)

��

Parameters

SSOCDATA
Input parameter. Address of GSKSOCDATA as returned in RETCODE by
EZASMI TYPE=GSKSSOCINIT.

BUF Input parameter. The address of the data being transmitted.

NYBTE
Input parameter. A value, or the address of a fullword binary number
specifying the number of bytes to be transmitted.

RETCODE
Output parameter. A value of 0 or greater 0 indicates the successful
completion of the function and denotes the number of bytes which have
been sent. If RETCODE is negative, an error has occurred (please refer to
VSE library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional
Features for a detailed description of error return codes).

ERRNO
Output parameter. May show detailed error information.

GSKUNINIT
The GSKUNINIT call removes the current overall settings for the SSL environment.
It removes fields such as session timeout values and SSL protocols.

Format

�� EZASMI TYPE=GSKUNINIT , RETCODE= address ,ERRNO= address
*indaddr *indaddr
(reg) (reg)

��

Parameters

RETCODE
Output Parameter. A value of 0 indicates the successful completion of the
function. If RETCODE is not 0, an error occurred (please refer to VSE
library member SSLVSE.A or to the TCP/IP for VSE 1.5 Optional Features for
a detailed description of error return codes.).

ERRNO
Output Parameter. May show detailed error information.

GSKSSOCWRITE

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 345

INITAPI
The INITAPI macro connects an application to the TCP/IP interface.

Almost all sockets programs that are written in COBOL, PL/I, or assembler
language must issue the INITAPI macro before they issue other sockets macros.

Note: Because the default INITAPI still requires the TERMAPI to be issued, it is
recommended that you always code the INITAPI command.

The exceptions to this rule are the following calls, which, when issued first,
generate a default INITAPI call:
v GETCLIENTID
v GETHOSTID
v GETHOSTNAME
v SELECT
v SELECTEX
v SOCKET
v TAKESOCKET

Format

�� EZASMI TYPE=INITAPI ,MAXSOC = number
address
*indaddr
(reg)

�

�
,SUBTASK = address

*indaddr
(reg)

,IDENT = address
*indaddr
(reg)

�

� ,MAXSNO = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,APITYPE = '2'

address
*indaddr
(reg)

,UEEXIT = address
*indaddr
(reg)

�

�
,ASYNC = 'NO'

'ECB'
,ERROR = address

*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

MAXSOC
Input parameter. A halfword binary field specifying the maximum number

INITAPI

346 z/VSE V5R2 TCP/IP Support

of sockets that are supported for this application. Currently, TCP/IP for
VSE/ESA ignores this input and defaults the maximum number of sockets
that are supported to 8192. Socket descriptor numbers are in the range 0 –
8191.

SUBTASK
Indicates an 8-byte field, containing a unique subtask identifier, which is
used to distinguish between multiple subtasks within a single address
space. Use your own job name as part of your subtask name. This ensures
that, if you issue more than one INITAPI command from the same address
space, each SUBTASK parameter is unique. If not specified or specified as
8 blanks, a default subtask name is used. In a batch environment, we have

byte 0-2
first 3 characters of the JOBNAME

byte 3
hex F0

byte 4-7
the VSE Task Identifier

In a CICS transaction environment we have

byte 0-2
the CICS EIBTRNID (transaction identifier)

byte 3 hex F1

byte 4-7
the CICS EIBTASKN (task number)

IDENT
A structure that contains the identities of the TCP/IP address space and
the calling program’s address space. Specify IDENT on the INITAPI call
from an address space.

TCPNAME
Starting with z/VSE 4.2, this parameter can be used to select the
local TCP/IP stack used with this application. This 8-byte
parameter can be set to "SOCKETnn" or just to "nn" (left- or
right-adjusted, padded with six blanks). The value "nn" determines
the ID of the selected TCP/IP stack as it is specified with the ID
parameter in the TCP/IP startup JCL.

ADSNAME
The parameter can be used to specify the name of the TCP/IP
Interface Routine used by the EZA processing environment. If
nothing is specified here, the TCP/IP Interface Routine
EZASOH99, supplied by IBM, is used. Note that this specification
can be overwritten with the following JCL statement: // SETPARM
[SYSTEM,] EZA$PHA='routine-name'.

MAXSNO
Output parameter. A fullword binary field that contains the greatest
descriptor number that can get assigned to this application. Currently,
TCP/IP for VSE/ESA always returns 8191.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

INITAPI

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 347

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call.

-1 Check ERRNO for an error code.

APITYPE
Optional input parameter. A halfword binary field that specifies the
APITYPE:

2 APITYPE 2. This is the default. Allows an asynchronous macro API
program to have only one outstanding socket call per socket
descriptor. An APITYPE=2 program can use both asynchronous
and synchronous calls.

UEEXIT
Any parameter is ignored.

ASYNC
Optional input parameter. One of the following:
v The literal 'NO' indicating no asynchronous support.
v The literal 'ECB' indicating the asynchronous support using ECBs is to

be used.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

IOCTL
The IOCTL macro is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the
characteristic that you want to control in COMMAND.

Note: IOCTL can only be used with programming languages that support address
pointers

Format

�� EZASMI TYPE=IOCTL ,S = number
address
*indaddr
(reg)

,COMMAND = 'FIONBIO'
address
*indaddr
(reg)

�

� ,REQARG = address
*indaddr
(reg)

,RETARG = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

INITAPI

348 z/VSE V5R2 TCP/IP Support

� ,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket to be controlled.

COMMAND
Input parameter. To control an operating characteristic, set this field to one
of the following symbolic names. A value in a bit mask is associated with
each symbolic name. By specifying one of these names, you are turning on
a bit in a mask which communicates the requested operating characteristic
to TCP/IP.

'FIONBIO'
Sets or clears blocking status.

REQARG and RETARG
Point to arguments that are passed between the calling program and
IOCTL. The length of the argument is determined by the COMMAND
request. REQARG is an input parameter and is used to pass arguments to
IOCTL. RETARG is an output parameter and is used for arguments
returned by IOCTL.

For the lengths and meanings of REQARG and RETARG see Table 9.

Table 9. IOCTL Macro Arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO X'8004A77E' 4 Set socket mode to:
X'00'=blocking;
X'01'=nonblocking

0 Not used

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.

IOCTL

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 349

v A 156-byte storage field used by the interface to save the state
information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted .

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

LISTEN
Only servers use the LISTEN macro.

The LISTEN macro:
v Establishes the readiness to accept client connection requests.
v Creates a connection-request queue of a specified number of entries for incoming

connection requests.
v The LISTEN macro requires a BIND request to be issued previously.

The LISTEN macro is typically used by a concurrent server to receive connection
requests from clients. When a connection request is received, a new socket is
created by a later ACCEPT macro. The original socket continues to listen for
additional connection requests.

Note: Concurrent servers and iterative servers use this macro. An iterative server
handles one client at a time. A concurrent server receives connection requests from
multiple clients and creates subtasks that process the client requests. When a
subtask is created, the concurrent server gets a new socket, passes the new socket
to the subtask, and dissociates itself from the connection. The CICS Listener
program is an example of a concurrent server.

Format

�� EZASMI TYPE=LISTEN ,S = number
address
*indaddr
(reg)

,BACKLOG = 'number'
address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket descriptor.

IOCTL

350 z/VSE V5R2 TCP/IP Support

BACKLOG
Input parameter. A value (enclosed in single quotation marks) or the
address of a fullword binary number specifying the number of messages
that can be backlogged. This parameter is ignored. A value of 1 is always
assumed.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

NTOP
The NTOP macro converts an IP address from its numeric binary form into a
standard text presentation form.

On successful completion, NTOP returns the converted IP address in the buffer
provided.

Important: This function call is not available with TCP/IP for VSE/ESA.

Format

�� EZASMI TYPE=NTOP ,AF = 'INET'
'INET6'
address
*indaddr
(reg)

,SRCADDR = address
*indaddr
(reg)

�

� ,DSTADDR = address
*indaddr
(reg)

,DSTLEN = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

LISTEN

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 351

� ,RETCODE = address
*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

��

Parameters

AF Input parameter. Specify one of the following:

'INET’ or a decimal ’2’
Indicates the address being converted is an IPv4 address.

’INET6’ or a decimal ’19’
Indicates the address being converted is an IPv6 address.

AF can also indicate a fullword binary number specifying the address
family.

SRCADDR
Input parameter. A field containing the numeric binary form of the IPv4 or
IPv6 address being converted. For an IPv4 address, this field must be a
fullword. For an IPv6 address, this field must be 16 bytes. The address
must be in network byte order.

DSTADDR
Input parameter. A field used to receive the standard text presentation
form of the IPv4 or IPv6 address being converted. For IPv4 the address is
in dotted-decimal format and for IPv6 the address is in colon-hex format.
The size of the converted IPv4 address is a maximum of 15 bytes and the
size of the converted IPv6 address is a maximum of 45 bytes. Consult the
value returned in DSTLEN for the actual length of the value in DSTADDR.

DSTLEN
Initially, an input parameter. The address of a binary halfword field that is
used to specify the length of the DSTADDR field on input and upon a
successful return contains the length of the converted IP address.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

PTON
The PTON macro converts an IP address from its standard text presentation form
to its numeric binary form.

NTOP

352 z/VSE V5R2 TCP/IP Support

On successful completion, PTON returns the converted IP address in the buffer
provided.

Important: This function call is not available with TCP/IP for VSE/ESA.

Format

�� EZASMI TYPE=PTON ,AF = 'INET'
'INET6'
address
*indaddr
(reg)

,SRCADDR = address
*indaddr
(reg)

�

� ,SRCLEN = address
*indaddr
(reg)

,DSTADDR = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

� ,RETCODE = address
*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

��

Parameters

AF Input parameter. Specify one of the following:

’INET’ or a decimal ’2’
Indicates the address being converted is an IPv4 address.

’INET6’ or a decimal ’19’
Indicates the address being converted is an IPv6 address.

AF can also indicate a fullword binary number specifying the address
family.

SRCADDR
Input parameter. A field containing the standard text presentation form of
the IPv4 or IPv6 address being converted. For IPv4 the address must be in
dotted-decimal format and for IPv6 the address must be in colon-hex
format. The size of the field for an IPv4 address must be 15 bytes and the
size for an IPv6 address must be 45 bytes.

SRCLEN
Input parameter. A binary halfword field that must contain the length of
the IP address to be converted.

DSTADDR
A field that is used to receive the numeric binary form of the IPv4 or IPv6
address being converted in network byte order. For an IPv4 address, this
field must be a fullword. For an IPv6 address, this field must be 16 bytes.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
A fullword binary field that returns one of the following:

PTON

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 353

Value Description

0 Successful call

-1 Check ERRNO for an error code

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

READ
The READ macro reads data on a socket and stores it in a buffer.

The READ macro applies only to connected sockets.

For datagram sockets, the READ call returns the entire datagram that was sent. If a
datagram packet is too long to fit in the supplied buffer, datagram sockets discard
extra bytes.

Format

�� EZASMI TYPE=READ ,S = number
address
*indaddr
(reg)

,NBYTE = number
address
*indaddr
(reg)

�

� ,BUF = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket that is going to read the data.

NBYTE
Input parameter. A fullword binary number set to the size of BUF. READ
does not return more than the number of bytes of data in NBYTE even if
more data is available.

BUF On input, a buffer to be filled by completion of the call. The length of BUF
must be at least as long as the value of NBYTE.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

PTON

354 z/VSE V5R2 TCP/IP Support

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the connection is closed and no
data is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

-1 Check ERRNO for an error code.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

READ returns up to the number of bytes specified by NBYTE. If less than the
number of bytes requested is available, the READ macro returns the number
currently available.

If data is not available for the socket and the socket is in blocking mode, the READ
macro blocks the caller until data arrives. If data is not available, and the socket is
in nonblocking mode, READ returns a -1 and sets ERRNO EWOULDBLOCK. See
“IOCTL” on page 348 or “FCNTL” on page 305 for a description of how to set the
nonblocking mode.

READV
The READV macro reads data on a socket and stores it into a set of buffers.

If a datagram socket is too long to fit into the supplied buffers, the extra bytes are
discarded.

Format

�� EZASMI TYPE=READV ,S = number
address
*indaddr
(reg)

,IOV = address
*indaddr
(reg)

�

� ,IOVCNT = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

READ

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 355

�
,ERROR = address

*indaddr
(reg)

(1)

,TASK = address
*indaddr
(reg)

��

Notes:

1 The ECB parameter for asynchronous processing is not supported with this
call; unlike z/OS.

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket that is going to read the data.

IOV Input parameter. An array of three fullword structures with the number of
structures equal to the value of IOVCNT.

The format of the structures is as follows:
v Fullword 1: The address of the data buffer
v Fullword 2: Reserved
v Fullword 3: The length of the data buffer referred to in Fullword 1.

IOVCNT
Input parameter. A fullword binary field specifying the number of data
buffers provided for this call. The maximum is 120.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 A zero return code indicates that the connection is closed and no
data is available.

>0 The number of bytes copied into the buffer set.

-1 An error occurred. Check ERRNO for an error code.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore the ERRNO field.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

READV returns up to the number of bytes specified with the sum of the Fullword
3 values in the IOV structures. If less than this sum is available, READV returns
the number currently available.

READV

356 z/VSE V5R2 TCP/IP Support

RECV
The RECV macro receives data on a socket and stores it in a buffer.

The RECV macro applies only to connected sockets.

RECV returns the length of the incoming message or data. If a datagram packet is
too long to fit in the supplied buffer, datagram sockets discard extra bytes.

For stream sockets, the data is processed like streams of information with no
boundaries separating data. For example, if applications A and B are connected
with a stream socket and Application A sends 1000 bytes, each call to RECV can
return one byte, or 10 bytes, or the entire 1000 bytes. Therefore, applications using
stream sockets should place RECV in a loop that repeats the call until all data has
been received.

Format

�� EZASMI TYPE=RECV ,S = number
address
*indaddr
(reg)

,NBYTE = number
address
*indaddr
(reg)

�

� ,BUF = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket descriptor.

NBYTE
Input parameter. A fullword binary number set to the size of BUF. RECV
does not receive more than the number of bytes of data in NBYTE even if
more data is available.

BUF On input, a buffer to be filled by completion of the call. The length of BUF
must be at least as long as the value of NBYTE.

ERRNO
Ouput parameter. A fullword binary field. If RETCODE is negative, this
field contains an error number. See “ERRNO Values” on page 74 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

RECV

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 357

0 A zero return code indicates that the connection is closed and no
data is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

-1 Check ERRNO for an error code.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

If data is not available for the socket and the socket is in blocking mode, the RECV
macro blocks the caller until data arrives. If data is not available and the socket is
in nonblocking mode, RECV returns a -1 and sets ERRNO to EWOULDBLOCK.
See “FCNTL” on page 305 or “IOCTL” on page 348 for a description of how to set
nonblocking mode.

RECVFROM
The RECVFROM macro receives data for a socket and stores it in a buffer.

RECVFROM returns the length of the incoming message or data stream.

If data is not available for the socket designated by descriptor S, and socket S is in
blocking mode, the RECVFROM call blocks the caller until data arrives.

If data is not available and socket S is in nonblocking mode, RECVFROM returns a
-1 and sets ERRNO to EWOULDBLOCK. Because RECVFROM returns the socket
address in the NAME structure, it applies to any datagram socket, whether
connected or unconnected. See “FCNTL” on page 305 or “IOCTL” on page 348 for
a description of how to set nonblocking mode. If a datagram packet is too long to
fit in the supplied buffer, datagram sockets discard extra bytes.

For stream sockets, the data is processed as streams of information with no
boundaries separating data. For example, if applications A and B are connected
with a stream socket and Application A sends 1000 bytes, each call to this function
can return one byte, or 10 bytes, or the entire 1000 bytes. Applications using stream
sockets should place RECVFROM in a loop that repeats until all of the data has
been received.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Format

RECV

358 z/VSE V5R2 TCP/IP Support

�� EZASMI TYPE=RECVFROM ,S = number
address
*indaddr
(reg)

,NBYTE = number
address
*indaddr
(reg)

�

� ,BUF = address
*indaddr
(reg)

,NAME = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

� ,RETCODE = address
*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket to receive the data.

NBYTE
Input parameter. A value, or the address of a fullword binary number
specifying the length of the input buffer. NBYTE must first be initialized to
the size of the buffer associated with NAME. On return the NBYTE
contains the number of bytes of data received.

BUF On input, a buffer to be filled by completion of the call. The length of BUF
must be at least as long as the value of NBYTE.

NAME
Initially, the IPv4 or IPv6 application provides a pointer to a structure that
will contain the peer socket name on completion of the call. If the NAME
parameter value is nonzero, the IPv4 or IPv6 source address of the
message is filled. Include the PRD1.MACLIB(EZBREHST) macro to get the
assembler mappings for the socket address structure. The socket address
structure mappings begin at the SOCKADDR label. The AF_INET socket
address structure fields start at the SOCK_SIN label. The AF_INET6 socket
address structure fields start at the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the port number of the sending
socket.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

RECVFROM

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 359

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field specifying the port number of the sending
socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this
field contains an error number. See “ERRNO Values” on page 74 for
information about ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A zero return code indicates that the connection is closed and no
data is available.

>0 A positive value indicates the number of bytes transferred by the
RECVFROM call.

-1 Check ERRNO for an error code.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

SELECT
In a process where multiple I/O operations can occur it is necessary for the
program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose
blocking mode is set. Because the socket would block on a READ macro, only one
socket could be read at a time. Setting the sockets to nonblocking would solve this
problem, but would require polling each socket repeatedly until data becomes

RECVFROM

360 z/VSE V5R2 TCP/IP Support

available. The SELECT macro allows you to test several sockets and to process a
later I/O macro only, if one of the tested sockets is ready. This ensures that the I/O
macro does not block.

To use the SELECT macro as a timer in your program, do either of the following:
v Set the read, write, and except arrays to zeros
v Do not specify MAXSOC.

Testing Sockets

Read, write, and exception operations can be tested. The select () call monitors
activity on selected sockets to determine whether:
v A buffer for the specified sockets contains input data. If input data is available

for a given socket, a read operation on that socket does not block.
v TCP/IP can accommodate additional output data. If TCP/IP can accept

additional output for a socket, a write operation on the socket does not block.
v An exceptional condition occurs on a socket.
v A timeout occurs on the SELECT macro itself. A TIMEOUT period can be

specified when the SELECT macro is issued.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit
represents socket descriptor zero; the leftmost bit represents socket descriptor 31,
and so on. If your process uses 32 or fewer sockets, the bit string is one fullword.
If your process uses 33 sockets, the bit string is two full words. The first fullword
represents socket descriptors 0 to 31, the second fullword is for socket descriptors
32 to 63. You define the sockets that you want to test by turning on bits in the
string.

Read Operations

The ACCEPT, READ, RECV, and RECVFROM macros are read operations. A socket
is ready for reading when data is received on it, or when an exception condition
occurs.

To determine if a socket is ready for the read operation, set the appropriate bit in
RSNDMSK to ‘1’ before issuing the SELECT macro. When the SELECT macro
returns, the corresponding bits in the RRETMSK indicate sockets ready for reading.

Write Operations

A socket is selected for writing, ready to be written, if:
v TCP/IP can accept additional outgoing data.
v A connection request is received in response to an ACCEPT macro.
v A CONNECT call for a nonblocking socket that has previously returned ERRNO

EINPROGRESS, completes the connection.

The WRITE, SEND, or SENDTO macros block, if the data to be sent exceeds the
amount that TCP/IP can accept. To avoid this, you can precede the write operation
with a SELECT macro to ensure that the socket is ready for writing.

To determine if a socket is ready for the write operation, set the appropriate bit in
WSNDMSK to ‘1’.

SELECT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 361

Exception Operations

For each socket to be tested, the SELECT macro can check for an exception
condition. The exception conditions are:
v The calling program (concurrent server) has issued a GIVESOCKET command

and the target subtask has successfully issued the TAKESOCKET call. If this
condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

v A socket has received out-of-band data. For this condition, a READ macro
returns the out-of-band data before the program data.

To determine if a socket has an exception condition, use the ESNDMSK character
string and set the appropriate bits to ‘1’.

Returning the Results

For each event tested by a xSNDMSK, a bit string records the results of the check.
The bit strings are RRETMSK, WRETMSK, and ERETMSK for read, write, and
exceptional events. On return from the SELECT macro, each bit set to ‘1’ in the
xRETMSK is a read, write, or exceptional event for the associated socket.

MAXSOC Parameter

The SELECT call must test each bit in each string before returning any results. For
efficiency, the MAXSOC parameter can be set to the largest socket number for any
event type. The SELECT call tests only bits in the range 0 through the MAXSOC
value.

TIMEOUT Parameter

If the time in the TIMEOUT parameter elapses before an event is detected, the
SELECT call returns and RETCODE is set to 0.

Format

�� EZASMI TYPE=SELECT ,MAXSOC = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

� ,RETCODE = address
*indaddr
(reg)

,TIMEOUT = address
*indaddr
(reg)

�

�
,RSNDMSK = address ,RRETMSK = address

*indaddr *indaddr
(reg) (reg)

�

�
,WSNDMSK = address ,WRETMSK = address

*indaddr *indaddr
(reg) (reg)

�

SELECT

362 z/VSE V5R2 TCP/IP Support

�
,ESNDMSK = address ,ERETMSK = address

*indaddr *indaddr
(reg) (reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

MAXSOC
Input parameter. A fullword binary field specifying the largest socket
descriptor number to be checked plus 1 (remember, TCP/IP for VSE/ESA
supports socket descriptor numbers from 0 to 8191).

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

>0 Indicates the number of ready sockets in the three return masks.

=0 Indicates that the SELECT time limit has expired.

-1 Check ERRNO for an error code

TIMEOUT
Input parameter.

If TIMEOUT is not specified, the SELECT call blocks until a socket
becomes ready.

If TIMEOUT is specified, TIMEOUT is the maximum interval for the
SELECT call to wait until completion of the call. If you want SELECT to
poll the sockets and return immediately, TIMEOUT should be specified to
point to a zero-valued TIMEVAL structure.

TIMEOUT is specified in the two-word TIMEOUT as follows:
v TIMEOUT-SECONDS, word one of TIMEOUT, is the seconds component

of the timeout value.
v TIMEOUT-MICROSEC, word two of TIMEOUT, is the microseconds

component of the timeout value (0–999999).

For example, if you want SELECT to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
Input parameter. A bit string sent to request read event status.

SELECT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 363

v For each socket to be checked for pending read events, the
corresponding bit in the string should be set to 1.

v For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to 0, the SELECT will not check for read events. The
length of this bit-mask array is dependent on the value in MAXSOC and
must be a multiple of 4 bytes.

RRETMSK
Output parameter. A bit string that returns the status of read events.
v For each socket that is ready for to read, the corresponding bit in the

string will be set to 1.
v For sockets to be ignored, the corresponding bit in the string will be set

to 0.

WSNDMSK
Input parameter. A bit string sent to request write event status.
v For each socket to be checked for pending write events, the

corresponding bit in the string should be set to 1.
v For sockets to be ignored, the value of the corresponding bit should be

set to 0.

WRETMSK
Output parameter. A bit string that returns the status of write events.
v For each socket that is ready to write, the corresponding bit in the string

will be set to 1.
v For sockets that are not ready to be written, the corresponding bit in the

string will be set to 0.

ESNDMSK
Input parameter. A bit string sent to request exception event status. The
length of the string should be equal to the maximum number of sockets to
be checked.
v For each socket to be checked for pending exception events, the

corresponding bit in the string should be set to 1.
v For each socket to be ignored, the corresponding bit should be set to 0.

ERETMSK
Output parameter. A bit string that returns the status of exception events.
The length of the string should be equal to the maximum number of
sockets to be checked.
v For each socket for which exception status has been set, the

corresponding bit will be set to 1.
v For sockets that do not have exception status, the corresponding bit will

be set to 0.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

SELECT

364 z/VSE V5R2 TCP/IP Support

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

SELECTEX
The SELECTEX macro monitors a set of sockets, a time value, and an ECB or list of
ECBs.

It completes, if either one of the sockets has activity, the time value expires, or the
ECBs are posted.

To use the SELECTEX call as a timer in your program, do either of the following:
v Set the read, write, and except arrays to zeros
v Do not specify MAXSOC.

For a detailed description on testing sockets, refer to “SELECT” on page 360.

Format

�� EZASMI TYPE=SELECTEX ,MAXSOC = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

� ,RETCODE = address
*indaddr
(reg)

,TIMEOUT = address
*indaddr
(reg)

�

�
,RSNDMSK = address ,RRETMSK = address

*indaddr *indaddr
(reg) (reg)

�

�
,WSNDMSK = address ,WRETMSK = address

*indaddr *indaddr
(reg) (reg)

�

�
,ESNDMSK = address ,ERETMSK = address

*indaddr *indaddr
(reg) (reg)

�

� ,SELECB = address
(*indaddr ,'LIST')

(reg)
,ERROR = address

*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

SELECT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 365

Parameters

MAXSOC
Input parameter. A fullword binary field specifying the largest socket
descriptor number to be checked plus 1 (remember, TCP/IP for VSE/ESA
supports socket descriptor numbers from 0 to 8191).

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this
contains an error number.

RETCODE
Output parameter. A fullword binary field.

Value Description

>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value will be 0)
or one of the caller's ECBs has been posted (ECB value will be
nonzero and the caller's descriptor sets will be set to 0). The caller
must initialize the ECB values to zero before issuing the
SELECTEX macro.

-1 Check ERRNO.

TIMEOUT
Input parameter.

If TIMEOUT is not specified, the SELECTEX call blocks until a socket
becomes ready or until a user ECB is posted.

If a TIMEOUT value is specified, TIMEOUT is the maximum interval for
the SELECTEX call to wait until completion of the call. If you want
SELECTEX to poll the sockets and return immediately, TIMEOUT should
be specified to point to a zero-valued TIMEVAL structure.

TIMEOUT is specified in the two-word TIMEOUT as follows:
v TIMEOUT-SECONDS, word one of TIMEOUT, is the seconds component

of the time out value.
v TIMEOUT-MICROSEC, word two of TIMEOUT, is the microseconds

component of the time out value (0—999999).

For example, if you want SELECT to timeout after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.
TIMEOUT, SELECTEX returns to the calling program.

RSNDMSK
Input parameter. The bit-mask array to control checking for read
interrupts. If this parameter is not specified or the specified bit-mask is
zeros, the SELECT will not check for read interrupts. The length of this
bit-mask array is dependent on the value in MAXSOC and must be a
multiple of 4 bytes.

RRETMSK
Output parameter. The bit-mask array returned by the SELECT if
RSNDMSK is specified. The length of this bit-mask array is dependent on
the value in MAXSOC and must be a multiple of 4 bytes.

WSNDMSK
Input parameter. The bit-mask array to control checking for write
interrupts. If this parameter is not specified or the specified bit-mask is

SELECTEX

366 z/VSE V5R2 TCP/IP Support

zeros, the SELECT will not check for write interrupts. The length of this
bit-mask array is dependent on the value in MAXSOC and must be a
multiple of 4 bytes.

WRETMSK
Output parameter. The bit-mask array returned by the SELECT if
WSNDMSK is specified. The length of this bit-mask array is dependent on
the value in MAXSOC and must be a multiple of 4 bytes.

ESNDMSK
Input parameter. The bit-mask array to control checking for exception
interrupts. If this parameter is not specified or the specified bit-mask is
zeros, the SELECT will not check for exception interrupts. The length of
this bit-mask array is dependent on the value in MAXSOC and must be a
multiple of 4 bytes.

ERETMSK
Output parameter. The bit-mask array returned by the SELECT if
ESNDMSK is specified. The length of this bit-mask array is dependent on
the value in MAXSOC and must be a multiple of 4 bytes

SELECB
Input parameter. An ECB or list of ECB addresses which, if posted, causes
completion of the SELECTEX.

If the address of an ECB address list is specified you must set the
high-order bit of the last entry in the ECB list to one and you must also
add the LIST keyword. The ECBs must reside in the caller's home address
space.

Note: The maximum number of ECBs that can be specified in a list is 254.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

SEND
The SEND macro sends datagrams on a specified connected socket.

For datagram sockets, SEND transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes,
with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place this call in a loop, and reissue the call until all data
has been sent.

Format

�� EZASMI TYPE=SEND ,S = number
address
*indaddr
(reg)

,NBYTE = number
address
*indaddr
(reg)

�

SELECTEX

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 367

� ,BUF = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket descriptor of the socket that is sending data.

NBYTE
Input parameter. A value, or the address of a fullword binary number
specifying the number of bytes to transmit.

BUF The address of the data being transmitted. The length of BUF must be at
least as long as the value of NBYTE.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this
field contains an error number. See “ERRNO Values” on page 74, for
information about ERRNO return codes.

RETCODE
Output parameter. A fullword binary field.

Value Description

0 or >0
A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted .

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

SENDTO
SENDTO is similar to SEND, except that it includes the destination address
parameter.

SEND

368 z/VSE V5R2 TCP/IP Support

You can use the destination address on the SENDTO macro to send datagrams on
a UDP socket that is connected or not connected.

For datagram sockets, the SENDTO macro sends the entire datagram if the
datagram fits into the buffer.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
SENDTO macro call can send any number of bytes, up to the entire 1000 bytes,
with the number of bytes sent returned in RETCODE. Therefore, programs using
stream sockets should place SENDTO in a loop that repeats the macro until all
data has been sent.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Format

�� EZASMI TYPE=SENDTO ,S = number
address
*indaddr
(reg)

,NBYTE = number
address
*indaddr
(reg)

�

� ,BUF = address
*indaddr
(reg)

,NAME = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

� ,RETCODE = address
*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Output parameter. A value, or the address of a halfword binary number
specifying the socket descriptor of the socket sending the data.

NBYTE
Input parameter. A value, or the address of a fullword binary number
specifying the number of bytes to transmit.

BUF Input parameter. The address of the data being transmitted. The length of
BUF must be at least as long as the value of NBYTE.

NAME
Input parameter. The address of the IPv4 or IPv6 target. Include the
PRD1.MACLIB(EZBREHST) macro to get the assembler mappings for the
socket address structure. The socket address structure mappings begin at
the SOCKADDR label. The AF_INET socket address structure fields start at
the SOCK_SIN label. The AF_INET6 socket address structure fields start at
the SOCK_SIN6 label.

The IPv4 socket address structure contains the following fields:

SENDTO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 369

FAMILY
A halfword binary field specifying the IPv4 addressing family. For
TCP/IP the value is a decimal 2, indicating AF_INET.

PORT A halfword binary field specifying the port number bound to the
socket.

IPv4-ADDRESS
A fullword binary field specifying the 32-bit IPv4 Internet address
of the socket.

RESERVED
Specifies eight bytes of binary zeros. This field is required, but is
not used.

The IPv6 socket address structure contains the following fields:

NAMELEN
A 1-byte binary field that specifies the length of the IPv6 socket
address structure. Any value specified by the use of this field is
ignored, if processed as input. The field is set to 0, if processed as
output.

FAMILY
A 1-byte binary field that specifies the IPv6 addressing family. For
TCP/IP the value is a decimal 19, indicating AF_INET6.

PORT A halfword binary field specifying the port number bound to the
socket.

FLOW-INFO
A fullword binary field specifying the traffic class and flow label.
This value of this field is undefined.

IPv6-ADDRESS
A 16-byte binary field that is set to the 128-bit IPv6 Internet
address of the socket, in network byte order, of the client machine.

SCOPE-ID
A fullword binary field which identifies a set of interfaces as
appropriate for the scope of the address carried in the
IPv6-ADDRESS field. For a link scope IPv6-ADDRESS, SCOPE-ID
contains the link index for the IPv6-ADDRESS. For all other
address scopes, SCOPE-ID is undefined.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74 for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

0 or >0
A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code.

SENDTO

370 z/VSE V5R2 TCP/IP Support

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

SETSOCKOPT
The SETSOCKOPT macro sets the options associated with a socket.

The OPTVAL and OPTLEN parameters are used to pass data used by the
particular set command. The OPTVAL parameter points to a buffer containing the
data needed by the set command. The OPTLEN parameter must be set to the size
of the data pointed to by OPTVAL.

Format

�� EZASMI TYPE=SETSOCKOPT ,S = number
address
*indaddr
(reg)

,OPTLEN = address
*indaddr
(reg)

�

� ,OPTNAME = 'IP_ADD_MEMBERSHIP'
'IP_ADD_SOURCE_MEMBERSHIP'
'IP_BLOCK_SOURCE'
'IP_DROP_MEMBERSHIP'
'IP_DROP_SOURCE_MEMBERSHIP'
'IP_MULTICAST_IF'
'IP_MULTICAST_LOOP'
'IP_MULTICAST_TTL'
'IP_UNBLOCK_SOURCE'
'IPV6_JOIN_GROUP'
'IPV6_LEAVE_GROUP'
'IPV6_MULTICAST_HOPS'
'IPV6_MULTICAST_IF'
'IPV6_MULTICAST_LOOP'
'IPV6_UNICAST_HOPS'
'IPV6_V6ONLY'
'MCAST_BLOCK_SOURCE'
'MCAST_JOIN_GROUP'
'MCAST_JOIN_SOURCE_GROUP'
'MCAST_LEAVE_GROUP'
'MCAST_LEAVE_SOURCE_GROUP'
'MCAST_UNBLOCK_SOURCE'
'SO_KEEPALIVE'
'SO_LINGER'
'SO_REUSEADDR'
address
*indaddr
(reg)

,OPTVAL = address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

SENDTO

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 371

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S A value, or the address of a halfword binary number specifying the socket
sending the data.

OPTLEN
Input parameter. A fullword binary number specifying the length of the
field specified by OPTVAL.

OPTNAME
Input parameter. Indicates the following values:

IP_ADD_MEMBERSHIP
Use this option to enable an application to join a multicast group
on a specific interface. An interface has to be specified with this
option. Only applications that want to receive multicast datagrams
need to join multicast groups. This is an IPv4-only socket option.

IP_ADD_SOURCE_MEMBERSHIP
Use this option to enable an application to join a source multicast
group on a specific interface and a specific source address. You
must specify an interface and a source address with this option.
Applications that want to receive multicast datagrams need to join
source multicast groups. This is an IPv4-only socket option.

IP_BLOCK_SOURCE
Use this option to enable an application to block multicast packets
that have a source address that matches the given IPv4 source
address. You must specify an interface and a source address with
this option. The specified multicast group must have been joined
previously. This is an IPv4-only socket option.

IP_DROP_MEMBERSHIP
Use this option to enable an application to exit a multicast group
or to exit all sources for a multicast group. This is an IPv4-only
socket option.

IP_DROP_SOURCE_MEMBERSHIP
Use this option to enable an application to exit a source multicast
group. This is an IPv4-only socket option.

IP_MULTICAST_IF
Use this option to set the IPv4 interface address used for sending
outbound multicast datagrams from the socket application. This is
an IPv4-only socket option.

Note: Multicast datagrams can be transmitted only on one
interface at a time.

IP_MULTICAST_LOOP
Use this option to control whether a copy of multicast datagrams
are looped back for multicast datagrams sent to a group to which
the sending host itself belongs. The default is to loop the
datagrams back. This is an IPv4-only socket option.

SETSOCKOPT

372 z/VSE V5R2 TCP/IP Support

IP_MULTICAST_TTL
Use this option to set the IP time-to-live of outgoing multicast
datagrams. The default value is '01'x meaning that multicast is
available only to the local subnet. This is an IPv4-only socket
option.

IP_UNBLOCK_SOURCE
Use this option to enable an application to unblock a previously
blocked source for a given IPv4 multicast group. You must specify
an interface and a source address with this option. This is an
IPv4-only socket option.

IPV6_JOIN_GROUP
Use this option to control the reception of multicast packets and
specify that the socket join a multicast group. This is an IPv6-only
socket option.

IPV6_LEAVE_GROUP
Use this option to control the reception of multicast packets and
specify that the socket leave a multicast group. This is an IPv6-only
socket option.

IPV6_MULTICAST_HOPS
Use to set the hop limit used for outgoing multicast packets. This
is an IPv6-only socket option.

IPV6_MULTICAST_IF
Use this option to set the index of the IPv6 interface used for
sending outbound multicast datagrams from the socket application.
This is an IPv6-only socket option.

IPV6_MULTICAST_LOOP
Use this option to control whether a multicast datagram is looped
back on the outgoing interface by the IP layer for local delivery, if
datagrams are sent to a group to which the sending host itself
belongs. The default is to loop multicast datagrams back. This is an
IPv6-only socket option.

IPV6_UNICAST_HOPS
Use this option to set the hop limit used for outgoing unicast IPv6
packets. This is an IPv6-only socket option.

IPV6_V6ONLY
Use this option to set whether the socket is restricted to send and
receive only IPv6 packets. The default is to not restrict the sending
and receiving of only IPv6 packets. This is an IPv6-only socket
option.

MCAST_BLOCK_SOURCE
Use this option to enable an application to block multicast packets
that have a source address that matches the given source address.
You must specify an interface index and a source address with this
option. The specified multicast group must have been joined
previously.

MCAST_JOIN_GROUP
Use this option to enable an application to join a multicast group
on a specific interface. You must specify an interface index.
Applications that want to receive multicast datagrams must join
multicast groups.

SETSOCKOPT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 373

MCAST_JOIN_SOURCE_GROUP
Use this option to enable an application to join a source multicast
group on a specific interface and a source address. You must
specify an interface index and the source address. Applications that
want to receive multicast datagrams only from specific source
addresses need to join source multicast groups.

MCAST_LEAVE_GROUP
Use this option to enable an application to exit a multicast group
or exit all sources for a given multicast groups.

MCAST_LEAVE_SOURCE_GROUP
Use this option to enable an application to exit a source multicast
group.

MCAST_UNBLOCK_SOURCE
Use this option to enable an application to unblock a previously
blocked source for a given multicast group. You must specify an
interface index and a source address with this option.

SO_KEEPALIVE
This option is provided for source compatibility reasons only. It
will not perform any action. Instead the user should use the
common TCP/IP setting: SET PULSE_TIME=nnn.

SO_LINGER
Controls how TCP/IP processes data that has not been transmitted,
if a CLOSE macro is issued for the socket. This option has meaning
only for stream sockets.
v If SO_LINGER is set and CLOSE is called, the calling program

is blocked until the data is successfully transmitted or the
connection has timed out.

v If SO_LINGER is not set, the CLOSE macro returns without
blocking the caller, and TCP/IP continues to attempt to send
data for a specified time. This usually allows sufficient time to
complete the data transfer. Use of the SO_LINGER option does
not guarantee successful completion because TCP/IP only waits
the amount of time specified in OPTVAL for SO_LINGER.

The default is DISABLED.

SO_REUSEADDR
This option is provided for source compatibility reasons only. It
will not perform any action. TCP/IP implicitly allows for
immediate address reuse.

OPTVAL
Input parameter. Contains data about the option specified in OPTNAME.
v OPTVAL is a 32-bit binary number for all values of OPTNAME, except

SO_LINGER. Set OPTVAL to a nonzero positive value to enable the
option. set OPTVAL to zero to disable the option.

v For SO_LINGER, OPTVAL is:
ONOFF DS F ON OR OFF
LINGER DS F TIME IN SECONDS

Set ONOFF to a nonzero value to enable the option and set it to zero to
disable the option. Set the LINGER value to the time in seconds that
TCP/IP lingers after the CLOSE macro is issued.

SETSOCKOPT

374 z/VSE V5R2 TCP/IP Support

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

>0 Indicates the number of ready sockets in the three return masks.

=0 Indicates that the SELECT time limit has expired.

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

The OPTVAL and OPTLEN parameters are used to pass data used by the
particular set command. The OPTVAL parameter points to a buffer containing the
data needed by the set command. It is optional and can be set to the NULL
pointer, if data is not needed by the command. The OPTLEN parameter must be
set to the size of the data pointed to by OPTVAL.

SHUTDOWN
The SHUTDOWN macro can be used to close one-way traffic while completing
data transfer in the other direction.

The HOW parameter determines the direction of the traffic to shutdown. A client
program can use the SHUTDOWN macro to reuse a given socket with a different
connection.

Another way to terminate a network connection is to issue a “CLOSE” on page 301
macro that attempts to complete all outstanding data transmission requests prior to
breaking the connection.

Format

�� EZASMI TYPE=SHUTDOWN ,S = number
address
*indaddr
(reg)

,HOW = number
address
*indaddr
(reg)

�

SETSOCKOPT

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 375

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket to be shutdown.

HOW Input parameter. A fullword binary field specifying the shutdown method.

Value Description

2 Ends further send and receive operations.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns the following:

Value Description

0 Successful call

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted .

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

SOCKET
The SOCKET macro creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

Different types of sockets provide different communication services.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

SHUTDOWN

376 z/VSE V5R2 TCP/IP Support

Format

�� EZASMI TYPE=SOCKET ,AF = 'INET'
'INET6'
address
*indaddr
(reg)

,SOCTYPE = 'STREAM'
'DATAGRAM'
address
*indaddr
(reg)

�

� ,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,PROTO = address

*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

AF Input parameter. Specifies the literal INET or INET6, which indicates the
internet or TCP/IP. Specify one of the following:

'INET’ or a decimal ’2’
Indicates the address being converted is an IPv4 address.

’INET6’ or a decimal ’19’
Indicates the address being converted is an IPv6 address.

AF can also indicate a fullword binary number specifying the address
family.

SOCTYPE
Input parameter. A fullword binary field set to the type of socket required.
The types are:

1 or 'STREAM'
Stream sockets provide sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mechanism for
out-of-band data. This is the normal type for TCP/IP.

2 or 'DATAGRAM'
Datagram sockets provide datagrams, which are connectionless
messages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out of order,
lost, or delivered multiple times. This type is supported only in the
AF_INET domain.

Note: RAW sockets are not supported.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative, this
field contains an error number. See “ERRNO Values” on page 74 for
information about ERRNO return codes.

SOCKET

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 377

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

> or = 0
Contains the new socket descriptor

-1 Check ERRNO for an error code

PROTO
Input parameter. A fullword binary number specifying the protocol
supported.

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted .

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

PROTO specifies a particular protocol to be used with the socket. If PROTO is set
to 0, the system selects the default protocol number for the domain and socket
type requested. The PROTO defaults are TCP for stream sockets and UDP for
datagram sockets. If PROTO is set to 17, the UDP Protocol is used. If it is set to 6,
the TCP protocol is used.

SOCK_STREAM sockets model duplex byte streams. They provide reliable,
flow-controlled connections between peer applications. Stream sockets are either
active or passive. Active sockets are used by clients who initiate connection
requests with CONNECT. By default, SOCKET creates active sockets. Passive
sockets are used by servers to accept connection requests with the CONNECT
macro. An active socket is transformed into a passive socket by binding a name to
the socket with the BIND macro and by indicating a willingness to accept
connections with the LISTEN macro. Once a socket is passive, it cannot be used to
initiate connection requests.

In the AF_INET domain, the BIND macro, applied to a stream socket, lets the
application specify the networks from which it is willing to accept connection
requests. The application can fully specify the network interface by setting the
internet address field in the address structure to the internet address of a network
interface. Alternatively, the application can set the address in the name structure to
zeros to indicate that it wants to receive connection requests from any network.

Once a connection has been established between stream sockets, the data transfer
macros READ, WRITE, SEND, RECV, SENDTO, and RECVFROM can be used.
Usually, the READ-WRITE or SEND-RECV pairs are used for sending data on
stream sockets.

SOCKET

378 z/VSE V5R2 TCP/IP Support

SOCK_DGRAM sockets are used to model datagrams. They provide connectionless
message exchange without guarantees of reliability. Messages sent have a
maximum size.

The active or passive concepts for stream sockets do not apply to datagram
sockets. Servers must still call BIND to name a socket and to specify from which
network interfaces it wants to receive datagrams. Wildcard addressing, as
described for stream sockets, also applies to datagram sockets. Because datagram
sockets are connectionless, the LISTEN macro has no meaning for them and must
not be used.

After an application receives a datagram socket, it can exchange datagrams using
the SENDTO and RECVFROM macros. If the application goes one step further by
calling CONNECT and fully specifying the name of the peer with which all
messages are exchanged, then the other data transfer macros READ, WRITE,
SEND, and RECV can be used as well. For more information about placing a
socket into the connected state, see “CONNECT” on page 207.

Datagram sockets allow message broadcasting to multiple recipients. Setting the
destination address to a broadcast address depends on the network interface
(address class and whether subnets are used).

Outgoing datagrams have an IP header prefixed to them. Your program receives
incoming datagrams with the IP header intact. You can set and inspect IP options
by using the SETSOCKOPT and GETSOCKOPT macros.

Use the CLOSE macro to deallocate sockets.

TAKESOCKET
The TAKESOCKET macro acquires a socket from another program and creates a
new socket.

Typically, a subtask issues this macro using client ID and socket descriptor data
which it obtained from the concurrent server.

Note:

1. If TAKESOCKET is issued, a new socket descriptor is returned in RETCODE.
You should use this new socket descriptor in later macros such as
GETSOCKOPT, which require the S (socket descriptor) parameter.

2. Both concurrent servers and iterative servers use this interface. An iterative
server handles one client at a time. A concurrent server receives connection
requests from multiple clients and creates subtasks that process the client
requests. When a subtask is created, the concurrent server gets a new socket,
passes the new socket to the subtask, and dissociates itself from the connection.
The CICS Listener program is an example of a concurrent server.

Important: IPv6 support is not available with TCP/IP for VSE/ESA. Any reference
to IPv6 addresses or address structures do not apply, if this program is used.

Format

�� EZASMI TYPE=TAKESOCKET ,CLIENT = address
*indaddr
(reg)

�

SOCKET

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 379

� ,SOCRECV = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

� ,RETCODE = address
*indaddr
(reg)

,ECB= address
*indaddr
(reg)

�

�
,ERROR = address

*indaddr
(reg)

,TASK = address
*indaddr
(reg)

��

Parameters

CLIENT
Input parameter. The client data returned by the GETCLIENTID macro.

DOMAIN
Input parameter. A fullword binary number set to the domain of
the program that is giving the socket. For TCP/IP the value is a
decimal 2, indicating AF_INET, or a decimal 19, indicating
AF_INET6.

Note: The TAKESOCKET can only acquire a socket of the same
address family from a GIVESOCKET.

NAME
An eight-byte character field set to the VSE partition identifier of
the program giving the socket.

TASK Input parameter. Specifies an eight-byte character field. This field
must match the value of the SUBTASK parameter on the INITAPI
for the VSE task that issued the GIVESOCKET request.

RESERVED
Input parameter. A 20-byte reserved field. This field is required
and only used internally.

SOCRECV
Input parameter. A halfword binary field containing the socket descriptor
number assigned by the application that called GIVESOCKET.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

>0 Indicates the number of ready sockets in the three return masks.

=0 Indicates that the SELECT time limit has expired.

-1 Check ERRNO for an error code

TAKESOCKET

380 z/VSE V5R2 TCP/IP Support

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

TASK
The TASK macro allocates a task storage area addressable to all socket users within
a task.

If more than one module is using sockets within a task, it is your responsibility to
provide the task storage address to each module. These modules should use the
instruction EZASMI TYPE=TASK with STORAGE=DSECT to define the storage
mapping.

If this macro is not named, the default name EZASMTIE is used for the storage
mapping.

Format

�� EZASMI TYPE=TASK ,STORAGE = DSECT
CSECT

��

Parameters

STORAGE
Input parameter. Defines one of the following storage definitions:

DSECT
Generates a DSECT.

CSECT
Generates an inline storage definition that can be used within a
CSECT or as a part of a larger DSECT.

TERMAPI
The TERMAPI macro ends the session created by the INITAPI macro.

Note: The INITAPI and TERMAPI macros must be issued under the same task.

Format

�� EZASMI TYPE=TERMAPI
,ERROR = address

*indaddr
(reg)

�

TAKESOCKET

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 381

�
,TASK = address

*indaddr
(reg)

��

Parameters

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

WRITE
The WRITE macro writes data on a connected socket. The WRITE macro is similar
to the SEND macro.

For datagram sockets, this macro writes the entire datagram, if it fits into one
TCP/IP buffer.

For stream sockets, the data is processed as streams of information with no
boundaries separating the data. For example, if you want to send 1000 bytes of
data, each call to the write macro can send one byte, ten bytes, or the entire 1000
bytes. You should place the WRITE macro in a loop that cycles until all of the data
has been sent.

Format

�� EZASMI TYPE=WRITE ,S = number
address
*indaddr
(reg)

,NBYTE = number
address
*indaddr
(reg)

�

� ,BUF = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

�

�
,ECB= address

*indaddr
(reg)

,ERROR = address
*indaddr
(reg)

�

�
,TASK = address

*indaddr
(reg)

��

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket descriptor of the socket to send the data.

NBYTE
Input parameter. A value, or the address of a fullword binary field
specifying the number of bytes of data to transmit.

TERMAPI

382 z/VSE V5R2 TCP/IP Support

BUF The address of the data being transmitted. The length of BUF must be at
least as long as the value of NBYTE.

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

RETCODE
Output parameter. A fullword binary field.

Value Description

0 or >0
A successful call. The value is set to the number of bytes
transmitted.

-1 Check ERRNO for an error code

ECB Input parameter. It points to a 160-byte field containing:
v A four-byte ECB posted by TCP/IP when the macro completes.
v A 156-byte storage field used by the interface to save the state

information.

Note: This storage must not be modified until the macro function has
completed and the ECB has been posted.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

This macro writes up to NBYTE bytes of data. If there is not enough available
buffer space for the socket data to be transmitted, and the socket is in blocking
mode, WRITE blocks the caller until additional buffer space is available. If the
socket is in nonblocking mode, WRITE returns a -1 and sets ERRNO to
EWOULDBLOCK. See “FCNTL” on page 305 or “IOCTL” on page 348 for a
description of how to set the nonblocking mode.

WRITEV
The WRITEV macro writes data on a socket from a set of buffers.

Format

�� EZASMI TYPE=WRITEV ,S = number
address
*indaddr
(reg)

,IOV = address
*indaddr
(reg)

�

� ,IOVCNT = address
*indaddr
(reg)

,RETCODE = address
*indaddr
(reg)

,ERRNO = address
*indaddr
(reg)

�

WRITE

Chapter 12. Using the Macro Application Programming Interface (EZASMI API) 383

�
,ERROR = address

*indaddr
(reg)

(1)

,TASK = address
*indaddr
(reg)

��

Notes:

1 The ECB parameter for asynchronous processing is not supported with this
call; unlike z/OS.

Parameters

S Input parameter. A value, or the address of a halfword binary number
specifying the socket that will send the data.

IOV Input parameter. An array of three fullword structures with the number of
structures equal to the value of IOVCNT.

