
IBM z/VSE
VSE Central Functions

VSE/POWER Application Programming
Version 9 Release 2

SC34-2642-01

���

IBM z/VSE
VSE Central Functions

VSE/POWER Application Programming
Version 9 Release 2

SC34-2642-01

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page
xi.

This edition applies to Version 9 Release 2 of IBM VSE/POWER, which is part of VSE/Central Functions, Program
Number 5686-CF9, and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC34-2642-00.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:
IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:
Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1987, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

Notices xi
Trademarks xi
Accessibility xii

Using Assistive Technologies xii

About This Publication xiii
Who Should Use This Publication xiii
How to Use This Publication xiii
Where to Find More Information xiv
Abbreviations xv

Summary of Changes xvii
VSE/POWER 9.2 xvii
VSE/POWER 9.1 xvii
VSE/POWER 8.3 xviii

Part 1. Syntax Diagrams,
Accounting, Output Segmentation,
Dynamic Access to Job Attributes,
and IBM 4248 Printer Support 1

Chapter 1. Understanding Syntax
Diagrams 3

Chapter 2. Job Accounting 7
Job Accounting by VSE/POWER 7

Requirements 7
Account Macros and Records 7
Account-File-Full Condition 8
Record Format With or Without Prefix 9
The PACCNT Macro: Generating an
Account-Record DSECT. 9
Layout of the Advanced Function Printing (AFP)
Account Record 11
Layout of the Execution Account Record . . . 12
Layout of the List Account Record. 15
Layout of the Network Account Record 17
Layout of the Punch Account Record 18
Layout of the Reader Account Record 20
Layout of the Transmitter/Receiver Account
Record 21
Layout of the RJE,BSC Account Record 23
Layout of the RJE,SNA Account Record 23
Layout of the System-Up Account Record . . . 24
Layout of the Spool-Access-Connect Account
Record 25
Layout of the Spool-Access-Operation Account
Record 25

The PUTACCT Macro: Adding User Information
to Account Records 28

Chapter 3. Output Segmentation. . . . 31
IPWSEGM Macro - Extended Output Segmentation 31

Generation of Duplicate LST and PUN Output 32
Requirements for the Caller 34
Format of the Macro 34
Return Codes from the IPWSEGM Macro . . . 36
Residency Mode Considerations 38
IPW$MXD Mapping Macro 38

Chapter 4. Dynamic Access to
VSE/POWER Job Attributes 51

Chapter 5. Support of the IBM 4248
Printer 53

Part 2. Spool-Access Support . . . 55

Chapter 6. Introduction to
Spool-Access Support 57
Spool-Access Support Overview 57
Setting Up a Communication Path. 59
Requesting VSE/POWER Access Services 60
Scope of GET/CTL Access to Queue Entries . . . 61

Limitation by User ID (and Node ID). 61
Limitation by Password 62
Unlimited Access 62
Limitation by Maximum Number of Users . . . 62

Ending Access to VSE/POWER Services 63
End of Access Requested by Your Program . . . 63

Setting Up Several Communication Paths 64

Chapter 7. CTL - Passing a Command 65
Starting the CTL Service 65
Retrieving Messages 67
Ending the CTL Service 68
Direct Queue Entry CTL Access 68
Enabling Job Completion Messages by the Release
Command 70
Deleting Checkpoint Information 70
Checking the Return Information for CTL Service
Requests 71

Chapter 8. GET - Retrieving a Queue
Entry 75
Introduction to the GET Service 75

Starting the GET Service 75
Overview of the Checkpoint and Restart Facility 78
Ending the GET Service 78

Browsing a Queue Entry for Viewing Only 78

© Copyright IBM Corp. 1987, 2014 iii

Direct Queue Entry GET Access to the
RDR/LST/PUN/XMT Queues 79

How to Find the Internal Queue Record Number 80
Starting a Direct GET-OPEN Request 80
Special Considerations for Access to the XMT
Queue 81

Direct GET BROWSE Access To Output Queue
Entries In Creation 81

Searching for Queue Entries in Creation 82
Starting a Direct GET-OPEN for BROWSE of
Queue Entries in Creation 82

Mandatory and Optional Operands for GET-OPEN 83
Coding Sequence for the GET Service 84

Starting the GET Service 84
Retrieving Spool Data 86
Ending the GET Service 86

Converting ASA Characters to Machine Control
Characters 88
Requesting a Checkpoint 88

Requesting a Checkpoint with Extended
Information 89

Requesting a Restart of the GET Spool Data . . . 93
Restarting to the Active Record During GET
BROWSE 95
Identifying the Position after Restart to Active . . 96

Issuing Requests Concerning an OPTB 96
Issuing a Get-OPTB Request 96
Issuing a Modify-OPTB Request 97

Checking the Return Information for GET-Service
Requests 97
Handling an Abnormal-End Condition During GET 100
Accessing the Transmit (XMT) Queue 101

Chapter 9. PUT - Submitting a Job, a
Job Stream, or Output 103
Retrieval of Messages 104
Submitting a Job or a Job Stream 105
Starting a PUT Service for a Job or a Jobstream . . 106

Enabling Retrieval of Job Event and Output
Generation Messages 109
Issuing a PUT-SPOOL-Data Request 111
Issuing a PUT-CLOSE-Service Request 111
Ending the PUT Service for Jobs 112
Issuing a RETURN-MESSAGE Request 113

Checking the Return Information for a PUT-Job
Service Request. 114
Submitting Output Data 117

Format of Spool Output Records 119
Spooling of Records with Carriage Control
Character X'FE' 120
Page and Line Counts 120
VSE/POWER Account Records 121
Verification SPLs 122
Handling an Abnormal-End Condition During
PUT-SPOOL 122
Coding Sequence for PUT-OUTPUT Requests 123
Issuing a CLOSE-Service Request. 123
Output Parameter Text Blocks (OPTBs) 132

Chapter 10. GCM - Retrieving Job
Event and Output Generation
Messages, Inquiring eXtended Event
Messages 139
Destination of Job Event and Output Generation
Messages 140
The Size of the Message Queue 140
Requirements for Requesting the GCM Service . . 141
How to Submit a Job with the 'Queue Event
Message' Option 141
How to Enable Completion Message Queuing by
Command 141
How to Retrieve Job Event and Output Generation
Messages 141
Layout of a Fixed Format Job Event and Output
Generation Message 143
Message Selection Criteria 144
GCM-OPEN Request Types. 145

Issuing a GCM-OPEN-DELETE Request . . . 146
Issuing a GCM-OPEN-KEEP Request 146
Issuing a GCM-OPEN-REMOVE Request . . . 147
Issuing A GCM-OPEN-PURGE Request . . . 147
Optional Specifications Related to the
GCM-OPEN Request 148

GCM Subrequests 150
Issuing a GCM-MORE Subrequest 150
Issuing a GCM-REMOVE Subrequest 150

Additional Considerations 151
Wait Specification 151
Special Userid 151
Identifying The Lost Message Condition . . . 152
Reflecting Active GCM Applications. 152
Multiple GCM Requests 152
Shared Processing 153
Networking 153

Discontinuing the GCM-Service 153
Coding Sequence for a GCM Service 153
GCM-XEM Service 155

Overview of eXtended Event Messages
Handling 155
Generation of eXtended Event Messages . . . 156
Destination of eXtended Event Messages . . . 156
Storage Allocation for XEM Support 157
XEM Support Capacity 157
How to Use XEM Support 158
Layout of a Fixed Format eXtended Event
Message 159
Starting the GCM-XEM Service 159
Retrieving eXtended Event Messages 160
Applicability of Further Requests for Retrieving
eXtended Event Messages 162
Cancelling eXtended Event Messages Retrieving 162
Stopping the GCM-XEM Service 163
Restrictions of XEM Support 164

Return and Feedback Codes from the GCM
Requests 165
GCM Programming Example 165

Control Statements for Punching the Example 165
GCM Programming Example Source Code . . 166

iv VSE/POWER V9R2 Application Programming

Chapter 11. Supporting I/O Devices
Via Device Driving Systems 171
Concepts 171

Shared Spooling Considerations 173
Setting Up a Communication Path 173
Starting a Device 174

Processing a Start-Device Order 174
Starting a Device with 'Set Logical Destinations' 175

Processing Spooled Output 177
Handling a No-Selectable-Entry Situation . . . 177
Handling a Device-Setup Situation 178
Canceling Output Processing 183
Requesting an Order or a Signal 183

Stopping the Device 186
Handling an Abnormal-End Situation 190

Output-Related Abnormal End 190
Abnormal End of VSE/POWER 192

Processing of Order-Control Records and Signals 192
VSE/POWER-Built Device Orders 192
Subsystem-Originated Orders 193
Process a Device Order 193
Process a Subsystem Order 195
Device/Subsystem Orders and Order-Response
Records 195
Subsystem Orders 204
Process a Signal 207

General Hints 208
Routing of VSE/POWER-Generated Messages
for External Devices 208
Range of Support for Communicating with a
Subsystem 209
Use of VSE/POWER Commands During
Program Debug Activities 209

Chapter 12. Spool-Access Support
Macros 211
XPCCB 211
MAPXPCCB. 212
XPCC 212

Macro Format 213
Return Information 214

PWRSPL 217
Format 1: Generating an SPL 217
Format 2: Updating an SPL. 218
Format 3: Generating a DSECT 219

Spool-Access Support Parameter List (PWRSPL
DSECT) 231

Chapter 13. Spool-Access Support
Programming Example 271
Control Statements for Assembly and Catalog . . 271
Inline Macro Definition 271
Programming Example Source Code. 272
Control Statements for Execution 293
PRINTLOG of PWRSASEX Execution 294

Chapter 14. Return and Feedback
Codes and Their Meanings 297

Part 3. Exit Routines 315

Chapter 15. Writing Various Exit
Routines 317
Intercommunication Between Exit Routines . . . 317
Handling of Exit Failures 317

Recovery Feasible 318
Exit Routine for Local Input (Type JOBEXIT) . . . 319

Function 319
The User Routine Work Area 320
Restrictions 320
Interface Description 321
Tracing of Exit Failures 322
JOBEXIT Programming Example 322

Exit Routine for Output (Type OUTEXIT) 327
Function 327
The User Routine Work Area 327
Restrictions 328
Interface Description 328
Processing of Queue Entries 331
Accounting for the Output Exit Routine . . . 332
Device Driving System Considerations 332
Restart Considerations 333
Tracing of Exit Failures 333
OUTEXIT Programming Example 333

Part 4. Appendixes 341

Appendix A. Cross-Partition
Communication via Spool Macros . . 343
Restriction 343
Coding Practices 344

Spool Access Protection Considerations. . . . 344
General Notes 345

SPL Macro: Generate a Spool Parameter List . . . 345
Formats of the Macro. 346
Format 1: Generating an SPL 346
Format 2: Generating a DSECT 346

CTLSPOOL Macro: Control VSE/POWER Jobs . . 348
Requirements for the Caller 348
Format of the Macro 348

GETSPOOL Macro: Retrieve Data from Queues . . 353
Requirements For the Caller 353
Format of the Macro 354

PUTSPOOL Macro: Submitting a Job Stream . . . 356
Requirements For the Caller 357
Format of the Macro 357

Return Codes for CTLSPOOL, GETSPOOL, and
PUTSPOOL 359

Return Codes in Register 15 359
Return Codes in the SPL 359

Coding Example for Using the SPOOL Macros . . 361

Contents v

Appendix B. Output Segmentation by
SEGMENT Macro 371
SEGMENT Macro - Controlling Output
Segmentation 371

Requirements for the Caller 371
Format of the Segment Macro 371
Return Codes from the SEGMENT Macro . . . 373
Examples of the SEGMENT Macro 374

Appendix C. Spool-Access Support
Graphical Description 379
Spool-Access Support Description "Dictionary" . . 387

Glossary 395

Index 411

vi VSE/POWER V9R2 Application Programming

Figures

1. Addressing Scheme within the Execution
Account Record 15

2. The Macros and Control Blocks for
Spool-Access 58

3. Standard OPTB Format 132
4. Keyword OPTB Format 133
5. SPL Format 134
6. Retrieval of Queued Fixed Format Job Event

and Output Generation Messages 143
7. Layout in Bytes of a Fixed Format Job Event

and Output Generation Message 143

8. Layout in Bytes of a Fixed Format eXtended
Event Message 159

9. External Device Support Overview 172
10. Coding Example for the Use of SPOOL

Macros. 361
11. Console Listing of the SPOOL Macro Example 369
12. List Output of SPOOL Macro Example 370
13. Spool-Access Support Graphical Description

Explanation 379
14. Spool-Access Support Graphical Description

"General Phrase" 379

© Copyright IBM Corp. 1987, 2014 vii

viii VSE/POWER V9R2 Application Programming

Tables

1. VSE/POWER Account Record Overview . . . 7
2. Account File Record Format When Spooled to

PUNCH Queue 8
3. Account-Record Prefix for Systems with SYSID

Only 9
4. Advanced Function Printing Account Record 11
5. Execution Account Record 13
6. List Account Record. 15
7. Network Account Record 17
8. Punch Account Record 19
9. Reader Account Record 21

10. Transmitter- or Receiver-Account Record 22
11. RJE,BSC Account Record 23
12. RJE,SNA Account Record 24
13. System-Up Account Record 24
14. Spool-Access-Connect Account Record . . . 25
15. Spool-Access-Operation Account Record 26
16. IPWSEGM Parameter Area Produced by

IPW$MXD Macro 38
17. VSE/POWER Action for IBM 4248-Specific I/O

Commands. 53
18. Setting Up a Communication Path Sequence 59
19. End Access to VSE/POWER Sequence . . . 63
20. CTL-Service Processing Sequence 66
21. SPL Fields Applicable to 'Delete Checkpoint

Information' Request 70
22. Return and Feedback Codes

(PXPRETCD/PXPFBKCD) for CTL-Service
Related Requests 72

23. Feedback-2 Codes (PXPFBKC2) for Direct
CTL-Service Requests 73

24. Record Prefix Layout 77
25. Mandatory and Optional Operands for

GET-OPEN. 83
26. GET Service for a Complete Queue Entry

Sequence 84
27. Restart of a GET Service Sequence 93
28. Return and Feedback Codes

(PXPRETCD/PXPFBKCD) for GET-Service
Requests (Part 1) 98

29. Return and Feedback Codes
(PXPRETCD/PXPFBKCD) for GET-Service
Requests (Part 2) 99

30. Feedback-2 Codes (PXPFBKC2) for Direct
GET-Service Requests 100

31. Data Length for PUT Service 103
32. PUT Service, Job Submission Sequence 106
33. SPL Fields Applicable to a PUT-Job Service

Request 108
34. Retrieve Messages after a PUT-Job Service

Sequence 113
35. Return and Feedback Codes for PUT-Job

Service Requests 116
36. SPL Fields Applicable to a PUT-Output

Service Request 118
37. Line Counts as Maintained by VSE/POWER 121

38. PUT-Output CLOSE Request Sequence 123
39. Update SPL Fields Verified by VSE/POWER 125
40. Segmentation During PUT-Output Processing

Sequence 125
41. Checkpoint for PUT-Output Processing

Sequence 127
42. Restart for PUT-Output Processing Sequence 129
43. SPL Fields to be Updated ─ Open-Restart

Request for Output 131
44. SPL Fields to be Updated ─ Open-Append

Request for Output 131
45. Return and Feedback Codes for PUT-Output

Service Requests 135
46. SPL Fields Applicable to a GCM-OPEN

Request 145
47. GCM Service Processing Sequence 153
48. Applicability of further requests for XEM

retrieving 162
49. Return and Feedback Codes for

GCM-Service-Related Requests. 165
50. Code for Starting an External Device

Sequence 176
51. Code for a “No Entry Available” Situation

Sequence 178
52. Code for Device Setup and Reactivation

Sequence 180
53. Code for a PFLUSH without HOLD Sequence 184
54. Code for a PFLUSH with HOLD Sequence 185
55. Code for Device Stop after End of Output

Sequence 187
56. Code for Device Stop with a Restart

Possibility Sequence 189
57. Code for Abnormal End Because of a Device

Failure Sequence 191
58. Code for Processing of Device Orders

Sequence 194
59. Device/Subsystem-Order Header Section

Format. 195
60. Order-Response Control Record Format 197
61. Start-Device Order: Data Section 199
62. Start-Device Order: Response-Record Return

and Feedback Codes 199
63. Stop-Device Order: Data Section 200
64. Stop-Device Order: Response-Record Return

and Feedback Codes 200
65. Setup-Device Order: Data Section 201
66. Setup-Device Order: Response-Record Return

and Feedback Codes 201
67. Setup-Device Order: Data Section 201
68. Setup-Device Order: Response-Record Return

and Feedback Codes 202
69. Restart-Device Order: Data Section 202
70. Restart-Device Order: Response-Record

Return and Feedback Codes 202
71. Cancel-Output Order: Data Section 203

© Copyright IBM Corp. 1987, 2014 ix

72. Cancel-Output Order: Response-Record
Return and Feedback Codes 203

73. Transmit-Command Order: Data Section 203
74. Transmit-Command Order: Response-Record

Return and Feedback Codes 203
75. Subsystem Orders: Response Codes 204
76. Output-Arrived Signal Control Record 208
77. Mnemonic of Return and Reason Codes for

XPCC Macro 215

78. Return Codes (IJBXRETC) for XPCC macro 216
79. Reason Codes (IJBXREAS) for XPCC macro 217
80. Return and Feedback Codes and Their

Meanings 297
81. Output Exit Parameter List 329
82. Record Types Passed to an OUTEXIT 329
83. Return Codes Supplied in the SPL 360

x VSE/POWER V9R2 Application Programming

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM websites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM websites specifically mentioned in
this publication or accessed through an IBM website that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
IBM Deutschland GmbH
Dept. M358
IBM-Allee 1
71139 Ehningen
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

© Copyright IBM Corp. 1987, 2014 xi

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/VSE enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/VSE. Consult the assistive technology documentation for
specific information when using such products to access z/VSE interfaces.

xii VSE/POWER V9R2 Application Programming

About This Publication

This publication is intended to give the reader guide and reference information for
application programming related to IBM® VSE/POWER, the spooling component
of z/VSE.

Who Should Use This Publication
This publication addresses application programmers who develop programs
related to IBM VSE/POWER. The intended audience of this publication consists
therefore of programmers who have familiarity in the following areas:
v User level knowledge of z/VSE
v Knowledge of IBM assembler language
v Basic knowledge of how to compile, debug and run assembler language

programs.

How to Use This Publication
The following list tells where you find information on various aspects of
VSE/POWER described in this publication:
v Chapter 1, “Understanding Syntax Diagrams,” on page 3 describes how to read

syntax diagrams.
v Chapter 2, “Job Accounting,” on page 7 tells how to control job accounting.
v Chapter 3, “Output Segmentation,” on page 31 describes output segmentation.
v Chapter 4, “Dynamic Access to VSE/POWER Job Attributes,” on page 51

describes how to obtain the values of VSE/POWER job attributes dynamically in
a program.

v Chapter 5, “Support of the IBM 4248 Printer,” on page 53 describes the support
of the IBM 4248 printer.

v Chapter 6, “Introduction to Spool-Access Support,” on page 57 describes the
spool-access support of VSE/POWER; it allows a program running under or
outside the control of VSE/POWER to access the services of VSE/POWER.

v Chapter 7, “CTL - Passing a Command,” on page 65 describes how to send a
VSE/POWER command via the spool-access support to VSE/POWER and how
to retrieve the resulting information.

v Chapter 8, “GET - Retrieving a Queue Entry,” on page 75 shows how to retrieve
an entry from a VSE/POWER queue.

v Chapter 9, “PUT - Submitting a Job, a Job Stream, or Output,” on page 103
describes how to submit a queue entry to a VSE/POWER queue.

v Chapter 10, “GCM - Retrieving Job Event and Output Generation Messages,
Inquiring eXtended Event Messages,” on page 139 describes how user-written
application programs can retrieve job event and output generation messages for
jobs which have been submitted to VSE/POWER and can inquire messages
which inform about creation/alteration/deletion events in VSE/POWER queues
(eXtended Event Messages).

v Chapter 11, “Supporting I/O Devices Via Device Driving Systems,” on page 171
describes how I/O devices may be used which are not directly supported by
VSE/POWER.

© Copyright IBM Corp. 1987, 2014 xiii

v Chapter 12, “Spool-Access Support Macros,” on page 211 lists and describes the
macros to be used with the spool-access support.

v Chapter 13, “Spool-Access Support Programming Example,” on page 271 gives
an example of how the different spool-access support services may be applied in
a programming environment.

v Chapter 14, “Return and Feedback Codes and Their Meanings,” on page 297 lists
all possible return and feedback codes of the spool-access support.

v Chapter 15, “Writing Various Exit Routines,” on page 317 tells how to write exit
routines for the customized handling of local input and output.

The following information is included in the appendix:
v Appendix A, “Cross-Partition Communication via Spool Macros,” on page 343

describes the XECB-macro based cross-partition communication support.
v Appendix B, “Output Segmentation by SEGMENT Macro,” on page 371

describes the use of the SEGMENT macro.
v Appendix C, “Spool-Access Support Graphical Description,” on page 379

describes the spool-access support using graphical representation.

Additional help is provided at the back of the publication:
v The glossary explains technical terms.
v The index helps you to locate information.

Where to Find More Information
The following IBM publications also describe aspects of VSE/POWER:
v VSE/POWER Administration and Operation, SC34-2625
v VSE/POWER Remote Job Entry, SC33-6734
v VSE/POWER Networking, SC34-2603

The VSE/POWER messages are listed in z/VSE Messages and Codes, Volume 1,
SC34-2632.

For z/VSE, you may occasionally need the following IBM publications:
v z/VSE Installation, SC34-2631
v z/VSE Operation, SC33-8309
v z/VSE SNA Networking Support, SC34-2626
v z/VSE Guide to System Functions, SC33-8312
v z/VSE System Control Statements, SC34-2637
v z/VSE System Macros User's Guide, SC33-8407
v z/VSE System Macros Reference, SC34-2638

For information on VTAM, see
v Planning for NetView, NCP, and VTAM, SC31-8063

z/VSE Home Page

z/VSE has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new z/VSE functions, and
other items of interest to VSE users.

You can find the z/VSE home page at

xiv VSE/POWER V9R2 Application Programming

http://www.ibm.com/systems/z/os/zvse/

You can also find VSE User Examples (in zipped format) at

http://www.ibm.com/systems/z/os/zvse/downloads/samples.html

VSE/POWER Web Page

You can find current information on VSE/POWER at

http://www.ibm.com/systems/z/os/zvse/products/cf.html#power

Abbreviations
ACB = access method control block
ACF = advanced communication function
ASA = records with American National Standard control characters
BAM = Basic Access Method
BMS = basic mapping support (used by CICS)
BSC = binary synchronous communication
BSM = Basic Security Manager
CAT = common address table
CCB = channel control block
CCW = channel control word
CICS/VSE = Customer Information Control System/VSE
CKD = count-key-data (disk device type)
CPDS = composed page data stream (also ’all-point addressable records’)
DBLK = data block
DDS = device driving system
DSHR = data set header record
EBCDIC = extended binary-coded decimal interchange code
ECB = event control block
ESM = External Security Manager
FBA = fixed-block architecture (disk format)
FCB = forms control buffer (for printer control)
GCM = get completion message
ID = identifier
JCL = job control language
JECL = job entry control language
KB = Kilobyte (=1024 bytes)
MB = Megabyte (=1024 KB)
MCC = magnetic card code
OPTB = output parameter text block
PNET = VSE/Power networking
PSF = Print Services Facility*

RJE = Remote Job Entry
SAS = Spool-Access Support
SCS = standard character string
SNA = system network architecture
SPL = spool parameter list
SVA = system virtual area
SVC = supervisor call
TCB = task control block
TCP/IP = Transmission Control Protocol/Internet Protocol
VIO = Virtual I/O storage space (used for queue file copy)
UCB = universal character set buffer
VM = Virtual Machine (a type of IBM operating systems)
VSE = Virtual Storage Extended (a type of IBM operating systems)
VSE/ESA = Virtual Storage Extended/Enterprise Systems Architecture
VTAM = Virtual Telecommunications Access Method
z/OS = zSeries eServer operating system
z/VM = zSeries VM
z/VSE = zSeries VSE

About This Publication xv

http://www.ibm.com/systems/z/os/zvse/
http://www.ibm.com/systems/z/os/zvse/downloads/samples.html
http://www.ibm.com/systems/z/os/zvse/products/cf.html#power

* Throughout this publication - if not stated otherwise - information given for the
IBM 3800 Printing Subsystem applies also to the IBM 3200 Printing Subsystem.

xvi VSE/POWER V9R2 Application Programming

Summary of Changes

This publication has been updated to reflect the enhancements and changes that
are implemented with z/VSE Version 5 Release 2. It also includes terminology,
maintenance, and editorial changes.

Summaries of changes for Version 3 Release 1 and older versions of z/VSE can be
found in the VSE/POWER Application Programming for z/VSE Version 3 Release 1.

VSE/POWER 9.2

XEM Support for SAS interface

As of VSE/POWER 9.2, a new XEM (stands for eXtended Event Message) support
has been introduced as an extension of the JCM/JGM/OGM support for a SAS
user. XEM provides an application program with the opportunity to observe all
important events in VSE/POWER queues.

VSE/POWER generates a fixed format 1Q5XI extended event message for a
requesting application in the following cases:
v A new queue entry has been created within a VSE/POWER queue or spooled to

a tape.
v An existing queue entry has been altered in a VSE/POWER queue.
v An existing queue entry has been deleted from a VSE/POWER queue (moved

into the DEL queue).

As opposed to JCMs/JGMs/OGMs, which are created on request by a job being
executed, creation of extended event messages requires that the XEM service has
been started by an SAS application. For each application, VSE/POWER sets up a
separate queue for keeping XEMs. An application requests messages from its own
queue, retrieved messages are deleted from this queue after being sent.

Each application queue has a fixed number of message slots - 2048, one slot for
one extended event message. Up to 32 applications can use XEM support
concurrently. XEM support is based on the extended GCM service: GCM requests
are used to initialize messages building/queuing and to retrieve messages as well.

For details, refer to “GCM-XEM Service” on page 155.

VSE/POWER 9.1
IPWSEGM Supports Duplicates for LST and PUN Output

Since z/VSE 4.1, VSE/POWER supports the creation of duplicate output using the
* $$ LSTDUP and * $$ PUNDUP JECL statements or the PCOPY command. Output
duplication allows multiple VSE/POWER tasks to access a single image of spooled
data. Output duplication has now been made available for program-driven
segmentation via IPWSEGM. Duplication for the next output segment can be
requested using new operand DUP=YES for statements * $$ LST or * $$ PUN
supplied via macro IPWSEGM. For each duplicate, the supplied JECL must contain
DUP=YES followed by at least one JECL operand permitted for statements * $$

© Copyright IBM Corp. 1987, 2014 xvii

LSTDUP or * $$ PUNDUP. For additional details, refer to “Generation of Duplicate
LST and PUN Output” on page 32.

Enhanced Dynamic Access to VSE/POWER Job Attributes

A VSE/POWER job can create multiple LST and PUN outputs, each with a
different job name and other properties. From z/VSE 5.1 onwards, a common
attribute TKN has been defined for each job and all of its spooled output. The
TKN attribute of the VSE/POWER job can now be extracted from the MAPPOWJB
DSECT using the GETFLD FIELD=POWJOB service. See Chapter 4, “Dynamic
Access to VSE/POWER Job Attributes,” on page 51.

VSE/POWER 8.3
OGM Support for SAS Interface

Prior to version 8.3, VSE/POWER did not provide notifications for SAS user about
outputs produced by jobs, like it does for job generation and job completion events
by issuing 1Q5HI and 1Q5DI messages. Starting with version 8.3, VSE/POWER
issues a new fixed format informational message, 1Q5RI, for notification about
output generation event. This 1Q5RI message is generated and issued:
v When a job, submitted via SAS interface, which creates an LST or PUN entry (or

XMT entry if LST/PUN output is designated for sending to another PNET node)
and this entry is ready for processing.

v When a job has been submitted by a PUT request with new options specified in
SPL.

New 1Q5RI message is processed similarly as the existing 1Q5HI and 1Q5DI
messages, which are placed into the SAS messages queues (user queue, common
queue, or both), and can be retrieved by a GCM request later on.

To handle the increased number of issued fixed format messages, the default queue
size of fixed format messages has been increased from 20 to 50, and its maximal
value from 99 to 255.

For additional details see Chapter 9, “PUT - Submitting a Job, a Job Stream, or
Output,” on page 103 and Chapter 10, “GCM - Retrieving Job Event and Output
Generation Messages, Inquiring eXtended Event Messages,” on page 139.

Enhancement of Selection Criteria for SAS GCM Interface

So far using selection criteria of SAS GCM you could retrieve:
v All event messages
v All messages from jobs with a specific job name
v All messages from job with a specific job name and job number

Starting with VSE/POWER 8.3, you can retrieve additionally:
v All messages of specific type (JCM, JGM or OGM)
v All messages of specific type from jobs with a specific job name
v All messages of specific type from jobs with a specific job name and job number

See “Message Selection Criteria” on page 144.

xviii VSE/POWER V9R2 Application Programming

Part 1. Syntax Diagrams, Accounting, Output Segmentation,
Dynamic Access to Job Attributes, and IBM 4248 Printer
Support

© Copyright IBM Corp. 1987, 2014 1

2 VSE/POWER V9R2 Application Programming

Chapter 1. Understanding Syntax Diagrams

This section describes how to read the syntax diagrams in this publication.

To read a syntax diagram follow the path of the line. Read from left to right and
top to bottom.
v The ��─── symbol indicates the beginning of a syntax diagram.
v The ───� symbol, at the end of a line, indicates that the syntax diagram

continues on the next line.
v The �─── symbol, at the beginning of a line, indicates that a syntax diagram

continues from the previous line.
v The ───�� symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:
v Directly on the line (required)
v Above the line (default)
v Below the line (optional)

Uppercase Letters
Uppercase letters denote the shortest possible abbreviation. If an item
appears entirely in uppercase letters, it can not be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any
combination. For example:

�� KEYWOrd ��

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in any
combination of uppercase and lowercase letters.

Symbols
You must code these symbols exactly as they appear in the syntax diagram

* Asterisk

: Colon

, Comma

= Equal Sign

- Hyphen

// Double slash

() Parenthesis

. Period

+ Add

For example:
* $$ LST

Variables
An italicized lower-case word indicates a variable that you must substitute
with specific information. For example:

© Copyright IBM Corp. 1987, 2014 3

�� ,USER=user_id ��

Here you must code USER= as shown and supply an ID for user_id. You
may, of course, enter USER in lowercase, but you must not change it
otherwise.

Repetition
An arrow returning to the left means that the item can be repeated.

�� � repeat ��

A character within the arrow means you must separate repeated items with
that character.

�� �

,

repeat ��

A footnote (1) by the arrow references a limit that tells how many times
the item can be repeated.

�� �
(1)

repeat ��

Notes:

1 Specify repeat up to 5 times.

Defaults
Defaults are above the line. The system uses the default unless you
override it. You can override the default by coding an option from the
stack below the line. For example:

��
A

B
C

��

In this example, A is the default. You can override A by choosing B or C.

Required Choices
When two or more items are in a stack and one of them is on the line, you
must specify one item. For example:

�� A
B
C

��

Here you must enter either A or B or C.

Optional Choice
When an item is below the line, the item is optional. Only one item may be
chosen. For example:

Understanding Syntax Diagrams

4 VSE/POWER V9R2 Application Programming

��
A
B
C

��

Here you may enter either A or B or C, or you may omit the field.

Required Blank Space
A required blank space is indicated as such in the notation. For example:
* $$ EOJ

This indicates that at least one blank is required before and after the
characters $$.

Understanding Syntax Diagrams

Chapter 1. Understanding Syntax Diagrams 5

Understanding Syntax Diagrams

6 VSE/POWER V9R2 Application Programming

Chapter 2. Job Accounting

Job Accounting by VSE/POWER

Requirements
To have VSE/POWER job accounting support available, the system programmer
specifies the account records that are needed in the POWER generation macro by
either ACCOUNT=YES (all types wanted) or by, for example,
ACCOUNT=(AFP,BSC,..,XSPOOL) for selected types. VSE/POWER needs some
additional processor, virtual storage, and disk space to accommodate the
VSE/POWER account file. For information about these requirements, see
VSE/POWER Administration and Operation, SC34-2625.

Account Macros and Records
If accounting support is available, VSE/POWER automatically collects job
accounting information for every partition under its control and stores this
information for every job step in chronological order in the account file. In this file,
and also on tape or disk if the file was saved, the records are stored sequentially:
On CKD disk or tape: in variable unblocked format
On FBA disk: in variable blocked format

VSE/POWER produces various types of account records, and you can write an
evaluation program of your own to process these records.

Moreover, you may want to write a program under the name of $JOBACCT to add
information to the execution account record specially.

Available Account Macros

The PACCNT macro, to be used in your processing program, requests a DSECT to
be assembled into your program for any, several, or all types of account records.

The PUTACCT macro lets you add information to the execution save account
record.

Syntax rules

For an explanation of the syntax used in the formats of these macros, see
Chapter 1, “Understanding Syntax Diagrams,” on page 3. Continuation codes that
may be required in column 72 are not shown as part of the macro formats.

Available Account Records

The following types of account records are supported. (The account-record ID is in
position 43 of every record).

Table 1. VSE/POWER Account Record Overview

Account Record Type ID Figure/Page

Advanced Function Printing account record A Table 4 on page 11

Execution account record E Table 5 on page 13

© Copyright IBM Corp. 1987, 2014 7

Table 1. VSE/POWER Account Record Overview (continued)

Account Record Type ID Figure/Page

List account record L Table 6 on page 15

Network account record N Table 7 on page 17

Punch account record P Table 8 on page 19

Reader account record R Table 9 on page 21

Transmitter account record M Table 10 on page 22

Receiver account record V Table 10 on page 22

RJE,BSC account record T Table 11 on page 23

RJE,SNA account record S Table 12 on page 24

System-up account record U Table 13 on page 24

Spool-access-connect account record C Table 14 on page 25

Spool-access-operation account record X Table 15 on page 26

Account-File-Full Condition
If the account file is full and a task of VSE/POWER must write another account
record, this task waits until the operator issues a PACCOUNT command. Instruct
your operator to do one of the following:
v Save the account records on tape (generally the preferred action). For their

format, see “Layout of the Execution Account Record” on page 12 and the
following sections, but note that every record, in addition, has the standard
8-byte prefix (BAM) for variable length records.

v Save the account records on disk if a disk extent has been defined for this
purpose. For their format, see “Layout of the Execution Account Record” on
page 12 and the following sections, but note that every record, in addition, has
the standard prefix for variable length records.

v Have the contents of the account file spooled to the punch queue and punched
out by starting a punch-writer task with class P.
When VSE/POWER is to spool the account file's contents, every punch record
has the format shown in Table 2.

Table 2. Account File Record Format When Spooled to PUNCH Queue

Columns Contents

1
2-72

73-78
79-80

Account-record ID (field ACIDEN of the account record)
Data (bytes 0-70 of the account record) punched in the
same positions as it appears in the account record, in-
cluding the account record ID (invalid for continuation cards).
Record number of the account file.
Sequence number of continuation cards. One account
record may require one or more punched cards.

Job Accounting

8 VSE/POWER V9R2 Application Programming

Record Format With or Without Prefix
In a shared spooling environment, (more precisely: as soon as the VSE/POWER
macro specifies the SYSID= operand or the SET SYSID= autostart statement is
used), the following 16 bytes are placed at the beginning of the data bytes of each
generated account record. The SYSID operand of the PACCNT macro must be used
in this case to reflect the presence of the shared header.

Table 3. Account-Record Prefix for Systems with SYSID Only

Field
Name Description

Field
Type &
Length

ACSYSID
ACTYPE
ACCOMP

System ID
Account Record Type (character) and version X'09'
Component ID: '5686CF9'
Reserved

CL1
CL2
CL8
CL5

The PACCNT Macro: Generating an Account-Record DSECT
PACCNT requests a DSECT to be assembled into your program for one, several, or
all types of account records. For most account-record types, the generated DSECT
includes a fixed (header) part and a variable part. In your program, examine the
account record ID and then work with the labels that apply to the specific record
type. Read the generated DSECT before you start coding a program using it.

Format of the Macro

The format of the macro as shown below does not include the continuation
character, which you may have to code in column 72.

��
name

PACCNT �

,

ALL=YES
AFP=YES
BSC=YES
EXEC=YES
LIST=YES
PNET=YES
PUNCH=YES
READER=YES
RECV=YES
SNA=YES
SYS=YES
SYSID=YES
TRANS=YES
XCONN=YES
XSPOOL=YES

��

For name (in the name field), specify the label you want to use for referring to the
DSECT for the account record(s).

ALL=NO|YES
Specify ALL=YES to have DSECTs generated for all account records. If the

Job Accounting

Chapter 2. Job Accounting 9

account prefix is required, then specify also SYSID=YES. Any other
specification that you may supply is ignored.

AFP=NO|YES
Specify AFP=YES to have a DSECT generated for the truncated part of an
Advanced Function Printing account record (for layout, see Table 4 on page
11).

BSC=NO|YES
Specify BSC=YES to have a DSECT generated for an RJE,BSC account record
(for layout, see Table 11 on page 23).

EXEC=NO|YES
Specify EXEC=YES to have a DSECT generated for an execution account record
and its extensions (for layout, see Table 5 on page 13).

LIST=NO|YES
Specify LIST=YES to have a DSECT generated for a list account record (for
layout, see Table 6 on page 15).

PNET=NO|YES
Specify PNET=YES to have a DSECT generated for a PNET network account
record (for layout, see Table 7 on page 17).

PUNCH=NO|YES
Specify PUNCH=YES to have a DSECT generated for a punch account record
(for layout, see Table 8 on page 19).

READER=NO|YES
Specify READER=YES to have a DSECT generated for a reader account record
(for layout, see Table 9 on page 21).

RECV=NO|YES
Specify RECV=YES to have a DSECT generated for a transmitter/receiver
account record (for layout, see Table 10 on page 22).

SNA=NO|YES
Specify SNA=YES to have a DSECT generated for an RJE,SNA account record
(for layout, see Table 12 on page 24).

SYS=NO|YES
Specify SYS=YES to have a DSECT generated for a system-up account record
(for layout, see Table 13 on page 24).

SYSID=NO|YES
Specify SYSID=YES to have the 16-byte account-record prefix generated into
and at the beginning of the account-record DSECT (for layout, and
requirement, see Table 3 on page 9).

TRANS=NO|YES
Specify TRANS=YES to have a DSECT generated for a transmitter/receiver
account record (for layout, see Table 10 on page 22).

XCONN=NO|YES
Specify XCONN=YES to have a DSECT generated for a spool-access connect
account record (for layout, see Table 14 on page 25).

XSPOOL=NO|YES
Specify XSPOOL=YES to have DSECTs generated for a spool-access operation
account record (for layout, see Table 15 on page 26).

PACCNT Macro

10 VSE/POWER V9R2 Application Programming

Layout of the Advanced Function Printing (AFP) Account
Record

VSE/POWER writes an Advanced Function Printing account record for a device
driving system (DDS) whenever the DDS sends an 'account record order' which
contains a valid AFP account record. This DDS is responsible for providing the
contents of the standard VSE/POWER account record header and for defining the
DDS specific layout of the record part starting at location ACAFPBBY. For the
account record to be correct and unique, VSE/POWER updates fields ACIDEN,
ACAFPLEN, and ACAPPLID before it writes the AFP record to the account file.
For creation of an account record order see also section “Subsystem Orders” on
page 204.