The format of the structures is as follows:
v Fullword 1: The address of the data buffer
v Fullword 2: Reserved
v Fullword 3: The length of the data buffer referred to in Fullword 1.

IOVCNT
Input parameter. A fullword binary field specifying the number of data
buffers provided for this call. The maximum is 120.

RETCODE
Output parameter. A fullword binary field that returns one of the
following:

Value Description

>=0 The number of bytes sent.

-1 An error occurred. Check ERRNO for an error code

ERRNO
Output parameter. A fullword binary field. If RETCODE is negative,
ERRNO contains a valid error number. Otherwise, ignore ERRNO.

See “ERRNO Values” on page 74, for information about ERRNO return
codes.

ERROR
Input parameter. The location in your program to receive control, if the
application programming interface (API) processing module cannot be
loaded.

TASK Input parameter. The location of the task storage area in your program.

WRITEV

384 z/VSE V5R2 TCP/IP Support

Part 4. Using Fast Path to Linux

© Copyright IBM Corp. 1997, 2014 385

386 z/VSE V5R2 TCP/IP Support

Chapter 13. Running z/VSE With a Linux Fast Path

This section describes the Fast Path to Linux on System z function, referred to simply
as Linux Fast Path (or LFP).

Linux Fast Path allows selected TCP/IP applications to communicate with the
TCP/IP stack on Linux on System z without using a TCP/IP stack on z/VSE.

The Linux Fast Path can be run in either a z/VM environment or an LPAR
environment.
v If you run LFP in a z/VM environment, both z/VSE and Linux on System z run

in the same z/VM-mode LPAR on an IBM System z10™ or later server. An IUCV
connection is used between z/VSE and Linux on System z.

v If you run LFP in an LPAR environment, both z/VSE and Linux on System z
run in their own LPARs on a zEnterprise® server. A HiperSockets connection is
used between z/VSE and Linux on System z. LFP requires the HiperSockets
Completion Queue function that is available with a zEnterprise server.

For a general introduction on Fast Path to Linux on System z refer to z/VSE
Planning.

If using socket applications written in LE/C with LFP, you must configure the
LE/C TCP/IP Socket API Multiplexer. Refer to “Preparing to use Socket APIs with
Linux Fast Path on z/VSE” on page 395 and the LE/VSE C Run-Time Library
Reference for details.

This section contains these main topics:
v “Overview of Linux Fast Path”
v “Prerequisites for Using Linux Fast Path” on page 388
v “Restrictions When Using Linux Fast Path” on page 389
v “Communication Flow When Not Using Linux Fast Path” on page 389
v “Communication Flow When Using Linux Fast Path in a z/VM Environment”

on page 390
v “Communication Flow When Using Linux Fast Path in an LPAR Environment”

on page 391
v “Preparing Linux on System z to Use Linux Fast Path” on page 393
v “Configuring Linux Fast Path” on page 397
v “Starting and Stopping Linux Fast Path ” on page 407
v “Administrative Tasks” on page 411

Overview of Linux Fast Path
LFP transparently forwards all socket requests to a Linux on System z system,
where the LFP daemon (lfpd) must run. This daemon fulfills all socket requests by
forwarding them to the Linux TCP/IP stack.

You can start multiple LFP instances:
v Each instance is identified by its ID (00 to 99) and represents a connection to an

LFP daemon on a Linux system.

© Copyright IBM Corp. 1997, 2014 387

v The ID corresponds to the ID value you use for the TCP/IP stack (for example,
// EXEC IPNET,PARM=’ID=nn’).

v The IDs must be unique across all TCP/IP stacks and LFP instances. Therefore,
you cannot have a TCP/IP stack with the same ID as an LFP instance.

The following APIs are available for use with the Linux Fast Path:
v LE/C socket API via an alternative $EDCTCPV.PHASE (IJBLFPLE).
v EZA SOCKET and EZASMI interface via an alternative EZA interface phase

IJBLFPEZ.
v CSI’s (Connectivity Systems, Incorporated) assembler socket interface via the

SOCKET macro.

LFP is not intended to replace an existing TCP/IP stack on z/VSE that is used to
communicate with another remote server. LFP only provides TCP/IP socket APIs
for programs running on z/VSE:
v These APIs are compatible to existing APIs, and enable existing socket programs

to run unchanged using LFP.
v Except for the basic socket API, no other tools are provided.
v You still require a TCP/IP stack on z/VSE in order to run FTP servers/daemons,

TELNET servers, LPR/LPD, and so on.

Prerequisites for Using Linux Fast Path
These are the prerequisites for using LFP in a z/VM environment:
v If you use a z/VM-mode LPAR, z/VM Version 5 Release 4 or later. Otherwise,

any z/VM release supported by z/VSE.
v If you use a z/VM-mode LPAR, IBM System z10 or later. Otherwise, any server

supported by z/VSE.
v z/VSE Version 4 Release 3 or later.
v One of these Linux on System z operating systems:

– SUSE SLES 10 SP3 together with security update kernel 2.6.16.60-0.57.1.
– SUSE SLES 11 SP1
– Red Hat RHEL 5 Update 5
– Red Hat RHEL 6

v z/VSE and Linux on System z have to be configured as z/VM guests within the
same z/VM, because an IUCV connection is used.

v The IUCV (“Inter-User Communication Vehicle”) has to be configured and
enabled in both z/VM guests (z/VSE and Linux on System z).

These are the prerequisites for using LFP in an LPAR environment:
v A zEnterprise server at driver level 93 or later. LFP requires the HiperSockets

Completion Queue function, which is only available with a zEnterprise server.
v z/VSE Version 5 Release 1 with the following APARs/PTFs installed:

DY47300/UD53758, PM56023/UK76218 and PM56056/UK76252.
v One of these Linux on System z operating systems:

– SUSE SLES 11 SP2
– Red Hat: IBM is working with its Linux distribution partners to include

support in future Linux on System z distribution releases.
v One z/VSE system and one Linux on System z system running in LPAR mode.

388 z/VSE V5R2 TCP/IP Support

Restrictions When Using Linux Fast Path
These are the restrictions when using LFP:
v For the CSI (Connectivity Systems, Incorporated) interface, which is the SOCKET

macro, LFP only supports connection types:
– TCP
– UDP
– CONTROL

Other connection types (such as CLIENT, TELNET, FTP, RAW, and so on) are not
supported and are rejected, if used with LFP.

v For CONTROL type connections, the only commands supported are:
– GETHOSTBYNAME
– GETHOSTBYADDR
– GETHOSTNAME
– GETHOSTID

For details, refer to the individual macro descriptions in the "TCP/IP for VSE
V1R5F Programmers Guide".

v For CONTROL type connections, these commands (from Barnard Software,
Incorporated) are also supported:
– NTOP
– PTON
– GETVENDORINFO

For details, refer to the IPv6/VSE Programming Guide that is published by
Barnard Software, Incorporated.

v If you use the SSL API (using gsk_nnn functions), you need to have a TCP/IP for
VSE/ESA TCP/IP stack up and running using a different ID. The SSL functions
use services from the TCP/IP stack, although the communication flow uses LFP.

Communication Flow When Not Using Linux Fast Path
This topic provides a detailed description of a typical configuration that does not
use a Linux Fast Path. This is shown in Figure 22 on page 390. In this
configuration, a DB2® client running under z/VSE communicates with the DB2
Server for Linux running under Linux.

This configuration also applies, if you run other z/VSE-supplied programs that run
on Linux on System z (the VSE Redirector Server, Redirector Handler, and so on).
In Figure 22 on page 390:
v The communication between z/VSE and is established using HiperSockets.
v All communication must be routed through the TCP/IP stacks on z/VSE and

Linux on System z.

A fast HiperSockets connection can easily lead to a high system utilization
resulting from the required overhead of the TCP-processing and IP-processing.

Chapter 13. Running z/VSE With a Linux Fast Path 389

The processing shown in Figure 22 is as follows:

�1� The data is passed from the z/VSE application (in this example, the DB2
Client) to the TCP/IP Stack running in another partition. This is done
using cross-partition communication mechanisms and involves some
dispatching activities in the z/VSE supervisor.

�2� TCP/IP builds one or multiple TCP packets with the data from the user
applications. It builds a TCP header as well as an IP header. This
processing includes handling for retransmissions, sequence numbers and
acknowledging, calculating checksums, and so on.

�3� The TCP/IP stack passes the packets to the network device driver for use
with HiperSockets (for example, the OSAX device driver).

�4� The HiperSockets network forwards the packets to the Linux image.

�5� The Linux HiperSockets device driver receives the packets and passes them
to the TCP/IP stack. The TCP/IP stack on Linux checks and unpacks the
IP and TCP header. This processing includes handling for retransmissions,
sequence numbers and acknowledging, validating checksums and so on.

�6� The TCP/IP stack passes the data to the application (in this example, the
DB2 Server) running on Linux. The DB2 Server receives and processes the
data.

For data to be sent from the DB2 Server on Linux back to the DB2 Client on
z/VSE, the same six steps as above are performed in reverse order.

Communication Flow When Using Linux Fast Path in a z/VM
Environment

This topic provides a detailed description of a typical configuration that uses a
Linux Fast Path in a z/VM environment . This is shown in Figure 23 on page 391.
This configuration also uses the example of a DB2 client running under z/VSE
communicating with the DB2 Server for Linux running under Linux.

In Figure 23 on page 391:

DB2 Server
for Linux

Linux on System z (VM Guest)

DB2 Client

z/VSE Supervisor

OSAX Device
Driver

z/VSE (VM Guest)

HiperSockets

TCP/IP Stack

Linux Kernel

116

5

4

3

1

2

TCP/IP Stack

4

OSAX Device
Driver

Figure 22. Communication Between VM Guests via HiperSockets

390 z/VSE V5R2 TCP/IP Support

v The communication between z/VSE and Linux on System z is established using
an IUCV communication path.

v The Linux Fast Path establishes an IUCV communication path between z/VSE
and Linux on System z without using:
– A TCP/IP stack on z/VSE
– OSA Express adapters

The flow of actions described in this example also apply when running other
z/VSE-supplied programs that run on Linux (the VSE Redirector Server, VSE
Script Server, Redirector Handler, and so on).

The processing shown in Figure 23 is as follows:

�1� The data to be sent is passed to LFP running on z/VSE.

�2� LFP sends the data via the IUCV channel to the Linux image.

�3� The Linux IUCV device driver receives the data and passes them to the
lfpd running on the Linux image. The lfpd processes the data and
translates it into a socket call.

�4� The socket call is processed by the TCP/IP stack. Because the data is to be
sent to an application (in this example, the DB2 Server) that runs on the
same Linux system, the TCP/IP stack simply forwards the data directly to
the DB2 Server. TCP/IP is not required to perform the processing-intensive
steps that were required in Figure 22 on page 390.

�5� The DB2 Server receives and processes the data.

For data to be sent from the DB2 Server on Linux back to the DB2 client on z/VSE,
the same five steps as above are performed in reverse order.

Communication Flow When Using Linux Fast Path in an LPAR
Environment

This topic provides a detailed description of a typical configuration that uses a
Linux Fast Path in an LPAR environment. This is shown in Figure 24 on page 392.
This configuration also uses the example of a DB2 client running under z/VSE
communicating with the DB2 Server for Linux running under Linux.

DB2 Server
for Linux

Linux on System z (VM Guest)

DB2 Client

z/VSE Supervisor (LFP)

z/VSE (VM Guest)

IUCV

Linux Kernel

1151TCP/IP Stack

LFP daemon

2

TCP/IP Stack

3 4

OSAX Device
Driver

OSAX Device
Driver

Figure 23. Communication Between VM Guests via a Linux Fast Path

Chapter 13. Running z/VSE With a Linux Fast Path 391

In Figure 24:
v The communication between z/VSE and Linux on System z is established using

a HiperSockets communication path.
v LFP establishes a HiperSockets connection between z/VSE and Linux on

System z without using:
– A TCP/IP stack on z/VSE
– OSA Express adapters

For an LFP connection via HiperSockets, both systems must run in LPAR mode.
The flow of actions described in this example also apply, if running other
z/VSE-supplied programs that run on Linux (the VSE Redirector Server, VSE
Script Server, Redirector Handler, and so on).

The processing shown in Figure 23 on page 391 is as follows:

�1� The data to be sent is passed to LFP running on z/VSE.

�2� LFP invokes the HiperSockets device driver to send the data to the Linux
image. The HiperSockets Completion Queue function guarantees successful
data transmission.

�3� The Linux device driver receives the data and passes it to the lfpd running
on the Linux image. The lfpd then processes the data received and
translates it into a socket call.

�4� The socket call is processed by the TCP/IP stack. Because the data is to be
sent to an application (in this example, the DB2 Server) that runs on the
same Linux system, the TCP/IP stack simply forwards the data directly to
the DB2 Server. TCP/IP is not required to perform the processing-intensive
steps that were required in Figure 22 on page 390.

�5� The DB2 Server receives and processes the data.

For data to be sent from the DB2 Server on Linux back to the DB2 client on z/VSE,
the same five steps as above are performed in reverse order.

Linux on System z LPAR

DB2 Client

z/VSE Supervisor (LFP)

z/VSE LPAR

1

2

TCP/IP Stack

HiperSockets
Device Driver

HiperSockets

DB2 Server
for Linux

Linux Kernel

115

LFP daemon

TCP/IP Stack

3 4

HiperSockets
Device Driver

Figure 24. Communication Between LPARs via HiperSockets

392 z/VSE V5R2 TCP/IP Support

Preparing Linux on System z to Use Linux Fast Path
The LFP daemon (lfpd) that runs on Linux on System z must be installed before it
can be used, to do so you have to be logged on as user root.

There are two ways to obtain a copy of the LFP daemon:
1. From the Internet
v To obtain the client from the Internet go to the z/VSE website at

http://www.ibm.com/systems/z/os/zvse/downloads/.
Go to the Linux Fast Path section and download the file vselfpdnnn.zip to a
temporary directory to install the Linux Fast Path.

Note: nnn refers to the current VSE version (for example, vselfpd510.zip).
2. From the Extended Base Tape
v To obtain the client from the Extended Base Tape, install the VSE Connectors

Workstation Code component 5686CF8-38 CONN.C/W located on the
Extended Base Tape.

After you have installed the VSE Connectors Workstation Code component, the
lfpd W-book ijblfplx.w is stored in z/VSE sublibrary PRD2.PROD.

Use the FTP (file transfer program) utility of TCP/IP for VSE/ESA to download
ijblfplx.w to a temporary directory with the following settings:
v Download ijblfplx.w in binary mode.
v Make sure that UNIX mode is turned off. Otherwise ijblfplx.w will be

downloaded in ASCII mode, even if you specify binary. Unix mode is one
parameter of your VSE FTP daemon. Some FTP clients might force Unix mode
to be turned on!

The example below shows a successful transfer ofijblfplx.w using a batch FTP
client. The UNIX mode setting is highlighted in bold.
linlfp:/root/vselfpd # ftp 10.0.0.1
Connected to 10.0.0.1.
220-TCP/IP for VSE -- Version 01.05.F -- FTP daemon
Copyright (c) 1995,2006 Connectivity Systems Incorporated

220 Service ready for new user.
User (10.0.0.1:(none)): sysa
331 User name okay, need password.
Password:
230 User logged in, proceed.
ftp> cd prd2
250 Requested file action okay, completed.
ftp> cd prod
250 Requested file action okay, completed.
ftp> binary
200 Command okay
ftp> get ijblfplx.w
200 Command okay.
150-File: PRD2.PROD.IJBLFPLX.W

Type: Binary Recfm: FB Lrecl: 80 Blksize: 80
CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON NAT=NO

150 File status okay; about to open data connection
226-Bytes sent: 123,456

Records sent: 12,345
Transfer Seconds: 16.52 (290K/Sec)
File I/O Seconds: 3.94 (1,548K/Sec)

Chapter 13. Running z/VSE With a Linux Fast Path 393

http://www.ibm.com/systems/z/os/zvse/downloads/

226 Closing data connection.
123456 bytes received in 17,12 seconds (277,91 Kbytes/sec)
ftp> bye
221 Service closing control connection.

Rename the downloaded file to ijblfplx.zip with the following command:
linlfp:/root/vselfpd # mv IJBLFPLX.W ijblfplx.zip

Extract the zip file:
linlfp:/root/vselfpd # unzip ijblfplx.zip

The rpm installation package vselfpd-1.3.0-1.s390x.rpm is extracted from the zip
file. Note that the actual file name can be different depending on the version or
release.

To install the rpm installation package invoke the rpm program:
linlfp:/root/vselfpd # rpm –i vselfpd-1.3.0-1.s390x.rpm

If an older version of vselfpd is already installed, you can upgrade the installed
package:
linlfp:/root/vselfpd # rpm –U vselfpd-1.3.0-1.s390x.rpm

The rpm package installs the following files:

Usage File location

lfpd binary
/opt/ibm/vselfpd/sbin/lfpd

lfpd admin tool binary
/opt/ibm/vselfpd/sbin/lfpd-admin

lfpd control script
/opt/ibm/vselfpd/sbin/lfpd-ctl

lfpd SysV init script
/etc/init.d/vselfpd

profile for user root to establish path to the lfpd binaries
/etc/profile.d/vselfpd.sh

man pages for the command line programs

/usr/share/man/man8/lfpd.8.gz
/usr/share/man/man8/lfpd-admin.8.gz
/usr/share/man/man8/lfpd-ctl.8.gz

directory containing available configurations, and a sample configuration

/etc/opt/ibm/vselfpd/confs-available/
/etc/opt/ibm/vselfpd/confs-available/lfpd-SAMPLE.conf

directory containing enabled configurations
/etc/opt/ibm/vselfpd/confs-enabled

Note: The logon profile sets the PATH environment variable to
the /opt/ibm/vselfpd/sbin directory. The PATH is set only for the user root,
because only this user can start the lfpd. The logon profile is only executed, if you

394 z/VSE V5R2 TCP/IP Support

log on as user root directly. If you are logged on to the system as another user,
you can switch to user root with the command su –, but the logon profile is not
executed and the PATH is not set.

If you want to run LFP via HiperSockets, you must set the qeth sysfs attribute
hsuid of the HiperSockets device / link (e.g. 0.0.8200 / hsi0), before you can start
the lfpd. The system generates an IPv6 link-local address from the specified hsuid.
Therefore the hsuid must be unique across the HiperSockets network and in the
system, wich means you can not have 2 HiperSockets devices (for example hsi0
and hsi1) with the same hsuid name.

The hsuid attribute value is case sensitive. For use with LFP, you must specify the
value in all uppercase. Do not specify an IP address or subnet mask for the
HiperSockets device. A HiperSockets device can either be used for LFP, or it can be
used for a regular TCP/IP network, but not for both at the same time.

If you plan to use the auto start function (via init.d) of lfpd to start configured LFP
instances at boot time, the hsuid must be set before lfpd gets started. To configure
the qeth sysfs attribute hsuid use the network configuration tools provided by the
Linux distribution. Set the QETH option “hsuid=nnnnnn” in the sysconfig
configuration files. For SuSE distributions you can use YAST to configure.

To set the hsuid manually, you can use the following commands (this example uses
link name hsi0 and device address 8200):
ifconfig hsi0 down
echo 0 > /sys/bus/ccwgroup/devices/0.0.8200/online
echo "SYSNAME " > /sys/bus/ccwgroup/devices/0.0.8200/hsuid
echo 1 > /sys/bus/ccwgroup/devices/0.0.8200/online
ifconfig hsi0 up

To avoid out of memory situations of the linux kernel in both VM and LPAR
environments, you should increase the following values to at least 1MB:
sysctl -w net.core.rmem_max=1048576
sysctl -w net.core.rmem_default=1048576
sysctl -w net.core.wmem_max=1048576
sysctl -w net.core.wmem_default=1048576

If you are using a huge MTU size and a high message limit (HS_MSGLIMIT or
IUCV_MSGLIMIT), you might have to increase these settings even more. The sysctl
commands must be performed before an lfpd is started.

Preparing to use Socket APIs with Linux Fast Path on z/VSE
Use the skeleton SKLFPACT in ICCF library 59 to do all necessary changes to the
z/VSE system that allow applications to use LFP. Some of the steps in SKLFPACT
must be repeated after every IPL. Some steps should be added to the JCL when
running the applications (e.g. SYSPARM settings).

LE/C Socket API

The LE/C socket API is implemented in $EDCTCPV.PHASE. The following
$EDCTCPV phases can exist in your system:
v The LE Dummy phase located in PRD2.SCEEBASE.
v The interface phase for TCP/IP for VSE/ESA located in PRD2.TCPIPC.
v Other TCP/IP stacks located in other libraries.

Chapter 13. Running z/VSE With a Linux Fast Path 395

The LIBDEF SEARCH statement controls which interface phase is used.

The LE/C interface phase for LFP is shipped as IJBLFPLE.PHASE in
IJSYSRS.SYSLIB. You must configure the LE/C TCP/IP Socket API Multiplexer to
use the LFP LE/C TCP/IP interface phase IJBLFPLE for the IDs of all LFP
instances that are running. To configure the multiplexer, use skeleton EDCTCPMC
in ICCF library 62.

You can add entries for all your LFP instances with the following command:
EDCTCPME SYSID=’01’,PHASE=’IJBLFPLE’

Submit the skeleton and make sure you have a return code zero. If you use
TCP/IP sockets under CICS, you might have to reload the multiplexer
configuration with the following command to activate it:
CEMT SET PROG(EDCTCPMC) NEW

Refer to Chapter 10, “TCP/IP Support for the LE/VSE C Socket Interface,” on page
85 for details.

Note: The LFP LE/C TCP/IP interface phase IJBLFPLE only works for LFP, not
with any other TCP/IP stack.

EZA SOCKET and EZASMI interfaces

With the EZA socket and EZASMI interfaces you can specify which interface
module is to be used. For LFP, you must use the EZA interface module IJBLFPEZ.

You must set the JCL parameter “EZA$PHA” in all your jobs that you want to use
LFP. To do so use the following command:
// SETPARM [SYSTEM,]EZA$PHA=IJBLFPEZ

If you are using the EZA SOCKET or EZASMI interface under CICS, you need to
activate the EZA 'TASK-RELATED-USER-EXIT' (TRUE). Refer to “CICS
Considerations for the EZA Interfaces” on page 83 for details.

Specifying the instance ID

Table 10 shows how to specify instance IDs and where they can be applied. The
settings are checked from top to bottom as listed in the table

Table 10. Specifying Instance IDs

LE/C API EZA API
CSI SOCKET
Macro

'LFP$ID' (environment variable) x

// SETPARM
[SYSTEM,]LFP$ID=NN

x x

'SYSID' (environment variable) x

IDENT.TCPNAME passed to
INITAPI call

x

ID parameter on SOCKET macro x

// OPTION SYSPARM='NN' x x x

Default '00' x x x

396 z/VSE V5R2 TCP/IP Support

If no ID is specified, an ID of ‘00’ is used.

Note: If you are using SSL functions (gsk_*), you need to have a CSI TCP/IP stack
running, even if you are using LFP for network communication. In this case, the ID
of the CSI TCP/IP stack must be specified with the // OPTION SYSPARM statement
or the // SETPARM [SYSTEM,]LFP$SSL=NN statement. The ID of the LFP Instance
must be different.

CICS task isolation options

LFP isolates CICS tasks from each other. This means that sockets that are allocated
by one CICS task, cannot be used by another CICS task, except the socket is passed
to the other CICS task via GIVESOCKET/TAKESOCKET calls. However, some
programs rely on passing sockets from one CICS task to another without the use of
GIVESOCKET/TAKESOCKET. To allow such programs to work with LFP, you
need to specify the following JCL statement for the program:
// SETPARM [SYSTEM,]LFP$CIC=SHARE

This setting applies to the LE/C socket interface as well as the EZA interfaces.

For example, DB2 (client or server) application requestor requires socket sharing, if
running under CICS.

Configuring Linux Fast Path
To enable LFP you have to set several configuration parameters in z/VM, Linux on
System z and z/VSE. Setup and enable the configurations in the same order as
described in the following sections.

Note: If a configuration parameter description says that a decimal number is
required, this number indicates bytes if not stated otherwise.

z/VM
In a z/VM environment LFP uses IUCV as the underlying communication vehicle.
The z/VSE and the Linux on System z guests need to be configured for IUCV. For
details about the parameters refer to the z/VM Documentation.

The following z/VM parameters for the guest systems are relevant:

IUCV ALLOW
Allows any other virtual machine to establish a communication path with
this virtual machine. No further authorization is required in the virtual
machine that initiates the communication.

IUCV ANY
Allows this z/VM guest virtual machine to establish a communication path
with any other z/VM guest virtual machine.

IUCV MSGLIMIT
MSGLIMIT defines the maximum number of outstanding messages
allowed on any authorized path. The value must be in the range of 16 to
65535. If MSGLIMIT is specified in the z/VM guest virtual machine
configuration and the z/VSE LFP configuration, the lowest value of both
applies to the IUCV communication path.

This parameter is optional.

Chapter 13. Running z/VSE With a Linux Fast Path 397

OPTION MAXCONN maxno
Specifies the maximum number of IUCV connections allowed for this
virtual machine. If the MAXCONN operand is omitted, the default is 64.
The maximum is 65535.

Note: z/VSE can handle up to 10 parallel IUCV connections.

Linux on System z
Each LFP daemon (lfpd) has its own configuration. It is read during the start of
lfpd and cannot be changed while lfpd is running. The configuration has to be
provided in a file.

Note: The lfpdcontrol script lfpd-ctl requires a naming convention for the
configuration file names. Each configuration file must be named lfpd-XXX.conf,
where XXX is the IUCV_SRC_APPNAME or HS_SRC_APPNAME specified in the
configuration file. The XXX characters in the file name must be specified in
uppercase. For example, the configuration file with an IUCV_SRC_APPNAME of
LINR02 is named lfpd-LINR02.conf.

You have to store all available configuration files in the directory
/etc/opt/ibm/vselfpd/confs-available. The directory /etc/opt/ibm/vselfpd/
confs-enabled contains the configuration files that are enabled. If a configuration is
enabled it can easily be started with the lfpd control script lfpd-ctl. Additionally
the SysV init script will start all enabled configurations during startup of the Linux
system. For each available configuration that is to be enabled, you have to create a
symbolic link.

For example, you have created a configuration with the name LINR02, the
configuration file is /etc/opt/ibm/vselfpd/confs-available/lfpd-LINR02.conf.
Now you plan to enable the configuration. To place a symbolic link from the
configuration file to the enabled configurations directory use the following
command:
ln -s /etc/opt/ibm/vselfpd/confs-available/lfpd-LINR02.conf
/etc/opt/ibm/vselfpd/confs-enabled

Each parameter in the configuration file must be specified as key = value. Empty
lines in the configuration are ignored. The character “#” at the beginning of a line
indicates a comment line, which is also ignored. The configuration parameters are
not case sensitive.

IUCV specific configuration
These parameters are only used with IUCV connections.

IUCV_SRC_APPNAME
The value for IUCV_SRC_APPNAME must be specified as 1 to 8
alphanumeric characters. The value defines a local port and must be
unique for the Linux on System z system. This parameter value must
match with the IucvDestAppName used for an LFP instance on z/VSE.
This parameter is mandatory.

PEER_IUCV_APPNAME
The value for PEER_IUCV_APPNAME must be specified as 1 to 8
alphanumeric characters. The value defines the IUCV application name of
an instance on z/VSE (IucvSrcAppName). If this parameter is set, lfpd
checks the name of the source application of any incoming IUCV
connection. If the name does not match the name in the configuration, the
incoming connection is revoked. If the parameter PEER_IUCV_APPNAME

398 z/VSE V5R2 TCP/IP Support

is not specified in the configuration, the name of the source application of
an incoming IUCV connection is not checked. This parameter is optional.

PEER_IUCV_VMID
The value for PEER_IUCV_VMID must be specified as 1 to 8 alphanumeric
characters. The value defines the name of a z/VM guest system. If this
parameter is set, lfpd CHECKS the name of the source z/VM guest of any
incoming IUCV connection. If the name does not match the name in the
configuration, the incoming connection is revoked. If the parameter
PEER_IUCV_VMID is not specified in the configuration, the name of the
source z/VM guest of an incoming IUCV connection is not checked. This
parameter is optional.

IUCV_MSGLIMIT
The value for IUCV_MSGLIMIT must be a decimal number in the range of
16 to 65535. The IUCV_MSGLIMIT value specifies the maximum number
of outstanding IUCV messages that are not yet received by an instance on
z/VSE. The recommended value is 1024, higher values might result in a
better performance, but need more memory on z/VSE. This parameter is
mandatory.

IUCV_MTU_SIZE|MTU_SIZE
The value for IUCV_MTU_SIZE (MTU_SIZE is also accepted) must be a
decimal number in the range of 256 to 65535 (64 KB). IUC_MTU_SIZE
specifies the maximum size of packets that are transferred. The
recommended value is 8192 (8 KB), higher values might result in a better
performance, but need more memory. The IUCV_MTU_SIZE value must
exactly match the IucvMTU value specified for the instance on z/VSE. This
parameter is mandatory.

Note: If you are using z/VSE VIA, you must specify MTU_SIZE.
IUCV_MTU_SIZE is not accepted.

HiperSockets specific configuration
These parameters are only used with HiperSocketsconnections.

HS_MSGLIMIT
The value for HS_MSGLIMIT must be a decimal number in the range of 1
to 128. The default value is 128. HS_MSGLIMIT specifies the maximum
number of outstanding messages that are not yet received by lfpd. Higher
values might result in a better performance, but need more memory. This
parameter is optional.

On a dedicated HiperSockets network the value should match the
buffer_count value that is configured for the HiperSockets device. The
default value for buffer_count is also 128. This parameter is optional.

HS_SRC_APPNAME
The value for HS_SRC_APPNAME must be specified as 1 to 8
alphanumeric characters. The value defines a local port and must be
unique for the Linux on System z system. This parameter value must
match with the HSDestAppName used for an LFP instance on z/VSE. This
parameter is mandatory.

HS_SRC_SYSTEMNAME
The value for HS_SRC_SYSTEMNAME must be specified as 1 to 8
alphanumeric characters. The value defines the hsuid of the HiperSockets
device that lfpd will use. Internally the hsiud is converted to an IPv6
link-local address that is used to initialize the HiperSockets device.
Multiple lfpds can run on the same HiperSockets device, if each one uses

Chapter 13. Running z/VSE With a Linux Fast Path 399

a different HS_SRC_APPNAME. This parameter value must match with
the HsDestSystemName used for an LFP instance on z/VSE. This
parameter is mandatory.

PEER_HS_APPNAME
The value for PEER_HS_APPNAME must be specified as 1 to 8
alphanumeric characters. The value defines the HsSrcAppName of an
instance on z/VSE. If this parameter is set, lfpd checks the name of the
source application of any incoming connection. If the name does not match
the name in the configuration, the incoming connection is revoked. If
PEER_HS_APPNAME is not specified in the configuration, the name of the
source application of an incoming connection is not checked. This
parameter is optional.

PEER_HS_SYSTEMNAME
The value for PEER_HS_SYSTEMNAME must be specified as 1 to 8
alphanumeric characters. The value defines the HsSrcSystemName of an
instance on z/VSE. If this parameter is set, lfpd checks the name of the
source system of any incoming connection. If the name does not match the
name in the configuration, the incoming connection is revoked. If
PEER_HS_SYSTEMNAME is not specified in the configuration, the name
of the source system of an incoming connection is not checked. This
parameter is optional.

Common configuration
These parameters can be used with both IUCV and HiperSockets
connections.

DEVICETYPE
The value for DEVICETYPE must be either IUCV or HS. If IUCV is
specified, IUCV will be used as transport mechanism. HS specifies that
HiperSockets should be used. IUCV is the default. This parameter is
optional.

Note: If you are using z/VSE VIA, you must omit this parameter. z/VSE
VIA always uses IUCV as transport mechanism, and does not accept the
DEVICETYPE parameter.

INITIAL_IO_BUFS
The value for INITIAL_IO_BUFS must be a decimal number. The
INITIAL_IO_BUFS value specifies the count of I/O buffers that are
allocated during startup of lfpd. Lfpd allocates buffers of a fixed size to
send and receive data. The size of a buffer mainly depends on the MTU
size of a connection to an instance on z/VSE. During runtime, lfpd
automatically allocates more buffers if needed. A recommended value is
128. This parameter is optional.

MAX_SOCKETS
The value for MAX_SOCKETS must be a decimal number. The
MAX_SOCKETS value specifies the maximum possible count of sockets
opened by lfpd. A normal user on a Linux system is usually allowed to
open a maximum of 1024 sockets per program. This value might be too
low for an lfpd. Therefore you can set the MAX_SOCKETS value to a
higher value. Lfpd started under the root user will set the maximum socket
limit to the specified value. For performance reasons MAX_SOCKETS must
be a multiple of 256. The default value is 1024. This parameter is optional.

MAX_VSE_TASKS
The value for the MAX_VSE_TASKS parameter must be a decimal number.

400 z/VSE V5R2 TCP/IP Support

The MAX_VSE_TASKS value specifies the maximum count of tasks
running on z/VSE. The value depends on the setup of your z/VSE system.
The default is 512. This parameter is optional.

WINDOW_SIZE
The value for WINDOW_SIZE must be a decimal number. The value
specifies the size of the lfpd receive window for a socket. The lfpd receive
window defines the amount of data that can be received from an instance
on z/VSE by lfpd without lfpd actually forwarding the data to the external
socket. Higher values can result in a better performance, but need more
memory. The minimum value is 4096. A recommended value is 65535.

WINDOW_THRESHOLD
The value for WINDOW_THRESHOLD must be a decimal number in the
range of 1 to 100, indicating percentage. The WINDOW_THRESHOLD
specifies the percentage the WINDOW_SIZE must grow until lfpd sends
the notification to the LFP instance. Higher values can result in a better
performance, but need more memory. A recommended value is 25.

VSE_CODEPAGE
The value for VSE_CODEPAGE must be a string that specifies a codepage
known to iconv on the Linux system. For functions that receive or return
textual data (such as gethostbyname()) lfpd needs to do an EBCDIC
(z/VSE) <-> ASCII (Linux) translation. Lfpd uses the specified
VSE_CODEPAGE as EBCDIC codepage. A possible value is EBCDIC-US.

LINUX_CODEPAGE
The value for LINUX_CODEPAGE must be a string that specifies a
codepage known to iconv on the Linux system. This codepage is the
counterpart of VSE_CODEPAGE. The default is 850. This parameter is
optional.

SUPPORT_GETXXXENT
The value for SUPPORT_GETXXXENT must be either yes or no. Yes enables
the support for the functions gethostent(), getprotoent(), getnetent(),
getservent(). The support takes approximately 500 KB of memory on Linux
per running lfpd. The default is yes. This parameter is optional.

VSE_HOSTID
The value for VSE_HOSTID must be a valid IPv4 IP address. Lfpd uses the
IP address as local host id, and returns this address, when z/VSE
applications run the getHostId() function. This setting together with
RESTRICT_TO_HOSTID allows to “bind” applications running on z/VSE
to a specific IP address. Note that outgoing connections started by
applications running on z/VSE are not checked for the network device
they use. To prevent outgoing connections from leaving the specified
network device, you have to configure firewall rules.

VSE_HOSTID6
The value for VSE_HOSTID6 must be a valid IPv6 IP address. If
RESTRICT_TO_HOSTID is enabled, this parameter is mandatory. Together
these parameters bind applications running on z/VSE to a specific IP
address. Note that outgoing connections started by applications running on
z/VSE are not checked for the network device they use. To prevent
outgoing connections from leaving the specified network device, you have
to configure firewall rules.

RESTRICT_TO_HOSTID
The value for RESTRICT_TO_HOSTID must be either yes or no. If yes is
specified, lfpd will restrict all bind() calls to use only the configured

Chapter 13. Running z/VSE With a Linux Fast Path 401

VSE_HOSTID. This prevents applications running on z/VSE from binding
to any Linux device or to a specific Linux IP address. The default is yes.
This parameter is optional.

LOG_INFO_MSG
The value for LOG_INFO_MSG must be either yes or no. By default lfpd
writes messages of type EMERG, ALERT and ERR to the system logger
(syslogd). If LOG_INFO_MSG is set to yes, lfpd will additionally write
INFO messages to the system logger. The default is no. This parameter is
optional.

z/VSE
Each LFP instance has its own configuration. The configuration is read during the
start of an instance and cannot be changed while the instance is running. Make
sure you have prepared the socket APIs for LFP as described in “Preparing to use
Socket APIs with Linux Fast Path on z/VSE” on page 395 before you proceed.

The LFP operator tool IJBLFPOP processes the configuration, when the user has
requested the start of an instance. IJBLFPOP takes the location of the configuration
as a parameter. The configuration is provided in a library member or directly in
the job input (SYSIPT) of the job that invokes IJBLFPOP.

Each configuration parameter must be specified as key = value. Empty lines in the
configuration are ignored. The characters “*” and “#” at the begin of a line indicate
a comment line, which is also ignored. The configuration parameters are not case
sensitive.

IUCV specific configuration
These parameters are only used with IUCV connections.

IucvMTU|MTU
The value for IucvMTU (MTU is also accepted) must be a decimal number
in the range of 256 to 65535. A recommended value is 8192. The IucvMTU
size specifies the maximum size of packets that are transferred. Higher
values might result in a better performance, but also need more SVA PFIX
memory. The IucvMTU value must exactly match the IUCV_MTU_SIZE
specified in the target lfpd running on Linux on System z. This parameter
is mandatory.

IucvMsgLimit
The value for IucvMsgLimit must be a decimal number in the range of 16
to 65535. The IucvMsgLimit specifies the maximum number of outstanding
IUCV messages that have not yet been received by lfpd on Linux. The
recommended value is 1024, higher values might result in a better
performance, but need more SVA PFIX memory. This parameter is
mandatory.

IucvSrcAppName
The value for IucvSrcAppName must be specified as 1 to 8 alphanumeric
characters. The value defines an entry in the z/VSE IUCV application table
and must be unique for the z/VSE system. An lpfd on Linux checks this
value to ensure that only a specific z/VSE LFP instance can connect to this
lfpd on Linux. This parameter is mandatory.

IucvDestAppName
The value for IucvDestAppName must be specified as 1 to 8 alphanumeric
characters. The value must match the IUCV_SRC_APPNAME configuration

402 z/VSE V5R2 TCP/IP Support

parameter for an lfpd that is running on Linux. The instance will connect
to the lfpd with this IUCV_SRC_APPNAME. This parameter is mandatory.

IucvDestVmId
The value for IucvDestVmName must be specified as 1 to 8 alphanumeric
characters. The value specifies the z/VM user ID of the target Linux on
System z that runs an lfpd. This parameter is mandatory.

PacketConsolidationThreshold
The value for PacketConsolidationThreshold is specified in bytes. The
maximum allowed value is the configured MTU size. The default is 100
bytes. This parameter is used to optimize the trade-off between CPU
consumption and memory consumption. The following conditions apply:
v A new packet containing user data has arrived.
v The packet size does not exceed the PacketConsolidationThreshold.
v Another packet is already enqueued for the target task.
v The data packet already enqueued has enough free space to include the

data of the packet that just arrived.
v The socket to which the packet belongs is a STREAM socket.

If all these conditions are met, the data bytes of the newly arrived packet
are copied into the free space of the first packet. The buffer space
previously needed for the second package can now be reused. This
parameter is optional.

HiperSockets specific configuration
These parameters are only used with HiperSockets connections.

HsDevices
The value for HsDevices must be specified as 3 device addresses (CUUs)
which are separated by commas: cuu1,cuu2,cuu3 (where cuu2 must always
be cuu1+1). The device addresses must represent a HiperSockets device
and must be defined with the device type OSAX in the IPL procedure. This
parameter is mandatory.

Note: For HiperSockets devices, the MTU size/frame size is configured in
the IOCP. Larger MTU sizes might require more buffer space. For details
on configuring HiperSockets devices in IOCP refer to z/VSE Administration.

HsSrcAppName
The value for HsSrcAppName must be specified as 1 to 8 alphanumeric
characters. The value defines a local port and must be unique in
combination with the HsSrcSystemName for the z/VSE system. An lpfd on
Linux checks this value to ensure that only a specific z/VSE LFP instance
can connect to this lfpd on Linux. This parameter is mandatory.

HsSrcSystemName
The value for HsSrcSystemName must be specified as 1 to 8 alphanumeric
characters. The value defines the system name of the LFP instance. The
name must be unique across the HiperSockets network that is used.
Internally the value is converted to an IPv6 link-local address that is used
to initialize the HiperSockets device. An lpfd on Linux checks this value to
ensure that only a specific z/VSE LFP instance can connect to this lfpd on
Linux. This parameter is mandatory.

HsDestAppName
The value for HsDestAppName must be specified as 1 to 8 alphanumeric
characters. The value must match the HS_SRC_APPNAME configuration

Chapter 13. Running z/VSE With a Linux Fast Path 403

parameter for an lfpd that is running on Linux. The instance will connect
to the lfpd with this HS_SRC_APPNAME. This parameter is mandatory.

HsDestSystemName
The value for HSDestSystemName must be specified as 1 to 8
alphanumeric characters. The value must match the
HS_SRC_SYSTEMNAME configuration parameter (hsuid) for an lfpd that
is running on Linux. The instance will connect to the lfpd with this
HS_SRC_SYSTEMNAME. This parameter is mandatory.

HsKeepAliveTime
The value for HsKeepAliveTime must be a decimal number, which
represents seconds. The default is 5 seconds. The keep alive mechanism is
used to detect an unexpected termination of the connection between z/VSE
and Linux. The HsKeepAliveTime value controls the frequency of
exchanged keep alive packets. This parameter is optional.

HsMsgLimit
The value for HsMsgLimit must be a decimal number in the range of 8 to
128 and it must be a multiple of 8. The HsMsgLimit value specifies the
maximum number of outstanding messages that are not yet received by
the LFP instance. Higher values might result in a better performance, but
will need more memory . A recommended value is 32. This parameter is
mandatory.

Common configuration
These parameters can be used with both IUCV and HiperSockets
connections.

DeviceType
You can specify IUCV or HS as device type. IUCV is the default. This
parameter is optional.

Id The value for the Id parameter must be a 2-digit decimal number, in the
range of 00 to 99. This number is the instance id of the instance that will
be started. Each instance can only be started once, therefore no instance
with the same id should be running. A job with the statement OPTION
SYSPARM=’xx’ will use the LFP instance with the id ‘xx’. Other TCP/IP
stacks can also use the OPTION SYSPARM statement to specify the id of
the stack to use. If another stack is started with a specific id, an LFP
instance with the same id cannot be started. This parameter is mandatory.

InitialBufferSpace
The value for InitialBufferSpace can be specified
v as a decimal number indicating bytes (for example 512),
v in kilobyte (for example 1024K),
v or in megabyte (for example 2M).

The value specifies the memory size that the instance will initially allocate
for packet buffers during startup. The memory is allocated as SVA PFIX in
the ANY area. The minimum value is 256 K. A recommended value for an
MTU size of 8K is 512 K. The maximum value depends on your system
layout.

Note: The amount of buffer space needed also depends on the MTU size.
Larger MTU sizes might require more buffer space.

MaxBufferSpace
The value for MaxBufferSpace can be specified
v as a decimal number indicating kilobytes (for example 512),

404 z/VSE V5R2 TCP/IP Support

v in kilobyte (for example 1024K),
v or in megabyte (for example 2M).

The value specifies the maximum memory size that the instance will
allocate for packet buffers. The memory is allocated as SVA PFIX in the
ANY area. The minimum value must not be lower than the value of the
InitialBufferSpace parameter. A recommended value is 4 MB. The
maximum value depends on your system layout.

WindowSize
The value for WindowSize must be a decimal number. The value specifies
the size of the receive window for a socket. The receive window defines
the amount of data that can be received, without the application actually
receiving the data from the socket. The recommended value is 65535 (64
KB), higher values might result in a better performance, but need more
memory. The minimum value is 4096.

WindowThreshold
The value for WindowThreshold must be a decimal number in the range of
1 to 100, indicating percentage. The WindowThreshold specifies the
percentage the WindowSize must grow until the LFP instance sends the
notification to lfpd. The recommended value is 25, higher values might
result in a better performance, but need more memory.

Sample configurations
Figure 25 shows a z/VSE startup job containing a configuration via IUCV with the
following sample entries:
v The LFP instance should connect to a Linux system with the z/VM user ID

LINLFP.
v The IUCV application name of the lfpd on Linux is LINR02.
v The instance on z/VSE has the IUCV application name TESTV.
v The z/VM user ID of the z/VSE system is VSER05. This name is specified in the

lfpd configuration on Linux.

The following configuration for an lfpd on Linux is the counterpart to the LFP
instance configuration on z/VSE that is shown above.

* $$ JOB JNM=LFPSTART,CLASS=0,DISP=L
// JOB LFPSTART
// EXEC IJBLFPOP,PARM=’START DD:SYSIPT LOGALL’
* Instance ID
ID = 01
MTU = 8192
IucvMsgLimit = 1024
InitialBufferSpace = 512 K
MaxBufferSpace = 4M
IucvSrcAppName = TESTV
IucvDestAppName = LINR02
IucvDestVMId = LINLFP
WindowSize = 65535
WindowThreshold = 25
/*
/&
* $$ EOJ

Figure 25. z/VSE LFP via IUCV Configuration Example

Chapter 13. Running z/VSE With a Linux Fast Path 405

v IUCV_SRC_APPNAME defines the name of the lfpd configuration file, it has to
match the IucvDestAppName defined in the z/VSE configuration file.

v PEER_IUCV_VMID and PEER_IUCV_APPNAME ensure that only TESTV
(defined in the z/VSE configuration file) from user ID VSER05 (z/VM user ID of
the z/VSE system) can connect.

Figure 27 shows a z/VSE startup job containing a configuration via HiperSockets
with the following sample entries:
v The LFP instance should connect to a Linux system with the system name

LINXLPAR.
v The application name of the lfpd in Linux is LNXSYS1.
v The instance on z/VSE has the application name TESTV.
v The system name of the LFP instance in z/VSE is VSELPAR.

lfpd configuration file

IUCV_SRC_APPNAME = LINR02

ensure that only TESTV from VSER05 can connect

PEER_IUCV_VMID = VSER05
PEER_IUCV_APPNAME = TESTV

IUCV_MSGLIMIT = 1024

MTU_SIZE = 8192
MAX_SOCKETS = 1024
INITIAL_IO_BUFS = 128

WINDOW_SIZE = 65535
WINDOW_THRESHOLD = 25

VSE_CODEPAGE = EBCDIC-US

VSE_HOSTID = 10.0.0.1
RESTRICT_TO_HOSTID = yes

LOG_INFO_MSG = no

Figure 26. Linux LFP via IUCV Configuration Example

* $$ JOB JNM=LFPSTART,CLASS=0,DISP=L
// JOB LFPSTART
// EXEC IJBLFPOP,PARM='START DD:SYSIPT LOGALL'
* Instance ID
ID = 02
InitialBufferSpace = 1M
MaxBufferSpace = 4M
WindowSize = 65535
WindowThreshold = 25
DeviceType = HS
HSDevices = 500,501,502
HSMsgLimit = 128
HSSrcAppName = TESTV
HSDestAppName = LNXSYS1
HSSrcSystemName = VSELPAR
HSDestSystemName = LNXLPAR
HSKeepAliveTime = 30
/*
/&
* $$ EOJ

Figure 27. z/VSE LFP via HiperSockets Configuration Example

406 z/VSE V5R2 TCP/IP Support

The following configuration for an lfpd on Linux is the counterpart to the LFP
instance configuration on z/VSE that is shown above.

v HS_SRC_APPNAME defines the name of the lfpd configuration file, it has to
match the HSDestAppName defined in the z/VSE configuration file.

v PEER_HS_SYSTEMNAME and PEER_HS_APPNAME ensure that only TESTV
(defined in the z/VSE configuration file) from user VSELPAR (z/VM guest) can
connect.

Starting and Stopping Linux Fast Path

z/VSE
Starting an LFP instance

To start an LFP instance on z/VSE use the LFP operator program IJBLFPOP. The
invocation parameter format is:
EXEC IJBLFPOP,PARM='START <CFGFILE> [LOGALL]'

v All parameters are positional and must appear in the displayed order.
v CFGFILE is a mandatory parameter that specifies from where IJBLFPOP reads

the instance configuration.
v CFGFILE has to be declared as a valid Language Environment file name

preceded by DD:.
v If the configuration is in member LFPCFG00.L in library PRD2.CONFIG, specify

CFGFILE as DD:PRD2.CONFIG(LFPCFG00.L).
v If the configuration is inside the job that executes IJBLFPOP, specify CFGFILE as

DD:SYSIPT.

lfpd sample configuration file
#

DEVICETYPE = HS

HS_MSGLIMIT = 128

HS_SRC_APPNAME = LNXSYS1
HS_SRC_SYSTEMNAME = LNXLPAR

ensure that only TESTV from VSELPAR can connect

PEER_HS_APPNAME = TESTV
PEER_HS_SYSTEMNAME = VSELPAR

MAX_SOCKETS = 1024
INITIAL_IO_BUFS = 128

WINDOW_SIZE = 65535
WINDOW_THRESHOLD = 25

VSE_CODEPAGE = EBCDIC-US

VSE_HOSTID = 10.0.0.1
RESTRICT_TO_HOSTID = no

LOG_INFO_MSG = no

Figure 28. Linux LFP via HiperSockets Configuration Example

Chapter 13. Running z/VSE With a Linux Fast Path 407

v LOGALL is an optional parameter. If the parameter is specified, IJBLFPOP writes
all messages to the console. If the parameter is omitted, only error messages are
printed to the console. All messages are always printed into the job listing.

v The skeleton SKLFPSTA in ICCF library 59 can be used to create an LFP instance
startup job which contains the instance configuration in the job itself.

The instance was started successfully, if the following message is shown on the
console:
LFPB013I STARTED LFP INSTANCE ’00’

Stopping an LFP instance

To stop an LFP instance on z/VSE use the LFP operator program IJBLFPOP. The
invocation parameter format is:
EXEC IJBLFPOP,PARM='STOP <INSTID>'

v All parameters are positional and must appear in the displayed order.
v INSTID is the ID of the instance to stop.
v If the instance is running, IJBLFPOP sends a message to the console that must be

confirmed to complete the stop of the instance. You can enter YES to stop the
instance, NO to cancel, and LIST to list all tasks and their partitions that
currently use this instance.

v You can stop an instance at any time.
v Active tasks that use the instance will get appropriate error codes when they call

a function of the stopped instance.
v The skeleton SKLFPSTO in ICCF library 59 can be used to create a job to stop a

specific LFP instance.

Following is an example of a successfully stopped instance:
LFPB012I REALLY STOP INSTANCE ’01’ (3 TASKS ACTIVE)? (YES/NO/LIST)
0 list
LFPB028I ACTIVE TASK IDS FOR INSTANCE ’01’:

2E (Z1) 2F (Z2) 30 (Z3)
LFPB029I END OF LIST OF ACTIVE TASK IDS.
LFPB012I REALLY STOP INSTANCE ’01’ (3 TASKS ACTIVE)?(YES/NO/LIST)
0 yes
LFPB020I STOPPED LFP INSTANCE ’01’.

Linux on System z
You can start and stop LFP daemons by invoking the lfpds directly, or by using
the control script lfpd-ctl. Usually only the control script is used, because it
provides a comfortable way to control lfpds. However, for tasks like debugging,
you have to start lfpd directly without using the control script. The following
sections describe how to:
v Control an lfpd using the control script.
v Start an lfpd without using the control script.
v Stop an lfpd without using the control script.

Controlling an LFP daemon using the control script

The lfpd control script lfpd-ctl requires that all enabled configuration files respect
the naming conventions described in “Configuring Linux Fast Path” on page 397.
Lfpd-ctl can only start configurations that are linked in the directory
/etc/opt/ibm/vselfpd/confs-enabled.

The invocation parameters for lfpd-ctl are:

408 z/VSE V5R2 TCP/IP Support

lfpd-ctl (start|stop|restart|force-reload|status|startdbg) <APPNAME>
lfpd-ctl (list|startall|stopall)

lfpd-ctl start APPNAME
This command starts an LFP daemon with the specified configuration. The
above command, for example, invokes an lfpd with the configuration file
/etc/opt/ibm/vselfpd/confs-enabled/lfpd-APPNAME.conf. If the start of
the lfpd fails, check the Linux system log (usually the file
/var/log/messages) for any messages related to the startup failure.
Alternatively you can use the command lfpd-ctl startdbg APPNAME,
which is described below.

lfpd-ctl stop APPNAME
This command stops a running LFP daemon that was started with the
configuration named APPNAME.

lfpd-ctl restart | force-reload APPNAME
The restart and force-reload parameters stop the lfpd and then start it
again. Use them, if you have changed a configuration, it cannot be applied
dynamically to a running lfpd.

lfpd-ctl status APPNAME
The status command shows the status of the lfpd. The status can be:
v not running,
v listening for z/VSE LFP instances to connect,
v connected to xxx, where xxx is the application name of the connected

z/VSE LFP instance.

lfpd-ctl startdbg APPNAME
This command starts an lfpd with the specified configuration. It works
similar as lfpd-ctl start APPNAME. However, if the lfpd startup fails, the
related lfpd messages are shown on the console where the command was
issued. There is no need to check the Linux system log for the messages,
although the messages are shown there, too.

lfpd-ctl list
The list command generates a table with information about each running
or enabled lfpd, together with the individual status of the daemon.

lfpd-ctl startall
The startall command will try to start all enabled configurations that are
not already started. This command is also invoked by the SysV init script
during startup of the system.

lfpd-ctl stopall
The stopall command will stop all running lfpds, no matter if they are still
enabled or not. This command is also invoked by the SysV init script
during shutdown of the system, or if the lfpd rpm install package is
removed from the system.

Starting an LFP daemon without using the control script

To start the LFP daemon on Linux on System z run the program lfpd. Lfpd is a
daemon that can run in the background and serves one LFP instance on a z/VSE
system. The invocation parameter format is
lfpd <--file|-f configfile> [--debug|-d] [--packets|-p] [--startuplogfile|-s logfile]
[--help|-h]

v The parameters are not positional and can be given in any order.

Chapter 13. Running z/VSE With a Linux Fast Path 409

v configfile is a mandatory parameter and specifies the absolute path of the
configuration file for lfpd. For example: /etc/lfpd/lfpcfg.cfg.

v If --debug or -d is specified, lfpd will not run in the background but will write
debug messages to the console from where it was invoked. The debug output is
only needed by the support personnel to track down problems.

v If –packets or -p is specified, lfpd will not run in the background but will write
packet dumps to the console from where it was invoked. All packets transferred
from and to the z/VSE system are displayed in a textual format. The packet
dumps are usually only needed by the support personnel to track down
problems.

v After invoking lfpd, check the Linux system log (usually /var/log/messages)
for any error messages from the lfpd or for its startup messages, to ensure that
the lfpd is started correctly.

v If --startuplogfile or -s logfile is specified, lfpd will additionally log all
startup messages to the given logfile.

Stopping an LFP daemon without using the control script

Usually the lfpd runs in the background. To terminate an lfpd, send a SIGTERM
signal to the pid (process identifier) of the running lfpd that should terminate. The
local application name (HS_SRC_APPNAME or IUCV_SRC_APPNAME in lfpd
configuration) uniquely identifies a running lfpd. There are two ways to determine
the pid of an lfpd that is to be stopped:
1. Open the system log messages file (usually /var/log/messages) and check for

a line like:
linlfp lfpd[6185]: Now listening on application name ’LINR02’

The value 6185 is the pid for the lfpd that uses the application name LINR02.
2. Alternatively the lock file of a running lfpd can be used to find its pid. Each

running lfpd creates a lock file in the directory /var/run. The lock file name for
the application name LINR02 for example, is lfpd-LINR02.pid. The content of
the lock file is the pid of the lfpd process.

Make sure that no z/VSE system is currently connected to the lfpd, before sending
the SIGTERM signal to a running lfpd. If you terminate the lfpd, when a z/VSE
system is still connected, the LFP instance on z/VSE will detect this and set it's
own status to down.

Go to /var/log/messages to check if the z/VSE system is disconnected from the
running lfpd:

If this is the last output from the lfpd with the pid 6185, no z/VSE system is
currently connected and the termination of lfpd will not result in unpredictable

linlfp lfpd[6185]: Beginning startup of lfpd
linlfp lfpd[6185]: Now listening on application name ’LINR02’
linlfp lfpd[6185]: Accepted new connection on LINR02 from VSER05
/TESTV , new socketfd=11
linlfp lfpd[6185]: Configuration matched, accepting connection.

Figure 29. Linux System Log Output Example

linlfp lfpd[6185]: All tasks abended, status set to DOWN.
linlfp lfpd[6185]: Data socket closed, ready for new connection on
application name 'LINR02'.

Figure 30. Linux System Log Output Example of a Disconnected z/VSE System

410 z/VSE V5R2 TCP/IP Support

results from applications running on z/VSE.

Administrative Tasks

z/VSE
List active instances

To show a list of currently active instances on the z/VSE system use the LFP
operator program IJBLFPOP.

The invocation parameter format is:
EXEC IJBLFPOP,PARM='LIST'

The output is always written to the console as well as to the job listing.

The skeleton SKLFPLST in ICCF library 59 can be used to create a job that lists all
running LFP instances.

Display information about an active instance

To display detailed information about an LFP instance on z/VSE use the LFP
operator program IJBLFPOP.

The invocation parameter format is:
EXEC IJBLFPOP,PARM='INFO <INSTID> [SHOWTASKS] [LOGALL]'

v All parameters are positional and must appear in the displayed order.
v INSTID is the ID of the instance to display information about.
v SHOWTASKS is an optional parameter. Use this parameter to display detailed

information about each task that currently uses LFP.
v LOGALL is an optional parameter. If the parameter is specified, IJBLFPOP writes

all messages to the console. If the parameter is omitted, only error messages are
printed to the console. All messages are always printed into the job listing.

v The displayed information shows various values of the running instance. Some
of them show the current memory consumption and details about the active
tasks and their sockets. Other values are only of interest for the support
personnel to track down problems.

v The skeleton SKLFPINF in ICCF library 59 can be used to create a job that
displays information about a specific LFP instance.

Following is an output example for an LFP via IUCV connection with all
parameters set:

LFPB023I INFO ABOUT LFP INSTANCE ’01’:
*** INSTANCE ***

STATUS : UP
WINDOW SIZE : 65,535
WINDOW THRESHOLD : 25% (16,383 bytes)

LFPB025I ACTIVE LFP INSTANCES: 1
INSTANCE 01 HAS 3 ACTIVE TASKS

LFPB026I END OF ACTIVE LFP INSTANCES LIST.

Figure 31. Active Instance List Output Example

Figure 32. LFP Instance on z/VSE via IUCV Connection Output Example

Chapter 13. Running z/VSE With a Linux Fast Path 411

TASKS WAITING FOR MSGLIMIT : 0
TIMES IN WAIT FOR MSGLIMIT : 0
TASKS WAITING FOR PACKET : 0
TIMES IN WAIT FOR PACKET : 0
GETVIS POOL ID : ILFP01

*** DEVICE ***
DEVICE STATUS : ACTIVE
DEVICE TYPE : IUCV
MTU SIZE : 8,192
PACKETS SENT : 88
PACKETS RECEIVED : 53
PACKETS DROPPED : 0
PACKETS WAITING FOR MSG COMPLETE : 0
FREE NOTIFY BUFFERS : 1,024
CONFIGURED LOCAL IUCV MSGLIMIT . : 1,024
ACTUAL LOCAL IUCV MSGLIMIT : 1,024
ACTUAL REMOTE IUCV MSGLIMIT : 1,024
IUCV MSGLIMIT EXCEEDED : 0
IUCV SOURCE APPL. NAME : TESTV
IUCV DEST. APPL. NAME : LFP61
IUCV DEST. VM USERID : LINLFP
IUCV DEST. VM SYSTEM : (LOCAL)

*** BUFFER MANAGER ***
CURRENTLY USED MEMORY : 524,160
INITIAL MEMORY SIZE : 524,288
MAXIMUM MEMORY SIZE : 4,194,304
-- POOL #1 --
PACKET SIZE : 64
INITIAL POOL SIZE : 181,568
CURRENT POOL SIZE : 181,440
POOL COUNT : 1
AVAILABLE PACKET COUNT : 266
OVERALL PACKET COUNT : 266
MAXIMUM PACKETS USED : 2
-- POOL #2 --
PACKET SIZE : 3,552
INITIAL POOL SIZE : 178,864
CURRENT POOL SIZE : 176,160
POOL COUNT : 1
AVAILABLE PACKET COUNT : 43
OVERALL PACKET COUNT : 43
MAXIMUM PACKETS USED : 2
-- POOL #3 --
PACKET SIZE : 8,192
INITIAL POOL SIZE : 174,762
CURRENT POOL SIZE : 166,560
POOL COUNT : 1
AVAILABLE PACKET COUNT : 18
OVERALL PACKET COUNT : 19
MAXIMUM PACKETS USED : 6

*** DEBUG ***
DEBUG IS ENABLED
DEBUG AREA SIZE : 320,000
DEBUG ENTRY COUNT : 10,000

*** DIAGNOSIS ***
DIAGNOSIS IS DISABLED

*** TASKS ***
ACTIVE TASK COUNT : 1
-- TASK #1 --
TASK ID (PARTITION ID) : 2D (R1)
SOCKET COUNT : 2
L2 SOCKET LIST COUNT : 1
PENDING REQUESTS : 0
PENDING SOCKET REQUESTS : 0
REQUESTS WAITING FOR MSGLIMIT .. : 0
TIMES IN WAIT FOR MSGLIMIT : 0
PACKETS WAITING FOR RECEIVE : 0

412 z/VSE V5R2 TCP/IP Support

TIMES IN WAIT FOR PACKET : 0
FREE REQUEST COUNT : 2

LFPB024I END OF INFO ABOUT LFP INSTANCE ’01’.

Following is an output example for an LFP via HiperSockets connection with all
parameters set:

LFPB023I INFO ABOUT LFP INSTANCE ’99’:
*** INSTANCE ***

STATUS : UP
WINDOW SIZE : 65,535
WINDOW THRESHOLD : 25% (16,383 bytes)
PACKET CONSOLIDATION THRESHOLD . : 100
TASKS WAITING FOR CQ OR WINDOW . : 0
TIMES IN WAIT FOR CQ OR WINDOW . : 0
TASKS WAITING FOR PACKET : 0
TIMES IN WAIT FOR PACKET : 0
GETVIS POOL ID : ILFP99

*** DEVICE ***
DEVICE STATUS : ACTIVE
DEVICE TYPE : HS
MTU SIZE : 8,192
PACKETS SENT : 4
PACKETS RECEIVED : 3
PACKETS DROPPED : 0
HS COMPLETION QUEUE STATES : 0
PROTOCOL WINDOW FULL STATES : 0
QUEUE LENGTH : 16
PROTOCOL WINDOW LENGTH : 10
KEEP-ALIVE TIME SECONDS : 999,999
HS DEVICES : E00,E01,E02
HS SOURCE APPL. NAME : TESTV2
HS SOURCE SYSTEM NAME : VSELFP61
HS DEST. APPL. NAME : LFP612
HS DEST. SYSTEM NAME : LINHSI0

*** BUFFER MANAGER ***
.
. ...same output as for IUCV ...
.

LFPB024I END OF INFO ABOUT LFP INSTANCE ’99’

Enable or disable socket diagnosis

To display detailed information about an LFP instance on z/VSE use the LFP
operator program IJBLFPOP.

The invocation parameter format is:
EXEC IJBLFPOP,PARM=’DIAG <INSTID> <ON|OFF>’

v All parameters are positional and must appear in the displayed order.
v INSTID is the ID of the instance of which you want to change the socket

diagnosis setting.
v Specify ON to enable socket diagnosis, or OFF to disable it. If socket diagnosis is

ON for an LFP instance, socket statistics are printed to the job listing each time a
socket is closed by the application that is using the LE/C socket API
($EDCTCPV).

Following is an output example of a socket diagnosis:

Figure 33. LFP Instance on z/VSE via HiperSockets Connection Output Example

Chapter 13. Running z/VSE With a Linux Fast Path 413

LFP Statistics for Socket ’0’:
Number of Bytes Sent: 1020364776
Number of Bytes Received: 943718400
Number of Packets Sent: 233923
Number of Packets Received: 183220
Times in Wait for Send Window: 18158
Times in Wait for Receive Window: 28002
Times in Wait for Message Limit: 0
Times in Wait for Packets: 0

Linux on System z
Display LFP daemon status

To display the status of a running LFP daemon use the program lfpd-admin.

The invocation parameter format is:
lfpd-admin <--appname|-appname> <--status|-s>

v The parameters are not positional and can be given in any order.
v For appname enter the HS_SRC_APPNAME or IUCV_SRC_APPNAME that is

used by a running lfpd. HS_SRC_APPNAME and IUCV_SRC_APPNAME are
parameters of the lfpd configuration.

v The status command display various status information on the console where
lfpd-admin was invoked.

v The lfpd-admin program can also be used to start a debug trace to a file. This
functionality is usually only used by the support personnel who will send you
instructions about the parameters when needed.

Following is an output example of lfpd-admin via IUCV:

linlfp:~ # lfpd-admin -a lfp61 -s
Configuration:

DEVICETYPE = IUCV
LOCAL_IUCV_APPNAME = LFP61
PEER_IUCV_VMID ... = VSELFP61
IUCV_MSGLIMIT = 1024
IUCV_MTU_SIZE = 8192
MAX_VSE_TASKS = 512
MAX_SOCKETS = 1024
INITIAL_IO_BUFS .. = 128
WINDOW_SIZE = 65535
WINDOW_THRESHOLD . = 25% (16383 bytes)
LINUX_CODEPAGE ... = ’850’
VSE_CODEPAGE = ’EBCDIC-US’
SUPPORT_GETXXXENT = yes
VSE_HOSTID = 9.152.84.210
RESTRICT_TO_HOSTID = no
LOG_INFO_MSG = no

Status:

z/VSE instance is connected.
Peer system name ... : VSELFP61
Peer appl. name : TESTV
Actual IUCV MSGLIMIT : 1024

Figure 34. Socket Diagnosis Output Example

Figure 35. lfpd-admin via IUCV Connection Output Example

414 z/VSE V5R2 TCP/IP Support

Applied host id : 9.152.84.210
Applied host name .. : linlfp

Allocated I/O buffers : 128
Free I/O buffers : 128
Allocated request buffers ... : 128
Free request buffers : 126
Allocated socket buffers : 128
Free socket buffers : 125
Buffers waiting for send : 0

Number of active z/VSE tasks : 1
Number of active sockets : 2

Trace Status:

Running in daemon mode
No trace is running

Following is an output example of lfpd-admin via HS CQ:

[root@linhsi0 ~]# lfpd-admin -a lfp612 -s
Configuration:

DEVICETYPE = HS
HS_SRC_APPNAME ... = LFP612
HS_SRC_SYSTEMNAME = LINHSI0
HS_MSGLIMIT = 128
MAX_VSE_TASKS = 512
MAX_SOCKETS = 1024
INITIAL_IO_BUFS .. = 128
WINDOW_SIZE = 65535
WINDOW_THRESHOLD . = 25% (16383 bytes)
LINUX_CODEPAGE ... = ’850’
VSE_CODEPAGE = ’EBCDIC-US’
SUPPORT_GETXXXENT = yes
VSE_HOSTID = 9.152.131.42
RESTRICT_TO_HOSTID = no
LOG_INFO_MSG = no

Status:

z/VSE instance is connected.
Peer system name ... : VSELFP61
Peer appl. name : TESTV2

Applied host id : 9.152.131.42
Applied host name .. : linhsi0

MTU size : 8088
Allocated I/O buffers : 128
Free I/O buffers : 128
Allocated request buffers ... : 128
Free request buffers : 128
Allocated socket buffers : 128
Free socket buffers : 127
Buffers waiting for send : 0

Number of active z/VSE tasks : 0
Number of active sockets : 0

Figure 36. lfpd-admin via HS CQ Connection Output Example

Chapter 13. Running z/VSE With a Linux Fast Path 415

Trace Status:

Running in daemon mode
No trace is running

416 z/VSE V5R2 TCP/IP Support

Chapter 14. z/VSE - z/VM IP Assist

Overview

The z/VSE - z/VM IP Assist function, simply referred to as z/VSE VIA, provides
the z/VM counterpart to the Linux Fast Path on z/VSE. The “traditional” z/VSE
Linux Fast Path function requires the user to install, administrate and configure a
Linux on System z system, in order to run the Linux Fast Path daemon (lfpd). On
this Linux on System z system, the lfpd has to be installed and configured. For
customers who prefer not to install and maintain a Linux on System z system on
their own, the z/VSE VIA function provides an easy to use and ready to run
z/VM guest image that provides all services required to use the z/VSE Linux Fast
Path.

Minimum requirements
v IBM zEnterprise system (z196 or z114) driver level 86 or later
v z/VM 6.1 or later
v z/VSE 5.1

Communication Flow when Using z/VSE VIA
Figure 37 shows a communication flow using z/VSE VIA over an IUCV
connection.

The processing shown in Figure 37 is as follows:

�1� The communication via IUCV is the same as described in Figure 23 on
page 391

�2� The administrator interacts with the z/VSE VIA guest by sending SMSG
messages from a CMS guest to the z/VSE VIA guest.

Note: Refer to the z/VM Documentation for details on the SMSG command and
the VSWITCH controller.

z/VM IP Assist guestDB2 Client

z/VSE Supervisor

z/VSE guest 1

TCP/IP Stack
LFP daemon

OSA Express or
z/VM VSWITCH

CMS guest
(administrator)

IUCV SMSG
z/VM

2

Figure 37. Communication using z/VSE VIA and an IUCV connection

© Copyright IBM Corp. 1997, 2014 417

z/VSE VIA z/VM guest configuration
The z/VSE VIA guest image must be configured using the SCPDATA parameter of
the LOADDEV directory control statement of a z/VM directory entry. The
SCPDATA parameter specifies the network configuration that is used for the
z/VSE VIA guest. The information is formatted in JSON (JavaScript Object
Notation, for details refer to www.json.org). SCPDATA must be specified using
EBCDIC code page 924. Usually the z/VSE VIA guest is configured to start up
automatically when z/VM starts.

The z/VSE VIA guest is configured to have access to 2 CMS minidisks:

Configuration Disk
The minidisk contains the lpfd configuration files (one for each lpfd
instance) and the SENDERS.ALLOWED file. It must be linked as 0D4C in
read-only mode. The configuration disk must be linked during startup by
the z/VM Directory entry. The configuration using the files on the
configuration disk is usually performed through an administrator CMS
guest. This CMS guest should therefore have access the configuration disk
in read-write mode.

Data Disk
Trace files are written to this minidisk when the user starts a trace. This
minidisk is optional and only required, if the user wants to start a trace. It
must be linked as 0D4D in read-write mode. The data disk can be linked
during startup, or if a trace needs to be started by using the CP command:
CP LINK ZVSEVIA 4321 0D4D MR

The SCPDATA parameter supports the following elements:

profiles
Specifies the profile name. You must specify “zVSE-VIA” This entry is
required.

hostName
Must be specified as a string containing the hostname to use. If no hostname is
specified, the name of the first profile will be used. This entry is optional.

networkCards
Defines the array of 0-n network cards to use in the guest. Each of the array
elements is a JSON object, which includes two elements:
v card type: OSA, OSM, OSX, HiperSockets followed by the respective device

address or all. If all is specified, no other device of the same type can be
defined.

v IP configuration: linkLocalIPv6, staticIPv4, staticIPv6 followed by the
IP address or null, if no further configuration is required.

Defining an IPv4 and an IPv6 configuration for the same card is valid. This
entry is optional.

defaultGateway
String with the default gateway to be used. This entry is optional.

DNS
Array of strings containing IP addresses of DNS servers. This entry is optional.

Note: Refer to the z/VM Documentation for details on the LOADDEV SCPDATA
control statement. Be aware that the naming convention in z/VM is “SCPDATA
operand” not “SCPDATA parameter” as in z/VSE.

418 z/VSE V5R2 TCP/IP Support

Example

The following is an example user directory entry for a z/VSE VIA guest:
USER ZVSEVIA AUTOONLY 1G 1G G

COMMAND SET D8ONECMD * OFF
COMMAND SET RUN ON
COMMAND TERM LINEND #
COMMAND SPOOL CONS START *
IPL _0___1__
LOADDEV PORT 0
LOADDEV LUN 0
LOADDEV BOOT 0
LOADDEV BR_LBA 601

* Network adapters and configuration
LOADDEV SCPDATA ’{’,

’"profiles":["zVSE-VIA"],’,
’"networkCards": [’,

{ "OSM": "all", "linkLocalIPv6": null},’,
{ "OSA": "2408", "staticIPv4": "9.152.11.86/24"},’,
{ "OSX": "110", "staticIPv6": "2001:0db8:85a3::7334/64"},’,
{ "hipersockets": "9000", "linkLocalIPv6": null},’,
],’,

’"defaultGateway":"y.y.y.y/nn",’,
’"DNS":["y.y.y.y/nn","z.z.z.z/nn"],’,
’"hostName":"myServer"’,
’}’

* machine type and number of CPUs
MACH XA 1
OPTION LXAPP LANG AMENG
OPTION MAXCONN 128

* IUCV authorizations
IUCV ANY PRIORITY MSGLIMIT 1024
IUCV ALLOW

* Standard virtual devices
CONSOLE 009 3215 T
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A

* Network definitions (use either DEDICATE or NIC+VSWITCH)
DEDICATE dddd vvvv

* COMMAND DEFINE NIC vvvv TYPE QDIO
* COMMAND COUPLE vvvv TO SYSTEM vswitch
* Minidisks

LINK MAINT 0190 0190 RR
LINK MAINT 019D 019D RR
LINK MAINT 019E 019E RR

* 191 minidisk is optional
* MDISK 191 3390 XXXX 007 AUTOV MR XXXXXXXX XXXXXXXX XXXXXXXX
* Disk for configuration (D4C) and log file (D4D)

MDISK D4C 3390 XXXX 009 AUTOV RR XXXXXXXX XXXXXXXX XXXXXXXX
MDISK D4D 3390 XXXX 071 AUTOV MR XXXXXXXX XXXXXXXX XXXXXXXX

z/VSE VIA Linux Fast Path Configuration
Besides the z/VM guest that runs the z/VSE VIA image, you also have to
configure one or more lfpds that the z/VSE VIA guest should run. The lfpds are
configured with files that reside on the configuration minidisk (0D4C) and SMSGs
that the user sends to the z/VM guest where z/VSE VIA runs.

The administrator can interact with the z/VSE VIA guest by sending SMSG
messages from a CMS guest to the z/VSE VIA guest. To prevent unauthorized
SMSG traffic each sender is validated against a list of authorized users contained
in the CMS file “SENDERS.ALLOWED” residing on the configuration disk (0D4C).

Chapter 14. z/VSE - z/VM IP Assist 419

This file contains one single z/VM user ID per line. All specified IDs are
authorized to send SMSG commands to the z/VSE VIA guest.

The configuration files for the lfpds must also reside on the configuration disk
(0D4C). The configuration files have the same content as described on page “Linux
on System z” on page 408.

Each configuration file must have the same file name as the IUCV_SRC_APP that it
configures, and must have the CMS file type “LFPDCONF”. All configurations that
exist on the configuration disk during the start of the z/VSE VIA guest are started
automatically. When the startup of the z/VSE VIA guest has completed, the user
can administrate the configurations using the supported SMSG commands.

Sample content of a configuration disk:
CONFIG-1 LFPDCONF
CONFIG-2 LFPDCONF
SENDERS ALLOWED

z/VSE VIA Linux Fast Path Administration
The administration of the lfpd is usually done using the LFP control script lfpd-ctl
and the lfpd-admin program. For the z/VSE VIA function, SMSGs are used to
administrate the lfpds. SMSG is used to send textual messages from one z/VM
guest to another z/VM guest. The z/VSE VIA function implements a user
verification system that allows only authorized users to access the lfpd
administrative interface.

The general syntax to send an SMSG to the z/VSE VIA administrative interface is:
SMSG <ZVSEVIA> APP <CMD PARAMS>

The administrative commands return their output by sending it line by line back to
the issuer of the SMSG command.

smsg vsevia app lfpd
Ready; T=0.01/0.01 15:39:24
15:34:24 * MSG FROM VSEVIA : USAGE: SMSG <GUEST> APP LFPD (START|STOP|RESTART|FORCE-RE
LOAD|STATUS|STARTDBG) <IUCVNAME>
15:34:24 * MSG FROM VSEVIA : SMSG <GUEST> APP LFPD (LIST|STARTALL|STOPALL)

smsg vsevia app lfpd-admin
Ready; T=0.01/0.01 15:39:59
15:34:59 * MSG FROM VSEVIA : USAGE: SMSG <GUEST> APP LFPD-ADMIN <IUCVNAME> TRACE START
<FILENAME> (DEBUG|PACKETS|ALL) (SINGLE|WRAP) (MAXSIZE)
15:34:59 * MSG FROM VSEVIA : SMSG <GUEST> APP LFPD-ADMIN <IUCVNAME> TRACE STOP
15:34:59 * MSG FROM VSEVIA : SMSG <GUEST> APP LFPD-ADMIN <IUCVNAME> STATUS

The administrative commands are:
v LFPD, which provides the functionality of the lfpd-ctl script.
v LFPD-ADMIN, which provides the functionality of the lfpd-admin script.

LFPD Command
Format

The LFPD command has the following syntax:

Figure 38. z/VSE VIAAdministrative Command Output Example

420 z/VSE V5R2 TCP/IP Support

smsg <GUEST> app lfpd (start|stop|restart|force-reload|status|startdbg) <IUCVNAME>
smsg <GUEST> app lfpd (list|startall|stopall)

The meaning of the functions is the same as described on page “Linux on
System z” on page 408. The startdbg parameter can be used to get diagnostic
information when starting an lfpd instance.

Example

The output of the startdbg command displays all lfpd startup messages.

smsg vsevia app lfpd start fails
Ready; T=0.01/0.01 15:48:16
15:48:19 * MSG FROM VSEVIA : STARTING LFPD (FAILS): FAILED

smsg vsevia app lfpd startdbg fails
Ready; T=0.01/0.01 15:48:35
15:48:38 * MSG FROM VSEVIA : STARTING LFPD (FAILS): FAILED
15:48:38 * MSG FROM VSEVIA : STARTUP LOG
15:48:38 * MSG FROM VSEVIA : LOGGING STARTUP MESSAGES TO FILE ’/TMP/LFPD-CTL.2854.tmp’.
15:48:38 * MSG FROM VSEVIA : READING CONFIGURATION FROM FILE ’/ETC/OPT/IBM/VSELFPD/CONFS-
ENABLED/LFPD-FAILS.CONF’.
15:48:38 * MSG FROM VSEVIA : IUCV_INITIALIZESOCKET: ERROR: THE BIND CALL FOR THE AFIUCV
SOCKET FAILED: ADDRESS ALREADY IN USE
15:48:38 * MSG FROM VSEVIA : ERROR: COULD’NT INITIALIZE THE SOCKETS.
15:48:38 * MSG FROM VSEVIA : STOPPING TO LOG THE STARTUP BECAUSE LFPD IS ABOUT TO EXIT.

LFPD-ADMIN Command
Format

The LFPD-ADMIN command has the following syntax:
smsg <GUEST> app lfpd-admin <IUCVNAME> trace start <FILENAME> (debug|packets|all)
(single|wrap) (maxsize)
smsg <GUEST> app lfpd-admin <IUCVNAME> trace stop
smsg <GUEST> app lfpd-admin <IUCVNAME> status

The “trace start” function starts the lfpd trace to a specified file. This trace file is
created on the CMS mini disk 0D4D. The FILENAME must be a valid CMS file
name without the file type. The meaning of the functions is the same as described
on page “Linux on System z” on page 408. All parameters are optional and can be
specified in any order. Before a trace can be started, the user must attach a disk
with the CMS file format to the device number 0D4D. The disk can be detached
after the trace is stopped. The textual lfpd trace is written in binary mode to the
CMS disk. The trace file is not readable on z/VM.

Note: Only one trace can be started at one time.

Figure 39. z/VSE VIA startdbg Command Output Example

Chapter 14. z/VSE - z/VM IP Assist 421

422 z/VSE V5R2 TCP/IP Support

Chapter 15. OpenSSL

This section describes how OpenSSL is implemented in z/VSE.

Overview

OpenSSL is an open source project that provides an SSL implementation and key
management utilities. OpenSSL is written in C and is available for many operating
systems and hardware platforms. OpenSSL on z/VSE provides SSL for the
IPv6/VSE IP stack, which does not have an own SSL implementation. For details
on OpenSSL, refer to http://www.openssl.org/

On z/VSE 5.2 OpenSSL is provided as part of a new system component:
VSE CryptoServices
5686-CF9-17
CLC=52S

OpenSSL is installed in PRD1.BASE and includes:
v IJBSSL phase (the OpenSSL implementation)
v SPEEDTST phase (invokes the built-in OpenSSL speed test)
v NOTICES.Z (license information)
v IJBSLVSE.OBJ (provides access to the APIs and must be linked to your

application)
v IJBSSL.H (provides function prototypes)

Note: The current OpenSSL version on z/VSE 5.2 is based on OpenSSL 1.0.0e.

Unique features on z/VSE

A z/OS compatible SSL programming interface
This API is described in z/OS Cryptographic Services System SSL
Programming, and is used by all existing SSL applications on z/VSE, such
as CICS Web Support, VSE Connector Server, and WebSphere® MQ for
z/VSE. Wrapping the native OpenSSL functions by this z/OS SSL API
allows existing z/VSE SSL applications to run unchanged with OpenSSL.

Support for IBM System z cryptographic hardware
Although OpenSSL can perform all encryption algorithms with all key
lengths in software, performance is dramatically improved by using
hardware crypto support. Additionally, hardware functionality that is not
available in software can be used, such as hardware-based generation of
random numbers.

Features not available on z/VSE

In z/VSE 5.2 the following functionality is not available.
v The OpenSSL command-line tool is not available on z/VSE. Therefore, key

management is done on a workstation (Windows, Linux, etc.). Created keystores
are then uploaded to z/VSE.

v The following algorithms are not available on z/VSE: IDEA, RC5, MDC2.
v Non-LE/C applications are currently not supported. Because OpenSSL is coded

in C, an LE/C-runtime environment is required for callers.

© Copyright IBM Corp. 1997, 2014 423

http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.gska100%2Ftoc.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.gska100%2Ftoc.htm

Runtime Variables

There are two variables for controlling the behavior of OpenSSL on z/VSE.

The use of crypto hardware can be turned on and off via parameter SSL$ICA.
// SETPARM SSL$ICA = [’YES’ | ’NO’]

The debug trace can be controlled via variable SSL$DBG.
// SETPARM SSL$DBG = [’YES’ | ’NO’]

The following sections contain these main topics:
v “Key store considerations”
v “Programming z/VSE Applications for OpenSSL” on page 427
v “Performing the OpenSSL speed test” on page 435

Key store considerations
A key store, which contains the RSA public/private key pair and the SSL
certificates, is needed before any SSL application can be run.

Many different types of key stores exist. Key stores that are relevant for z/VSE are:

PFX The Personal Information Exchange (PFX) format was initially defined by
RSA Security and conforms to the PKCS#12 standard. PFX files can contain
multiple keys and certificates and are themselves password-protected. PFX
files are supported by Web Browsers like Microsoft Internet Explorer and
Mozilla Firefox. The file extension p12 is also used for the PFX format.

JKS The Java Key Store (JKS) format is provided by Oracle and is the standard
key store format for Java applications. JKS files are password protected.
JKS files usually cannot be handled by web browsers. The keytool.exe is
part of every Java installation, it can also be used for maintaining JKS key
stores.

VSE keyring members
This type of key store was invented by Connectivity Systems International
and consists of three VSE library members with the same member name,
but different member types:
v PRVK (contains the RSA key pair)
v ROOT (contains the SSL root certificate)
v CERT (contains the SSL server certificate)

Whereas other formats store all keys and certificates in one file, the CSI
keyring format uses one separate VSE library member for each item.

The z/VSE specific public key infrastructure (PKI), for example the
creation of RSA key pairs and SSL certificates, can be managed with
Keyman/VSE.

PEM The Privacy-enhanced mail (PEM) format is used by OpenSSL. PEM files
can contain an RSA key pair, an SSL certificate or both. It can but must not
be password protected. Whereas other keystore formats are just binary, the
PEM file content is base-64 encoded.

Creating the Key Store Using Keyman/VSE
With the latest version of Keyman/VSE (build date January 2013 or later) you can
easily create a PEM file and upload it to z/VSE.

424 z/VSE V5R2 TCP/IP Support

In a test environment it might be desirable to use self-signed certificates, in a
production environment you should use certificates issued by a certificate
authority (CA).

The following steps describe how to create and upload your PEM file using
Keyman/VSE.
1. Create RSA key, SSL and SSL root certificate.

2. Open "Local Properties" and specify PEM file name.

Specifying a PEM password is currently not supported, because IPv6/VSE
currently does not support password protected PEM files.

3. Save your PEM file and upload it to z/VSE.

Chapter 15. OpenSSL 425

The Upload as PEM popup window is now displayed.

4. Your OpenSSL application is now being configured.
IPv6/VSE is currently the only OpenSSL application on z/VSE The next steps
give an overview on how to configure IPv6/VSE to use OpenSSL. For details
refer to the IPv6/VSE SSL Installation, Programming and User’s Guide.

5. Configure BSTTATLS
KEYRING PRD2.CONFIG
*
KEYFILE SSL02
SECTYPE SSL30
OPTION SERVER
ATTLS 23 AS 992 SSL

6. Start BSTTATLS and the Telnet server BSTTVNET provided by IPv6/VSE.
7. Setup client if necessary.
8. Connect

426 z/VSE V5R2 TCP/IP Support

http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip

Programming z/VSE Applications for OpenSSL
You can write z/VSE applications using OpenSSL in two ways.

Using the native OpenSSL API
The OpenSSL API is described on the OpenSSL website and consists of
several hundreds of functions. On z/VSE, a subset of this API is provided
by IJBSLVSE.OBJ that you link to your application to get access to the
functions in the IJBSSL phase.

Using the z/OS SSL API
This is the recommended way of using OpenSSL on z/VSE. The API is
described in z/OS Cryptographic Services System SSL Programming. The
C data structures are defined in include file gskssl.h, which is part of
LE/C and shipped in PRD2.SCEEBASE. The object file IJBSLVSE must also
be linked to your application, when using the z/OS SSL API.

Although this API is now deprecated on z/OS and should no more be
used by new z/OS applications, it is still the actual SSL API for z/VSE. All
existing VSE SSL applications currently use this API, because TCP/IP for
VSE/ESA provides exactly this API, and can use OpenSSL unchanged.
Refer to “z/OS SSL API” on page 436 for an API description of the GSK
functions.

The following sections provide details on using the z/OS SSL API and switching
between the two APIs.

Include Files
There are two SSL-related include files provided with z/VSE.
v sslvse.h - shipped with the CSI SSL-implementation in the TCP/IP lib.sublib.
v gskssl.h - shipped with the LE/C socket interface in PRD2.SCEEBASE.

OpenSSL, as well as OpenSSL applications must be compiled against gskssl.h,
because function prototypes in sslvse.h are defined with #pragma linkage OS. This
causes errors in passing parameters to the gsk functions.

Chapter 15. OpenSSL 427

http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.gska100%2Ftoc.htm

The gsk API functions use return codes described in the z/OS API, if gskssl.h is
used. These return codes are different from the ones currently used by the CSI SSL
implementation. The VSE Connector Server for example, is compiled against
gskssl.h, but there might be customer applications that use the CSI include file.

Passed Socket Number
The socket number as passed by a gsk-application (int s) is not necessarily just the
socket number.

VSE applications like CWS, VSE Connector Server, and MQ, pass a pointer to a
private structure, which contains the socket somewhere in the structure.
typedef struct _mysock {

int somefield;
char* someptr;
int socketno;

} MYSOCK;

#pragma linkage (skread,OS)
int skread(int s, void * data, int len)
{

int rc;
MYSOCK* mys = (MYSOCK*)s;
rc = recv(mys->socketno, data, len, 0);
return(rc);

}

Note: The #pragma statements are necessary for correct parameter passing only
when the application phase is a separate phase. If you want to link an application
together with the OpenSSL code (OpenSSL OBJs), don't use the #pragma statements.

The application then specifies the function pointers of skread and skwrite in the
sk_soc_init_data structure:
typedef struct _gsk_soc_init_data { /* Secure soc init data */

int fd; /* file descriptor */
gsk_handshake hs_type; /* client or server handshake */
char * DName; /* keyring entry Distinguished */
/* name. When NULL the default */
/* keyring entry is used */
char * sec_type; /* Type of application */
/* 0 CLIENT */
/* 1 SERVER */
/* 2 SERVER_WITH_CLIENT_AUTH */
/* 3 CLIENT_NO_AUTH */
char * cipher_specs; /* SSLV2 not used by VSE */
char * v3cipher_specs; /* SSLV3 cipher suites */
int (* skread) /* User supplied READ routine */
(int fd, void * buffer, int num_bytes);
int (* skwrite) /* User supplied WRITE routine */
(int fd, void * buffer, int num_bytes);
unsigned char cipherSelected[3]; /* SSLV2 not used by VSE */
unsigned char v3cipherSelected[2]; /* Cipher Spec used */
int failureReasonCode; /* failure reason code */
gsk_cert_info * cert_info; /* This information is read from*/
/* from the client certificate */
/* when client authentication is*/
/* enabled */
gsk_init_data * gsk_data; /* Pointer to init data */

} gsk_soc_init_data;

If you specify the function pointers, fetchep must be used.

428 z/VSE V5R2 TCP/IP Support

typedef void (*FETCH_PTR)(int);
init_data.skread = (int (*) (int,void*,int))fetchep((FETCH_PTR)skread);
init_data.skwrite = (int (*) (int,void*,int))fetchep((FETCH_PTR)skwrite);

The reason is, that skread and skwrite functions are implemented by the
application, but are called from phase IJBSSL.

Callback routines
When using the GSK API, the caller specifies a read and a write routine to be used
for sending data over the socket.

This means that the SSL component never accesses the socket directly. It also
means that the GSK API has no way of using other socket calls, for example,
givesocket, takesocket, ctrl. Unfortunately, OpenSSL does socket calls. The
low-level socket functions are defined in eos.h where for VSE these #defines are
used:
#define readsocket(s,b,n) read((s),(b),(n))
#define writesocket(s,b,n) write((s),(b),(n))

This causes OpenSSL to use the application specified read/write routines
(skread/skwrite). We currently don't have a solution or other socket calls, because
the GSK API only considers these two routines. We also have to keep in mind that
the socket number as passed by the application (int s) is not necessarily just the
socket number. VSE applications like CWS, VSE Connector Server, MQ, pass a
pointer to a private struct which contains the socket somewhere in the struct. In
order to be flexible, you would write your code as shown in the following example
and put the socket number into a data structure.
typedef struct _mysock {

int somefield;
char* someptr;
int socketno;

} MYSOCK;

/* I/O routine to perform a read function for SSL VSE */
#pragma linkage (skread,OS)
int skread(int fd, void * data, int len)
{

int rc;
MYSOCK* mys = (MYSOCK*)fd;
rc = recv(mys->socketno, data, len, 0);
return(rc);

}

/* I/O routine to perform a write function for SSL VSE */
#pragma linkage (skwrite,OS)
int skwrite (int fd, void * data, int len)
{

int rc;
MYSOCK* mys = (MYSOCK*)fd;
rc = send(mys->socketno, data, len, 0);
return(rc);

}

The addresses of the two callback routines skread() and skwrite() are specified in
the gsk_soc_init_data structure before calling gsk_secure_soc_init().

Socket Calls
When using the gsk-API, the caller specifies a read and a write callback routine to
be used for sending data over the socket.

Chapter 15. OpenSSL 429

The SSL component never accesses the socket directly and the gsk-API has no way
of using other socket calls, for example givesocket, takesocket, ctrl.

OpenSSL, however, does socket calls. The low-level socket functions are defined in
eos.h, where the following #defines are used for VSE:
#define get_last_socket_error() errno
#define clear_socket_error() errno=0
#define ioctlsocket(a,b,c) ioctl(a,b,c)
#define closesocket(s) close(s)
#define readsocket(s,b,n) read((s),(b),(n))
#define writesocket(s,b,n) write((s),(b),(n))

This causes OpenSSL to use the application specified read/write routines
(skread/skwrite). Currently other socket calls are not supported, because the
gsk-API only considers these two routines. The gsk-API implementation in turn
implements the vse_readsocket and vse_writesocket routines and calls the
application specified read/write routines.
int (*skread)(int s, void* b, int n);
int (*skwrite)(int s, void* b, int n);

int vse_readsocket(int s, void* b, int n)
{

return skread(s, b, n);
}

int vse_writesocket(int s, void* b, int n)
{

return skwrite(s, b, n);
}

Switching between gsk and OpenSSL Socket Calls
To allow applications to use the gsk API and the native OpenSSL API dynamically,
gsk_initialize() sets a global variable ssl_use_gsk_callbacks in Phase IJBSSL.

This causes the OpenSSL code to use the gsk callbacks. There are only two
OpenSSL modules (bssconn.c and bsssock.c) which do socket calls. The following
change is made for VSE:
if (ssl_use_gsk_callbacks)

ret=vse_readsocket(b->num,out,outl);
else

ret=readsocket(b->num,out,outl);

The global variable is reset in gsk_uninitialize().

The following sections describe some z/VSE specific aspects, for example how to
specify the name and location of your keyring file and the list of SSL ciphers to be
used by your application.

Specifying the Key Ring
There are two ways to specify the keyring in a gsk-application.

This depends on whether you uploaded the PEM file as a VSE library member or
as a VSAM file. In both cases, the keyring location is specified when calling the
gsk_initialize() function and the keyring name is specified when calling the
gsk_secure_soc_init() function.

430 z/VSE V5R2 TCP/IP Support

If an empty string for lib.sublib is specified, the gsk-wrapper expects the keyring
label (DName) to be a VSAM file name. If valid values for lib and sublib are
specified, the keyring label is handled as a VSE library member name. The member
type must be PEM in this case.

Keyring type Librarian

For Librarian type keyrings a VSE library and sublibrary are specified in the
gsk_initialize() call.
char * keyring = "CRYPTO.KEYRING";
gsk_init_data init_data;
...
init_data.keyring = keyring;
rc = gsk_initialize(&init_data);

The member name of the PEM file is specified in the gsk_secure_soc_init() call
with the DName parameter. The member type must always be PEM.
gsk_soc_data * socdata;
gsk_soc_init_data sock_init_data;
...
sock_init_data.DName = "MYKEY"; // VSE library member name
socdata = gsk_secure_soc_init(&sock_init_data);

Keyring type VSAM

For VSAM type keyrings, an empty string for parameter “keyring” is specified in
the gsk_initialize() call.
char * keyring = "";
gsk_init_data init_data;
...
init_data.keyring = keyring;
rc = gsk_initialize(&init_data);

The keyring name (DName) defined in the gsk_secure_soc_init() call, specifies
the VSAM file label.
gsk_soc_data * socdata;
gsk_soc_init_data sock_init_data;
...
sock_init_data.DName = "MYKEY"; // VSAM file label
socdata = gsk_secure_soc_init(&sock_init_data);

Using a Password Protected Keyring
When using password-protected keyrings for PEM files, each client or server must
specify the PEM passphrase to access the keystore.

If you are using the gsk-API, you specify the keyring password in the
gsk_init_data structure, when calling gsk_initialize().
char * keyring = "";
gsk_init_data init_data;
...
init_data.keyring = keyring;
init_data.keyring_pw = "ssltest";
rc = gsk_initialize(&init_data);

Note: The gsk-API supports password protected PEM files, however IPv6/VSE
currently does not support password protected PEM files

OpenSSL on z/VSE assumes the following:

Chapter 15. OpenSSL 431

1. The PEM file was created on an ASCII platform and the password is therefore
ASCII-encoded.

2. The gsk application running on z/VSE specifies the password in EBCDIC.

Therefore, before calling the related OpenSSL function for opening the PEM file,
the password is translated to ASCII.

Note: Depending on the password characters there might be an issue with the
EBCDIC to ASCII translation. It is currently not possible to specify code pages.

Supported Cipher Suites
OpenSSL allows more cipher suites than previously available with TCP/IP for
VSE/ESA.

In addition to specifying a list of cipher suites, OpenSSL allows keywords like
DEFAULT, ALL, HIGH. However, an application that uses the gsk API must
specify a list of hex codes as done previously when using the CSI implementation.
The list of hex codes is then internally translated into an OpenSSL readable list of
cipher suites.

The following table shows the list of usable cipher suites with OpenSSL and the
SSL implementation provided by CSI. The table only lists the cipher suites using
the RSA algorithm for the SSL handshaking.

Table 11. OpenSSL Cipher Suites

Hex
code OpenSSL notation TCP/IP for VSE/ESA notation

01 NULL_MD5 SSL_RSA_WITH_NULL_MD5

02 NULL_SHA SSL_RSA_WITH_NULL_SHA

03 EXP-RC4-MD5 -

04 RC4-MD5 -

05 RC4-SHA -

06 EXP-RC2-CBC-MD5 -

08 EXP-DES-CBC-SHA SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

09 DES-CBC-SHA SSL_RSA_WITH_DES_CBC_SHA

0A DES-CBC3-SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA

11 EXP-EDH-DSS-DES-CBC-SHA -

12 EDH-DSS-CBC-SHA -

13 EDH-DSS-DES-CBC3-SHA -

14 EXP-EDH-RSA-DES-CBC-SHA -

15 EDH-RSA-DES-CBC-SHA -

16 EDH-RSA-DES-CBC3-SHA -

17 EXP-ADH-RC4-MD5 -

18 ADH-RC4-MD5 -

19 EXP-ADH-DES-CBC-SHA -

1A ADH-DES-CBC-SHA -

1B ADH-DES-CBC3-SHA -

2F AES128-SHA TLS_RSA_WITH_AES_128_CBC_SHA

432 z/VSE V5R2 TCP/IP Support

Table 11. OpenSSL Cipher Suites (continued)

Hex
code OpenSSL notation TCP/IP for VSE/ESA notation

32 DHE-DSS-AES128-SHA -

33 DHE-RSA-AES128-SHA -

34 ADH-AES128-SHA -

35 AES256-SHA TLS_RSA_WITH_AES_256_CBC_SHA

38 DHE-DSS-AES256-SHA -

39 DHE-RSA-AES256-SHA -

3A ADH-AES256-SHA -

62 EXP1024-DES-CBC-SHA - (1)

63 EXP1024-DHE-DSS-DES-CBCSHA -

64 EXP1024-RC4-SHA -

65 EXP1024-DHE-DSS-RC4-SHA -

66 DHE-DSS-RC4-SHA -

(1) Cipher suite 0x62 was formerly supported by TCP/IP for VSE/ESA as
RSA1024_EXPORT_DESCBC_SHA, but was removed in version 1.5F.

Note: Some cipher suites are supported by z/OS (for example "00" =
"NULL-NULL", "0C", "0D", "0F"), but not supported by OpenSSL. For compatibility
with z/OS, these cipher suites are also not supported by z/VSE.

For details on OpenSSL cipher suites refer to http://www.openssl.org/docs/apps/
ciphers.html. For a description of the cipher suites refer to RFCs 2246 and 3268.

Specifying Cipher Suites
The gsk clients and gsk servers specify their lists of cipher suites as required by the
gsk API.
char * ciphers = "2F350A09";
...
sock_init_data.v3cipher_specs = ciphers;
...
socdata = gsk_secure_soc_init(&sock_init_data);

The list is then translated into an OpenSSL readable form. In this example, the
resulting string to be passed to OpenSSL is:
AES128-SHA:AES256-SHA:DES-CBC3-SHA:DES-CBC-SHA

Supported RSA Key Lengths
On z/VSE the RSA key length is limited to 4096 bits, because this is currently the
upper limit supported by crypto cards.

OpenSSL itself can process RSA keys up to 16384 bits. For z/VSE the following
change in include file rsa.h has been made:
#ifndef OPENSSL_RSA_MAX_MODULUS_BITS
//# define OPENSSL_RSA_MAX_MODULUS_BITS 16384
define OPENSSL_RSA_MAX_MODULUS_BITS 4096
#endif

Chapter 15. OpenSSL 433

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

Removing this restriction, as well as using software-based encryption, would not
make any sense, because software performance is very limited compared to using
cryptographic hardware.

Debugging
OpenSSL has different built-in debug capabilities.

When using the gsk API

To turn the debug trace on and off in the z/OS gsk API, you can use the JCL
variable:
SSL$DBG = [YES | NO]

The variable is evaluated in the gsk_initialize() function and therefore usable
only together with the z/OS gsk interface.