Independent of a specific device driving subsystem, the beginning of every
Advanced Function Printing account record looks as follows:

Table 4. Advanced Function Printing Account Record

Field
Name Description

Field
Type &
Length

ACDATE

ACSTRT

ACSTOP

ACUSER

ACNAME

ACNUMB

ACIDEN

ACCANC

ACFLG1

Date in the format as specified at SYSGEN;
provided by the DDS
Print start time (0HHMMSSF, where F = sign)
packed decimal;
provided by the DDS
Print stop time (0HHMMSSF, where F = sign)
packed decimal;
provided by the DDS
16 bytes of user information;
provided by the DDS from SPLDUI
Name of report (jobname);
provided by the DDS from SPLGJB
Job number as assigned by VSE/POWER;
provided by the DDS from SPLGJN
Record ID (A),
set by VSE/POWER
Printer cancel code; provided by the
DDS according to the VSE/POWER cancel codes
of the Spool-Access-Operation Account Record
Account flag byte 1:

ACF1CE20 X’80’ ON = ACDATE is 20yy
OFF = ACDATE is 19yy

CL8

PL4

PL4

CL16

CL8

BL2

CL1

BL1

BL1

end of header

Advanced Function Printing Account Record

Chapter 2. Job Accounting 11

Table 4. Advanced Function Printing Account Record (continued)

Field
Name Description

Field
Type &
Length

ACAFPLEN

ACAPPLID

ACAFPBDY

Total length of AFP account record,
set by VSE/POWER
(optional 16 bytes SYSID prefix excluded)
XPCC application identifier of DDS
set by VSE/POWER
Start of specific Advanced Function Printing
account information with layout as provided by
corresponding device driving system (DDS).
Length (x) of this section is the length provided
in the field ACAFPLEN minus 45 bytes for the header
and minus 10 bytes for the subsequent length
and application-id fields.

BL2

CL8

CLx

Layout of the Execution Account Record
VSE/POWER builds one execution account record for every z/VSE job step (every
time a // EXEC or /& statement occurs). If a job or job step is canceled,
VSE/POWER's statistics reflect the processing up to the point of this cancelation.
The record can be up to 2008 bytes long.The same execution account record is used
by VSE/POWER itself when the operator has issued a PEND command. In this
VSE/POWER execution account record, certain fields are set to zero (see below),
and field EXDUSER contains the constant "VSE/POWER-E.A.R."

Note: The page count is reflected in both fields EXNPG (2 bytes) and EXPCNT (4
bytes). However, when EXNPG overflows, its value remains 65,535 permanently.

Advanced Function Printing Account Record

12 VSE/POWER V9R2 Application Programming

Table 5. Execution Account Record

Field
Name Description

Field
Type &
Length

ACDATE
ACSTRT
ACSTOP

ACUSER

ACNAME

ACNUMB
ACIDEN
ACCANC

ACFLG1

Processing date in the format as defined for the system
Start time of job step (0hhmmssf, where f = sign)
Stop time of job step (0hhmmssf, where f = sign)
This time may be higher than the time logged on the
console; it accounts for VSE/POWER job termination
16 bytes of user information from * $$ JOB card,
"VSE/POWER-E.A.R." for VSE/POWER exec. acct. record
Current VSE/POWER job name or AUTONAME
"POWER/VS" for VSE/POWER exec. acct. record
Job number assigned by VSE/POWER
Record ID (E)VSE/POWER
cancel code:
X’10’ = Normal end of VSE/POWER job or task. The

associated z/VSE job(s) may have been canceled
by the system nevertheless.

X’20’ = PCANCEL was issued.
X’30’ = PSTOP command was issued. The code is not

stored in the account record if the EOJ op-
tion was specified in the PSTOP command.

X’40’ = PFLUSH command was issued.
X’70’ = The job was canceled due to an I/O error.
Account flag byte 1:

ACF1CE20 X’80’ ON = ACDATE is 20yy
OFF = ACDATE is 19yy

CL8
PL4
PL4

CL16

CL8

BL2
CL1
BL1

BL1

end of header

EXFRM

EXICL
EXIPR

EXNLN

EXNCD

EXNPG

EXSIO

EXTAC
EXPOWEX
EXUSREX
EXOJ#
EXXNODE
EXFRNO
EXFRUS

Reserved
FROM remote ID
Reserved
Class
Priority

Number of lines spooled
Binary zero for VSE/POWER exec. acct. record
Number of cards spooled
Binary zero for VSE/POWER exec. acct. record
Number of pages spooled
(the value in this field is limited to 65,535 pages; if
dealing with larger numbers, use field EXPCNT instead).
Binary zero for VSE/POWER exec. acct. record
Length of SIO table (including the byte
containing X’20’)
Length of total execution account record
Offset to VSE/POWER extension area from ACDATE
Offset to user PUTACCT extension area from ACDATE
Original job number, if one exists
Name of execution node
Name of FROM (originating) node
ID of originating user

CL3
BL1
BL1
CL1
CL1

BL4

BL4

BL2

BL2

BL2
BL2
BL2
BL2
CL8
CL8
CL8

Execution Account Record

Chapter 2. Job Accounting 13

Table 5. Execution Account Record (continued)

Field
Name Description

Field
Type &
Length

EXDJOB
EXDUSER

EXPID
EXDCANC

EXTYPE
EXJDUR
EXPHASE
EXPASZ
EXCPUTM

EXOVHTM

EXALLTM

EXSIOTB

EXSIOTB
+ n - 1

EXSIOTB+n

EXPACCT

EXPCNT

z/VSE job name from the // JOB card
16 bytes of user information from the // JOB card
On VSE/POWER shutdown, the field contains:
"VSE/POWER-E.A.R."1

Partition ID in EBCDIC formatz/VSE
cancel code (refer to z/VSE Messages and Codes)

Type of record; S = job step L = Last step
Duration of job step (in 300ths of a second)
Phase name, taken from the // EXEC card
Number of pages multiplied by page size in KB
Processor time in 300ths of a second. This is the
actual time used by a job or job step in the system.
Overhead time in 300ths of a second. This is the
time needed for activities that cannot be charged
to a specific program or partition. For example,
the time for calling a routine, for error recovery,
or from the start of the $JOBACCT routine to the
processing of the // EXEC statement. All SVC process-
ing is counted as active processor time for the job
or job step. Overhead time is distributed over
active partitions in proportion to used CPU time
Total system wait time in 300ths of a second. All
bound time is distributed in equal parts between
all active partitions.

SIO tables. Six bytes per device defined to the
system during system startup provided that at
least one I/O request has been performed for the device:
bytes 0 and 1 = 0cuu;
bytes 2 through 5 = count of SIOs in current job step.
Note that VSE/POWER may suppress SIO table entries if the
maximum account record length of 2008 bytes is exceeded.
Set by the system to X’20’. n = total length of
the SIO tables (EXSI0)
User PUTACCT extension area, also to be found by the
pointer in field EXUSREX above.
Start of the VSE/POWER extension
area, also to be found by the pointer in field
EXPOWEX above. Starts by the network account number.
Total number of pages spooled
Reserved

CL8
CL16

CL2
BL1

CL1
BL4
CL8
BL4
BL4

BL4

BL4

BL6
for
every
SIO
entry

BL1

undef.

CL8

BL4
CL20

1 E.A.R. stands for 'execution account record'.

Addressing Scheme of the Execution Account Record

The following graphic (starting at field ACDATE) shows how the two fields
EXPOWEX and EXUSREX point to the respective beginnings of the VSE/POWER
and of the user extension areas in the execution account record.

Execution Account Record

14 VSE/POWER V9R2 Application Programming

Layout of the List Account Record
VSE/POWER builds a list account record for every queue entry that is processed by
a list task.

Note: The page count is reflected in the two byte fields LSTPAG/LSTEXP and, at
the same time, in the four byte fields LSTPGN/LSTEPGN. When the two byte
fields overflow, they will permanently contain the value of 65,535.

Table 6. List Account Record

Field
Name Description

Field
Type &
Length

ACDATE
ACSTRT
ACSTOP
ACUSER

ACNAME

ACNUMB

ACIDEN

ACCANC

ACFLG1

Processing date in the format as defined to the system
Start time of list output (0hhmmssf, where f = sign)
Stop time of list output (0hhmmssf, where f = sign)
16 bytes of user information from the * $$ JOB or the
* $$ LST statement
VSE/POWER job name from the * $$ JOB or the // JOB
statement
Job number assigned by VSE/POWER (same as that of the
associated reader queue entry for first * $$ LST statement)
Record ID (L)

VSE/POWER cancel code:
X’10’ = Normal end of VSE/POWER job or task - The

associated z/VSE job(s) may have been canceled
by the system nevertheless.

X’30’ = PSTOP command was issued. The code is not
stored in the account record if the EOJ
option was specified in the PSTOP command.

X’40’ = PFLUSH command was issued.
X’70’ = The job was canceled due to an I/O error.

Account flag byte 1:
ACF1CE20 X’80’ ON = ACDATE is 20yy

OFF = ACDATE is 19yy

CL8
PL4
PL4
CL16

CL8

BL2

CL1

BL1

BL1

end of header

Prefix and
first part

SIO
tables

User
extension

VSE/POWER
extension

Figure 1. Addressing Scheme within the Execution Account Record

List Account Record

Chapter 2. Job Accounting 15

Table 6. List Account Record (continued)

Field
Name Description

Field
Type &
Length

LSTADR
LSTFRM
LSTTO

LSTOCL
LSTOPR
LSTNUM

LSTTRK

LSTSUF

LSTCOP

LSTFOR
LSTEXR

LSTPAG

LSTEXP

LSTFLSH
LSTCPYG
LSTNODE
LSTTOUS

Printer or RJE-line address (cuu), SNA, or GSP
FROM remote ID
TO remote ID

Printed output class
Printed output priority number
No. of lines printed only for 1st copy,comprising:
- lines of total entry if ACCANC=X’10’, or
- lines of partial entry if ACCANC=X’30/40/70’
Note the additional lines in LSTEXR

Number of DBLK groups for output storage
The field is set to zero if the list output was
spooled to tape.

Job suffix (segment) number assigned by VSE/POWER
If: X’00’ - The only segment for a job

X’82’ or higher - The last segment for a job;
the seven low-order bits give the
number of segments

Number of complete printed copies. (If more than
one copy, statistics are totals for all copies)
Print-forms ID
No. of extra lines printed beyond LSTNUM due to
- PRESTART or PSETUP command request
- separator pages
- copies 2,3,..,n if ACCANC=X’10’ or
- copies 2,3,..,x if ACCANC=X’30/40/70’

where "x" is the partially printed copy

No.of pages printed only for 1st copy comprising:
- pages of total entry if ACCANC=X’10’, or
- pages of partial entry if ACCANC=X’30/40/70’
Note the additional pages (skip-chan-1 or filled pages
due to FCB or LTAB) in LSTEXP
(The value in this field is limited to 65,535
pages; if dealing with larger numbers, use field
LSTPGN instead)
No. of extra pages printed additionally to LSTPAG due to
- PRESTART or PSETUP command request
- separator pages
- copies 2,3,..,n if ACCANC=X’10’ or
- copies 2,3,..,x if ACCANC=X’30/40/70’

where "x" is the partially printed copy
(The value in this field is limited to 65,535
pages; if dealing with larger numbers, use field
LSTEPGN instead)

Flash ID (applies only to 3800 printer)
Copy groupings (applies only to 3800 printer)
Name of own node (system) in the network
Destination-user (TO) identification

CL3
BL1
BL1

CL1
CL1
BL4

BL2

BL1

BL1

CL4
BL4

BL2

BL2

CL4
CL8
CL8
CL8

List Account Record

16 VSE/POWER V9R2 Application Programming

Table 6. List Account Record (continued)

Field
Name Description

Field
Type &
Length

LSTFRNO
LSTFRUS
LSTOJ#
LSTACCT

LSTRINS
LSTRDEL
LSTPGN
LSTEPGN

LSTPGRNM
LSTBLDG#
LSTROOM#
LSTDEPT#
LSTDIST

Name of originating (FROM) node
Originating-user (FROM) identification
Original job number, if one exists
Network Account number
Reserved
Records inserted by OUTEXIT routine
Records deleted by OUTEXIT routine
Number of pages printed
Number of extra pages printed

Programmer’s name
Programmer’s building number
Programmer’s room number
Programmer’s department number
Distribution code

CL8
CL8
BL2
CL8
CL2
BL4
BL4
BL4
BL4

CL20
CL8
CL8
CL8
CL8

Layout of the Network Account Record
VSE/POWER builds a network account record for an existing communication path
when a session via this path is terminated. The record contains information about
all activities during the session.

Table 7. Network Account Record

Field
Name Description

Field
Type &
Length

NETDTE

NETSGN
NETSGF
NETNODE

NETNPAS
NETPSW
NETICNT
NETIDEN

NETTERM

NETTEC

Processing date in the format as defined for the
system

Sign-on time (0hhmmssf, where f = sign)
Sign-off time (0hhmmssf, where f = sign)
ID of the connected node

Node password
Line password
Invalid responses per session
Record ID (N)

Signoff code and century indicator:
X’01’ = ON = NETSOD is 20yy

OFF = NETSOD is 19yy
X’02’ = Normal VTAM shutdown
X’04’ = Abnormal end of VTAM
X’08’ = An internal error occurred
X’10’ = A line error occurred or a session was

terminated
X’20’ = A time-out occurred
X’40’ = A remote SIGNOFF occurred
X’80’ = Cancel on operator request (one of the com-

mands PSTOP and PEND)

Terminal error count

CL8

PL4
PL4
CL8

CL8
CL8
BL2
CL1

BL1

BL1

end of header

List Account Record

Chapter 2. Job Accounting 17

Table 7. Network Account Record (continued)

Field
Name Description

Field
Type &
Length

NETLAD
NETTRAN

Line address or ’SNA’ or ’TCP’ or ’SSL’
NETTRAN transmission count (of buffers) per session

For PNET support using BSC and CTC:
- number of started I/O’s or
- number of sent buffers or
- number of received buffers
For PNET support using TCP or SSL:
- number of CTC-simulated started I/O’s
For PNET support using SNA:
- number of sent buffers

CL3
BL4

NETTCNT
NETERR

For PNET support using BSC

Time-out count per session
Error count per session

BL2
BL2

NETRCVE

For PNET support using SNA

Buffers received during session BL4

NETSOD Sign-off date CL8

Layout of the Punch Account Record
VSE/POWER builds a punch account record for every punch-queue entry that is
processed by a punch task.

Network Account Record

18 VSE/POWER V9R2 Application Programming

Table 8. Punch Account Record

Field
Name Description

Field
Type &
Length

ACDATE

ACSTRT

ACSTOP

ACUSER

ACNAME
ACNUMB

ACIDEN

ACCANC

ACFLG1

Processing date in the format defined to the
system

Start time of punch output (0hhmmssf,
where f = sign).

Stop time of punch output (see ACSTRT, above)

16 bytes of user information from the * $$ JOB
card

VSE/POWER job name from the * $$ JOB card
Job number assigned by VSE/POWER (same

as that of associated reader queue entry for
first $$ PUN statement)

Record ID (P)

VSE/POWER cancel code:
X’10’ = Normal end of VSE/POWER job or task - The

associated z/VSE job(s) may have been
canceled
by the system nevertheless.

X’30’ = PSTOP command was issued. The code is not
stored in the account record if the EOJ
option
was specified in the PSTOP command.

X’40’ = PFLUSH command was issued.
X’70’ = The job was canceled due to an I/O error.

Account flag byte 1:
ACF1CE20 X’80’ ON = ACDATE is 20yy

OFF = ACDATE is 19yy

CL8

PL4

PL4

CL16

CL8
BL2

CL1

BL1

BL1

end of header

Punch Account Record

Chapter 2. Job Accounting 19

Table 8. Punch Account Record (continued)

Field
Name Description

Field
Type &
Length

PUNADR

PUNFRM
PUNTO

PUNOCL
PUNOPR
PUNNUM
PUNTRK

PUNSUF
PUNCOP

PUNFOR

PUNEXR

PUNNODE
PUNTOUS

PUNFRNO
PUNFRUS
PUNOJ#
PUNACCT

PUNRINS
PUNRDEL

PUNPGRNM
PUNBLDG#
PUNROOM#
PUNDEPT#
PUNDIST

Punch device or RJE-line address (cuu), SNA, or
GSP.

FROM remote ID
TO remote ID

Punched output class
Punched output priority number
Number of records punched (see also PUNEXR).
Number of DBLK groups for output storage.
The field is set to zero if the output was spooled
to tape.
Job suffix (segment) number assigned by VSE/POWER.
Number of punched copies (if more than one, the
statistics are the totals for all copies).
Punch-forms identification.

Number of additional cards punched due to restart,
separator cards, or extra copies.
Name of own node (system) in the network.
Destination-user (TO) identification.

Name of originating (FROM) node.
Originating-user (FROM) identification.
Original job number, if one exists.
Network account number
Reserved
Records inserted by OUTEXIT routine
Records deleted by OUTEXIT routine

Programmer’s name
Programmer’s building number
Programmer’s room number
Programmer’s department number
Distribution code

CL3

BL1
BL1

CL1
CL1
BL4
BL2

BL1
BL1

CL4

BL4

CL8
CL8

CL8
CL8
BL2
CL8
CL2
BL4
BL4

CL20
CL8
CL8
CL8
CL8

Layout of the Reader Account Record
VSE/POWER builds a reader account record for every VSE/POWER job submitted
for spooling. Whether the queue entry has actually been queued is indicated by the
VSE/POWER cancel code. VSE/POWER does not build reader account records for
a writer-only partition.

Punch Account Record

20 VSE/POWER V9R2 Application Programming

Table 9. Reader Account Record

Field
Name Description

Field
Type &
Length

ACDATE
ACSTRT
ACSTOP

ACUSER

ACNAME

ACNUMB
ACIDEN

ACCANC

ACFLG1

Processing date in the format as defined to the system.
Start time of read (0hhmmssf, where f = sign).
Stop time of read (see ACSTRT, above).

16 bytes of user information from the * $$ JOB
statement.
VSE/POWER job name from the * $$ JOB or the // JOB
statement.
Job number assigned by VSE/POWER.
Record ID (R)

VSE/POWER cancel code:
X’10’ = Normal end of VSE/POWER job or task - the

associated z/VSE job(s) may have been canceled
by the system nevertheless.

X’30’ = PSTOP command was issued. The code is not
stored in the account record if the EOJ option
was specified in the PSTOP command.

X’40’ = PFLUSH command was issued.
X’60’ = The job was canceled via JOBEXIT.
X’70’ = The job was canceled due to an I/O error.

Account flag byte 1:
ACF1CE20 X’80’ ON = ACDATE is 20yy

OFF = ACDATE is 19yy

CL8
PL4
PL4

CL16

CL8

BL2
CL1

BL1

BL1

end of header

RDRADD

RDRFRM

RDRICL
RDRIPR

RDRNUM

RDRTRK
RDRNODE
RDRFRUS
RDRACCT

Reader device or line address (cuu), SNA, or PSP for
submission from a partition
FROM remote ID
Reserved
Input class
Input priority number

Number of records read (including record added or
deleted by a reader exit routine)
Number of DBLK groups for input storage
Name of own node (system) in the network
Originating-user (FROM) ID
Network account number

CL3

BL1
BL1
CL1
CL1

BL4

BL2
CL8
CL8
CL8

Layout of the Transmitter/Receiver Account Record
VSE/POWER builds a transmitter/receiver-account record for every job or output
transmission via a connection or during a session.

Reader Account Record

Chapter 2. Job Accounting 21

Table 10. Transmitter- or Receiver-Account Record

Field
Name Description

Field
Type &
Length

ACDATE
ACSTRT
ACSTOP
ACUSER
ACNAME
ACNUMB
ACIDEN

ACCANC

ACFLG1

Processing date in the format as defined to the system
Start time (0hhmmssf, where f = sign)
Stop time (0hhmmssf, where f = sign)
User information
Job name
Job number
Record ID (V = receiver; M = transmitter)

VSE/POWER cancel code:
X’10’ = Normal end of VSE/POWER transmitter or re-

ceiver task
X’30’ = PSTOP command was issued. The code is not

stored in the account record if the EOJ
option was specified in the PSTOP command.

X’40’ = PFLUSH command was issued.
X’60’ = The job was flushed via NETEXIT/XMTEXIT.
X’70’ = The job was canceled due to an I/O error.
X’80’ = The job or output transmission was canceled

due to a receiver-task stop or a
transmitter-task stop at the other end.

Account flag byte 1:
ACF1CE20 X’80’ ON = ACDATE is 20yy

OFF = ACDATE is 19yy

CL8
PL4
PL4
CL16
CL8
BL2
CL1

BL1

BL1

end of header

NACLAD
NACQTYP

NACCLAS
NACPR

NACCNTD
NACORGJ#
NACSUF
NACCOP
NACCNTC

NACON
NACOUS
NACTN
NACTUS
NACCURR
NACADJ
NACACCT
NACINR
NACDLR

Line address (cuu) or ’SNA’ or ’TCP’ or ’SSL’
Queue type (R = reader; L = list; P = punch)
Reserved
Class of job/output
Processing priority in local queue

Data record count
Original job number from job reader
Job suffix (segment) number
Number of copies
Control record count
Reserved

Name of originating node
Name (user ID) of remote originator
Name of destination node
Destination-user ID
Current (own z/VSE) node name
Adjacent node name
Network account number
Records inserted by NETEXIT/XMTEXIT routine
Records deleted by NETEXIT/XMTEXIT routine

CL3
CL1
BL1
CL1
CL1

BL4
BL2
BL1
BL1
BL2
BL2

CL8
CL8
CL8
CL8
CL8
CL8
CL8
BL4
BL4

Transmitter/Receiver Account Record

22 VSE/POWER V9R2 Application Programming

Layout of the RJE,BSC Account Record
VSE/POWER builds an RJE,BSC account record for an RJE,BSC user session when it
processes a sign-off or when a line stop occurs.

Table 11. RJE,BSC Account Record

Field
Name Description

Field
Type &
Length

BSCDTE
BSCSGN
BSCSGF
BSCUSE

BSCPAS
BSCIRS

BSCIDN

BSCSFC

BSCTEC
BSCLAD
BSCRID
BSCFLG1

BSCTRAN
BSCTCNT
BSCERR
BSCSOD

Processing date in the format as defined to the system
SIGNON time (0hhmmssf, where f = sign)
SIGNOFF time (0hhmmssf, where f = sign)
16 bytes of user information from the SIGNON command

Line password
Number of invalid responses during transmission (see
the Note below)
Record ID (T)

SIGNOFF code (any combination of the codes may occur):
X’01’ = Normal SIGNOFF
X’02’ = SIGNOFF forced due to PSTOP cuu
X’04’ = SIGNOFF forced due to excessive idle time
X’08’ = SIGNOFF forced due to unrecoverable I/O error
X’10’ = SIGNOFF forced due to PEND or PSTOP cuu,EOJ
X’20’ = SIGNOFF forced by lack of processor storage
X’40’ = SIGNOFF forced due to PSTOP cuu,FORCE
X’80’ = SIGNOFF forced due to line stop at last I/O

Terminal (workstation) error count
Line address
Remote ID
BSC account flag byte 1:

BSC1CE20 X’80’ ON = BSCSOD is 20yy
OFF = BSCSOD is 19yy

Transmission count per session (see the Note below).
Time-out count per session (see the Note below)
Error count per session (see the Note below)
SIGNOFF date (mmddyy)

CL8
PL4
PL4
CL16

CL8
BL2

CL1

BL1

BL1
CL3
BL1
BL1

BL2
BL2
BL2
CL6

Note: Comparing fields BSCTRAN and BSCTCNT gives an indication of idle time
per session. Comparing fields BSCTRAN, BSCTCNT, and BSCERR gives an
indication of line quality.

Layout of the RJE,SNA Account Record
VSE/POWER builds an RJE,SNA account record when an RJE,SNA user session
ends.

RJE,BSC Account Record

Chapter 2. Job Accounting 23

Table 12. RJE,SNA Account Record

Field
Name Description

Field
Type &
Length

SNADTE
SNASGN
SNASGF
SNAUSE
SNALUN
SNAFLG1

SNAIDEN
SNATERM

SNARID

Processing date in the format as defined to the system
SIGNON time (0hhmmssf, where f = sign)
SIGNOFF time (0hhmmssf, were f = sign)
16 bytes of user information from the SIGNON command.
Logical unit name
SNA account flag byte 1:

SNA1CE20 X’80’ ON = SNADTE is 20yy
OFF = SNADTE is 19yy

Reserved
SNA record ID (S)
Session termination code:
X’01’ = normal termination (LOGOFF or SIGNOFF)
X’02’ = abnormal termination
Remote ID

CL8
PL4
PL4
CL16
CL8
BL1

CL1
CL1
BL1

BL4

Layout of the System-Up Account Record
VSE/POWER builds a system-up account record on completion of VSE/POWER
startup.

Table 13. System-Up Account Record

Field
Name Description

Field
Type &
Length

PWRDTE
PWRSGN
PWRFLG1

PWRVER
PWRLEV

PWRPARSZ
PWRGETSZ
PWRRELSZ
PWRPART
PWRFLAG

PWRIDEN
PWRDXTN
PWRDTRK
PWRQTRK
PWRATRK

Processing date in the format as defined to the system
Startup time
Startup flag byte 1:

PWR1CE20 X’80’ ON = PWRDTE is 20yy
OFF = PWRDTE is 19yy

Reserved
Version/Modification level
Level ID

Partition size
GETVIS size
Reserved processor (real) storage size
Partition ID (BG or Fn)
Feature flags

Record ID (U)
Number of data file extents
Number of tracks/blocks in the data file
Number of tracks/blocks in the queue file
Number of tracks/blocks in the account file

CL8
PL4
BL1

BL3
CL4
CL4

BL4
BL4
BL4
CL2
CL4

CL1
BL1
BL4
BL4
BL4

RJE,SNA and System-Up Account Records

24 VSE/POWER V9R2 Application Programming

Layout of the Spool-Access-Connect Account Record
VSE/POWER builds a spool-access-connect account record when an established
communication path is terminated, normally or abnormally.

Table 14. Spool-Access-Connect Account Record

Field
Name Description

Field
Type &
Length

XCODATE
XCOSTRT
XCOSTOP
XCOAPPL
XCOMSG#

XCOCTL#

XCOTERM
XCOTCOK
XCOTCPD
XCOTCPP

XCOTCAT
XCOTCUE
XCOTCKL

XCOTCSE

XCOFLG1

XCODEVN

XCOIDEN

Processing date in the format defined to the system
Connection start time (0hhmmssf, where f = sign)
Connection stop time (0hhmmssf, where f = sign)
XPCC application ID
Number of messages returned in response to a CTL
or PUT request
Number of CTL requests

Connection-termination code:
X’01’ = Normal end of communication
X’02’ = Termination because of a PEND command
X’04’ = Termination because of a PSTOP command (but

not if FORCE is specified)
X’08’ = Abnormal end by user application
X’10’ = Severe error in the application program
X’20’ = Termination because of a PSTOP command (if

FORCE is specified)
X’40’ = System or VSE/POWER failure

SAS connection flag byte 1:
XCO1CE20 X’80’ ON = XCODATE is 20yy

OFF = XCODATE is 19yy
Device name (as defined to the device-owning sub-
system)
Record ID (C)

CL8
PL4
PL4
CL8
BL4

BL4

BL1

BL1

CL8

CL1

Layout of the Spool-Access-Operation Account Record
VSE/POWER builds a spool-access-operation account record for a PUT or a GET
service when the processing for a queue entry is finished. If data is added to an
appendable output, VSE/POWER builds an account record of this type every time
a program finishes appending data to this output.

No accounting is performed for CTL requests or for output queue entries that are
held in the queue with a disposition of X (because of an abnormal termination of
VSE/POWER).

CTL requests for PDISPLAY queue, however, may generate GET operation account
records. For suppression of these records and for more details, refer to “Retrieving
Messages” on page 67.

Spool-Access Connect Account Record

Chapter 2. Job Accounting 25

Table 15. Spool-Access-Operation Account Record

Field
Name Description

Field
Type &
Length

XSPDATE
XSPSTRT
XSPSTOP
XSPUSER

XSPNAME
XSPNUMB
XSPIDEN

XSPCANC

XSPFLG1

XSPREQT
XSPQUID
XSPJSUF
XSPCLSS
XSPPRIO
XSPDISP
XSPCOPY
XSPCPYG

Processing date in the format as defined to the system
Start time of processing (0hhmmssf, where f = sign)
Stop time of processing (0hhmmssf, where f = sign)
16 bytes of user information (field SPLDUI of the
PWRSPL DSECT)
Name of job (or report)
Job number as assigned by VSE/POWER
Record ID (X)

VSE/POWER cancel code:
X’10’ = Normal end of VSE/POWER job or task - the

associated z/VSE job(s) may have been canceled
by the system nevertheless.

X’30’ = A PSTOP or PEND command was issued.
X’40’ = A PFLUSH command was issued.
X’50’ = A purge request (during a queue entry re-

trieval) or a PDELETE command was issued.
X’90’ = A quit request was issued.
X’A0’ = The operation was terminated because a

severe error occurred or the system failed
to maintain the communication path.

X’B0’ = A CLOSE request was issued.
X’C0’ = Canceled due to lack of disk space.
X’D0’ = A ’quit-and-lock’ request was issued.
SAS operation flag byte 1:

XSP1CE20 X’80’ ON = XSPDATE is 20yy
OFF = XSPDATE is 19yy

Request type (G = GET request; P = PUT request).
Queue type (R = reader; L = list; P = punch).
Job-suffix (output segment) number
Class
Priority
Disposition
Number of copies (output only).
Copy groupings (3800 output only).

CL8
PL4
PL4
CL16

CL8
BL2
CL1

BL1

BL1

CL1
CL1
BL1
CL1
CL1
CL1
BL1
BL8

Spool-Access Operation Account Record

26 VSE/POWER V9R2 Application Programming

Table 15. Spool-Access-Operation Account Record (continued)

Field
Name Description

Field
Type &
Length

XSPTRK#

XSPOJ#
XSPREC#

XSPEXR#

XSPLNE#

XSPEXL#

XSPPGE#

XSPEXP#

XSPFORM
XSPFLSH
XSPTONM

XSPTOUS
XSPRQUS
XSPRQAP
XSPNODE
XSPRINS
XSPRDEL
XSPACCT

Number of DBLK groups occupied on disk
(see Note 1, below)
Original job number
Number of records. The value includes the control
record, even if a spool-access user has not speci-
fied CTLREC=YES in the applicable PWRSPL macro.
SPL records returned by VSE/POWER are not included
in this record count. See also Note 1, below.
Number of extra records

Total number of lines or cards (output only); see
also Notes 1 and 2, below.
Number of extra lines or cards because of separator
pages or cards, or because of records repeated as
a result of a restart (applies only to GET re-
quests).
Total number of pages, excluding any double counting
of existing pages encountered during GET/PUT restart
(output only); see also Notes 1 and 3 below.
Number of extra pages such as separator pages or
pages passed repeatedly as a result of a restart.
Forms identification (applies to output only).
Flash identification (applies to 3800 output only).
Name of destination node

Destination-user ID
Requesting-user ID
Requesting XPCC application ID
Name of your own node
Records inserted by OUTEXIT routine
Records deleted by OUTEXIT routine
Network account number

BL2

BL2
BL4

BL4

BL4

BL4

BL4

BL4

CL8
CL4
CL8

CL8
CL8
CL8
CL8
BL4
BL4
CL8

Note:

1. The count applies to and is shown for appendable output only.

2. The line-number count is set to the record count if the queue entry's record format is
SCS, 3270 data stream, BMS, CPDS, or Escape mapping.

3. The total page count is not meaningful for a list queue entry containing data in the
BMS mapping or the 3270 data stream format. For output of this type, every record is
considered to be a page. If the queue entry contains data in the SCS or the escape
mapping format, the total page count is not meaningful either and, therefore, set to
zero.

Spool-Access Operation Account Record

Chapter 2. Job Accounting 27

The PUTACCT Macro: Adding User Information to Account
Records

You can add information to every execution account record by writing a routine
under the name of $JOBACCT that makes use of the PUTACCT macro. Before you
issue this macro in your routine, save registers 0 and 1, because they will be
overwritten by VSE/POWER. Link this routine as phase $JOBACCT in your
system's sublibrary IJSYSRS.SYSLIB and see that job accounting is specified in the
VSE/POWER control table generated by the POWER® generation macro, refer to
VSE/POWER Administration and Operation, SC34-2625. This causes the IBM-supplied
dummy phase named $JOBACCT to be overwritten. For guidance on how to write
the routine, refer to z/VSE Guide to System Functions, SC33-8312; an example for the
use of the PUTACCT macro is given below.

Job Control calls your $JOBACCT program at the end of every job or job step.

VSE/POWER ignores the macro if job accounting has not been defined in the
POWER generation macro.

Requirements For the Caller

AMODE:
24 or 31

RMODE:
24

ASC Mode:
Primary

Format of the Macro

��
name

PUTACCT (reg1),(reg2) ��

(reg1),(reg2)
For the operands reg1 and reg2, specify two different general registers, but not
registers 0 and 1. When you issue the macro, the registers must contain the
following:

reg1
The 24-bit address of the area that contains the additional information.

reg2
The length of the above mentioned area.

The maximum length of the area may not exceed 2,008 bytes minus the
length of the execution account record set up by VSE/POWER as described
in Table 5 on page 13.

Return Codes from the PUTACCT Macro

Successful completion of the PUTACCT macro is indicated to the issuing program
by a return code of 0 in register 0. If the operation fails, register 0 contains the
return code listed below.

Code Meaning

X'04' The VSE/POWER execution account record (with its variable length SIO

PUTACCT Macro

28 VSE/POWER V9R2 Application Programming

table part) extended by the user provided PUTACCT area, exceeds the
maximum record length of 2008 bytes. The request is ignored.

Example of the PUTACCT Macro

The following example inserts additional information behind the VSE/POWER
execution account records:

...
COMRG REG=R4 GET PARTITION COMMUNICATION REGION
USING CMRG,R4 DECLARE ADDRESSABILITY
TM POWFLG1,X’80’ ACCOUNT SUPPORT FOR THIS PARTITION
DROP R4
BNO EXIT BRANCH IF NOT
LA R2,ADAC ADDRESS ADDITIONAL INFORMATION
LA R3,L’ADAC LENGTH ADDITIONAL INFORMATION
PUTACCT (R2),(R3) PASS INFORMATION TO VSE/POWER

EXIT DS 0H
BR RE RETURN TO $JOBCTLN
...

ADAC DC C’ADDITIONAL ACCOUNT INFORMATION’
R2 EQU 2 REGISTER 2
R3 EQU 3 REGISTER 3
R4 EQU 4 REGISTER 4
RE EQU 14 REGISTER 14

...
CMRG MAPCOMR

...
+POWFLG1 DS *

...
END

PUTACCT Macro

Chapter 2. Job Accounting 29

PUTACCT Macro

30 VSE/POWER V9R2 Application Programming

Chapter 3. Output Segmentation

VSE/POWER job output can be segmented, that is, part of the output from a job
can be printed or punched before the entire job is finished.

Several types of segmentation are possible, depending on the event that initiates
the segmentation.
v Program-driven output segmentation

In your application program, you may use the VSE/POWER IPWSEGM macro
(or SEGMENT macro as described in Appendix B, “Output Segmentation by
SEGMENT Macro,” on page 371) to separate the output whenever your program
logic decides to do so.
Also, the LFCB macro may be used, which causes segmentation before loading
the new FCB. If your output is directed to an IBM 3800, you may use a z/VSE
// SETPRT JCL statement requesting a printer setup to cause segmentation.
These are setup requests that require operator intervention and, therefore,
always cause segmentation.

v Spool-Access PUT-OUTPUT segmentation is described in “Requesting
Output-Segmentation” on page 125.

The other types of output segmentation are described in VSE/POWER
Administration and Operation, SC34-2625:
v Command-driven output segmentation
v Count-driven output segmentation
v Data-driven output segmentation
v Multivolume tape segmentation

IPWSEGM Macro - Extended Output Segmentation
The IPWSEGM macro can be used for controlling output segmentation for a job
running in a VSE/POWER-controlled partition. Calling the IPWSEGM macro
means that all output passed thus far to VSE/POWER for a certain printer or
punch device should now be made available as a LST/PUN-queue entry - called
last segment. More output to come is to be collected as the next segment, with
attributes as specified by the * $$ LST/PUN statement passed along by the JECL=
operand of the IPWSEGM macro. IPWSEGM is ignored for suppressed output
spooling, that is, if DISP=N was specified in the * $$ LST or * $$ PUN statement
within a running job.

As compared to the SEGMENT macro (see Appendix B, “Output Segmentation by
SEGMENT Macro,” on page 371), the IPWSEGM macro offers extended
segmentation functions, such as:
v Passing attributes for the next segment in a 1024-byte area, thus providing

ample space for a nearly unlimited series of contiguous operands of the
* $$ LST/PUN statements.

v Acquiring default attributes for the next segment by specifying no macro
operand at all (apart from DEVADDR=).

v Keeping all active output attributes of the last segment for the next segment
(KEEP=YES operand).

© Copyright IBM Corp. 1987, 2014 31

v Extending and/or overwriting all active output attributes of the last segment for
the next segment by specifying KEEP=YES and passing a * $$ LST/PUN
statement at the same time.

v Returning 'queue-id', 'class', 'jobname', 'jobnumber', 'jobsuffix' (in case RBS=
requested), and the VSE/POWER internal 'queue-entry number' of the last
segment to the user program. These direct-access search arguments provide
unique specifications for expedited spool-access support GET service (see “Direct
Queue Entry GET Access to the RDR/LST/PUN/XMT Queues” on page 79) and
CTL-service (see “Direct Queue Entry CTL Access” on page 68)

v Supporting re-enterable coding through the MFG= operand.
v Returning unique return and feedback codes for analysis of failure.
v Addressing VSE/POWER via a multi-threaded path, not tying up any z/VSE

resource.
v Defining duplicates for the next segment using the operand DUP=YES in the

supplied IPWSEGM's JECL. DUP=YES provides the same functionality as * $$
LSTDUP and * $$ PUNDUP supplied in a VSE/POWER job.

Note: The IPWSEGM macro call results in a spooled I/O request for the specified
device (DEVADDR=), and macro completion may in extreme cases depend on
storage or spool-space shortage of the VSE/POWER partition.

When calling macro IPWSEGM, the application program
v should consider saving register 0, 1, and 15, which are used by VSE/POWER,
v should include the new mapping macro IPW$MXD already before the CSECT

that contains the segment request. Macro IPW$MXD
– is required during macro assembly time, and
– may be used to reference return information

v should avoid using symbols and labels starting with '$', which is reserved for
IPWSEGM and IPW$MXD.

Generation of Duplicate LST and PUN Output
To generate LST or PUN output with one or more duplicates using IPWSEGM for
program-driven segmentation, do the following:
1. Specify the duplicates of the first output segment in the JECL statements of a

job: in * $$ LST and * $$ LSTDUP statements for LST output or in * $$ PUN
and * $$ PUNDUP statements for PUN output.