When using both APIs

To turn debugging on and off without recompiling any source modules, z/VSE
provides two functions via module IJBSLVSE:
extern int debug=0;
void ssl_enable_debug(void);
void ssl_disable_debug(void);

Enabling debugging causes a static global variable “debug” to be set to 1.
Disabling debugging resets the value to zero. The two functions can be used by
any z/VSE gsk or OpenSSL application.

Debug output from phase IJBSSL is printed to SYSLST, if debugging is enabled.
Consider enabling your gsk or OpenSSL application for debugging by providing a
DEBUG parameter in the PARM string, when calling your application:
// EXEC MYAPP,PARM=’DEBUG’

The application code reads the parameter and calls the related function to enable
or disable debugging.

Hardware Crypto Support
Hardware crypto support is provided transparently for existing z/VSE SSL
applications, because they use the z/OS gsk API.

Depending on which API your application uses, one of the following possibilities
applies.

When using the gsk API

To turn the hardware crypto support on and off in the z/OS gsk API, you can use
the JCL variable:
SSL$ICA = [YES | NO]

The variable is evaluated in the gsk_initialize() function and therefore usable
only together with the z/OS gsk interface.

434 z/VSE V5R2 TCP/IP Support

When using both APIs

To turn debugging on and off without recompiling any source modules,z/VSE
provides two functions via modules IJBSLVSE and IJBSLACC:
extern int ssl_use_ibmca=1;
void ssl_enable_ibmca(void);
void ssl_disable_ibmca(void);

Enabling hardware crypto support causes a static global variable “ssl_use_ibmca”
to be set to 1. Calling ssl_disable_ibmca() resets the value to zero. The two
functions can be used by any z/VSE gsk or OpenSSL application.

Provide a parameter IBMCA in the PARM string when calling your application:
// EXEC MYAPP,PARM=’IBMCA’

The application code reads the parameter and calls the related function to enable
or disable hardware crypto support.

Performing the OpenSSL speed test
OpenSSL provides a built-in speed test that allows checking the speed of your
system when performing cryptographic algorithms, like RSA, AES, SHA, or DES.

On z/VSE this test is included in phase IJBSSL and can be invoked with JCL as
follows:
// EXEC SPEEDTST,PARM=’OPENSSL’

For a list of supported parameters enter the following command on a workstation
with OpenSSL installed.
#openssl speed ?

For command details refer to http://www.openssl.org/.

Test Invocation

To invoke the RSA test on z/VSE specify either:
// EXEC SPEEDTST,PARM=’OPENSSL RSA’

or
// EXEC SPEEDTST,PARM=’RSA’

Further examples invoking other algorithms are:
// EXEC SPEEDTST,PARM=’AES-128-CBC’
// EXEC SPEEDTST,PARM=’SHA1’
// EXEC SPEEDTST,PARM=’DES-EDE3 SHA256 AES-128-CBC’

The following algorithms are supported by crypto hardware:
v RSA (includes RSA-1024, RSA-2048, RSA-4096)
v DES-CBC
v DES-EDE3
v AES-128-CBC
v AES-192-CBC
v AES-256-CBC
v SHA1

Chapter 15. OpenSSL 435

http://www.openssl.org/

v SHA256

z/OS SSL API
The z/OS SSL API is supported by TCP/IP for VSE/ESA via the $EDCTCPV phase
and by OpenSSL via phase IJBSSL.

This API is described in detail in:
v “TCP/IP Callable Functions — Function Descriptions” on page 85
v z/OS Cryptographic Services System SSL Programming

Following is a list of supported API function calls, and the differences that are
caused by the implementation of the OpenSSL to GSK layer.

gsk_free_memory
Releases storage allocated by the SSL runtime.

No change for z/VSE compared to z/OS.

gsk_get_cipher_info
Returns the supported cipher specifications.

Changes for z/VSE:
v The lists of returned cipher suites differs from what is documented in

the z/OS book, because some of the ciphers used on z/OS are not
supported by OpenSSL (for example: "00"). OpenSSL on z/VSE returns
the following strings:
"09151203060201" // LOW_SECURITY
"05043538392F32330A161309151203060201" // HIGH_SECURITY

v The version field of the gsk_sec_level struct returns the currently
supported OpenSSL version, (for example: 100 = 1.0.0).

gsk_get_dn_by_label
Gets the distinguished name for a certificate.

Changes for z/VSE:
v The specified key/cert file must either be a Librarian member with

membertype PEM or a VSAM file.
v On z/OS, NULL is returned, if the key database cannot be accessed.

However, on z/VSE there is not enough information here to access the
key store.

gsk_initialize
Initializes the System SSL runtime environment.

Changes for z/VSE:
v Read and evaluate the JCL variables SSL$DBG and SSL$ICA.

gsk_secure_soc_close
Closes a secure socket connection.

No change for z/VSE.

gsk_secure_soc_init
Initializes a secure socket connection.

No change for z/VSE.

gsk_secure_soc_read
Reads data using a secure socket connection.

436 z/VSE V5R2 TCP/IP Support

http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.gska100%2Ftoc.htm

Changes for z/VSE:
v The caller can specify buflen = 0 to check for pending bytes. If buflen

= 0,SSL_pending is called and gsk_secure_soc_read returns the return
code that was returned by SSL_pending.

gsk_secure_soc_reset
Resets the session keys for a secure connection.

No change for z/VSE.

gsk_secure_soc_write
Writes data using a secure socket connection.

No change for z/VSE.

gsk_uninitialize
Terminates the SSL environment.

No change for z/VSE.

gsk_user_set
Sets an application callback.

Currently not supported on z/VSE.

Chapter 15. OpenSSL 437

438 z/VSE V5R2 TCP/IP Support

Part 5. CICS Listener Support

© Copyright IBM Corp. 1997, 2014 439

440 z/VSE V5R2 TCP/IP Support

Chapter 16. Setting Up and Configuring CICS Listener
Support

Overview

This section describes the steps required to configure the CICS Listener Support.
The error messages are included in z/VSE Messages and Codes, Volume 1.

Important:

1. The CICS Listener Support requires starting CICS/TS with SIT parameter
SVA=YES.

2. The CICS Listener Support as provided by IBM requires the
"task-related-user-exit" program EZATRUE. Refer to “CICS Considerations for
the EZA Interfaces” on page 83 for further details on how to start this program.

Before you can start the CICS Listener Support, you need to do the following:

Task Refer to

Define additional files, programs, maps, and
transient data to CICS using RDO.

“CICS — Defining CICS Resources”

Use the configuration macro (EZACICD), to
build the CICS Listener Configuration
dataset.

“Building the Configuration data set with
the Configuration Macro (EZACICD)” on
page 446

Use the configuration transaction to
customize the Configuration dataset.

“Customizing the Configuration Dataset” on
page 451

Note: You can modify the dataset while CICS is running by using EZAC. See
“Configuration Transaction (EZAC)” on page 452.

CICS — Defining CICS Resources
The following definitions are required for the CICS Listener Support:
v “Transaction Definitions”
v “Program Definitions” on page 442
v “File Definitions” on page 443
v “Transient Data Definition” on page 443

Note: With z/VSE all these definitions have been activated using member
IESCSEZA.Z and IESZDCT.A in IJSYSRS.SYSLIB. This setup includes the definition
of TASKDATAKEY(CICS) for transactions and EXECKEY(CICS) for programs. This
is required when running with CICS storage protection. These definitions are
ignored when running without CICS storage protection.

For information on defining transactions, programs, and files to the CICS Resource
Definition Online (RDO) facility, refer to CICS/ESA Resource Definition (Online).

Transaction Definitions
The following four transactions are required to support the CICS Listener:

EZAC Configure the socket interface

© Copyright IBM Corp. 1997, 2014 441

http://publib.boulder.ibm.com/infocenter/cicsts/v2r3/index.jsp?topic=/com.ibm.cics.ts23.doc/dfha4/soc6.htm

EZAO Enable the socket interface

EZAP Internal transaction that is invoked during termination of the socket
interface

EZAL Listener task

Note: This is a single listener. Each listener in the same CICS partition
needs a unique transaction ID.

Tip: For transactions EZAL, EZAO, and EZAP a priority of 255 has been defined.
This ensures timely transaction dispatching, and in case of EZAL maximizes the
connection rate of clients requesting service.

Using Storage Protection

When running with CICS storage protection, the EZAP, EZAO, and EZAL
transactions must be defined with TASKDATAKEY(CICS). If this is not done,
EZAO fails with an ASRA abend code indicating an incorrect attempt to overwrite
the CDSA by EZACIC01.

If the machine does not support storage protection or is not enabled for storage
protection, TASKDATAKEY(CICS) is ignored and does not cause an error.

Note:

1. Use of the IBM-supplied Listener is not required.
2. You may use a transaction name other than EZAL.
3. The TASKDATALoc values for EZAO and EZAP and the TASKDATALoc value

for EZAL must all be the same.

Program Definitions
The following programs and one map set are required:

EZACIC00
Is the connection manager program. It provides the enabling and disabling
of CICS TCP/IP through the transactions EZAO and EZAP.

EZACIC01
Is the task-related user exit (TRUE).

EZACIC02
Is the Listener program that is used by the transaction EZAL. This
transaction is started when you enable CICS TCP/IP Listener through the
EZAO transaction.

Note: While you do not need to use the IBM-supplied Listener, you do
need to provide a Listener function.

EZACIC20
Is the initialization/termination front-end module for the CICS Listener
Interface.

EZACIC21
Is the initialization module for theCICS Listener Interface.

EZACIC22
Is the termination module for the CICS Listener Interface.

Setting Up / Configuring CICS Listener Support

442 z/VSE V5R2 TCP/IP Support

EZACIC23
Is the primary module for the configuration transaction (EZAC).

EZACIC24
Is the message delivery module for transactions EZAC and EZAO.

EZACIC25
Is the Domain Name Server (DNS) cache module.

EZACICME
Is the US English text delivery module.

EZACICM
has all the maps that are used by the transactions.

EZASOH00, EZASOH99
Interface modules for the TCP/IP API used by the CICS Listener.

Using Storage Protection

When running with CICS Storage Protection, all the required CICS Listener
programs must have EXECKEY=CICS as part of their CEDA definitions.

If the machine does not support storage protection or is not enabled for storage
protection, EXECKEY(CICS) is ignored and does not cause an error.

File Definitions
The updates to CICS include two files: EZACONF, the CICS Listener configuration
file, and EZACACH, which is required if you want to use the Domain Name
Server Cache function (EZACIC25).

Transient Data Definition
The CICS Listener Support uses a transient data queue for messages. With z/VSE,
the EZAM transient data queue is predefined and can be used by the CICS
Listener Support as well as by your own socket applications. The name of the
transient data queue can be changed.

If so, it must match the name that is specified in the ERRORTD parameter of the EZAC
DEFINE CICS dialog, the EZACICD TYPE=CICS macro call, or both. Refer to “Building
the Configuration data set with the Configuration Macro (EZACICD)” on page 446.

The Listener transaction can start a server using a transient data queue, as
described in “Listener Input Format (Standard Listener only)” on page 502.
Following is a DCT entry for an application that is started using the trigger-level
mechanism of the DCT.

DFHDCT TYPE=INTRA, X
DESTID=TRAA, X
DESTFAC=FILE, X
TRIGLEV=1, X
TRANSID=TRAA

...

...

Figure 40. Addition to the DCT Required by CICS TCP/IP

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 443

CICS Monitoring
Optionally, the CICS Listener Interface uses the CICS Monitoring Facility to collect
data about its operation. Event Monitoring Points (EMPs) with identifier 'EZA02'
are used by the Listener to collect performance class data.

Event Monitoring Points for the Listener

The Listener monitors the activities associated with connection acceptance and
server task startup.

The listener counts the following events:
v Number of Connection Requested Accepted
v Number of Transactions Started
v Number of Transactions Rejected Due To Invalid Transaction ID
v Number of Transactions Rejected Due To Disabled Transaction
v Number of Transactions Rejected Due To Disabled Program
v Number of Transactions Rejected Due To Givesocket Failure
v Number of Transactions Rejected Due To Negative Response from Security Exit
v Number of Transactions Not Authorized to Run
v Number of Transactions Rejected Due to I/O Error
v Number of Transactions Rejected Due to No Space
v Number of Transactions Rejected Due to TD Length Error

The following Monitor Control Table (MCT) entries make use of the
event-monitoring points in the performance class used by the Listener.

DFHMCT TYPE=EMP,ID=(EZA02.01),CLASS=PERFORM, X
PERFORM=ADDCNT(1,1)

DFHMCT TYPE=EMP,ID=(EZA02.02),CLASS=PERFORM, X
PERFORM=ADDCNT(2,1)

DFHMCT TYPE=EMP,ID=(EZA02.03),CLASS=PERFORM, X
PERFORM=ADDCNT(3,1)

DFHMCT TYPE=EMP,ID=(EZA02.04),CLASS=PERFORM, X
PERFORM=ADDCNT(4,1)

DFHMCT TYPE=EMP,ID=(EZA02.05),CLASS=PERFORM, X
PERFORM=ADDCNT(5,1)

DFHMCT TYPE=EMP,ID=(EZA02.06),CLASS=PERFORM, X
PERFORM=ADDCNT(6,1)

DFHMCT TYPE=EMP,ID=(EZA02.07),CLASS=PERFORM, X
PERFORM=ADDCNT(7,1)

DFHMCT TYPE=EMP,ID=(EZA02.08),CLASS=PERFORM, X
PERFORM=ADDCNT(8,1)

DFHMCT TYPE=EMP,ID=(EZA02.09),CLASS=PERFORM, X
PERFORM=ADDCNT(9,1)

DFHMCT TYPE=EMP,ID=(EZA02.10),CLASS=PERFORM, X
PERFORM=ADDCNT(10,1)

DFHMCT TYPE=EMP,ID=(EZA02.11),CLASS=PERFORM, X
PERFORM=ADDCNT(11,1)

DFHMCT TYPE=EMP,ID=(EZA02.12),CLASS=PERFORM, X
PERFORM=(MLTCNT(1,11)), X
COUNT=(1,CONN,STARTED,INVALID,DISTRAN,DISPROG,GIVESOKT,SECEXIT)

The following specifications are used in the ID parameter:

Figure 41. The Monitor Control Table (MCT) for Listener

Setting Up / Configuring CICS Listener Support

444 z/VSE V5R2 TCP/IP Support

(EZA02.01)
Completion of ACCEPT call.

(EZA02.02)
Completion of CICS transaction initiation.

(EZA02.03)
Detection of Invalid Transaction ID.

(EZA02.04)
Detection of Disabled Transaction.

(EZA02.05)
Detection of Disabled Program.

(EZA02.06)
Detection of Givesocket Failure.

(EZA02.07)
Transaction Rejection by Security Exit.

(EZA02.08)
Transaction Not Authorized

(EZA02.09)
I/O Error on Transaction Start.

(EZA02.10)
No Space Available for TD Start Message

(EZA02.11)
TD Length Error

(EZA02.12)
Program Termination.

CICS Program List Table (PLT)
You can allow automatic startup/shutdown of the CICS Listener Interface through
updates to the PLT. This is achieved through placing the EZACIC20 module in the
appropriate PLT.

To start the CICS Listener Interface interface automatically, make the following
entry in PLTPI after the DFHDELIM entry:
DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

To shut down the CICS Listener Interface interface automatically, make the
following entry in PLTSD before the DFHDELIM entry:
DFHPLT TYPE=ENTRY,PROGRAM=EZACIC20

Configuring the CICS TCP/IP Environment
The CICS Listener Configuration File (EZACONF) contains information about the
CICS Listener environment.

The file is organized by two types of objects—CICS instances and listeners within
those instances. The creation of this dataset is done in three stages:
1. Create the empty dataset using VSAM IDCAMS (Access Method Services). For

z/VSE the configuration file is preallocated, but empty.
These are the preallocated VSAM definition statements:

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 445

DEFINE CLUSTER(NAME(VSE.EZACICS.CONFIG) -
RECORDS(3000 2000) -
SHAREOPTIONS(2) -
RECORDSIZE(150,150) -
VOLUMES(SYSWK1,DOSRES) -
NOREUSE -
INDEXED -
FREESPACE(15 7) -
KEYS (16,0) -
NOCOMPRESSED -
TO (99366)) -
DATA (NAME(VSE.EZACICS.CONFIG.@D@) -
CONTROLINTERVALSIZE (4096)) -
INDEX (NAME(VSE.EZACICS.CONFIG.@I@)) -
CATALOG (VSESP.USER.CATALOG)

2. Initialize the dataset using the program generated by the EZACICD macro. See
member SKCICSLI in ICCF library 59 for a sample job to initialize the
configuration file.

3. Add to or modify the dataset using the configuration transaction EZAC. This
step is described in “Customizing the Configuration Dataset” on page 451.1

Building the Configuration data set with the Configuration
Macro (EZACICD)

The configuration macro (EZACICD) is used to build the configuration data set.

This data set can then be incorporated into CICS using RDO and can be modified
using the configuration transactions. See “Configuration Transaction (EZAC)” on
page 452. The macro is keyword driven. The TYPE keyword controls the specific
function request. The data set contains one record for each instance of CICS it
supports, and one record for each listener. The following is an example of the
macros that are required to create a configuration file for two instances of the CICS
Listener interface:

EZACICD TYPE=INITIAL, Start of macro assembly input X
FILNAME=EAZCONF, Name for configuration file X
PRGNAME=EZACONFP Name of batch program to run

EZACICD TYPE=CICS, CICS record definition X
APPLID=DBDCCICS, APPLID of CICS X
TCPADDR=SOCKET00, Name of TCP/IP Address X
PLTSDI=YES, PLT shutdown method is immediately X
CACHMIN=15, Minimum refresh time for cache X
CACHMAX=30, Maximum refresh time for cache X
CACHRES=10, Maximum number of resident resolvers X
ERRORTD=CSMT, Transient data queue for error msgs X
SMSGSUP=NO STARTED Messages Suppressed?

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=STANDARD, Standard Listener X
APPLID=DBDCCICS, Applid of CICS region X
TRANID=EZAL, Transaction name for Listener X
PORT=3010, Port number for Listener X
AF=INET, Listener Address Family X
IMMED=YES, Listener starts up at initialization? X
BACKLOG=20, Backlog value for Listener X
NUMSOCK=50, # of sockets supported by Listener X
MINMSGL=4, Minimum input message length X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
RTYTIME=10, Wait 10 seconds for TCP to come back X
TRANTRN=YES, Is TRANUSR=YES conditional? X

1. The EZAC transaction is modeled after the CEDA transaction used by CICS Resource Definition Online (RDO).

Setting Up / Configuring CICS Listener Support

446 z/VSE V5R2 TCP/IP Support

TRANUSR=YES, Translate user data? X
SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=LISTENER, Listener record definition X
FORMAT=ENHANCED, Enhanced Listener X
APPLID=DBDCCICS, Applid of CICS region X
TRANID=CSKM, Transaction name for Listener X
PORT=3011, Port number for Listener X
AF=INET, Listener Address Family X
IMMED=YES, Listener starts up at initialization? X
BACKLOG=20, Backlog value for Listener X
NUMSOCK=50, # of sockets supported by Listener X
ACCTIME=30, Timeout value for Accept X
GIVTIME=30, Timeout value for Givesocket X
REATIME=30, Timeout value for Read X
RTYTIME=20, Wait 20 seconds for TCP to come back X
CSTRAN=TRN1, Name of child IPv4 server transaction X
CSSTTYP=KC, Child server startup type X
CSDELAY=000000, Child server delay interval X
MSGLEN=0, Length of input message X
MSGFORM=ASCII, Output message format X
SECEXIT=EZACICSE Name of security exit program

EZACICD TYPE=FINAL End of assembly input

TYPE Parameter

The TYPE parameter controls the function requests. It can have the following
values:

INITIAL
Initializes the generation environment. Define this value once per generation at
the first invocation of the macro. If TYPE=INITIAL is specified, the following
parameters apply:

PRGNAME=EZACONFP|xxxxxxx
The name of the generated initialization program. The default is EZACONFP.

FILNAME=EZACONF|xxxxxxx
The file name that is used for the configuration file in the execution of the
initialization program. The default is EZACONF.

CICS
Identifies a CICS object. The object corresponds to a specific instance of CICS
and creates a configuration record. If TYPE=CICS is specified, the following
parameters apply:

APPLID=xxx
The APPLID of the CICS address space in which this instance of CICS
Listener is to run. This parameter is mandatory.

CACHMAX=30|nnn
The maximum refresh time for the domain name server cache in minutes.
This value depends on the stability of your network, that is, the time you
would expect a domain name to have the same IP address. Higher values
improve performance but increase the risk of getting an incorrect (expired)
address when resolving a name. The value must be greater than CACHMIN.
The default value is 30. Possible values are 0 - 999.

CACHMIN=15|nnn
The minimum refresh time for the domain name server cache in minutes.
This value depends on the stability of your network, that is, the time you
would expect a domain name to have the same IP address. Higher values
improve performance but increase the risk of getting an incorrect (expired)

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 447

address when resolving a name. The value must be less than CACHMAX. The
default value is 15. Possible values are 0 - 998.

CACHRES=10|nn
The maximum number of concurrent resolvers wanted. If the number of
concurrent resolvers is equal to or greater than this value, refresh of cache
records does not occur unless their age is greater than the CACHMAX value.
The default is 10. Possible values are 0 - 99.

ERRORTD=EZAM|xxx
The name of a transient data destination to which error messages are
written. The default is EZAM.

PLTSDI=NO|YES
If the CICS TCP/IP Listener Support is shut down using the EZACIC20
PLT program, the PLTSDI parameter specifies whether the interface is shut
down immediately or not. The default is NO and specifies a deferred
shutdown. YES specifies an immediate shutdown. If the PLTSDI parameter
is not specified, a deferred shutdown is performed. A deferred shutdown
enables all CICS Listeners to end gracefully. An immediate shutdown
directs all CICS listeners to be immediately terminated.

SMSGSUP=NO|YES
If YES is specified, messages EZY1318E, EZY1325I, and EZY1330I are
suppressed. The default is NO, and allows these messages to be issued.

TCPADDR=SOCKET00|nn
The name of the z/VSE TCP/IP address space. z/VSE supports SOCKETnn
where nn is the ID of the TCP/IP stack to connect with.

LISTENER
Identifies the listener object. This creates a listener record. If TYPE=LISTENER
is specified, the following parameters apply:

ACCTIME=60|nn
The time in seconds the listener waits for a connection request before
checking for a CICS Listener interface shutdown or CICS shutdown. The
default is 60. Setting this value high minimizes CPU consumption on a
lightly loaded system but lengthens shutdown processing. Setting this
value low uses more CPU but facilitates shutdown processing.

AF=INET|INET6
Specifies, if the defined listener supports IPv6 partners and is able to give
an IPv6 socket descriptor to an IPv6 child server program. INET6 indicates
that the listener gives an IPv6 socket to the child server program. INET, the
default, indicates that the listener gives an IPv4 socket to the child server
program. Ensure that the child server program performing the
TAKESOCKET command matches the domain of the socket being given by
the listener.

APPLID=xxx
The APPLID of the CICS object for which this listener is being defined. If
this parameter is omitted, the APPLID from the previous TYPE=CICS
macro is used.

BACKLOG=20|nn
The number of unaccepted connections that can be queued to this listener.
The default value is 20.

Setting Up / Configuring CICS Listener Support

448 z/VSE V5R2 TCP/IP Support

Note: If you use TCP/IP for VSE/ESA stack of CSI International, a value
of 1 is always used, because of the stacks implementation of the backlog
feature.

CSDELAY=hhmmss
(Enhanced CICS Listener only) This parameter is applicable only if CSSTTYP
is IC. It specifies the delay interval to be used on the EXEC CICS START
command. The format is: hhmmss (hours/minutes/seconds).

CSSTTYP=IC|KC|TD
(Enhanced CICS Listener only) This parameter specifies the default start
method for the child server task. This can be overridden by the
security/transaction exit. Possible values are IC, KC, and TD.

IC Indicates that the child server task is started using EXEC CICS START
with the value specified by CSDELAY (or an overriding value from the
security/transaction exit) as the delay interval.

KC Indicates that the child server task is started using EXEC CICS START
with no delay interval. This is the default.

TD Indicates that the child server task is started using the EXEC CICS
WRITEQ TD command, which uses transient data to trigger the child
server task.

CSTRAN=xxx
(Enhanced CICS Listener only) This mandatory parameter specifies the
default child server transaction that the listener starts. CSTRAN can be
overridden by the security/transaction exit. The child server transaction is
verified to be defined to CICS and enabled when the listener is started by
the EZAO Operator transaction.

FORMAT=STANDARD|ENHANCED
STANDARD, which is the default, indicates the original CICS listener that
requires the client to send the standard header. ENHANCED indicates the
enhanced CICS listener that does not expect the standard header from the
client.

GIVTIME=nn
The time in seconds the listener waits for a response to a GIVESOCKET
request. If the time expires, the listener assumes that either the server
transaction did not start or the TAKESOCKET failed. The listener sends the
client a message that indicates the server failed to start and closed the
socket (connection). If this parameter is not specified, the ACCTIME value is
used

IMMED=YES|NO
YES, which is the default, indicates that the listener is started when the
interface starts. NO indicates that the listener is started independently using
the EZAO transaction.

MINMSGL=4|nn
(Standard CICS Listener only) This parameter specifies the minimum
length of the Transaction Initial Message from the client to the listener. The
default value is 4. The listener continues to read on the connection until
this length of data has been received.

MSGFORM=ASCII|EBCDIC
(Enhanced CICS Listener only) This parameter indicates, if an error
message returned to the client is in ASCII or EBCDIC. ASCII is the default.
MSGFORM is displayed as MSGFORMat on the EZAC screens.

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 449

MSGLEN=0|nnn
(Enhanced CICS Listener only) This parameter specifies the length of the
data to be received from the client. The valid range is 0 - 999. If the value
is 0, the listener does not read in any data from the client.

NUMSOCK=50|nnn
The number of sockets that are supported by the listener. One socket is the
listening socket. The other sockets are used to pass connections to the
servers using the GIVESOCKET call. The maximum number of concurrent
GIVESOCKET requests that can be active, is this value minus one. The
default value is 50.

PORT=nnnnn
The port number the listener uses for accepting connections. This
parameter is mandatory. The ports can be shared. Possible values are 1 -
65535.

REATIME=nn
The time in seconds this listener waits for a response to a READ request. If
this time expires, the listener assumes that the client has failed and
terminates the connection by closing the socket. If this parameter is not
specified, no checking for read timeout is done.

RTYTIME=15|nnn
Specifies the length of time, in seconds, that the listener waits after a
TCP/IP stack outage occurs before it attempts to connect or reconnect. If
you specify 0, the listener cleans up any resources and ends. A value
greater than 0 and smaller than 15 results in an RTYTIME value of 15
seconds. The listener task is delayed 15 seconds before it attempts to
connect or reconnect. The stack that it tries to connect to is the stack that is
specified by the listener's IP CICS socket interface TCPADDR configuration
option. If the connection fails, the listener task is delayed for the length of
time that is specified by the RTYTIME parameter. After this interval lapses,
the listener attempts to connect to its stack. The listener continues to
attempt to connect to the stack until either it succeeds or is terminated by
the operator. The value of nnn can range from 0 - 999. The default setting
is 15 seconds. The following table shows a summary of the listener's action
that is based on the combination of the RTYTIME value and the state of
the listener's TCP stack. This parameter is optional.

Table 12. Listener action based on RTYTIME and stack state

Listener RTYTIME TCP down TCP up

Initially started 0 Listener ends Listener initializes

>0 Listener waits

Previously active 0 Listener ends

>0 Listener waits

SECEXIT
The name of the user written security exit that is used by the listener. The
default is no security exit. The listener uses the EXEC CICS LINK
command to give control to the security exit. A check is made to ensure the
specified security exit program is defined to CICS and enabled for use
when the listener is started by the EZAO Operator transaction.

TRANID=EZAL|xxx
The transaction name for the listener. The default is EZAL.

Setting Up / Configuring CICS Listener Support

450 z/VSE V5R2 TCP/IP Support

TRANTRN=YES|NO
(Standard CICS Listener only) YES indicates that the translation of the user
data is based on the character format of the transaction code. That is, with
YES specified for TRANTRN, the user data is translated if and only if
TRANUSR is YES and the transaction code is not uppercase EBCDIC. If
NO is specified for TRANTRN, the user data is translated if and only if
TRANUSR is YES. The default value for TRANTRN is YES.

Note: Regardless of how TRANTRN is specified, translation of the
transaction code occurs only if the first character is not uppercase EBCDIC.

TRANUSR=YES|NO
(Standard CICS Listener only) NO indicates that the user data from the
Transaction Initial Message is not translated from ASCII to EBCDIC. YES
indicates that the user data is translated depending on TRANTRN and
character format of the transaction code as shown in Table 13. The default
for TRANUSR is YES.

Note: Previous implementations functioned as if TRANTRN and
TRANUSR were both set to YES. Normally, data on the Internet is ASCII
and should be translated. The exceptions are data coming from an EBCDIC
client or binary data in the user fields. In those cases, you should set these
values accordingly. If you are operating in a mixed environment, use
multiple listeners on multiple ports.

Table 13. Conditions for Translation of Tranid and User Data

TRANTRN TRANUSR Tranid format
Translate
tranid?

Translate user
data?

YES YES EBCDIC NO NO

YES NO EBCDIC NO NO

NO YES EBCDIC NO YES

NO NO EBCDIC NO NO

YES YES ASCII YES YES

YES NO ASCII YES NO

NO YES ASCII YES YES

NO NO ASCII YES NO

FINAL
Indicates the end of the generation. There are no subparameters.

Customizing the Configuration Dataset
There is a CICS object for each CICS that uses the CICS Listener Support and is
controlled by the Configuration File. The CICS object is identified by the APPLID
of the CICS it references.

There is a Listener object for each Listener defined for a CICS. It is possible that a
CICS does not have a Listener but this is not common practice. A CICS can have
multiple listeners which are either multiple instances of the supplied Listener with
different specifications, multiple user-written listeners or some combination.

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 451

Configuration Transaction (EZAC)

The EZAC transaction is a panel-driven interface that lets you add, delete, or
modify the Configuration file. The following table lists and describes the functions
supported by the EZAC transaction.

Command Object Function

“ALTER Function” CICS/Listener Modifies the attributes of an existing
resource definition.

“COPY Function” on
page 456

CICS/Listener v CICS - Copies the CICS object and its
associated listeners to create another
CICS object. COPY will fail if the new
CICS object already exists.

v Listener - Copies the Listener object to
create another Listener object. COPY will
fail if the new Listener object already
exists.

“CONVERT
Function” on page
458

Listener Converts from a Standard Listener to an
Enhanced Listener and vice versa.

“DEFINE Function”
on page 459

CICS/Listener Create a new resource definition.

“DELETE Function”
on page 463

CICS/Listener v CICS - Deletes the CICS object and all of
its associated listeners.

v Listener - Deletes the Listener object.

“DISPLAY Function”
on page 464

CICS/Listener Shows the parameters specified for the
CICS/Listener object.

“RENAME Function”
on page 467

CICS/Listener Performs a COPY followed by a DELETE of
the original object.

If you enter EZAC, the following screen is displayed:

EZAC APPLID=DBDCCICS
ENTER ONE OF THE FOLLOWING
ALter
Convert
COpy
DEFine
DELete
DISplay
REName

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

ALTER Function
The ALTER function is used to change CICS objects, their Listener objects, or both.

Setting Up / Configuring CICS Listener Support

452 z/VSE V5R2 TCP/IP Support

If you specify ALter on the EZAC Initial Screen or enter EZAC AL on a blank
screen, the following screen is displayed:

EZAC,ALTER, APPLID=DBDCCICS

Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Fast path: You can shortcut this by entering either EZAC ALTER CICS or EZAC
ALTER LISTENER.

ALTER CICS

For alteration of a CICS object, the following screen is displayed:

EZAC,ALTER,CICS APPLID=DBDCCICS
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 12 CNCL

After the APPLID is entered, the following screen is displayed.

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 453

EZAC,ALTER,CICS APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> XXXXXXXX APPLID of CICS System
TCPADDR ===> xxxxxxxx Name of TCP Address Space
CACHMIN ===> xxx Minimum Refresh Time for Cache
CACHMAX ===> xxx Maximum Refresh Time for Cache
CACHRES ===> xxx Maximum number of Resolvers
ERRORTD ===> xxxx TD Queue for Error Messages
SMSGSUP ===> xxx Suppress Task Started Messages
PLTSDI ===> xxx CICS PLT Shutdown Immediately

Press enter to confirm function function
or PF12 to make more changes

PF 3 END 12 CNCL

The system requests a confirmation of the values displayed. After the changes are
confirmed, the changed values are in effect for the next initialization of the CICS
sockets interface.

ALTER LISTENER

For alteration of a Listener, the following screen is displayed:

EZAC,ALTER, APPLID=DBDCCICS
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener

APPLID=DBDCCICS

PF 3 END 12 CNCL

After the names are entered, the following screen is displayed:

Note: Screen 1 for the Enhanced Listener is similar to screen 1 for the Standard
Listener.

Setting Up / Configuring CICS Listener Support

454 z/VSE V5R2 TCP/IP Support

EZAC,ALTER,LISTENER (standard listener. screen 1 of 2) APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> xxxxxxxx APPLID of CICS System
TRANID ===> xxxxx Transaction Name of Listener
PORT ===> xxxxx Port Number of Listener
AF ===> xxxxx Listener Address Family
IMMEDIATE ===> xxx Immediate Startup Yes|No
BACKLOG ===> xxx Backlog Value for Listener
NUMSOCK ===> xxx Number of Sockets in Listener
ACCTIME ===> xxx Timeout Value for ACCEPT
GIVTIME ===> xxx Timeout Value for GIVESOCKET
REATIME ===> xxx Timeout Value for READ
RTYTIME ===> xxx Stack Connection Retry Time

Verify parameters, press PF8 to go to screen 2

PF 3 END 8 NEXT 12 CNCL

The following screen 2 is displayed for the Standard Listener:

EZAC,ALTER,LISTENER (standard listener. screen 2 of 2) APPLID = xxxxxxxx

Overtype to Enter

MINMSGL ===> xxx Minimum Message Length
TRANTRN ===> xxx Translate TRNID Yes|No
TRANUSR ===> xxx Translate User Data Yes|No
SECEXIT ===> xxxxxxxx Name of Security Exit

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

The following screen 2 is displayed for the Enhanced Listener:

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 455

EZAC,ALTER,LISTENER (enhanced listener. screen 2 of 2) APPLID = xxxxxxxx

Overtype to Enter

CSTRANid ===> XXXX Child Server Transaction Name
CSSTTYPe ===> xx Startup Method (KC|IC|TD)
CSDELAY ===> xxxxxx Delay Interval (hhmmss)
MSGLENgth ===> xxx Message Length (0-999)
MSGFORMat ===> xxxxx Enter ASCII|EBCDIC
USEREXIT ===> Name of User/Security exit

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

The system requests a confirmation of the values displayed. After the changes are
confirmed, the changed values are in effect for the next initialization of the CICS
sockets interface.

COPY Function
The COPY function is used to copy an object into a new object.

If you specify COpy on the EZAC initial Screen or enter EZAC CO on a blank
screen, the following screen is displayed:

EZAC,COPY, APPLID=DBDCCICS

Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Fast path: You can shortcut this by entering either EZAC COPY CICS or EZAC
COPY LISTENER.

Setting Up / Configuring CICS Listener Support

456 z/VSE V5R2 TCP/IP Support

COPY CICS

If you specify CICS on the previous screen, the following screen is displayed:

EZAC,COPY, APPLID=DBDCCICS
ENTER ALL FIELDS
SCICS ===> APPLID of Source CICS
TCICS ===> APPLID of Target CICS

PF 3 END 9 MSG 12 CNCL

After the APPLIDs of the source CICS object and the target CICS object are
entered, confirmation is requested. When confirmation is entered, the copy is
performed.

COPY LISTENER

If you specify COPY LISTENER, the following screen is displayed:

EZAC,COPY, APPLID=DBDCCICS
ENTER ALL FIELDS
SCICS ===> APPLID of Source CICS
SLISTener ===> Transaction Name of Source Listener
TCICS ===> APPLID of Target CICS
TLISTener ===> Transaction Name of Target Listener

PF 3 END 12 CNCL

After the APPLIDs of the source and target CICS objects and the names of the
source and target listeners are entered, confirmation is requested. When the
confirmation is entered, the copy is performed.

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 457

CONVERT Function
The CONVERT function is used to convert a Standard Listener to an Enhanced
Listener.

If you specify CONVERT on the EZAC initial screen or enter EZAC CONVERT on
a blank screen, the following screen is displayed:

EZAC,CONVERT,LISTENER APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> xxxxxxxx APPLID of CICS System

TRANID ===> xxxx Transaction Name of Listener

Format ===> xxxxxxxx Enter STANDARD|ENHANCED

PF 3 END 12 CNCL

After the names are entered, the following screen is displayed:

Note: Screen 1 for the Enhanced Listener is similar to screen 1 for the Standard
Listener.

EZAC,CONVERT,LISTENER (standard listener. screen 1 of 2) APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> xxxxxxxx APPLID of CICS System
TRANID ===> xxxxx Transaction Name of Listener
PORT ===> xxxxx Port Number of Listener
AF ===> xxxxx Listener Address Family
IMMEDIATE ===> xxx Immediate Startup Yes|No
BACKLOG ===> xxx Backlog Value for Listener
NUMSOCK ===> xxx Number of Sockets in Listener
ACCTIME ===> xxx Timeout Value for ACCEPT
GIVTIME ===> xxx Timeout Value for GIVESOCKET
REATIME ===> xxx Timeout Value for READ
RTYTIME ===> xxx Stack Connection Retry Time

Verify parameters, press PF8 to go to screen 2

PF 3 END 8 NEXT 12 CNCL

The following screen 2 is displayed for the Standard Listener:

Setting Up / Configuring CICS Listener Support

458 z/VSE V5R2 TCP/IP Support

EZAC,CONVERT,LISTENER (standard listener. screen 2 of 2) APPLID = xxxxxxxx

Overtype to Enter

MINMSGL ===> xxx Minimum Message Length
TRANTRN ===> xxx Translate TRNID Yes|No
TRANUSR ===> xxx Translate User Data Yes|No
SECEXIT ===> xxxxxxxx Name of Security Exit

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

The following screen 2 is displayed for the Enhanced Listener:

EZAC,CONVERT,LISTENER (enhanced listener. screen 2 of 2) APPLID = xxxxxxxx

Overtype to Enter

CSTRANid ===> XXXX Child Server Transaction Name
CSSTTYPe ===> xx Startup Method (KC|IC|TD)
CSDELAY ===> xxxxxx Delay Interval (hhmmss)
MSGLENgth ===> xxx Message Length (0-999)
MSGFORMat ===> xxxxx Enter ASCII|EBCDIC
USEREXIT ===> Name of User/Security exit

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

After the definition is entered, confirmation is requested. When confirmation is
entered, the object is created on the configuration file.

DEFINE Function
The DEFINE function is used to create CICS objects and their Listener objects.

If you specify DEFine on the EZAC initial screen or enter EZAC DEF on a blank
screen, the following screen is displayed:

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 459

EZAC,DEFINE, APPLID=DBDCCICS

Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Fast path: You can shortcut this by entering either EZAC DEFINE CICS or EZAC
DEFINE LISTENER.

DEFINE CICS

For definition of a CICS object, the following screen is displayed:

EZAC,DEFINE,CICS APPLID=DBDCCICS
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 12 CNCL

After the APPLID is entered, the following screen is displayed.

Setting Up / Configuring CICS Listener Support

460 z/VSE V5R2 TCP/IP Support

EZAC,DEFINE,CICS APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> XXXXXXXX APPLID of CICS System
TCPADDR ===> xxxxxxxx Name of TCP Address Space
CACHMIN ===> xxx Minimum Refresh Time for Cache
CACHMAX ===> xxx Maximum Refresh Time for Cache
CACHRES ===> xxx Maximum number of Resolvers
ERRORTD ===> xxxx TD Queue for Error Messages
SMSGSUP ===> xxx Suppress Task Started Messages
PLTSDI ===> xxx CICS PLT Shutdown Immediately

Press enter to confirm function function
or PF12 to make more changes

PF 3 END 12 CNCL

After the definition is entered, confirmation is requested. When confirmation is
entered, the object is created on the configuration file.

DEFINE LISTENER

For definition of a Listener, the following screen is displayed:

EZAC,DEFINE,LISTENER APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> xxxxxxxx APPLID of CICS System

TRANID ===> xxxx Transaction Name of Listener

Format ===> xxxxxxxx Enter STANDARD|ENHANCED

PF 3 END 12 CNCL

After the names are entered, the following screen is displayed:

Note: Screen 1 for the Enhanced Listener is similar to screen 1 for the Standard
Listener.

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 461

EZAC,DEFINE,LISTENER (standard listener. screen 1 of 2) APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> xxxxxxxx APPLID of CICS System
TRANID ===> xxxxx Transaction Name of Listener
PORT ===> xxxxx Port Number of Listener
AF ===> xxxxx Listener Address Family
IMMEDIATE ===> xxx Immediate Startup Yes|No
BACKLOG ===> xxx Backlog Value for Listener
NUMSOCK ===> xxx Number of Sockets in Listener
ACCTIME ===> xxx Timeout Value for ACCEPT
GIVTIME ===> xxx Timeout Value for GIVESOCKET
REATIME ===> xxx Timeout Value for READ
RTYTIME ===> xxx Stack Connection Retry Time

Verify parameters, press PF8 to go to screen 2

PF 3 END 8 NEXT 12 CNCL

The following screen 2 is displayed for the Standard Listener:

EZAC,DEFINE,LISTENER (standard listener. screen 2 of 2) APPLID = xxxxxxxx

Overtype to Enter

MINMSGL ===> xxx Minimum Message Length
TRANTRN ===> xxx Translate TRNID Yes|No
TRANUSR ===> xxx Translate User Data Yes|No
SECEXIT ===> xxxxxxxx Name of Security Exit

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

The following screen 2 is displayed for the Enhanced Listener:

Setting Up / Configuring CICS Listener Support

462 z/VSE V5R2 TCP/IP Support

EZAC,DEFINE,LISTENER (enhanced listener. screen 2 of 2) APPLID = xxxxxxxx

Overtype to Enter

CSTRANid ===> XXXX Child Server Transaction Name
CSSTTYPe ===> xx Startup Method (KC|IC|TD)
CSDELAY ===> xxxxxx Delay Interval (hhmmss)
MSGLENgth ===> xxx Message Length (0-999)
MSGFORMat ===> xxxxx Enter ASCII|EBCDIC
USEREXIT ===> Name of User/Security exit

Verify parameters, press PF7 to go back to screen 1
or ENTER if finished making changes

PF 3 END 7 PREV 12 CNCL

After the definition is entered, confirmation is requested. When confirmation is
entered, the object is created on the configuration file.

DELETE Function
The DELETE function is used to delete a CICS object or a Listener object.

Deleting a CICS object deletes all Listener objects within that CICS object. If you
specify DELete on the EZAC initial screen or enter EZAC DEL on a blank screen,
the following screen is displayed:

EZAC,DELETE, APPLID=DBDCCICS

Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 463

DELETE CICS

If you specify DELETE CICS, the following screen is displayed:

EZAC,DELETE,CICS APPLID=DBDCCICS
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 12 CNCL

After the APPLID is entered, confirmation is requested. When the confirmation is
entered, the CICS object is deleted.

DELETE LISTENER

If you specify DELETE LISTENER, the following screen is displayed:

EZAC,DELETE,LISTENER APPLID=DBDCCICS
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener

PF 3 END 12 CNCL

After the APPLID and listener name are entered, confirmation is requested. When
confirmation is entered, the Listener object is deleted

DISPLAY Function
The DISPLAY function is used to display the specification of an object.

Setting Up / Configuring CICS Listener Support

464 z/VSE V5R2 TCP/IP Support

If you specify DISplay on the initial EZAC screen or enter EZAC DIS on a blank
screen, the following screen is displayed:

EZAC,DISPLAY, APPLID=DBDCCICS

Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Fast path: You can shortcut this by entering either EZAC DISPLAY CICS or EZAC
DISPLAY LISTENER.

DISPLAY CICS

If you specify DISPLAY CICS, the following screen is displayed:

EZAC,DISPLAY, APPLID=DBDCCICS
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System

PF 3 END 12 CNCL

After the APPLID is entered, the following screen is displayed:

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 465

EZAC,DISplay,CICS APPLID = xxxxxxxx

OVERTYPE TO ENTER

APPLID ===> XXXXXXXX APPLID of CICS System
TCPADDR ===> xxxxxxxx Name of TCP Address Space
CACHMIN ===> xxx Minimum Refresh Time for Cache
CACHMAX ===> xxx Maximum Refresh Time for Cache
CACHRES ===> xxx Maximum number of Resolvers
ERRORTD ===> xxxx TD Queue for Error Messages
SMSGSUP ===> xxx Suppress Task Started Messages
PLTSDI ===> xxx CICS PLT Shutdown Immediately

Press ENTER or PF3 to exit

PF 3 END 12 CNCL

DISPLAY LISTENER

If you specify DISPLAY LISTENER, the following screen is displayed:

EZAC,DISPLAY, APPLID=DBDCCICS
ENTER ALL FIELDS

APPLID ===> APPLID of CICS System
NAME ===> Transaction Name of Listener

PF 3 END 12 CNCL

After the APPLID and name are entered, the following screen is displayed

Setting Up / Configuring CICS Listener Support

466 z/VSE V5R2 TCP/IP Support

EZAC,DISPLAY,LISTENER APPLID=DBDCCICS

APPLID ===> APPLID of CICS System
TRanname ===> Transaction Name of Listener
POrt ===> Port Number of Listener
IMMediate ===> Yes Immediate Startup Yes|No
BAcklog ===> 020 Backlog Value for Listener
NUMsock ===> 50 Number of Sockets in Listener
MINmsgl ===> 04 Minimum Message Length
ACCTime ===> 60 Timeout Value for Accept
GIVTime ===> 60 Timeout Value for Givesocket
REATime ===> 10 Timeout Value for Read
FASTread ===> Yes Read immediately Yes|No
TRANTrn ===> Yes Translate Trans. Name Yes|No
TRANUsr ===> Yes Translate User Data Yes|No
SECexit ===> Security Exit Name

PF 3 END 12 CNCL

RENAME Function
The RENAME function is used to rename a CICS or Listener object.

It consists of a COPY followed by a DELETE of the source object. For a CICS
object, the object and all of its associated listeners are renamed. For a listener
object, only that listener is renamed.

If you specify REName on the initial EZAC screen or enter EZAC REN on a blank
screen, the following screen is displayed:

EZAC,RENAME, APPLID=DBDCCICS

Enter One of the Following

CICS
LISTENER

PF 3 END 12 CNCL

Fast path: You can shortcut this by entering either EZAC RENAME CICS or EZAC
RENAME LISTENER.

Setting Up / Configuring CICS Listener Support

Chapter 16. Setting Up and Configuring CICS Listener Support 467

RENAME CICS

If you specify CICS on the previous screen, the following screen is displayed:

EZAC,RENAME, APPLID=DBDCCICS
ENTER ALL FIELDS

SCICS ===> APPLID of Source CICS
TCICS ===> APPLID of Target CICS

PF 3 END 9 MSG 12 CNCL

After the APPLIDs of the source CICS object and the target CICS object are
entered, confirmation is requested. When confirmation is entered, the rename is
performed.

RENAME LISTENER

If you specify RENAME LISTENER, the following screen is displayed:

EZAC,RENAME, APPLID=DBDCCICS
ENTER ALL FIELDS

SCICS ===> APPLID of Source CICS
SLISTener ===> Transaction Name of Source Listener
TCICS ===> APPLID of Target CICS
TLISTener ===> Transaction Name of Target Listener

PF 3 END 12 CNCL

After the APPLIDs of the source and target CICS objects and the names of the
source and target listeners are entered, confirmation is requested. When the
confirmation is entered, the rename is performed.

Setting Up / Configuring CICS Listener Support

468 z/VSE V5R2 TCP/IP Support

Chapter 17. Configuring the CICS Domain Name Server Cache

Overview of the Domain Name Server Cache

The Domain Name Server (DNS) is like a telephone book that contains a person's
name, address, and telephone number. The name server maps a host name to an IP
address, or an IP address to a host name. For each host, the name server can
contain IP addresses, nicknames, mailing information, and available well-known
services (for example, SMTP, FTP, or Telnet).

Translating host names into IP addresses is just one way of using the DNS. Other
types of information related to hosts may also be stored and queried. The different
possible types of information are defined via input data to the name server in the
resource records.

While the CICS Domain Name Server Cache function is optional, it is useful in a
highly active CICS client environment. It combines the gethostbyname() call
supported in TCP/IP for VSE and a cache that saves results from the
gethostbyname() for future reference. If your system gets repeated requests for the
same set of domain names, using the DNS will improve performance significantly.

Function Components
The function consists of three parts.
v A VSAM file which is used for the cache.
v A macro, EZACICR which is used to initialize the cache file.
v A CICS application program, EZACIC25, which is invoked by the CICS

application in place of the gethostbyname socket call.

VSAM Cache File

The cache file is a VSAM KSDS (Key Sequenced Data Set) with a key of the host
name padded to the right with binary zeros. The cache records contain a
compressed version of the hostent structure returned by the domain name server
plus a time of last refresh field. When a record is retrieved, EZACIC25 determines
if it is usable based on the difference between the current time and the time of last
refresh.

EZACICR macro

The EZACICR macro builds an initialization module for the cache file, because the
cache file must start with at least one record to permit updates by the EZACIC25
module. To optimize performance, you can preload 'dummy' records for the hosts
names which you expect to be used frequently. This results in a more compact file
and minimizes the I/O required to use the cache. If you do not specify at least one
dummy record, the macro will build a single record of binary zeros. See “Step 1:
Create the Initialization Module” on page 471.

EZACIC25 Module

This module is a normal CICS application program which is invoked by an EXEC
CICS LINK command. The COMMAREA passes information between the invoking

© Copyright IBM Corp. 1997, 2014 469

CICS program and the DNS Module. If domain name resolves successfully,
EZACIC25 obtains storage from CICS and builds a hostent structure in that
storage. When finished with the hostent structure, release this storage using the
EXEC CICS FREEMAIN command.

The EZACIC25 module uses four parameters plus the information passed by the
invoking application to manage the cache. These parameters are as follows:

Error Destination
The Transient Data destination to which error messages are sent.

Minimum Refresh Time
The minimum time in minutes between refreshes of a cache record. If a
cache record is 'younger' than this time, it will be used. This value is set to
15 (minutes).