2. Specify duplicates of the next segment in the JECL statement * $$ LST or * $$
PUN, which is supplied by the IPWSEGM macro call.
For each duplicate, include DUP=YES followed by at least one of the allowed
duplicate operands for * $$ LSTDUP or * $$ PUNDUP in the JECL statement.
The duplicate operands are used to define output properties different to the
properties of the master output. The duplicate operands are listed below:
v JNM=jobname
v CLASS=class
v DISP=disposition
v PRI=priority
v COPY=number_of_copies
v DEST=mode_id|(node_id,user_id)|
v TDISP=disposition
v REMOTE=remote_id

IPWSEGM Macro

32 VSE/POWER V9R2 Application Programming

v DIST=distcode|NULL
v SYSID=n|N
v UINF=user_info
v EXPDAYS=nnn
v EXPHRS=hh
v EXPMOM=NULL
When specifying KEEP=NO in IPWSEGM, all duplicate definitions for the
previous segment will be dropped. Specifying KEEP=YES will keep duplicate
definitions and can either be replaced by defining new duplicates or explicitly
cleared by the operand DUP=NO, which must be the last operand in the
supplied * $$ LST or * $$ /PUN statement. The next table shows how
IPWSEGM updates the duplicate definition for the next segment.

KEEP=YES KEEP=NO

DUP=YES1 New duplicate(s) New duplicate(s)

DUP=NO No duplicate Error $MX0CDNI

No DUP specified As defined No duplicate
1 DUP=YES with one or more duplicate operands (repeated for additional duplicates)

The following example illustrates how to specify the JECL for duplicate LST
output and the subsequent results.
Job Stream: Continuation Column 72-----+
------------ |
* $$ JOB ... V
* $$ LST JNM=LMAST1ST,CLASS=B,DISP=K,LST=FEE, C
* $$ LSTDUP JNM=LDUPA1ST, C
* $$ CLASS=C, C
* $$ LSTDUP JNM=LDUPB1ST,TDISP=L,DEST=OTHERNOD
// MY JOB
// EXEC MYAPPL
/&
* $$ EOJ ...

Program MYAPPL issues IPWSEGM macro call with KEEP=NO and the
following * $$ LST statement:
’* $$ LST JNM=LMAST2ND,CLASS=B,DISP=K,LST=FEE,DUP=YES,JNM=LDUPA2ND,
CLASS=C,DUP=YES,JNM=LDUPB2ND,TDISP=L,DEST=OTHERNOD,DUP=YES,JNM=LDUPC’

When this job is started, the output spooled for device FEE creates queue entry
LMAST1ST. When IPWSEGM segments the output, LMAST1ST and its
duplicate LDUPA1ST are added to the LST queue and the duplicate LDUPB1ST
is added to XMT queue. The next segment, LMAST2ND, is started with three
duplicates LDUPA2ND, LDUPB2ND, and LDUPC. When the job ends, the last
segment is created together with its duplicates. For additional explanations and
details about duplicates, refer to the section "Duplication of Output Spool
Entries" in VSE/POWER Administration and Operation, SC34-2625.

IPWSEGM Macro

Chapter 3. Output Segmentation 33

Requirements for the Caller
AMODE:

24 or 31

RMODE:
24 (or ANY: see “Residency Mode Considerations” on page 38)

ASC Mode:
Primary

Format of the Macro

��
name

IPWSEGM DEVADDR= SYSxxx
(reg1)

,KEEP=NO

,KEEP=YES
�

�
,JECLN=71

,JECL= addr
(reg2) ,JECLN= len

(reg3)

(1)
,MFG= area

(reg4)

��

Notes:

1 The MFG operand is required if the IPWSEGM macro expansion is to be
re-enterable.

DEVADDR=SYSxxx | (reg1)
For SYSxxx, specify the system or programmer logical unit assigned to the
device on which segmentation is to occur. For reg1, if you chose register
notation, specify any register (apart from register 0, 1, and 15) that points to a
six-byte field containing a SYSxxx constant.

If you supplied a spooled device specification by the
v LST operand of your * $$ LST JECL statement, or
v PUN operand of your * $$ PUN JECL statement,

the LST/PUN operand values are ignored.

KEEP=YES | NO
This operand specifies to keep all output attributes of the last segment and let
them become effective for the next segment. For combining the KEEP= and
JECL= operands, refer to the description of the JECL= operand.

JECL=addr | (reg2)
This operand points to an area that contains an * $$ LST or * $$ PUN
statement whose operands provide attributes for the next segment.

For addr, specify the area's label in your program.

For reg2, if you chose register notation, specify any register (apart from register
0, 1, and 15) that contains the address of the JECL area.

Whatever notation you use, make sure that the JECL area lies below the 16MB
line and that it resides either in your partition or in the dynamic space GETVIS
area.

IPWSEGM Macro

34 VSE/POWER V9R2 Application Programming

The maximum area length is 1024 bytes and it must contain a JECL statement
with a series of operands delimited by comma, followed by a blank and,
optionally, by a comment. The statement may be:
1. * $$ LST/PUN 'without' operands, to obtain default attributes for the next

segment, or
2. * $$ LST/PUN 'with' operands, to obtain the specified attributes for the

next segment.
3. * $$ LST/PUN 'with' or 'without' operands and 'with' operand DUP=YES.

The operand DUP=YES must be followed by at least one operand
permitted for * $$ LSTDUP/PUNDUP. These operands will override the
duplicate attributes (if any) specified for the last segment and remain in
effect for the next segment. To request more than one duplicate, an
additional operand DUP=YES (with permitted operands from the subset for
*$$ LSTDUP/PUNDUP) must be specified for each duplicate. Note that
IPWSEGM KEEP=YES will keep previously defined duplicates unless a
new set of duplicates is specified by (multiple) DUP=YES or until
IPWSEGM KEEP=YES with DUP=NO as last operand of JECL statement
resets specification of duplicates.

Note:

1. If JECL statements are passed to VSE/POWER through the IPWSEGM
interface, they must adhere to the following conventions:
a. They must be coded as for example '* $$ LST ',

1) starting in byte 1 of the JECL area,
2) with exactly one blank delimiter between *, $$, and LST,
3) with at least one blank (but not more than 247 blanks) before

optional operands occur,
4) and with at least one trailing blank after the last valid operand,

provided the JECLN operand specifies a length that extends beyond
the last character of the operand.

b. They must have a minimum length of 9.
2. Through the IPWSEGM interface, VSE/POWER converts any passed JECL

statements to uppercase, but
a. Does not accept JECL statements in positional format,
b. Does not offer incorrectly specified JECL for correction on the console-

only for information by message 1Q5JI and 1Q5GI.

Instead, the macro call fails with a unique return code.
3. When the JECL= operand is omitted, the next segment will receive

a. default attributes, if KEEP=NO is specified (default) or
b. all attributes of the last segment, if KEEP=YES is specified

When the JECL= operand is specified, the next segment will receive
a. The specified attributes if KEEP=NO is specified (default), or
b. All attributes of the last segment altered by the specified operands, if

KEEP=YES is specified. When an operand of a JECL statement occurs
more than once, the last specification becomes effective.

4. The JECL statement continuation rules, as described in VSE/POWER
Administration and Operation, SC34-2625, do not apply; instead, the desired
operands may be placed beyond column 71.

IPWSEGM Macro

Chapter 3. Output Segmentation 35

5. To generate duplicates for the next segment, specify first all attributes for
the original output and then for each duplicate add DUP=YES followed by
the attributes for this duplicate.
For example, the JECL statement * $$ LST JNM=LST1,CLASS=8,DISP=D,
DUP=YES,JNM=OUT2,DISP=L,DUP=YES,JNM=LST3,CLASS=T
will produce LST output LST1 in class 8 with disposition D, the first
duplicate OUT2 in class T with disposition L, and the second duplicate
LST3 in class T with disposition D.

JECLN=len | 71 | (reg3)
This operand provides the length of the JECL area. This area must be at least 9
bytes, up to a maximum of 1024 bytes.

For len, specify the length as a self-defining term.

For reg3, if you chose register notation, specify any register (apart from register
0, 1, and 15) that contains the length of the JECL area.

MFG=area | (reg4)
This Macro Format Generation (MFG) operand is only required if the
IPWSEGM macro expansion is to be re-enterable, that is, if the generated
macro parameter area should be reusable by parallel requests.

For area, specify the label in your program of the parameter area.

For reg4, if you chose register notation, specify any register (apart from register
0 or 15) that points to the parameter area. It is recommended to use register 1,
because that is used by the macro for addressing anyhow.

Whatever notation you use, make sure that the MFG area lies below the 16MB
line and that it resides either in your partition or in the dynamic space GETVIS
area.

VSE/POWER adjusts the used part of the MFG area to a double-word
boundary. Therefore, after IPWSEGM completion, you should use the
VSE/POWER returned register 1 value to address the parameter area correctly.

The provided parameter area must have a length as defined by $MXLEN of
the mapping macro IPW$MXD, which describes the area.

When the MFG operand is not used, IPWSEGM will establish a parameter area
within the macro expansion.

Return Codes from the IPWSEGM Macro
The IPWSEGM macro provides completion return codes for a
v Static macro expansion at program assembly time by failure MNOTEs with

respect to correctness of specified macro operands.
v Dynamic macro request at program execution time by return code (RC) and

SeGment FeedBack code (SGFB) in the two low order bytes of register R15:
1. RC/SGFB = X’0000’ for a successful IPWSEGM request
2. RC/SGFB = X’00mm’ for a successful IPWSEGM request

with unexpected conditions (warning)

3. RC/SGFB = X’0404’ for a failure because VSE/POWER is not
active

4. RC/SGFB = X’08nn’ for failures detected by the
Segment Interface Routine

5. RC/SGFB = X’0Cpp’ for failures detected by the VSE/POWER
execution processor modules.

Note: For better tracking of segmentation request failures
and for better synchronization of job execution with
console message flow, all X’0Cpp’ request failures are

IPWSEGM Macro

36 VSE/POWER V9R2 Application Programming

also recorded on the central operator console by the
two informational messages:
1)1Q5JI presenting the incorrect LST/PUN statement
2)1Q5GI naming the failing jobname, etc.

For details refer to the $MXRRC/$MXRFB mnemonics provided by the IPW$MXD
macro.

At request completion:
v R15 contains a unique return and feedback code that indicates incorrect usage of

macro operands, unsuccessful, or successful processing.
v R1 addresses the macro parameter area, which may be interpreted using the

mapping macro IPW$MXD. The returned attributes of the last created segment
can be found at label $MXSQI, where the following is presented:
– Queue-id (1 byte - R/L/P/X),
– Class (1 byte),
– Output suffix (1 byte) including 'last segment indicator'. Only used if the last

segment was controlled by RBS= segmentation,
– Job name (8 bytes),
– Job number (4 bytes),
– Unique queue-entry number (4 bytes) of the created segment. When spooling

to tape using DISP=T, the queue entry number is hex zero.
Additional returned attributes of the last created segment can be found at label
$MX2DP, where the following is presented:
– Disposition (1 byte)
– Transmission disposition (1 byte)
– Priority (1 byte)
– Number of copies (1 byte, binary)
– Target SYSID (1 byte, X'00' if empty)
– Forms-id (4 bytes, X'40' if empty)
– FCB name (8 bytes, X'00' if empty)
– UCS name (8 bytes, X'00' if empty)
– Target node (8 bytes, X'40' if empty)
– Target user (8 bytes, X'40' if empty)
– VM Distribution code (8 bytes, X'40' if empty)
– User Information (16 bytes, X'40' if empty)

If not empty, then 4/8/16 byte character fields are presented leftbound, padded
to the right with blanks.
The 'returned attributes' fields contain valid information if the R15 RC/SGFB
code is X'0000', X'0010', or X'0014'.
And these fields are hex zero, apart from 'job name', if the R15 RC/SGFB code
is:
1. X'0004', when the collected output contained no user data (and RBS

segmentation was not active currently)
2. X'000C', when the collected output was purged due to the PURGE operand

of the * $$ LST/PUN statement.
But these fields are all hex zero if the R15 RC/SGFB code is:
1. X'0404', when VSE/POWER was not active
2. X'08nn', when the IPWSEGM Interface routine of VSE/POWER detected

inconsistencies

IPWSEGM Macro

Chapter 3. Output Segmentation 37

3. X'0Cpp', when the VSE/POWER execution processor detected
inconsistencies.

Residency Mode Considerations
Because the IPWSEGM macro expansion provides I/O Command Control Blocks
(CCB and CCW) for communication with VSE/POWER, the macro must not be
called from a program residing above the 16 MB line; in other words, the macro
should be called only from a program with RMODE 24.

However, the program can circumvent RMODE limitations when, for the
IPWSEGM request, dynamic areas below the 16 MB line are acquired whose
addresses are specified by MFG=(regx) and (optionally) by JECL=(regy). The
following steps should be observed:
1. Reserve a dynamic storage area below the 16 MB line (using GETVIS

LOC=BELOW) with a length of $MXLEN (see “IPW$MXD Mapping Macro”) to
provide for a dynamic macro expansion area; assume addressability by regx.

2. Call IPWSEGM from above the 16 MB line as follows:
IPWSEGM DEVADDR=SYSxxx,MFG=(regx)

If you provide an explicit * $$ LST statement for the IPWSEGM request, take the
following steps:
1. Reserve a dynamic storage area below the 16 MB line with a length of

$MXLEN (area later addressed by regx) and another area with a length of your
* $$ LST statement (area later addressed by regy).

2. Set up the * $$ LST statement in the regy area.
3. Provide the length of the * $$ LST statement for the JECLN= operand.
4. Call IPWSEGM from above the 16 MB line as follows:

IPWSEGM DEVADDR=SYSxxx,MFG=(regx),JECL=(regy),JECLN=...

IPW$MXD Mapping Macro
The IPW$MXD (Macro Extension Definition) macro generates a DSECT which
describes the parameter area used by the IPWSEGM macro.

The macro has no operands.

Format of the Macro

�� IPW$MXD ��

Table 16. IPWSEGM Parameter Area Produced by IPW$MXD Macro

Bytes Hex Field Label Description/Function

General IPWSEGM Request Area Part 1

00 $MXDS START OF PARAMETER LIST

00-0F $MXCCB COMMAND CONTROL BLOCK

10-17 $MXCCW CHANNEL COMMAND WORD

IPWSEGM Macro

38 VSE/POWER V9R2 Application Programming

Table 16. IPWSEGM Parameter Area Produced by IPW$MXD Macro (continued)

Bytes Hex Field Label Description/Function

18-4B $MXRSV SAVE AREA REGISTER 2 - 14

4C-54 $MXDJA DEFAULT JECL STATEMENT AREA

55-57 UNUSED

Input Area to VSE/POWER

58-5B $MXVRS VERSION OF PARAMETER AREA

5C-5F $MXUNA LOGICAL UNIT ADDRESS

5C $MXCLS LOGICAL UNIT CLASS

5D $MXNUM LOGICAL UNIT NUMBER

5E-5F LOG. UNIT ADDRESS BYTE 2+3

60-63 $MXJCL ADDRESS OF JECL STATEMENT

64-67 $MXJCN LENGTH OF JECL STATEMENT

68 $MXOP1 INPUT OPTION BYTE 1

$MX1UA X’80’ - LOG. UNIT BY ADDRESS

$MX1PJ X’40’ - PASSED JECL OF USER

$MX1KP X’20’ - KEEP OPTION SPECIFIED

69-6F $MXRDI RESERVED INPUT AREA

Description Area of Last Segment Part 1

70 $MXSQI QUEUE-ID OF CREATED SEGMENT (R|L|P|X)

71 $MXSCL JOB CLASS OF CREATED SEGMENT (0-9,A-Z)

72 $MXJSF OUTPUT SUFFIX, IF ’RBS=’ USED

$MXJSFL X’80’ - ’LAST RBS SEGMENT’ FLAG

X’7F’ - RBS SEGMENT SUFFIX NUMBER (BIN)

IPWSEGM Macro

Chapter 3. Output Segmentation 39

Table 16. IPWSEGM Parameter Area Produced by IPW$MXD Macro (continued)

Bytes Hex Field Label Description/Function

73 UNUSED

74-7B $MXJNM JOB NAME OF CREATED SEGMENT

7C-7F $MXJNB JOB NUMBER OF CREATED SEGMENT (BINARY)

80-83 $MXQNB BIN. Q-ENTRY NUMBER OF CREATED SEGMENT

REGISTER 15 ’RC = RETURN CODE’

84 $MXRRC RETURN CODE WITH FOLLOWING CATEGORIES

$MXR00 X’00’ - OK, NO ERROR (PERHAPS WARNING)

$MXR04 X’04’ - INITIALIZATION ERROR

$MXR08 X’08’ - SPECIFICATION INCONSISTENCIES

$MXR0C X’0C’ - EXECUTION PROCESSING ERROR

REGISTER 15 ’SGFB = SEGMENT FEEDBACK CODE’

85 $MXRFB FEEDBACK CODE, USING MNEMONICS THAT NAME THE ’RC’
WITH WHICH THE FEEDBACK CODE IS DELIVERED

$MX00OK X’00’ - OK

$MX00IG X’04’ - NOTHING SPOOLED

X’08’ - UNUSED

$MX00PU X’0C’ - OUTPUT PURGED

$MX00NK X’10’ - DISP=N OK, SPOOLING STOPS

$MX00NE X’14’ - DISP=N ERROR, SET DISP=D

$MX04PNA X’04’ - VSE/POWER NOT ACTIVE

IPWSEGM Macro

40 VSE/POWER V9R2 Application Programming

Table 16. IPWSEGM Parameter Area Produced by IPW$MXD Macro (continued)

Bytes Hex Field Label Description/Function

$MX08NPC X’04’ - PARTITION NOT POWER CONTROLLED

$MX08NSY X’08’ - DEVADDR NOT STARTING ’SYS...’

$MX08ILU X’0C’ - INCORRECT LOGICAL UNIT ’SYSXXX’,

NEITHER ’XXX’ = 000-255 NOR ’XXX’ = PCH|LST

$MX08IPD X’10’ - INVALID PUB DEVICE FOR ’SYSXXX’,

NEITHER PRINTER NOR PUNCH TYPE

$MX08NPS X’14’ - ’SYSXXX’ NO VSE/POWER SPOOLED DEVICE

$MX08UNA X’18’ - ’SYSXXX’ UNASSIGNED OR IGNORE

$MX08IVR X’1C’ - ’SYSXXX’ INTERNAL ERROR - CALL IBM

$MX08CDN X’20’ - ’SYSXXX’ CURRENTLY DISP=N SPOOL

$MX08PWW X’24’ - PARTITION IN ’WAITING FOR WORK’,

WITH NO VSE/POWER JOB ACTIVE

$MX08IJL X’28’ - INCORRECT JECL LENGTH,

JECLN NOT WITHIN LIMITS 9 - 1024

$MX08IJS X’2C’ - INCORRECT JECL STATEMENT, NOT

STARTING ’* $$ LST ’ OR ’* $$ PUN ’

$MX08NMD X’30’ - NO MATCHING DEVICE TYPE OF

’SYSXXX’ VERSUS ’* $$ LST/PUN’

$MX08FCD X’34’ - CDLOAD 3800-IJDANCHX FAILS

DUE TO RESOURCE SHORTAGE

$MX08PNF X’38’ - CDLOAD 3800-IJDANCHX FAILS

IPWSEGM Macro

Chapter 3. Output Segmentation 41

Table 16. IPWSEGM Parameter Area Produced by IPW$MXD Macro (continued)

Bytes Hex Field Label Description/Function

DUE TO PHASE NOT FOUND

$MX08UGF X’3C’ - ’GETFLD’ UNEXPECTED RETURN CODE

$MX08UCD X’40’ - ’CDLOAD’ UNEXPECTED RETURN CODE

$MX08CSP X’44’ - CONTRADICTION ’GETFLD’ VERSUS

DEVICE ENTRY SCAN, CALL IBM

$MX0CNOM X’04’ - NO MATCHING SPOOL DEVICE

$MX0CDEL X’08’ - INVALID OPERAND DELIMITER

$MX0CUNK X’0C’ - UNKNOWN KEYWORD

$MX0CINV X’10’ - INVALID OPERAND VALUE

$MX0CSTP X’14’ - OPERATOR CANCELLED TAPE

$MX0CINE X’18’ - INTERNAL POWER ERROR

$MX0CINA X’1C’ - INVALID ’JECL’ ADDRESS

$MX0CFCB X’50’ - FCB ERROR

$MX0CDUT X’54’ - DUP=YES not supported for DISP=T

$MX0CDUC X’58’ - DUP=YES not supported for RBC active

$MX0CDUS X’5C’ - DUP=YES not supported for RBS active

$MX0CDUM X’60’ - DUP=YES not supported for MT partition

$MX0CDUW X’64’ - DUP=YES not supported for writer-only partition

$MX0CDUI X’68’ - DUP=YES not supported for PUN with DISP=I

$MX0CDUN X’6C’ - DUP=YES not supported for DISP=N

IPWSEGM Macro

42 VSE/POWER V9R2 Application Programming

Table 16. IPWSEGM Parameter Area Produced by IPW$MXD Macro (continued)

Bytes Hex Field Label Description/Function

$MX0CD99 X’70’ - Number of duplicates exceeds 99

$MX0CDIK X’74’ - DUP=YES and no next valid operand

$MX0CDID X’78’ - DUP=YES and invalid DISP=T|N|I

$MX0CDNI X’7C’ - DUP=NO invalid for KEEP=NO
or not last or specified after DUP=YES

86-8B $MXRDR RESERVED RETURN AREA

General IPWSEGM Request Area Part 2

Description Area of Last Segment Part 2

8C $MX2DP DISPOSITION OF CREATED SEGMENT

8D $MX2TDP TRANSM. DISPOSITION OF CREATED SEGMENT

8E $MX2PY PRIORITY OF CREATED SEGMENT

8F $MX2NC NUMBER OF COPIES OF CREATED SEGMENT

90 $MX2SID TARGET SYSID OF CREATED SEGMENT

91-94 $MX2FI FORMS-ID OF CREATED SEGMENT

95-98 $MX2FI2 FORMS-ID EXTENSION (RESERVED)

99-A0 $MX2FCB FCB OF CREATED SEGMENT

A1-A8 $MX2UCS UCS OF CREATED SEGMENT

A9-B0 $MX2TN TARGET NODE OF CREATED SEGMENT

B1-B8 $MX2TU TARGET USER OF CREATED SEGMENT

B9-C0 $MX2DIS VM DISTRIBUTION CODE OF CREATED SEGMNT

C1-D0 $MX2UI USER INFORMATION OF CREATED SEGMNT

D1-D4 $MX2TKN TKN value (Binary)

D5 $MX2DUP Number of duplicates (Binary)

IPWSEGM Macro

Chapter 3. Output Segmentation 43

Table 16. IPWSEGM Parameter Area Produced by IPW$MXD Macro (continued)

Bytes Hex Field Label Description/Function

D6-DB $MXRDR2 RESERVED ATTRIBUTES FIELD

DC-E3 $MXALN DOUBLE WORD ALIGNMENT BUFFER

$MXLEN X’E4’ - LENGTH OF PARAMETER AREA

Note:

1. When output segmentation is requested by the IPWSEGM macro, all the
already collected output by VSE/POWER for the specified device is added as
an entry to the corresponding VSE/POWER queue - provided that any output
had been produced by the VSE/POWER job before. If not, you are warned by
the IPWSEGM register 15 RC/SGFB code $MXR00/$MX00IG=X'0004'.

2. CICS® environment considerations: The output which has been created between
two segment macros in a job transaction for the specified logical unit is added
to a VSE/POWER queue at the second macro request, that means before the
program reaches end-of-job. For long running programs like CICS, you can use
the IPWSEGM macro in a transaction to close spooling of output whenever
desired. But, the specified output logical unit is unique in a CICS partition and,
therefore, you may get mixed output if the same transaction runs twice at the
same time, unless you have established private resource locking.

3. COBOL/VSE programs (and most likely all other LE/VSE languages) spool
"double buffered" for unit record output, e.g. SYSLST. This causes problems if
the VSE/POWER IPWSEGM macro is used. The last line of the current segment
may appear as the first line of the next segment instead. The two I/O buffers
are handled by LIOCS (Logical Input/Output Control System) and are not
synchronized with the IPWSEGM macro call which expands into a SVC 0 and
uses PIOCS (Physical Input/Output Control System).
The solution to this problem is to select only one I/O buffer in the file
definition of the calling high level language program in order to spool the data
"single buffered".

Examples of the IPWSEGM Macro

Example 1: The following example shows how to code the IPWSEGM macro and
its referenced data areas.
* ---
* INCLUDE MAPPING MACRO IPW$MXD BEFORE YOUR PROGRAM’S FIRST CSECT
* ---

IPW$MXD
*
OWN CSECT

...
* ---
* REQUEST SEGMENTATION FOR SYSLST OUTPUT DATA
* - PROVIDE OUTPUT ATTRIBUTES FOR THE NEXT SEGMENT
* AS DEFINED IN ’LSTCARD’ JECL STATEMENT
* - REMEMBER THAT REG. 0,1,15 ARE DESTROYED BY THE IPWSEGM CALL
* ---

LA 2,LSTCARD
*

IPWSEGM DEVADDR=SYSLST,JECL=(2)
*

IPWSEGM Macro

44 VSE/POWER V9R2 Application Programming

* ---
* IF YOU WANT TO CARE ABOUT IPWSEGM REG.15 RETURN/FEEDBACK CODES,
* USE THE DETAILED CHECKING HINTS OFFERED IN EXAMPLE 2 !!!
* ---

...
PRODUCE MORE SYSLST OUTPUT

...
* ---
* SECOND SEGMENTATION REQUEST FOR SYSLST OUTPUT DATA
* - PROVIDE OUTPUT ATTRIBUTES FOR THE NEXT SEGMENT
* AS DEFINED IN ’LSTCARD2’ JECL STATEMENT
* - USE ’KEEP=YES’ OPTION TO KEEP NAME ’TESTOUT’ FOR NEXT SEGMENT,
* TO OVERWRITE KEPT ’FNO’ & ’DISP’ OPERANDS BY ’LSTOVER2’ VALUES,
* AND TO ADD EXTRA OPERANDS FROM VALUES STARTING AT ’LSTADD2’.
* ---

LA 3,CARD2LEN
*

IPWSEGM DEVADDR=SYSLST,KEEP=YES,JECL=LSTCARD2, C
JECLN=(3)

*
* ---
* IF YOU WANT TO CARE ABOUT IPWSEGM REG.15 RETURN/FEEDBACK CODES,
* USE THE DETAILED CHECKING HINTS OFFERED IN EXAMPLE 2 !!!
* ---

...
MORE LOGIC OF YOUR PROGRAM

...

...
* ---
* DEFINE ’LSTCARD’ JECL STATEMENT INCLUDING A TRAILING BLANK
* ---
LSTCARD DC CL71’* $$ LST JNM=TESTOUT,FNO=ACB1,DISP=H’

...
* ---
* DEFINE ’LSTCARD2’ JECL STATEMENT WITHOUT A TRAILING BLANK,
* BECAUSE ’JECLN=’ CONTAINS THE EXACT LENGTH OF THE STATEMENT
* ---
LSTCARD2 DC C’* $$ LST ’
LSTOVER2 DC C’FNO=ACB2,DISP=L’
LSTADD2 DC C’,CLASS=B,PRI=8’

DC C’,USER=MY-PRIVATE-INFO’
DC C’,DEST=(ANYNODE,ANYUSER)’

CARD2LEN EQU *-LSTCARD2

Example 2:
This sample job creates another VSE/POWER job in the RDR queue with new
name and new input class using the DISP=I facility. To accomplish this, two
IPWSEGM macro requests are required.

The first IPWSEGM macro passes a '* $$ PUN' JECL statement to VSE/POWER.
This statement contains 'DISP=I' to indicate that the punch output being created
from now on should be added to the RDR queue. It also contains 'CLASS=7' and
'JNM=NEWJOB2' to specify the execution class of the new job segment with the
unique name 'NEWJOB2'. The next step is to punch the job control and user data
to the punch device, using physical I/O control (PIOCS). A second IPWSEGM
macro is required to have the collected punch output segment added to the RDR
queue.
// JOB IPWSEGM
// OPTION CATAL
// LIBDEF *,SEARCH=PRD1.MACLIB
// LIBDEF PHASE,CATALOG=IJSYSRS.SYSLIB
PHASE SEGMTEST,*
// EXEC ASSEMBLY,SIZE=100K
* ---

IPWSEGM Macro

Chapter 3. Output Segmentation 45

* INCLUDE MAPPING MACRO IPW$MXD BEFORE YOUR PROGRAM’S FIRST CSECT
* ---

IPW$MXD
*

CSECT
PRINT GEN
BALR 10,0
USING *,10

* ---
* POINT TO THE * $$ PUN STATEMENT WITH DISP=I, THE NEW JOB CLASS AND
* THE NEW JOB NAME
* ---

LA 2,PUNCARD
* ---
* NOW PASS FIRST IPWSEGM REQUEST TO VSE/POWER >>> SEE NOTE 1 -->
* (REMEMBER THAT REG. 0,1,15 ARE DESTROYED BY THE IPWSEGM CALL)
* ---
*

IPWSEGM DEVADDR=SYS008,JECL=(2)
*

LTR 15,15 SEGMENT CREATED SUCCESSFULLY,
* - WITH RC/SGFB=X’0000’?

BZ SGM1OK1 ..YES, GO IDENTIFY SEGMENT
* ---
* NECESSARY CODING TO HANDLE WARNINGS GIVEN BY RC/SGFB=X’00mm’
* EITHER
* 1) ACCEPT ALL X’00mm’ AS ’SUCCESSFUL’ (shown by actual code flow)
* OR
* 2) LOOK FOR A SINGLE RC/SGFB CODE COMBINATION (shown by ’*>’)
* OR
* 3) CHECK ALL POSSIBLE RC/SGFB CODE COMBINATIONS (shown by ’*|’)
* ---

LR 0,15 SAVE RC/SGFB IN REG. 0
SRL 15,8 LET SGFB DROP OUT RIGHT SIDE
LTR 15,15 IS RC=0, MACRO CALL CORRECT?
BNZ SGM1RCXX .., NO GO FOR FAILURE CHECK
B SGM1OK2 GO AND CONTINUE W/O SEGMENT,

* APART FROM ’0010’/’0014’
*>---
*> 2) DEMONSTRATE, HOW TO PICK OUT A SPECIFIC RC/SGFB:
*> FIND AND ACCEPT RC/SGFB=X’0004’, FLAG OTHER RC/SGFB AS INVALID
*> (EXPECT ORIGINAL RC/SGFB STILL IN REG. 15)
*>---
*> LR 0,15 SAVE RC/SGFB IN REG. 0
*> CLM 0,3,RCFB0004 NO DATA SPOOLED UP TO NOW?
*> BE SGM1OK2 ..YES, CONTINUE W/O SEGMENT
*> B SGMERROR GO & ISSUE ERROR MESSAGE
*>
*|---
*| 3a) DEMONSTRATE, HOW TO TAKE ACTION FOR ALL ’mm’
*| SGFB CODES OF RC/SGFB=X’00mm’ USING A BRANCH TABLE
*| (EXPECT ORIGINAL RC/SGFB STILL IN REG. 15)
*|---
*| LR 0,15 SAVE RC/SGFB IN REG. 0
*| SRL 15,8 LET SGFB DROP OUT RIGHT SIDE
*| LTR 15,15 IS RC=0, MACRO CALL CORRECT?
*| BNZ SGM1RCXX .., NO GO FOR FAILURE CHECK
*| LR 15,0 COPY ORIGINAL RC/SGFB
*| SLL 15,24 LET RC DROP OUT LEFT SIDE
*| SRL 15,24 OBTAIN ONLY SGFB RIGHT SIDE
** PROTECT AGAINST UNEXPECTED HIGH SGFB-CODE EXCEEDING TABLE ENTRIES
*| CLM 15,1,MAX18 SGFB < UNEXPECTED VALUES?
*| BL CONT1 ..YES, CONTINUE
*| IC 15,MAX18 ELSE FORCE TO LAST ENTRY
** USE ’04’,’08’,...,’14’ STEPS OF SGFB TO REACH BRANCH ENTRIES
*|CONT1 DS 0H
*| B *(15) BRANCH ACCORDING TO SGFB

IPWSEGM Macro

46 VSE/POWER V9R2 Application Programming

*| B RF0004 .. HANDLE RC/SGFB X’0004’
*| B SGMERROR .. HANDLE FEEDBACK X’0008’,
| WHICH IS ’UNUSED’
*| B RF000C .. HANDLE RC/SGFB X’000C’
*| B RF0010 .. HANDLE RC/SGFB X’0010’
*| B RF0014 .. HANDLE RC/SGFB X’0014’
*| B SGMERROR .. HANDLE TABLE END X’0018’
*|
*|RF0004 DS 0H
*| YOUR CODE TO REACT UPON $MX00IG
*|RF000C DS 0H
*| YOUR CODE TO REACT UPON $MX00PU
*|RF0010 DS 0H
*| YOUR CODE TO REACT UPON $MX00NK
*|RF0014 DS 0H
*| YOUR CODE TO REACT UPON $MX00NE
*|
* ---
* 3b) CODING TO HANDLE RC=X’04’...X’0C’ (HIGHER RC WILL NEVER OCCUR!)
* EITHER
* A) FLAG ALL CASES ’INVALID’, GO AND ISSUE MSG (actual code flow)
* OR
* B) CHECK ALL REMAINING RC COMBINATIONS (shown by ’*%’)
* ---
SGM1RCXX DS 0H

B SGMERROR GO & ISSUE ERROR MESSAGE
*
*%---
*% B) TAKE ACTION FOR ’04’...’0C’ RETURN CODES USING A BRANCH TABLE
*% (EXPECT RC IN RIGHTMOST BYTE OF REG. 15)
*%---
*% B *(15) BRANCH ACCORDING TO RC
*% B R0004 .. HANDLE RC/SGFB X’0404’
*% B R0008 .. HANDLE RC/SGFB X’08nn’
*% B R000C .. HANDLE RC/SGFB X’0Cpp’
*%
*%R0004 DS 0H
*% B SGMERROR $MX04PNA SHOULD NEVER OCCUR
% IN YOUR ENVIRONMENT
*%R0008 DS 0H
*% B SGMERROR GO & IDENTIFY RC/SGFB FROM
% MSG AND CORRECT
% - YOUR PROGRAM SPECIFICATIONS
% - THE ENVIRONMENTAL CONDITION
*%
*% NOTE: AGAIN YOU MAY CODE ANOTHER BRANCH TABLE TO TAKE ACTION
*% ACCORDING TO THE SGFB CODES X’08nn’
*%
*%R000C DS 0H
*% B SGMERROR GO & IDENTIFY RC/SGFB FROM
% MSG AND CORRECT YOUR JECL
% STMT PASSED TO IPWSEGM
*%
*% NOTE: FOR RC/SGFB=X’0C04’-’0C10’ VSE/POWER HAS RECORDED
*% YOUR FAILING JECL STATEMENT ON THE CONSOLE WITH
*% MSG 1Q5JI FOLLOWED BY MSG 1Q5GI !!
*%---
*
* ---
* FOR A SUCCESSFUL IPWSEGM REQUEST, THE ATTRIBUTES OF THE CREATED
* SEGMENT ENTRY CAN BE FOUND AT ’$MXSQI’ IN THE MACRO PARAMETER
* AREA - WHICH IS ADDRESSED BY REG. 1 AND DESCRIBED BY $MXDS DSECT.
* THIS CODE SUGGESTS TO IDENTIFY THE SEGMENT NAME IN A MESSAGE.
* ---
SGM1OK1 DS 0H

USING $MXDS,1 MAKE PARAM. AREA ADDRESSABLE
* MVC MYMSGNM,$MXJNM COPY SEGMENT NAME TO MESSAGE

IPWSEGM Macro

Chapter 3. Output Segmentation 47

* ... YOUR CODE TO SET UP A ’SUCCESSFUL’ MESSAGE
* ... YOUR CODE TO WRITE MESSAGE TO THE CONSOLE

DROP 1 RELEASE PARM. AREA ADDRESS
* ---
* CONTINUE ALSO, WHEN NO SEGMENT BEEN CREATED (e.g. NOTHING SPOOLED)
* ---
SGM1OK2 DS 0H
* ---
* NOW PASS THE JOB CONTROL AND USER STATEMENTS FOR THE NEW VSE/POWER
* JOB TO BE CREATED.
* ---

LA 1,CCB POINT TO THE CCB
EXCP (1) AND ISSUE THE SVC0
WAIT (1) AND WAIT FOR I/O TO COMPLETE

* ---
* AND FINALLY, PASS SECOND IPWSEGM REQUEST FOR THE PUNCH DEVICE
* TO HAVE THE NEW JOB ADDED TO THE READER QUEUE WITH UNIQUE
* EXECUTION CLASS AND JOB-NAME. AT THE SAME TIME RE-ESTABLISH
* DEFAULT PUNCH OUTPUT CHARACTERISTICS, USING NO
* EXPLICIT * $$ PUN JECL STMT. FOR THE IPWSEGM CALL
* >>> SEE NOTE 2 -->
* ---
*

IPWSEGM DEVADDR=SYS008
*

LTR 15,15 SEGMENT CREATED SUCCESSFULLY,
* - WITH RC/SGFB=X’0000’?

BZ EOJ YES, DONE, GOTO EOJ
B SGMERROR GO & IDENTIFY ANY OTHER CODES

* BY MSG - SHOULD NOT HAPPEN
* AFTER PROGRAM PUNCHING !!
* ---
* MAKE HEX VALUES OF RC/SGFB READABLE AS DECIMAL HEX REPRESENTATIONS,
* EXPECTING CODES IN REG 0. REPORT FAILURE BY MESSAGE TO CONSOLE.
* ---
*
SGMERROR DS 0H

SRDL 0,8 GET RC IN REG 0 RIGHT SIDE
SRL 1,24 GET SGFB IN REG 1 RIGHT SIDE
LR 3,0 COPY CODE TO INPUT REGISTER
LA 4,RCD POINT REG. 4 TO MSG AREA
BAL 6,HEXCONV GO & CONVERT ’RC’
LR 3,1 COPY SGFB TO INPUT REGISTER
LA 4,SGFB POINT REG. 4 TO MSG AREA
BAL 6,HEXCONV GO & CONVERT ’RC’
LA 1,CCB2 AND INFORM THE OPERATOR
EXCP (1) VIA A CONSOLE MESSAGE
WAIT (1) WAIT FOR THE I/O TO COMPLETE
B EOJ GO & TERMINATE

*
* ---
* HEX CONVERSION SUBROUTINE - ONE BYTE TO TWO EBCDIC BYTES
* ---
*INPUT: REG. 3 = INPUT BYTE TO CONVERT
* REG. 4 = POINTER TO OUTPUT AREA (2 BYTES)
* REG. 6 = LINK REG.
*USES: REG. 2
*
HEXTBL DC C’0123456789ABCDEF’ HEX-> CHAR.-HEX. REPRESENT.

SPACE
HEXCONV DS 0H

SLDL 2,28 SHIFT LEFT HALF-BYTE TO REG2
STC 2,0(4) STORE IT TO OUTPUT + 0
SRL 3,28 SHIFT RIGHT HALF-BYTE TO R3
STC 3,1(4) STORE IT TO OUTPUT + 1
TR 0(2,4),HEXTBL TRANSLATE OUTPUT
BR 6 RETURN

IPWSEGM Macro

48 VSE/POWER V9R2 Application Programming

SPACE
EOJ DS 0H

EOJ RETURN TO JOB CONTROL
EJECT

* ---
* * $$ PUN CARD WITH CLASS=7, DISP=I, AND JNM=NEWJOB2
* ---
*
PUNCARD DC CL71’* $$ PUN CLASS=7,DISP=I,JNM=NEWJOB2’
*
* ---
* IPWSEGM MACRO ERROR MESSAGE TEXT
* ---
MSG1 DC C’IPWSEGM MACRO RETURN/FEEDBACK CODE IS X’
RCD DC CL2’ ’
SGFB DC CL2’ ’

DC C’
MSG1LN EQU *-MSG1 DYNAMIC MESSAGE LENGTH

SPACE
RCFB0004 DC Al1($MXR00) RC CONSTANT X’00’

DC Al1($MX00IG) SGFB CONSTANT X’04’
MAX18 DC Al1($MX00NE+X’04’) CONSTANT X’18’, HIGHER THAN
* EXPECTED HIGHEST X’14’

DS 0D
* ---
* CCB AND CCW FOR CONSOLE I/O
* ---
CCB2 CCB SYSLOG,CCWADDR2
CCWADDR2 CCW 09,MSG1,X’20’,MSG1LN
* ---
* CCB AND CCWS FOR PUNCHING JCL AND USER STATEMENTS
* ---
CCB CCB SYS008,CCWADDR
CCWADDR CCW 01,BUF02,X’60’,X’0050’

CCW 01,BUF03,X’60’,X’0050’
CCW 01,BUF04,X’60’,X’0050’
CCW 01,BUF05,X’60’,X’0050’
CCW 01,BUF06,X’60’,X’0050’
CCW 01,BUF07,X’60’,X’0050’
CCW 01,BUF08,X’20’,X’0050’

* ---
* CONSTANTS FOR JOBSTREAM BEING PUNCHED
* ---
BUF02 DC CL80’// JOB NEWJOB2’
BUF03 DC CL80’// PAUSE’
BUF04 DC CL80’// EXEC LIBR’
BUF05 DC CL80’A S=IJSYSRS.SYSLIB’
BUF06 DC CL80’LD IPW$$NU.PHASE’
BUF07 DC CL80’/*’
BUF08 DC CL80’/&&’

END
/*
// EXEC LNKEDT
// ASSGN SYS008,SYSPCH
// LIBDEF PHASE,SEARCH=IJSYSRS.SYSLIB
// EXEC SEGMTEST
/&

IPWSEGM Macro

Chapter 3. Output Segmentation 49

50 VSE/POWER V9R2 Application Programming

Chapter 4. Dynamic Access to VSE/POWER Job Attributes

Whenever during processing of a VSE/POWER job the executing program requires
information about the attributes of the active VSE/POWER job, you may call the
GETFLD Assembler macro from your program.

The following example shows how to code the GETFLD macro call and how to
address and find the following:
v The name of the active VSE/POWER job
v Its start time
v Its VSE/POWER job number
v The name of the user who submitted the job
v The contents of the * $$ JOB UINF='...' operand (formerly USER=)

... ...
SPACE 1

* ---
* REQUEST ADDRESSABILITY TO THE VSE/POWER POWJOB AREA CALLING MACRO
* ’GETFLD.A’ OF SUBLIB PRD1.MACLIB.
* MACRO GETFLD USES THE FOLLOWING REGISTERS:
* - 0
* - 15 RETURN CODE = 0, IF REQUEST OK
* ¬= 0, IF REQUEST FAILED
* - 1 RETURNED POINTER TO THE POWJOB AREA
* ---

SPACE 1
GETFLD FIELD=POWJOB ACCESS POWJOB AREA
SPACE 1
USING PJBADR,1 MAKE POWJOB AREA ADDRESSABLE
MVC OWNPNAME,PJBPNAME COPY VSE/POWER JOB NAME
MVC OWNJOBUS,PJBJOBUS COPY UINF/USER=’...’ INFORMATION
DROP 1 RELEASE POWJOB ADDRESSABILITY
EOJ

* ---
* LOCAL STORAGE FIELDS
* ---
OWNPNAME DS CL8 COPIED VSE/POWER JOBNAME
OWNJOBUS DS CL16 COPIED VSE/POWER USER= INFO

SPACE 1
* ---

* DESCRIBE THE JOB RELATED FIELDS OF THE POWJOB AREA BY AN OWN DSECT.
* USE THE SAME NAMES AS THE z/VSE MAPPING MACRO ’MAPPOWJB.A’ OF
* SUBLIB PRD2.GEN1.
* NOTE: IF NO VSE/POWER JOB IS ACTIVE, THE POWJOB AREA CONTAINS HEX 0
* ---
PJBADR DSECT LAYOUT OF THE POWJOB AREA
PJBPNAME DS CL8 NAME OF ACTIVE VSE/POWER JOB,
* - LEFTBOUND, PADDED WITH BLANKS
PJBPTIME DS CL8 START TIME OF ACTIVE POWER JOB,
* - STORE CLOCK (STCK) VALUE

DS CL12 INTERNAL JOB INFORMATION
PJBPNUM DS H NUMBER OF ACTIVE VSE/POWER JOB,
* - IN BINARY FORMAT

DS CL6 INTERNAL JOB INFORMATION
PJBPUSER DS CL8 ’FROM’ USER-ID OF VSE/POWER JOB,
* - LEFTBOUND, PADDED WITH BLANKS,
* - ALL BLANK, IF LOCALLY READ JOB
PJBJOBUS DS CL16 UINF/USER=’..’ INFO OF VSE/POWER JOB,
* - LEFTBOUND, PADDED WITH BLANKS,
* - ALL BLANK, IF NOT SPECIFIED

© Copyright IBM Corp. 1987, 2014 51

PJBPTKN DS F TKN VALUE IN BINARY FORMAT
* ------ END OF VSE/POWER JOB INFORMATION -----------------------------

SPACE 1
END

Dynamic Access to VSE/POWER Job Attributes

52 VSE/POWER V9R2 Application Programming

Chapter 5. Support of the IBM 4248 Printer

A program that writes to an IBM 4248 printer operating in native mode can run
under control of VSE/POWER. In general, there is no need for you to change your
programs. VSE/POWER handles IBM 4248-specific I/O requests as described in
VSE/POWER Administration and Operation, SC34-2625.

As far as user-written channel programs are concerned, some of the IBM
4248-specific I/O commands cannot be processed so that they achieve the expected
results. These commands are listed in Table 17.

Table 17. VSE/POWER Action for IBM 4248-Specific I/O Commands

Command Action by VSE/POWER During

Name Code Job Execution Printing Spooled Output

Read Band ID

Execute Order

Load FCB

Sense ID

Sense Inter-
mediate Buf-
fer

Verify Band
ID

X’0A’

X’33’

X’63’

X’E4’

X’14’

X’F3’
or
X’FB’

Returns the requested
bytes with all bits set
to zero.

Spools the command,
except a Purge Buffered
Data order.

Spools the command,
including the FCB image.

Returns the requested
7-byte device ID.

Returns the requested
bytes with all bits set
to zero.

Returns the requested
bytes with all bits set
to zero.

Ignores the command.

Ignores the command if:
- Horizontal-copy printing
is not set in the FCB.
- The command is a Purge

Buffered Data order.

Passes the command and the
image to the printer.
However, VSE/POWER looses
control over the printer’s
FCB.

Ignores the command.

Ignores the command.

Ignores the command.

Printer control commands not listed here are handled by VSE/POWER
in the same way as in the past.

© Copyright IBM Corp. 1987, 2014 53

54 VSE/POWER V9R2 Application Programming

Part 2. Spool-Access Support

© Copyright IBM Corp. 1987, 2014 55

56 VSE/POWER V9R2 Application Programming

Chapter 6. Introduction to Spool-Access Support

Spool-access support allows a program running under or outside the control of
VSE/POWER to access VSE/POWER services. A program using the support can:
v Retrieve queue entries from the local VSE/POWER queues
v Submit jobs or output data for spooling to the VSE/POWER queues and retrieve

VSE/POWER generated messages
v Submit control requests or pass VSE/POWER commands (such as PALTER,

PDISPLAY, PHOLD, PXMIT) to control the handling of queue entries.

Normally, IBM-supplied components use this support without your noticing it.

To make the description more easily understandable and ease the entry in your
own code, a sample routine has been made available (see Chapter 13,
“Spool-Access Support Programming Example,” on page 271).

For this chapter, we advise that you have a copy of the VSE/POWER Administration
and Operation, SC34-2625 publication at hand. This publication also discusses Spool
Access Protection, which can limit access by user ID.

Spool-Access Support Overview
To use the available VSE/POWER-access services, your program must:
1. Set up a communication path to VSE/POWER
2. Issue one or more requests to obtain the desired spool-access service
3. Remove the existing communication path when there is no further need for

access services.

You do this with the spool-access macros shown below.

XPCC requests a spool-access service by VSE/POWER. Normally, you issue
several such requests in your program for a queue entry retrieval or a job
or output submission; but it may also be just one request for a control-type
service.

XPCCB
builds the control block (called XPCCB) needed to process an XPCC macro.

MAPXPCCB
builds a DSECT for access to an XPCCB. In this chapter, references to
XPCCB-related fields or codes use the mnemonics that you find also in the
generated DSECT.

PWRSPL
builds a parameter list used to pass to VSE/POWER the control
information needed for the access service. VSE/POWER needs this list
when your program issues the first (or only) request.

On request, the macro generates a DSECT of the SPL. In this chapter,
references to SPL-related fields or codes use the mnemonics that you find
also in the generated DSECT.

For a full description of these macros, see Chapter 12, “Spool-Access Support
Macros,” on page 211.

© Copyright IBM Corp. 1987, 2014 57

Figure 2 shows how the macros XPCC, XPCCB, and PWRSPL, relate to each other;
it shows how the associated control blocks and areas are used for setting up an
access to VSE/POWER services.

When your program issues a service request, the system passes the associated
XPCCB and send buffer to VSE/POWER. The system returns to your program's
XPCCB user data passed by VSE/POWER; it puts data into your program's reply
buffer as applicable.

Before your program issues a request, it must ensure that the preceding request (if
any) is complete.

XPCC XPCCCB=(r1),FUNC=SENDR,...

register r1 Generated by macro XPCCB
XPCCB

IJBXPCCB

IJBXSUSR

User Data

PXUBTYP
PXUBxxxx
...

IJBXRUSR
User Data

PXPBTYP
PXPBxxxx
...

REPAREA=(name,length)

BUFFER=(name,length)

Send Buffer
Contains one of the following:
- SPL (generated by macro PWRSPL)
for the opening request.

- A control record.
- Data to be spooled.

Reply Buffer

Contains one of the following:
- Verification SPL.
- Data requested by your program.

Legend: Data flow (includes control data)
Pointer
Source-to-object code relaction

to VSE/POWER

from VSE/POWER

to VSE/POWER

from VSE/POWER

Figure 2. The Macros and Control Blocks for Spool-Access

Spool-Access Support Concepts

58 VSE/POWER V9R2 Application Programming

Separate chapters deal with setting up a communication path, issuing
access-service requests, and removing an existing communication path. In studying
these, you may find it helpful to have an output listing for an assembly of the
following macros:

MAPXPCCB
PWRSPL TYPE=MAP

The assembler produced DSECTs include explanatory comments.

A complete list of the VSE/POWER return and feedback codes is given in the
DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback codes at
label PXPFBKCD. For details, refer to “Spool-Access Support Parameter List
(PWRSPL DSECT)” on page 231.

Setting Up a Communication Path
Sequence of Coding

To set up a communication path between your program and VSE/POWER, include
in your program coding in the sequence as shown in Table 18.

For all access-service requests via an existing path, your program must use the
XPCCB which you supplied for program identification and connection. The section
Chapter 13, “Spool-Access Support Programming Example,” on page 271 includes
an identify and a connect coding sequence at labels IDENT and CONCT,
respectively.

For every additional communication path established to VSE/POWER, the
connection XPCCB control block must be copied from the original identification
XPCCB. This is described under “Setting Up Several Communication Paths” on
page 64.

Return Information

Your program should test return information as follows:
1. Register 15
2. The return code in the XPCCB field IJBXRETC

For a complete list of possible return codes, see “XPCC” on page 212.

When the setup of the communication path is complete, your program can issue
access-service requests.

Table 18. Setting Up a Communication Path Sequence

Coding in your application program Comments

...

XPCC FUNC=IDENT,...
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

Identifies your program to the system.
(Required only once per program.)

Spool-Access Support Concepts

Chapter 6. Introduction to Spool-Access Support 59

Table 18. Setting Up a Communication Path Sequence (continued)

Coding in your application program Comments

XPCC FUNC=CONNECT,...
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

The macro must refer to the same XPCCB
you used for program identification.
(Required for every communication path to
VSE/POWER.)

WAIT IJBXCECB
Wait for the CONNECT ECB to be posted.

...

Requesting VSE/POWER Access Services
You can access VSE/POWER for service requests as follows:

CTL (control) service: one or more requests to pass a command to VSE/POWER
and to retrieve the message(s) produced as command responses. For details
on general commands, see Chapter 7, “CTL - Passing a Command,” on
page 65, and for details on queue manipulation commands (selecting by
the previously known queue entry number) see “Direct Queue Entry GET
Access to the RDR/LST/PUN/XMT Queues” on page 79.

GET (retrieve spooled data) service: requests retrieval of a queue entry from the
specified VSE/POWER
v RDR/LST/PUN queue. For details on the general variety of functions,

see Chapter 8, “GET - Retrieving a Queue Entry,” on page 75, and for
details on specific functions (selecting by the previously known queue
entry number), see “Direct Queue Entry GET Access to the
RDR/LST/PUN/XMT Queues” on page 79.

v XMT queue. For details on this specific function (selecting by the
previously known queue entry number), see “Direct Queue Entry GET
Access to the RDR/LST/PUN/XMT Queues” on page 79.

v CRE (Create) queue. For details on this specific function (selecting by the
previously known queue entry number), see “Direct GET BROWSE
Access To Output Queue Entries In Creation” on page 81.

PUT (submit job or output) service: requests to include into the applicable
VSE/POWER queue a job (or job stream) or output data. For more
information, see Chapter 9, “PUT - Submitting a Job, a Job Stream, or
Output,” on page 103.

GCM (get job completion messages) service: requests to retrieve job completion,
job generation, and output generation messages for jobs passed to
VSE/POWER, and requests to generate and extract extended event
messages which inform about VSE/POWER queue entries creation,
alteration, and deletion. For more information, see Chapter 10, “GCM -
Retrieving Job Event and Output Generation Messages, Inquiring eXtended
Event Messages,” on page 139.

Via an existing communication path, only one type of service processing can be
handled at a time. You cannot, for example, open GET-service processing and issue
a CTL-service request before the previously started GET processing is finished. For
all requests which your program issues via the communication path, it must use
the same XPCCB.

Spool-Access Support Concepts

60 VSE/POWER V9R2 Application Programming

You define a request, and also control information needed by VSE/POWER,
primarily in a PWRSPL-generated SPL; to some extent, you specify control
information in the user area of the XPCCB or in a separate control record.

The requests for a desired service have to be coded in a certain sequence
depending on the type of service. This sequence is shown in the form of a diagram
followed by a discussion of the various requests.

Scope of GET/CTL Access to Queue Entries

Limitation by User ID (and Node ID)
Different rules apply to queue access depending on whether Spool Access
Protection is active (refer to VSE/POWER Administration and Operation, SC34-2625):

If Spool Access Protection Is Not Active

If Spool Access Protection is not active, spool-access support users (as opposed to
the central operator) are only allowed to access/manipulate job/output entries
which they have created, that is, whose origin is their node ID and user ID, or to
access/manipulate output entries whose destination is their node ID and user ID.
Therefore, the USERID= is a mandatory parameter of the PWRSPL macro for PUT,
GET, and CTL requests.

Note: When spool access users enter a PDISPLAY command via the CTL request,
they can see the same job/output entries as are presented to the central operator.

The scope of GET-retrieval and CTL-manipulation access extends to:
1. locally read-in jobs, when an origin user ID has been assigned to them by the

FROM= parameter of the * $$ JOB statement.
2. jobs received at their final destination via the network, that still contain a * $$

JOB statement with a FROM= parameter. Such jobs have never been processed
by VSE/POWER, that is, their origin is a non-PNET system.

3. output queue entries free for general access when their destination user ID is
"ANY" (GET access only). "ANY" indicates that VSE/POWER may make the
output available to any user.

Note: CTL requests to manipulate a queue entry with a destination user ID of
"ANY" are permitted only by the origin user of the entry.

If Spool Access Protection Is Active

This mode of security protection can be activated when starting VSE/POWER if it
was also enabled at IPL. It limits eligible spool entry access to authenticated users or
programs, or to system administrators, i.e., when access is restricted to certain user
IDs, these must be authenticated. Authentication requires a security logon with a
password or a system component logon, such as IUI. This mode applies when
using GET, CTL, or PUT OUTPUT-APPEND/RESTART, as discussed in the
following sections. The same rules of access apply as when Spool Access Protection
is not active, with the following differences:
v The originator's access user ID (as specified in the PWRSPL field SPLGUS) is

replaced by the security logon user ID.
v Output queue entries with a destination user ID of "ANY" will be restricted to

any authenticated user ID. If access is meant to further include non-authenticated
user IDs, SECAC=NO should additionally be specified for the output entry.

Spool-Access Support Concepts

Chapter 6. Introduction to Spool-Access Support 61

PNET Considerations

A PXMIT command routed to another node via CTL will have the origin user ID
replaced with the issuer's security user ID if Spool Access Protection is active,
replacing the originator user ID identified in the PWRSPL field SPLGUS.

If a PXMIT command is issued by a non-authenticated user, this is indicated in the
command when it is routed to the target node. PXMIT commands from systems
without the Spool Access Protection feature active (e.g., downlevel systems or
non-VSE systems) will be assumed to be authenticated.

Limitation by Password
The PWD= is an optional parameter of the PWRSPL macro for all spool access
requests. If a queue entry is protected by an explicit password (different from
internal default local value of binary zeros or default programmed access value of
blank), then spool-access GET/CTL service requests must specify this password,
otherwise the request is rejected. Non-matching internal default values of the
password do not limit the access!

Unlimited Access
Unlimited Access for Subsystem

Only selected IBM subsystems have the capability, such as the central operator has,
to gain GET/CTL access to all queue entries.

Unlimited Access by Installation-Specific Master Password

Each installation can define its own general password with the master password
support. If this password is used in the spool-access support GET/CTL request, it
provides access to all queue entries, regardless of mismatching userid and optional
password.

If the master password is specified in a PUT OPEN RESTART or APPEND request,
additional password checking is ignored, but the userids must match.

The master password also allows issuing commands which are for authorized
users only. For information, please see the COMMAND operand of the PWRSPL
macro in the topic “Format 3: Generating a DSECT” on page 219. The master
password is saved in enciphered format and is, therefore, not readable in a dump.

Limitation by Maximum Number of Users
The initiation of a Spool Access task GET/PUT/CTL/GCM-OPEN request is not
done by an operator, but instead by a XPCC application programs that issue XPCC
CONNECT requests to SYSPWR. For each connection established, a SAS task is
created in VSE/POWER. Due to logic error, a XPCC application program may loop
on CONNECTing to SYSPWR without performing a DISCONNect and hence ever
more SAS tasks are created until finally either partition Getvis or SETPFIX LIMIT
storage is used up in the VSE/POWER partition. To aid in isolating such failures,
VSE/POWER starts up with a default threshold value (MAXSAS=250) of the
maximum number of concurrently active SAS tasks. When the threshold is
exceeded, further XPCC CONNECT requests are terminated by XPCC DISCPRG
accompanied by VSE/POWER's error return PXPRETCD/PXPFBKCD=X'10/07'. At
the same time the operator is warned by message 1Q3JA. For details and for
modifying the default threshold value refer to the PVARY command Format 5

Spool-Access Support Concepts

62 VSE/POWER V9R2 Application Programming

'Varying the Maximum Number of SAS Tasks' in the VSE/POWER Administration
and Operation, SC34-2625.

Ending Access to VSE/POWER Services
To end accessing VSE/POWER services via a communication path, this path is to
be removed. This can be done either by a request from your program or by a
request from VSE/POWER. A request from your program is indicated when there
is no need for further access requests via a certain communication path and
VSE/POWER has finished processing the last access request.

End of Access Requested by Your Program
Coding Sequence

Refer to Table 19, a coding-sequence diagram for the removal of a communication
path from within your program. The section Chapter 13, “Spool-Access Support
Programming Example,” on page 271 includes a disconnect and terminate coding
sequence at labels DISCT and TERMN, respectively.

Checking the Return Information

Your program should check the return codes set by the system on completion of
the XPCC macro request. This ensures an orderly termination processing. These
macro-return codes are listed and briefly described under “XPCC” on page 212.

Table 19. End Access to VSE/POWER Sequence

Coding in your application program Comments

...

WAIT IJBXSECB
Wait for the SENDR ECB to be posted after
your program's last access-service request.

Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively.)

Disconnect request
XPCC FUNC=DISCONN,...

Following this request, the communication
path set up in your program by XPCC
FUNC=CONNECT is no longer available. To
set up the path again, should this be
desirable, issue an XPCC request with
FUNC=CONNECT.

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

Terminate request
XPCC FUNC=TERMIN,...

This is some sort of a log off by your
program. To set up the path again, should
this be desirable, start out with XPCC
request specifying FUNC=IDENT.

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

This ensures orderly discontinuation of
using the spool-access support.

Spool-Access Support Concepts

Chapter 6. Introduction to Spool-Access Support 63

End of Access Requested by VSE/POWER

VSE/POWER indicates this condition by return and feedback codes in field
IJBXRUSR of the XPCCB. A complete list of the VSE/POWER return and feedback
codes is given in the DSECT PXPUSER, which the assembler generates for a
PWRSPL TYPE=MAP macro. You find the return codes at label PXPRETCD and
the feedback codes at label PXPFBKCD.

Setting Up Several Communication Paths
You may, if this is desirable, have your program set up several communication
paths to VSE/POWER. To do this, proceed as follows after having identified your
program (by an XPCC macro with FUNC=IDENT as described in “Setting Up a
Communication Path” on page 59).
1. Copy the XPCCB used for identification

On successful completion of the request, the z/VSE system returns an X (=
cross-partition) ID in field IJBXIDK of your XPCCB. The system expects an
XPCCB with this ID for a subsequent XPCC request with FUNC=CONNECT. It
follows then that your program needs a copy of the XPCCB with the returned
cross-partition ID for every communication path which is to be set up.

2. Issue an XPCC request with FUNC=CONNECT
The system provides a uniquely identified communication path by inserting a P
(= path) ID in field IJBXPID of the XPCCB you use.
For any additional communication path that you want to set up, issue a new
XPCC request with FUNC=CONNECT. Every one of these requests must use a
new copy of the XPCCB which you used for identification.
A connect request must be complete before you can issue the next one.

Spool-Access Support Concepts

64 VSE/POWER V9R2 Application Programming

Chapter 7. CTL - Passing a Command

VSE/POWER can process only one control function per CTL-service request. Open
a CTL-service request in your program if you want VSE/POWER to do one of the
following:
v Pass a command or a message to another node in the network
v Alter attributes of a queue entry
v Cancel a job that is being executed
v Delete a reader or an output queue entry
v Delete FCB's or messages
v Delete any information about a checkpoint taken
v Display status information about a reader or an output queue entry or a group

of entries
v Display system information
v Release a job or an output queue entry
v Request queuing of fixed format job completion messages for a released job
v Place a reader or an output queue entry into the hold state
v Load a dynamic class table
v Control printing and punching of output queue entries.

For an overview of the commands accepted by a spool-access communication path,
refer to “Format 3: Generating a DSECT” on page 219.

Refer to “Scope of GET/CTL Access to Queue Entries” on page 61 for a discussion
of queue entry access considerations.

Refer to Table 20 on page 66, a coding sequence diagram. It shows the kind of
coding you have to supply in your program and in what sequence this coding is to
be. This coding is explained in the subsequent paragraphs. Chapter 13,
“Spool-Access Support Programming Example,” on page 271 includes a
CTL-service request at label CTLA1.

Starting the CTL Service
To start a CTL service, issue a CTL-OPEN request, which requires:
v Byte PXUBTYP of the XPCCB to be set to the value equated to PXUBTSPL. This

tells VSE/POWER that the send buffer contains an SPL.
v In the send buffer, an SPL set up by a PWRSPL macro with TYPE=GEN or

updated by a PWRSPL macro with TYPE=UPD so that the SPL specifies the
mandatory (and optional) fields for a REQ(uest)=CTL. For details refer to
“PWRSPL” on page 217 and to the list of mandatory and optional operands for
the CTL service in the topic “Format 3: Generating a DSECT” on page 219.

v A reply buffer set up in your program either by specifying
REPAREA=(areaname,length) or by inserting the buffer's address and length into
the four-byte XPCCB fields IJBXRADR and IJBXRLNG, respectively. Any
messages that VSE/POWER generates are returned to your program in this
buffer (see also “Retrieving Messages” on page 67). The reply buffer must be

© Copyright IBM Corp. 1987, 2014 65

large enough to hold at least one message and an 8-byte prefix. For the layout of
the record prefix, refer to page “Spool-Access Support Parameter List (PWRSPL
DSECT)” on page 231.

Processing for a CTL service may be discontinued at any time by either a QUIT
request or by a new function request. For details, see “Ending the CTL Service” on
page 68.

Table 20. CTL-Service Processing Sequence

Step Coding in your application program Comments

...

1 Open the service
XPCC FUNC=SENDR,...

Your program's send buffer must
contain an SPL generated (or up-
dated) for processing a CTL-OPEN
request.

2 Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC)

3 WAIT IJBXSECB Wait for the SENDR ECB to be
posted. This indicates that
VSE/POWER has finished
processing the request.

4 Check the reason code (in the
XPCCB byte IJBXREAS)

This reason code is provided by the
XPCC support. It must not be mixed
up with any reason codes provided
by VSE/POWER.

5 Check the VSE/POWER return
and feedback codes (in the XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively).

Return and feedback codes inform
you about the existence of the
support and how your request has
been processed by VSE/POWER.

6 Check for and evaluate messages
returned by VSE/POWER

If messages are to be returned, then
VSE/POWER passes them to your
program's reply buffer (for details,
refer to
“Retrieving Messages” on page 67).

7 If VSE/POWER feedback code in
PXPFBKCD byte of XPCC does
not indicate availability of additional
messages, go to step 9;
else proceed.

VSE/POWER indicates 'End of Data'
(no more available messages) by
PXP00EOD feedback code.

8 Get additional messages by
XPCC FUNC=SENDR,...

and return to step 2.

Coding for this purpose is required
only if the feedback code indicates
that more messages are queued. No
SPL need be passed for this request;
your program must set a request
CTL code in the XPCCB.

9 End of Service

CTL Service

66 VSE/POWER V9R2 Application Programming

Retrieving Messages
VSE/POWER queues any messages that may occur while it processes the
requested CTL service. It passes these messages to your program's reply buffer.

If all of the queued messages fit into your reply buffer, VSE/POWER indicates this
by a return- and feedback-code combination PXPRCOK/PXP00EOD. If the
generated messages do not fit, VSE/POWER passes to your program the return-
and feedback-code combination PXPRCOK/PXP00OK.

In variance to the CTLSPOOL request of the spool macro support, VSE/POWER
does not return the confirmation message 1R88I, if the requested command is
processed successfully. Instead, a CTL service request is terminated by the return-
and feedback-code combination PXPRCOK/PXP00EOD with IJBXSLN=0 (meaning
"no message queued in reply buffer").

To have VSE/POWER pass messages not yet transferred, your program must:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of the XPCCB to the value equated to PXUATRMR.
3. Set up a null buffer (by setting field IJBXBLN to zero).
4. Issue an XPCC FUNC=SENDR request.

The coding sequence at label DSPL2 in Chapter 13, “Spool-Access Support
Programming Example,” on page 271 shows how to set up a null buffer and how
to issue a RETURN-MESSAGE request.

VSE/POWER deletes messages queued but not yet transferred if your program
does one of the following:
v Issues another, different service request
v Issues a QUIT request
v Ends communication via the currently used path.

In case a 'PDISPLAY queue' command has been submitted by a CTL service
request, VSE/POWER accumulates the display lines in an internally built list
queue entry ($SPLnnnn, which may be seen temporarily in a PDISPLAY of the LST
queue) and passes from there messages into your reply buffer. Then VSE/POWER
accepts -- during message processing -- a restart request via a restart control
record. See “Requesting a Restart of the GET Spool Data” on page 93.

Although generally a CTL request does not generate a Spool Access Support
operation account record, a GET operation account record is created for the
implicit GET request to the $SPLnnnn entry. One can suppress this account record
by generating one's own VSE/POWER phase with the
ACCOUNT=(...,RXSPOOL,...) operand of the VSE/POWER macro.

CTL Service

Chapter 7. CTL - Passing a Command 67

Ending the CTL Service
If the processing of a CTL service is to be discontinued before it is finished, you
can do either of the following:
v Issue a new request, which requires an SPL to be passed to VSE/POWER.
v Issue a QUIT request. To do this:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of the XPCCB to the value equated to PXUATABR.
3. Set up a null buffer (by setting field IJBXBLN to zero).
4. Issue an XPCC FUNC=SENDR request.

The coding sequence at label GQUIT in Chapter 13, “Spool-Access Support
Programming Example,” on page 271 shows how to set up a null buffer and how
to issue a QUIT request.

Direct Queue Entry CTL Access
Provided your program addresses only a single queue entry for manipulation by
the PALTER, PDELETE, PHOLD, or PRELEASE command or for a display by the
PDISPLAY command, and provided the internal VSE/POWER queue record
number of the desired queue entry is known to your program in advance - then
you may request direct queue entry access for the CTL-OPEN Service. When
accessing directly by queue record number, VSE/POWER:
v Gains in performance, because all class chain searching is bypassed
v Returns precise and program-processible return and feedback codes in case

access failed, instead of returning the operator message '1R88I NOTHING TO
ALTER/HOLD...'

v Provides access to one and only one queue entry, when the traditional selection
criteria are not unique

v Does not build the extra internal $SPLnnnn list queue entry that accompanies a
PDISPLAY request.

How to Find the Internal Queue Record Number

If, for example, your program has created the queue entry or has identified it in a
free-format or fixed-format queue display request, VSE/POWER returns the
internal queue record number in the following fields:

SPLXQNUM
of a PUT-OPEN, PUT-CLOSE, or PUT-SEGMENT verification SPL

SPLXQNUM
of a GET-OPEN verification SPL

QNUM
of a free-format (FULL=YES) queue display line, as a 5-digit decimal
number

PXFMQNUM
of a fixed-format queue display record (using PWRSPL OPT=FORMAT)

PXCRQNUM
of a checkpoint response control record

CTL Service

68 VSE/POWER V9R2 Application Programming

$MXQNB
of the IPWSEGM return information (refer to “Format of the Macro” on
page 38)

Save this queue record number for later specification in a direct CTL-OPEN
request.

Starting a Direct CTL-OPEN Request

For the PALTER, PDELETE, PHOLD, PRELEASE, or PDISPLAY command set up
your SPL with:
1. either mandatory search arguments as defined for PWRSPL REQ=CTL,

FUNC=ALTER/DELETE/HOLD/RELEASE, refer to “Format 3: Generating a
DSECT” on page 219 or by a command in operator format using
PWRSPL=CTL, FUNC=COMMAND.

2. and the direct enabling features:
v SPLXQNUM, specifying the desired queue record number as returned by

VSE/POWER
v plus flag SPLGO2QN set up in option byte SPLGOPT2, meaning "use queue

record number".

Only for the named commands, VSE/POWER respects the SPLGO2QN flag, and
ignores it for other commands. When the specified mandatory (queue and
jobname) and optional (jobnumber and jobsuffix) search arguments do not match
the attributes of the directly retrieved queue entry, VSE/POWER replies
v for PALTER, PDELETE, PHOLD, and PRELEASE return and feedback code

PXPRCOKF/PXP04NOF plus various settings of feedback-2 code PXPFBKC2
describing 'why not found'.

v for PDISPLAY return and feedback code PXPRCOKF/PXP04DNF plus various
settings of feedback-2 code PXPFBKC2 describing 'why not displayed'.

For details on feedback codes returned for direct CTL requests, refer to Table 22 on
page 72 and Table 23 on page 73.

When the specified search arguments match the attributes of the directly retrieved
queue entry, the corresponding command handles the entry as if searched and
found by a non-direct CTL-OPEN request.

Respect the following attributes of direct CTL-OPEN requests:
1. 'Generic' jobname (e.g. *ABC) requests are rejected by RC/FB code

PXPRCERR/PXP08GJN
2. Processing an operator type command (PWRSPL REQ=CTL,

FUNC=COMMAND), additional C-type search operands are ignored.

CTL Service

Chapter 7. CTL - Passing a Command 69

Enabling Job Completion Messages by the Release Command
With the CTL-OPEN request for a Release command (PWRSPL FUNC=RELEASE
or FUNC=COMMAND) of a job residing in the reader queue, it is also possible to
ask for queueing of fixed format job completion messages, whenever the job has
been processed. For that purpose one specifies in the CTL-OPEN SPL:
v flag SPLGFB2.SPLGF2MR — release to trigger completion message
v flag SPLGFB1.SPLGF1QM — queue job completion message

The completion message is queued for a fixed format message queue identified by
XPCC_applid and Spool Access userid (SPLGUS) of the Release CTL request.

These completion messages can be requested for jobs spooled to the reader queue
either:
v from other input sources than Spool Access PUT-JOB, or
v from PUT-JOB without 'queue job event message' options.

The 'completion message for a release' is only issued once, this means at the
processing completion time of the released job. When the released job has been
submitted by PUT-JOB with 'queue job event messages' options, then an additional
'completion message for the submitter' is also queued provided the message target
is different from the applid.userid of the Release CTL request. For retrieval of the
queued messages refer to Chapter 10, “GCM - Retrieving Job Event and Output
Generation Messages, Inquiring eXtended Event Messages,” on page 139.

Deleting Checkpoint Information
The CTL request 'delete checkpoint information' allows to delete checkpoint
information (including checkpoints with extended information). To set up a "delete
checkpoint information" request, issue a CTL-OPEN request using the SPL fields
listed below.

Table 21. SPL Fields Applicable to 'Delete Checkpoint Information' Request

Field Name Applicability Purpose/Contents

SPLGSRB M Subrequest, must be SPLGSRDC = X'08'

SPLGJB M Job name 1

SPLGJN M Job number

SPLGJS O Job suffix

SPLGPW O Password

SPLGUS M User ID

SPLGQI M Queue ID

SPLXQNUM M Queue entry number 2

Legend: M = Mandatory; O = Optional

CTL Service

70 VSE/POWER V9R2 Application Programming

Table 21. SPL Fields Applicable to 'Delete Checkpoint Information' Request (continued)

Field Name Applicability Purpose/Contents
1 If the job name consists of less than 8 characters, the job name must be padded with
blanks at the end. You can not specify a generic job name.

2 For this request, the queue entry number must be contained in the field SPLXQNUM of
the SPL. The queue entry number is not displayed by any VSE/POWER commands. The
queue entry number can be obtained in one of the following ways:

v The OPEN request of a GET service returns a verification SPL. It contains the queue
entry number within field SPLXQNUM.

v When a checkpoint is recorded, a checkpoint-response control record is returned. This
record contains the queue entry number within field PXCRQNUM.

v When a checkpoint with extended information is retrieved, a checkpoint-response control
record is returned. This record contains the queue entry number within field
PXCRQNUM.

v When status information of a queue entry is displayed in fixed format (using the CTL
service with the parameter OPT=FORMAT), the queue entry number is contained within
field PXFMQNUM.

The queue entry number is used to identify the job of which the checkpoint information is
to be deleted. If the queue entry number identifies a job of which the job name and/or job
number and/or job suffix are not the same as specified in the SPL fields, the return and
feedback codes PXPRCOKF/PXP04NOF (X'04'/X'01') are returned indicating 'job not
found'. Then feedback-2 code PXPFBKC2 can be used to clarify 'why not found'. See
Table 23 on page 73 for possible feedback-2 codes.

The CTL request 'delete checkpoint information' does not return any message, but
only a return and feedback code.

Checking the Return Information for CTL Service Requests
For the return information to be checked by your program after an XPCC request,
refer to “XPCC” on page 212.

Your program should also check the return codes from VSE/POWER. Provide for
this checking after your program's SENDR ECB has been posted.

Table 22 on page 72 lists the return and feedback codes that VSE/POWER may
supply when it processes a CTL-service related request. The list is ordered in
ascending order by code values. It relates the codes to the applicable request types
and gives the names that are equated to the feedback codes. A complete list of the
VSE/POWER return and feedback codes is given in the DSECT PXPUSER, which
the assembler generates for a PWRSPL TYPE=MAP macro. You find the return
codes at label PXPRETCD, and the feedback codes at label PXPFBKCD, and the
feedback-2 codes at label PXPFBKC2.

For more information on the subject, see Chapter 14, “Return and Feedback Codes
and Their Meanings,” on page 297.

CTL Service

Chapter 7. CTL - Passing a Command 71

Table 22. Return and Feedback Codes (PXPRETCD/PXPFBKCD) for CTL-Service Related Requests

Request Type

Mnemonic PXPFBKCD Return Code Feedback Code CTL-Open Get Messages

PXP00OK
PXP00EOD

PXP04NOF 1

PXP04BSY 1

PXP04SOA
PXP04DNF 2

PXP04TQN
PXP04NCK

PXP08SPL
PXP08REQ
PXP08SRQ
PXP08FB2
PXP08JNM
PXP08QID

PXP08CLS
PXP08PWD
PXP08UID
PXP08BTS
PXP08IAB

PXP08CON
PXP08IBT
PXP08BOS
PXP08JNO
PXP08JSF
PXP08IQN 3

PXP08GJN 3

PXP0CINS
PXP0CIXF
PXP0CIOE

PXP0CSNF2

PXP0CCOR2

PXP10PSP
PXP10SIE
PXP10MST

00

04

08

0C

10

00
01

01
03
09
0B
0C
15

01
02
03
04
05
06

07
08
09
1A
1C

22
24
27
31
32
44
45

01
02
07

08
09

05
06
07

X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X

X

X
X
X
X
X

X
X
X

X
X

X
X
X

X
X

X
X

X

X
X
X

X
X

1 This feedback code appears only for direct CTL-Service (PALTER, PDELETE, PHOLD, PRELEASE) requests or for
Delete Checkpoint requests. If PXP04NOF, check PXPFBKC2 of Table 23 on page 73 for detailed reason.

2 This feedback code appears for the PDISPLAY command only. When passed as direct CTL-Service request, check
PXPFBKC2 of Table 23 on page 73 for detailed information.