Maximum Refresh Time
The maximum time in minutes between refreshes of a cache record. If a
cache record is 'older' than this time, it will be refreshed. This value is set
to 30 (minutes).

Maximum Resolver Requests
The maximum number of concurrent requests to the resolver. It is set at 10.
See “How the DNS Cache Handles Requests.”

How the DNS Cache Handles Requests
When a request is received where cache retrieval is specified, the following takes
place:
1. Attempt to retrieve this entry from the cache. If not successful, issue

gethostbyname unless request specifies cache only.
2. If cache retrieval is successful, calculate the 'age' of the record (the difference

between the current time and the time this record was created or refreshed).
v If the age is not greater than minimum cache refresh, use the cache

information and build the Hostent structure for the requestor. Then return to
the requestor.

v If the age is greater than the maximum cache refresh, go issue the
gethostbyname call and refresh the cache record with the results.

v If the age is between the minimum and maximum cache refresh values, do
the following:
a. Calculate the difference between the maximum and minimum cache

refresh times and divide it by the maximum number of concurrent
resolver requests. The result is called the time increment.

b. Multiply the time increment by the number of currently active resolver
requests. Add this time to the minimum refresh time giving the adjusted
refresh time.

c. If the age of the record is less than the adjusted refresh time, use the
cache record.

d. If the age of the record is greater than the adjusted refresh time, issue the
gethostbyname call and refresh the cache record with the results.

v If the gethostbyname is issued and is successful, the cache is updated and
the update time for the entry is changed to the current time.

Configuring the CICS Domain Name Server Cache

470 z/VSE V5R2 TCP/IP Support

Using the DNS Cache
Three steps are needed to use the DNS cache.
1. Create the initialization module, which in turn defines and initializes the file

and the EZACIC25 module. See “Step 1: Create the Initialization Module.”
2. Define the cache files to CICS. See “Step 2: Define the Cache File to CICS” on

page 473.
3. Use EZACIC25 to replace gethostbyname calls in CICS application modules.

See “Step 3: Execute EZACIC25” on page 473.

Step 1: Create the Initialization Module
The initialization module is created using the EZACICR macro. A minimum of two
invocations of the macro are coded and assembled and the assembly produces the
module. An example follows:

EZACICR TYPE=INITIAL
EZACICR TYPE=FINAL

This produces an initialization module which creates one record of binary zeros. If
you wish to preload the file with dummy records for frequently referenced domain
names, it would look like this:

EZACICR TYPE=INITIAL
EZACICR TYPE=RECORD,NAME=HOSTA
EZACICR TYPE=RECORD,NAME=HOSTB
EZACICR TYPE=RECORD,NAME=HOSTC
EZACICR TYPE=FINAL

where HOSTA, HOSTB, AND HOSTC are the host names you want in the dummy
records. The names can be specified in any order.

Parameters

The specifications for the EZACICR macro are as follows:

TYPE There are three acceptable values:

INITIAL
Indicates the beginning of the generation input. This value should
only appear once and should be the first entry in the input stream.

RECORD
Indicates a dummy record the user wants to generate. There can be
from 0 to 4096 dummy records generated and each of them must
have a unique name. Generating dummy records for frequently
used host names will improve the performance of the cache file. A
TYPE=INITIAL must precede a TYPE=RECORD statement.

FINAL
Indicates the end of the generation input. This value should only
appear once and should be the last entry in the input stream. A
TYPE=INITIAL must precede a TYPE=FINAL.

AVGREC
The length of the average cache record. This value is specified on the
TYPE=INITIAL macro and has a default value of 500. It is recommended
that you use the default value until you have adequate statistics to
determine a better value. This parameter is the same as the first
sub-parameter in the RECORDSIZE parameter of the IDCAMS DEFINE

Configuring the CICS Domain Name Server Cache

Chapter 17. Configuring the CICS Domain Name Server Cache 471

statement. Accurate definition of this parameter along with use of dummy
records will minimize control interval and control area splits in the cache
file.

NAME
Specifies the host name for a dummy record. The name must be from 1 to
255 bytes long. The NAME operand is required for TYPE=RECORD
entries.

Within z/VSE the DNS cache file is predefined, but empty. It is defined as VSAM
cluster VSE.EZACICS.CACHE within catalog VSESP.USER.CATALOG. Its filename
is EZACACH.For a minimum initialization of this file, the following JCL may be
used:
// JOB CACHCRE
// EXEC ASSEMBLY,GO

EZACICR TYPE=INITIAL
EZACICR TYPE=FINAL
END

/*
/&

Be aware that file EZACACH must be closed when running this job.

Once the cache file has been created, it has the following layout:

Host Name
A 255-byte character field specifying the host name. This field is the key to
the file.

Record Type
A 1-byte binary field specifying the record type. The value is X'00000001'.

Last Refresh Time
A 4-byte field specifying the last refresh time. It is expressed in seconds
since 0000 hours on January 1, 1990 and is derived by taking the ABSTIME
value obtained from an EXEC CICS ASKTIME and subtracting the value
for January 1, 1990.

Number of Alias Entries
A halfword binary field specifying the number of entries in the Alias array.

Offset to Alias Array List
A halfword binary field specifying the offset in the record to the Alias
array. The Alias array consists of alias names each followed by a x '00'
byte.

Number of INET Addresses
A halfword binary field specifying the number of INET addresses in the
record..

INET Addresses
One or more fullword binary fields specifying INET addresses returned
from gethostbyname().

Alias Names
An array of variable length character fields specifying the alias name(s)
returned from the domain name server cache. These fields are delimited by
a byte of binary zeros. Each of these fields have a maximum length of 255
bytes.

Configuring the CICS Domain Name Server Cache

472 z/VSE V5R2 TCP/IP Support

Step 2: Define the Cache File to CICS
All CICS definitions required to add this function to a CICS system are already
provided within z/VSE.

This includes the definitions for file EZACACH as well as for program EZACIC25.

Step 3: Execute EZACIC25
EZACIC25 replaces the gethostbyname socket call. It is invoked by a EXEC CICS
LINK PROGRAM (EZACIC25) COMMAREA(com-area) where com-area is defined
as follows:

Return Code
A fullword binary variable specifying the results of the function:

-1 ERRNO value returned from gethostbyname() call. Check ERRNO
field.

0 Host name could not be resolved either within the cache or by use
of the gethostbyname call.

1 Host name was resolved using cache.

2 Host name was resolved using gethostbyname call.

ERRNO
A fullword binary field specifying the ERRNO returned from the
GETHOSTBYNAME call.

HOSTENT Address
The address of the returned HOSTENT structure.

Command
A 4-byte character field specifying the requested operation.

GHBN
gethostbyname. This is the only function supported.

Namelen
A fullword binary variable specifying the actual length of the host name
for the query.

Query_Type
A 1-byte character field specifying the type of query:

0 Attempt query using cache. If unsuccessful, attempt using
gethostbyname() call.

1 Attempt query using gethostbyname() call. This forces a cache
refresh for this entry.

2 Attempt query using cache only.

Note: If the cache contains a matching record, the contents of that record
will be returned regardless of its age.

Name A 256-byte character variable specifying the host name for the query.

Configuring the CICS Domain Name Server Cache

Chapter 17. Configuring the CICS Domain Name Server Cache 473

HOSTENT Structure
The returned HOSTENT structure is shown in Figure 42.

Hostname

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

Address of

X’00000002’

X’00000004’

X’00000000’

X’00000000’

Name X’00’

Alias#1 X’00’

Alias#2 X’00’

Alias#3 X’00’

Hostent

INET Addr#1

INET Addr#2

INET Addr#3

Figure 42. The DNS Hostent

Configuring the CICS Domain Name Server Cache

474 z/VSE V5R2 TCP/IP Support

Chapter 18. Starting and Stopping the CICS Listener Support

Overview

This section explains how to start and stop (enable and disable) the CICS Listener
Support. It describes:
v You can customize your system so that the CICS Listener Support starts and

stops automatically. See “Starting/Stopping CICS Listener Support
Automatically.”

v An operator can also start and stop CICS Listener Support manually after CICS
has been initialized. See “Starting/Stopping CICS Manually.”

v You can also start and stop CICS Listener Support from a CICS application
program. See “Starting/Stopping CICS Listener Support with Program Link” on
page 480.

This section describes all three methods.

Note: The listener interface must be started first before any listener is started.
Listener transactions should be started only via transaction EZAO or via program
EZACIC20.

Starting/Stopping CICS Listener Support Automatically
You can start and stop the CICS Listener Support automatically by modifying the
CICS Program List Table (PLT).
v Startup (PLTPI)

To start the CICS Listener Support automatically, make the following entry in
the PLTPI after the DFHDELIM entry:
DFHPLT TYPE=ENTRY, PROGRAM=EZACIC20

v Shutdown (PLTSD)
To shut down the CICS Listener Support automatically, make the following entry
in the PLTSD before the DFHDELIM entry:
DFHPLT TYPE=ENTRY, PROGRAM=EZACIC20

Starting/Stopping CICS Manually
You can start CICS Listener Support manually by using the EZAO transaction. This
operational transaction has four functions:

CICS Listener Support Startup
Starts the CICS Listener Support in a CICS address space and starts all
listeners which are identified for immediate start.

Note: The EZAO transaction must be running on the CICS where you
want to start the CICS Listener Support. You may not start a CICS Listener
Support from a different CICS.

CICS Listener Support Shutdown
Stops the interface in a CICS address space.

Listener Startup
Starts a Listener in a CICS address space.

© Copyright IBM Corp. 1997, 2014 475

Listener Shutdown
Stops a Listener in a CICS address space.

If you enter EZAO, the following screen displays.

EZAO APPLID=DBDCCICS
ENTER ONE OF THE FOLLOWING
STArt
STOp

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

START Function
The START function starts either the CICS Listener Support or a single Listener.

When the CICS Listener Support is started, all Listeners marked for immediate
start will be started as well. If you enter STA on the previous screen or enter EZAO
STA on a blank screen, the following screen displays.

EZAO START APPLID=DBDCCICS
ENTER ONE OF THE FOLLOWING

CICS ===> ... Enter Yes|No
LIStener ===> ... Enter Yes|No

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Starting and Stopping the CICS Listener Support

476 z/VSE V5R2 TCP/IP Support

START CICS Listener Support

If you enter EZAO START CICS, the following screen displays.

EZAO START CICS APPLID=DBDCCICS

CICS ===> APPLID APPLID of CICS

RESULT MESSAGE APPEARS HERE

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

START A LISTENER

If you enter EZAO START LISTENER, the following screen displays.

EZAO START LISTENER APPLID=DBDCCICS
CICS ===> APPLID APPLID of CICS
NAME ===> Enter Name of Listener

PF 3 END 9 MSG 12 CNCL

After you enter the listener name, the listener is started. The following screen
displays; the results appear in the message area.

Starting and Stopping the CICS Listener Support

Chapter 18. Starting and Stopping the CICS Listener Support 477

EZAO START LISTENER APPLID=DBDCCICS

CICS ===> APPLID APPLID of CICS system
NAME ===> XXXX Transaction Name of Listener

RESULT MESSAGE APPEARS HERE

PF 3 END 9 MSG 12 CNCL

STOP Function
The STOP function is used to stop either the CICS Listener Support or a single
Listener within the interface.

If the CICS Listener Support is stopped, all Listeners will be stopped before the
CICS Listener Support is stopped. If you enter STO on the previous screen or enter
EZAO STO on a blank screen, the following screen will be displayed:

EZAO STOP APPLID=DBDCCICS
ENTER ONE OF THE FOLLOWING

CICS ===> ... Enter Yes|No
LIStener ===> ... Enter Yes|No

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Starting and Stopping the CICS Listener Support

478 z/VSE V5R2 TCP/IP Support

STOP CICS Listener Support

If you specify EZAO STOP CICS, the following screen is displayed

EZAO STOP CICS APPLID=DBDCCICS

CICS ===> ... APPLID of CICS
IMMEDIATE ===> ... Enter Yes|No

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

Two options are available to stop CICS Listener Support:

IMMEDIATE=NO
This should be used in most cases, because it causes the controlled
termination of the CICS Listener Support. It has the following effects on
applications using this API:
v The Listener transaction (EZAL) quiesces after a maximum wait of 3

minutes provided that no other socket applications are active or
suspended.

v If there are active or suspended sockets applications, the Listener will
allow them to continue processing. When all of these tasks are
completed, then the Listener terminates.

v New listeners cannot be started.

IMMEDIATE=YES
This option is reserved for unusual situations and causes the abrupt
termination of the CICS Listener Support. It has the following effect on
applications using this API:
v It force purges the master server (Listener) EZAL.

After you choose an option, the stop will be attempted. The screen re-displays; the
results appear in the message line.

Starting and Stopping the CICS Listener Support

Chapter 18. Starting and Stopping the CICS Listener Support 479

STOP A LISTENER

If you specify STOP LISTENER, the following screen displays.

EZAO STOP LISTENER APPLID=DBDCCICS
CICS ===> DBDCCICS APPLID of this CICS
LIStener ===> Enter Name of Listener

PF 1 HELP 3 END 6 CRSR 9 MSG 12 CNCL

If you enter the listener named, that listener will be stopped. The screen
re-displays; the results appear in the message line.

Starting/Stopping CICS Listener Support with Program Link
You can start or stop the CICS TCP/IP Listener Support by issuing an EXEC CICS
LINK to program EZACIC20. Make sure you include the following steps in the
LINKing program:
1. Define the COMMAREA for EZACIC20. This can be done by including the

following instruction within your DFHEISTG definition:
EZACICA AREA=P20,TYPE=CSECT

The length of the area is equated to P20PARML and the name of the structure
is P20PARMS.

2. Initialize the COMMAREA values as follows:

P20TYPE

I Initialization

T Immediate Termination

D Deferred Termination

P20OBJ

C CICS Listener Support

L Listener

P20LIST
Name of listener if this is listener initialization/termination.

3. Issue the EXEC CICS LINK to program EZACIC20. EZACIC20 will not return
until the function is complete.

4. Check the P20RET field for the response from EZACIC20.

Starting and Stopping the CICS Listener Support

480 z/VSE V5R2 TCP/IP Support

Note: The following user abend codes might be issued by EZACIC20:
v E20L is issued if the CICS Listener Support is not in startup or termination and

no COMMAREA was provided.
v E20T is issued if CICS Listener Support is not active.

Starting and Stopping the CICS Listener Support

Chapter 18. Starting and Stopping the CICS Listener Support 481

Starting and Stopping the CICS Listener Support

482 z/VSE V5R2 TCP/IP Support

Chapter 19. Writing Your Own Listener

Basic Requirements

The CICS Listener Support provides a structure which supports up to 255 listeners.
These listeners can be multiple copies of the IBM-supplied listener, user-written
listeners, or a combination of the two. You can choose to run without a listener as
well.

For each listener (IBM-Supplied or user-written), there are certain basic
requirements that enable the interface to manage the listeners correctly; particularly
during initialization and termination. They are:
v Each listener instance must have a unique transaction name, even if you are

running multiple copies of the same listener.
v Each listener should have an entry in the CICS Listener Configuration Dataset.

Even if you don't use automatic initiation for your listener, the lack of an entry
would prevent correct termination processing and could prevent CICS from
completing a normal shutdown.

For information on the IBM-supplied Listener, see “The Listener” on page 502.

Prerequisites

Some installations may require a customized, user-written listener. Writing your
own listener has the following prerequisites:
1. Determine what capability is required which is not supplied by the

IBM-supplied listener. Is this capability a part of the listener or a part of the
server?

2. Knowledge of the CICS-Assembler environment is required.
3. Knowledge of multithreading applications is required. A listener must be able

to perform multiple functions concurrently to achieve good performance.
4. Knowledge of the CICS Listener Interface is required.

Using IBM's Environmental Support
A user-written listener can use the environmental support supplied and used by
the IBM-Supplied Listener. To employ this support, the user-written listener must
do the following in addition to the requirements described above (a detailed
description of the referenced storage areas is given in Chapter 20, “External Data
Structures,” on page 487):
v The user-written listener must be written in Assembler.
v The RDO definitions for the listener transaction and program should be identical

to those for the IBM-supplied listener with the exception of the
transaction/program names.

v In the program, define an input area for configuration file records. If you are
going to read the configuration file using MOVE mode you can define the area
as by making the following entry in your DFHEISTG area:

EZACICA AREA=CONFIG,TYPE=CSECT

© Copyright IBM Corp. 1997, 2014 483

If you are going to read the configuration file using LOCATE mode, you can
define a DSECT for the area as follows:

EZACICA AREA=CONFIG,TYPE=DSECT

In either case, the length of the area is represented by the EQUATE label
CFGLEN. The name of the area/DSECT is CFG0000.

v The CICS TCP/IP Listener Support does not require any LE runtime
environment. Therefore, the listener program can be written as an assembler
main routine.

v In the program, define a DSECT for mapping the Global Work Area (GWA). This
is done by issuing the following macro:

EZACICA AREA=GWA,TYPE=DSECT

The name of the DSECT is GWA0000.
v In the program define a DSECT for mapping the Listener Control Area (LCA).

This is done by issuing the following macro:
EZACICA AREA=LCA,TYPE=DSECT

The name of the DSECT is LCA0000.
v Obtain address of the Global Work Area (GWA). This can be done using the

following CICS command:
EXEC CICS EXTRACT EXIT PROGRAM(EZACIC01) GASET(ptr) GALEN(len)

where ptr is a register and len is a halfword binary variable. The address of the
GWA is returned in ptr and the length of the GWA is returned in len.

v Read the configuration file during initialization of the listener. The configuration
file is identified as EZACONF in the CICS Configuration file. The record key for
the user-written listener is as follows:
– APPLID

An 8 byte character field set to the APPLID value for this CICS. This value
can be obtained from the field GWACAPPL in the GWA or using the
following CICS command:

EXEC CICS ASSIGN APPLID(applid)

where applid is an 8 byte character field.
– Record Type

A 1 byte character field set to the record type. It must have the value 'L'.
– Reserved Field

A 3 byte hex field set to binary zeros.
– Transaction

A 4 byte character field containing the transaction name for this listener. It
can be obtained from the EIBTRNID field in the Execute Interface Block.

The configuration record provides the information entered via either the
configuration macro or the EZAC transaction. The user-written listener may use
this information selectively but it is highly recommended it uses the port,
backlog and number of sockets data.

For shared files: If the user-written listener reads the configuration file, it must
first issue an EXEC CICS SET command to enable and open the file. When the

Writing Your Own Listener

484 z/VSE V5R2 TCP/IP Support

file operation is complete, the user-written listener must issue an EXEC CICS
SET command to disable and close the file. Failure to do so will result in file
errors in certain shared-file situations.

v The user-written listener should locate its Listener Control Area (LCA). The
LCAs are located contiguously in storage with the first one pointed to by the
GWALCAAD field in the GWA. The correct LCA has the transaction name of the
listener in the field LCATRAN.

v The user-written listener should monitor either the LCASTAT field in the LCA or
the GWATSTAT field in the GWA for shutdown status. If either field shows an
immediate shutdown in progress, the user-written listener should terminate by
issuing an EXEC CICS RETURN and allow the interface to clean up any socket
connections. If either field shows a deferred termination in progress, the
user-written listener should do the following:
1. Accept any pending connections and then close the passive (listen) socket.
2. Complete processing of any sockets involved in transaction initiation, i.e.

processing the GIVESOCKET command. When processing is complete, close
these sockets.

3. When all sockets are closed, issue an EXEC CICS RETURN.
v The user-written listener should avoid socket calls which imply blocks

dependent on external events such as ACCEPT or READ. These calls should be
preceded by a single SELECTEX call which waits on the ECB LCATECB in the
LCA. This ECB is posted when an immediate termination is detected and its
posting will cause the SELECTEX to complete with a RETCODE of 0 and an
ERRNO of 0. The program should check the ECB when the SELECTEX
completes in this way as this is identical to the way SELECTEX completes when
a timeout happens. The ECB may be checked by looking for a X'80' in the third
byte (post bit).
This SELECTEX should specify a timeout value. This provides the listener with a
way to periodically check for a deferred termination request. Without this, CICS
Listener Deferred Termination or CICS Deferred Termination cannot complete.

Writing Your Own Listener

Chapter 19. Writing Your Own Listener 485

Writing Your Own Listener

486 z/VSE V5R2 TCP/IP Support

Chapter 20. External Data Structures

External Data Structures

The data structures available for customer use are as follows:

Configuration Data Set Record Formats
DSECT/Structure Name

CFG0000

Length of Structure
CFGLEN

Macro Expansion

EZACICA AREA=CONFIG,TYPE=DSECT
EZACICA AREA=CONFIG,TYPE=CSECT

Table 14. Configuration File Format

Field Name Field Type Description Default Value

CFHAPPL 8 byte char APPLID of CICS object to which this record refers

CFHRTYPE 1 byte char Record type

v C = CICS object record

v L = Listener object record

3 bytes Reserved 00

CICS Record Format

CFCTRAN 4 bytes bin Binary zeros 00000000

CFCTCPIP 8 bytes char Address space name for TCP/IP SOCKET00

CFCNOTSK 2 bytes bin Number of reusable tasks (1) 20

CFCSTIME 2 bytes bin Cache minimum refresh time 15

CFCLTIME 2 bytes bin Cache maximum refresh time 30

CFCNORES 2 bytes bin Cache number of concurrent resolvers 10

CFCDPRTY 2 bytes bin Limit priority of subtask (1) 0

CFCENAME 4 bytes char Name of TD error queue EZAM

CFCOPT 1 byte bin CICS options

Value Meaning
B'00000001' Suppress task standard messages
B'00000010' Suppress trace (1)

B'00000100' Use OTE (1)

B'00001000' PLT immediate shutdown
B'00010000' Register application data (1)

1 byte Reserved

CFCTERML 2 bytes bin Subtask termination limit (1)

CFCTCBLM 4 bytes bin OPEN API TCP limit (1)

Listener Record Format

CFLTRAN 4 bytes char Listener transaction name EZAL

© Copyright IBM Corp. 1997, 2014 487

Table 14. Configuration File Format (continued)

Field Name Field Type Description Default Value

CFLPORT 2 bytes bin Port number for the listener

CFLBKLOG 2 bytes bin BACKLOG value for the listener 20

CFLNSOCK 2 bytes bin Number of sockets used by the listener 50

CFLMMIN 2 bytes bin Minimum length of input message 4

CFLLTIM 2 bytes bin Timeout value (seconds) for ACCEPT 60

CFLRTIM 2 bytes bin Timeout value (seconds) for READ 0

CFLGTIM 2 bytes bin Timeout value (seconds) for GIVESOCKET same as ACCEPT
timeout value

CFLOPT 1 byte bin Listener Options

Value Meaning
B'00000001' Immediate startup
B'00000110' Translate entire message
B'00000010' Translate transaction code only
B'00000100' Translate user data only
B'00010000' Peek at data only
B'00100000' Outbound messages are in EBCDIC
B'01000000' This is an Enhanced Listener
B'10000000' Listeners AF is AF_INET6

B'00000111'

CFLSECXT 8 bytes char Name of security exit

36 bytes Reserved

CFLCSTRN 4 bytes char Child server TRANID

CFLCSSTT 2 bytes char Child server startup type

CFLCSDLY 6 bytes char Child server delay interval

1 byte Reserved

CFLMSGLN 2 bytes bin Length of inbound message

CFLOPT2 1 byte bin Listener options byte 2 (1)

CFLUSRID 8 bytes char Listeners user ID (1)

1 byte Reserved

CFLRTYTIME 2 bytes bin Stack connection retry time

(1) Not used with z/VSE.

Global Work Area
DSECT/Structure Name

GWA0000

Length of Structure
GWALENTH (Length of fixed area)

Macro Expansion

EZACICA AREA=GWA,TYPE=DSECT
EZACICA AREA=GWA,TYPE=CSECT

External Data Structures

488 z/VSE V5R2 TCP/IP Support

Table 15. Global Work Area Format

Field Name Field Type Description Default Value

Beginning of Global Work Area Eyecatcher

GWACMDSC 8 byte char Identifier EZACICGW

Beginning of Startup Module Heritage

GWACMNAM 8 byte char Startup module name EZACIC21

1 byte char Delimiter

GWACMVER 3 byte char Startup service level

1 byte char Delimiter

GWACMREL 11 byte char Startup module date or APAR

6 byte char Reserved

End of Startup Module Heritage

Beginning of Task-Related User Exit Heritage

GWATRNAM 8 byte char Task related user exit module name EZACIC01

GWATRVER 2 byte char Task related user exit version number (1)

GWATRREL 2 byte char Task related user exit release number (1)

GWATRMOD 2 byte char Task related user exit mod number (1)

GWATRDAT 8 byte char Task related user exit assembled date (1)

GWATRTIM 8 byte char Task related user exit assembled time (1)

End of Task-Related User Exit Heritage

Beginning of IBM Listener Heritage

GWAMSNAM 8 byte char IBM Listener module name EZACIC02

GWAMSVER 2 byte char IBM Listener version number

GWAMSREL 2 byte char IBM Listener release number

GWAMSMOD 2 byte char IBM Listener mod number

GWAMSDAT 8 byte char IBM Listener assembled date

GWAMSTIM 8 byte char IBM Listener assembled time

End of IBM Listener Heritage

Beginning of Attached Subtask Heritage

GWASTNAM 8 byte char Attached subtask module name (1)

GWASTVER 2 byte char Attached subtask version number (1)

GWASTREL 2 byte char Attached subtask release number (1)

GWASTMOD 2 byte char Attached subtask mod number (1)

GWASTDAT 8 byte char Attached subtask assembled date (1)

GWASTTIM 8 byte char Attached subtask assembled time (1)

End of Attached Subtask Heritage

GWACMIBM 154 byte char Copyright statement

GWAENQTID 4 byte char Transaction ID enqueuing GWA (1)

GWAENQTNO 4 byte bin Task number of GWAENQTID (1)

2 byte Reserved

GWAC01TR 4 byte bin TRU00000 address of EZACIC01 (1)

GWANCHND 4 byte bin Number entries on LCA chain (1)

External Data Structures

Chapter 20. External Data Structures 489

Table 15. Global Work Area Format (continued)

Field Name Field Type Description Default Value

GWATCBLM 4 byte bin TCB limit for OTE (1)

GWAOATNO 4 byte bin OPEN API TCB number active (1)

GWAOATQD 4 byte bin TCBLIM queue depth (1)

GWAOATHW 4 byte bin Suspend task high water mark (1)

GWAOPT3 1 byte Unused option flag

GWAOPT2 1 byte Unused option flag

GWACTL 1 byte TCBLIM flag (1)

GWAOPT 1 byte Value Meaning
B'00000001' Suppress task standard messages
B'00000010' Suppress trace (1)

B'00000100' Use OTE (1)

B'00001000' PLT immediate shutdown
B'00010000' Register application data (1)

GWASTGPR 4 byte bin CICS storage protector indicator

GWAUSCNT 4 byte bin Use count for this GWA

GWABKWRD 4 byte bin Task chain anchor backward address (1)

GWAFOWRD 4 byte bin Task chain anchor forward address (1)

GWACAPPL 8 byte char VTAM APPLID of the CICS system

GWATRUEN 8 byte char Name of task related user exit load module

GWASTSKN 8 byte char Name of attached subtask load module (1)

GWATCPID 8 byte char TCP/IP address space name SOCKET00

GWALCAAD 4 byte bin Address of first Listener control area

GWA03PSA 4 byte bin Address of EZASOH03 load module (1)

GWANTASK 2 byte bin Number of reusable tasks (1)

GWANLIST 2 byte bin Number of Listeners

GWATSTAT 1 byte char Task related user exit status

Value Meaning
E TRUE is enabled

I Immediate shutdown requested/processing
Q Quiescent shutdown requested/processing
T TRUE is requesting a shutdown

GWARSHUT 1 byte char EZAO shutdown request indicator

Value Meaning
I Immediate shutdown requested

Q Quiescent shutdown requested

GWACSTART 1 byte bin CICS execution Status (1)

GWAVOSYS 1 byte bin MVS version (1)

GWAOPREL 2 byte bin MVS release (1)

GWACIVER 2 byte char CICS version number (1)

GWACIREL 1 byte char CICS release number (1)

GWACIMOD 1 byte char CICS modification number (1)

GWATOKEN 8 byte char Token for OS/390 registration/deregistration (1)

External Data Structures

490 z/VSE V5R2 TCP/IP Support

Table 15. Global Work Area Format (continued)

Field Name Field Type Description Default Value

GWAMSGMD 8 byte char Name of message module EZACICMx

GWATDMSG 4 byte char TD queue for messages

GWACSTIM 2 byte bin Cache refresh short time

GWACLTIM 2 byte bin Cache refresh long time

GWACNRES 2 byte bin Max number of resolvers

GWAC01EP 4 byte bin Entry point address of EZACIC01 (1)

GWAC02EP 4 byte bin Entry point address of EZACIC02 (1)

GWALCACH 4 byte bin Address of first chained LCA (1)

GWATERML 2 byte bin Subtask termination limit (1)

GWALCACT 2 byte bin Number of active LCAs

GWAMONST 4 byte bin TRUEs EMP disabled status (1)

GWAMONSTL 4 byte bin Listeners EMP disabled status (1)

GWAMONCT 16 byte bin Counters for system termination EMP (1)

End of Fixed Part of GWA

(1) Not used within z/VSE

Parameter List (COMMAREA) for EZACIC20
DSECT/Structure Name

P20PARMS

Length of Structure
P20PARML

Macro Expansion

EZACICA AREA=P20,TYPE=DSECT
EZACICA AREA=P20,TYPE=CSECT

Table 16. COMMAREA Format for EZACIC20

Field Name Field Type Description Default Value

P20TYPE 1 byte char Type of function

Value Meaning
I Initialization
T Immediate termination
D Deferred termination
Q QUERY PLTSDI

P20OBJ 1 byte char Initialization / termination object

Value Meaning
C CICS initialization / termination
L Listener initialization / termination

P20LIST 4 byte char Transaction name of Listener

External Data Structures

Chapter 20. External Data Structures 491

Table 16. COMMAREA Format for EZACIC20 (continued)

Field Name Field Type Description Default Value

P20RET 1 byte bin Return flags

Value Meaning
B'00000000 No errors encountered'
B'00000001' Error in CICS sockets I/F initialization
B'00000010' Error in Listener initialization
B'00000100' Error in CICS sockets I/F termination
B'00001000' Error in Listener termination
B'00010000' Error in COMMAREA contents
B'00100000' Errors in CICS/TS for VSE

Listener Control Area (LCA)
DSECT/Structure Name

LCA0000

Length of Structure
LCALEN

Macro Expansion

EZACICA AREA=LCA,TYPE=DSECT
EZACICA AREA=LCA,TYPE=CSECT

Table 17. Listener Control Area (LCA)

Field Name Field Type Description Default Value

LCATECB Fullword bin ECB posted by termination manager

LCATRAN 4 byte char Transaction name for this Listener

LCASTAT 1 byte bin Status of this Listener, byte 1

Value Meaning
B'00000000 Listener not in operation'
B'00000001' Listener in initialization
B'00000010' Listener in SELECT
B'00000100' Listener processing
B'00001000' Listener had initialization error
B'00010000' Immediate termination in progress
B'00100000' Deferred termination in progress
B'01000000' Listener is active
B'10000000' Listener is CICS delayed retry

LCASTAT2 1 byte bin Status of this Listener, byte 2

Value Meaning
B'00000001' Listener can now connect to TCP/IP
B'00000010' Register application data (1)

B'00000100' LAPPLD inherits APPLDAT (1)

B'00100000' This is a standard Listener
B'01000000' This is an enhanced Listener
B'10000000' Listeners AF is AF_INET6

2 bytes reserved

LCAIEAD 4 bytes bin Address of Listener's TIE

External Data Structures

492 z/VSE V5R2 TCP/IP Support

Chapter 21. CICS Listener Programming Considerations

Overview

This section describes typical sequences of calls for client, concurrent server (with
associated child server processes), and iterative server programs. The contents of
the section are:
v Four setups for writing CICS TCP/IP applications:

1. Concurrent server (the supplied Listener transaction) and child server
processes run under CICS TCP/IP

2. The same as 1 but with a user-written concurrent server
3. An iterative server running under CICS TCP/IP
4. A client application running under CICS TCP/IP

v Socket addresses
v GETCLIENTID, GIVESOCKET, and TAKESOCKET commands
v The Listener program

Writing CICS TCP/IP Applications
In this section, four TCP/IP setups in which CICS TCP/IP applications are used in
various parts of the client/server system are discussed in detail.

The setups are:
1. The Client-Listener-Child Server Application Set. The concurrent server and

child server processes run under CICS TCP/IP. The concurrent server is the
supplied Listener transaction. The client might be running TCP/IP under the
OS/2 operating system or one of the various UNIX operating systems such as
AIX.

TCP/IP HOST

Clients

CICS

Concurrent
Server

Server
process

2. Writing Your Own Concurrent Server. This is the same setup as the first
except that a user-written concurrent server is being used instead of the IBM
Listener.

TCP/IP HOST

Clients

CICS

Concurrent
Server

Server
process

© Copyright IBM Corp. 1997, 2014 493

3. The Iterative Server CICS TCP/IP Application. This setup is designed to
process one socket at a time.

TCP/IP HOST

Clients

CICS

Iterative
Server

4. The Client CICS TCP/IP Application. In this setup, the CICS application is the
client and the server is the remote TCP/IP process.

CICS

Clients

MVS / AIX / OS/2

Concurrent
or Iterative

Server

1. The Client-Listener-Child-Server Application Set
Figure 43 on page 495 shows the sequence of CICS commands and socket calls
involved in this setup. CICS commands are prefixed by EXEC CICS; all other
numbered items in the figure are CICS TCP/IP calls.

CICS Listener Programming Considerations

494 z/VSE V5R2 TCP/IP Support

Client Call Sequence

Table 18 explains the functions of each of the calls listed in Figure 43.

Table 18. Calls for the Client Application

(1) INITAPI Connect the CICS application to the TCP/IP interface. Use the
MAX-SOC parameter to specify the maximum number of sockets to
be used by the application.

(2) SOCKET This obtains a socket. You define a socket with 3 parameters:

v The domain, or addressing family

v The type of socket

v The protocol

For VSE TCP/IP, the domain can only be the TCP/IP internet
domain (2 in COBOL, AF_INET in C). The type can be stream sockets
(1 in COBOL, SOCK_STREAM in C), or datagram sockets (2 in COBOL,
SOCK_DGRAM in C). The protocol can be either TCP or UDP. Passing 0
for the protocol selects the default protocol.

If successful, the SOCKET call returns a socket descriptor, s, which
is always a small integer. Notice that the socket obtained is not yet
attached to any local or destination address.

Client:

Program CLIENT

(7) EXEC CICS RETRIEVE
(8) TAKESOCKET

(9) READ/WRITE

(10) CLOSE

(1) INITAPI
(2) SOCKET
(3) CONNECT

(4) WRITE/SEND ‘SERV’

(5) READ/WRITE

(6) CLOSE

Transaction SERV
calling

program SERVER

Child server:

Concurrent server:

IBM supplied transaction
EZAL calling program

LISTENER
EZACIC02

S
O
C
K
E
T
S

S
O
C
K
E
T
S

S
O
C
K
E
T
S

(11) INITAPI
(12) SOCKET
(13) BIND
(14) LISTEN
(15) GETCLIENTID
(16) SELECT

(17) ACCEPT

(18) READ
(19) EXEC CICS INQ ‘SERV’
(20) GIVESOCKET
(21) EXEC CICS START ‘SERV’

(22) SELECT
(23) CLOSE

Figure 43. The Sequence of Sockets Calls

CICS Listener Programming Considerations

Chapter 21. CICS Listener Programming Considerations 495

Table 18. Calls for the Client Application (continued)

(3) CONNECT Client applications use this to establish a connection with a remote
server. You must define the local socket s (obtained above) to be
used in this connection and the address and port number of the
remote socket. The system supplies the local address, so on
successful return from CONNECT, the socket is completely defined,
and is associated with a TCP connection (if stream) or UDP
connection (if datagram).

(4) WRITE This sends the first message to the Listener. The message contains
the CICS transaction code as its first 4 bytes of data. You must also
specify the buffer address and length of the data to be sent.

(5) READ/WRITE These calls continue the conversation with the server until it is
complete.

(6) CLOSE This closes a specified socket and so ends the connection. The
socket resources are released for other applications.

Listener Call Sequence

The Listener transaction EZAL is provided as part of CICS TCP/IP. These are the
calls issued by the CICS Listener. Your client and server call sequences must be
prepared to work with this sequence. These calls are documented in “2. Writing
Your Own Concurrent Server,” where the Listener calls in Figure 43 on page 495
are explained.

Child Server Call Sequence

Table 19 explains the functions of each of the calls listed in Figure 43 on page 495.

Table 19. Calls for the Server Application

(7) EXEC CICS
RETRIEVE

This retrieves the data passed by the EXEC CICS START command
in the concurrent server program. This data includes the socket
descriptor and the concurrent server client ID as well as optional
additional data from the client.

(8) TAKESOCKET This acquires the newly created socket from the concurrent server.
The TAKESOCKET parameters must specify the socket descriptor to
be acquired and the client id of the concurrent server. This
information was obtained by the EXEC CICS RETRIEVE command.
Note: If TAKESOCKET is the first call, it issues an implicit INITAPI
with default values.

(9) READ/WRITE The conversation with the client continues until complete.

(10) CLOSE Terminates the connection and releases the socket resources when
finished.

2. Writing Your Own Concurrent Server
The overall setup is the same as the first scenario, but your concurrent server
application performs many of the functions performed by the Listener.

The client and child server applications have the same functions.

Concurrent Server Call Sequence

Table 20 on page 497 explains the functions of each of the steps listed in Figure 43
on page 495.

CICS Listener Programming Considerations

496 z/VSE V5R2 TCP/IP Support

Table 20. Calls for the Concurrent Server Application

(11) INITAPI Connects the application to TCP/IP, as in table Table 18 on page
495.

(12) SOCKET This obtains a socket, as in table Table 18 on page 495.

(13) BIND Once a socket has been obtained, a concurrent server uses this call
to attach itself to a specific port at a specific address so that the
clients can connect to it. The socket descriptor and a local address
and port number are passed as arguments.

On successful return of the BIND call, the socket is bound to a port
at the local address, but not (yet) to any remote address.

(14) LISTEN After binding an address to a socket, a concurrent server uses the
LISTEN call to indicate its readiness to accept connections from
clients. LISTEN tells TCP/IP that all incoming connection requests
should be held in a queue until the concurrent server can deal with
them. The BACKLOG parameter in this call sets the maximum
queue size.

(15) GETCLIENTID This command returns the identifiers (z/VSE partition name and
subtask name) by which the concurrent server is known by TCP/IP.
This information will be needed by the EXEC CICS START call.

(16) SELECT The SELECT call monitors activity on a set of sockets. In this case, it
is used to interrogate the queue (created by the LISTEN call) for
connections. It will return when an incoming CONNECT call is
received, or else will time out after an interval specified by one of
the SELECT parameters.

(17) ACCEPT The concurrent server uses this call to accept the first incoming
connection request in the queue. ACCEPT obtains a new socket
descriptor with the same properties as the original. The original
socket remains available to accept more connection requests. The
new socket is associated with the client that initiated the connection.

(18) READ This reads one message from the client to determine what service is
required. This message contains, at a minimum, the CICS
transaction ID of the server.

(19) CICS INQ This checks that the SERV transaction is defined to CICS (else the
TRANSIDERR exceptional condition is raised), and, if so, that its
status is ENABLED. If either check fails, the Listener does not
attempt to start the SERV transaction.

(20) GIVESOCKET This makes the socket obtained by the ACCEPT call available to a
child server program.

(21) CICS START This initiates the CICS transaction for the child server application
and passes the ID of the concurrent server, obtained with
GETCLIENTID, to the server. For example, in “Listener Output
Format” on page 504, the parameter LSTN-CLIENTID defines the
Listener.

(22) SELECT Again, the SELECT call is used to monitor TCP/IP activity. This
time, SELECT returns when the child server issues a TAKESOCKET
call. This SELECT is the same as the SELECT call in Step 16. They
are shown as two calls to clarify the functions being performed.

(23) CLOSE This releases the new socket to avoid conflicts with the child server.

Passing Sockets

Sockets can be passed between programs within the same task, by passing the
descriptor number. However, passing a socket between CICS tasks does require a

CICS Listener Programming Considerations

Chapter 21. CICS Listener Programming Considerations 497

GIVESOCKET/TAKESOCKET sequence of calls.

3. The Iterative Server CICS TCP/IP Application
Figure 44 shows the sequence of socket calls involved in a simple client-iterative
server setup.

The setup with an iterative server is much simpler than the previous cases with
concurrent servers.

Iterative Server Use of Sockets

The iterative server need only obtain 2 socket descriptors. The iterative server
makes the following calls:
1. As with the concurrent servers, SOCKET, BIND, and LISTEN calls are made to

inform TCP/IP that the server is ready for incoming requests, and is listening
on socket 0.

2. The SELECT call then returns when a connection request is received. This
prompts the issuing of an ACCEPT call.

3. The ACCEPT call obtains a new socket (1). Socket 1 is used to handle the
transaction. Once this completed, socket 1 closes.

4. Control returns to the SELECT call, which then waits for the next connection
request.

The disadvantage of an iterative server is that it remains blocked for the duration
of a transaction.

INITAPI
SOCKET
CONNECT

READ/WRITE

CLOSE

Iterative server
program

S
O
C
K
E
T
S

SOCKET
BIND
LISTEN

SELECT

ACCEPT

READ/WRITE

CLOSE

Figure 44. Sequence of Socket Calls with an Iterative Server

CICS Listener Programming Considerations

498 z/VSE V5R2 TCP/IP Support

4. The Client CICS TCP/IP Application
Figure 45 shows the sequence of calls in a CICS client-remote server setup. The
calls are similar to the previous examples.

Figure 45 shows that the server can be on any processor and can run under any
operating system, provided that the combined software-hardware configuration
supports a TCP/IP server.

For simplicity, the figure shows an iterative server. A concurrent server would need
a child server in the remote processor and an adjustment to the calls according to
the model in Figure 43 on page 495.

A CICS server issues a READ call to read the client’s first message, which contains
the CICS transaction name of the required child server. When the server is in a
non-CICS system, application design must specify how the first message from the
CICS client indicates the service required (in Figure 45, the first message is sent by
a WRITE call).

If the server is a concurrent server, this indication is typically the name of the child
server. If the server is iterative as in Figure 45, and all client calls require the same
service, this indication might not be necessary.

Socket Addresses
Socket addresses are defined by specifying the address family and the address of
the socket in the internet.

TCP/IP
implementation
with socket
interface

TCP/IP
for

VSE/ESA

CICS

VSE/ESA

CICS ClientRemote Server

Another operating system

INITAPI

SOCKET

CONNECT

READ/WRITE

CLOSE

Iterative server

INITAPI

SOCKET

BIND

LISTEN

ACCEPT

READ/WRITE

CLOSE

Client

Figure 45. Sequence of Socket Calls between a CICS Client and a Remote Iterative Server

CICS Listener Programming Considerations

Chapter 21. CICS Listener Programming Considerations 499

In VSE TCP/IP, the address is specified by the IP address and port number of the
socket.

Address Family (Domain)

VSE TCP/IP supports only one TCP/IP addressing family (or domain, as it is
called in the UNIX system). This is the internet domain, denoted by AF_INET in C.
Many of the socket calls require you to define the domain as one of their
parameters.

A socket address is defined by the IP address of the socket and the port number
allocated to the socket.

IP Addresses

IP addresses are allocated to each TCP/IP address on a TCP/IP internet. Each
address is a unique 32-bit quantity defining the host’s network and the particular
host. A host can have more than one IP address if it is connected to more than one
network (a so-called multi-homed host).

Ports

A host can maintain several TCP/IP connections at a time. One or more
applications using TCP/IP on the same host are identified by a port number. The
port number is an additional qualifier used by the system software to get data to
the correct application. Port numbers are 16-bit integers; some numbers are
reserved for particular applications and are called well-known ports (for example,
23 is for TELNET).

Address Structures

A socket address in an IP addressing family comprises 4 fields: the address family,
an IP address, a port, and a character array (zeros), set as follows:
v The family field is set to AF_INET in C, or to 2 in other languages.
v The port field is the port used by the application, in network byte order (which

is explained on page “Network Byte Order”).
v The address field is the IP address of the network interface used by the

application. It is also in network byte order.
v The character array field should always be set to all zeros.

Network Byte Order

Ports and addresses are specified using the TCP/IP network byte ordering
convention, which is known as big endian.

In a big endian system, the most significant byte comes first. By contrast, in a little
endian system, the least significant byte comes first. z/VSE uses the big endian
convention; because this is the same as the network convention, CICS TCP/IP
applications do not need to use any conversion routines, such as htonl, htons,
ntohl, and ntohs.

Note: The socket interface does not handle differences in data byte ordering within
application data. Sockets application writers must handle these differences
themselves.

CICS Listener Programming Considerations

500 z/VSE V5R2 TCP/IP Support

GETCLIENTID, GIVESOCKET, and TAKESOCKET
In CICS the socket calls GETCLIENTID, GIVESOCKET, and TAKESOCKET are
used with the EXEC CICS START and EXEC CICS RETRIEVE commands to make
a socket available to a new process. This is shown in Figure 46.

Figure 46 shows the calls used to make a Listener socket available to a child server
process. It shows the following steps:
1. The Listener calls GETCLIENTID. This returns the Listener’s own CLIENTID

(CLIENTID-L), which comprises the z/VSE partition name and subtask identifier
of the Listener. The Listener transaction needs access to its own CLIENTID for
step 3.

2. The Listener calls GIVESOCKET, specifying a socket descriptor and the
CLIENTID of the child server.
If the Listener and child server processes are in the same CICS region (and so
in the same address space), the z/VSE partition name identifier in CLIENTID can
be set to blanks. This means that the Listener’s address space is also the child’s
address space.
If the Listener and child server processes are in different CICS regions, enter
the new address space and subtask.
In the CLIENTID structure, the supplied listener enters its own z/VSE partition
name and sets the subtask identifier to blanks. This makes the socket available
to a TAKESOCKET command from any task in the Listener’s address space,
but only the child server receives the socket descriptor number, so the exposure
is minimal. For total integrity, the child server’s subtask identifier should be
entered.

3. The Listener performs an EXEC CICS START. In the FROM parameter, the
CLIENTID-L, obtained by the previous GETCLIENTID, is specified. The Listener
is telling the new child server where it will get its socket from in step 5 on
page 502.

…

……

…

4. Call EXEC CICS RETRIEVE
returns CLIENTID-L in the
INTO parameter

5. Call TAKESOCKET
specifies CLIENTID-L

1. Call GETCLIENTID
returns CLIENTID-L

2. Call GIVESOCKET
specifies CLIENTID-CS

3. Call EXEC CICS START
specifies CLIENTID-L

Child server
(with clientid CLIENTID-CS)

Listener
(with clientid CLIENTID-L)

Figure 46. Transfer of CLIENTID Information

CICS Listener Programming Considerations

Chapter 21. CICS Listener Programming Considerations 501

4. The child server performs an EXEC CICS RETRIEVE. In the INTO parameter,
CLIENTID-L is retrieved.

5. The child server calls TAKESOCKET, specifying CLIENTID-L as the process from
which it wants to take a socket.

The Listener
In a CICS system based on SNA terminals, the CICS terminal management
modules perform the functions of a concurrent server. Because the TCP/IP
interface does not use CICS terminal management, CICS provides these functions
in form of a CICS application transaction, the Listener. The CICS transaction ID of
the Listener is EZAL.

The Listener performs the following functions:
1. It issues appropriate TCP/IP calls to “listen” on the port specified in the

configuration file and waits for incoming connection requests issued by clients.
2. When an incoming connection request arrives, the Listener accepts it and

obtains a new socket to pass to the CICS child server application program.
3. The standard Listener starts the CICS child server transaction based on

information in the first message on the new connection. The format of this
information is given in “Listener Input Format (Standard Listener only).” For
the enhanced listener, the CICS child server transaction is started based on
information in the TCP/IP CICS configuration file, EZACONF.

4. It waits for the child server transaction to take the new socket and then issues
the close call. When this occurs, the receiving application assumes ownership of
the socket and the Listener has no more interest in it.

The Listener program is written so that some of this activity goes on in parallel.
For example, while the program is waiting for a new server to accept a new socket,
it listens for more incoming connections. The program can be in the process of
starting 49 child servers simultaneously. The starting process begins when the
Listener accepts the connection and ends when the Listener closes the socket it has
given to the child server.

Listener Input Format (Standard Listener only)
The Listener requires the following input format from the client in its first
transmission. The client should then wait for a response before sending any
subsequent transmissions. Input can be in uppercase or lowercase. The commas are
required.

Note: The Listener cannot distinguish between a comma that is used as a delimiter
in the Listener's initial message and a comma that is part of the client-in-data
format. Therefore, the client-in-data format should not contain a comma. In text
such as x’2C’ in ASCII data or such as ’6B’ in EBCDIC data, the single quotation
mark might be interpreted as a comma.

Format

��
kc

tran , ,
client-in-data ic,hhmms

td

��

CICS Listener Programming Considerations

502 z/VSE V5R2 TCP/IP Support

Parameters

tran
The CICS transaction ID (in uppercase) that the Listener is going to start. This
field can be 1 - 4 characters.

client-in-data
This optional parameter specifies application data, which is used by the
optional security exit (See “Writing Your Own Security Link Module for the
Listener” on page 505) or the server transaction. The maximum length of this
field is 40 characters (35 bytes, plus one byte filler and 4 bytes for startup).

kc|ic|td
This optional parameter specifies the startup type that can be either kc for
CICS startup control, ic for CICS interval control or td for CICS transient data.
They types are not case-sensitive. If this field is left blank, startup is immediate
under CICS task control (kc) .kc indicates that the child server task is started
using EXEC CICS START with no delay interval. This is the same as specifying
IC,000000.

hhmmss
If the transaction is started using interval control (ic), this parameter is
mandatory. It specifies hours, minutes, and seconds for interval time. All 6
digits must be given.

Note: TD ignores the time field.

Examples

The following are examples of client input and the Listener processing that results
from them. The data fields that are referenced can be found in “Listener Output
Format” on page 504. Parameters are separated by commas.

Example Listener Response

TRN1,userdataishere It starts the CICS transaction TRN1 using task control, and
passes to it the data userdataishere in the field
CLIENT-IN-DATA.

TRN2,,IC,000003 It starts the CICS transaction TRN2 using interval control,
without user data. There is a 3-second delay between the
initiation request from the Listener and the transaction
startup in CICS.