3 This feedback code appears only for direct CTL-Service requests or for Delete Checkpoint requests.

CTL Service

72 VSE/POWER V9R2 Application Programming

Table 23. Feedback-2 Codes (PXPFBKC2) for Direct CTL-Service Requests

at CTL-OPEN Request for

Mnemonic
PXPFBKCD/PXPFBKC2

Return/Fdbk
Code

Fdbk-2
Code

PALTER
cmd

PDELETE
cmd

PHOLD
cmd

PRELEASE
cmd

PDISPLAY
cmd

Delete
Checkpoint

PXP04NOF/PXPC2TEM
PXPC2NOH
PXPC2NOR
PXPC2NTA
PXPC2CPO
PXPC2CDI
PXPC2CNT
PXPC2BAD
PXPC2FRE
PXPC2MQU
PXPC2MJM
PXPC2MJB
PXPC2IPW
PXPC2BPW
PXPC2JFR
PXPC2OT1
PXPC2OT2
PXPC2OT3
PXPC2OTN
PXPC2MJS
PXPC2SAC
PXPC2INC
PXPC2DEL

PXP04DNF/PXPC2BAD
PXPC2FRE
PXPC2MQU
PXPC2MJM
PXPC2MJB
PXPC2INC
PXPC2DEL

04/01

04/0B

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
19
1A
1B

08
09
0A
0B
0C
1A
1B

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X

X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X

X

Note: For a detailed explanation of the PXPFBKC2 mnemonics, see “Spool-Access Support Parameter List (PWRSPL
DSECT)” on page 231.

CTL Service

Chapter 7. CTL - Passing a Command 73

CTL Service

74 VSE/POWER V9R2 Application Programming

Chapter 8. GET - Retrieving a Queue Entry

You request a GET service if you want VSE/POWER to retrieve a certain queue
entry of a local (RDR, LST or PUN) queue and make this entry available to your
program. In your program, you issue GET-service requests as follows:
1. An Open request to start the desired retrieval of spool data ─ For details, see

“Starting the GET Service” on page 84.
2. One or more GET spool data requests to have VSE/POWER make the desired

spool data available to your program ─ For details, see “Retrieving Spool Data”
on page 86.

3. An end-service request, which may be one of the following:
v A Close request to indicate that the retrieval of a specific queue entry is

finished ─ For details, see “Issuing a CLOSE Request” on page 86.
v A QUIT request to end any further retrieval of spool data ─ For details, see

“Issuing a GET-QUIT Request” on page 87.
v A QUIT-and-LOCK request to indicate, for example, that the processing of an

output queue entry failed - For details, see “Issuing a QUIT-and-LOCK
Request” on page 87.

v A PURGE request to end any further retrieval of spool data and to purge the
accessed queue entry from its queue ─ For details, see “Issuing a PURGE
Queue Entry Request” on page 87.

You may, in addition, issue:
v A Checkpoint request to record a suitable restart point should a restart be

desirable or become necessary ─ For details, see “Requesting a Checkpoint” on
page 88.

v A Restart request to set up the retrieval of a queue entry's spool data at a point
other than the beginning ─ For details, see “Requesting a Restart of the GET
Spool Data” on page 93.

v A Get OPTB request to obtain one or more available output parameter text
blocks (OPTBs) - For details, see “Issuing a Get-OPTB Request” on page 96.

v A Modify OPTB request to change an OPTB - For details, see “Issuing a
Modify-OPTB Request” on page 97.

For a discussion of queue access considerations, see “Scope of GET/CTL Access to
Queue Entries” on page 61.

Introduction to the GET Service

Starting the GET Service
Getting a RDR/LST/PUN Queue Entry for Update

Queue entries must have a dispatchable disposition of D (delete after processing)
or K (keep after processing) in order to be selectable for retrieval by the GET
service for viewing and optional update. Non-dispatchable entries (DISP=H|L), or
dispatchable time event scheduling jobs, or even active queue entries (DISP=*) are
not accessible by this GET service. Further general access limitations of the GET
service are discussed in “Scope of GET/CTL Access to Queue Entries” on page 61.

© Copyright IBM Corp. 1987, 2014 75

For extended retrieval of generally dispatchable (DISP=D|K) and non-dispatchable
(DISP=H|L|X|Y|A) and possibly even active (DISP=*) queue entries, refer to
“Browsing a Queue Entry for Viewing Only” on page 78.

Service End Disposition of a Retrieved Queue Entry

If you end the retrieval of a queue entry by a CLOSE request, then this retrieval is
for VSE/POWER the same as processing this entry. Therefore, if the entry's
disposition was

D VSE/POWER deletes the entry.

K VSE/POWER retains the entry with the entry's disposition changed to L.

For further information on disposition, please refer to the VSE/POWER
Administration and Operation, SC34-2625.

For a summary of allowed requests for this GET service, refer to the 'GET-SPOOL'
block in Appendix C, “Spool-Access Support Graphical Description,” on page 379.

Getting RDR/LST/PUN Entries for Update in Generic Mode

This mode of the standard GET service (see “Getting a RDR/LST/PUN Queue
Entry for Update” on page 75) does not search for a specific jobname but rather
selects the next suitable entry in the specified queue and class(es). For details and
additional options, see the MODE=GENERIC operand of the PWRSPL macro.

Data Passed by VSE/POWER

If your program requests a RDR queue entry, VSE/POWER does not return the
* $$ JOB, * $$ CTL, and * $$ EOJ statements.

Every record made available by VSE/POWER is preceded by an eight-byte prefix
as shown in Table 24 on page 77. A DSECT of this prefix, labeled RECPRFIX, is
available to you if you issue a PWRSPL macro with TYPE=MAP. For the layout of
the record prefix, refer to Table 24 on page 77 and “Spool-Access Support
Parameter List (PWRSPL DSECT)” on page 231.

GET Service

76 VSE/POWER V9R2 Application Programming

Table 24. Record Prefix Layout

Bytes Meaning

0 Carriage control character or X’00’.

1 Record type:

X’00’ = Normal data record
X’01’ = Spool parameter list (SPL)
X’02’ = Fixed format message
X’03’ = Separator-page (separator-card) start record
X’04’ = 3540 data record (applies only to a RDR queue entry)
X’05’ = Control-command record (such as skip to

channel 1 (X’8B) or block data check (X’73’)
X’06’ = CPDS (composed page data stream) record, always

indicated when the carriage control character is X’5A’
X’07’ = Separator-page (separator-card) end record
X’08’ = End-of-copy record
X’09’ = Fixed format job completion message (applicable

only for GCM requests).
X’0A’ = Fixed format job generation message (applicable

only for GCM requests).
X’0B’ = Fixed format output generation message (applicable

only for GCM requests).
X’0C’ = Fixed format extended event message (applicable only

for GCM requests).

2-3 Length of the subsequent logical record (binary)

4-7 VSE/POWER assigned record number (binary); you
can use this number to specify a restart point should a
restart become necessary.

If your program requests an output queue entry with multiple data set header
records (DSHR), VSE/POWER builds for each DSHR an SPL and passes this SPL
(with the prefix) between data records back in the reply buffer. The RECLOGNO
will not be incremented by this received SPL.

The Verification SPL

In response to your first (opening) request, VSE/POWER returns to your program
a verification SPL. Consider analyzing this SPL in your program and coding
programmed actions that may be necessary.

The verification SPL contains the same information as the SPL passed by your
program. Some of the verification SPL's fields contain data about the currently
accessed queue entry and not supplied by your program. Examples are: record
format and length, number of print lines or pages. Your program may need this
information for setting up output processing.

Required Buffers

Your program must provide buffers as follows:

GET Service

Chapter 8. GET - Retrieving a Queue Entry 77

v A send buffer for the opening request, large enough to hold the required SPL.
You can define the buffer by way of the BUFFER operand of the XPCC or
XPCCB macro.

v A reply buffer large enough to hold either of the following whichever is larger:
– The verification SPL passed by VSE/POWER in response to your program's

opening request
– The largest data record of the requested queue entry
– The largest OPTB.
You define the buffer by way of the REPAREA operand of the XPCCB macro.

Overview of the Checkpoint and Restart Facility
Checkpoint and Restart

Checkpoint and Restart is a method of recording information about a queue entry
at programmer-designated checkpoints.

If necessary, a program can request VSE/POWER to restart the retrieval of spooled
records. The queue entry can be restarted at any of the checkpoints or at the
beginning of a queue entry.

Usually, the record and the copy number of a queue entry can be tagged with a
checkpoint.

For detailed information on checkpoint/restart, please see “Requesting a
Checkpoint” on page 88 and “Requesting a Restart of the GET Spool Data” on
page 93.

Checkpoint with Extended User Data Information

The 'checkpoint with extended information' is specified by the user's application
program and is useful in cases where the normal checkpoint information is not
sufficient. It can contain any information which is not checked by VSE/POWER.
For example, a checkpoint with extended information can be used after a print
failure when it is necessary to associate the entire printer setup with a checkpoint
and be passed to the requestor in order to restart the queue entry. For detailed
information, see “Requesting a Checkpoint with Extended Information” on page
89.

Ending the GET Service
Your program can end a GET service at any time after completion of a relevant
XPCC SENDR request. For more information, see “Ending the GET Service” on
page 86.

Browsing a Queue Entry for Viewing Only
This mode of the GET service has no access restriction imposed by the disposition
of the queue entry or by the target SYSID if running shared. However, the only
accepted service-end request is QUIT. For details on how to specify BROWSE
mode, refer to the MODE=BROWSE operand of the PWRSPL macro.

For a summary of allowed requests for this GET service, refer to the
'BROWSE-SPOOL' block in Appendix C, “Spool-Access Support Graphical
Description,” on page 379.

GET Service

78 VSE/POWER V9R2 Application Programming

Parallel Browsing of Queue Entries

As described under “Scope of GET/CTL Access to Queue Entries” on page 61,
concurrent GET requests to the same queue entry may be issued by
v System administrators via the Master Password to all entries
v General users if the output entry has the to-user destination of ANY
v General users if the entry has a different from- or to-user destination.

GET-OPEN for parallel browsing are accepted by VSE/POWER, up to a maximum
number of
v 255 parallel browse requests on a non-shared system
v 15 parallel browse requests per sharing system.

If, however, this maximum number of browse requests has been reached,
VSE/POWER rejects the browse request with RC/FBKD=PXPRCOKF/PXP04BSY.

You may track the number of concurrent browse requests per queue entry
1. Externally, by an operator queue display command with the option FULL=YES,

which presents the MACC= (Multiple Access Count) value. For details, refer to
VSE/POWER Administration and Operation, SC34-2625.

2. Internally, by a 'fixed format' queue display request (see the FORMAT operand
of the PWRSPL macro), which presents the multiple access count(s) in the
PXFMMACC area (refer to “Spool-Access Support Parameter List (PWRSPL
DSECT)” on page 231).

Note:

1. VSE/POWER 6.4 and previous releases did not allow concurrent GET-OPEN
for update and GET-OPEN for browse. This restriction has been removed
effective with 6.5.

2. Unlike GET for update, a 'browsed' queue entry being accessed by one or more
tasks per (shared/nonshared) CPU does not show pages/cards/lines and
copies 'left to be processed' in a normal or fixed-format queue display; instead,
it shows the 'total' values.

Direct Queue Entry GET Access to the RDR/LST/PUN/XMT Queues
Provided the internal VSE/POWER queue record number of the desired queue
entry is known to your program in advance, then you may request direct queue
entry access for the GET-OPEN Service. When accessing directly by queue record
number, VSE/POWER:
v Gains in performance, because all class chain searching is bypassed
v Returns precise return and feedback codes in case access failed
v Provides access to the exact queue entry, when the standard selection criteria are

not unique.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 79

How to Find the Internal Queue Record Number
If, for example, your program has created the queue entry or has identified it in a
free-format or fixed-format queue display request, VSE/POWER returns the
internal queue record number in the following fields:

SPLXQNUM
of a PUT-OPEN, PUT-CLOSE, or PUT-SEGMENT verification SPL

SPLXQNUM
of a GET-OPEN verification SPL

QNUM
of a free-format (FULL=YES) queue display line, as a 5-digit decimal
number

PXFMQNUM
of a fixed-format queue display record (using PWRSPL OPT=FORMAT)

PXCRQNUM
of a checkpoint response control record

$MXQNB
of the IPWSEGM return information (refer to “Format of the Macro” on
page 38)

Save this queue record number for later specification in a direct GET-OPEN
request.

Starting a Direct GET-OPEN Request
For a GET-OPEN for update or browse, set up your SPL with:
1. mandatory (and optional) search arguments as defined for PWRSPL REQ=GET

(refer to “Format 3: Generating a DSECT” on page 219).
2. and the direct enabling features:
v SPLXQNUM, specifying the desired queue record number as returned by

VSE/POWER
v plus flag SPLGO2QN set up in option byte SPLGOPT2, meaning 'use queue

record number'.

See also Table 25 on page 83.

When the specified search arguments (as queue, jobname) do not match the
attributes of the directly retrieved queue entry, VSE/POWER replies:
v the standard return and feedback code PXPRCOKF/PXP04NOF plus various

settings of feedback-2 code PXPFBKC2, describing 'why not found'.

For details on feedback codes returned for direct GET requests, refer to Table 28 on
page 98 and Table 30 on page 100.

When the specified search arguments match the attributes of the directly retrieved
queue entry, the GET Services continues to respond with the verification SPL as
done for a non-direct GET-OPEN request.

Observe the following restriction for direct GET-OPEN:
v Direct specifications are not respected for a generic (PWRSPL MODE=GENERIC)

GET-OPEN request.

GET Service

80 VSE/POWER V9R2 Application Programming

Special Considerations for Access to the XMT Queue
v For such access, specify PWRSPL QUEUE=XMT or set field SPLGQI explicitly to

SPLGQIX (C'X'). This queue type, together with the R/L/P type indicated by
SPLGFLG, is also returned in your Verification SPL in response to a successful
GET-OPEN request.

v When you request a fixed-format display of the XMT queue, field PXFMQUID
will not show C'X' for XMT queue entries but rather present the current 'R/L/P'
type as for local queues. The attribute 'entry resides in XMT queue' is in fact
presented by the PXFMF1XQ indication of control flag PXFMFLG1.

Direct GET BROWSE Access To Output Queue Entries In Creation
VSE/POWER offers access to queue entries in creation by execution writer tasks,
which is the basic way of creating output. For example, the output of the
CICS/ICCF job can now be browsed and analyzed while it is still in creation.
Direct GET-open must be used for access, and only browsing is allowed for an
entry in creation. For a shared spooling complex, the creating task and all tasks
browsing the queue entry in creation must reside on the same system. These
restrictions are needed:
v for access to the queue entry in creation, because only direct GET-OPEN is able

to find it and select it for further processing. Such an entry is not yet chained
and is tied only to the creating task.

v for data integrity, because the queue entry in creation must not be changed or
deleted by any other task except the creating task. Therefore, only browsers,
which never change the queue entry, are allowed to access the entry.

v for performance reasons, because the browser must read the virtual storage of
the creating task (on the same shared system) to find the last spooled records.

Whenever a browser requests access to a queue entry in creation, VSE/POWER
ensures that the mentioned criteria are fulfilled:
v direct GET request for BROWSE issued for queue entry in creation
v queue entry created by execution writer task
v queue entry in creation on local system

VSE/POWER furthermore ensures that all spooled records are written to disk and
a temporary end of data is set. Therefore, during selection of an entry in creation a
snapshot is created for the requesting browser:
v the queue record copy used by the browser is updated to reflect the current

record and page counts of the entry in creation.
v the last spooled data records collected in storage are written to disk.
v a temporary end of the data is maintained for the browser.

Although the creating task may spool more records, this snapshot is never
modified for the associated browser for as long as it processes the queue entry.
This prevents mismatches between the record counts passed via the Verification
SPL at GET-OPEN time and the actual number of records passed to the browser. To
refresh the snapshot, the browser must end its processing with a QUIT request and
re-open the in-creation queue entry again.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 81

Searching for Queue Entries in Creation
The PDISPLAY command can be used with the operand CRE and its sub-operands
to show the logical Create queue, which is the set of all queue entries being
created.
v For output entries (LST/PUN) in creation, all information needed for the display

has already been inherited from the creating job or defined by a * $$ LST/PUN
statement or by a SAS PWRSPL and can therefore be shown.

v For RDR queue entries in creation, jobname, class, disposition and other fields may
still show defaults, if for example a * $$ JOB statement has not yet been read.

Starting a Direct GET-OPEN for BROWSE of Queue Entries in
Creation

See Table 25 on page 83. To set up the required direct GET request for BROWSE,
the program must
1. set byte SPLGFB1=SPLGF1BR, meaning GET request for BROWSE
2. set up the SPL with mandatory and optional search arguments as defined for

PWRSPL REQ=GET (refer to “Format 3: Generating a DSECT” on page 219).
The mandatory QUEUE= specification must specify the LST or PUN queue
corresponding to the value of the "I" column in message 1R4BI (free-format
display line of the Create queue) or to the PXFMQUID indication of a
fixed-format display record for the Create queue.

3. set the direct enabling features
v SPLXQNUM, specifying the desired queue record number in hexadecimal

format. VSE/POWER returns this number in decimal format in
– message 1R4BI for PDISPLAY CRE
– message 1R48I for PDISPLAY A

The queue record number in hexadecimal format is returned in field
PXFMQNUM in the fixed-format queue display.

v flag SPLGO2QN in option byte SPLGOPT2, meaning 'use queue record
number'

4. set byte SPLGOPT=SPLGOGIC, meaning GET request for queue entry in
creation.

5. supply a reply buffer to which VSE/POWER passes the verification SPL.
6. issue a SENDR request.

In response to such a request, VSE/POWER will
v either reject the request with RC/FB PXP04NOF (queue entry not found) and

feedback2 code:
– PXPC2NVT - if the queue entry is either in creation on another system of a

shared spooling complex, or it is in creation but the creating task does not
support GET BROWSE for a queue entry in creation.

– PXPC2EMP - if the queue entry in creation is still empty
– PXPC2QCL/-P/-R/-X - queue entry is no longer in creation but can be found

in the LST/PUN/RDR/XMT queue.
– or another applicable feedback2 code (see Table 30 on page 100).

v or it will return the verification SPL of the queue entry in creation.

When the verification SPL has been returned, normal GET BROWSE processing
takes place. There is no difference between browsing a queue entry in creation and
a normal queue entry.

GET Service

82 VSE/POWER V9R2 Application Programming

Only data and control records in the range defined by SPLDRCT and SPLDLCT
are passed to the requesting SAS program for a Spool Data Request. When the
temporary end (defined by SPLDRCT) is reached, VSE/POWER will inform the
program by the return/feedback code PXP00EOF.

To read data spooled after opening the queue entry, the program must issue a
QUIT request, followed by a new direct GET-OPEN for BROWSE of a queue entry
in creation. If the queue entry is still in creation, a verification SPL is passed to the
program, which contains the updated spooling state. If the queue entry has been
completed in the interim, RC/FB/FB2=04/01/PXPC2QCL|-P|-R|-X will be
returned to let the program decide how to continue.

Mandatory and Optional Operands for GET-OPEN
The following table summarizes the different settings in PWRSPL for the various
types of Spool-Access Support GET-OPEN, which are described in detail in this
chapter.

Table 25. Mandatory and Optional Operands for GET-OPEN

Operand Description OPEN for
UPDATE

OPEN for
BROWSE

OPEN for
BROWSE in

creation

Normal Direct Normal Direct Direct

SPLGRQB =
SPLGRGET (X'02')

Request Byte
identifies GET request

M M M M M

SPLGFB1 =
SPLGF1BR (X'03')

Function Byte 1
identifies BROWSE request

M M M

SPLGOPT.
SPLGOGIC (X'02')

Option Byte 1, flag
identifies In CREATION

M

SPLGOPT2.
SPLGO2QN (X'10')

Option Byte 2, flag
identifies Direct Access

M M M

SPLXQNUM Internal Queue Record Number M M M

SPLGQI
= R/L/P
= R/L/P/X
= L/P

Queue ID
M

M
M

M
M

SPLGJB Job Name M M M M M

SPLGCL Class M M M M M

SPLGUS User ID M M M M M

SPLGJN Job Number O O O O O

GET Service

Chapter 8. GET - Retrieving a Queue Entry 83

Table 25. Mandatory and Optional Operands for GET-OPEN (continued)

Operand Description OPEN for
UPDATE

OPEN for
BROWSE

OPEN for
BROWSE in

creation

Normal Direct Normal Direct Direct

SPLGJS Job Suffix O O O O O

SPLGPW Password O O O O O

Note: M = mandatory; O = optional

Coding Sequence for the GET Service
Table 26 shows the kind and sequence of the coding needed in your program for
the retrieval of a complete queue entry. This coding is explained in the subsequent
paragraphs. Chapter 13, “Spool-Access Support Programming Example,” on page
271 includes a GET-service request at label GETB1.

Starting the GET Service
To open GET-service processing, the application program uses the GET-OPEN
service, which requires:
v Byte PXUBTYP of the XPCCB to be set to the value equated to PXUBTSPL. This

indicates to VSE/POWER that the send buffer contains an SPL.
v An SPL as set up by a PWRSPL macro with TYPE=GEN or updated by a

PWRSPL macro with TYPE=UPD so that the SPL specifies the mandatory (and
optional) fields for a REQ(uest)=GET. For details refer to the PWRSPL macro
“PWRSPL” on page 217.

v A reply buffer to which VSE/POWER passes the verification SPL.

Table 26. GET Service for a Complete Queue Entry Sequence

Step Coding in your application program Comments

1
Open request

XPCC FUNC=SENDR,...

Your program's send buffer must
contain an SPL generated (or updated)
for processing a GET service.

2
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

3
WAIT IJBXSECB

Wait for the SENDR ECB to be posted.

4
Check the reason code (in the
XPCCB byte IJBXREAS).

5
Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).

GET Service

84 VSE/POWER V9R2 Application Programming

Table 26. GET Service for a Complete Queue Entry Sequence (continued)

Step Coding in your application program Comments

6
Check for and evaluate the SPL
from VSE/POWER, if necessary.

VSE/POWER returns a verification
SPL to your program's reply buffer if
the request has been accepted and can
be processed by VSE/POWER.

7
GET spool data request

XPCC FUNC=SENDR,...

Your program's XPCCB must refer to a
zero-length send buffer.

8
Check the return codes in
register 15 and in the XPCCB
(byte IJBXRETC).

9
WAIT IJBXSECB

Wait for the SENDR ECB to be posted.
VSE/POWER places the retrieved data
record(s) into your program's reply
buffer.

10
Check the reason code and
VSE/POWER return and feedback
codes (this is the same as above
in steps 4 and 5).

11
Deblock the data in the reply
buffer, if necessary. If more
records are to be transferred,
return to Step 7.
Else proceed.

Loop until VSE/POWER returns the
feedback code PXP00EOD.

12
End-retrieval request

XPCC FUNC=SENDR,...

Your program's XPCCB must refer to a
zero-length send buffer.

13
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

14
WAIT IJBXSECB

Wait for the SENDR ECB to be posted.
This ensures that the communication
is free for another service request.

15
Check the reason code and
VSE/POWER return and feedback
codes (this is the same as above
in steps 4 and 5).

16
End of Service

GET Service

Chapter 8. GET - Retrieving a Queue Entry 85

Retrieving Spool Data
After VSE/POWER has passed the verification SPL, your program eventually
issues one or more GET spool data requests, each one after the preceding one has
been completed. The code in your program must do the following:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of the XPCCB to the value equated to PXUATSDR.
3. Set up a null buffer (by setting field IJBXBLN to zero).
4. Issue an XPCC FUNC=SENDR request.

In response to a GET spool data request, VSE/POWER fills your program's reply
buffer with records of the queue entry, one record behind the other. Each record
contains an 8-byte prefix. You define this buffer by the REPAREA operand of your
XPCCB macro; you may want to alter this definition by changing the buffer's
address (in field IJBXRADR) and its length (in field IJBXRLNG).

Ending the GET Service
When your program has finished processing the data of a queue entry, it should
issue one of the following requests after VSE/POWER has completed a relevant
XPCC SENDR request:

CLOSE
To have VSE/POWER dispose of the queue entry in accordance with
VSE/POWER's disposition rules.

QUIT To return the queue entry with its original disposition.

QUIT-and-LOCK
To indicate that the processing of an output queue entry failed.

PURGE
To purge the queue entry from the queue.

Issuing a CLOSE Request
In your program, you normally issue a CLOSE request when VSE/POWER has
completed the retrieval of the desired queue entry. However, you can issue a
CLOSE request any time during the retrieval of a queue entry.

When it receives a CLOSE request, VSE/POWER handles the queue entry in
accordance with its disposition rules. If the disposition is:

D VSE/POWER deletes the queue entry.

K VSE/POWER retains the queue entry with a disposition of L.

To issue a CLOSE request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATRQS.
3. Set up a null buffer (by setting field IJBXBLN to zero).
4. Issue an XPCC FUNC=SENDR request.

The coding in your program is similar to a QUIT request as shown at label GQUIT
Chapter 13, “Spool-Access Support Programming Example,” on page 271.
However, the MVI instruction that sets byte PXUACT1 of the XPCCB is to be
replaced by the sample instruction shown as comment with the label *GCLOSE.

GET Service

86 VSE/POWER V9R2 Application Programming

Issuing a GET-QUIT Request
You can do this at any point during the retrieval of a queue entry. The request
causes VSE/POWER to retain the queue entry with its originally assigned priority
and disposition.

To issue a QUIT request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATABR.
3. Set up a null buffer (by setting field IJBXBLN to zero.
4. Issue an XPCC FUNC=SENDR request.

The coding sequence at label GQUIT in Chapter 13, “Spool-Access Support
Programming Example,” on page 271 shows how to set up a null buffer and how
to issue a QUIT request.

Issuing a QUIT-and-LOCK Request
You can do this at any point during the retrieval of a queue entry. The request
causes VSE/POWER to re-queue the currently processed job in the appropriate
non-dispatchable class chain with a temporary disposition of Y for the purpose of:
v Indicating that a problem has occurred during output processing, and
v Preventing that the output queue entry is handled again until the subsystem has

taken some special action (for example, issued the PALTER command to alter
the temporary disposition to a dispatchable one). For details on disposition Y
handling, see “Handling an Abnormal-End Condition During GET” on page 100.

To issue a QUIT-and-LOCK request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUAT1PF.
3. Issue an XPCC FUNC=SENDR request passing a null buffer, that is, a buffer

with a length of zero (IJBXBLN set to zero).

Issuing a PURGE Queue Entry Request
You can do this at any point during the retrieval of a queue entry. The request
causes VSE/POWER to delete the currently processed queue entry from its queue.

To issue a PURGE request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATPRG.
3. Issue an XPCC FUNC=SENDR request passing a null buffer, that is, a buffer

with a length of zero (IJBXBLN set to zero).

The coding in your program is similar to a quit request as shown at label GQUIT
in Chapter 13, “Spool-Access Support Programming Example,” on page 271.
However, the MVI instruction that sets byte PXUACT1 of the XPCCB is to be
replaced by the sample instruction shown as comment with the label *GPURGE.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 87

Converting ASA Characters to Machine Control Characters
You may have found out by a PDISPLAY CTL-service request that a certain output
entry contains ASA control characters. This is indicated either by the record format
(RF) field of a FULL=YES display request, or by the record format field of a fixed
format queue display request. A GET-service request offers the ASA controlled data
records unchanged to your program.

However, you can ask VSE/POWER to do ASA to machine control conversion by
setting option byte SPLGOPT2 of the GET-service-open SPL to SPLGO2AC. Then
VSE/POWER passes - for every list type ASA data record - two machine control
records to your program:
v a first one doing the forms control operation
v a second one writing the actual data immediately.

The VSE/POWER assigned record number contained in the record prefix is the
same for both generated machine control records, since they stem from one ASA
record. Punch type ASA records are not split into two during conversion. Instead,
their ASA operation code is changed to X'00', leaving it up to your program to
select an operation code that is punch device specific.

Requesting a Checkpoint
Checkpointing is meaningful if your program requests a large amount of spooled
data to be retrieved. It is meaningful, for example, if your program is to process
retrieved spool data in sections. It can save processing time should a program or
system failure occur.

Your program can request VSE/POWER to record a checkpoint at any time
between two GET spool data requests. VSE/POWER records checkpoint
information as follows:
v Logical record number as specified in the checkpoint-control record.
v The output-copy number (if applicable).

To have VSE/POWER record a checkpoint, your program must:
1. Set up a checkpoint-control record in your program's send buffer.

By issuing a PWRSPL macro with TYPE=MAP, the assembler generates a
DSECT of this record at label PXCPDSCT.
In the checkpoint-control record, you can specify a copy number (field
PXCPRCPY) if the control record applies to an output queue entry. The number
tells VSE/POWER, that checkpoint information is to be recorded for the
specified record in the specified output copy. If you set the field to zero,
VSE/POWER uses its current number-of-copies count.

2. Set byte PXUACT1 of the XPCCB to zero.
3. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

This tells VSE/POWER your program's send buffer contains a control record.
4. Issue an XPCC FUNC=SENDR request.

The request passes to VSE/POWER the checkpoint-control record which your
program has set up in its send buffer.

GET Service

88 VSE/POWER V9R2 Application Programming

After having recorded the requested checkpoint, VSE/POWER returns a
checkpoint-response record (in your program's reply buffer). The assembler
generates a DSECT of this record at label PXCRDSCT if you issue a PWRSPL
macro with TYPE=MAP.

As described in “Requesting a Restart of the GET Spool Data” on page 93,
VSE/POWER returns the last recorded checkpoint of a queue entry when a
retrieval of this queue entry is started again. In your program, you can then decide
whether VSE/POWER is to continue retrieval at that checkpoint (by issuing a
restart request) or from the beginning (by issuing a GET spool data request).

Note: Checkpoint information can not be requested if the GET Service is used with
the BROWSE option.

Requesting a Checkpoint with Extended Information
VSE/POWER will record the following information when a checkpoint control
record with extended checkpoint information is passed:
v Logical record as specified by the user program
v Copy number associated with the logical record number
v Extended information as passed by the user program.

Processing of a Checkpoint with Extended Information
The spool-access support user passes the checkpoint with extended information by
the checkpoint control record along with the record and copy number. The
checkpoint control record must be flagged to indicate that the record contains a
checkpoint with extended information. A checkpoint-response control record is
returned to the spool-access support user which indicates that a checkpoint with
extended information was taken. If recording of the checkpoint was unsuccessful, a
return and feedback code is returned (see “Checking the Return Information” on
page 92).

The extended information of a checkpoint is written to the VSE/POWER data file.
If no spool space is available to write the extended checkpoint information onto
the data file, message 1Q38I will be sent to the operator console. The spool-access
support user recording the extended checkpoint information is put in the wait state
until the necessary spool space becomes available.

Queue Control Area (QCA)

The extended information of a checkpoint is written into a separate area of the
data file, the so-called Queue Control Area (QCA). The queue control area contains:
v Control information which is sent from one system to another system in a

shared environment
v Extended information for a checkpoint.

No information is required concerning the allocation of the queue control area. The
QCA is dynamically built; it uses as many DBLKs of the data file as are needed at
the time. Whenever an I/O error occurs during accessing the queue control area,
or reading the master record during a warm start all data within the queue control
area is lost, which means the extended information of checkpoints of all queue
entries is lost. Such a loss is indicated to the application program within the
verification SPL and within the checkpoint control record.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 89

Output Exit Routines

If output exit routines are active, these routines usually get control for every record
passed to a printer or to programs controlling a printer. Such an output exit
routine will not receive any information on a checkpoint with extended
information.

Omission of Processing the Extended Checkpoint Information

When a queue entry is processed by any other task than a spool-access support or
a device service task, the extended information of a checkpoint is not processed.
For example:
1. If a queue entry is sent via PNET to another node, the checkpoint with

extended information is not sent to the other node.
2. If a queue entry is written to tape (by means of the POFFLOAD command), the

checkpoint with extended information is not written to tape.

Deletion of a Checkpoint with Extended Information
The checkpoint information is deleted if any of the following is true:
v You have issued the request to delete checkpoint information (for details, see

“Deleting Checkpoint Information” on page 70).
v The queue entry is deleted.
v Another checkpoint request is issued. Because each queue entry may have only

one checkpoint, a second checkpoint request replaces any previously recorded
checkpoint information. Note that a checkpoint request without extended
checkpoint information clears any extended information previously recorded as
well.

If a queue entry has been processed successfully and remains on the spool file,
(usually, this means the disposition of the queue entry changes to L or H) the
extended checkpoint information is not deleted but remains available.

Storage Requirements
The maximum length of a checkpoint with extended information is equal to the
size of a data block minus 288 bytes. The size of a data block is specified in the
DBLK operand of the VSE/POWER macro and must be a number from 1,000 to
65,024. The 288 bytes are reserved for VSE/POWER internal control information.
Thus, the length of the checkpoint with extended information can be any number
between 1 and 64,736 bytes (depending on the DBLK size).

Recording a Checkpoint with Extended Information
Extended checkpointing is invoked by the XPCC FUNC=SENDR macro instruction.
It sends a checkpoint control record containing the extended checkpoint
information to VSE/POWER. The checkpoint control record can be sent at any
time while processing a queue entry via the GET service (unless you are in
BROWSE mode).

To allow for recording of a checkpoint with extended information follow these
steps:
1. Record the checkpoint with extended information the same way as the normal

checkpoint described under “Requesting a Checkpoint” on page 88.
2. In addition, update the following fields within the checkpoint control record:

a. PXCPFXIE in PXCPFLAG

GET Service

90 VSE/POWER V9R2 Application Programming

b. Length of variable checkpoint with extended information plus length of
fixed part of checkpoint control record in PXCPRLEN

c. Extended information starting at label PXCPSTXI.

After having successfully recorded the requested checkpoint, VSE/POWER returns
a checkpoint-response control record. The extended information is not reflected
within the checkpoint-response control record and the length field PXCRRLEN
contains the length of the checkpoint-response control record without the extended
information. PXCRFXIS is set within PXCRFLAG indicating that the extended
checkpoint information has been saved.

For all checkpoint requests, regardless if extended checkpoint information has been
specified or not, the spool-access support user receives a checkpoint-response
control record which contains the queue entry number (PXCRQNUM). If the reply
buffer of the spool-access support user is too short to contain a
checkpoint-response control record, VSE/POWER sends a 'short'
checkpoint-response control record, which means that the length of the
checkpoint-response control record is equal to the length specified by the
spool-access support user.

Retrieving a Checkpoint with Extended Information
Whenever a GET OPEN request has been issued, a verification SPL is passed back
in the reply buffer. This SPL contains, for example, the following information about
a checkpoint which has been requested during previous processing of this queue
entry.
1. SPLDCCPY containing checkpoint copy number
2. SPLDCREC containing checkpoint record number
3. A bit SPLDFCKI within SPLDFLG indicating that extended checkpoint

information exists
4. A bit SPLDFCKE within SPLDFLG indicating that extended checkpoint

information exists, but is 'not available due to an I/O error'.
5. A 2 byte field SPLXCKIL containing the length of the checkpoint with extended

information.
6. A 4 byte field SPLXQNUM containing the queue entry number (this number

must be used if the checkpoint information should be deleted by using the CTL
request 'delete checkpoint information', see “Deleting Checkpoint Information”
on page 70).

If the user wants to restart on the checkpoint record and to retrieve the extended
checkpoint information for printer setup, a 'retrieve extended checkpoint
information' request must be indicated in the action byte of the user data in the
XPCCB and passed to VSE/POWER with a null buffer (buffer with record length
of zero). VSE/POWER, then, passes the extended checkpoint information to the
user. The user may, then, continue with the restart control record.

Issuing a Retrieve Extended Checkpoint Information Request

You can retrieve a checkpoint with extended information at any time while
processing a queue entry via the GET service, unless you are in BROWSE mode.
Provide the following information within the XPCCB macro and issue an XPCC
request with option FUNC=SENDR:
1. Set request PXUATCKR in PXUACT1.
2. Set PXUBTYP to zero.
3. Set up fields to send a null buffer (field IJBXBLN set to zero).

GET Service

Chapter 8. GET - Retrieving a Queue Entry 91

4. Set up fields for a reply buffer.

VSE/POWER returns the checkpoint with extended information within the
checkpoint-response control record. The extended information starts at location
PXCRSTXI. Additionally, PXCRFXIE within PXCRFLAG is set indicating that
extended checkpoint information is returned.

Checking the Return Information
Errors During Recording

If during the recording of a checkpoint, the length of the extended checkpoint
information is invalid, a return code X'08' together with the feedback code
PXP08CKZ or PXP08CKL is set up in the user data field of the XPCCB and a null
buffer is returned. If the checkpoint with extended information is too large
(PXP08CKL), you may consider increasing the DBLK size (defined within the
VSE/POWER generation macro) and perform a cold start.

Errors During Retrieving

If the spool-access support user tries to retrieve a checkpoint with extended
information, but no extended checkpoint information has been previously saved, a
return code X'04' together with a feedback code PXP04CKN is set up in the user
data field of the XPCCB and a null buffer is returned.

Once extended checkpoint information has been successfully recorded, it indicates
that the extended checkpoint information has been written to disk. When
retrieving the extended checkpoint information, an I/O error may occur and the
extended checkpoint information can no longer be read from the disk. Likewise,
the VSE/POWER internal control information might have been destroyed. In both
cases, the extended checkpoint information is no longer available for the
spool-access support user. These cases are described in the following subsection.

If the spool-access support user issues a GET OPEN request, a verification SPL is
returned to the user within the reply buffer. At this time, VSE/POWER tries to
read the extended checkpoint information. If a 'retrieving error' occurs, the
verification SPL contains both the indication 'extended checkpoint information
exists' (SPLDFCKI) and 'extended checkpoint information is not available due to an
I/O error' (SPLDFCKE). In this case, a value of zero is returned for the length of
the extended checkpoint information.

Even when the verification SPL indicates that extended checkpoint information
exists, a retrieving error might occur later, when retrieving the extended checkpoint
information. In this case, a return code X'04' together with a feedback code
PXP04CKE is set up in the user data field of the XPCCB and a null buffer is sent
back.

Even if the recording of extended checkpoint information and its retrieval occurs
during one GET service, a 'retrieving error' may occur. The same happens as
described above: a return code X'04' together with a feedback code (PXP04CKE) is
set up in the user data field of the XPCCB and a null buffer is sent back.

GET Service

92 VSE/POWER V9R2 Application Programming

Requesting a Restart of the GET Spool Data
Your program can request VSE/POWER to restart retrieval at any point during
GET data processing. It can request such a restart immediately after processing of
the OPEN request is complete; it can, in fact, request a restart even after the
end-of-data indication has occurred, but before it passes the end-service request.

To track the progress of an active job or output, a concurrent SAS GET BROWSE
task may issue a "Restart to Active Record" request to position itself on the last
record processed by the task keeping the queue entry active.

Table 27 shows a sequence diagram for a restart request. The diagram assumes that
GET service processing has been opened successfully. Chapter 13, “Spool-Access
Support Programming Example,” on page 271 includes a restart request at label
GETB3.

Table 27. Restart of a GET Service Sequence

Coding in your application program Comments

...

WAIT IJBXSECB
Wait for the SENDR ECB to be posted.
VSE/POWER returns a verification SPL to
your program's reply buffer.

Check the reason code (in the
XPCCB (byte IJBXREAS).

Pick up and evaluate the veri-
fication SPL, if necessary.

Restart request
XPCC FUNC=SENDR,...

Your program's send buffer must contain a
restart control record.

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Wait for the SENDR ECB to be posted.
VSE/POWER transfers data records to your
program’s reply buffer, as many records as
will fit.