TRN3,userdataishere,TD It writes a message to the transient data queue named TRN3
in the format that is described by the structure
TCPSOCKET-PARM, described in “Listener Output Format”
on page 504. The data that is contained in userdataishere is
passed to the field CLIENT-IN-DATA. This queue must be
an intrapartition queue with trigger-level set to 1. It causes
the initiation of transaction TRN3 if it is not already active.
This transaction should be written to read the transient data
queue and process requests until the queue is empty.

This mechanism is provided for those server transactions
that are used frequently and for which the overhead of
initiating a separate CICS transaction for each server request
could be a performance concern.

CICS Listener Programming Considerations

Chapter 21. CICS Listener Programming Considerations 503

Example Listener Response

TRN3,,TD It causes data to be placed on transient data queue TRN3,
which in turn causes the start or continued processing of the
CICS transaction TRN3, as described in the TRN3 previous
example. There is no user data passed.

TRN4 It starts the CICS transaction TRN4 using task control. There
is no user data that is passed to the new transaction.

Listener Output Format
Table 21 shows the format of the Listener output data area passed to the child
server. This output data area has a total length of 96 bytes. The Listener program
uses the following COBOL definition:
01 TCPSOCKET-PARM.

05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
05 LSTN-CLIENTID.

15 LSTN-CID-DOMAIN PIC 9(8) COMP.
15 LSTN-CID-NAME PIC X(8)
15 LSTN-CID-TASK PIC X(8)
15 LSTN-CID-RSVD PIC X(20)

05 CLIENT-IN-DATA PIC X(35).
05 FILLER PIC X(1).
05 SOCKADDR-IN-PARM.

15 SIN-FAMILY PIC 9(4) COMP.
15 SIN-PORT PIC 9(4) COMP.
15 SIN-ADDRESS PIC 9(8) COMP.
15 SIN-ZERO PIC X(8).

Table 21. Listener Output Format - using the IPv4 protocol

Description Format Value

Socket descriptor Fullword binary The socket descriptor to be used by the
child server in the TAKESOCKET command

Listener Client ID 40 bytes Client ID of Listener

Data area 35-byte character plus
1-byte filler

Client-in-data from Listener input received
from the client

Socket address Structure containing
remaining 4 fields

See each field

TCP/IP addressing
family

Halfword binary 2, indicating AF-INET

Port descriptor Halfword binary Descriptor of the port bound to the socket
(Listener's port number from the
configuration file).

32-bit IP address Fullword binary IP address of the socket’s host machine in
network byte order

Unused Doubleword Binary zeros

Table 22. Output from EZA Listener to the Child Server - Enhanced mode - using the IPv6
protocol

Description Format Value

Socket descriptor Fullword binary Socket number to be specified in the
TAKESOCKET command

Client ID 40 bytes Client ID of Listener

CICS Listener Programming Considerations

504 z/VSE V5R2 TCP/IP Support

Table 22. Output from EZA Listener to the Child Server - Enhanced mode - using the IPv6
protocol (continued)

Description Format Value

Client data 35 bytes The first 35 bytes that is read by the Listener
(if any)

Filler 1 byte Filler

Client's SOCKADDR 2 bytes family
2 bytes port
4 bytes flow info
16 bytes IPv6 address
4 bytes scope

Flow info and scope are not used on z/VSE

68 bytes reserved

Data length Halfword binary Length of data received from the client

Data area Length defined by
previous field

Data received from the client starting at
position 1

Writing Your Own Security Link Module for the Listener
The Listener process provides an exit point for those users who want to write and
include a module that performs a security check before a CICS transaction is
initiated. The exit point is implemented so that if a module is not provided, all
valid transactions are initiated.

If you write a security module, you can name it anything you want, as long as you
define it in the configuration dataset. You can write this program in COBOL, PL/I,
or assembler language and must provide an appropriate entry in the CICS
program processing table (PPT).

Specifying in EZAC: Specify the name of the security module in the SECexit field
in Alter or Define. If you don't name the module, CICS will assume you don't have
one. See 455 for more information.

Just before the task creation process, the Listener invokes the security module by a
conditional CICS LINK passing a COMMAREA. The Listener passes a data area to
the module that contains information for the module to use for security checking
and a 1-byte switch. Your security module should perform a security check and set
the switch accordingly.

When the security module returns, the Listener checks the state of the switch and
initiates the transaction if the switch indicates security clearance. The module can
perform any function that is valid in the CICS environment. Excessive processing,
however, could cause performance degradation.

Table 23 shows the data area used by the security module.

Table 23. Output from EZA Listener to the Security / Transaction Exit

Description Offset Format Value

CICS transaction
ID

+000 (x00) 4 byte char CICS transaction requested by the
client

Data area +004 (x04) 35 byte char User data received by the client

Format switch +039 (x27) 1 byte char Format switch (1= expanded, 0=
not expanded)

CICS Listener Programming Considerations

Chapter 21. CICS Listener Programming Considerations 505

Table 23. Output from EZA Listener to the Security / Transaction Exit (continued)

Description Offset Format Value

+040 (x28) 4 bytes Reserved

Action +044 (x2C) 2 byte char Method of starting task (IC=
interval control, KC= task control,
TD= transient data)

Interval control
time

+046 (x2E) 6 byte char Interval requested for IC start
(hhmmss)

Address family +052 (x34 Halfword binary Address family (2= AF_INET, 19=
AF_INET6)

Client's port +054 (x36) Halfword binary Port number of client's port

Client's IPv4
address

+056 (x38) Fullword binary IPv4 address of client

Switch +060 (x3C) 1 byte char Switch to be set by exit (1= permit
transaction, not 1= prohibit
transaction)

Switch-2 +061 (x3D) 1 byte char Switch to be set by exit (1=
Listener sends msg to client not 1=
exit sends msg to client)

Terminal
identification

+062 (x3E) 4 byte char To be set by exit: Return binary
zeros, if no terminal is to be
associated with the new task.
Otherwise return the CICS
terminal ID to be associated with
the new task.

Socket descriptor *066 (x42) Halfword binary Current socket descriptor

User ID +068 (x44) 8 byte char A user ID value, which is used in
starting the server transaction. This
is mutually exclusive from
terminal ID

Listener's IPv4
address

+076 (x4C) Fullword binary Local IPv4 address

Listener's port +080 (x50) Halfword binary Listener's port number

Listener's IPv4
address

+082 (x52) 16 bytes binary Local IPv6 address

Listener's scope
ID

+098 (x62) Fullword binary Scope ID of requestor's IPv6
address (not used by VSE)

Client's IPv6
address

+102 (x66) 16 bytes binary IPv6 address of requestor's host

Client's scope ID +118 (x76) Fullword binary Scope ID of requestor's IPv6
address (not used by VSE)

Client's certificate
length

+118 (x7A) Halfword binary Not supported by VSE

Client's certificate
address

+124 (x7C) Fullword binary Not supported by VSE

+128 (x80) 34 bytes reserved

Data length +162 (xA2) Halfword binary Length of data received from client

CICS Listener Programming Considerations

506 z/VSE V5R2 TCP/IP Support

Table 23. Output from EZA Listener to the Security / Transaction Exit (continued)

Description Offset Format Value

Data area +164 (xA4) Length defined
by previous field

Data received from the client
starting at position 1 (for the
enhanced Listener the first 35 bytes
are the same as in the first data
area)

Data Conversion Routines
CICS uses the EBCDIC data format, whereas TCP/IP networks use ASCII. When
moving data between CICS and the TCP/IP network, your application programs
must initiate the necessary data conversion. CICS programs can use routines
provided by z/VSE for:
v Converting data from EBCDIC to ASCII and back, when sending and receiving

data to and from the TCP/IP network, with the SEND, RECEIVE, READ, and
WRITE calls.

v Converting between bit arrays and character strings when using the SELECT
call.

For details, refer to “Using Data Translation Programs for Socket Call Interface” on
page 280.

CICS Listener Programming Considerations

Chapter 21. CICS Listener Programming Considerations 507

508 z/VSE V5R2 TCP/IP Support

Part 6. Appendixes

© Copyright IBM Corp. 1997, 2014 509

510 z/VSE V5R2 TCP/IP Support

Appendix A. Examples to be used with TCP/IP for VSE/ESA

Autonomous FTP
Under normal circumstances, the VSE FTP Daemon performs all file transfers. For
this reason, all files must be defined to the TCP/IP for VSE/ESA partition.

Under some circumstances, this can be inconvenient. For example, when a batch
process creates a new file which is to be sent to a remote workstation, several
interactions with TCP/IP for VSE/ESA are required to define the new file. Rather
than force operator intervention in this manner, an extension to the FTP commands
is provided that will permit specification of a locally-defined DLBL, without the
TCP/IP partition having any advance knowledge of the data set. This operation
mode can be considered as 'Autonomous FTP'.

To transfer a file in this mode, use a command of the following format:
PUT %dlbl,type,recfm,lrecl,blksize filespec
GET filespec %dlbl,type,recfm,lrecl,blksize

The percent sign (%) indicates that a DLBL has been supplied rather than a file
name. The other parameters are as follows:

filespec
The file name on the remote system.

type The file's type.

recfm The file's record format.

lrecl The file's logical record length.

blksize
The file's block size.

A detailed discussion of all the parameters to be used for Autonomous FTP can be
found in the TCP/IP for VSE 1.5 User's Guide.

Example

In the following example a SAM-ESDS working file 'A.KRUS.X1', ('X1' results from
the partition-id) is defined indirectly, via IDCAMS REPRO. This file is transferred
via Autonomous FTP to a workstation and after successfully processing it is
deleted via IDCAMS. The advantage is that you don't have to define the actual file
explicitly and to remember its file name.
* $$ JOB JNM=FTPAUTNP,CLASS=X,DISP=D
// JOB FTPAUTNP TEST AUTONOMIOUS FTP BATCH
// DLBL TESTNKD,’%A.KRUS’,0,VSAM,CAT=ESCAT1,RECSIZE=120, X

DISP=(NEW,KEEP,DELETE),RECORDS=(150,100)
// DLBL TEST,’%A.KRUS’,0,VSAM,CAT=ESCAT1
// DLBL COPYIN,’KRUS.SAMF’,,VSAM,CAT=ESCAT1
// LOG
*
// EXEC IDCAMS,SIZE=AUTO
REPRO INFILE (COPYIN) -

OUTFILE (TESTNKD ENV(BLKSZ(120) RECFM(F))) -
NOREUSE

/*
*

© Copyright IBM Corp. 1997, 2014 511

// EXEC FTP,PARM=’IP=KRUSE’
KRUS
DAGI
DD
DD
LCD ESCAT1
CD VSE230/TEMP
PUT %TEST,SAM,F,120 FTPPUT.X1
QUIT
/*
IF $RC > 0 THEN
GOTO $EOJ
// EXEC IDCAMS,SIZE=AUTO
DELETE (%A.KRUS) -

CLUSTER -
PURGE -
CATALOG (ESCAT1.USER.CATALOG)

/*
/&
* $$ EOJ

Note:

1. In the job listing the workfile has a dynamic name, here
PUT %X1SAM,SAM,F,120 FTPPUT.X1

2. Following is not possible with autonomous FTP, but with the FTPBATCH
program:
v a DLBL statement with the DISP option
v SAM-ESDS '%%working' files

AUTOLPR – Printing with the CICS Report Controller Feature (RCF)
This section shows an example how to use the CICS Report Controller Feature
(RCF) along with the TCP/IP for VSE/ESA AUTOLPR feature.

In addition to printing from batch using the LPR client application or the
AUTOLPR feature, TCP/IP for VSE/ESA also supports automatically printing files
generated with CICS RCF. Similar to printing from batch, you must specify the
name of a Script file within the VSE/POWER user-information field or the
HOSTNAME parameter of the DEFINE EVENT definition. This Script file must
specify the remote IP address of the system hosting the LPD (Line Printer Daemon)
and the name of the printer to print on the specified host.

With this information in place, TCP/IP for VSE/ESA will send the print output off
the VSE/POWER list queue to the specified destination, assuming an EVENT (see
example below in this section) was defined to TCP/IP for VSE/ESA covering the
specified VSE/POWER class.

A detailed discussion of AUTOLPR can be found in the TCP/IP for VSE 1.5 User's
Guide.

Specification in the CICS RCF Program

In the CICS RCF Program you need to specify the VSE/POWER class, and the
name of the Script file in the user-information field. These required values will be
passed to VSE/POWER.

In the following example those values are
v CLASS('T') for the VSE/POWER class

Examples TCP/IP for VSE/ESA

512 z/VSE V5R2 TCP/IP Support

v USERDATA(SCRIPTNM) for the user information

but they may also contain other values matching your requirements.
...

DFHEISTG DSECT
SCRIPTNM DS CL16

...
TESTLPR CSECT
* Open output spoolfile

MVC SCRIPTNM,=CL16’SCRIPT2’ Set Script Name
* Script-Name-Field should be 16 characters long
* Script-Name-Field should be padded with blanks

EXEC CICS SPOOLOPEN REPORT(’LPRTEST’) USERDATA(SCRIPTNM) *
TOKEN(OUTTOKEN) NOCC CLASS(’T’) NOSEP *
RESP(RESPFLD) RESP2(RESP2FLD)

...

TCP/IP Definitions

Your TCP/IP for VSE/ESA configuration file IPINITxx.L should contain the
following (or similar) definitions. If you have not defined them in your startup
configuration, you can also specify those definitions interactively to TCP/IP for
VSE/ESA.
v Definition of AUTOLPR for VSE/POWER LST Queue, CLASS T

DEFINE EVENT,ID=LPR,TYPE=POWER,CLASS=T,QUEUE=LST
v Symbolic name REMHOST for IP address 9.1.2.3

DEFINE NAME,NAME=REMHOST,IPADDR=9.1.2.3

v Script File Definition for Script SCRIPT2, backed by VSE library member
PRTLOCAL.L

DEFINE NAME,NAME=SCRIPT2,SCRIPT=PRTLOCAL

Script File Definition

The Script file needs to be catalogued as L source book in a VSE library, accessible
through the // LIBDEF SOURCE,SEARCH chain. In the preceding example the
member name is PRTLOCAL.L. The Script file contains the required host and
printer definitions.
* $$ JOB JNM=CATAL,CLASS=A,DISP=D
// JOB CATAL CATALOG SCRIPT MEMBER PRTLOCAL.L
// EXEC LIBR
ACC S=PRD2.CONFIG
CAT PRTLOCAL.L R=Y
SET HOST=REMHOST SYMBOLIC HOST NAME
SET PRINTER=PRINTER1
/+
/*
/&
* $$ EOJ

GPS and RCF
The following example shows the definitions to be done for TCP/IP-GPS, VTAM
and CICS for use of the GPS by the Report Controller Feature (RCF) of CICS.

A detailed description of all parameters to define a GPS daemon can be found in
TCP/IP for VSE 1.5 Optional Features.

Examples TCP/IP for VSE/ESA

Appendix A. Examples to be used with TCP/IP for VSE/ESA 513

Defining to VTAM
TCPPRT VBUILD TYPE=APPL
GPS1 APPL AUTH=(ACQ),DLOGMOD=DSC2K
GPS2 APPL AUTH=(ACQ),DLOGMOD=DSC2K

Note: If a VTAM printer should be shared between different CICS applications it
has to be released first from one CICS before it can be used with another CICS.
This is accomplished by defining RELREQ=YES in the CICS TYPETERM definition
of that printer. But to activate RELREQ=YES the following must be coded in the
VTAM APPL statement: SESSLIM=YES. For more details refer to the VTAM
Programming Guide.

Defining to CICS
CEDA DEFine TYpeterm: GPSPRT Group: VSETERM1

CEDA DEFine TErminal: GPS1 Group: VSETERM1
CEDA DEFine TErminal: GPS2 Group: VSETERM1

Defining to TCP/IP
DEFINE FILE,PUBLIC=’PRD2.GPSWORK’,DLBL=PRD2,TYPE=LIBRARY
*
* GPS1 is a IBM4248
DEFINE GPSD,ID=GPS001,STORAGE=’PRD2.GPSWORK’,TERMNAME=GPS1,-
IPADDR=nnn.nnn.nnn.nnn,PRINTER=LOCAL
*
* GPS2 is a IBM3130
DEFINE GPSD,ID=GPS002,STORAGE=’PRD2.GPSWORK’,TERMNAME=GPS2,-
IPADDR=nnn.nnn.nnn.nnn,PRINTER=printername

Note that the 'printername' is case sensitive.

Defining to RCF
PRINTER DESTINATION

GPS1 GPS1
GPS2 GPS2

TELNET and Subnetting in a Class-C Network
The following example shows how a Class-C network can be divided to provide
different subnets for Telnet usage. This is done by using different subnet masks for
the different subnets.

Requirement/Question
CICS Terminal Id = TA31xx -> IPaddress 9.222.66.1 - 27

= TA03xx -> IPaddress 9.222.66.65 - 91
= TA06xx -> IPaddress 9.222.66.129 - 155

How can I differ between the different terminal-ids so that each user is identifiable
?

Answer
DEFINE MASK,ID=net1mask,NETWORK=9.222.66.0,MASK=255.255.255.224
DEFINE MASK,ID=net2mask,NETWORK=9.222.66.64,MASK=255.255.255.224
DEFINE MASK,ID=net3mask,NETWORK=9.222.66.128,MASK=255.255.255.224
DEFINE TELNETD,ID=teln1,MENU=MENU3,COUNT=30,TERMNAME=TA31, -

IPADDR=9.222.66.0
DEFINE TELNETD,ID=teln2,MENU=MENU4,COUNT=30,TERMNAME=TA03, -

Examples TCP/IP for VSE/ESA

514 z/VSE V5R2 TCP/IP Support

IPADDR=9.222.66.64
DEFINE TELNETD,ID=teln3,MENU=MENU5,COUNT=30,TERMNAME=TA06, -

IPADDR=9.222.66.128

TELNET daemons and logmode
This example shows how to make TELNET sessions queryable.

If the TELNET daemon definitions are made as follows
DEFINE TEL,ID=MYTEL,TAR=DBDCCICS,TERM=T1000,CO=20,LOGMODE=SP3272QN, -

LOGMODE3=SP3272QN,LOGMODE4=SP3272QN,LOGMODE5=SP3272QN

then all types of terminals (model 2, 3, 4, and 5) will be queryable. If only
LOGMODE=SP3272QN

is set, a model 3 will not have SP3272QN but the default value D4B32783 which
does not have an Extended Datastream. This is why the above definitions are
recommended. In case queryable sessions are not desired, the IUI default logmodes
with EXTDS are as follows
DEFINE TEL,ID=MYTEL,TAR=DBDCCICS,TERM=T1000,CO=20,LOGMODE=SP3272EN, -

LOGMODE3=SP3273EN,LOGMODE4=NSX32704,LOGMODE5=NSX32705

Since there is no explicit logmode for model 4 and 5 in IUI, the VTAM default is
used.

VSAMCAT Usage
Instead of defining every VSAM file that you want to access via FTP, NFS, or
HTTP, you can define the VSAM catalog to TCP/IP for VSE/ESA and let it
dynamically build DLBL and file control block information for every cluster in the
catalog.

A detailed description of the VSAMCAT parameter of the DEFINE FILE command
can be found in TCP/IP for VSE 1.5 Commands.
1. Defining the catalog to VSE

The first step in using a VSAM catalog is to have a DLBL defining the catalog.
The VSAMCAT fileIO driver will read the catalog sequentially in order to
acquire cluster attribute information. Because of that, the DLBL must have a
",CAT=" parameter pointing back to itself. For example, IJSYSUC:
// DLBL IJSYSUC,’VSAM.USER.CATALOG’,,VSAM,CAT=IJSYSUC

You can either modify the entry in standard labels, or create a new one and put
it in the TCP/IP startup JCL. In either case, it is important that TCP/IP find the
DLBL for the catalog and the catalog entry has a ",CAT=" pointing back to
itself.

2. Defining the catalog to TCP/IP
Now that VSE knows about the catalog, let's tell TCP/IP. Here is a sample
definition for that same catalog:
DEFINE FILE,PUBLIC=’IJSYSUC’,DLBL=IJSYSUC,TYPE=VSAMCAT

Of course, the public name can be anything you want, but for this example,
we'll make it the same as the DLBL name.

3. Using the catalog
Now that you have the VSE and TCP/IP systems know about the catalog and
if it actually exists, you can access it with FTP by issuing a "ChDir" into (in this
case) IJSYSUC. The first time that you do this, you will see a message on

Examples TCP/IP for VSE/ESA

Appendix A. Examples to be used with TCP/IP for VSE/ESA 515

SYSLOG indicating that the fileIO module, IPNFVCAT has been loaded into
partition storage. When you perform a DirList, IPNFVCAT will read the catalog
information and return a listing of information. When you issue a RETRieve
against a specific entry, IPNFVCAT will check the partition to see if a DLBL
already exists. If it does not, then one will be dynamically added to the
partition for you. After that, the file is transferred for you.
The only exception to this are VSAM-controlled-SAM files. Because the VSAM
catalog is not updated with information such as the number of records, you
will not be able to retrieve these files using VSAMCAT. In this case you will
need to define each of these files individually to TCP/IP as "TYPE=SAM" and
retrieve these using the DTFSD methodology.
Performing a PUT to the VSAM catalog is different. For FTP, you need either
have the cluster already defined or the cluster can be dynamically defined or a
REXX program can be run from FTP to define the file. For NFS, a dynamic
DEFINE CLUSTER is automatically performed for you.
Finally, you can perform a DELEte against the VSAM files, and IDCAMS will
be dynamically invoked to perform a DELETE CLUSTER for you. However, a
RENAME will not work for VSAMCAT files.

Using the Command preprocessor
EXEC TCP based programs require the TCP/IP for VSE/ESA preprocessor
program IPNETPRE to generate language specific code constructs.

When you execute IPNETPRE, you specify two options by way of the PARM field
of the EXEC statement. for example
// EXEC IPNETPRE,SIZE=IPNETPRE,PARM=’LANG=COBOL,ENV=CICS’
* $$ SLI MEM=COBSRC.C,S=PRD3.INGO
/*

LANG
The LANG=xxx parameter tells the preprocessor the language being
processed. Supported values for xxx are:

ASSEMBLER
High-Level Assembler

COBOL
COBOL for VSE

PL1 PL/I for VSE

ENV The ENV=xxx parameter indicates the environment that the finished
program will execute in. There are two acceptable values for xxx.

BATCH
The program will execute in batch mode.

CICS The program will be executed under CICS.

Note:

1. For ENV=CICS programs always run the TCP/IP preprocessor before the CICS
preprocessor. You must execute them in this order because the TCP/IP
preprocessor will generate EXEC CICS statements that must be replaced by the
CICS preprocessor.

Refer to TCP/IP for VSE 1.5 Programmer's Reference for a detailed description of the
TCP/IP for VSE/ESA preprocessor.

Examples TCP/IP for VSE/ESA

516 z/VSE V5R2 TCP/IP Support

Sample Programs
The following sample programs provide the same functionality presented in a
variety of languages. In each case, note any "special" techniques shown for
manipulating data.

COBOL Example
IDENTIFICATION DIVISION.

PROGRAM-ID. COBSRC.
AUTHOR. JOHN DOE.

INSTALLATION. WORTHINGTON OHIO.
DATE-WRITTEN. AUGUST 2, 1995.

DATE-COMPILED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

DATA DIVISION.

EXEC TCP CONTROL DOUBLE(NO)
END-EXEC.

WORKING-STORAGE SECTION.
01 WORK-AREA-ONE.

05 PART1 PICTURE 9(4) COMP.
05 PART2 PICTURE 9(4) COMP.
05 PART3 PICTURE 9(4) COMP.
05 PART4 PICTURE 9(4) COMP.
05 IPADDRESS.

10 IPAD1 PICTURE X.
10 IPAD2 PICTURE X.
10 IPAD3 PICTURE X.
10 IPAD4 PICTURE X.

05 HALFWORD PICTURE 9(4) COMP.
05 HALFWORD-X REDEFINES HALFWORD.

10 BYTEX1 PICTURE X.
10 BYTEX2 PICTURE X.

05 RESULTS.
10 RECB PICTURE X(4).
10 RLOPORT PICTURE 9(4) COMP.
10 RFOPORT PICTURE 9(4) COMP.
10 RFOIP PICTURE X(4).
10 RCOUNT PICTURE 9(4) COMP.
10 RFLAGS PICTURE X.
10 RCODE PICTURE X.
10 RTERMTY PICTURE X(40).

05 MY-DESC PICTURE X(4).
01 LOCAL-PORT PICTURE 9(4) COMP.
01 BUFFER.

05 WORKAREA PICTURE X(512).
PROCEDURE DIVISION.

BEGIN.

* *
* First Test *
* *

*
* Setup IPADDRESS to hold 172.20.10.10 in binary
*

Examples TCP/IP for VSE/ESA

Appendix A. Examples to be used with TCP/IP for VSE/ESA 517

MOVE 172 TO HALFWORD.
MOVE BYTEX2 TO IPAD1.
MOVE 20 TO HALFWORD.
MOVE BYTEX2 TO IPAD2.
MOVE 10 TO HALFWORD.
MOVE BYTEX2 TO IPAD3.
MOVE 10 TO HALFWORD.
MOVE BYTEX2 TO IPAD4.

*
* Attempt to open a connection at 172.20.10.10 port 2000
*
EXEC TCP OPEN FOREIGNPORT(2000)

FOREIGNIP(IPADDRESS)
LOCALPORT(0)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
ACTIVE
WAIT(YES)
ERROR(SECOND-TEST)

END-EXEC.
DISPLAY ’Open has completed’.

*
* Receive a piece of data
*
EXEC TCP RECEIVE

TO(BUFFER)
LENGTH(512)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)
ERROR(SECOND-TEST)

END-EXEC.
DISPLAY ’Receive has completed’.

*
* Close the connection
*
EXEC TCP CLOSE

RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)
ERROR(SECOND-TEST)

END-EXEC.
DISPLAY ’Close has completed’.

* *
* Second Test *
* *

SECOND-TEST.
*
* Attempt to open another connection
*

MOVE 2000 TO LOCAL-PORT.
EXEC TCP OPEN FOREIGNPORT(0)

FOREIGNIP(0)
LOCALPORT(LOCAL-PORT)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
PASSIVE
WAIT(YES)
ERROR(ERROR-SPOT)

END-EXEC.
DISPLAY ’Second Open has completed’.

*
* Display the foreign IP address
*

MOVE RFOIP TO IPADDRESS.

Examples TCP/IP for VSE/ESA

518 z/VSE V5R2 TCP/IP Support

MOVE IPAD1 TO BYTE2.
MOVE HALFWORD TO PART1.
MOVE IPAD2 TO BYTE2.
MOVE HALFWORD TO PART2.
MOVE IPAD3 TO BYTE2.
MOVE HALFWORD TO PART3.
MOVE IPAD4 TO BYTE2.
MOVE HALFWORD TO PART4.
DISPLAY PART1 ’.’ PART2 ’.’ PART3 ’.’ PART4

*
* Send another piece of data
*
EXEC TCP SEND

FROM(BUFFER)
LENGTH(512)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)
ERROR(ERROR-SPOT)

END-EXEC.
DISPLAY ’Second Send has completed’.

*
* Close the second connection
*
EXEC TCP CLOSE

RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)
ERROR(ERROR-SPOT)

END-EXEC.
DISPLAY ’Second Close has completed’.

STOP RUN.

ERROR-SPOT.

STOP RUN.

PL/I Example
SAMPLE4: PROCEDURE OPTIONS(MAIN);

DCL IPADDRESS BINARY FIXED(31,0);
DCL MY-DESC CHAR(4);
DCL 1 RESULTS,

2 RECB CHAR(4),
2 RLOPORT BINARY FIXED(15,0),
2 RFOPORT BINARY FIXED(15,0),
2 RFOIP CHAR(4),
2 RCOUNT BINARY FIXED(15,0),
2 RFLAGS CHAR(1),
2 RCODE CHAR(1),
2 RTERMTY CHAR(40);

DCL MY-DESC CHAR(4);
DCL LOCAL-PORT BINARY FIXED(15,0);
DCL BUFFER CHAR(512);

/*---------------------------------------*
* *
* First Test *
* *
---------------------------------------/
/*
* Attempt to open a connection at 172.20.10.10 port 2000
*/

EXEC TCP OPEN FOREIGNPORT(2000)
FOREIGNIP(IPADDRESS)

Examples TCP/IP for VSE/ESA

Appendix A. Examples to be used with TCP/IP for VSE/ESA 519

LOCALPORT(0)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
ACTIVE
WAIT(YES)
ERROR(SECOND-TEST);

/*
* Receive a piece of data
*/

EXEC TCP RECEIVE
TO(BUFFER)
LENGTH(512)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)
ERROR(SECOND-TEST);

/*
* Close the connection
*/

EXEC TCP CLOSE
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)
ERROR(SECOND-TEST);

SECOND-TEST:
/*---------------------------------------*
* *
* Second Test *
* *

*
* Attempt to open a connection
*/

LOCAL-PORT = 2000;
EXEC TCP OPEN FOREIGNPORT(0)

FOREIGNIP(0)
LOCALPORT(LOCAL-PORT)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
PASSIVE
WAIT(YES)
ERROR(ERROR-SPOT);

/*
* Display the foreign IP address
*/

/* Need code here..... */

/*
* Receive a piece of data
*/

EXEC TCP SEND
FROM(BUFFER)
LENGTH(512)
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)
ERROR(ERROR-SPOT);

/*
* Close the connection
*/

EXEC TCP CLOSE
RESULTAREA(RESULTS)
DESCRIPTOR(MY-DESC)
WAIT(YES)

Examples TCP/IP for VSE/ESA

520 z/VSE V5R2 TCP/IP Support

ERROR(ERROR-SPOT);

RETURN;
END SAMPLE4;

Compiling Your Program
Once you have coded your application program and it has passed through the
preprocessor, it must then be submitted to the appropriate compiler. In many
instances, you will also need to pass the output from our pre-compiler through one
or more pre-compilers. The following examples shows one method for doing this.
They use the COBOL example COBSRC.C as shown in “COBOL Example” on page
517.

Compiling a COBOL Program for Batch
The first example shows how to compile source COBSRC.C (see “COBOL
Example” on page 517) stored in library PRD3.INGO and generating phase
SAMPLEB.

Step 1 - Main Job

The main job frame work will be the same for BATCH as well as CICS runtime
environment. It will call procedure COMSTP1.PROC stored in PRD3.INGO.
* $$ JOB JNM=COMPILE,CLASS=4,DISP=D
* $$ LST CLASS=W,DISP=D
* $$ PUN CLASS=4,DISP=I
// JOB COMPILE TCPIP PROGRAM
// LIBDEF *,SEARCH=(PRD3.INGO,PRD2.TCPIPC,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)
// EXEC PROC=COMSTP1
/&
* $$ EOJ

Step 2 - Processing EXEC TCP Statements

Procedure COMSTP1.PROC calls the TCP/IP preprocessor IPNETPRE and
generates a new JOB using utility program IESINSRT. This new JOB is named
CATAL1 and is aimed to catalog the TCP/IP preprocessor output as PRETCP.DAT
into PRD3.INGO. Then it calls procedure COMSTP2.PROC for further processing.
// ASSGN SYSIPT,SYSRDR
// EXEC IESINSRT
$ $$ JOB JNM=CATAL1,CLASS=4,DISP=D
$ $$ LST CLASS=W,DISP=D
$ $$ PUN CLASS=4,DISP=I
// JOB CATAL1 CATALOG OUTPUT OF THE TCPIP preprocessor
// LIBDEF *,SEARCH=(PRD3.INGO,PRD2.TCPIPC,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)
// LIBDEF *,CATALOG=PRD3.INGO
// EXEC LIBR

ACC S=PRD3.INGO
CATALOG PRETCP.DAT EOD=/(REPLACE=YES

* $$ END
// OPTION DECK
*
* Process EXEC TCP source for CICS
*
// EXEC IPNETPRE,SIZE=IPNETPRE,PARM=’LANG=COBOL,ENV=BATCH’
* $$ SLI MEM=COBSRC.C,S=PRD3.INGO
/*
// EXEC IESINSRT
/(
/*

Examples TCP/IP for VSE/ESA

Appendix A. Examples to be used with TCP/IP for VSE/ESA 521

// EXEC PROC=COMSTP2
#&
$ $$ EOJ
* $$ END

Step 3 - Compiling and Link-Editing

Procedure COMSTP2.PROC invokes the COBOL for VSE Compiler and calls the
Linkage Editor to link the OBJ deck generated by the compiler. The resulting phase
SAMPLEB is stored into PRD3.INGO as

// LIBDEF *,CATALOG=PRD3.INGO

is still active.
*
* Compile and link phase SAMPLEB for Batch
*
// OPTION CATAL

PHASE SAMPLEB,*
// EXEC IGYCRCTL,SIZE=IGYCRCTL

CBL TEST APOST
* $$ SLI MEM=PRETCP.DAT,S=PRD3.INGO
/*
// EXEC LNKEDT

Compiling a COBOL Program for CICS
The second example shows how to compile source COBSRC.C (see “COBOL
Example” on page 517) stored in library PRD3.INGO and generating phase
SAMPLEC.

Step 1 - Main Job

The main job frame work is the same as already shown for the BATCH
environment. It will call procedure COMSTP1.PROC stored in PRD3.INGO.
* $$ JOB JNM=COMPILE,CLASS=4,DISP=D
* $$ LST CLASS=W,DISP=D
* $$ PUN CLASS=4,DISP=I
// JOB COMPILE TCPIP PROGRAM
// LIBDEF *,SEARCH=(PRD3.INGO,PRD2.TCPIPC,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)
// EXEC PROC=COMSTP1
/&
* $$ EOJ

Step 2 - Processing EXEC TCP Statements

Procedure COMSTP1.PROC calls the TCP/IP preprocessor IPNETPRE and
generates a new JOB using utility program IESINSRT. This new JOB is named
CATAL1 and is aimed to catalog the TCP/IP preprocessor output as PRETCP.DAT
into PRD3.INGO. Then it calls procedure COMSTP2.PROC for further processing.
// ASSGN SYSIPT,SYSRDR
// EXEC IESINSRT
$ $$ JOB JNM=CATAL1,CLASS=4,DISP=D
$ $$ LST CLASS=W,DISP=D
$ $$ PUN CLASS=4,DISP=I
// JOB CATAL1 CATALOG OUTPUT OF THE TCPIP preprocessor
// LIBDEF *,SEARCH=(PRD3.INGO,PRD2.TCPIPC,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)
// LIBDEF *,CATALOG=PRD3.INGO
// EXEC LIBR

ACC S=PRD3.INGO
CATALOG PRETCP.DAT EOD=/(REPLACE=YES

* $$ END
// OPTION DECK

Examples TCP/IP for VSE/ESA

522 z/VSE V5R2 TCP/IP Support

*
* Process EXEC TCP source for CICS
*
// EXEC IPNETPRE,SIZE=IPNETPRE,PARM=’LANG=COBOL,ENV=CICS’
* $$ SLI MEM=COBSRC.C,S=PRD3.INGO
/*
// EXEC IESINSRT
/(
/*
// EXEC PROC=COMSTP2
#&
$ $$ EOJ
* $$ END

Step 3 - Processing EXEC CICS Statements

As the TCP/IP preprocessor has generated EXEC CICS statements where
appropriate, for example to allocate storage or to WAIT according to the CICS
programming model we have to invoke the CICS preprocessor before calling the
COBOL compiler.

As shown in step 2 already, COMSTP2.PROC again dynamically generates a new
job named CATAL2. It is aimed to store the output from the CICS preprocessor as
PRECICS.DAT before calling COMSTP3.PROC for the final compile and link-edit
steps.
// ASSGN SYSIPT,SYSRDR
// EXEC IESINSRT
$ $$ JOB JNM=CATAL2,CLASS=4,DISP=D
$ $$ LST CLASS=W,DISP=D
$ $$ PUN CLASS=4,DISP=I
// JOB CATALOG OUTPUT OF THE CICS preprocessor
// LIBDEF *,SEARCH=(PRD3.INGO,PRD2.TCPIPC,PRD1.BASE,PRD2.PROD,PRD2.SCEEBASE)
// LIBDEF *,CATALOG=PRD3.INGO
// EXEC LIBR

ACC S=PRD3.INGO
CATALOG PRECICS.DAT EOD=/(REPLACE=YES

* $$ END
*
* Starting CICS command preprocessor
*
// EXEC DFHECP1$,PARM=’CICS’
* $$ SLI MEM=PRETCP.DAT,S=PRD3.INGO
/*
// EXEC IESINSRT
/(
/*
// EXEC PROC=COMSTP3
#&
$ $$ EOJ
* $$ END

Step 4 - Compiling and Link-Editing

Procedure COMSTP3.PROC invokes the COBOL for VSE Compiler and calls the
Linkage Editor to link the OBJ deck generated by the compiler. The resulting phase
SAMPLEC is stored into PRD3.INGO as

// LIBDEF *,CATALOG=PRD3.INGO

is still active.
*
* Compile and link phase SAMPLEC for CICS
*

Examples TCP/IP for VSE/ESA

Appendix A. Examples to be used with TCP/IP for VSE/ESA 523

// OPTION CATAL
PHASE SAMPLEC
INCLUDE DFHELII

// EXEC IGYCRCTL,SIZE=IGYCRCTL
CBL TEST APOST

* $$ SLI MEM=PRECICS.DAT,S=PRD3.INGO
/*
// EXEC LNKEDT

Examples TCP/IP for VSE/ESA

524 z/VSE V5R2 TCP/IP Support

Appendix B. Debugging Facility for EZASMI and EZASOKET
Interfaces (EZAAPI Trace)

The EZA TCP/IP HLL APIs (that is the EZASMI macro and the EZASOKET call
interface) have a trace facility integrated.

This trace facility is available with TCP/IP for VSE/ESA and with Linux Fast Path.
It generates one (or more) trace messages for each EZASMI or EZASOKET socket
call. It allows to trace these calls either for all partitions in the system or for
selected partitions and dynamic classes. Trace messages may be directed to
SYSLOG or to SYSLST.

This trace facility is simply referred to as "EZAAPI trace".

Requirements for Usage

The EZAAPI trace needs module EZASOHTR loaded into the SVA (which is the
default with z/VSE).

Format

The EZAAPI trace can be activated and controlled with the AR command EZAAPI.

�� EZAAPI

�

�

?
TRACE

,ALL ,SYSLST
TRACE=ON

, ,SYSLOG
,LOGLST

,PART=(part)
,

,CLASS=(class)
,OPTIONS='string'

TRACE=OFF
TRACE=END

��

Parameters

EZAAPI ?
Display the command syntax

EZAAPI TRACE
Display current trace settings

EZAAPI TRACE=ON
Define and start or resume starting

(default with no trace defined yet)
Define and start trace with defaults ALL and SYSLST

(default after EZAAPI TRACE=OFF)
Resume trace

All Define and start trace for all partitions in the system

© Copyright IBM Corp. 1997, 2014 525

PART=(part,..)
Define and start trace for selected partitions

CLASS=(class,..)
Define and start trace for selected dynamic classes

OPTIONS='string'
Set special trace options. Can be a hex character string with a
maximum length of 8 bytes. OPTIONS=’’resets and clears an
existing OPTION specification. It is up to the TCP/IP interface
routines whether the OPTIONS string is being used. Refer to the
appropriate product documentation.

EZAAPI TRACE=OFF
Suspend current trace

EZAAPI TRACE=END
End tracing and clear all trace definitions

SYSLST
trace output is send to SYSLST (if SYSLST is assigned)

SYSLOG
trace output is send to SYSLOG

LOGLST
trace output is send to SYSLOG and SYSLST.

Output

The EZAAPI trace generates self-explanatory messages.

When the EZAAPI trace is started, the next call to the EZA interface (EZASMI or
EZASOKET) will trigger message:
EZA001I EZASOH99 (Level *date*) started

Every call to the EZA interface will then produce
1. one start message, like

EZA002I >>> SOCKET processing starts ...

2. eventually some more messages showing additional input.
EZA033I .. with AF/SOCTYPE/PROTO=02/01/00

3. and one (or more) completion messages.
EZA003I SOCKET returns with RC/ERRNO=00000/00000

If TCP/IP for VSE/ESA is being used with your EZA socket application, activation
of the EZAAPI trace automatically activates the BSD-C trace of TCP/IP for
VSE/ESA (called $SOCKDBG trace).

Debugging Facility for EZASMI / EZASOKET Interfaces

526 z/VSE V5R2 TCP/IP Support

Appendix C. Advanced OSAX Device Driver Configuration

This appendix provides an overview of advanced OSAX device driver
configuration with z/VSE.

Configurable QDIO Buffers
The number of QDIO input queue buffers can be configured.

You might need this, if you want to extend z/VSE solutions by exploiting Linux on
System z using a HiperSockets network for high-speed TCP/IP connectivity
between z/VSE and Linux on System z. The best performance can be achieved, if
data is always delivered successfully without the need of resending. Because
HiperSockets transfers data synchronously, successful delivery of data depends on
free QDIO (Queued Direct I/O) input buffers of the target system. z/VSE uses a
default of eight QDIO input buffers. This might not always be sufficient, especially
if you have increased the number of QDIO input buffers on the Linux on System z
system.

To configure the number of QDIO input buffers for HiperSockets (CHPID type
IQD) and OSA-Express devices (CHPID types OSD and OSX), the configuration
skeleton SKOSACFG in ICCF library 59 can be used. Additional QDIO input
buffers might require to increase the size of the TCP/IP partition.

Note: z/VSE needs 1 MB of 31-bit partition getvis space per link (for 8 input
queue buffers). For each additional input queue buffer, z/VSE needs 64 K
(OSA-Express) and up to 64 K (HiperSockets - depending on your IOCDS
definition) additional 31-bit partition getvis space. Therefore, if you increase the
count of input queue buffers, you might also have to increase the partition getvis
space. Because the input queue buffers are PFIXed, you also have to increase the
above value of the JCL SETPFIX LIMIT statement in your TCP/IP startup job
accordingly.

VLAN Support
Virtual LAN (VLAN) support allows a TCP/IP stack to register a specific VLAN
identifier for a Layer 2 or Layer 3 link for both IPv4 or IPv6. There are two ways
to configure your system to use VLAN:
v With TCP/IP use the IPv6/VSE LINK command. For details refer to the

IPv6/VSE Installation Guide at:
http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip

v Without TCP/IP use phase IJBOCONF containing the VLANs to be used with
your OSAX devices.

A virtual LAN allows a physical network to be divided administratively into
separate logical networks. These logical networks operate as if they are physically
independent of each other.

z/VSE provides VLAN support for OSA Express (CHPID type OSD and OSX) and
HiperSockets™ devices.
v In a Layer 3 configuration, VLANs can be transparently used by IPv6/VSE and

TCP/IP for VSE/ESA.

© Copyright IBM Corp. 1997, 2014 527

http://www.ibm.com/systems/z/os/zvse/documentation/#tcpip

v If you wish to configure VLANs for OSA-Express (CHPID type OSD and OSX)
devices in a Layer 2 configuration that carries IPv6 traffic, you require
IPv6/VSE.

Global VLAN Support:

v One Global VLAN can be defined per link.
v If you define a Global VLAN, you cannot define other VLANs for the same link.