Check the VSE/POWER return and
feedback codes (in the XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively).

... At this point, the coding sequence is the
same for the retrieval of a complete queue
entry.

To make a restart request, your program must:
1. Set byte PXUACT1 of the XPCCB to zero.
2. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

This tells VSE/POWER that your program's send buffer contains a control
record.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 93

3. Set up a restart control record in your program's send buffer.
By issuing a PWRSPL macro with TYPE=MAP, the assembler generates the
restart control record DSECT labeled PXRSDSCT. In the record, set field
PXRSOPT to:

X'00' if the number in field PXRSRECN is a spool-record (card) number.

X'20' if the number in field PXRSRECN is a page number (this option is
ignored for RDR/PUN type entries).

X'80' if the number in field PXRSRECN is a line number (this option is
ignored for RDR type entries).

If an output queue entry is being retrieved, you can specify a copy number in
field PXRSCOPN of the control record. The number tells VSE/POWER that it is
to restart retrieval at the specified record in the specified output copy. If you set
the field to zero, VSE/POWER uses the current number-of-copies count. As a
help in defining a restart point, VSE/POWER passes to your program the
internal record count found in field RECLOGNO of the prefix of every
retrieved record.
This internal record number starts with 1 for the first record of the job/output
and is incremented by 1 not only for normal data records but also for control
records of printers and punches. The total number of records of each queue
entry is shown in field 'QRNR' (of the internal queue record mapped by
IPW$DQR) and in 'SPLDRCT' of the SPL. The total number of data records
(lines/cards) is shown in field 'QRLC' of the queue record and in SPL field
'SPLDLCT'.
RDR queue entries contain no control records. Therefore 'QRLC' and 'SPLDLCT'
are 0 and 'QRNR' and 'SPLDRCT' show the total record count (which is also the
data record count).
Spool-Access Support programs retrieving only data records but no control
records (PWRSPL OPT=CTLREC not set) will not receive the internal record
number in consecutive order. There will be gaps when control records exist,
since these are not passed to the program. For RDR queue entries, such gaps
do not exist because they contain only data records.
If your program re-accesses a previously retrieved and checkpointed queue
entry, VSE/POWER returns the last recorded checkpoint information in the
verification SPL as follows:
v The number of the record last checkpointed, in field SPLDCREC.
v The related copy number, if applicable, in field SPLDCCPY.

4. Issue an XPCC FUNC=SENDR request.
The request passes to VSE/POWER the restart-control record set up by your
program in its send buffer.

In response to a valid restart request, VSE/POWER repositions the retrieval
pointer. VSE/POWER then continues processing by passing records to your reply
buffer, starting with the record or line defined in the restart control record.

Note: A restart with a record number of zero will return an SPL as the first record
of the data. This SPL is called an inline SPL, which reflects the Data Set Header
Record.

GET Service

94 VSE/POWER V9R2 Application Programming

Restarting to the Active Record During GET BROWSE
This request is suitable only if you have accessed an active queue entry (DISP=*)
with GET BROWSE.

To set up a restart to active record request, your program must
1. Set byte PXUACT1 of the XPCCB to zero.
2. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL. This tells

VSE/POWER that your program's send buffer contains a control record.
3. Set up a restart control record in your program's send buffer. By issuing a

PWRSPL macro with TYPE=MAP, the assembler generates the restart control
DSECT labeled PXRSDSCT. In the record, set field PXRSOPT to:
v X'10' (PXRSOPAR) requesting 'Position on Active Record'

Note that PXRSRECN (logical record number, where to restart) and PXRSRCPY
(associated restart copy number) will then be ignored.

4. Issue a SENDR request.

In response to such a restart request, VSE/POWER will
v either reject the request with return/feedback code

– PXP04NAT (no active task found on same system), if the queue entry is not
active at all or if it is active on another system of a shared spooling complex.

– PXP04ANS (active task not suitable), if there is an update task found on the
same system as the browse task but the update task is not suitable for this
request.

– PXP04RIS (restart request with inconsistent specification), if PXRSOPOP
(positioning on pages requested), PXRSOPOL (positioning on lines requested),
or PXRSOPAE (positioning at end, if number too high) is set together with
PXRSOPAR.

– PXP04NRU (no restart to active request allowed for update task), if the
requesting program is not a browser but has accessed the queue entry for
update (normal GET-OPEN).

v or it will adjust the retrieval point to the last record (also 'active') processed by
an update task that processes the same queue entry on the same VSE/POWER
system as the GET BROWSE task. VSE/POWER then continues passing records
to your reply buffer, starting with the 'active' data record.

Note: The last record processed is the last record fetched by the VSE/POWER
spool data management function and passed to the update task. For update
tasks using buffered write to an external resource or program, this will in most
cases be a few records ahead of the record written to the external resource or
handled by the receiving program.

v or if the update task has just started and has not yet handled a data record, the
retrieval point is adjusted to zero and the reply buffer starts with the SPL as the
first record, followed by the records of the selected entry. In this case
– PXPUSER field PXPBTYP shows normal data buffer (PXPBTNDB).
– PXPUSER fields PXPLC12 and PXPLC34 contain zero (see “Identifying the

Position after Restart to Active” on page 96 for the usage of PXPLC12 and
PXPLC34).

– RECPRFIX field RECTYPE shows SPL (RECTSPL) for the first record in the
buffer.

For example: When a LST task is waiting for forms requested by message

GET Service

Chapter 8. GET - Retrieving a Queue Entry 95

1Q40A ON cuu FORMS fno NEEDED FOR jobname jobnumber

the LST task has not yet processed a data record. A browse task accessing the
queue entry concurrently and requesting a restart to active record request, will
receive such a reply buffer and must be prepared to handle it.

Identifying the Position after Restart to Active
Some programs like VSE/ICCF are interested only in data records and have built
their own counting mechanism for them. For each record, they maintain its data
record number as a consecutive number, starting with 1 for the first data record
and ending with the number contained in field QRLC (of the internal queue record
mapped by IPW$DQR) for LST/PUN queue entries or in field QRNR for RDR
queue entries. Such programs want to be informed about the data record number
of the first data record in the reply buffer of the 'Position on Active Record' restart
request, in order to synchronize their own counting with VSE/POWER again.

Therefore, VSE/POWER returns this restart data record number (in addition to the
internal record number RECLOGNO) to the application program by splitting the
4-byte record number into two 2-byte parts in fields PXPLC12 and PXPLC34,
which belong to PXPUSER section described in PWRSPL.

Issuing Requests Concerning an OPTB

Issuing a Get-OPTB Request
Your program can request VSE/POWER to retrieve either all available OPTBs
(output parameter text block) or a specific OPTB.
v OPTBs are contained in an output queue entry if the * $$ LST or * $$ PUN

statement includes any user-defined keywords that have been defined in
autostart DEFINE statements.

v OPTBs can also be passed to VSE/POWER as an appendage of the SPL (Spool
Parameter List) at PUT OPEN time (see “Output Parameter Text Blocks
(OPTBs)” on page 132).

You can send the Get-OPTB control record to VSE/POWER at any time while
accessing an output queue entry (during GET data processing) or while spooling
output data (PUT function). If OPTBs are present, the SPL contains a two-byte field
indicating the total length of all OPTBs (see Figure 3 on page 132 and Figure 5 on
page 134).

You can obtain the format of the GET-OPTB control record by issuing a PWRSPL
macro with TYPE=MAP. The assembler generates the GET-OPTB control record
DSECT labeled PXGODSCT. In the control record, pass the desired OPTB ID in
field PXGOID.

If you specify an OPTB ID in the control record, VSE/POWER places only this
particular OPTB into your program's reply buffer. If you do not specify an OPTB
ID, VSE/POWER places all OPTBs into the reply buffer.

To obtain one or more OPTBs your program must:
1. Set up a Get-OPTB control record in your program's send buffer.
2. Set byte PXUACT1 of the XPCCB to zero.
3. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

GET Service

96 VSE/POWER V9R2 Application Programming

This tells VSE/POWER that your program's send buffer contains a control
record.

4. Issue an XPCC FUNC=SENDR request.
The request passes to VSE/POWER the Get-OPTB control record set up by
your program in its send buffer.

Issuing a Modify-OPTB Request
Your program can request VSE/POWER to modify an existing OPTB. Via the
Modify-OPTB control record you can update (overwrite) any OPTB with a new
one, which must have the same length as the old OPTB. You can send the
Modify-OPTB control record to VSE/POWER at any time while accessing an
output queue entry (during GET data processing) or while spooling output data
(PUT function), but not when you are in browse mode.

You can obtain the format of the Modify-OPTB control record by issuing a
PWRSPL macro with TYPE=MAP. The assembler generates the Modify-OPTB
control record DSECT labeled PXMODSCT. In the control record, pass the OPTB to
be modified starting at field PXMOOPTB.

To modify one or more OPTBs your program must:
1. Set up a Modify-OPTB control record in your program's send buffer.
2. Set byte PXUACT1 of the XPCCB to zero.
3. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL.

This tells VSE/POWER that your program's send buffer contains a control
record.

4. Issue an XPCC FUNC=SENDR request.
The request passes to VSE/POWER the Modify-OPTB control record set up by
your program in its send buffer.

Checking the Return Information for GET-Service Requests
For the return information to be checked by your program after an XPCC request,
refer to “XPCC” on page 212.

For every GET-service request, your program should check return information
supplied by VSE/POWER. Provide for this checking after your program's SENDR
ECB has been posted.

Table 28 on page 98 lists the return and feedback codes that VSE/POWER may
supply when it processes a GET-service related request. The list is ordered in
ascending order by code values; it relates the codes to the applicable request types;
it gives the names that are equated to the feedback codes.

A complete list of the VSE/POWER return and feedback codes is given in the
DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback codes at
label PXPFBKCD, and the feedback-2 codes at label PXPFBKC2.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 97

Table 28. Return and Feedback Codes (PXPRETCD/PXPFBKCD) for GET-Service Requests (Part 1)

Request Type

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code

GET-
OPEN

GET-OPEN
BROWSE

GET
Data

Check
point

Re-
start

GET
OPTB

Mod.
OPTB

PXP00OK
PXP00EOD

PXP04NOF 2

PXP04JOP
PXP04BSY
PXP04NDS

PXP04RER
PXP04CER
PXP04SOA
PXP04BER
PXP04ONF
PXP04CKN
PXP04CKE
PXP04SAC
PXP04NAT
PXP04ANS
PXP04RIS
PXP04NRU

PXP08SPL
PXP08REQ
PXP08JNM
PXP08QID
PXP08CLS

PXP08PWD
PXP08UID
PXP08BTS
PXP08IAB
PXP08ICR

PXP08CON
PXP08IBT
PXP08ROS
PXP08SOS
PXP08BOS

PXP08FB1
PXP08JNO
PXP08JSF
PXP08IRR
PXP08IOP
PXP08OLM
PXP08IDH
PXP08CKZ
PXP08CKL
PXP08IQN 1

PXP0CINS
PXP0CIXF
PXP0CIOE

PXP10PSP
PXP10SIE
PXP10MST

00

04

08

0C

10

00
01

01
02
03
04

06
07
09
0A
11
13
14
17
18
19
1A
1B

01
02
05
06
07

08
09
1A
1C
1D

22
24
25
26
27

2B
31
32
38
39
3A
3D
42
43
44

01
02
07

05
06
07

X

X
X
X
X

X

X

X
X
X
X
X

X
X

X
X

X

X
X
X

X

X
X
X

X
X
X

X

X
X
X

X

X

X
X
X
X
X

X
X

X
X

X

X
X
X

X
X
X

X
X
X

X
X

X
X

X

X

X
X
X

X
X

X

X

X
X

X

X

X
X

X

X
X

X
X
X

X
X

X
X

X

X
X
X
X

X

X

X
X

X

X
X
X

X
X

X

X

X

X

X

X

X

X
X

X

X
X
X
X

GET Service

98 VSE/POWER V9R2 Application Programming

Table 28. Return and Feedback Codes (PXPRETCD/PXPFBKCD) for GET-Service Requests (Part 1) (continued)

Request Type

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code

GET-
OPEN

GET-OPEN
BROWSE

GET
Data

Check
point

Re-
start

GET
OPTB

Mod.
OPTB

Note:

1. This feedback code appears only for direct GET Service requests.

2. If returned for a direct GET Service request, check also PXPFBKC2 of Table 30 on page 100 for detailed reason.

Table 29. Return and Feedback Codes (PXPRETCD/PXPFBKCD) for GET-Service Requests (Part 2)

Request Type

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code PURGE CLOSE QUIT

QUIT
LOCK

FLUSH
HOLD1

PXP00OK
PXP00EOD

PXP04NOF
PXP04JOP
PXP04BSY
PXP04NDS

PXP04RER
PXP04CER
PXP04SOA
PXP04BER

PXP08SPL
PXP08REQ
PXP08JNM
PXP08QID
PXP08CLS

PXP08PWD
PXP08UID
PXP08BTS
PXP08IAB
PXP08ICR

PXP08CON
PXP08IBT
PXP08ROS
PXP08SOS
PXP08BOS

PXP08RPH
PXP08FB1
PXP08JSF

PXP0CINS
PXP0CIXF
PXP0CIOE

PXP10PSP
PXP10SIE

00

04

08

0C

10

00
01

01
02
03
04

06
07
09
0A

01
02
05
06
07

08
09
1A
1C
1D

22
24
25
26
27

28
2B
32

01
02
07

05
06

X

X

X

X

X

X
X
X

X
X

X

X

X

X

X

X
X
X

X
X

X

X

X

X

X

X
X
X

X
X

X

X

X

X

X

X
X
X

X
X

X

X

X

X

X

X

X
X
X

X
X

Note: 1 The FLUSH HOLD function is part of the external device support.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 99

Table 30. Feedback-2 Codes (PXPFBKC2) for Direct GET-Service Requests

Request Type

Mnemonic
PXPFBKCD/PXPC2BKC2

Return/Feedback
Code

Feedback-2
Code GET-OPEN

PXP04NOF/PXPC2BAD
PXPC2FRE
PXPC2MQU
PXPC2MJM
PXPC2MJB
PXPC2MJS
PXPC2MCL
PXPC2MSY
PXPC2MFU
PXPC2MFT
PXPC2SAC
PXPC2INC
PXPC2DEL
PXPC2NVT
PXPC2EMP
PXPC2QCL
PXPC2QCP
PXPC2QCR
PXPC2QCX

04/01 08
09
0A
0B
0C
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Note: For a detailed explanation of the PXPFBKC2 mnemonics, refer to “Spool-Access
Support Parameter List (PWRSPL DSECT)” on page 231.

Handling an Abnormal-End Condition During GET
v For an abnormal end of your program or of the VSE/POWER service task:

If the output being retrieved by the GET service has been created via the PUT
service with the 'protect' option on, the queue entry is placed into the
non-dispatchable queue with disposition Y.
A queue entry is protected when the SPL field SPLDMOHP is set on to signal:
'Hold when print/punch fails' (see Table 36 on page 118).

v For an abnormal end of VSE/POWER or of the z/VSE system, the same applies
as described above.

A queue entry with disposition Y is not automatically processed by the various
VSE/POWER tasks. Your program can make use of the CTL service to
v Get a display of all queue entries that have a disposition of Y by entering the

PDISPLAY ALL,CDISP=Y command, and
v Alter this disposition for a queue entry to make it eligible for processing again.

To reset disposition Y of a queue entry to its original one, use the PALTER
queue,jobname,DISP=* command.

For further information on disposition, see VSE/POWER Administration and
Operation, SC34-2625.

GET Service

100 VSE/POWER V9R2 Application Programming

Accessing the Transmit (XMT) Queue
Using the GET Service

The GET service (“Introduction to the GET Service” on page 75) of the spool-access
support does not offer access to entries residing in the XMT-queue (see QUEUE=
parameter of the PWRSPL macro in the topic “Format 3: Generating a DSECT” on
page 219). However, the following sequence of access requests may be used to first
transfer an XMT-queue entry to one of the local queues, then to GET-access the
entry, and finally to return the entry to the XMT-queue:
1. Save disposition, node-destination, class and type (L=list, P=punch, J=job) of

the XMT queue entry as obtained from a queue display.
2. Issue a spool-access support CTL request to alter the node to LOCAL and the

disposition to H or L; according to L/P/J-type the entry is added to the
LST/PUN/RDR queue - non-dispatchable, so that no local task may gain access
to the entry.

3. Use GET BROWSE to access the non-dispatchable local entry in its
corresponding queue while making use of the saved class.

4. Issue a CTL request to lift the entry back to the XMT-queue by altering its node
destination and its disposition back to the original values.

Using the Direct GET Service

This support (“Direct Queue Entry GET Access to the RDR/LST/PUN/XMT
Queues” on page 79) provides access to entries residing in the XMT queue. For
details, see “Special Considerations for Access to the XMT Queue” on page 81.

GET Service

Chapter 8. GET - Retrieving a Queue Entry 101

102 VSE/POWER V9R2 Application Programming

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output

Your program initiates PUT-service processing whenever data is to be submitted to
VSE/POWER for inclusion in one of its queues. Jobs, including the associated
input data, are submitted for inclusion in the RDR or XMT queue, whichever
applies. Output data is submitted for inclusion in an output queue (LST, PUN, or
XMT).

Submission for Inclusion in the XMT Queue

To submit a job for processing at another node (of your computer system's
network), specify this in the * $$ JOB statement for the job.

To submit output data for transmission to another node, give the target node's
name and the applicable user ID in the SPL fields SPLDTNN and SPLDTUID,
respectively.

In the SPL macro, you specify QUEUE=RDR for job input; you specify
QUEUE=LST for list output and QUEUE=PUN for punch output.

Data Format

The format of the data to be spooled is always the same. Every record must be
preceded by the following eight-byte prefix. You get a DSECT of this prefix,
labeled RECPRFIX, by issuing a PWRSPL macro with TYPE=MAP.

Bytes Meaning
--

0 Carriage control character, if any
1 Record type:

X’00’ = A normal data record
X’06’ = A CPDS (composed page data stream) record

2-3 Length of a logical record (in binary notation)
4-7 Reserved

Data Lengths

For type X'00' (normal) records, the minimum, maximum and default lengths are:

Table 31. Data Length for PUT Service

Job Data Output LST Data Output PUN Data

Min. Record Length
Max. Record Length
Default (see 1)

80
128
80

1
32 KB minus 8
512

80
32 KB minus 8
80

1 The default is assumed by VSE/POWER if your program does not define a data length in
field SPLDLREC of the SPL.

If an output-spool record includes trailing blanks, your program can truncate these
blanks prior to passing the record to VSE/POWER. This makes better use of send
buffer space.

© Copyright IBM Corp. 1987, 2014 103

If a record to be passed is longer than the specified maximum length,
VSE/POWER truncates the record and informs your program by a feedback code;
VSE/POWER spools the truncated record as well as the remaining records in the
passed data buffer. For a passed record shorter than the specified maximum length,
VSE/POWER:
v Expands this record by padding it with blanks at the end if a job is submitted.

When the record is stored on disk, trailing blanks can be truncated according to
the * $$ JOB BTRNC=YES|NO setting.

v Spools the record as presented if output is submitted. When the record is stored
on disk, trailing blanks will be truncated unless SPLGO2BT has been specified in
the SPL.

Size of Buffers

Your program must define the sizes of your send and reply buffers.

The Send Buffer

The buffer must be large enough to hold your program's SPL when the processing
of the desired service is initiated. It must be large enough to hold the longest
record (including the eight-byte prefix) that is to be passed to VSE/POWER.

To pass data to VSE/POWER for spooling, your buffer should have a length equal
to the sum of the lengths of the data records (including the record prefix) that your
program is to submit at a time. This may be just one record or a number of
records. A zero data length field in a record prefix is an end-of-buffer indication for
VSE/POWER. If set erroneously, it may lead to unexpected RC/FB codes returned
by VSE/POWER, such as 00/02=PXP00NJB (job not on job boundary).

You use the BUFFER operand of the XPCC macro or the XPCCB macro to define
the buffer.

The Reply Buffer

The buffer must be large enough to hold a verification SPL passed to your
program by VSE/POWER. You use the REPAREA operand of the XPCCB macro to
define the buffer.

Retrieval of Messages
VSE/POWER collects all job- or output-submission error or warning messages that
would normally go to the system console. They enable your program to determine
whether the job- or output-spool operation was completed successfully; they
inform your program about possible errors and unusual conditions, if any.

Note: Job event and output generation messages cannot be retrieved. For retrieval
of such messages, see Chapter 10, “GCM - Retrieving Job Event and Output
Generation Messages, Inquiring eXtended Event Messages,” on page 139.

Following your PUT-CLOSE request, VSE/POWER sets info byte PXPINFO of your
program's XPCCB to the value equated to PXPIMSG if any messages have been
queued. Your program can request these messages to be passed by VSE/POWER
(for returning submission error and warning messages, see “Issuing a
RETURN-MESSAGE Request” on page 113).

PUT Service

104 VSE/POWER V9R2 Application Programming

If your program does not request the messages to be returned, VSE/POWER
discards them on receipt of the next service request (CTL, GET, or PUT specified in
FUNC=code of the PWRSPL macro).

Messages returned by VSE/POWER can be up to 132 bytes long; they are preceded
by an eight-byte header with the following contents:

Bytes Contents/Meaning

0 X’00’ Set by VSE/POWER
1 X’02’ Set by VSE/POWER
2-3 Length of message (in binary)
4-7 Reserved

A reply buffer of 700 bytes, for example, can hold up to five messages of
maximum length.

Submitting a Job or a Job Stream
This PUT service spools the submitted records as a queue entry in the RDR (XMT)
queue. In your program, you can issue job-related PUT-service requests as follows:
v A PUT-OPEN request to start the spooling of one or more jobs ─ For details, see

“Starting a PUT Service for a Job or a Jobstream” on page 106.
v One or more PUT-SPOOL data requests to have VSE/POWER spool the

submitted job(s) ─ For details, see “Issuing a PUT-SPOOL-Data Request” on page
111.

v A PUT-CLOSE request to indicate that the submission of job data is finished and
that the submitted job data is to be included in VSE/POWER's input queues ─
For details, see “Issuing a PUT-CLOSE-Service Request” on page 111.

v A PUT-QUIT request to indicate that no further data is to be submitted for the
currently processed job and that the job should not be included in
VSE/POWER's input queues ─ For details, see “Ending the PUT Service for
Jobs” on page 112.

When your program submits job records, VSE/POWER does not insert any JECL
statements. In other words, JECL statements required by VSE/POWER are to be
supplied by your program preceding the job records. If a VSE/POWER * $$ JOB
statement is not provided, then the user may supply the job name and job user
information via the // JOB statement, and some other optional information via the
PWRSPL (see Table 33 on page 108).

If there is a user-written JOBEXIT routine for local input, VSE/POWER passes to
the routine the z/VSE job-control and JECL statements of the submitted jobs.

With one PUT-service request, your program can submit just one job or a job
stream consisting of two or more jobs. However, submission of just one job per
service request is the preferred method; it makes evaluation of returned messages
easier. VSE/POWER does not return messages to your program until the end of
data has been reached. As a result, a clear distinction which message belongs to
which job is difficult if you submit several jobs following a PUT-service OPEN
request.

After having processed one of the following, VSE/POWER returns to your
program a verification SPL:
v Your PUT-OPEN request.
v Your PUT-CLOSE request.

PUT Service

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 105

v A PUT-SPOOL data request for a buffer containing two or more jobs if a
short-on-account-space error occurs.

Besides the data supplied by your program in its SPL, a verification SPL contains:
v Default values for fields not set in your program's SPL.
v Statistics such as the total number of records spooled for your job, jobnumber,

jobsuffix, and queue entry number, if the verification SPL is passed by
VSE/POWER following a CLOSE request.

Coding Sequence for a PUT-JOB Request

Refer to Table 32, a coding sequence diagram for the submission of a job to an
input queue. Table 32 shows the kind of coding you have to supply in your
program and in what sequence this coding is to be. Chapter 13, “Spool-Access
Support Programming Example,” on page 271 includes a PUT-job service request
at label PUTA1.

Format of the Spool Job Records

Every job record that is to be spooled by VSE/POWER must have an 8-byte prefix
as shown in Table 24 on page 77. The record prefix must be updated for the
following fields (refer to “Spool-Access Support Parameter List (PWRSPL DSECT)”
on page 231):

RECTYPE
record type, set to RECTNORM=X'00', normal data record

RECLNGTH
length of the subsequent logical record

The coding sequence of label FILLBUF in Chapter 13, “Spool-Access Support
Programming Example,” on page 271 shows how to set up the record prefix for job
records.

Starting a PUT Service for a Job or a Jobstream
To open a PUT service for the submission of a job, VSE/POWER requires:
v Byte PXUBTYP of the XPCCB to be set to the value equated to PXUBTSPL. This

indicates to VSE/POWER that the send buffer contains an SPL.
v An SPL as set up by a PWRSPL macro with TYPE=GEN or updated by a

PWRSPL macro with TYPE=UPD.
VSE/POWER requires control data to be passed in your program's SPL in
addition to that specified in the JECL statements for the job. Table 33 on page
108 lists the applicable SPL fields. For the lengths and data types of these fields,
see the SPL DSECT which you get by issuing a PWRSPL macro with
TYPE=MAP. Examine the fields of the SPL DSECT (at label SPLDS) and decide
which of the SPL fields your program should set or change prior to the request.

v A reply buffer to which VSE/POWER passes the verification SPL.

Table 32. PUT Service, Job Submission Sequence

Step Coding in your application program Comments

...

PUT Service, Job

106 VSE/POWER V9R2 Application Programming

Table 32. PUT Service, Job Submission Sequence (continued)

Step Coding in your application program Comments

1 Open the request
XPCC FUNC=SENDR,...

Your program's send buffer must
contain an SPL-generated (or updated)
for processing a PUT-job service
request.

2 Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

3 WAIT IJBXSECB Wait for the SENDR ECB to be posted.
VSE/POWER passes a verification SPL
to your program's reply buffer.

4 Check the reason code (in the
XPCCB byte IJBXREAS).

5 Check the VSE/POWER return
and feedback codes (in the XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively).

6 Pick up and evaluate the veri-
fication SPL, if necessary.

7 PUT-Data Request
XPCC FUNC=SENDR,...

Your program's send buffer must
contain the records which
VSE/POWER is to spool.

8 Check the return codes in re-
gister 15 and in the XPCCB
(byte IJBXRETC).

9 WAIT IJBXSECB Wait for the SENDR ECB to be posted.
It indicates to your program that
VSE/POWER has finished processing
the records in the send buffer.

10 Check the reason code (in
the XPCCB byte IJBXREAS)

Check the VSE/POWER return
and feedback codes (this is
the same as above in steps
4 and 5).

Either
Fill your buffer with records
for the next request and return
to Step 7.

Or proceed to the next step.

Loop until all records for the queue
entry have been passed.

11 CLOSE request
XPCC FUNC=SENDR,...

Your program can make this request
with data in its send buffer or with a
null buffer being passed to
VSE/POWER.

12 Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

13 WAIT IJBXSECB Wait for the SENDR ECB to be posted.
VSE/POWER passed a verification
SPL to your program's reply buffer.

PUT Service, Job

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 107

Table 32. PUT Service, Job Submission Sequence (continued)

Step Coding in your application program Comments

14 Check the reason code (in the
XPCCB byte IJBXREAS).

Check the VSE/POWER return
and feedback codes (this is the
same as above in steps 4 and 5).

Pick up and evaluate the veri-
fication SPL, if necessary.

15 End of Service

Table 33. SPL Fields Applicable to a PUT-Job Service Request

Name of
Field Purpose/Contents

SPLGQI
SPLGUS
SPLGOPT2

SPLDPRGN
SPLDROOM
SPLDDEPT
SPLDBLDG
SPLDLREC
SPLGFB1

SPLXSID
SPLXSPW

M
M
O

O
O
O
O
O
O

O
O

Queue ID 1

User ID 1

Option byte (set SPLGO2BT, if trailing blanks of
records should not be truncated during spooling)
Programmer name 2

Room number 2

Department number 2

Building number 2

Maximum record length
Set SPLGF1QM if you want to store the job
completion message in a message queue after the
job finished processing. 3

Set SPLGF1QQ if you want to store all job event
(completion and generation) messages
in a message queue. 3

Set SPLGF1QP if you want to store the job
completion and output generation messages
(after output is created and ready for
processing) in a message queue. 3

Set SPLGF1QO if you want to store the
output generation message in a message queue.3

Set SPLGF1QX if you want to store the job
event (completion and generation) and output
generation messages in a message queue. 3

z/VSE Security user id 2

z/VSE Security password 2

1Normally defined in the PWRSPL macro along with other spool-control values.

2An * $$ JOB specification overrides these operands.

3For retrieval of the messages, see Chapter 10, “GCM - Retrieving Job Event and Output
Generation Messages, Inquiring eXtended Event Messages,” on page 139.

Legend: M = Mandatory; O = Optional

You might have to supply additional spool-control values for the above request
(for example job name) using an * $$ JOB statement. Submit this statement as the
first step in the jobstream.

PUT Service, Job

108 VSE/POWER V9R2 Application Programming

Enabling Retrieval of Job Event and Output Generation
Messages

With the PUT-OPEN request it is also possible to request queueing of event
messages to a specific queue identified by the XPCC-applid and Spool-Access
user-id (SPLGUS) of the job submitter. Event messages can be the following:
v job completion message (JCM) 1Q5DI is implemented to check for successful

execution of a submitted job (for layout and contents, refer to “Spool-Access
Support Parameter List (PWRSPL DSECT)” on page 231 for additional
clarification).

v job generation message (JGM) 1Q5HI is implemented to identify when a
submitted job creates another job by means of a * $$ PUN statement with the
DISP=I operand (for layout and contents, refer to “Spool-Access Support
Parameter List (PWRSPL DSECT)” on page 231 for additional clarification).

v output generation message (OGM) 1Q5RI is implemented to check for
successful creation of LST and PUN outputs. This message is issued when the
output has been created and is ready for processing (for layout and contents,
refer to “Spool-Access Support Parameter List (PWRSPL DSECT)” on page 231
for additional clarification). If a job produces segmented output (for example,
due to RBS= operand in the * $$ LST JECL statement, or PSEGMENT operator
command), then an output generation message is issued for each segment. This
message is also issued for every duplicate, which is generated due to * $$
LSTDUP or * $$ PUNDUP JECL statement and due to DUP=YES operand passed
in * $$ LST or * $$ PUN statement within the JECL area of the IPWSEGM macro.
Output generation message is not generated for output entry spooled to tape,
that is for entry spooled as a result of the TADDR=cuu option, or TDISP=T one,
or both in the * $$ LST or * $$ PUN statement.

These messages can be retrieved by the job-submitting application or by any other
application as described in Chapter 10, “GCM - Retrieving Job Event and Output
Generation Messages, Inquiring eXtended Event Messages,” on page 139.

Requesting Job Event and Output Generation Messages
To request job event messages or output generation messages, set up byte
SPLGFB1 in the PUT-OPEN SPL with one of the following specifications:
1. SPLGF1QM - to request creation of a subset for job event messages, namely job

completion messages.
2. SPLGF1QQ - to request creation of all job event messages. This means that

both, job completion and job generation messages, will be created.
3. SPLGF1QP – to request creation of both job completion and output generation

messages.
4. SPLGF1QO – to request creation of output generation messages only.
5. SPLGF1QX – to request creation of job event and output generation messages.

This means that all possible messages will be created: job generation, job
completion, and output generation messages.

In response to specification of the above listed options, VSE/POWER can inform
your program by setting the bytes in PXPRETCD/PXPFBKCD in the cross-partition
control block as follows:

PXPRCOK/PXP00OK (X'00'/X'00')
Your job has been successfully submitted to VSE/POWER. No error
occurred.

PUT Service, Job

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 109

PXPRCOK/PXP00NCM (X'00'/X'07')
No message queue exists to which job event and output generation
messages can be queued, because the message queue size has been set
JCMQ=0 during VSE/POWER startup.

PXPRCOK/PXP00LCM (X'00'/X'08')
The space capacity of the message queue is nearly exhausted. Space
remaining for only 2 to 5 messages in the queue.

PXPRCOK/PXP00OCM (X'00'/X'09')
The space capacity limit of the message queue is reached. Space remaining
for possibly 1 message in the queue.

With all these return and feedback combinations submitted the job is accepted. You
also have to prepare for other return and feedback codes, which VSE/POWER may
return in response to a PUT-OPEN request; refer to Table 35 on page 116.

Jobs Generated with DISP=I
A job which has been generated as a result of DISP=I on the * $$ PUN statement
will subsequently inherit the 'queue event message' characteristic of the parent job.
That means, one or more fixed format job event, output generation messages, or
both are also created for the child job, and can be retrieved in the same manner as
the event message for the parent job.

Additional Job Event and Output Generation Message Options
When you want to enable creation of job event messages, output generation
messages, or both of them, you can use additional options, which are dependent
on your environment. These specified options provide additional information to
your job and event messages being produced. However, the messages will only be
effective if options SPLGF1QM/QQ/QP/QO/QX are specified. In addition, these
options are also passed to jobs generated with an * $$ PUN DISP=I statement.

The following options exist:
1. SPLGOPT2

For PUT service, you can only specify the option SPLGO2OJ in this option byte.
This option is useful when the job is transmitted to another node and executed
there. If the option is omitted, messages will contain the job number that the
job receives at the final execution node. However, if SPLGO2OJ is set, the
messages will also contain the job number that is obtained at the node where it
was initially submitted. This job number is sent to your application within the
verification SPL but only after the PUT CLOSE request has been successfully
processed. Later, when retrieving the job event messages by the GCM service,
specify the same SPLGO2OJ. VSE/POWER will interpret the SPL job number
specification SPLGJN to your GCM request as the original job number. That is,
it compares SPLGJN with the field JCMFONUM of JCM, field JGMF1NUM of
JGM, and field OGMFONUM of OGM (instead of fields JCMFNUM,
JGMFNUM, and OGMFNUM).

2. SPLXPRIV
You can specify here any user private data. The data is not checked for any
range of values, nor is it modified by the job. The data will finally be reflected
in the resulting event message in the field JCMFPRIV for job completion event,
in the field JGMFPRIV for job generation event, and in the field OGMFPRIV for
output generation event.

3. SPLXOB1

PUT Service, Job

110 VSE/POWER V9R2 Application Programming

This option byte is used to specify at job submission time the message queuing
destination by setting the following options:

SPLXO1CQ
adds messages only to the common message queue, which is defined
by XPCC appl ID and artificial 8 bytes X’FF...FF’ user ID.

SPLXO1DQ
adds messages to both user and common message queues, which are
defined by XPCC appl ID | SPLGUS user ID and XPCC appl ID |
X'FF...FF' user ID. At first, a message is placed into the user message
queue, and then into the common one.

SPLXO1CQ and SPLO1DQ not specified both
adds messages only to the user message queue.

Use the common queue to collect all messages produced by jobs submitted
under the same applid but with different userid, and to limit message retrieval
to only one application program (that is to a single applid). It is possible to
retrieve only those messages that were queued under the same applid that is
used for retrieval.
It is likely that a common queue has to accommodate more messages than a
single userid queue. Therefore, the capacity of a common queue has always the
eightfold value of a single userid queue (defined by SET JCMQ=nnn). Several
common message queues can exist.

Issuing a PUT-SPOOL-Data Request
After VSE/POWER has passed the verification SPL, your program must issue one
or more spool-data requests, every one after the preceding one has been
completed. To do this, provide that your program:
1. fills its send buffer with records to be spooled by VSE/POWER,
2. sets byte PXUBTYP of the XPCCB to the value equated to PXUBTNDB (This

indicates that your program's send buffer contains records to be spooled.)
3. sets PXUACT1=0.
4. issues an XPCC FUNC=SENDR request.

VSE/POWER spools the records contained in your send buffer, except when an
error condition is encountered. VSE/POWER indicates successful completion (or
error, if any) to your program by way of return and feedback codes (PXPINFO).

Issuing a PUT-CLOSE-Service Request
A CLOSE request causes the data submitted up to this point to be placed into the
RDR (XMIT) queue as a complete queue entry.

In your program, you can issue a CLOSE request either:
1. Together with passing the last buffer of spool records for the queue entry being

submitted, or
2. Separately after your program has passed this last buffer.

For either case, set byte PXUACT1 of the XPCCB to the value equated to
PXUATEOD before you issue the requesting XPCC macro. For case 1, this is all
you have to do.

For case 2, a separate CLOSE request following the transfer of the last buffer,
VSE/POWER requires that your program:

PUT Service, Job

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 111

1. Sets byte PXUBTYP of the XPCCB to zero.
2. Sets up a null buffer (by setting field IJBXBLN to zero).
3. Issues an XPCC FUNC=SENDR request.

The coding sequence at label PUTA3 in Chapter 13, “Spool-Access Support
Programming Example,” on page 271 shows how to issue a CLOSE request
together with the last buffer of data records.

When it receives a CLOSE request, VSE/POWER expects the last record in the last
buffer of spool records to be a valid job-end statement. If a valid job-end statement
is not supplied, VSE/POWER automatically adds this statement and queues a
message about this for your program.

When all records of your job are queued, VSE/POWER returns a verification SPL
to your program's reply buffer. This SPL contains descriptive job information such
as VSE/POWER assigned default values, the job name and number, and the queue
entry number. However, if your program submits two or more jobs before it passes
a CLOSE request, then the verification SPL reflects the characteristics of only the
last job.

Ending the PUT Service for Jobs
In your program, you may have to provide for a quit-type end of service
processing; that is, end of the opened processing without any data to be queued by
VSE/POWER.

Your program can issue a QUIT request any time after an individual PUT-service
request is complete (which is indicated by a posting of field IJBXSECB of the
XPCCB). A QUIT request causes VSE/POWER to purge the queue entry that is
being built. In case of a multijob submission, a job previously queued by
VSE/POWER during the same PUT service remains unaffected.

Your program should check the QUIT-request return and feedback codes for
successful completion of the request. This ensures that the communication path to
VSE/POWER is free again to open another service request.

If additional jobs are to be submitted for spooling, your program must reopen the
PUT service by issuing an XPCC macro that passes a suitable SPL.

To issue a QUIT request in your program:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of your XPCCB to the value equated to PXUATABR.
3. Issue an XPCC FUNC=SENDR request passing a null buffer, that is, a buffer

with a length of zero (IJBXBLN set to zero).

This is the same as a QUIT request for a GET service. Chapter 13, “Spool-Access
Support Programming Example,” on page 271 includes a coding sequence for a
QUIT request at label GQUIT.

PUT Service, Job

112 VSE/POWER V9R2 Application Programming

Issuing a RETURN-MESSAGE Request
You find a discussion of message retrieval under “Retrieval of Messages” on page
104.

VSE/POWER makes the submission error and warning messages generated during
PUT service processing available on RETURN-MESSAGE request, and signals
about such messages with the PXPIMSG flag within XPCC user information byte
PXPINFO. Your program can pick them up in the defined reply buffer, one
message behind the other.

Note: The RETURN-MESSAGE request does not retrieve job event or output
generation messages. For retrieval of such messages, see Chapter 10, “GCM -
Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event
Messages,” on page 139.

If all messages fit into the reply buffer, VSE/POWER indicates this by the return-
and feedback-code combination PXPRCOK and PXP00EOD. If additional messages
are waiting to be transferred, VSE/POWER passes to your program a return- and
feedback-code combination of PXPRCOK and PXP00OK. In that case, your
program should issue another RETURN-MESSAGE request.