528 z/VSE V5R2 TCP/IP Support

Index

A
abend codes

E20L 480
E20T 480

ACCEPT (call) 201
ACCEPT (macro) 296
accept()

use in server 496
accept() library function 85
accessibility xv
address

family (domain) 500
structures 500

address and name information error
description

TCP/IP call function
gai_strerror() 106

address, host 111
ADDRINFO parameter on call socket

interface
on FREEADDRINFO 211

ADDRINFO parameter on macro socket
interface

on FREEADDRINFO 306
AF parameter on call socket interface

on SOCKET 275
AF parameter on macro socket interface

on NTOP 351
on PTON 353
on SOCKET 376

AF_INET domain
example 96
socket descriptor created in 96

AF_INET domain parameter 500
AF-INET6 parameter on call socket

interface
on PTON 253

aio_cancel() library function 88
aio_error() library function 89
aio_read() library function 90
aio_return() library function 92
aio_suspend() library function 93
aio_write() library function 94
ALTER 453
APITYPE parameter on macro socket

interface
on INITAPI 346

AREA parameter on macro socket
interface

on GSKFREEMEM 335
ASCII data format 507
ASYNC parameter on macro socket

interface
on INITAPI 346

asynch I/O op., retrieve error status 89
asynch I/O op., retrieve status 92
asynch I/O request, cancel 88
asynch I/O request, wait for 93
asynch read from socket 90
asynch write to a socket 94
asynchronous ECB routine 294

asynchronous exit routine 294
asynchronous macro, coding

example 294
AUTHTYPE parameter on macro socket

interface
on GSKINIT 337

AUTOLPR and CICS RCF 512
automatic startup 475
autonomous FTP 511

B
BACKLOG parameter on call socket

interface
on LISTEN 250

BACKLOG parameter on macro socket
interface

on LISTEN 350
Basic Security Manager (BSM) 23, 43
big endian 500
bind ()

use in server 496
BIND (call) 204
BIND (macro) 298
bind() library function 96
BIT-MASK parameter on call socket

interface
on EZACIC06 282

BIT-MASK-LENGTH parameter on call
socket interface

on EZACIC06 282
BLANKING.HTML 13
BSM (Basic Security Manager) 23, 43
BUF parameter on call socket interface

on READ 254
on RECV 257
on RECVFROM 258
on SEND 267
on SENDTO 268
on WRITE 278

BUF parameter on macro socket interface
on GETIBMOPT 321
on GSKSSOCREAD 343
on GSKSSOCWRITE 345
on READ 354
on RECV 357
on RECVFROM 358
on SEND 367
on SENDTO 369
on WRITE 382

buffers
data stored in 164
receive data and store in 165
receive messages and store in 167,

168

C
cache file, VSAM 469

CALAREA parameter on macro socket
interface

on CANCEL 300
CALL Instruction Interface for Assembler,

PL/1, and COBOL 199
Call Instructions for Assembler, PL/1,

and COBOL Programs
ACCEPT 201
BIND 204
CLOSE 206
CONNECT 207
EZACIC04 281
EZACIC05 281
EZACIC06 282
EZACIC08 284
EZACIC09 286
FCNTL 209
FREEADDRINFO 211
GETADDRINFO 211
GETCLIENTID 218
GETHOSTBYADDR 219
GETHOSTBYNAME 221
GETHOSTID 223
GETHOSTNAME 223
GETIBMOPT 224
GETNAMEINFO 225
GETPEERNAME 229
GETSOCKNAME 230
GETSOCKOPT 232
GIVESOCKET 234
GSKFREEMEM 236
GSKGETCIPHINF 237
GSKGETDNBYLAB 238
GSKINIT 239
GSKSSOCCLOSE 240
GSKSSOCINIT 241
GSKSSOCREAD 244
GSKSSOCRESET 245
GSKSSOCWRITE 245
GSKUNINIT 246
INITAPI 247
IOCTL 249
LISTEN 250
NTOP 251
PTON 253
READ 254
READV 255
RECV 257
RECVFROM 258
SELECT 261
SELECTEX 265
SEND 267
SENDTO 268
SETSOCKOPT 270
SHUTDOWN 274
SOCKET 275
TAKESOCKET 276
TERMAPI 278
WRITE 278
WRITEV 279

callable functions 85

© Copyright IBM Corp. 1997, 2014 529

callback routines 429
CANCEL (macro) 300
CANNLEN parameter on call socket

interface
on GETADDRINFO 211

CANNLEN parameter on macro socket
interface

on GETADDRINFO 307
CAROOTS parameter on macro socket

interface
on GSKINIT 337

CERTINFO parameter on macro socket
interface

on GSKSSOCINIT 339
CHAR-MASK parameter on call socket

interface
on EZACIC06 282

CHAR-STRING-LENGTH parameter on
call socket interface

on EZACIC06 282
child server 494
CICS 475

starting automatically 475
starting manually 475
starting with program link 480

CICS Report Controller Feature (RCF)
and AUTOLPR 512

CICS Report Controller Feature (RCF)
and GPS 513

CIPHLEVEL parameter on macro socket
interface

on GSKGETCIPHINF 335
client

incoming requests, preparing server
for 158

socket calls used in 494
CLIENT parameter on call socket

interface
on GETCLIENTID 218
on GIVESOCKET 234
on TAKESOCKET 276

CLIENT parameter on macro socket
interface

on GETCLIENTID 314
on GIVESOCKET 333
on TAKESOCKET 379

CLOSE (call) 206
CLOSE (macro) 301

use in child server 494
use in client 494
use in server 496

close() library function 99
COMMAND parameter on call socket

interface
on EZACIC06 282
on GETIBMOPT 224
on IOCTL 249

COMMAND parameter on macro
interface

on FCNTL 209, 305
on GETIBMOPT 321
on IOCTL 348

COMMAREA 491
compile cobol for batch 521
compile cobol for cics 522
concurrent server 493

writing your own 496

Configurable QDIO buffers 527
configuration macro 446
configuration transaction 451
configure openssl code 424, 425
configuring CICS TCP/IP 441
configuring TCP/IP for VSE/ESA

configuring CICS 10
configuring TCP/IP using the

IUI-based configuration dialog 16
supplying the product key 5

CONNECT (call) 207
CONNECT (macro) 302
connect()

use in client 494
connect() library function 100
connection

duplex, shutting down 189
connection between sockets 100
connection request 85
conversion routines 507
convert Internet address format from

binary to text
TCP/IP call function

inet_ntop() 154
convert Internet address format from text

to binary
TCP/IP call function

inet_pton() 155
COPY 456
creating

socket 190
socket pair 193

CSKL transaction 502
current host address 115
CUSTDEF phase 6

D
data

buffers, stored in 164
receiving 165
sending on socket 179
store in buffers 165

data conversion 507
data set

host information 181
network information 182
network services, opening 183
protocol, opening 182

data structures, external
configuration data set 487
global work area 488
listener control area 492
parameter list for EZACIC20 491

data translation, socket interface 280
ASCII to EBCDIC 281
bit-mask to character 282
character to bit-mask 282
EBCDIC to ASCII 281

datagram
sending on socket 176

Debugging Facility for EZASMI /
EZASOKET Interfaces 525

decimal host address
from network number 153

DEFINE 458, 459
defining customer information 6

DELETE 463
demonstration mode 4
descriptor, socket 96
Destination Control Table 443
Device Driver Configuration 527
DFHPCTIP 10
DFHPPTIP 10
disability xv
DISPLAY 465
DNAME parameter on macro socket

interface
on GSKSSOCINIT 339

DNS
EZACIC25, adding to RDO 442

domain
address family 500

Domain Name Server Cache 469
cache file 469
EZACICR macro 469
initialization module, creating 471

DOMAIN parameter on call socket
interface

on GETCLIENTID 218
on GIVESOCKET 234
on TAKESOCKET 276

DOMAIN parameter on macro socket
interface

on GIVESOCKET 333
on TAKESOCKET 379

DSTADDR parameter on macro socket
interface

on NTOP 351
on PTON 353

DSTLEN parameter on macro socket
interface

on NTOP 351
on PTON 353

dual stack support 41
duplex connection 189

E
EBCDIC data format 507
ECB parameter on macro socket interface

on ACCEPT 296
on BIND 298
on CANCEL 300
on CLOSE 301
on CONNECT 302
on FCNTL 305
on GETCLIENTID 314
on GETHOSTID 319
on GETHOSTNAME 320
on GETPEERNAME 326
on GETSOCKNAME 328
on GETSOCKOPT 330
on GIVESOCKET 333
on IOCTL 348
on LISTEN 350
on READ 354
on RECV 357
on SELECT 360
on SEND 367
on SETSOCKOPT 371
on SHUTDOWN 375
on SOCKET 376
on TAKESOCKET 379

530 z/VSE V5R2 TCP/IP Support

ECB parameter on macro socket
interface (continued)

on WRITE 382
EDCT001I message 70
EDCT002I message 70
EDCT003I message 70
EDCV001I message 70, 85
EDCV002I message 70
endhostent() TCP/IP function 103
endnetent() TCP/IP function 103
endprotoent() TCP/IP function 103
endservent() TCP/IP function 104
environmental support 483
ERETMSK parameter on call interface, on

SELECT 261
ERETMSK parameter on call socket

interface
on SELECT 261
on SELECTEX 265

ERETMSK parameter on macro socket
interface

on SELECT 360
on SELECTEX 365

ERRNO parameter on call socket
interface

on ACCEPT 201
on BIND 204
on CLOSE 206
on CONNECT 207
on FCNTL 209
on FREEADDRINFO 211
on GETADDRINFO 211
on GETCLIENTID 218
on GETHOSTNAME 223
on GETNAMEINFO 225
on GETPEERNAME 229
on GETSOCKNAME 230
on GETSOCKOPT 232
on GIVESOCKET 234
on INITAPI 247
on IOCTL 249
on LISTEN 250
on NTOP 251
on PTON 253
on READ 254
on READV 255
on RECV 257
on RECVFROM 258
on SELECT 261
on SELECTEX 265
on SEND 267
on SENDTO 268
on SETSOCKOPT 270
on SHUTDOWN 274
on SOCKET 275
on TAKESOCKET 276
on WRITE 278
on WRITEV 279

ERRNO parameter on macro socket
interface

on ACCEPT 296
on BIND 298
on CANCEL 300
on CLOSE 301
on CONNECT 302
on FCNTL 305
on FREEADDRINFO 306

ERRNO parameter on macro socket
interface (continued)

on GETADDRINFO 307
on GETCLIENTID 314
on GETHOSTNAME 320
on GETIBMOPT 321
on GETNAMEINFO 322
on GETPEERNAME 326
on GETSOCKNAME 328
on GETSOCKOPT 330
on GIVESOCKET 333
on GSKFREEMEM 335
on GSKGETCIPHINF 335
on GSKGETDNBYLAB 336
on GSKINIT 337
on GSKSSOCCLOSE 338
on GSKSSOCINIT 339
on GSKSSOCREAD 343
on GSKSSOCRESET 344
on GSKSSOCWRITE 345
on GSKUNINIT 345
on INITAPI 346
on IOCTL 348
on LISTEN 350
on NTOP 351
on PTON 353
on READ 354
on READV 355
on RECV 357
on RECVFROM 358
on SELECT 360
on SELECTEX 365
on SEND 367
on SENDTO 369
on SETSOCKOPT 371
on SHUTDOWN 375
on SOCKET 376
on TAKESOCKET 379
on WRITE 382
on WRITEV 383

ERRNO values
sorted by name 74
sorted by value 74

ERROR parameter on macro socket
interface

on ACCEPT 296
on BIND 298
on CANCEL 300
on CLOSE 301
on CONNECT 302
on FCNTL 305
on FREEADDRINFO 306
on GETADDRINFO 307
on GETCLIENTID 314
on GETHOSTBYADDR 315
on GETHOSTBYNAME 317
on GETHOSTID 319
on GETHOSTNAME 320
on GETIBMOPT 321
on GETNAMEINFO 322
on GETPEERNAME 326
on GETSOCKNAME 328
on GETSOCKOPT 330
on GIVESOCKET 333
on INITAPI 346
on IOCTL 348
on LISTEN 350

ERROR parameter on macro socket
interface (continued)

on NTOP 351
on PTON 353
on READ 354
on READV 355
on RECV 357
on RECVFROM 358
on SELECT 360
on SELECTEX 365
on SEND 367
on SENDTO 369
on SETSOCKOPT 371
on SHUTDOWN 375
on SOCKET 376
on TAKESOCKET 379, 381
on WRITE 382
on WRITEV 383

ESNDMSK parameter on call socket
interface

on SELECT 261
on SELECTEX 265

ESNDMSK parameter on macro socket
interface

on SELECT 360
on SELECTEX 365

EWOULDBLOCK error return, call
interface calls

RECV 257
RECVFROM 258

EXEC CICS LINK 480
EXEC CICS RETRIEVE 501
EXEC CICS START 501
Executing C Programs 84
EZAAPI trace 525
EZAC (configuration transaction) 451
EZAC start screen 476
EZACIC04, call interface, EBCDIC to

ASCII translation 281
EZACIC05, call interface, ASCII to

EBCDIC translation 281
EZACIC06, call interface, bit-mask

translation 282
EZACIC08, HOSTENT structure

interpreter utility 284
EZACIC09, call interface 286
EZACIC20, parameter list 491
EZACIC25 473
EZACICD (configuration macro) 446
EZACICR macro 469, 471
EZACICSE program 505
EZACICxx programs

defining in CICS 442
EZACIC25

Domain Name Server Cache 469
EZAO transaction

manual startup/shutdown 475
EZASMI , programming interface 60
EZASMI, debugging facility 525
EZASOKET, debugging facility 525
EZASOKET, programming interface 60
EZASTRUE program 83
EZAT transaction 83
EZATRUE task-related-user-exit 83
EZBREHST macro

use of 211, 307

Index 531

F
Fast Path to Linux on System z 387
Fast Path to Linux 387
FCNTL (call) 209
FCNTL (macro) 305
fcntl() library function 104
files, defining to RDO 443
FLAGS parameter on call socket interface

on GETNAMEINFO 225
on RECV 257
on RECVFROM 258
on SEND 267
on SENDTO 268

FLAGS parameter on macro socket
interface

on GETNAMEINFO 322
FNDELAY flag on call interface, on

FCNTL 209
free addrinfo storage

TCP/IP call function
freeaddrinfo() 105

free the memory allocated by
if_nameindex()

TCP/IP call function
if_freenameindex() 148

FREEADDRINFO (call) 211
FREEADDRINFO (macro) 306
freeaddrinfo() TCP/IP function 105
Functions

ALTER 453
COPY 456
DEFINE 458, 459
DELETE 463

G
gai_strerror() TCP/IP function 106
get address information

TCP/IP call function
getaddrinfo() 106

get IBM TCP/IP image
TCP/IP call function

getibmopt() 116
get identifier for calling application 110
get name information

TCP/IP call function
getnameinfo() 117

get socket numbers to extend beyond the
default range

TCP/IP call function
maxdesc() 159

get the name of the peer connected to a
socket

TCP/IP call function
getpeername() 121

GETADDRINFO (call) 211
GETADDRINFO (macro) 307
getaddrinfo() TCP/IP function 106
GETCLIENTID (call) 218
GETCLIENTID (macro) 314
getclientid()

use in server 496, 501
getclientid() library function 110
GETHOSTBYADDR (call) 219
GETHOSTBYADDR (macro) 315
gethostbyaddr() library function 111

GETHOSTBYNAME (call) 221
GETHOSTBYNAME (macro) 317
gethostbyname() library function 113
gethostent() TCP/IP function 114
GETHOSTID (call) 223
GETHOSTID (macro) 319
gethostid() library function 115
GETHOSTNAME (call) 223
GETHOSTNAME (macro) 320
gethostname() library function 115
GETIBMOPT (call) 224
GETIBMOPT (macro) 321
getibmopt() TCP/IP function 116
GETNAMEINFO (call) 225
GETNAMEINFO (macro) 322
getnameinfo() TCP/IP function 117
getnetbyaddr() TCP/IP function 119
getnetbyname() TCP/IP function 120
getnetent() TCP/IP function 121
GETPEERNAME (call) 229
GETPEERNAME (macro) 326
getpeername() TCP/IP function 121
getprotobyname() TCP/IP function 123
getprotobynumber() TCP/IP

function 123
getprotoent() TCP/IP function 124
getservbyname() TCP/IP function 125
getservbyport() TCP/IP function 125
getservent() TCP/IP function 126
GETSOCKNAME (call) 230
GETSOCKNAME (macro) 328
getsockname() library function 127
GETSOCKOPT (call) 232
GETSOCKOPT (macro) 330
getsockopt() library function 128
GIVESOCKET (call) 234
GIVESOCKET (macro) 333
givesocket()

use in server 496, 501
givesocket() library function 133
Global VLAN 527
GPS and CICS RCF 513
gsk_free_memory() SSL function 135
gsk_get_cipher_info() SSL function 135
gsk_get_dn_by_label() SSL function 137
gsk_initialize() SSL function 137
gsk_secure_soc_close() SSL function 139
gsk_secure_soc_init() SSL function 140
gsk_secure_soc_read() SSL function 143
gsk_secure_soc_reset() SSL function 144
gsk_secure_soc_write() SSL function 145
gsk_uninitialize() SSL function 146
gsk_user_set() SSL function 146
GSKFREEMEM (call) 236
GSKFREEMEM (macro) 335
GSKGETCIPHINF (call) 237
GSKGETCIPHINF (macro) 335
GSKGETDNBYLAB (call) 238
GSKGETDNBYLAB (macro) 336
GSKINIT (call) 239
GSKINIT (macro) 337
GSKSSOCCLOSE (call) 240
GSKSSOCCLOSE (macro) 338
GSKSSOCINIT (call) 241
GSKSSOCINIT (macro) 339
GSKSSOCREAD 343
GSKSSOCREAD (call) 244

GSKSSOCRESET (call) 245
GSKSSOCRESET (macro) 344
GSKSSOCWRITE (call) 245
GSKSSOCWRITE (macro) 345
GSKUNINIT (call) 246
GSKUNINIT (macro) 345

H
HANDSHAKE parameter on macro

socket interface
on GSKSSOCINIT 339

hardware crypto support 33, 434, 435
HINTS parameter on call socket interface

on GETADDRINFO 211
HINTS parameter on macro socket

interface
on GETADDRINFO 307

HiperSockets 33
HiperSockets Completion Queue 387
host address 111
host byte order

short integer translated to 160
translating long integer to 160

host information data set
opening 181

host information data sets 103
host name 113
host name entry 114
HOST parameter on call socket interface

on GETNAMEINFO 225
HOST parameter on macro socket

interface
on GETNAMEINFO 322

HOSTADDR parameter on call socket
interface

on GETHOSTBYADDR 219
HOSTADDR-SEQ paramter on call socket

interface
on EZACIC08 284

HOSTADR parameter on macro socket
interface

on GETHOSTBYADDR 315
HOSTALIAS-SEQ paramter on call socket

interface
on EZACIC08 284
on EZACIC09 286

HOSTENT parameter on call socket
interface

on GETHOSTBYADDR 219
on GETHOSTBYNAME 221

HOSTENT parameter on macro socket
interface

on GETHOSTBYADDR 315
on GETHOSTBYNAME 317

HOSTENT structure interpreter
parameters

on EZACIC08 284
HOSTLEN parameter on call socket

interface
on GETNAMEINFO 225

HOSTLEN parameter on macro socket
interface

on GETNAMEINFO 322
HOW parameter on call socket interface

on SHUTDOWN 274

532 z/VSE V5R2 TCP/IP Support

HOW parameter on macro socket
interface

on SHUTDOWN 375
HTMLINST.Z 13
htonl() library function 147
htons() library function 147

I
IDENT parameter on call interface,

INITAPI call 247
IDENT parameter on macro socket

interface
on INITAPI 346

if_freenameindex() TCP/IP function 148
if_indextoname() TCP/IP function 148
if_nameindex() TCP/IP function 149
if_nametoindex() TCP/IP function 150
immediate=no 478
immediate=yes 478
IN-BUFFER parameter on call socket

interface
on EZACIC05 281

inet_addr() library function 150
inet_lnaof() library function 151
inet_makeaddr() library function 152
inet_netof() library function 152
inet_network() library function 153
inet_ntoa() library function 153
inet_ntop() TCP/IP function 154
inet_pton() TCP/IP function 155
InfoPrint Manager

customizing 31
InfoPrint Manager support 29
INITAPI (call) 247
INITAPI (macro) 346
initapi() TCP/IP library function 156
initialize socket API for subtask 156
installing CICS TCP/IP 441
installing product keys 6
integer

short translated to host byte
order 160

translating 147
translating long to host byte

order 160
unsigned short 147

Internet address
host 152, 153
into network byte order 150

interval control 502
introducing socket programming 47
IOCTL (call) 249
IOCTL (macro) 348
ioctl() library function 156
IOV parameter on macro socket interface

on READV 355
IOVCNT parameter on macro socket

interface
on READV 355

IP-ADDRESS parameter on call socket
interface

on NTOP 251
on PTON 253

IPNCSD.Z 12
IPNCSDUP.Z 12
IPv6/VSE 41

IPv6/VSE (continued)
user access key 43

IPv6/VSE Documentation 43
IPv6/VSE Installation Requirements 43
IPv6/VSE product key 43
iterative server

socket calls in 498

K
KEYLABEL parameter on macro socket

interface
on GSKGETDNBYLAB 336

KEYRING parameter on macro socket
interface

on GSKINIT 337

L
LE enabling, definition of 49
LENGTH parameter on call socket

interface
on EZACIC04 281
on EZACIC05 281

link, program 480
Linux Fast Path

administrative tasks 411
communication flow 389
configuring LFP 397
Linux Fast Path

overview 387
preparing to Use 393
prerequisites 388
restrictions 389
starting and stopping LFP 407
typical configuration in a z/VM

environment (example of) 390
typical configuration via HS CQ

(example of) 391
Linux Fast Path (LPF) 387
listen ()

use in server 496
LISTEN (call) 250
LISTEN (macro) 350
listen() library function 158
Listener

control area 492
input format 502
monitor control table 444
output format 504
security module 505
starting and stopping 502, 505
user-written 483

listener/server call sequence 494
listener/server, socket call (general) 496
little endian 500
local network address

into host byte order 151
long integer, translating 147

M
macro instructions for assembler

programs
ACCEPT 296
BIND 298

macro instructions for assembler
programs (continued)

CANCEL 300
CLOSE 301
CONNECT 302
FCNTL 305
FREEADDRINFO 306
GETADDRINFO 307
GETCLIENTID 314
GETHOSTBYADDR 315
GETHOSTBYNAME 317
GETHOSTID 319
GETHOSTNAME 320
GETIBMOPT 321
GETNAMEINFO 322
GETPEERNAME 326
GETSOCKNAME 328
GETSOCKOPT 330
GIVESOCKET 333
GSKFREEMEM 335
GSKGETCIPHINF 335
GSKGETDNBYLAB 336
GSKINIT 337
GSKSSOCCLOSE 338
GSKSSOCINIT 339
GSKSSOCREAD 343
GSKSSOCRESET 344
GSKSSOCWRITE 345
GSKUNINIT 345
INITAPI 346
IOCTL 348
LISTEN 350
NTOP 351
PTON 353
READ 354
READV 355
RECV 357
RECVFROM 358
SELECT 360
SELECTEX 365
SEND 367
SENDTO 369
SETSOCKOPT 371
SHUTDOWN 375
SOCKET 376
TAKESOCKET 379
TASK 381
TERMAPI 381
WRITE 382
WRITEV 383

macro, EZACICR 469
manual startup 475
map a network interface index to its

corresponding name
TCP/IP call function

if_indextoname() 148
map a network interface name to its

corresponding index
TCP/IP call function

if_nametoindex() 150
maxdesc() TCP/IP function 159
MAXSNO parameter on call socket

interface
on INITAPI 247

MAXSNO parameter on macro socket
interface

on INITAPI 346

Index 533

MAXSOC parameter on call socket
interface

on INITAPI 247
on SELECT 261
on SELECTEX 265

MAXSOC parameter on macro socket
interface

on INITAPI 346
on SELECT 360
on SELECTEX 365

messages
receive and store in buffers 167, 168
sending on socket 177

migration considerations 6
monitor activity on socket

descriptors 161
MQSeries 84

N
NAME parameter on call socket interface

on ACCEPT 201
on BIND 204
on CONNECT 207
on GETCLIENTID 218
on GETHOSTBYNAME 221
on GETHOSTNAME 223
on GETNAMEINFO 225
on GETPEERNAME 229
on GETSOCKNAME 230
on GIVESOCKET 234
on RECVFROM 258
on SENDTO 268
on TAKESOCKET 276

NAME parameter on macro socket
interface

on ACCEPT 296
on BIND 298
on CONNECT 302
on GETHOSTBYNAME 317
on GETHOSTNAME 320
on GETNAMEINFO 322
on GETPEERNAME 326
on GETSOCKNAME 328
on RECVFROM 358
on SENDTO 369

name, binding to a socket 96
NAMELEN parameter on call socket

interface
on GETHOSTBYNAME 221
on GETHOSTNAME 223
on GETNAMEINFO 225

NAMELEN parameter on macro socket
interface

on GETHOSTBYNAME 317
on GETHOSTNAME 320
on GETNAMEINFO 322

NBYTE parameter on call socket interface
on READ 254
on RECV 257
on RECVFROM 258
on SEND 267
on SENDTO 268
on WRITE 278

NBYTE parameter on macro socket
interface

on GSKSSOCREAD 343

NBYTE parameter on macro socket
interface (continued)

on GSKSSOCWRITE 345
on READ 354
on RECV 357
on RECVFROM 358
on SEND 367
on SENDTO 369
on WRITE 382

network
services information data set,

opening 183
network byte order 147, 150, 500
network entry 120
network information data set 103

opening 182
network name 119
network number

getting decimal host address 153
getting Internet host address 152

network protocol information data
sets 103

network service
by name 125
by port 125

network services information data sets
TCP/IP call function

endservent() 104
NODE parameter on call socket interface

on GETADDRINFO 211
NODE parameter on macro socket

interface
on GETADDRINFO 307

NODELEN parameter on call socket
interface

on GETADDRINFO 211
NODELEN parameter on macro socket

interface
on GETADDRINFO 307

NS parameter on macro socket interface
on ACCEPT 296

ntohl() library function 160
ntohs() library function 160
NTOP (call) 251
NTOP (macro) 351
NTOP-FAMILY parameter on call socket

interface
on NTOP 251

O
OpenSSL 423, 424, 425, 427, 428, 429,

430, 431, 432, 433, 434, 435, 436
OpenSSL include files 427
OpenSSL passed socket number 428, 430
OpenSSL Programming 427, 428, 429,

430, 431, 432, 433, 434, 435, 436
OpenSSL runtime variables 423
OpenSSL unique features 423
OPTION SYSPARM 84
options, socket 183
OPTLEN parameter on call socket

interface
on GETSOCKOPT 232
on SETSOCKOPT 270

OPTLEN parameter on macro socket
interface

on GETSOCKOPT 330
on SETSOCKOPT 371

OPTNAME parameter on call socket
interface

on GETSOCKOPT 232
on SETSOCKOPT 270

OPTNAME parameter on macro socket
interface

on GETSOCKOPT 330
on SETSOCKOPT 371

OPTVAL parameter on call socket
interface

on GETSOCKOPT 232
on SETSOCKOPT 270

OPTVAL parameter on macro socket
interface

on GETSOCKOPT 330
on SETSOCKOPT 371

OSA Express support 33
OSAX 527
OUT-BUFFER parameter on call socket

interface
on EZACIC04 281

P
partition startup 9
passing sockets 496
password protected key ring 431
PASSWORD.HTML 13
performance and tuning

considerations 35
phase

CUSTDEF 6
PRODKEYS 6

PL/I programs, required statement 200
PLT 475
PLT entry 445
poll() TCP/IP function 161
port numbers

definition 500
ports

numbers 500
Preparation and Setup for SSL 84
PRESENTABLE-ADDRESS parameter on

call socket interface
on NTOP 251
on PTON 253

PRESENTABLE-ADDRESS-LEN
parameter on call socket interface

on NTOP 251
on PTON 253

PRODKEYS phase 6
product key 4, 5
program link 480
Program List Table 475
PROTO parameter on call socket interface

on SOCKET 275
PROTO parameter on macro socket

interface
on SOCKET 376

protocol
getting name by name 123
getting name by number 123
getting next entry 124

534 z/VSE V5R2 TCP/IP Support

protocol (continued)
information data set, opening 182

PTON (call) 253
PTON (macro) 353

Q
QDIO Buffers 527

R
RDO

configure the socket interface
(EZAC) 441

READ (call) 254
READ (macro) 354
read()

use in child server 494
use in client 494

read() library function 162
reading

buffers, data stored in 164
data, and store in buffers 164

READV (call) 255
READV (macro) 355
readv() TCP/IP function 164
REASCODE parameter on macro socket

interface
on GSKSSOCINIT 339

receiving
data and store in buffers 165
messages and store in buffers 167,

168
RECV (call) 257
RECV (macro) 357
recv() library function 165
RECVFROM (call) 258
RECVFROM (macro) 358
recvfrom()

use in server 496
recvfrom() library function 167
recvmsg() TCP/IP function 168
RENAME 467
REQARG parameter on call socket

interface
on FCNTL 209
on IOCTL 249

REQARG parameter on macro socket
interface

on FCNTL 305
on IOCTL 348

RES parameter on call socket interface
on EZACIC09 286
on GETADDRINFO 211

RES parameter on macro socket interface
on GETADDRINFO 307

RES-CANONICAL-NAME parameter on
call socket interface

on EZACIC09 286
RES-NAME parameter on call socket

interface
on EZACIC09 286

RES-NEXT parameter on call socket
interface

on EZACIC09 286
resource definition in CICS 441

RETARG parameter on call socket
interface

on IOCTL 249
RETARG parameter on macro socket

interface
on IOCTL 348

RETCODE parameter on call socket
interface

on ACCEPT 201
on BIND 204, 298
on CLOSE 206, 301
on CONNECT 207
on EZACIC06 282
on EZACIC09 286
on FCNTL 209
on FREEADDRINFO 211
on GETADDRINFO 211
on GETCLIENTID 218
on GETHOSTBYADDR 219
on GETHOSTBYNAME 221
on GETHOSTID 223
on GETHOSTNAME 223
on GETNAMEINFO 225
on GETPEERNAME 229
on GETSOCKNAME 230
on GETSOCKOPT 232
on GIVESOCKET 234
on INITAPI 247
on IOCTL 249
on LISTEN 250
on NTOP 251, 351
on PTON 253, 353
on READ 254
on READV 255
on RECV 257
on RECVFROM 258
on SELECT 261
on SELECTEX 265
on SEND 267
on SENDTO 268
on SETSOCKOPT 270
on SHUTDOWN 274
on SOCKET 275
on TAKESOCKET 276
on WRITE 278
on WRITEV 279

RETCODE parameter on macro socket
interface

on ACCEPT 296
on CANCEL 300
on CONNECT 302
on FCNTL 305
on FREEADDRINFO 306
on GETADDRINFO 307
on GETCLIENTID 314
on GETHOSTBYADDR 315
on GETHOSTBYNAME 317
on GETHOSTID 319
on GETHOSTNAME 320
on GETIBMOPT 321
on GETNAMEINFO 322
on GETPEERNAME 326
on GETSOCKNAME 328
on GETSOCKOPT 330
on GIVESOCKET 333
on GSKFREEMEM 335
on GSKGETCIPHINF 335

RETCODE parameter on macro socket
interface (continued)

on GSKGETDNBYLAB 336
on GSKINIT 337
on GSKSSOCCLOSE 338
on GSKSSOCINIT 339
on GSKSSOCREAD 343
on GSKSSOCRESET 344
on GSKSSOCWRITE 345
on GSKUNINIT 345
on INITAPI 346
on IOCTL 348
on LISTEN 350
on READ 354
on READV 355
on RECV 357
on RECVFROM 358
on SELECT 360
on SELECTEX 365
on SEND 367
on SENDTO 369
on SETSOCKOPT 371
on SHUTDOWN 375
on SOCKET 376
on TAKESOCKET 379
on WRITE 382
onWRITEV 383

return all network interface names and
indexes

TCP/IP call function
if_nameindex() 149

RRETMSK parameter on call socket
interface

on SELECT 261
on SELECTEX 265

RRETMSK parameter on macro interface
on SELECT 360
on SELECTEX 365

RSNDMSK parameter on call socket
interface

on SELECT 261
on SELECTEX 265

RSNDMSK parameter on macro interface
on SELECT 360
on SELECTEX 365

S
S, defines socket descriptor on call socket

interface
on ACCEPT 201
on BIND 204
on CLOSE 206
on CONNECT 207
on FCNTL 209
on GETPEERNAME 229
on GETSOCKNAME 230
on GETSOCKOPT 232
on GIVESOCKET 234
on IOCTL 249
on LISTEN 250
on READ 254
on READV 255
on RECV 257
on RECVFROM 258
on SEND 267
on SENDTO 268

Index 535

S, defines socket descriptor on call socket
interface (continued)

on SETSOCKOPT 270
on SHUTDOWN 274
on WRITE 278
on WRITEV 279

S, defines socket descriptor on macro
socket interface

on ACCEPT 296
on CLOSE 301
on CONNECT 302
on FCNTL 305
on GETPEERNAME 326
on GETSOCKNAME 328
on GETSOCKOPT 330
on GIVESOCKET 333
on GSKSSOCINIT 339
on IOCTL 348
on LISTEN 350
on READ 354
on READV 355
on RECV 357
on RECVFROM 358
on SEND 367
on SENDTO 369
on SETSOCKOPT 371
on SHUTDOWN 375
on WRITE 382
onWRITEV 383

SECLEVEL parameter on macro socket
interface

on GSKGETCIPHINF 335
SECTYPE parameter on macro socket

interface
on GSKINIT 337
on GSKSSOCINIT 339

secure socket
close connection 139
initialize connection 140
initialize environment 137
provide callback routines 146
query information 135
receive data 143
refresh parameters 144
remove current settings 146
send data 145

Security Manager 23, 43
security module 505
SELECB parameter on call socket

interface
on SELECTEX 265

SELECB parameter on macro socket
interface

on SELECTEX 365
SELECT (call) 261
SELECT (macro) 360
select()

use in server 496
select() library function 170
select() TCP/IP function 170
SELECTEX (call) 265
SELECTEX (macro) 365
selectex() library function 174
selectex() TCP/IP function 174
SEND (call) 267
SEND (macro) 367
send() library function 176

sendmsg() TCP/IP function 177
SENDTO (call) 268
SENDTO (macro) 369
sendto() TCP/IP function 179
server

incoming client requests 158
socket calls in child server 494
socket calls in concurrent server 496
socket calls in iterative server 498

SERVIC parameter on call socket interface
on GETADDRINFO 211
on GETNAMEINFO 225

SERVICE parameter on macro socket
interface

on GETADDRINFO 307
on GETNAMEINFO 322

SERVLEN parameter on call socket
interface

on GETADDRINFO 211
on GETNAMEINFO 225

SERVLEN parameter on macro socket
interface

on GETADDRINFO 307
on GETNAMEINFO 322

set IBM TCP/IP image
TCP/IP call function

setibmopt() 181
sethostent() TCP/IP function 181
setibmopt() TCP/IP function 181
setnetent() TCP/IP function 182
setprotoent() TCP/IP function 182
setservent() TCP/IP function 183
SETSOCKOPT (call) 270
SETSOCKOPT (macro) 371
setsockopt() TCP/IP function 183
shutdown

duplex connection 189
SHUTDOWN (call) 274
SHUTDOWN (macro) 375
shutdown, immediate 478
shutdown, manual 475
shutdown() TCP/IP function 189
SKREAD parameter on macro socket

interface
on GSKSSOCINIT 339

SKWRITE parameter on macro socket
interface

on GSKSSOCINIT 339
socket

acquire from another program 193
creating 190
creating a pair 193
data, sending on 179
data, writing 196
datagrams, sending on 176
descriptor in AF_INET domain 96
getting name 127
make available 133
messages, sending on 177
operating characteristics,

specifying 156
options, getting 128
options, setting 183
pairs, creating 193
peer connected to 121
send data on 176, 179
send messages on 177

socket (continued)
shutdown 189
writing data on 196

SOCKET (call) 275
SOCKET (macro) 376
socket()

use in client 494
use in server 496

socket() TCP/IP function 190
socketpair() TCP/IP function 193
sockets

passing 496
SOCRECV parameter on call socket

interface
on TAKESOCKET 276

SOCRECV parameter on macro socket
interface

on TAKESOCKET 379
SOCTYPE parameter on call socket

interface
on SOCKET 275

SOCTYPE parameter on macro interface
on SOCKET 376

specify cipher suites 433
specify the key ring 430
SRCADDR parameter on macro socket

interface
on NTOP 351
on PTON 353

SSL for VSE
preparation andsSetup 84
usable / not usable with 5

SSL function
gsk_free_memory() 135
gsk_get_cipher_info() 135
gsk_get_dn_by_label() 137
gsk_initialize() 137
gsk_secure_soc_close() 139
gsk_secure_soc_init() 140
gsk_secure_soc_read() 143
gsk_secure_soc_reset() 144
gsk_secure_soc_write() 145
gsk_uninitialize() 146
gsk_user_set() 146

SSL implementation 423
SSOCDATA parameter on macro socket

interface
on GSKSSOCCLOSE 338
on GSKSSOCREAD 343
on GSKSSOCRESET 344
on GSKSSOCWRITE 345

startup
automatic 475
manually 475
program link 480

startup member TCPSTART.Z 9
STORAGE parameter on macro socket

interface
on TASK 381

storage protection machines 441, 442
SUBTASK parameter on call socket

interface
on INITAPI 247

SUBTASK parameter on macro socket
interface

on INITAPI 346
support, environmental 483

536 z/VSE V5R2 TCP/IP Support

supported cipher suites 432
supported RSA key lengths 433, 434
switching between GSK and OpenSSL

socket calls 430
SYSPARM 84

T
TAKESOCKET (call) 276
TAKESOCKET (macro) 379
takesocket()

use in child server 494, 501
takesocket() TCP/IP function 193
TASK (macro) 381
task control 502
TASK parameter on call socket interface

on GETCLIENTID 218
on GIVESOCKET 234
on TAKESOCKET 276

TASK parameter on macro socket
interface

on ACCEPT 296
on BIND 298
on CANCEL 300
on CLOSE 301
on CONNECT 302
on FCNTL 305
on GETCLIENTID 314
on GETHOSTBYADDR 315
on GETHOSTBYNAME 317
on GETHOSTID 319
on GETHOSTNAME 320
on GETIBMOPT 321
on GETPEERNAME 326
on GETSOCKNAME 328
on GETSOCKOPT 330
on GIVESOCKET 333
on INITAPI 346
on IOCTL 348
on LISTEN 350
on READ 354
on READV 355
on RECV 357
on RECVFROM 358
on SELECT 360
on SEND 367
on SENDTO 369
on SETSOCKOPT 371
on SOCKET 376
on TAKESOCKET 379
on WRITE 382
on WRITEV 383

TCP/IP call function
endhostent() 103
endnetent() 103
endprotoent() 103
fcntl() 104
gethostent() 114
getnetbyaddr() 119
getnetbyname() 120
getnetent() 121
getprotobyname() 123
getprotobynumber() 123
getprotoent() 124
getservbyname() 125
getservbyport() 125
getservent() 126

TCP/IP call function (continued)
initapi() 156
poll() 161
readv() 164
recvmsg() 168
select() 170
selectex() 174
sendmsg() 177
sendto() 179
sethostent() 181
setnetent() 182
setprotoent() 182
setservent() 183
setsockopt() 183
shutdown() 189
socket() 190
socketpair() 193
takesocket() 193
termapi() 194
write() 195
writev() 196

TCP/IP for VSE/ESA
callable functions 85
demonstration mode 4
migration considerations 6
partition startup 9

TCPM td queue 443
TCPSTART.Z, startup member 9
TERMAPI (call) 278
TERMAPI (macro) 381
termapi() TCP/IP function 194
TIMEOUT parameter on call socket

interface
on SELECT 261
on SELECTEX 265

TIMEOUT parameter on macro socket
interface

on SELECT 360
on SELECTEX 365

TOKEN parameter on call interface
on EZACIC06 282

transaction identifier 502
transactions, defining in CICS 441
transferring print files 29
transient data 443
type parameter 446

TYPE=CICS 446
TYPE=INITIAL 446
TYPE=LISTENER 446

U
UEEXIT parameter on macro socket

interface
on INITAPI 346

unsigned short integer 147
use of HOSTENT structure interpreter,

EZACIC08 284
utility programs 280

EZACIC04 281
EZACIC05 281
EZACIC06 282
EZACIC08 284
EZACIC09 286

V
V3CIPHER parameter on macro socket

interface
on GSKSSOCINIT 339

V3CIPHSEL parameter on macro socket
interface

on GSKSSOCINIT 339
V3TIMEOUT parameter on macro socket

interface
on GSKINIT 337

VIOLATED.HTML 13
vlan support 527
VSAM cache file 469
VSAMCAT usage 515

W
WRETMSK parameter on call socket

interface
on SELECT 261
on SELECTEX 265

WRETMSK parameter on macro socket
interface

on SELECT 360
on SELECTEX 365

WRITE (call) 278
WRITE (macro) 382
write()

use in child server 494
use in client 494

write() TCP/IP function 195
WRITEV (call) 279
WRITEV (macro) 383
writev() TCP/IP function 196
writing

data on sockets 196
WSNDMSK parameter on call socket

interface
on SELECT 261
on SELECTEX 265

WSNDMSK parameter on macro socket
interface

on SELECT 360
on SELECTEX 365

Z
z/OS ssl api 436
z/VM guest configuration 418

Index 537

538 z/VSE V5R2 TCP/IP Support

Glossary

This glossary includes terms and definitions for
IBM z/VSE.

The following cross-references are used in this
glossary:
1. See refers the reader from a term to a

preferred synonym, or from an acronym or
abbreviation to the defined full form.

2. See also refers the reader to a related or
contrasting term.

To view glossaries for other IBM products, go to
www.ibm.com/software/globalization/
terminology.

A

Access Control Logging and Reporting. An IBM
licensed program to log all attempts of access to
protected data and to print selected formatted reports
on such attempts.

access control table (DTSECTAB). A table that is used
by the system to verify a user's right to access a certain
resource.

access list. A table in which each entry specifies an
address space or data space that a program can
reference.

access method. A program, that is, a set of commands
(macros) to define files or addresses and to move data
to and from them; for example VSE/VSAM or VTAM.

account file. A disk file that is maintained by
VSE/POWER containing accounting information that is
generated by VSE/POWER and the programs running
under VSE/POWER.

addressing mode (AMODE). A program attribute that
refers to the address length that a program is prepared
to handle on entry. Addresses can be either 24 bits, 31
bits, or 64 bits in length. In 24 bit addressing mode, the
processor treats all virtual addresses as 24-bit values; in
31 bit addressing mode, the processor treats all virtual
addresses as 31-bit values and in 64-bit addressing
mode, the processor treats all virtual addresses as 64-bit
values. Programs with an addressing mode of ANY can
receive control in either 24 bit or 31 bit addressing
mode. 64 bit addressing mode cannot be used as
program attribute.

administration console. In z/VSE, one or more
consoles that receive all system messages, except for
those that are directed to one particular console.

Contrast this with the user console, which receives only
those messages that are directed to it, for example
messages that are issued from a job that was submitted
with the request to echo its messages to that console.
The operator of an administration console can reply to
all outstanding messages and enter all system
commands.

alternate block. On an FBA disk, a block that is
designated to contain data in place of a defective block.

alternate index. In systems with VSE/VSAM, the
index entries of a given base cluster that is organized
by an alternate key, that is, a key other than the prime
key of the base cluster. For example, a personnel file
preliminary ordered by names can be indexed also by
department number.

alternate library. An interactively accessible library
that can be accessed from a terminal when the user of
that terminal issues a connect or switch library request.

alternate track. A library, which becomes accessible
from a terminal when the user of that terminal issues a
connect or switch (library) request.

AMODE. Addressing mode.

APA. All points addressable.

APAR. Authorized Program Analysis Report.

appendage routine. A piece of code that is physically
located in a program or subsystem, but logically and
extension of a supervisor routine.

application profile. A control block in which the
system stores the characteristics of one or more
application programs.

application program. A program that is written for or
by a user that applies directly to the user's work, such
as a program that does inventory control or payroll. See
also batch program and online application program.

AR/GPR. Access register and general-purpose register
pair.

ASC mode. Address space control mode.

ASI (automated system initialization) procedure. A
set of control statements, which specifies values for an
automatic system initialization.

attention routine (AR). A routine of the system that
receives control when the operator presses the
Attention key. The routine sets up the console for the

© Copyright IBM Corp. 1997, 2014 539

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

input of a command, reads the command, and initiates
the system service that is requested by the command.

automated system initialization (ASI). A function that
allows control information for system startup to be
cataloged for automatic retrieval during system startup.

autostart. A facility that starts VSE/POWER with little
or no operator involvement.

auxiliary storage. Addressable storage that is not part
of the processor, for example storage on a disk unit.
Synonymous with external storage.

B

B-transient. A phase with a name beginning with $$B
and running in the Logical Transient Area (LTA). Such
a phase is activated by special supervisor calls.

bar. 2 GigyByte (GB) line

basic telecommunications access method (BTAM). An
access method that permits read and write
communication with remote devices. BTAM is not
supported on z/VSE.

BIG-DASD. A subtype of Large DASD that has a
capacity of more than 64 K tracks and uses up to 10017
cylinders of the disk.

block. Usually, a block consists of several records of a
file that are transmitted as a unit. But if records are
very large, a block can also be part of a record only. On
an FBA disk, a block is a string of 512 bytes of data.
See also a control block.

block group. In VSE/POWER, the basic organizational
unit for fixed-block architecture (FBA) devices. Each
block group consists of a number of 'units of transfer'
or blocks.

C

CA splitting. Is the host part of the VSE JavaBeans,
and is started using the job STARTVCS, which is placed
in the reader queue during installation of z/VSE. Runs
by default in dynamic class R. In VSE/VSAM, to
double a control area dynamically and distribute its CIs
evenly when the specified minimum of free space get
used up by more data.

carriage control character. The fist character of an
output record (line) that is to be printed; it determines
how many lines should be skipped before the next line
is printed.

catalog. A directory of files and libraries, with
reference to their locations. A catalog may contain other
information such as the types of devices in which the
files are stored, passwords, blocking factors. To store a

library member such as a phase, module, or book in a
sublibrary. See also VSE/VSAM catalog.

cell pool. An area of virtual storage that is obtained
by an application program and managed by the callable
cell pool services. A cell pool is located in an address
space or a data space and contains an anchor, at least
one extent, and any number of cells of the same size.

central location. The place at which a computer
system's control device, normally the systems console
in the computer room, is installed.

chained sublibraries. A facility that allows
sublibraries to be chained by specifying the sequence in
which they must be searched for a certain library
member.

chaining. A logical connection of sublibraries to be
searched by the system for members of the same type
(phases or object modules, for example).

channel command word (CCW). A doubleword at the
location in main storage that is specified by the channel
address word. One or more CCWs make up the
channel program that directs data channel operations.

channel program. One or more channel command
words that control a sequence of data channel
operations. Execution of this sequence is initiated by a
start subchannel instruction.

channel scheduler. The part of the supervisor that
controls all input/output operations.

channel subsystem. A feature of z/Architecture that
provides extensive additional channel (I/O) capabilities
over the System z.

channel to channel attachment (CTCA). A function
that allows data to be exchanged
1. Under the control of VSE/POWER between two

virtual VSE machines running under VM or
2. Under the control of VTAM between two

processors.

character-coded request. A request that is encoded
and transmitted as a character string. Contrast with
field-formatted request.

checkpoint.
1. A point at which information about the status of a

job and the system can be recorded so that the job
step can be restarted later.

2. To record such information.

CICS (Customer Information Control System). An
IBM program that controls online communication
between terminal users and a database. Transactions
that are entered at remote terminals are processed
concurrently by user-written application programs. The
program includes facilities for building, using, and
servicing databases.

540 z/VSE V5R2 TCP/IP Support

CICS ECI. The CICS External Call Interface (ECI) is
one possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It is part of the CICS client and
allows workstation programs to CICS function on the
z/VSE host.

CICS EXCI. The EXternal CICS Interface (EXCI) is one
possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It allows any BSE batch
application to call CICS functions.

CICS system definition data set (CSD). A VSAM
KSDS cluster that contains a resource definition record
for every record defined to CICS using resource
definition online (RDO).

CICS Transaction Server for VSE/ESA. A z/VSE base
program that controls online communication between
terminal users and a database. This is the successor
system to CICS/VSE.

CICS TS. CICS Transaction Server

CICS/VSE. Customer Information Control
System/VSE. No longer shipped on the Extended Base
Tape and no longer supported, cannot run on z/VSE
5.1 or later.

class. In VSE/POWER, a group of jobs that either
come from the same input device or go to the same
output device.

CMS. Conversational monitor system running on
z/VM.

common library. A library that can be interactively
accessed by any user of the (sub)system that owns the
library.

communication adapter. A circuit card with associated
software that enables a processor, controller, or other
device to be connected to a network.

communication region. An area of the supervisor that
is set aside for transfer of information within and
between programs.

component.
1. Hardware or software that is part of a computer

system.
2. A functional part of a product, which is identified

by a component identifier.
3. In z/VSE, a component program such as

VSE/POWER or VTAM.
4. In VSE/VSAM, a named, cataloged group of stored

records, such as the data component or index
component of a key-sequenced file or alternate
index.

component identifier. A 12-byte alphanumeric string,
uniquely defining a component to MSHP.

conditional job control. The capability of the job
control program to process or to skip one or more
statements that are based on a condition that is tested
by the program.

connect. To authorize library access on the lowest
level. A modifier such as "read" or "write" is required
for the specified use of a sublibrary.

connection pooling. Introduced with an z/VSE 5.1
update to manage (reuse) connections of the z/VSE
database connector in CICS TS.

connector. In the context of z/VSE, a connector
provides the middleware to connect two platforms:
Web Client and z/VSE host, middle-tier and z/VSE
host, or Web Client and middle-tier.

connector (e-business connector). A piece of software
that is provided to connect to heterogeneous
environments. Most connectors communicate to
non-z/VSE Java-capable platforms.

container. Is part of the JVM of application servers
such as the IBM WebSphere Application Server, and
facilitates the implementation of servlets, EJBs, and
JSPs, by providing resource and transaction
management resources. For example, an EJB developer
must not code against the JVM of the application
server, but instead against the interface that is provided
by the container. The main role of a container is to act
as an intermediary between EJBs and clients, Is the host
part of the VSE JavaBeans, and is started using the job
STARTVCS, which is placed in the reader queue during
the installation of z/VSE. Runs by default in dynamic
class R. and also to manage multiple EJB instances.
After EJBs have been written, they must be stored in a
container residing on an application server. The
container then manages all threading and
client-interactions with the EJBs, and co-ordinate
connection- and instance pooling.

control interval (CI). A fixed-length area of disk
storage where VSE/VSAM stores records and
distributes free space. It is the unit of information that
VSE/VSAM transfers to or from disk storage. For FBA
it must be an integral multiple to be defined at cluster
definition, of the block size.

control program. A program to schedule and
supervise the running of programs in a system.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program
development capabilities and operates under the
control of z/VM.

count-key-data (CKD) device. A disk device that store
data in the record format: count field, key field, data
field. The count field contains, among others, the
address of the record in the format: cylinder, head
(track), record number, and the length of the data field.

Glossary 541

The key field, if present, contains the record's key or
search argument. CKD disk space is allocated by tracks
and cylinders. Contrast with FBA disk device. See also
extended count-key-data device.

cross-partition communication control. A facility that
enables VSE subsystems and user programs to
communicate with each other; for example, with
VSE/POWER.

cryptographic token. Usually referred to simply as a
token, this is a device, which provides an interface for
performing cryptographic functions like generating
digital signatures or encrypting data.

cryptography.
1. A method for protecting information by

transforming it (encrypting it) into an unreadable
format, called ciphertext. Only users who possess a
secret key can decipher (or decrypt) the message
into plaintext.

2. The transformation of data to conceal its
information content and to prevent its unauthorized
use or undetected modification .

D

data block group. The smallest unit of space that can
be allocated to a VSE/POWER job on the data file. This
allocation is independent of any device characteristics.

data conversion descriptor file (DCDF). With a
DCDF, you can convert individual fields within a
record during data transfer between a PC and its host.
The DCDF defines the record fields of a particular file
for both, the PC and the host environment.

data import. The process of reformatting data that was
used under one operating system such that it can
subsequently be used under a different operating
system.

Data Interfile Transfer, Testing, and Operations
(DITTO) utility. An IBM program that provides
file-to-file services for card I/O, tape, and disk devices.
The latest version is called DITTO/ESA for VSE.

Data Language/I (DL/I). A database access language
that is used with CICS.

data link. In SNA, the combination of the link
connection and the link stations joining network noes,
for example, a z/Architecture channel and its
associated protocols. A link is both logical and physical.

data security. The protection of data against
unauthorized disclosure, transfer, modification, or
destruction, whether accidental or intentional .

data set header record. In VSE/POWER abbreviated
as DSHR, alias NDH or DSH. An NJE control record

either preceding output data or, in the middle of input
data, indicating a change in the data format.

data space. A range of up to 2 gigabytes of contiguous
virtual storage addresses that a program can directly
manipulate through z/Architecture instructions. Unlike
an address space, a data space can hold only user data;
it does not contain shared areas, or programs.
Instructions do not execute in a data space. Contrast
with address space.

data terminal equipment (DTE). In SNA, the part of a
data station that serves a data source, data sink, or
both.

database connector. Is a function introduced with
z/VSE 5.1.1, which consists of a client and server part.
The client provides an API (CBCLI) to be used by
applications on z/VSE, the server on any Java capable
platform connects a JDBC driver that is provided by
the database. Both client and server communicate via
TCP/IP.

Database 2 (DB2). An IBM rational database
management system.

DB2-based connector. Is a feature introduced with
VSE/ESA 2.5, which includes a customized DB2
version, together with VSAM and DL/I functionality, to
provide access to DB2, VSAM, and DL/I data, using
DB2 Stored Procedures.

DB2 Runtime only Client edition. The Client Edition
for z/VSE comes with some enhanced features and
improved performance to integrate z/VSE and Linux
on System z.

DB2 Stored Procedure. In the context of z/VSE, a
DB2 Stored Procedure is a Language Environment (LE)
program that accesses DB2 data. However, from
VSE/ESA 2.5 onwards you can also access VSAM and
DL/I data using a DB2 Stored Procedure. In this way, it
is possible to exchange data between VSAM and DB2.

DBLK. Data block.

DCDF. Data conversion descriptor file.

deblocking. The process of making each record of a
block available for processing.

dedicated (disk) device. A device that cannot be
shared among users.

device address.
1. The identification of an input/output device by its

device number.
2. In data communication, the identification of any

device to which data can be sent or from which
data can be received.

542 z/VSE V5R2 TCP/IP Support

device driving system (DDS). A software system
external to VSE/POWER, such as a CICS spooler or
PSF, that writes spooled output to a destination device.

Device Support Facilities (DSF). An IBM supplied
system control program for performing operations on
disk volumes so that they can be accessed by IBM and
user programs. Examples of these operations are
initializing a disk volume and assigning an alternative
track.

device type code. The four- or five-digit code that is
used for defining an I/O device to a computer system.
See also �ICKDSF�

dialog. In an interactive system, a series of related
inquiries and responses similar to a conversation
between two people. For z/VSE, a set of panels that
can be used to complete a specific task; for example,
defining a file.

dialog manager. The program component of z/VSE
that provides for ease of communication between user
and system.

digital signature. In computer security, encrypted
data, which is appended to or part of a message, that
enables a recipient to prove the identity of the sender.

Digital Signature Algorithm (DSA). The Digital
Signature Algorithm is the US government-defined
standard for digital signatures. The DSA digital
signature is a pair of large numbers, computed using a
set of rules (that is, the DSA) and a set of parameters
such that the identity of the signatory and integrity of
the data can be verified. The DSA provides the
capability to generate and verify signatures.

directory. In z/VSE the index for the program
libraries.

direct access. Accessing data on a storage device using
their address and not their sequence. This is the typical
access on disk devices as opposed to magnetic tapes.
Contrast with sequential access.

disk operating system residence volume (DOSRES).
The disk volume on which the system sublibrary
IJSYSRS.SYSLIB is located including the programs and
procedures that are required for system startup.

disk sharing. An option that lets independent
computer systems uses common data on shared disk
devices.

disposition. A means of indicating to VSE/POWER
how a job input or output entry is to be handled:
according to its local disposition in the RDR/LST/PUN
queue or its transmission disposition when residing in
the XMT queue. A job might, for example, be deleted
or kept after processing.

distribution tape. A magnetic tape that contains, for
example, a preconfigured operating system like z/VSE.
This tape is shipped to the customer for program
installation.

DITTO/ESA for VSE. Data Interfile Transfer, Testing,
and Operations utility. An IBM program that provides
file-to-file services for disk, tape, and card devices.

DSF. Device Support Facilities.

DSH (R). Data set header record.

dummy device. A device address with no real I/O
device behind it. Input and output for that device
address are spooled on disk.

duplex. Pertaining to communication in which data
can be sent and received at the same time.

DU-AL (dispatchable unit - access list). The access
list that is associated with a z/VSE main task or
subtask. A program uses the DU-AL associated with its
task and the PASN-AL associated with its partition. See
also PASN-AL.

dynamic class table. Defines the characteristics of
dynamic partitions.

dynamic partition. A partition that is created and
activated on an 'as needed' basis that does not use fixed
static allocations. After processing, the occupied space
is released. Dynamic partitions are grouped by class,
and jobs are scheduled by class. Contrast with static
partition.

dynamic space reclamation. A librarian function that
provides for space that is freed by the deletion of a
library member to become reusable automatically.

E

ECI. See CICS ECI.

emulation. The use of programming techniques and
special machine features that permit a computer system
to execute programs that are written for another system
or for the use of I/O devices different from those that
are available.

emulation program (EP). An IBM control program
that allows a channel-attached 3705 or 3725
communication controller to emulate the functions of
an IBM 2701 Data Adapter Unit, or an IBM 2703
Transmission Control.

end user.
1. A person who makes use of an application

program.
2. In SNA, the ultimate source or destination of user

data flowing through an SNA network. Might be an
application program or a terminal operator.

Glossary 543

Enterprise Java Bean. An EJB is a distributed bean.
"Distributed" means, that one part of an EJB runs inside
the JVM of a web application server, while the other
part runs inside the JVM of a web browser. An EJB
either represents one data row in a database (entity
bean), or a connection to a remote database (session
bean). Normally, both types of an EJB work together.
This allows to represent and access data in a
standardized way in heterogeneous environments with
relational and non-relational data. See also JavaBean.

entry-sequenced file. A VSE/VSAM file whose
records are loaded without respect to their contents and
whose relative byte addresses cannot change. Records
are retrieved and stored by addressed access, and new
records are added to the end of the file.

Environmental Record Editing and Printing (EREP)
program. A z/VSE base program that makes the data
that is contained in the system record file available for
further analysis.

EPI. See CICS EPI.

ESCON Channel (Enterprise Systems Connection
Channel). A serial channel, using fiber optic cabling,
that provides a high-speed connection between host
and control units for I/O devices. It complies with the
ESA/390 and System z I/O Interface until z114. The
zEC12 processors do not support ESCON channels.

exit routine.
1. Either of two types of routines: installation exit

routines or user exit routines. Synonymous with exit
program.

2. See user exit routine.

extended addressability. The ability of a program to
use 31 bit or 64 bit virtual storage in its address space
or outside the address space.

extended recovery facility (XRF). In z/VSE, a feature
of CICS that provides for enhanced availability of CICS
by offering one CICS system as a backup of another.

External Security Manager (ESM). A priced vendor
product that can provide extended functionality and
flexibility that is compared to that of the Basic Security
Manager (BSM), which is part of z/VSE.

F

FASTCOPY. See VSE/Fast Copy.

fast copy data set program (VSE/Fast Copy). See
VSE/Fast Copy.

fast service upgrade (FSU). A service function of
z/VSE for the installation of a refresh release without
regenerating control information such as library control
tables.

FAT-DASD. A subtype of Large DASD, it supports a
device with more than 4369 cylinders (64 K tracks) up
to 64 K cylinders.

FCOPY. See VSE/Fast Copy.

fence. A separation of one or more components or
elements from the remainder of a processor complex.
The separation is by logical boundaries. It allows
simultaneous user operations and maintenance
procedures.

fetch.
1. To locate and load a quantity of data from storage.
2. To bring a program phase into virtual storage from

a sublibrary and pass control to this phase.
3. The name of the macro instruction (FETCH) used to

accomplish 2. See also loader.

Fibre Channel Protocol (FCP). A combination of
hardware and software conforming to the Fibre
Channel standards and allowing system and peripheral
connections via FICON and FICON Express feature
cards on IBM zSeries processors. In z/VSE, zSeries FCP
is employed to access industry-standard SCSI disk
devices.

fragmentation (of storage). Inability to allocate
unused sections (fragments) of storage in the real or
virtual address range of virtual storage.

FSU. Fast service upgrade.

FULIST (FUnction LIST). A type of selection panel
that displays a set of files and/or functions for the
choice of the user.

G

generation. See macro generation.

generation feature. An IBM licensed program order
option that is used to tailer the object code of a
program to user requirements.

GETVIS space. Storage space within partition or the
shared virtual area, available for dynamic allocation to
programs.

guest system. A data processing system that runs
under control of another (host) system. On the
mainframe z/VSE can run as a guest of z/VM.

H

hard wait. The condition of a processor when all
operations are suspended. System recovery from a hard
wait is impossible without performing a new system
startup.

hash function. A hash function is a transformation
that takes a variable-size input and returns a fixed-size

544 z/VSE V5R2 TCP/IP Support

string, which is called the hash value. In cryptography,
the hash functions should have some additional
properties:
v The hash function should be easy to compute.
v The hash function is one way; that is, it is impossible

to calculate the 'inverse' function.
v The hash function is collision-free; that is, it is

impossible that different input leads to the same
hash value.

hash value. The fixed-sized string resulting after
applying a hash function to a text.

High-Level Assembler for VSE. A programming
language providing enhanced assembler programming
support. It is a base program of z/VSE.

home interface. Provides the methods to instantiate a
new EJB object, introspect an EJB, and remove an EJB
instantiation., as for the remote interface is needed
because the deployment tool generates the
implementation class. Every Session bean's home
interface must supply at least one create() method.

host mode. In this operating mode, a PC can access a
VSE host. For programmable workstation (PWS)
functions, the Move Utilities of VSE can be used.

host system. The controlling or highest level system in
a data communication configuration.

host transfer file (HTF). Used by the Workstation File
Transfer Support of z/VSE as an intermediate storage
area for files that are sent to and from IBM personal
computers.

HTTP Session. In the context of z/VSE, identifies the
web-browser client that calls a servlet (in other words,
identifies the connection between the client and the
middle-tier platform).

I

ICCF. See VSE/ICCF.

ICKDSF (Device Support Facilities). A z/VSE base
program that supports the installation, use, and
maintenance of IBM disk devices.

include function. Retrieves a library member for
inclusion in program input.

index.
1. A table that is used to locate records in an indexed

sequential data set or on indexed file.
2. In, an ordered collection of pairs, each consisting of

a key and a pointer, used by to sequence and locate
the records of a key-sequenced data set or file; it is
organized in levels of index records. See also
alternate index.

input/output control system (IOCS). A group of IBM
supplied routines that handle the transfer of data
between main storage and auxiliary storage devices.

integrated communication adapter (ICA). The part of
a processor where multiple lines can be connected.

integrated console. In z/VSE, the service processor
console available on IBM System z server that operates
as the z/VSE system console. The integrated console is
typically used during IPL and for recovery purposes
when no other console is available.

Interactive Computing and Control Facility (ICCF).
An IBM licensed program that serves as interface, on a
time-slice basis, to authorized users of terminals that
are linked to the system's processor.

interactive partition. An area of virtual storage for the
purpose of processing a job that was submitted
interactively via VSE/ICCF.

Interactive User Communication Vehicle (IUCV).
Programming support available in a VSE supervisor for
operation under z/VM. The support allows users to
communicate with other users or with CP in the same
way they would with a non-preferred guest.

intermediate storage. Any storage device that is used
to hold data temporarily before it is processed.

IOCS. Input/output control system.

IPL. Initial program load.

irrecoverable error. An error for which recovery is
impossible without the use of recovery techniques
external to the computer program or run.

IUCV. Interactive User Communication Vehicle.

J

JAR. Is a platform-independent file format that
aggregates many files into one. Multiple applets and
their requisite components (.class files, images, and
sounds) can be bundled in a JAR file, and then
downloaded to a web browser using a single HTTP
transaction (much improving the download speed). The
JAR format also supports compression, which reduces
the files size (and further improves the download
speed). The compression algorithm that is used is fully
compatible with the ZIP algorithm. The owner of an
applet can also digitally sign individual entries in a
JAR file to authenticate their origin.

Java application. A Java program that runs inside the
JVM of your web browser. The program's code resides
on a local hard disk or on the LAN. Java applications
might be large programs using graphical interfaces.
Java applications have unlimited access to all your local
resources.

Glossary 545

Java bytecode. Bytecode is created when a file
containing Java source language statements is
compiled. The compiled Java code or "bytecode" is
similar to any program module or file that is ready to
be executed (run on a computer so that instructions are
performed one at a time). However, the instructions in
the bytecode are really instructions to the Java Virtual
Machine. Instead of being interpreted one instruction at
a time, bytecode is instead recompiled for each
operating-system platform using a just-in-time (JIT)
compiler. Usually, this enables the Java program to run
faster. Bytecode is contained in binary files that have
the suffix.CLASS

Java servlet. See servlet.

JHR. Job header record.

job accounting interface. A function that accumulates
accounting information for each job step, to be used for
charging the users of the system, for planning new
applications, and for supervising system operation
more efficiently.

job accounting table. An area in the supervisor where
accounting information is accumulated for the user.

job catalog. A catalog made available for a job by
means of the file name IJSYSUC in the respective DLBL
statement.

job entry control language (JECL). A control language
that allows the programmer to specify how
VSE/POWER should handle a job.

job step. In 1 of a group of related programs complete
with the JCL statements necessary for a particular run.
Every job step is identified in the job stream by an
EXEC statement under one JOB statement for the whole
job.

job trailer record (JTR). As VSE/POWER parameter
JTR, alias NJT. An NJE control record terminating a job
entry in the input or output queue and providing
accounting information.

K

key. In VSE/VSAM, one or several characters that are
taken from a certain field (key field) in data records for
identification and sequence of index entries or of the
records themselves.

key sequence. The collating sequence either of records
themselves or of their keys in the index or both. The
key sequence is alphanumeric.

key-sequenced file. A VSE/VSAM file whose records
are loaded in key sequence and controlled by an index.
Records are retrieved and stored by keyed access or by
addressed access, and new records are inserted in the
file in key sequence.

KSDS. Key-sequenced data sets. See key-sequenced file.

L

label.
1. An identification record for a tape, disk, or diskette

volume or for a file on such a volume.
2. In assembly language programming, a named

instruction that is generally used for branching.

label information area. An area on a disk to store
label information that is read from job control
statements or commands. Synonymous with label area.

Language Environment for z/VSE. An IBM software
product that is the implementation of Language
Environment on the VSE platform.

language translator. A general term for any assembler,
compiler, or other routine that accepts statements in
one language and produces equivalent statements in
another language.

Large DASD. A DASD device that
1. Has a capacity exceeding 64 K tracks and
2. Does not have VSAM space created prior to

VSE/ESA 2.6 that is owned by a catalog.

LE/VSE. Short form of Language Environment for
z/VSE.

librarian. The set of programs that maintains, services,
and organizes the system and private libraries.

library block. A block of data that is stored in a
sublibrary.

library directory. The index that enables the system to
locate a certain sublibrary of the accessed library.

library member. The smallest unit of a data that can
be stored in and retrieved from a sublibrary.

line commands. In VSE/ICCF, special commands to
change the declaration of individual lines on your
screen. You can copy, move, or delete a line declaration,
for example.

linkage editor. A program that is used to create a
phase (executable code) from one or more
independently translated object modules, from one or
more existing phases, or from both. In creating the
phase, the linkage editor resolves cross-references
among the modules and phases available as input. The
program can catalog the newly built phases.

linkage stack. An area of protected storage that the
system gives to a program to save status information
for a branch and stack or a stacking program call.

link station. In SNA, the combination of hardware
and software that allows a node to attach to and
provide control for a link.

546 z/VSE V5R2 TCP/IP Support

loader. A routine, commonly a computer program,
that reads data or a program into processor storage. See
also relocating loader.

local shared resources (LSR). A VSE/VSAM option
that is activated by three extra macros to share control
blocks among files.

lock file. In a shared disk environment under VSE, a
system file on disk that is used by the sharing systems
to control their access to shared data.

logical partition. In LPAR mode, a subset of the
server unit hardware that is defined to support the
operation of a system control program.

logical record. A user record, normally pertaining to a
single subject and processed by data management as a
unit. Contrast with physical record, which may be larger
or smaller.

logical unit (LU).
1. A name that is used in programming to represent

an I/O device address. physical unit (PU), system
services control point (SSCP), primary logical unit
(PLU), and secondary logical unit (SLU).

2. In SNA, a port through which a user accesses the
SNA network,
a. To communicate with another user and
b. To access the functions of the SSCP. An LU can

support at least two sessions. One with an SSCP
and one with another LU and might be capable
of supporting many sessions with other LUs.

logical unit name. In programming, a name that is
used to represent the address of an input/output unit.

logical unit 6.2. A SNA/SDLC protocol for
communication between programs in a distributed
processing environment. LU 6.2 is characterized by
1. A peer relationship between session partners,
2. Efficient utilization of a session for multiple

transactions,
3. Comprehensive end-to-end error processing, and
4. A generic Application Programming Interface (API)

consisting of structured verbs that are mapped into
a product implementation.

logons interpret interpret routine. In VTAM, an
installation exit routine, which is associated with an
interpret table entry, that translates logon information.
It also verifies the logon.

LPAR mode. Logically partitioned mode. The CP
mode that is available on the Configuration (CONFIG)
frame when the PR/SM feature is installed. LPAR
mode allows the operator to allocate the hardware
resources of the processor unit among several logical
partitions.

M

macro definition. A set of statements and instructions
that defines the name of, format of, and conditions for
generating a sequence of assembler statements and
machine instructions from a single source statement.

macro expansion. See macro generation

macro generation. An assembler operation by which a
macro instruction gets replaced in the program by the
statements of its definition. It takes place before
assembly. Synonymous with macro expansion.

macro (instruction).
1. In assembler programming, a user-invented

assembler statement that causes the assembler to
process a set of statements that are defined
previously in the macro definition.

2. A sequence of VSE/ICCF commands that are
defined to cause a sequence of certain actions to be
performed in response to one request.

maintain system history program (MSHP). A
program that is used for automating and controlling
various installation, tailoring, and service activities for
a VSE system.

main task. The main program within a partition in a
multiprogramming environment.

master console. In z/VSE, one or more consoles that
receive all system messages, except for those that are
directed to one particular console. Contrast this with
the user console, which receives only those messages
that are specifically directed to it, for example messages
that are issued from a job that was submitted with the
request to echo its messages to that console. The
operator of a master console can reply to all
outstanding messages and enter all system commands.

maximum (max) CA. A unit of allocation equivalent
to the maximum control area size on a count-key-data
or fixed-block device. On a CKD device, the max CA is
equal to one cylinder.

memory object. Chunk of virtual storage that is
allocated above the bar (2 GB) to be created with the
IARV64 macro.

message. In VSE, a communication that is sent from a
program to the operator or user. It can appear on a
console, a display terminal or on a printout.

MSHP. See maintain system history program.

multitasking. Concurrent running of one main task
and one or several subtasks in the same partition.

MVS. Multiple Virtual Storage. Implies MVS/390,
MVS/XA, MVS/ESA, and the MVS element of the
z/OS (OS/390) operating system.

Glossary 547

N

NetView. A z/VSE optional program that is used to
monitor a network, manage it, and diagnose its
problems.

network address. In SNA, an address, consisting of
subarea and element fields, that identifies a link, link
station, or NAU. Subarea nodes use network addresses;
peripheral nodes use local addresses. The boundary
function in the subarea node to which a peripheral
node is attached transforms local addresses to network
addresses and vice versa. See also network name.

network addressable unit (NAU). In SNA, a logical
unit, a physical unit, or a system services control point.
It is the origin or the destination of information that is
transmitted by the path control network. Each NAU
has a network address that represents it to the path
control network. See also network name, network address.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. Its full name is
ACF/NCP.

network definition table (NDT). In VSE/POWER
networking, the table where every node in the network
is listed.

network name.
1. In SNA, the symbolic identifier by which users refer

to a NAU, link, or link station. See also network
address.

2. In a multiple-domain network, the name of the
APPL statement defining a VTAM application
program. This is its network name, which must be
unique across domains.

node.
1. In SNA, an end point of a link or junction common

to several links in a network. Nodes can be
distributed to host processors, communication
controllers, cluster controllers, or terminals. Nodes
can vary in routing and other functional
capabilities.

2. In VTAM, a point in a network that is defined by a
symbolic name. Synonymous with network node. See
major node and minor node.

node type. In SNA, a designation of a node according
to the protocols it supports and the network
addressable units (NAUs) it can contain.

O

object module (program). A program unit that is the
output of an assembler or compiler and is input to a
linkage editor.

online application program. An interactive program
that is used at display stations. When active, it waits
for data. Once input arrives, it processes it and send a
response to the display station or to another device.

operator command. A statement to a control program,
issued via a console or terminal. It causes the control
program to provide requested information, alter normal
operations, initiate new operations, or end existing
operations.

optional licensed program. An IBM licensed program
that a user can install on VSE by way of available
installation-assist support.

output parameter text block (OPTB). in
VSE/POWER's spool-access support, information that
is contained in an output queue record if a * $$ LST or
* $$ PUN statement includes any user-defined
keywords that have been defined for autostart.

P

page data set (PDS). One or more extents of disk
storage in which pages are stored when they are not
needed in processor storage.

page fixing. Marking a page so that it is held in
processor storage until explicitly released. Until then, it
cannot be paged out.

page I/O. Page-in and page-out operations.

page pool. The set of page frames available for paging
virtual-mode programs.

panel. The complete set of information that is shown
in a single display on terminal screen. Scrolling back
and forth through panels like turning manual pages.
See also selection panel.

partition balancing. A z/VSE facility that allows the
user to specify that two or more or all partitions of the
system should receive about the same amount of time
on the processor.

PASN-AL (primary address space number - access
list). The access list that is associated with a partition.
A program uses the PASN-AL associated with its
partition and the DU-AL associated with its task (work
unit). See also DU-AL.

Each partition has its own unique PASN-AL. All
programs running in this partition can access data
spaces through the PASN-AL. Thus a program can
create a data space, add an entry for it in the PASN-AL,
and obtain the ALET that indexes the entry. By passing
the ALET to other programs in the partition, the
program can share the data space with other programs
running in the same partition.

PDS. Page data sets.

548 z/VSE V5R2 TCP/IP Support

phase. The smallest complete unit of executable code
that can be loaded into virtual storage.

physical record. The amount of data that is
transferred to or from auxiliary storage. Synonymous
with block.

PNET. Programming support available with
VSE/POWER; it provides for the transmission of
selected jobs, operator commands, messages, and
program output between the nodes of a network.

POWER. See VSE/POWER.

pregenerated operating system. An operating system
such as z/VSE that is shipped by IBM mainly in object
code. IBM defines such key characteristics as the size of
the main control program, the organization, and size of
libraries, and required system areas on disk. The
customer does not have to generate an operating
system.

preventive service. The installation of one or more
PTFs on a VSE system to avoid the occurrence of
anticipated problems.

primary address space. In z/VSE, the address space
where a partition is executed. A program in primary
mode fetches data from the primary address space.

primary library. A VSE library owned and directly
accessible by a certain terminal user.

printer/keyboard mode. Refers to 1050 or 3215 console
mode (device dependent).

Print Services Facility (PSF)/VSE. An access method
that provides support for the advanced function
printers.

private area. The virtual space between the shared
area (24 bit) and shared area (31 bit), where (private)
partitions are allocated. Its maximum size can be
defined during IPL. See also shared area.

private memory object. Memory object (chunk of
virtual storage) that is allocated above the 2 GB line
(bar) only accessible by the partition that created it.

private partition. Any of the system's partitions that
are not defined as shared. See also shared partition.

production library.
1. In a pre-generated operating system (or product),

the program library that contains the object code for
this system (or product).

2. A library that contains data that is needed for
normal processing. Contrast with test library.

programmer logical unit. A logical unit available
primarily for user-written programs. See also logical
unit name.

program temporary fix (PTF). A solution or by-pass of
one or more problems that are documented in APARs.
PTFs are distributed to IBM customers for preventive
service to a current release of a program.

PSF/VSE. Print Services Facility/VSE.

PTF. See Program temporary fix.

Q

Queue Control Area (QCA). In VSE/POWER, an area
of the data file, which might contain:
v Extended checkpoint information
v Control information for a shared environment.

queue file. A direct-access file that is maintained by
VSE/POWER that holds control information for the
spooling of job input and job output.

R

random processing. The treatment of data without
respect to its location on disk storage, and in an
arbitrary sequence that is governed by the input
against which it is to be processed.

real address area. In z/VSE, processor storage to be
accessed with dynamic address translation (DAT) off

real address space. The address space whose
addresses map one-to-one to the addresses in processor
storage.

real mode. In VSE, a processing mode in which a
program might not be paged. Contrast with virtual
mode.

recovery management support (RMS). System
routines that gather information about hardware
failures and that initiate a retry of an operation that
failed because of processor, I/O device, or channel
errors.

refresh release. An upgraded VSE system with the
latest level of maintenance for a release.

relative-record file. A VSE/VSAM file whose records
are loaded into fixed-length slots and accessed by the
relative-record numbers of these slots.

release upgrade. Use of the FSU functions to install a
new release of z/VSE.

relocatable module. A library member of the type
object. It consists of one or more control sections
cataloged as one member.

relocating loader. A function that modifies addresses
of a phase, if necessary, and loads the phase for
running into the partition that is selected by the user.

Glossary 549

remote interface. In the context of z/VSE, the remote
interface allows a client to make method calls to an EJB
although the EJB is on a remote z/VSE host. The
container uses the remote interface to create client-side
stubs and server-side proxy objects to handle incoming
method calls from a client to an EJB.

remote procedure call (RPC).
1. A facility that a client uses to request the execution

of a procedure call from a server. This facility
includes a library of procedures and an external
data representation.

2. A client request to service provider in another node.

residency mode (RMODE). A program attribute that
refers to the location where a program is expected to
reside in virtual storage. RMODE 24 indicates that the
program must reside in the 24-bit addressable area
(below 16 megabytes), RMODE ANY indicates that the
program can reside anywhere in 31-bit addressable
storage (above or below 16 megabytes).

REXX/VSE. A general-purpose programming
language, which is particularly suitable for command
procedures, rapid batch program development,
prototyping, and personal utilities.

RMS. Recovery management support.

RPG II. A commercially oriented programming
language that is specifically designed for writing
application programs that are intended for business
data processing.

S

SAM ESDS file. A SAM file that is managed in
VSE/VSAM space, so it can be accessed by both SAM
and VSE/VSAM macros.

SCP. System control programming.

SDL. System directory list.

search chain. The order in which chained sublibraries
are searched for the retrieval of a certain library
member of a specified type.

second-level directory. A table in the SVA containing
the highest phase names that are found on the
directory tracks of the system sublibrary.

Secure Sockets Layer (SSL). A security protocol that
allows the client to authenticate the server and all data
and requests to be encrypted. SSL was developed by
Netscape Communications Corp. and RSA Data
Security, Inc..

segmentation. In VSE/POWER, a facility that breaks
list or punch output of a program into segments so that
printing or punching can start before this program has
finished generating such output.

selection panel. A displayed list of items from which
a user can make a selection. Synonymous with menu.

sense. Determine, on request or automatically, the
status or the characteristics of a certain I/O or
communication device.

sequential access method (SAM). A data access
method that writes to and reads from an I/O device
record after record (or block after block). On request,
the support performs device control operations such as
line spacing or page ejects on a printer or skip some
tape marks on a tape drive.

service node. Within the VSE unattended node
support, a processor that is used to install and test a
master VSE system, which is copied for distribution to
the unattended nodes. Also, program fixes are first
applied at the service node and then sent to the
unattended nodes.

service program. A computer program that performs
function in support of the system. See with utility
program.

service refresh. A form of service containing the
current version of all software. Also referred to as a
system refresh.

service unit. One or more PTFs on disk or tape
(cartridge).

shared area. In z/VSE, shared areas (24 bit) contain
the Supervisor areas and SVA (24 bit) and shared areas
(31 bit) the SVA (31 bit). Shared areas (24 bit) are at the
beginning of the address space (below 16 MB), shared
area (31 bit) at the end (below 2 GB).

shared disk option. An option that lets independent
computer systems use common data on shared disk
devices.

shared memory objects. Chunks of virtual storage
allocated above the 2 GB line (bar), that can be shared
among partitions.

shared partition. In z/VSE, a partition that is
allocated for a program (VSE/POWER, for example)
that provides services and communicates with
programs in other partitions of the system's virtual
address spaces. In most cases shared partitions are no
longer required.

shared spooling. A function that permits the
VSE/POWER account file, data file, and queue file to
be shared among several computer systems with
VSE/POWER.

shared virtual area (SVA). In z/VSE, a high address
area that contains a list system directory list (SDL) of
frequently used phases, resident programs that are
shared between partitions, and an area for system
support.

550 z/VSE V5R2 TCP/IP Support

SIT (System Initialization Table). A table in CICS that
contains data used the system initialization process. In
particular, the SIT can identify (by suffix characters) the
version of CICS system control programs and CICS
tables that you have specified and that are to be
loaded.

skeleton. A set of control statements, instructions, or
both, that requires user-specific information to be
inserted before it can be submitted for processing.

socksified. See socks-enabled.

Socks-enabled. Pertaining to TCP/IP software, or to a
specific TCP/IP application, that understands the socks
protocol. "Socksified" is a slang term for socks-enabled.

socks protocol. A protocol that enables an application
in a secure network to communicate through a firewall
via a socks server.

socks server. A circuit-level gateway that provides a
secure one-way connection through a firewall to server
applications in a nonsecure network.

source member. A library member containing source
statements in any of the programming languages that
are supported by VSE.

split. To double a specific unit of storage space (CI or
CA) dynamically when the specified minimum of free
space gets used up by new records.

spooling. The use of disk storage as buffer storage to
reduce processing delays when transferring data
between peripheral equipment and the processor of a
computer. In z/VSE, this is done under the control of
VSE/POWER.

Spool Access Protection. An optional feature of
VSE/POWER that restricts individual spool file entry
access to user IDs that have been authenticated by
having performed a security logon.

spool file.
1. A file that contains output data that is saved for

later processing.
2. One of three VSE/POWER files on disk: queue file,

data file, and account file.

stacked tape. An IBM supplied product-shipment tape
containing the code of several licensed programs.

standard label. A fixed-format record that identifies a
volume of data such as a tape reel or a file that is part
of a volume of data.

stand-alone program. A program that runs
independently of (not controlled by) the VSE system.

startup. The process of performing IPL of the
operating system and of getting all subsystems and
applications programs ready for operation.

start option. In VTAM, a user-specified or IBM
specified option that determines conditions for the time
a VTAM system is operating. Start options can be
predefined or specified when VTAM is started.

static partition. A partition, which is defined at IPL
time and occupying a defined amount of virtual
storage that remains constant. See also dynamic partition.

storage director. An independent component of a
storage control unit; it performs all of the functions of a
storage control unit and thus provides one access path
to the disk devices that are attached to it. A storage
control unit has two storage directors.

storage fragmentation. Inability to allocate unused
sections (fragments) of storage in the real or virtual
address range of virtual storage.

suballocated file. A VSE/VSAM file that occupies a
portion of an already defined data space. The data
space might contain other files. See also unique file.

sublibrary. In VSE, a subdivision of a library.
Members can only be accessed in a sublibrary.

sublibrary directory. An index for the system to locate
a member in the accessed sublibrary.

submit. A VSE/POWER function that passes a job to
the system for processing.

SVA. See shared virtual area.

Synchronous DataLink Control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
Transmission exchanges might be duplex or half-duplex
over switched or non-switched links. The configuration
of the link connection might be point-to-point,
multipoint, or loop.

SYSRES. See system residence volume.

system control programming (SCP). IBM supplied,
non-licensed program fundamental to the operation of
a system or to its service or both.

system directory list (SDL). A list containing directory
entries of frequently used phases and of all phases
resident in the SVA. The list resides in the SVA.

system file. In z/VSE, a file that is used by the
operating system, for example, the hardcopy file, the
recorder file, the page data set.

System Initialization Table (SIT). A table in CICS that
contains data that is used by the system initialization
process. In particular, the SIT can identify (by suffix
characters) the version of CICS system control
programs and CICS tables that you have specified and
that are to be loaded.

Glossary 551

system recorder file. The file that is used to record
hardware reliability data. Synonymous with recorder file.

system refresh. See service refresh.

system refresh release. See refresh release.

system residence file (SYSRES). The z/VSE system
sublibrary IJSYSRS.SYSLIB that contains the operating
system. It is stored on the system residence volume
DORSES.

system residence volume (SYSRES). The disk volume
on which the system sublibrary is stored and from
which the hardware retrieves the initial program load
routine for system startup.

system sublibrary. The sublibrary that contains the
operating system. It is stored on the system residence
volume (SYSRES).

T

task management. The functions of a control program
that control the use, by tasks, of the processor and
other resources (except for input/output devices).

time event scheduling support. In VSE/POWER, the
time event scheduling support offers the possibility to
schedule jobs for processing in a partition at a
predefined time once repetitively. The time event
scheduling operands of the * $$ JOB statement are used
to specify the wanted scheduling time.

track group. In VSE/POWER, the basic organizational
unit of a file for CKD devices.

track hold. A function that protects a track that is
being updated by one program from being accessed by
another program.

transaction.
1. In a batch or remote batch entry, a job or job step. 2.

In CICS TS, one or more application programs that
can be used by a display station operator. A given
transaction can be used concurrently from one or
more display stations. The execution of a
transaction for a certain operator is also referred to
as a task.

2. A given task can relate only to one operator.

transient area. An area within the control program
that is used to provide high-priority system services on
demand.

Turbo Dispatcher. A facility of z/VSE that allows to
use multiprocessor systems (also called CEC: Central
Electronic Complexes). Each CPU within such a CEC
has accesses to be shared virtual areas of z/VSE:
supervisor, shared areas (24 bit), and shared areas (31
bit). The CPUs have equal rights, which means that any

CPU might receive interrupts and work units are not
dedicated to any specific CPU.

U

UCB. Universal character set buffer.

universal character set buffer (UCB). A buffer to hold
UCS information.

UCS. Universal character set.

user console. In z/VSE, a console that receives only
those system messages that are specifically directed to
it. These are, for example, messages that are issued
from a job that was submitted with the request to echo
its messages to that console. Contrast with master
console.

user exit. A programming service that is provided by
an IBM software product that can be requested during
the execution of an application program for the service
of transferring control back to the application program
upon the later occurrence of a user-specified event.

V

variable-length relative-record data set (VRDS). A
relative-record data set with variable-length records.
See also relative-record data set.

variable-length relative-record file. A VSE/VSAM
relative-record file with variable-length records. See
also relative-record file.

VIO. See virtual I/O area.

virtual address. An address that refers to a location in
virtual storage. It is translated by the system to a
processor storage address when the information stored
at the virtual address is to be used.

virtual addressability extension (VAE). A storage
management support that allows to use multiple virtual
address spaces.

virtual address space. A subdivision of the virtual
address area (virtual storage) available to the user for
the allocation of private, nonshared partitions.

virtual disk. A range of up to 2 gigabytes of
contiguous virtual storage addresses that a program
can use as workspace. Although the virtual disk exists
in storage, it appears as a real FBA disk device to the
user program. All I/O operations that are directed to a
virtual disk are intercepted and the data to be written
to, or read from, the disk is moved to or from a data
space.

Like a data space, a virtual disk can hold only user
data; it does not contain shared areas, system data, or
programs. Unlike an address space or a data space,

552 z/VSE V5R2 TCP/IP Support

data is not directly addressable on a virtual disk. To
manipulate data on a virtual disk, the program must
perform I/O operations.

Starting with z/VSE 5.2, a virtual disk may be defined
in a shared memory object.

virtual I/O area (VIO). An extension of the page data
set; used by the system as intermediate storage,
primarily for control data.

virtual mode. The operating mode of a program,
where the virtual storage of the program can be paged,
if not enough processor (real) storage is available to
back the virtual storage.

virtual partition. In VSE, a division of the dynamic
area of virtual storage.

virtual storage. Addressable space image for the user
from which instructions and data are mapped into
processor storage locations.

virtual tape. In z/VSE, a virtual tape is a file (or data
set) containing a tape image. You can read from or
write to a virtual tape in the same way as if it were a
physical tape. A virtual tape can be:
v A VSE/VSAM ESDS file on the z/VSE local system.
v A remote file on the server side; for example, a

Linux, UNIX, or Windows file. To access such a
remote virtual tape, a TCP/IP connection is required
between z/VSE and the remote system.

volume ID. The volume serial number, which is a
number in a volume label that is assigned when a
volume is prepared for use by the system.

VRDS. Variable-length relative-record data sets. See
variable-length relative record file.

VSAM. See VSE/VSAM.

VSE (Virtual Storage Extended). A system that
consists of a basic operating system and any IBM
supplied and user-written programs that are required
to meet the data processing needs of a user. VSE and
hardware it controls form a complete computing
system. Its current version is called z/VSE.

VSE/Advanced Functions. As part of VSE Central
Functions, a base program of z/VSE. A program that
provides basic system control and includes the
supervisor and system programs such as the Librarian
and the Linkage Editor.

VSE Connector Server. Is the host part of the VSE
JavaBeans, and is started using the job STARTVCS,
which is placed in the reader queue during installation
of z/VSE. Runs by default in dynamic class R.

VSE/DITTO (VSE/Data Interfile Transfer, Testing, and
Operations Utility). An IBM licensed program that
provides file-to-file services for disk, tape, and card
devices.

VSE/ESA (Virtual Storage Extended/Enterprise
Systems Architecture). The predecessor system of
z/VSE.

VSE/Fast Copy. A utility program for fast copy data
operations from disk to disk and dump/restore
operations via an intermediate dump file on magnetic
tape or disk.

VSE/FCOPY (VSE/Fast Copy Data Set program). An
IBM licensed program for fast copy data operations
from disk to disk and dump/restore operations via an
intermediate dump file on magnetic tape or disk. There
is also a stand-alone version: the FASTCOPY utility.

VSE/ICCF (VSE/Interactive Computing and Control
Facility). An IBM licensed program that serves as
interface, on a time-slice basis, to authorized users of
terminals that are linked to the system's processor.

VSE/ICCF library. A file that is composed of smaller
files (libraries) including system and user data, which
can be accessed under the control of VSE/ICCF.

VSE JavaBeans. Are JavaBeans that allow access to all
VSE-based file systems (VSE/VSAM, Librarian, and
VSE/ICCF), submit jobs, and access the z/VSE operator
console. The class library is contained in the
VSEConnector.jar archive. See also JavaBeans.

VSE library. A collection of programs in various forms
and storage dumps stored on disk. The form of a
program is indicated by its member type such as source
code, object module, phase, or procedure. A VSE library
consists of at least one sublibrary, which can contain
any type of member.

VSE/POWER. An IBM licensed program that is
primarily used to spool input and output. The
program's networking functions enable a VSE system to
exchange files with or run jobs on another remote
processor.

VSE/VSAM (VSE/Virtual Storage Access Method).
An IBM access method for direct or sequential
processing of fixed and variable length records on disk
devices.

VSE/VSAM catalog. A file containing extensive file
and volume information that VSE/VSAM requires to
locate files, to allocate and deallocate storage space, to
verify the authorization of a program or an operator to
gain access to a file, and to accumulate use statistics for
files.

VSE/VSAM managed space. A user-defined space on
disk that is placed under the control of VSE/VSAM.

Glossary 553

W

wait for run subqueue. In VSE/POWER, a subqueue
of the reader queue with dispatchable jobs ordered in
execution start time sequence.

wait state. The condition of a processor when all
operations are suspended. System recovery from a hard
wait is impossible without performing a new system
startup. See hard wait.

Workstation File Transfer Support. Enables the
exchange of data between IBM Personal Computers
(PCs) linked to a z/VSE host system where the data is
kept in intermediate storage. PC users can retrieve that
data and work with it independently of z/VSE.

work file. A file that is used for temporary storage of
data being processed.

Numerics

24-bit addressing. Provides addressability for address
spaces up to 16 megabytes.

31-bit addressing. Provides addressability for address
spaces up to 2 gigabytes.

64-bit addressing. Provides addressability for address
spaces up to 2 gigabytes and above.

554 z/VSE V5R2 TCP/IP Support

Readers’ Comments — We'd Like to Hear from You

IBM z/VSE
z/VSE TCP/IP Support
Version 5

Publication No. SC34-2640-03

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +49-7031-163456
v Send your comments via email to: s390id@de.ibm.com
v Send a note from the web page: http://www.ibm.com/systems/z/os/zvse/

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2640-03

SC34-2640-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5609-ZV5

SC34-2640-03

	Contents
	Figures
	Tables
	Notices
	Trademarks

	Accessibility
	Using Assistive Technologies
	Documentation Format

	About This Publication
	Where to Find More Information
	Understanding Syntax Diagrams

	Summary of Changes
	Important Considerations - Read this First!
	Part 1. Using TCP/IP for VSE/ESA
	Chapter 1. Overview
	Documentation for the TCP/IP for VSE/ESA (5686-A04) Program
	General Considerations on the TCP/IP for VSE/ESA Program Setup
	The Demo Mode for TCP/IP for VSE/ESA
	Supplying the Product Key
	Installing Product Keys
	Defining Customer Information
	Migration Considerations

	Chapter 2. TCP/IP for VSE/ESA Configuration
	How TCP/IP for VSE/ESA is Installed
	TCP/IP for VSE/ESA Partition Startup
	Configuring CICS
	Example for CICS/TS 1.1

	HTMLINST.Z

	Chapter 3. TCP/IP for VSE/ESA Configuration Dialogs
	Configuring TCP/IP Using the Configuration Dialogs
	Configuring TCP/IP Using the IUI-based Configuration Dialog

	Chapter 4. Security Manager Exploitation by TCP/IP for VSE/ESA
	Using BSM Capabilities for TCP/IP Security Checks
	Activation of The Security Exit
	Deactivation of the Security Exit
	Using Pre- and Postprocessing Exits

	Chapter 5. InfoPrint Manager Support of TCP/IP for VSE/ESA
	Setting the Parameters for the IPM Support
	Customizing the InfoPrint Manager
	Changing the Properties of the Actual Destination
	Technical Background Information
	Software Prerequisites

	Chapter 6. z/VSE Related Hardware Functions Supported by TCP/IP for VSE/ESA 1.5
	Chapter 7. Performance Considerations
	Changing Performance Parameters
	General Performance Issues
	Principal Performance Dependencies for TCP/IP for VSE/ESA

	Part 2. Using IPv6/VSE
	Chapter 8. IPv6/VSE Overview
	IPv6 TCP/IP Stack
	Dual Stack Support
	IPv6-Enabled Utility Applications
	Documentation for the IPv6/VSE (5686-BS1) Program
	IPv6/VSE Installation Requirements

	Part 3. Programming Interfaces
	Chapter 9. Introducing Socket Programming
	What is a TCP/IP Socket Connection ?
	Socket Application Programming Interfaces Available with z/VSE
	Portability Aspects
	Which API to use?
	Exploiting the LE/VSE Socket API
	C Language
	Assembler Language
	PL/I
	COBOL

	Exploiting the EZASMI/EZASOKET Programming Interfaces
	LE/VSE 1.4 C Socket Programming
	General C Programming Considerations
	Messages

	TCP/IP Functions Supported by z/VSE
	ERRNO Values
	CICS Considerations
	CICS Considerations for the EZA Interfaces
	Executing TCP/IP Application Programs

	Chapter 10. TCP/IP Support for the LE/VSE C Socket Interface
	TCP/IP Callable Functions — Function Descriptions
	accept() — Accept a New Connection on a Socket
	aio_cancel() — Cancel an Asynchronous I/O Request
	aio_error() — Retrieve Error Status for an Asynchronous I/O Operation
	aio_read() — Asynchronous Read from a Socket
	aio_return() — Retrieve Status for an Asynchronous I/O Operation
	aio_suspend() — Wait for an Asynchronous I/O Request
	aio_write() — Asynchronous Write to a Socket
	bind() — Bind a Name to a Socket
	close() — Close a Socket
	connect() — Connect a Socket
	endhostent() — Work with a Host Entry
	endnetent() — Close Network Information Data Sets
	endprotoent() — Work with a Protocol Entry
	endservent() — Close Network Services Information Data Sets
	fcntl() — Control Open Socket Descriptors
	freeaddrinfo() — Free addrinfo storage
	gai_strerror() — Address and name information error description
	getaddrinfo() — Get address information
	getclientid() — Get the Identifier for the Calling Application
	gethostbyaddr() — Get a Host Entry by Address
	gethostbyname() — Get a Host Entry by Name
	gethostent() — Get the Next Host Entry
	gethostid() — Get the Unique Identifier of the Current Host
	gethostname() — Get the Name of the Host Processor
	getibmopt() — Get IBM TCP/IP image
	getnameinfo() — Get name information
	getnetbyaddr() — Get a Network Entry by Address
	getnetbyname() — Get a Network Entry by Name
	getnetent() — Get the Next Network Entry
	getpeername() — Get the Name of the Peer Connected to a Socket
	getprotobyname() — Get a Protocol Entry by Name
	getprotobynumber() — Get a Protocol Entry by Number
	getprotoent() — Get the Next Protocol Entry
	getservbyname() — Get a Service Entry by Name
	getservbyport() — Get a Service Entry by Port
	getservent() — Get the Next Service Entry
	getsockname() — Get the Name of a Socket
	getsockopt() — Get the Options Associated with a Socket
	givesocket() — Make the Specified Socket Available
	gsk_free_memory() — Free memory allocated for SSL
	gsk_get_cipher_info() — Query Cipher Related Information
	gsk_get_dn_by_label() — Get Distinguished Name Based on the Label
	gsk_initialize() — Initialize the SSL Environment
	gsk_secure_soc_close() — Close a Secure Socket Connection
	gsk_secure_soc_init() — Initialize Data Areas for a Secure Socket Connection
	gsk_secure_soc_read() — Receive Data on a Secure Socket Connection
	gsk_secure_soc_reset() — Refresh the Security Parameters
	gsk_secure_soc_write() — Send Data on a Secure Socket Connection
	gsk_uninitialize() — Remove Current Settings for the SSL Environment
	gsk_user_set() — Provide Callback Routines
	htonl() — Translate Address Host to Network Long
	htons() — Translate an Unsigned Short Integer into Network Byte Order
	if_freenameindex() — Free the Memory Allocated by if_nameindex()
	if_indextoname() — Map a Network Interface Index to its Corresponding Name
	if_nameindex() — Return all Network Interface Names and Indexes
	if_nametoindex() — Map a Network Interface Name to its Corresponding Index
	inet_addr() — Translate an Internet Address into Network Byte Order
	inet_lnaof() — Translate a Local Network Address into Host Byte Order
	inet_makeaddr() — Create an Internet Host Address
	inet_netof() — Get the Network Number from the Internet Host Address
	inet_network() — Get the Network Number from the Decimal Host Address
	inet_ntoa() — Get the Decimal Internet Host Address
	inet_ntop() — Convert Internet Address Format from Binary to Text
	inet_pton() — Convert Internet Address Format from Text to Binary
	initapi() — Initialize Socket API for a Subtask
	ioctl() — Control Socket
	listen() — Prepare the Server for Incoming Client Requests
	maxdesc() — Get Socket Numbers to Extend Beyond the Default Range
	ntohl() — Translate a Long Integer into Host Byte Order
	ntohs() — Translate an Unsigned Short Integer into Host Byte Order
	poll() — Monitor Activity on Socket Descriptors
	read() — Read From a Socket
	readv() — Read Data on a Socket and Store in a Set of Buffers
	recv() — Receive Data on a Socket
	recvfrom() — Receive Messages on a Socket
	recvmsg() — Receive Messages on a Socket and Store in an Array of Message Headers
	select() — Monitor Activity on Sockets
	selectex() — Monitor Activity on Sockets
	send() — Send Data on a Socket
	sendmsg() — Send Messages on a Socket
	sendto() — Send Data on a Socket
	sethostent() — Open the Host Information Data Set
	setibmopt() — Set IBM TCP/IP Image
	setnetent() — Open the Network Information Data Set
	setprotoent() — Open the Protocol Information Data Set
	setservent() — Open the Network Services Information Data Set
	setsockopt() — Set Options Associated with a Socket
	shutdown() — Shut Down a Connection
	socket() — Create a Socket
	socketpair() — Create a Pair of Sockets
	takesocket() — Acquire a Socket from Another Program
	termapi() — Terminate the Socket API for a Subtask
	write() — Write Data on a Socket
	writev() — Write Data on a Socket from an Array

	Chapter 11. Using the CALL Instruction Application Programming Interface (EZASOKET API)
	Environmental Restrictions and Programming Requirements
	CALL Instruction Application Programming Interface (API)
	Understanding COBOL, Assembler, and PL/I Call Formats
	Converting Parameter Descriptions
	Error Messages and Return Codes
	Debugging
	Code CALL Instructions
	ACCEPT
	BIND
	CLOSE
	CONNECT
	FCNTL
	FREEADDRINFO
	GETADDRINFO
	GETCLIENTID
	GETHOSTBYADDR
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETIBMOPT
	GETNAMEINFO
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	GSKFREEMEM
	GSKGETCIPHINF
	GSKGETDNBYLAB
	GSKINIT
	GSKSSOCCLOSE
	GSKSSOCINIT
	GSKSSOCREAD
	GSKSSOCRESET
	GSKSSOCWRITE
	GSKUNINIT
	INITAPI
	IOCTL
	LISTEN
	NTOP
	PTON
	READ
	READV
	RECV
	RECVFROM
	SELECT
	SELECTEX
	SEND
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	TAKESOCKET
	TERMAPI
	WRITE
	WRITEV

	Using Data Translation Programs for Socket Call Interface
	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08
	EZACIC09

	Chapter 12. Using the Macro Application Programming Interface (EZASMI API)
	Environmental Restrictions and Programming Requirements
	EZASMI Macro Application Programming Interface (API)
	Defining Storage for the API Macro
	Understanding Common Parameter Descriptions
	Characteristics of Stream Sockets
	Task Management and Asynchronous Function Processing
	Error Messages and Return Codes
	Debugging
	Macros for Assembler Programs
	ACCEPT
	BIND
	CANCEL
	CLOSE
	CONNECT
	FCNTL
	FREEADDRINFO
	GETADDRINFO
	GETCLIENTID
	GETHOSTBYADDR
	GETHOSTBYNAME
	GETHOSTID
	GETHOSTNAME
	GETIBMOPT
	GETNAMEINFO
	GETPEERNAME
	GETSOCKNAME
	GETSOCKOPT
	GIVESOCKET
	GSKFREEMEM
	GSKGETCIPHINF
	GSKGETDNBYLAB
	GSKINIT
	GSKSSOCCLOSE
	GSKSSOCINIT
	GSKSSOCREAD
	GSKSSOCRESET
	GSKSSOCWRITE
	GSKUNINIT
	INITAPI
	IOCTL
	LISTEN
	NTOP
	PTON
	READ
	READV
	RECV
	RECVFROM
	SELECT
	SELECTEX
	SEND
	SENDTO
	SETSOCKOPT
	SHUTDOWN
	SOCKET
	TAKESOCKET
	TASK
	TERMAPI
	WRITE
	WRITEV

	Part 4. Using Fast Path to Linux
	Chapter 13. Running z/VSE With a Linux Fast Path
	Overview of Linux Fast Path
	Prerequisites for Using Linux Fast Path
	Restrictions When Using Linux Fast Path
	Communication Flow When Not Using Linux Fast Path
	Communication Flow When Using Linux Fast Path in a z/VM Environment
	Communication Flow When Using Linux Fast Path in an LPAR Environment
	Preparing Linux on System z to Use Linux Fast Path
	Preparing to use Socket APIs with Linux Fast Path on z/VSE
	Configuring Linux Fast Path
	z/VM
	Linux on System z
	z/VSE
	Sample configurations

	Starting and Stopping Linux Fast Path
	z/VSE
	Linux on System z

	Administrative Tasks
	z/VSE
	Linux on System z

	Chapter 14. z/VSE - z/VM IP Assist
	Communication Flow when Using z/VSE VIA
	z/VSE VIA z/VM guest configuration
	z/VSE VIA Linux Fast Path Configuration
	z/VSE VIA Linux Fast Path Administration
	LFPD Command
	LFPD-ADMIN Command

	Chapter 15. OpenSSL
	Key store considerations
	Creating the Key Store Using Keyman/VSE

	Programming z/VSE Applications for OpenSSL
	Include Files
	Passed Socket Number
	Callback routines
	Socket Calls
	Switching between gsk and OpenSSL Socket Calls
	Specifying the Key Ring
	Using a Password Protected Keyring
	Supported Cipher Suites
	Specifying Cipher Suites
	Supported RSA Key Lengths
	Debugging
	Hardware Crypto Support

	Performing the OpenSSL speed test
	z/OS SSL API

	Part 5. CICS Listener Support
	Chapter 16. Setting Up and Configuring CICS Listener Support
	CICS — Defining CICS Resources
	Transaction Definitions
	Program Definitions
	File Definitions
	Transient Data Definition

	CICS Monitoring
	CICS Program List Table (PLT)
	Configuring the CICS TCP/IP Environment
	Building the Configuration data set with the Configuration Macro (EZACICD)
	Customizing the Configuration Dataset
	ALTER Function
	COPY Function
	CONVERT Function
	DEFINE Function
	DELETE Function
	DISPLAY Function
	RENAME Function

	Chapter 17. Configuring the CICS Domain Name Server Cache
	Function Components
	How the DNS Cache Handles Requests
	Using the DNS Cache
	Step 1: Create the Initialization Module
	Step 2: Define the Cache File to CICS
	Step 3: Execute EZACIC25
	HOSTENT Structure

	Chapter 18. Starting and Stopping the CICS Listener Support
	Starting/Stopping CICS Listener Support Automatically
	Starting/Stopping CICS Manually
	START Function
	STOP Function

	Starting/Stopping CICS Listener Support with Program Link

	Chapter 19. Writing Your Own Listener
	Using IBM's Environmental Support

	Chapter 20. External Data Structures
	Configuration Data Set Record Formats
	Global Work Area
	Parameter List (COMMAREA) for EZACIC20
	Listener Control Area (LCA)

	Chapter 21. CICS Listener Programming Considerations
	Writing CICS TCP/IP Applications
	1. The Client-Listener-Child-Server Application Set
	2. Writing Your Own Concurrent Server
	3. The Iterative Server CICS TCP/IP Application
	4. The Client CICS TCP/IP Application

	Socket Addresses
	GETCLIENTID, GIVESOCKET, and TAKESOCKET
	The Listener
	Listener Input Format (Standard Listener only)
	Listener Output Format
	Writing Your Own Security Link Module for the Listener

	Data Conversion Routines

	Part 6. Appendixes
	Appendix A. Examples to be used with TCP/IP for VSE/ESA
	Autonomous FTP
	AUTOLPR – Printing with the CICS Report Controller Feature (RCF)
	GPS and RCF
	TELNET and Subnetting in a Class-C Network
	TELNET daemons and logmode
	VSAMCAT Usage
	Using the Command preprocessor
	Sample Programs
	Compiling Your Program
	Compiling a COBOL Program for Batch
	Compiling a COBOL Program for CICS

	Appendix B. Debugging Facility for EZASMI and EZASOKET Interfaces (EZAAPI Trace)
	Appendix C. Advanced OSAX Device Driver Configuration
	Configurable QDIO Buffers
	VLAN Support

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Glossary
	Readers’ Comments — We'd Like to Hear from You