VSE/POWER deletes messages queued but not yet transmitted if your program
does one of the following:
v Issues another, different open-service request passing a new SPL
v Issues a QUIT request
v Ends communication via the currently used path

Table 34, a coding sequence diagram, shows the kind of coding you have to supply
in your program and in what sequence this coding is to be. Table 34 assumes that
PUT-data requests have been serviced by VSE/POWER for the complete queue
entry.

Chapter 13, “Spool-Access Support Programming Example,” on page 271 includes
a RETURN-MESSAGE request at label PUTA4. This coding sequence gets control if
VSE/POWER passed XPCCB-user data with byte PXPINFO containing the value
equated to PXPIMSG.

Table 34. Retrieve Messages after a PUT-Job Service Sequence

Step Coding in your application program Comments

...

1
CLOSE request

XPCC FUNC=SENDR,...

Your program issues a CLOSE request
when all records of a job have been
submitted.

2
Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

3
WAIT IJBXSECB

The WAIT required in your program
to ensure that VSE/POWER has
finished the necessary CLOSE
processing. VSE/POWER returns a
verification SPL.

PUT Service, Job

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 113

Table 34. Retrieve Messages after a PUT-Job Service Sequence (continued)

Step Coding in your application program Comments

4
Check the reason code in the

XPCCB.
Check the VSE/POWER return

and feedback codes.
Pick up and evaluate the veri-

fication SPL, if necessary.

5
Check user-information byte

for queued messages. If no
messages have been queued,
go to step 9 for ending the
service processing.

Else proceed.

VSE/POWER indicates the available
of messages with the PXPIMSG flag.

6
Return-message request

XPCC FUNC=SENDR,...

No SPL need be transferred for this
request; your program must set a
request code PUT in the XPCCB.

7
WAIT IJBXSECB

Wait for the SENDR ECB to be posted.

8
Check the XPCC reason code

and VSE/POWER return
and feedback codes (this is the
same as above in step 4). If more
messages are to be transferred by
VSE/POWER, return to
Step 6.

Else proceed.

Loop until VSE/POWER returns the
feedback code PXP00EOD.

9
End of Service

To have VSE/POWER pass messages, your program must:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set byte PXUACT1 of the XPCCB to the value equated to PXUATRMR.
3. Issue an XPCC FUNC=SENDR request passing a null buffer, that is, a buffer

with a length of zero (IJBXBLN set to zero). The coding sequence at label
PUTA4 in Chapter 13, “Spool-Access Support Programming Example,” on page
271 shows how to set up a null buffer.

Checking the Return Information for a PUT-Job Service Request
For the return information to be checked by your program after an XPCC request,
refer to “XPCC” on page 212.

For every PUT-job service request, your program should also check the return
information supplied by VSE/POWER. Provide for this checking after your
program's SENDR ECB has been posted.

Table 35 on page 116 lists the return and feedback codes that VSE/POWER may
supply when it processes a PUT-service related request for job submission. The list

PUT Service, Job

114 VSE/POWER V9R2 Application Programming

is in ascending order by code values. It relates the codes to the applicable request
types and gives the names that are equated to the feedback codes.

A complete list of the VSE/POWER return and feedback codes is given in the
DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback codes at
label PXPFBKCD.

For more information on the subject, see Chapter 14, “Return and Feedback Codes
and Their Meanings,” on page 297.

PUT Service, Job

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 115

Table 35. Return and Feedback Codes for PUT-Job Service Requests

Request Type

Mnemonic Return Code
Feedback
Code PUT Open PUT Data CLOSE QUIT Get Message

PXP00OK
PXP00EOD
PXP00NJB
PXP00NRS
PXP00RTR
PXP00ZBF
PXP00NCM
PXP00LCM
PXP00OCM

PXP04SOD
PXP04SOA

PXP08SPL
PXP08REQ
PXP08QID
PXP08UID
PXP08BTS

PXP08IAO
PXP08IAB
PXP08PRG
PXP08ROO
PXP08DPT

PXP08BLD
PXP08CON
PXP08ROL
PXP08IBT
PXP08ROS

PXP08SOS
PXP08BOS
PXP08RPH
PXP08RPW
PXP08FB1

PXP08IML
PXP08SPA
PXP08SEU
PXP08SEP

PXP0CINS
PXP0CIXF
PXP0CBTL
PXP0CIOE

PXP0CSNF
PXP0CCOR

PXP10PSP
PXP10SIE
PXP10MST

00

04

08

0C

10

00
01
02
03
04
05
07
08
09

08
09

01
02
06
09
1A

1B
1C
1E
1F
20

21
22
23
24
25

26
27
28
2A
2B

2C
2E
46
47

01
02
03
07

08
09

05
06
07

X

X
X
X

X

X
X
X
X

X

X
X
X

X
X

X

X
X
X

X

X

X
X

X
X

X

X
X

X
X
X

X

X
X

X

X

X
X
X

X

X

X

X
X
X
X

X
X

X

X
X
X

X

X

X

X

X
X

X

X
X

X

X

X

X

X
X

X

X
X

X
X

X

X

X
X

X

X
X

PUT Service, Job

116 VSE/POWER V9R2 Application Programming

Submitting Output Data
This PUT service spools the submitted records as a queue entry in an output (LST,
PUN, or XMT) queue. In your program, you issue output-related PUT-service
requests as follows:
v A PUT-OPEN request to start the spooling of output:

– To create a new output queue entry. This is the same as for the opening of a
job-related PUT service. For details, see “Starting a PUT Service for a Job or a
Jobstream” on page 106.

– To restart an existing queue entry. For details, see “Requesting a Restart” on
page 128.

– To append output to an existing queue entry. For details, see “Appending
Output to an Existing Spool File” on page 131.

– To specify Output Parameter Text Blocks (OPTBs). For details, see “Output
Parameter Text Blocks (OPTBs)” on page 132.

– To specify keyword OPTBs. For details, see “Specifying Keyword OPTBs” on
page 133.

v One or more PUT-SPOOL data requests to have VSE/POWER spool the
submitted output. This is the same as for the submission of job-related spool
data; for details, see “Issuing a PUT-SPOOL-Data Request” on page 111.

v A PUT-CLOSE request to end the submission of output:
– If there is no need to add additional spool data later on ─ this is the same as

for the closing of a job-related PUT service; for details, see “Issuing a
PUT-CLOSE-Service Request” on page 111.

– If additional spool data is to be added later on ─ this is discussed under
“Appending Output to an Existing Spool File” on page 131.

v A PUT-QUIT request to indicate that no further data is to be submitted and that
the output so far spooled is not to be included in a VSE/POWER output queue.
This is the same as for a QUIT request during the spooling of job-related data;
for details, see “Ending the PUT Service for Jobs” on page 112.

v A PUT-OUTPUT-SEGMENTATION request. For details, see “Requesting
Output-Segmentation” on page 125.

v A PUT-CHECKPOINT request. For details, see “Requesting a Checkpoint for
PUT Services for Output” on page 127.

v A PUT-RESTART request. For details, see “Requesting a Restart” on page 128.
v A GET-OPTB request. This is the same as for a Get-OPTB request during Get

service processing; for details see “Issuing a Get-OPTB Request” on page 96.
v A MODIFY-OPTB request. This is the same as for a Modify-OPTB request during

GET service processing; for details see “Issuing a Modify-OPTB Request” on
page 97.

There is one major difference between this service processing and the submission
of a job: for the spooling of output, a number of the fields of the required SPL may
have to be set up by your program.

To accomplish this, you should:
1. In your program, code the PWRSPL macro with TYPE=GEN or TYPE=UPD and

specify the operands
JOBN=..., to provide the name of the output entry
USERID=...,which feeds both the FROM user ID (SPLGUS) and the TO user
ID (SPLDTUID).

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 117

2. Use the available SPL DSECT to access the SPL.

For a list of the applicable SPL fields, see Table 36. For the lengths and data types
of these fields, see the SPL DSECT that you get by a PWRSPL macro with
TYPE=MAP; this DSECT gives additional explanation. The DSECT is listed under
“Spool-Access Support Parameter List (PWRSPL DSECT)” on page 231.

Table 36. SPL Fields Applicable to a PUT-Output Service Request

Name of
Field

Applies to
LST PUN Purpose/Contents

SPLORCFM 3

SPLGCL
SPLGPW
SPLGOPT2

SPLDDP
SPLDPR
SPLDSID
SPLDMOHP

SPLDUI 1

SPLDTNN
SPLDTUID 5

SPLDPRGN
SPLDROOM
SPLDDEPT
SPLDBLDG

SPLDCREC
SPLDLREC

SPLONCPY
SPLOCOMP
SPLOFORM
SPLOEWTR
SPLOFCB
SPLOUCB
SPLOUCBO
SPLONSEP 2

SPLOTDP
SPLEOPOF
SPLEOPLN
SPLEOPTB

M M

O O
O O
O O

O O
O O
O O
O O

O O
O O
O O

O O
O O
O O
O O

O O
O O

O O
O
O O
O O
O
O
O
O O
O O
O O
O O
O O

Record format

Job (output) class
Password
Option byte (set SPLGO2BT if trailing blanks
of records should not be truncated
during spooling) 4

Output local disposition
Output priority
Output-system ID
Protect option: Hold (with disposition Y)
when print/punch fails
User information
Name of destination node
Name of destination user

Programmer name
Room number
Department number
Building number

PUT-open restart record number
Maximum record length

Number of copies
Name of compaction table
Form number
External writer subsystem
Name of FCB-image phase
Name of UCB-image phase
UCB options
Number of separator pages/cards
Output transmission disposition
Offset to OPTB area
Length of passed OPTBs
First (or only) OPTB

3200/3800 Specifications (bit SPL3F138 must be set
if any 3200/3800 option is specified)

PUT Service, Output

118 VSE/POWER V9R2 Application Programming

Table 36. SPL Fields Applicable to a PUT-Output Service Request (continued)

Name of
Field

Applies to
LST PUN Purpose/Contents

SPL3TAB1
SPL3TAB2
SPL3TAB3
SPL3TAB4
SPL3MODF
SPL3CCHR

SPL3CPYG
SPL3FLSH
SPL3FLCT
SPL3FLG1

SPLXDIST
SPLXFLG1

SPLXPMDE
SPLXEXPD
SPLXEXPH

O
O
O
O
O
O

O
O
O
O

O O
O O

O O
O O
O O

Character-arrangement table 1
Character-arrangement table 2
Character-arrangement table 3
Character-arrangement table 4
Copy-modification phase
Character-arrangement table for
copy-modification text
Copy-group values
Flash-ID
Number of copies to be flashed
Options byte (bit SPL3F138 must be set
if any 3200/3800 option is specified)

Distribution code
Extended flag byte 1 (set SPLX1SNO,
if output NOT to be spool access protected
(corresponding to SECAC=NO))
Processing mode (PRMODE)
Queue entry expiration days
Queue entry expiration hours

1 Any hexadecimal value may be used. The system uses the OR operation which converts
characters with a hexadecimal 40 (X'40') value. Because problems may arise when
displaying non-printable characters on a console or printer, it is strictly recommended to
use only hexadecimal values which, after conversion, represent printable characters.

2 If SPLONSEP contains X'40', VSE/POWER will use the number of separator cards/pages
specified in the JSEP operand of the VSE/POWER generation macro. Valid specifications
are hexadecimal numbers 0-9. If nothing is specified, the PWRSPL macro defaults to 0.

3 This field allows to select one of the record formats SCS, BMS, 3270, CPDS, ESC, ASA,
and MCC. When MCC or ASA format is specified, then later during spooling,
VSE/POWER will not only accept the specified control character type, but also CPDS type
intermixed.

4 For details on blank truncation, refer to “Recording of Spooled Data on the Data File” in
the VSE/POWER Administration and Operation, SC34-2625.

5 For immediate local printing, specify user ID "R000"; for details, refer to VSE/POWER
Administration and Operation, SC34-2625.

Legend: M = Mandatory; O = Optional

Format of Spool Output Records
Every output record that is to be spooled by VSE/POWER must have an 8-byte
record prefix as shown in Table 24 on page 77. The record prefix must be updated
for the following fields (refer to“Spool-Access Support Parameter List (PWRSPL
DSECT)” on page 231):

RECCCODE
carriage control character

RECTYPE
record type

RECLNGTH
length of the subsequent logical record

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 119

The specified control character should correspond to the general record format of
the output queue entry as preselected at PUT-OPEN in the mandatory SPL field
SPLORCFM (see Table 36 on page 118). VSE/POWER does not verify the validity
of the corresponding character when specified in any record prefix. The coding
sequence at label FILLBUFFO in Chapter 13, “Spool-Access Support Programming
Example,” on page 271 shows how to set up the record prefix for output records.

Only for spooling of CPDS (Composed Page Data Stream) does VSE/POWER
impose the following rules:
1. When SPLORCFM specifies SPLORAPA, meaning CPDS format, then all

spooled output records must be identified as CPDS type by their prefix.
2. When SPLORCFM specifies MCC or ASA, the spooled output records may be

intermixed with CPDS records.

CPDS records must be identified either by the carriage control character
(RECCCODE=X'5A') and/or the record type (RECTYPE=RECTCPDS). If only one
of the two identifications is specified, VSE/POWER enforces the missing one
correspondingly. For further details on handling of this record type, refer to
VSE/POWER Administration and Operation, SC34-2625.

Spooling of Records with Carriage Control Character X'FE'
The carriage control characters X'FF', X'FE', and X'FD' are reserved for use by
VSE/POWER. When spooling records with one of these carriage control characters
using the PUT service of the spool-access support, the spooling of the record is
rejected with a return and feedback code (08/2F=PXP08ICC).

Using the option CTLREC during a GET service, the retrieved output may contain
records with a carriage control character X'FE'. In order to spool back such an
retrieved output 'as is' (which means without removing the records with a carriage
control character X'FE'), the option SPLGO2FE within SPLGOPT2 must be used
during the PUT service.

Note: A record with carriage control character X'FE' indicates the beginning of a
new page. VSE/POWER creates an FE-record and increments the page count at
output spooling time, when more records are spooled than fit onto one page
(according to the value specified in an FCB or LTAB) and the user program did not
explicitly start a new page via a skip-to-channel-one command. Spooled FE-records
are also used when restart on page boundary is requested.

Page and Line Counts
For the records being spooled, VSE/POWER maintains page and line counts
depending on the record type. The table in Table 37 on page 121 shows how
VSE/POWER maintains these counts.

PUT Service, Output

120 VSE/POWER V9R2 Application Programming

Table 37. Line Counts as Maintained by VSE/POWER

Type of Records Line Count Page Count1

With ASA

With MCC

BMS, 3270 mapping

CPDS

All others

CPDS intermixed
with records hav-
ing ASA or MCC.

Incremented for every
record.

Updated in accordance
with carriage-control
characters. X’00’ and
X’01’ (write-no-space)
is counted as a line.

Incremented for every
record.

Incremented for every
record.

Incremented for every
record.

Incremented for a
CPDS record. For non-
CPDS records, see ASA-

or MCC-type records,
above.

Updated in accordance
with carriage-control
characters.

Updated in accordance
with carriage-control
characters.

Incremented for every
page.

Incremented for every
CPDS page

Set to 1

See CPDS, ASA or MCC
type records above.

1 Is set to 1 if, at the end of spooling, this count is still zero and the line count is 1 or
greater.

2 The page count is derived from the structured field identifiers:

v BPG (Begin Page)

v IDM (Invoke Data Map)

v IMM (Invoke Media Map)

Their sequence and combination with non-CPDS records increments the page count such
that it comes as near as possible to the actual number of pages printed for this queue entry
by the Print Support Facility (PSF/VSE). For structured field identifiers, refer to PSF Data
Stream Reference, SH35-0073. Refer also to VSE/POWER Administration and Operation,
SC34-2625.

VSE/POWER Account Records
VSE/POWER performs accounting for submitted output as follows:
v For output without a restart or a later expansion by an append operation,

VSE/POWER's spool-record count is the same as for the output of a job
submitted from a unit record input device.

v For output to be appended to an existing queue entry, VSE/POWER builds an
extra set of spool-access account records:
– Every time records are submitted to be appended, and
– Only for the records submitted during the append operation.

v For output involving a restart, VSE/POWER counts the spooled output records
only once. Assume, your program:

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 121

1. Submits 1000 records for spooling
2. Requests a restart at record position 901
3. Submits another 200 records before it issues a CLOSE request
VSE/POWER's record count then is 1100 records.

Verification SPLs
VSE/POWER returns a verification SPL in the following cases:
1. After having successfully processed a PUT-OPEN request.

This SPL contains the same information that your program supplied in the
request SPL, plus default values assigned by VSE/POWER, for values not
specifically supplied, the job number, and the queue entry number.

2. At the end of data submission for the queue entry.
VSE/POWERpasses this verification SPL in response to your PUT-CLOSE
request when submission of output is complete or after having completed a
segmentation request. In addition to the information supplied by your
program, the SPL includes:
v All of the VSE/POWER-generated job information, such as job number, job

suffix (segment number), and queue entry number.
v The default values used by VSE/POWER for values not specifically supplied

by your program.
v Statistics such as the total number of records spooled for your output.
Checking this SPL can be of significance for spooling output. You need, for
example, the VSE/POWER-assigned job number if data is to be appended to
this queue entry or if spooling is to be restarted.

Handling an Abnormal-End Condition During PUT-SPOOL
If an abnormal-end occurs while VSE/POWER spools the output data,
VSE/POWER's actions are as follows:
v For an abnormal end of your program or of the VSE/POWER service task:

If the output is checkpointed, VSE/POWER retains the queue entry's spool data up
to the last recorded checkpoint. The queue entry's disposition is X to avoid that
another task can process the entry.
If the output is not checkpointed, VSE/POWER deletes the currently processed
queue entry, except as indicated below:
– The failure occurred after successful completion of a PUT-OPEN-RESTART

request by VSE/POWER. In this case, the previously submitted data up to
(but not including) the restart record still exists in the affected queue entry.
VSE/POWER retains this queue entry with a disposition of X, and your
program can set up the requested restart once more.

– The failure occurred after successful completion of a PUT-OPEN-APPEND
request by VSE/POWER. In this case, the data previously submitted (prior to
the open-append request) still exists in the affected queue entry.
VSE/POWERretains this queue entry with a disposition of X, and your
program can set up a restart request.

How to perform a restart is discussed under “Requesting a Restart” on page 128.
v For an abnormal end of VSE/POWER or of the z/VSE system:

During VSE/POWER startup, VSE/POWER searches the queue file for
incomplete queue entries.

PUT Service, Output

122 VSE/POWER V9R2 Application Programming

– If the queue entry is checkpointed, VSE/POWER sets the spool pointer
immediately behind the record last checkpointed. In addition, it adds the
queue entry to the applicable class chain. When VSE/POWER startup is
complete, the queue entry is accessible for a restart request from your
program or for printing if the central operator alters the entry's disposition.

– If the queue entry is not checkpointed, VSE/POWER deletes this queue entry
and the related space of the data file.

v For an abnormal end because of an I/O error on the data file:
– If the output is checkpointed, VSE/POWER retains the queue entry's queue

record and associated DBLK groups up to the last recorded checkpoint. The
queue entry's disposition is set to X to avoid that another task can process the
entry.

– If the output is not checkpointed, VSE/POWER deletes the queue entry.

Coding Sequence for PUT-OUTPUT Requests
In general, the coding sequence for output submission is the same as for the
submission of a job (or jobs) for queuing in an input queue. Your program issues
an OPEN request, followed by a number of PUT-data requests, followed by a
CLOSE request and one or more message retrieval requests; your program can
issue a QUIT request any time after a PUT-data request is complete. As mentioned
earlier, this section deals primarily with output specific PUT requests.

Issuing a CLOSE-Service Request
Refer to Table 38, a coding-sequence diagram for a PUT-output CLOSE request.
You issue the request by setting byte PXUACT1 of your program's XPCCB to either
of the following:
v The value equated to PXUATEOD ─ if no additional data is to be appended.
v The value equated to PXUATROE ─ if additional data is to be appended at a

later point in time. Appending additional data is discussed under “Appending
Output to an Existing Spool File” on page 131.

Your program may pass the CLOSE request in one of the following ways:
v Together with a null buffer

If you do this (after having successfully passed a send buffer containing data),
your program must:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set up a null buffer by setting IJBXBLN to zero.

How to set up a null buffer is shown in Chapter 13, “Spool-Access Support
Programming Example,” on page 271 at the label GQUIT.

3. Issue an XPCC FUNC=SENDR request after having set up the request.
v Together with a send buffer containing data records

These records are the last output records spooled by VSE/POWER for the
currently processed queue entry. The coding sequence at the label SDEOD in
Chapter 13, “Spool-Access Support Programming Example,” on page 271 shows
how to do this.

Table 38. PUT-Output CLOSE Request Sequence

Coding in your application program Comments

...

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 123

Table 38. PUT-Output CLOSE Request Sequence (continued)

Coding in your application program Comments

WAIT IJBXSECB Wait for the SENDR ECB to be posted after
the PUT-data request that is to precede your
CLOSE request.

Check the reason code (in the
XPCCB byte IJBXREAS).

Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).

CLOSE request
XPCC FUNC=SENDR,...

You can issue the request either:
- With the send buffer containing

data or an SPL.
- With a null buffer being passed.

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB Wait for the SENDR ECB to be posted.
VSE/POWER passes a verification SPL to
your program's reply buffer.

Check the reason code (in the
XPCCB byte IJBXREAS).

Check the VSE/POWER return and
feedback codes (this is the same
as above).

Pick up and evaluate the veri-
fication SPL, if necessary.

End of Service

v Together with a send buffer containing an update SPL
If you do this (after having successfully passed a send buffer containing data),
your program must:
1. Set byte PXUBTYP of the XPCCB to PXUBTSPL.
2. Build the SPL in (or move it to) your program's send buffer.

VSE/POWER analyzes the SPL and updates the control values for the
currently processed output queue entry. This SPL is some kind of a
last-minute change of the queue entry's job characteristics. However,
VSE/POWER verifies only those of this SPL's fields which are listed in
Table 39 on page 125; it ignores all other specifications passed by your
program.

3. Issue an XPCC FUNC=SENDR request after having set up the request.

VSE/POWER returns a verification SPL to your program's reply buffer. This SPL
includes the VSE/POWER assigned job number and queue entry number.

If the output's destination is another node, VSE/POWER spools this output into
the XMT queue rather than into the local LST or PUN queue.

PUT Service, Output

124 VSE/POWER V9R2 Application Programming

Table 39. Update SPL Fields Verified by VSE/POWER

Field Name Purpose/Contents

SPLGJB
SPLGCL
SPLDDP 1

SPLDPR 1

SPLDSID

SPLDTNN

SPLDTUID
SPLONCPY
SPLOFORM
SPLOTDP

The job name
The desired output class
The output local disposition
The desired output priority

The ID of the system that is to process the
output (applies to a shared spooling environment;
only the ID of the z/VSE system is valid).

The name of the destination node

The destination (remote) user ID
The number of desired copies
The form number to be used
The output transmission disposition

1 Can be updated only if the submitted output is to be spooled into
a local queue.

Requesting Output-Segmentation
Refer to Table 40, a coding-sequence diagram for an output-segmentation request.

Table 40. Segmentation During PUT-Output Processing Sequence

Coding in your application program Comments

...

WAIT IJBXSECB Wait for the SENDR ECB to be posted after
the PUT-data request that is to precede your
output-segmentation request.

Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).

Segmentation request
XPCC FUNC=SENDR,...

You can issue the request either:

v With a null buffer being passed

v With the send buffer containing data

v With the send buffer containing an SPL

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB Wait for the SENDR ECB to be posted.
VSE/POWER returns a verification SPL to
your program's reply buffer.

Check the reason code (in the
XPCCB byte IJBXREAS).

Check the VSE/POWER return and
feedback codes (this is the
same as above).

Pick up and evaluate the veri-
fication SPL, if necessary.

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 125

Table 40. Segmentation During PUT-Output Processing Sequence (continued)

Coding in your application program Comments

PUT-Data Request
XPCC FUNC=SENDR,...

Continue after having filled your program's
send buffer again. The first data record in
your program's send buffer goes into the
new output segment.

...

Your program can request output-segmentation at any time after successful
completion of a PUT-data request. You code this request in your program by
setting byte PXUACT1 of the XPCCB to the value equated to PXUATSGM. You
pass this request to VSE/POWER in one of the following ways:
v Together with a null buffer

If you do this, your program must:
1. Set byte PXUBTYP of the XPCCB to zero.
2. Set up a null buffer by setting IJBXBLN to zero.

How to do this is shown in Chapter 13, “Spool-Access Support Programming
Example,” on page 271 at the label GQUIT.

3. Issue an XPCC FUNC=SENDR request after having set up the request.
v Together with a send buffer containing data records

This causes VSE/POWER to include the buffer's contents in the currently
processed output segment. The contents of the next buffer that your program
passes to VSE/POWER becomes part of the newly created output segment.

v Together with a send buffer containing an update SPL
If you do this, your program must:
1. Set byte PXUBTYP of the XPCCB to PXUBTSPL.
2. Build the SPL in (or move it to) your program's send buffer.

VSE/POWER analyzes the SPL and updates the control values for the
currently processed output queue entry. This SPL is some kind of a
last-minute change of the queue entry's job characteristics. However:
– VSE/POWER verifies only those of the SPL's fields which are listed in

Table 39 on page 125; it ignores all other specifications passed by your
program.

– Any changed (or new) specifications that your program supplies in this
update SPL are used by VSE/POWER also for the subsequent segment(s).
If this is not desirable, your program has to pass another update SPL at
the end of the next segment.

3. Issue an XPCC FUNC=SENDR request after having set up the request.

Just like for a CLOSE request, VSE/POWER returns a verification SPL after having
successfully queued the segment. This SPL gives the VSE/POWER assigned
job-suffix (segment) number. VSE/POWER is then ready to accept further output
for spooling into a new output segment.

The coding sequence in Chapter 13, “Spool-Access Support Programming
Example,” on page 271 includes an output-segmentation request at the label
PUTB2.

PUT Service, Output

126 VSE/POWER V9R2 Application Programming

Requesting a Checkpoint for PUT Services for Output
Consider requesting checkpoints to “save” the processing of records already passed
to VSE/POWER should an abnormal-end condition occur. Your program can issue
a checkpoint request before the first PUT-data request and after successful
completion of any subsequent PUT-data request.

In processing a checkpoint request, VSE/POWER marks the queue entry as having
been checkpointed and returns a checkpoint-response record. This response record
contains the VSE/POWER-recorded number of the record spooled for the queue
entry just before the checkpoint was taken. For the layout of a checkpoint-response
record, see the DSECT at the label PXCRDSECT.

The number of the checkpointed record may not be the same as the number of this
record according to your program's own record count. Therefore, your program
should:
1. Relate the checkpoint record number to the corresponding record number of

the program's own count.
2. Save this relation for a later restart, should this become necessary.

By relating this number to your own program's record count, you can synchronize
your program's output with the record count maintained by VSE/POWER.

Refer to Table 41, a coding-sequence diagram for a checkpoint request. In your
program, you code this request as follows:
1. Set byte PXUACT1 of the XPCCB to the value equated to PXUATCHK.
2. Make a reply buffer available.
3. Pass the request to VSE/POWER. To do this, issue an XPCC FUNC=SENDR

request with either of the following:
v Data contained in your program's send buffer. In this case, VSE/POWER

spools that buffer's contents first and then processes the checkpoint request.
v A null buffer. This requires that your program:

a. Sets byte PXUBTYP of the XPCCB to zero.
b. Sets up a null buffer (field IJBXBLN set to zero). For information on how

to set up a null buffer, see Chapter 13, “Spool-Access Support
Programming Example,” on page 271 ─ at label GQUIT, for example).

Table 41. Checkpoint for PUT-Output Processing Sequence

Coding in your application program Comments

...

WAIT IJBXSECB
Wait for the SENDR ECB to be posted after
the PUT-data request that is to precede your
checkpoint request

Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 127

Table 41. Checkpoint for PUT-Output Processing Sequence (continued)

Coding in your application program Comments

Checkpoint request
XPCC FUNC=SENDR,...

You can issue the request either:

v

With the send buffer containing

data

v

With a null buffer being passed.

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Wait for the SENDR ECB to be posted.
VSE/POWER passes a checkpoint response
record to your program's reply buffer.

Check the reason code (in the
XPCCB byte IJBXREAS).

Check the VSE/POWER return and
feedback codes (this is the
same as above).

PUT-data request
XPCC FUNC=SENDR,...

Continue after having filled your program's
send buffer again.

End of Service

Requesting a Restart
VSE/POWER permits your program to request a PUT-RESTART as follows:
v During PUT-SPOOL processing for output, behind a previously spooled record.

This restart causes the specified restart record and all subsequent records
spooled previously to be overwritten.
A restart during processing can be risky. Your program's record count (if
maintained) may be different from that of VSE/POWER because VSE/POWER
inserts an additional record whenever a write-and-skip to channel 1 occurs.
“Requesting a Checkpoint for PUT Services for Output” on page 127 indicates
how your program can use VSE/POWER's checkpoint-response records to keep
track of suitable restart points. See “Restarting During PUT-Output Processing”
on page 129.

v Together with a PUT-OPEN request for output for an existing queue entry.
As the restart point, you can specify 0 (or nothing). In this case, VSE/POWER
sets its restart pointer immediately behind the last record in the queue entry's
last used DBLK of the data file. For a checkpointed queue entry with disposition
X, this is the record last checkpointed by VSE/POWER.
Specifying 0 may be risky. If a system or program failure occurs after
VSE/POWER has passed a recorded checkpoint and before your program could
record this checkpoint, then VSE/POWER and your program are not
synchronized.

PUT Service, Output

128 VSE/POWER V9R2 Application Programming

To avoid problems, you can specify a suitable restart point as recorded by your
program. VSE/POWER indicates in its verification SPL the corresponding,
checkpointed record count.
In case of a restart, VSE/POWER examines a specified restart point. If this point:
– Is higher than the last recorded checkpoint, VSE/POWER accepts this restart

point as specified.
– Is equal to or lower than the last recorded checkpoint, VSE/POWER lowers

the checkpoint value to the restart value, minus 1, and notifies your program
of the change (return/feedback code = PXPRCOK/PXP00CIA).

See “Restarting with an OPEN Request” on page 130.

Note: Because PUT-RESTART involves a GET operation for an existing spool entry,
restart may be denied if Spool Access Protection is active. See “Scope of GET/CTL
Access to Queue Entries” on page 61.

Restarting During PUT-Output Processing

If, in its restart control record, your program specifies a restart record number
lower than or equal to the logical record last checkpointed, then VSE/POWER:
1. Positions the spool pointer as requested, just as if the queue entry were not

checkpointed.
2. Records the specified restart record number (minus one) as the new

checkpoint-record number.
VSE/POWER returns to your program a checkpoint-response record together
with applicable return and feedback codes. The response record confirms to
your program the newly recorded checkpoint. For the layout of a
checkpoint-response record, see the DSECT generated by PWRSPL TYPE=MAP
at the label PXCRDSCT.

Refer to Table 42, a coding-sequence diagram for a restart request.

Table 42. Restart for PUT-Output Processing Sequence

Coding in your application program Comments

...

WAIT IJBXSECB
Wait for the SENDR ECB to be posted after
the PUT-data request that precedes your
restart request.

Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively).

Restart request
XPCC FUNC=SENDR,...

Your program's send buffer must contain a
restart control record.

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Wait for the SENDR ECB to be posted.
VSE/POWER may pass a
checkpoint-response record to your
program's reply buffer.

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 129

Table 42. Restart for PUT-Output Processing Sequence (continued)

Coding in your application program Comments

Check the VSE/POWER return and
feedback codes (this is the
same as above).

Pick up and evaluate the check-
point response record, if this
is applicable.

PUT-data request
XPCC FUNC=SENDR,...

At this point, the coding sequence is the
same as for the submission of data records
for spooling.

End of Service

To set up and pass the request to VSE/POWER, your program must:
1. Set byte PXUBTYP of the XPCCB to the value equated to PXUBTCTL. This

indicates that your program's send buffer contains a control record.
2. Set up a restart control record in your program's send buffer. For the layout of

this record, see the Dsect at label PXRSDSCT. The record specifies the number
of the logical record at which output spooling is to be resumed.

3. Issue an XPCC macro with FUNC=SENDR.

Restarting with an OPEN Request

This kind of a restart applies if output spooling is to be restarted because, for
example, an abnormal-end condition had occurred.

A PUT-OPEN-RESTART request is possible if the following is true:
v The applicable queue entry is queued with one of the dispositions D, H, K, L,

and X.
v The requestor is the owner (originator) of the queue entry.

If your program does not pass a restart-record number, then:
v For a queue entry with disposition X, VSE/POWER positions the spool pointer

behind the entry's last checkpointed record.
v For a queue entry with a disposition other than X, VSE/POWER positions this

pointer to the end of the entry's data file.

If your program passes a restart-record number, it should provide for a routine
verifying that VSE/POWER's record count and your program's record count are
synchronized. How you can do this is indicated under “Restarting During
PUT-Output Processing” on page 129.

Your program requests the desired restart by issuing an XPCC macro with
FUNC=SENDR and passing to VSE/POWER a restart SPL (MODE=RESTART
specified in the PWRSPL macro). In the SPL, certain fields are to be updated as
listed in Table 43 on page 131. VSE/POWER confirms the request in the same way
as it confirms a normal open PUT-service request: by passing a verification SPL to
your program.

PUT Service, Output

130 VSE/POWER V9R2 Application Programming

Table 43. SPL Fields to be Updated ─ Open-Restart Request for Output

Name of
Field

Applies to
LST PUN Purpose/Contents

SPLGFB1
SPLGCL
SPLGJB
SPLGJN
SPLGUS
SPLGQI
SPLGRQB

SPLGJS
SPLGOPT
SPLGPW

SPLDCREC

M M
M M
M M
M M
M M
M M
M M

O O
O O
O O

O O

Set restart function (SPLGF1RS)
Job (output) class
Job name
Job number
User ID
Queue ID
Request type (PUT)

Job suffix
Set no-wait option
Password

PUT-open restart record number

Legend: M = Mandatory; O = Optional

Appending Output to an Existing Spool File
VSE/POWER permits additional data to be appended to (added at the end of) an
existing output queue entry if your program:
1. Is the owner (originator) of this queue entry.
2. Closed the original spool request with the append-option bit PXUATROE set in

byte PXUACT1 of its XPCCB.
3. Issues a PUT-OPEN APPEND request (which re-initiates PUT-service processing

for the queue entry) by passing to VSE/POWER an SPL that specifies the
append option. This SPL should contain the values passed by VSE/POWER in
its original verification SPL in the fields listed in Table 44. You may find it
convenient to have your program save the verification SPL and use it as
request SPL for the append request.

Table 44. SPL Fields to be Updated ─ Open-Append Request for Output

Name of
Field

Applies to
LST PUN Purpose/Contents

SPLGFB1
SPLGCL
SPLGJB
SPLGJN
SPLGUS
SPLGQI
SPLGRQB

SPLGJS
SPLGOPT
SPLGPW

M M
M M
M M
M M
M M
M M
M M

O O
O O
O O

Set append function (SPLGF1AP)
Job (output) class
Job name
Job number
User ID
Queue ID
Request type (PUT)

Job suffix (segmented number)
Set no-wait option
Password

Legend: M = Mandatory; O = Optional

VSE/POWER confirms the request in the same way as it confirms a normal open
PUT-service request: by passing a verification SPL to your program. After having
passed this SPL, VSE/POWER is ready to accept PUT-data requests from your
program.

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 131

Note: Because appending involves a GET operation for an existing spool entry, the
append may be denied if Spool Access Protection is active. See “Scope of
GET/CTL Access to Queue Entries” on page 61.

Output Parameter Text Blocks (OPTBs)
VSE/POWER allows you to specify one or more Output Parameter Text Blocks
(OPTBs) when you describe the characteristics of the output queue entry passed to
VSE/POWER. VSE/POWER allows you to specify standard and keyword OPTB's.
For more information on OPTB's, refer to the description of the DEFINE autostart
statement in VSE/POWER Administration and Operation, SC34-2625.

Specifying Standard OPTBs
An OPTB (also named Output Procesing Text Unit, or OPTU) represents the
keyword in an * $$ LST or * $$ PUN statement which you define in an autostart
DEFINE statement.

An OPTB is structured as a sequence of text units. The number and sequence of
text blocks is arbitrary. The format of the OPTBs is shown in Figure 3.

This format is called standard to distinguish it from keyword OPTBs.

For example:

001F 0001 0004 HUGO

causes VSE/POWER to check this standard OPTB against the DEFINE autostart
statement for PAGEDEF.

Note: OPTBs (also called OPTUs) are spooled by VSE/POWER and other NJE
components in the 'Output Processing Section' of the NJE Data Set Header Record
(DSHR). How to locate OPTUs in such a section can be seen in the "Sample of a
PNET Receiver Exit Routine" of the VSE/POWER Networking, SC34-2603.

ID CC LL Data element LL Data element

Bytes: 2 2 2 n 2 n

ID Registered (unique) keyword ID

CC Count of the data elements supplied for the keyword parameter. The valid range is
from 0 to 16,383. A count of 0 indicates either a missing positional or defaulted
parameter. In this case, no data elements should follow the count field.

LL Length of the data element (keyword parameter value). The valid range is from 0 to
16,383. A length of 0 indicates a null value.

Figure 3. Standard OPTB Format

PUT Service, Output

132 VSE/POWER V9R2 Application Programming

Specifying Keyword OPTBs
In your program you can also specify keyword OPTBs which pass a user keyword
and its values directly to VSE/POWER, without knowledge of the OPTB structure,
according to Network Job Entry (NJE) definitions. VSE/POWER matches the
received keyword against the specifications of the corresponding DEFINE autostart
statement. VSE/POWER creates an OPTB according to the user's request and
includes it in the DSHR record.

The format of the keyword OPTBs is shown below, in Figure 4.

For example:

0000 0001 000C PAGEDEF=HUGO

causes VSE/POWER to build an OPTB according to the DEFINE autostart
statement for PAGEDEF.

Passing OPTBs to VSE/POWER
You can pass both the standard and the keyword OPTB to VSE/POWER as an
appendage of the SPL at PUT OPEN time. You may pass them in the same SPL,
but all keyword OPTBs have to precede the standard OPTBs; otherwise, they will
be flagged as 'invalid standard' OPTBs.

There are the following restrictions:
v When two or more keyword OPTBs specify the same user keyword, only the last

specification becomes effective. The same is true for equal parameters of a * $$
LST or * $$ PUN statement.

v When two or more standard OPTBs are passed with the same OPTB-Id, they are
rejected by the return code PXP08DOP.

v When a keyword is specified both by a keyword OPTB and by a subsequent
standard OPTB, then duplicate OPTBs are created in the DSHR record.

As shown in Figure 5 on page 134, the SPL contains two 2-byte fields, indicating
the total length of the OPTB area and the offset to this area. A length of zero (in
field SPLEOPLN) indicates that no such area exists.

ID CC LL

Bytes: 2 2 2 n

keyword={value|(value,...)}

ID ID must be X'0000'.

CC CC must be X'0001'.

LL Length of the keyword and value. A length of 0 indicates that no keyword has been
specified. the maximum length is 16.383.

Figure 4. Keyword OPTB Format

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 133

If one or more standard OPTBs are appended to the SPL, VSE/POWER checks the
OPTBs for correct specification. A standard OPTB representing a keyword which is
not defined within VSE/POWER is taken as is (refer to VSE/POWER Administration
and Operation, SC34-2625). If all standard OPTBs are valid, VSE/POWER builds an
output processing section and includes it in the data set header record.

For a keyword OPTB, VSE/POWER checks the keyword value against the
definition made with a DEFINE statement. If the value is correct, VSE/POWER
builds an OPTB and includes it in the data set header record. If no DEFINE
statement for the keyword is available, VSE/POWER replies with the return code
PXP08NDK.

The total length of all OPTBs, including the length of all other sections (such as the
general or the 3800 section) present in the DSHR may not exceed 32,760 bytes.

Note: All standard OPTBs which are of the type binary must have the same length
as specified in the appropriate DEFINE statement.

Checking the Return Information for a PUT Service Request for
Output
For the return information to be checked by your program after an XPCC request,
refer to “XPCC” on page 212.

For every PUT-output service request, your program should also check the return
information supplied by VSE/POWER. Provide for this checking after your
program's SENDR ECB has been posted.

Table 45 on page 135 lists the return and feedback codes that VSE/POWER may
supply when it processes a PUT-service related request for the submission of
output data. The list is ordered in ascending order by code values; it relates the
codes to the applicable request types; it gives the names that are equated to the
feedback codes.

A complete list of the VSE/POWER return and feedback codes is given in the
DSECT PXPUSER, which the assembler generates for a PWRSPL TYPE=MAP
macro. You find the return codes at label PXPRETCD and the feedback codes at
label PXPFBKCD.

Figure 5. SPL Format

PUT Service, Output

134 VSE/POWER V9R2 Application Programming

For more information on the subject see Chapter 14, “Return and Feedback Codes
and Their Meanings,” on page 297.

Table 45. Return and Feedback Codes for PUT-Output Service Requests

Request Type

Mnemonic
Ret.
Code

Fdbk
Code

PUT
Open

PUT
Data

Check
point

Re-
start

Seg-
ment CLOSE QUIT

Get
Msg

Get
OPTB

Mod.
OPTB

PXP00OK
PXP00EOD
PXP00NRS
*PXP00RTR

PXP00ZBF
PXP00CIA

PXP04NOF
PXP04JOP
PXP04IDP
PXP04RER
PXP04SOD

PXP04SOA
PXP04BER
PXP04NMU
PXP04WDP
PXP04JSR
PXP04ONF
PXP04SAC

00

04

00
01
03
04

05
06

01
02
05
06
08

09
0A
0D
0E
0F
11
17

X

X
X
X

X

X

X
X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 135

Table 45. Return and Feedback Codes for PUT-Output Service Requests (continued)

Request Type

Mnemonic
Ret.
Code

Fdbk
Code

PUT
Open

PUT
Data

Check
point

Re-
start

Seg-
ment CLOSE QUIT

Get
Msg

Get
OPTB

Mod.
OPTB

PXP08SPL
PXP08REQ
PXP08JNM
PXP08QID
PXP08CLS

PXP08PWD
PXP08UID
PXP08RFM
PXP08DSP
PXP08PRY

PXP08SID
PXP08TNN
PXP08TUN
PXP08FNO
PXP08FCB

PXP08UCB
PXP08FLH
PXP08CPT
PXP08CGP
PXP08CHR

PXP08MOD
PXP08CCR
PXP08BTS
PXP08IAB
PXP08ICR

PXP08PRG
PXP08ROO
PXP08DPT
PXP08BLD
PXP08CON

*PXP08ROL
PXP08IBT
PXP08ROS
PXP08SOS
PXP08BOS

08 01
02
05
06
07

08
09
0A
0B
0C

0D
0E
0F
10
11

12
14
15
16
17

18
19
1A
1C
1D

1E
1F
20
21
22

23
24
25
26
27

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X

X
X
X
X
X

X

X
X

X

X
X

X

X
X

X

X

X

X

X

X

X

X

X

X
X

X
X
X
X

X

X

X

X

X

X

X
X

X
X
X
X

X

X

X
X
X
X

X

X

X
X

X

X
X

X

X

X
X

X

X X

PUT Service, Output

136 VSE/POWER V9R2 Application Programming

Table 45. Return and Feedback Codes for PUT-Output Service Requests (continued)

Request Type

Mnemonic
Ret.
Code

Fdbk
Code

PUT
Open

PUT
Data

Check
point

Re-
start

Seg-
ment CLOSE QUIT

Get
Msg

Get
OPTB

Mod.
OPTB

*PXP08RPW
PXP08FB1
PXP08IML

PXP08IEX
*PXP08SPA
*PXP08ICC

PXP08IRR
PXP08IOP
PXP08OLM
PXP08DOP
PXP08OTL
PXP08IDH
PXP08DIS
*PXP08INK

*PXP08NDK
*PXP08IDV
PXP08IPM

PXP0CINS
PXP0CIXF
PXP0CBTL
PXP0CIOE

PXP0CSNF
PXP0CCOR

PXP10PSP
PXP10SIE
PXP10MST

08

0C

10

2A
2B
2C

2D
2E
2F

38
39
3A
3B
3C
3D
3E
3F

40
41
48

01
02
03
07

08
09

05
06
07

X
X

X

X

X
X

X
X

X
X
X

X
X
X
X

X
X

X
X
X

X

X
X

X
X

X

X
X

X
X

X

X
X

X
X

X

X
X

X
X

X

X
X

X

X
X

X
X

X

X
X

X
X

X

X
X

X
X

X

X
X

X

X

X
X
X

X

* Along with these return and feedback codes, VSE/POWER returns in the user data field PXPROFF an
offset value within the user’s send buffer. With this offset, the failing record or wrong keyword
OPTB can be found in the send buffer of the user’s program. Add the offset to the beginning of the
send buffer. For PXP00RTR the offset of the last truncated record is returned.

PUT Service, Output

Chapter 9. PUT - Submitting a Job, a Job Stream, or Output 137

138 VSE/POWER V9R2 Application Programming

Chapter 10. GCM - Retrieving Job Event and Output
Generation Messages, Inquiring eXtended Event Messages

The GCM (Get Completion Messages) service returns job event and output
generation messages to your program from jobs which have been submitted to and
processed by VSE/POWER. Any user-written application program can, therefore,
retrieve these job event and output generation messages but only if the jobs are
submitted via the spool-access support with the "queue-event-message" option set
in the SPL (spool parameter list). For example, when this SPL option is set,
VSE/POWER will collect the message in fixed format rather than issuing the
message to, for example, the system console.

VSE/POWER can queue job completion messages (JCMs), job generation messages
(JGMs), and output generation messages (OGMs), which are generated in the
following cases:
v Job completion message 1Q5DI is produced when a job has been completed.
v Job generation message 1Q5HI is produced when a job has generated another

job in the form of punch output with DISP=I.
v Output generation message 1Q5RI is produced each time when a job has created

LST or PUN output and this output is ready for processing.

Application program can use fixed format messages in such examples as for
determining whether a job was cancelled or ended abnormally, to check job output
stream, as well as for other purposes.

The NTFY=YES|(nodeid,userid) operand in the * $$ JOB statement can be used in
conjunction with the SPL option when the job is submitted. This means, if you
select both options for a job at the same time, two messages will be generated. The
1Q5DI message due to the NTFY operand is routed to the destination specified in
the operand. The SPL option, on the other hand, produces a fixed format job event
message which is recorded for your application program for later retrieval.

There is no similar support for the job generation message 1Q5HI and output
generation message 1Q5RI, meaning within the * $$ JOB statement there doesn't an
operands similar to NTFY for these messages. VSE/POWER will collect these fixed
format messages for user-written application programs but, for example, doesn't
issue them to the system console.

The GCM service also provides XEM (eXtended Event Message) support to
application programs. VSE/POWER can generate and queue extended event
messages 1Q5XI for an application in the following cases:
v A new queue entry has been created within RDR, LST, PUN, or XMT queue and

is ready for processing or has been spooled to a tape.
v An existing queue entry has been altered within a VSE/POWER queue.
v An existing queue entry has been deleted from RDR, LST, PUN, or XMT queue

(removed into DEL queue).

Using extended event messages, an application program can check VSE/POWER
queues for new and altered entries and can obtain information about deleted
entries.

© Copyright IBM Corp. 1987, 2014 139

As opposed to other fixed format messages, whose generating period is restricted
by a job life time, VSE/POWER produces XEMs independently of any specific job.
For both starting XEM generation and extracting messages, extended GCM service
(GCM-XEM) is used.

Detailed description of the extended GCM-XEM service can be found in the section
“GCM-XEM Service” on page 155 in this chapter.

Destination of Job Event and Output Generation Messages
When you submit a job to VSE/POWER via the spool-access support, some of the
specifications you have to code are:
v The application ID by means of the APPL operand in the XPCCB macro
v The USERID operand in the PWRSPL macro.

VSE/POWER uses this information in order to address the message queue in
which the fixed format job event and output generation messages are to be
queued. Therefore, for each single pair of application ID and PWRSPL user ID a
specific message queue can exist while VSE/POWER is up and running.

In order to retrieve the messages resulting from the jobs you submitted, your
application program which issues the GCM service has to provide the same user
ID and application ID again.

There is another, a higher, level of event messages destination: a system in a
Shared Complex and PNET node in a network environment (for details, refer to
“Shared Processing” on page 153 and “Networking” on page 153).

The Size of the Message Queue
The system administrator can define the size of a single message queue in the
JCMQ=nnn operand in the VSE/POWER SET autostart statement. The message
queue can list from 0 to 255 messages. The default setting is set to a maximum of
50 messages queued. However if a message queue size of 0 is specified, then fixed
format job event and output generation messages are lost. VSE/POWER does not
reserve any storage for event messages unless such messages are generated.

For explanation about the JCMQ=nnn operand, see the description of the SET
autostart statement in VSE/POWER Administration and Operation, SC34-2625.

If the capacity of your message queue is exhausted, VSE/POWER discards the
oldest message in the queue to make room for the next message to be queued. If
the message queue size is too small for your needs, VSE/POWER informs your
application program and the operator as follows:
v A return and feedback code is passed along with the verification SPL, which

VSE/POWER passes to your application after the PUT-OPEN job request (refer
to “Requesting Job Event and Output Generation Messages” on page 109).

v Message 1Q4AI appears at the system console at job processing time. This
message appears each time a message is discarded or lost in the message queue
and when at least 60 seconds are passed since the last appearance of message
1Q4AI.

v The PDISPLAY STATUS command can be used to obtain the maximum number
of job event and output generation messages discarded from any message
queue.

GCM Service

140 VSE/POWER V9R2 Application Programming

The message queue size is shown in the statistics status report of the PDISPLAY
STATUS command and after issuing a PEND command.

Messages which are not retrieved but remain queued are lost at VSE/POWER
shutdown.

Requirements for Requesting the GCM Service
The GCM service uses the same XPCC protocol as the PUT, GET, and CTL services.
Refer to the following sections for detail on these services:
v Chapter 6, “Introduction to Spool-Access Support,” on page 57.
v “Setting Up a Communication Path” on page 59.

How to Submit a Job with the 'Queue Event Message' Option
For details, refer to “Requesting Job Event and Output Generation Messages” on
page 109.

How to Enable Completion Message Queuing by Command
For details, refer to “Enabling Job Completion Messages by the Release Command”
on page 70.

How to Retrieve Job Event and Output Generation Messages
There are two different ways to retrieve job event and output generation messages:
1. The application issues a GCM-OPEN request and VSE/POWER posts the

request immediately with or without messages. If there are no messages, then
the application can repeat the GCM-OPEN request as many times as needed
until VSE/POWER returns messages to the application's receive buffer. To
decrease CPU utilization, the application can call the SETIME macro with a
subsequent WAIT call or use a previously specified interrupt routine before
issuing the GCM-OPEN request again.

2. The application specifies a wait interval in the GCM-OPEN request.
VSE/POWER will then wait until the issuance of any message or until the time
period is expired. Whereupon, VSE/POWER returns message(s) (if any) to the
application's receive buffer, posts the application and cancels the wait interval.
Afterwards, the application can set the wait interval again with a new
GCM-OPEN request.

The following explanations are common to both retrieval methods. How to specify
the wait interval is described under “Optional Specifications Related to the
GCM-OPEN Request” on page 148.

Your application program must adhere these steps to retrieve fixed format job
event and output generation messages:
1. Issue the relevant XPCC function calls with the same XPCC applid used at

PUT-JOB time to identify your program to the system and to establish the
connection to VSE/POWER as described under “Setting Up a Communication
Path” on page 59.

2. Issue a GCM-OPEN request.
v Set byte PXUBTYP of the XPCCB to the value of PXUBTSPL. This indicates

to VSE/POWER that the send buffer contains an SPL.

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 141

v Set up a reply buffer to which VSE/POWER passes the retrieved messages.
The size of the reply buffer determines the maximum number of messages
which VSE/POWER can pass to your program with its reply. Specify the
address of the reply buffer in the XPCCB; for details see Figure 2 on page 58.
For details on the length of one message, see Figure 7 on page 143.

v Set up an SPL using the PWRSPL macro with TYPE=GEN to generate or
update with TYPE=UPD with the following features:
– REQ=GCM to signal that a GCM request is issued by your program.
– The USERID operand you specified at job submission time.
– Specify a message selection criteria (job name, job number, and message

type), as described in “Message Selection Criteria” on page 144.
– Specify the type of GCM-OPEN service as described under “GCM-OPEN

Request Types” on page 145 in SPLGFB1 to inform VSE/POWER what to
do with the queued message.

– Set up optional specifications within the SPL, as described under
“Optional Specifications Related to the GCM-OPEN Request” on page 148.

v Establish the SPL as SEND buffer. You must specify the SPL address and
length in the XPCCB fields IJBXADR and IJBXBLN.

v Send the SPL to VSE/POWER by means of the XPCC FUNC=SENDR
request.

3. After your program has been posted in field IJBXSECB, evaluate the return and
feedback codes which VSE/POWER passes to your program in bytes
PXPRETCD and PXPFBKCD to decide, for example, if messages are available in
your reply buffer (if all messages are retrieved or if there are more messages
still waiting for retrieval), or to terminate the GCM service.

4. Process and evaluate the messages contained in your reply buffer, if applicable.
To access the message data, see the general message layout in Figure 7 on page
143 and detailed message fields in “Spool-Access Support Parameter List
(PWRSPL DSECT)” on page 231.

5. If applicable, your program may issue a GCM subrequest, that is a
GCM-MORE or a GCM-REMOVE subrequest, whatever is required. For details
see “GCM Subrequests” on page 150.

The following diagram summarizes how the fixed format job event and output
generation messages can be retrieved by your application program.

GCM Service

142 VSE/POWER V9R2 Application Programming

1. Your program issues a GCM-OPEN request to retrieve and process fixed format
messages under its XPCC applid and SPLGUS userid.

2. VSE/POWER puts the messages into its buffer (counterpart of the program's
reply buffer) and informs XPCC interface about its location. XPCC , in its turn,
moves messages from this buffer to your program's reply buffer whose address
is contained in the XPCCB. From this reply buffer your program can retrieve
the messages.

Layout of a Fixed Format Job Event and Output Generation Message
The layout of one message data record in your reply buffer is as follows:

The PWRSPL macro provides four DSECTs, namely RECPRFIX, JCMDS, JGMDS,
and OGMDS, which your application can use to access the message data. DSECT
RECPRFIX describes the record prefix, as shown in Table 24 on page 77 and in the
"VSE/POWER Record Prefix Layout" in “Spool-Access Support Parameter List
(PWRSPL DSECT)” on page 231. The second byte of the prefix indicates that the
succeeding record is a fixed format job completion, job generation, or output
generation message and equates to RECTFJCM (X'09'), RECTFJGM (X'0A'), and

GCM GET CTL PUT

SPL

user program running
in any part i t ion

VSE/POWER part i t ion

spoo l -access suppo r t

1 2

message queue

Figure 6. Retrieval of Queued Fixed Format Job Event and Output Generation Messages

DSECT
RECPRFIX

DSECT
JCMDS/JGMDS/OGMDS

length in bytes

8 96

Figure 7. Layout in Bytes of a Fixed Format Job Event and Output Generation Message

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 143

RECTFOGM (X’0B’). The layout of the fixed format messages is provided by
DSECT JCMDS, JGMDS, and OGMDS. For the layout of DSECTs JCMDS (for job
completion messages), JGMDS (for job generation messages), and OGMDS (for
output generation messages) refer to “Spool-Access Support Parameter List
(PWRSPL DSECT)” on page 231.

Since the length of DSECT JCMDS/JGMDS/OGMDS may change in a future
release of VSE/POWER, use field RECLNGTH to determine the message length.

For layout and description of a fixed format extended event message (XEM), refer
to “GCM-XEM Service” on page 155 below in this chapter.

Message Selection Criteria
When specifying selection criteria for retrieving from a message queue the fixed
format job event (job generation and job completion) and output generation
messages, you have the following options:
v Retrieve all messages.
v Retrieve all messages resulting from jobs with a specific jobname.
v Retrieve all messages resulting from jobs with a specific jobname and

jobnumber.
v Retrieve all messages of a specific type.
v Retrieve all messages of a specific type resulting from jobs with a specific

jobname.
v Retrieve all messages of a specific type resulting from jobs with a specific

jobname and jobnumber.

To retrieve all messages resulting from jobs submitted by an application, specify:
PWRSPL TYPE=UPD,REQ=GCM,USERID=userid
along with:
jobname = ’��������’ (field SPLGJB)
jobnumber = X’0000’ (field SPLGJN)
sub-request = X’00’ (field SPLGSRB)

To retrieve all messages resulting from jobs identified by jobname, specify
PWRSPL TYPE=UPD,REQ=GCM,JOBN=jobname,USERID=userid
along with:
jobnumber = X’0000’ (field SPLGJN)
sub-request = X’00’ (field SPLGSRB)

To retrieve all messages resulting from jobs identified by jobname and jobnumber,
specify

PWRSPL TYPE=UPD,REQ=GCM,JOBN=jobname,JNUM=fieldname,USERID=userid
with:
sub-request = X’00’ (field SPLGSRB)

To retrieve all messages of a specific type resulting from jobs submitted by an
application, specify:

PWRSPL TYPE=UPD,REQ=GCM,USERID=userid
along with:
jobname = ’��������’ (field SPLGJB)
jobnumber = X’0000’ (field SPLGJN)
sub-request = SPLGSRJG to retrive job generation messages

= SPLGSRJC to retrive job completion messages
= SPLGSROG to retrieve output generation messages

(field SPLGSRB)

GCM Service

144 VSE/POWER V9R2 Application Programming

To retrieve all messages of a specific type resulting from jobs identified by
jobname, specify:

PWRSPL TYPE=UPD,REQ=GCM,JOBN=jobname,USERID=userid
along with:
jobnumber = X’0000’ (field SPLGJN)
sub-request = SPLGSRJG to retrieve job generation messages

= SPLGSRJC to retrieve job completion messages
= SPLGSROG to retrieve output generation messages

(field SPLGSRB)

To retrieve all messages of a specific type resulting from jobs identified by jobname
and jobnumber, specify:

PWRSPL TYPE=UPD,REQ=GCM,JOBN=jobname,JNUM=fieldname,USERID=userid
along with:
sub-request = SPLGSRJG to retrieve job generation messages

= SPLGSRJC to retrieve job completion messages
= SPLGSROG to retrieve output generation messages

(field SPLGSRB)

It is also possible to use TYPE=GEN, if you want to use a new SPL. If you omit
the JOBN operand, VSE/POWER uses 'AUTONAME' as the default for jobname.

GCM-OPEN Request Types
The following GCM-OPEN requests are available to access a message queue:
v GCM-OPEN-DELETE request
v GCM-OPEN-KEEP request
v GCM-OPEN-REMOVE request
v GCM-OPEN-PURGE request

The table below shows the SPL fields which are applicable to the various GCM
request types:

Table 46. SPL Fields Applicable to a GCM-OPEN Request

Field Name Applicability Purpose/Contents

SPLGUS M User ID1, 2

SPLGJB O Job name1, 3

SPLGJN O Job number1, 3

SPLGFB1 M Function byte 1

SPLGSRB O Sub-request byte3

SPLXWAIT O Wait interval

SPLGOPT2.SPLGO2CD O Alternative selection criteria

SPLGOPT2.SPLGO2WP O Is used to enable an additional GCM-OPEN
WAIT request during VSE/POWER shutdown
(only applicable for GCM-OPEN-KEEP or
GCM-OPEN-DELETE)

SPLGOPT2.SPLGO2OJ O Check with original job number

Legend: M = Mandatory; O = Optional

1 Generally defined in the PWRSPL macro along with other
spool control values.
2 Part of the message queue address.
3 Used to define the selection criteria.

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 145

Issuing a GCM-OPEN-DELETE Request
You issue a GCM-OPEN-DELETE request by coding a GCM-OPEN request with
function byte SPLGFB1 equated to SPLGF1DM.

This request retrieves job event and output generation messages, then stores them
in your reply buffer, and deletes them from the queue at the time of retrieval. For
example, you apply it, when you are sure that you do not need to retrieve again
the already processed messages. Generally, this is the case, when it is your
application program which validates the messages.

Since all retrieved messages are removed from the queue at the point of retrieval,
there is a lesser risk of running into message queue space shortage as with the
GCM-OPEN-KEEP request.

For the return and feedback information, see Table 49 on page 165 and “Issuing a
GCM-OPEN-KEEP Request.”

Issuing a GCM-OPEN-KEEP Request
You issue a GCM-OPEN-KEEP request by coding a GCM-OPEN request with
function byte SPLGFB1 equated to SPLGF1KM

This service keeps the job event and output generation messages at the time of
retrieval in the queue and stores them in your reply buffer. This allows your
program to retrieve messages again if needed.

In some cases it may be required that your application send the retrieved messages
to another program or to a remote application. It may happen that the
transmission is disrupted and the messages are lost. In such cases, your application
is able to obtain already retrieved messages again, provided that a
GCM-OPEN-KEEP request has been used for the relevant messages.

Finally, when all of your messages are successfully submitted to the remote
application, your program should issue a GCM-REMOVE subrequest in order to
delete all messages which match the selection criteria you specified in the
GCM-OPEN-KEEP request and which your application has already retrieved.

You may provide code in your program to handle some situations which are
reflected by the following return/feedback combinations in fields
PXPRETCD/PXPFBKCD. Your code may also inspect the contents of field
IJBXSLN, which reflects the actual length of data sent to your program contained
in your reply buffer. For the GCM-OPEN-KEEP and GCM-OPEN-DELETE the
return and feedback codes may be as follows:

PXPRCOK/PXP00OK (X'00'/X'00') and field IJBXSLN > 0.
Job event and output generation messages are contained in your reply
buffer, but there are more messages to retrieve by your program.

PXPRCOK/PXP00EOD (X'00'/X'01') and field IJBXSLN ≥ 0.
Job event and output generation messages are contained in your reply
buffer. All messages retrieved.

PXPRCOKF/PXP04NJC (X'04'/X'12')
Job event and output generation message retrieval not available for the
GCM-OPEN request, because the message queue size has been defined
with JCMQ=0 during the VSE/POWER startup.

GCM Service

146 VSE/POWER V9R2 Application Programming

PXPRCOKF/PXP04NMF (X'04'/X'16')
No job event or output generation message has been found for the
GCM-OPEN request.

PXPRCERR/PXP08BTS (X'08'/X'1A')
The reply buffer which you have defined is too small to contain at least
one fixed format job event or output generation message and a prefix.

For additional return and feedback information, see Table 49 on page 165.

Issuing a GCM-OPEN-REMOVE Request
You issue a GCM-OPEN-REMOVE request by coding a GCM-OPEN request with
function byte SPLGFB1 equated to SPLGF1RM.

This service deletes queued messages without passing them to your program. You
may code this request if you want to purge the message queue from all messages
which match the selection criteria you pass along with this request and which have
already been retrieved.

For the GCM-OPEN-REMOVE request, the return and feedback code may be:

PXPRCOK/PXP00OK (X'00'/X'00')
IJBXSLN=0: request processed and all messages deleted.

PXPRCOKF/PXP04NMF (X'04'/X'16')
No message found to delete.

For additional return and feedback information, see Table 49 on page 165.

Issuing A GCM-OPEN-PURGE Request
A GCM-OPEN-PURGE request is issued by coding a GCM-OPEN request with
function byte SPLGFB1 equated to SPLGF1PM.

This service is comparable to the GCM-OPEN-REMOVE request, but removes
queued messages regardless whether they have been already retrieved or not. All
selection criteria valid for the GCM-OPEN-REMOVE request can also be specified
for the GCM-OPEN-PURGE request.

One single request can also be used to delete messages of one or more queues of
the same XPCC-applid. To delete messages for
v A specific user - field SPLGUS must specify the user
v All users - field SPLGUS must contain 8 hexadecimal blanks (X'40'). The value

cannot be specified for other GCM and Spool-access support requests.
v A common user - field SPLGUS must contain eight X'FF' characters

The request will only operate on job event or output generation message queues
identified by the actual XPCC-applid.

For the GCM-OPEN-PURGE request the return and feedback codes may be:

PXPRCOK/PXP00OK
Request processed and all messages deleted. IJBXSLN is set to zero.

PXPRCOKF/PXP04NMF
No message found to delete

For additional return and feedback information, see Table 49 on page 165.

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 147

Optional Specifications Related to the GCM-OPEN Request
Several options can be specified along with a GCM-OPEN request. These options
are specified in the following SPL's fields:
1. SPLXWAIT. Is used to specify a WAIT interval.
2. SPLGOPT2. Is used to enable an additional GCM-OPEN WAIT request during

VSE/POWER shutdown.

SPLXWAIT
Usually, the GCM-OPEN-DELETE/KEEP/REMOVE/PURGE requests can be
referred to as the 'immediate' requests, because VSE/POWER executes the desired
action immediately and at the same time completes the user's pending XPCC
SENDR request with or without job event or output generation messages being
accompanied by the corresponding RC/FDBKs.

GCM-OPEN-DELETE/KEEP requests can also be used with a WAIT option
specified in the SPL.

SPLXWAIT times must be specified in units of seconds. They are interpreted as
follows:

X'0000'
(default), no wait time specified. The request is handled as immediate
GCM-OPEN-DELETE/KEEP

X'0001'-X'FFFF'
valid wait time specified. The request will wait at most that many seconds
for a message to be queued. The maximum value which VSE/POWER
accepts is at most decimal 27962 or hexadecimal X'6D3A'. Any value above
will be accepted but handled by VSE/POWER as 'indefinite' wait
specification without warning the user.

The application program's XPCC SENDR request is posted complete by either
v A selectable message(s), before the wait interval has expired
v Or, by a 'nothing found', RC/FDBK=PXPRCOKF/PXP04NMF (=X'04'/X'16')

condition, when the time interval has expired, and just before a selectable job
event and output generation message has been queued.

When the XPCC reply buffer is too small to hold all selectable messages, the
existing GCM-MORE subrequest may be used to retrieve further messages. This
subrequest is handled as 'immediate'. Only with a new GCM-OPEN-DELETE/
KEEP request a new wait time interval can be specified and will be honored.

For GCM-OPEN-REMOVE and GCM-OPEN-PURGE (see below) requests any time
specification in field SPLXWAIT is ignored.

Multiple GCM-OPEN WAIT requests, that is requests with the same XPCC applid
and Spool-Access support SPLGUS userid, are not allowed. VSE/POWER reflects
such a situation with return and feedback codes (PXPRCNOK/PXP10CAA) and
terminates the connection.

Note: If a GCM-OPEN-KEEP WAIT request follows immediately a preceding
GCM-OPEN-KEEP WAIT request, the request may complete immediately, because
already retrieved messages are still available for the next GCM retrieval request.

GCM Service

148 VSE/POWER V9R2 Application Programming

SPLGOPT2
Using selection criteria of GCM-OPEN request, you can retrieve the messages
resulting from jobs that have specific job name, job number, or both, as described
in “Message Selection Criteria” on page 144. If generating job name, job number, or
both specified in the selection criteria match those job name, job number, or both
that are kept in a message, then this message will be retrieved. Additional options
in the option byte SPLGOPT2 of SPL provide extended selection criterion as
follows:
v SPLGO2OJ

This option can be used with JCM, JGM and OGM, which are generated by jobs
submitted with the same option via PUT-OPEN request (see “Additional Job
Event and Output Generation Message Options” on page 110). If this option is
specified, then the original generating job number is used as selection criteria.
Original generating job number is the one that is taken on the system where a
job was initially submitted. Remember that after submission on a system, the job
can be transferred by PNET for processing to another system where it gets a
new number.
If option SPLGO2OJ is used, then the job number passed along with the
GCM-OPEN request will be compared with the job number that is kept in the
field JGMF1NUM of JGM, JCMFONUM of JCM, or OGMFONUM of OGM.

v SPLGO2CD
This option affects generation messages only (JGM and OGM) and is ignored for
completion message (JCM). SPLGO2CD option overrides SPLGO2OJ option if
both are specified.
If SPLGO2CD is specified, then the job name and number of a generated job (for
JGM) or the job name and number of generated output (for OGM) are used as
selection criteria. Due to option SPLGO2CD, the job name and number passed
along with GCM-OPEN request will be compared with the job name and job
number that are kept in the fields JGMFNNAM and JGMFNNUM for JGM, or in
the fields OGMFNNAM and OGMFNNUM for OGM. For example, this option
can be used to determine whether a specific job, whose name, number, or both
are known, has already been created.

v SPLGO2OJ and SPLGO2CD not specified
In this case actual generating job number is used as selection criteria. Actual
generating job number is the one that a job gets on the system where it is
actually processed. If additional options are omitted, the job name and job
number passed along with GCM-OPEN request will be compared with the job
name and job number which are kept in the fields JCMFNAM and JCMFNUM
(of a job completion message), JGMFNAM and JGMFNUM (of a job generation
message), and OGMFNAM and OGMFNUM (of an output generation message),
refer to “Spool-Access Support Parameter List (PWRSPL DSECT)” on page 231.
This is the default selection criteria.

You can enable an additional last GCM-OPEN WAIT request within a single XPCC
connection during VSE/POWER shutdown. Use the additional option in the option
byte SPLGOPT2 of SPL as follows:
v SPLGO2WP. By default, VSE/POWER terminates outstanding GCM-OPEN

WAIT requests during PEND processing. However, if you need to retrieve any
essential messages before VSE/POWER shutdown is complete, you can specify
SPLGO2WP option to force VSE/POWER to accept an additional last
GCM-OPEN WAIT request during shutdown. Specify only a finite wait interval
in the further request to prevent unnecessary delay in the VSE/POWER
termination.

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 149

The SPLGO2WP option doesn't affect PEND FORCE and PEND IMM processing,
GCM sub-requests (GCM-MORE and GCM-REMOVE) ignore this option.

Retrieving Messages from Common Queues
An application program that wants to address a common message queue by the
GCM Service, must connect to VSE/POWER with the corresponding XPCC-applid
and must specify the X'FF...FF' common userid in SPLGUS to match the
identification of the desired queue. All GCM Services valid for the default single
job event and output generation message queues may also be used to request
messages from common queues. The fields ...FPRIV and ...FUSID of the dummy
sections JCMDS, JGMDS, and OGMDS may be helpful in identifying the owner of
a message when the message is retrieved from a common queue.

GCM Subrequests
Depending on the request type used and the accompanying return and feedback
information, it may be desirable to continue with a GCM-MORE subrequest or a
GCM-REMOVE subrequest. Refer to “Coding Sequence for a GCM Service” on
page 153 for the coding sequence allowed for these two subrequest types.

Issuing a GCM-MORE Subrequest
Your application should issue a GCM-MORE subrequest when it is informed that
not all messages fit in its reply buffer. This is indicated by the return and feedback
code combination PXPRETCD/PXPFBKCD=X'00'/X'00' and any data length
indicated in the IJBXSLN field. Your program should repeat the GCM-MORE
subrequest so long as there are still messages to retrieve. For a GCM-MORE
subrequest, do the following coding:
v Set byte PXUBTYP of the XPCCB to zero.
v Set byte PXUACT1 of the XPCCB to the value equated to PXUATGCM
v Issue an XPCC FUNC=SENDR request passing a null buffer (set IJBXBLN to

zero).

For the return and feedback codes provided by VSE/POWER, please refer to the
GCM-OPEN-KEEP or GCM-OPEN-DELETE requests and Table 49 on page 165.

Issuing a GCM-REMOVE Subrequest
Your program should issue a GCM-REMOVE subrequest when you are sure that
all messages have reached your remote application. This request deletes all
messages which match the selection criteria of the actual GCM-OPEN request and
which have been retrieved already. You can only issue this request after a
GCM-OPEN-KEEP request. For a GCM-REMOVE subrequest, do the following
coding:
v Set byte PXUBTYP of the XPCCB to zero.
v Set byte PXUACT1 of the of the XPCCB to the value equated to PXUATDEL
v Issue an XPCC FUNC=SENDR request passing a null buffer (set field IJBXBLN

to zero).

VSE/POWER informs you with the return and feedback information
PXPRCOK/PXP00EOD (X'00'/X'01') if all messages have been deleted.

GCM Service

150 VSE/POWER V9R2 Application Programming

Additional Considerations

Wait Specification
When specifying the wait option, most of the interactions needed to retrieve
messages are equal to those needed for the immediate GCM request. However,
some considerations about terminating a 'waiting for message' request should be
done.

The following events will terminate a waiting request:

Message event
The application program's XPCC SENDR ECB is posted with one or more
messages available in the reply buffer

Wait completion
The application program's XPCC SENDR ECB is posted with
RC/FDBK=PXPRCOKF/PXP04NMF and an empty reply buffer

PSTOP SAS cmd.
The application program's XPCC SENDR ECB is posted with XPCC reason
code IJBXDISC and IJBXCPRG.

Program action
The application program's logic decides to stop waiting by an XPCC
DISCPRG request.

PEND command
Gradual termination of all active VSE/POWER jobs on job boundary is
desired. Therefore a waiting application should be informed that
VSE/POWER has entered the termination (PEND) period, where all tasks
should cease processing.
1. If VSE/POWER enters the PEND state, while a GCM-OPEN WAIT

request is in progress, the application is posted immediately and
PXPIPSH is passed on to the application in information byte PXPINFO.
The connection is terminated.

2. If the GCM-OPEN WAIT request has been set up with SPLGO2WP, the
application is posted immediately, and PXPIPSH is passed on to the
application. The application may issue a GCM-OPEN WAIT request
with SPLGO2WP again. Any other request will be rejected.

Special Userid
Field SPLGUS used in the GCM-OPEN-DELETE/KEEP/REMOVE/PURGE
requests may contain the 8-byte hexadecimal value X'FF...FF'. This value is used to
identify a common job event and output generation message queue.

The value cannot be specified for PUT,GET and CTL Spool-access requests.

Reflecting Common Job Event and Output Generation Message
Queues

For better operator readability a common job event and output generation message
queue is identified by the 8-byte identifier '-COMMON-' replacing the USERID
placeholder in the
v Statistics Status Report (Support for Retrieval of Job Event and Output

Generation Messages)
v Message 1Q4AI - to reflect the loss of messages

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 151

v Message 1R48I - the PDISPLAY Active report

Identifying The Lost Message Condition

While job event and output generation messages are queued to a job event
message queue, it may happen that a message is dropped because the specification
in the SET JCMQ statement was too small. The application which retrieves
messages is informed by field PXPLEMC, located in the user data as an overlay of
field PXPROFF, about the number of lost messages at this queue since the last
GCM-OPEN request completed. The lost message count is passed to the
application only for GCM-OPEN WAIT requests.

Additionally, message 1Q4AI is issued on the console in a time interval of 60
seconds whenever a job event or output generation message is discarded.

The statistics status report identifies the XPCC application ID and PWRSPL userid
of the job event and output generation message queue which has the largest
amount of lost messages of all existing queues since the last VSE/POWER startup.

Reflecting Active GCM Applications

Any immediate GCM request being handled by VSE/POWER can be made visible
by the PDISPLAY A,SAS command, which in turn identifies the corresponding
VSE/POWER service task by the existing console display message 1R48I. A new
waiting GCM request may be visible for a long period. It must even be addressable
by the central operator. Therefore, message 1R48I is extended to identify
Spool-access support connections, which wait for job event and output generation
messages:

1R48I SAS,conn-id, SAS=xpcc-applid,splgus-userid, REQ=GCM
1R48I SAS,conn-id, SAS=xpcc-applid,splgus-userid, REQ=GCM-WAIT

If a common message queue is affected, splgus-userid is replaced by the 8-byte
constant '-COMMON-'.

A 'blank' splgus-userid used in the GCM-OPEN-PURGE request will be displayed
by the 8-byte constant '--BLNK--'.

Multiple GCM Requests

In order to retrieve fixed format job event and output generation messages it may
be necessary to code several application programs and run them at the same time,
or it may be necessary to code a sequence of GCM-OPEN requests in one single
program. In such cases, the following should be taken into consideration.
v Concurrent GCM Requests

If several application programs process GCM requests at the same time, it is
recommended that each program use its own specific pair of XPCC
application-ID and PWRSPL user-ID. This ensures that no messages are retrieved
and deleted by an application program while these messages are expected by
another application program.
For example, consider two programs which use the same application ID and
user ID along with their GCM requests. Furthermore, assume that program A
issues a GCM-OPEN-KEEP request. After retrieval of the first message buffer,
VSE/POWER signals that there are more messages to retrieve. At this point it
may happen that program B gets control and issues a GCM-OPEN-DELETE

GCM Service

152 VSE/POWER V9R2 Application Programming

request. It is now very likely, that messages are retrieved and deleted by
program B which are expected to be retrieved by the next GCM-MORE request
of program A. If this occurs, it is possible that not all messages or even no
message at all be retrieved by the GCM-MORE request.

v Sequential GCM Requests
If you code several GCM-OPEN requests in one application program and you
want to use the same XPCC application ID and PWRSPL userid with the next
sequential GCM-OPEN request, it is a good practice to finish a
GCM-OPEN-KEEP request first by issuing a GCM-REMOVE or
GCM-OPEN-REMOVE request. However, if you do not purge the message
queue before your next GCM-OPEN request starts processing, you will retrieve
all messages which match the specified selection criteria, regardless of whether
these messages have been previously retrieved or not.

Shared Processing

VSE/POWER will return the job event and output generation messages to that
system of a shared system complex on which the original job has been submitted.
If, for example, a job which has been submitted with option SPLGF1QM on the
system with the VSE/POWER SYSID=3, is processed on another system (SYSID≠3),
VSE/POWER will ensure that:
v The event message of this job is returned to the originating SYSID=3 where
v The event message is queued to the message queue specified by the job

submitter. If, however, a disk I/O error occurs while returning messages, the
messages may be lost.

Networking

If a job is submitted with the 'queue-event-message' option and this job is
processed on another node (which must be a VSE/POWER node of at least Version
5.2), the resulting job event and output generation messages are returned to the
originating node and queued for retrieval.

Discontinuing the GCM-Service
You can terminate the GCM service using either of these ways:
1. Request another OPEN request (GET, PUT, CTL, GCM) of the spool-access

support.
2. Specify a DISCONN or DISCPRG XPCC request.

Coding Sequence for a GCM Service
The following coding sequence shows the steps in which the spool-access support
user's application program interacts with VSE/POWER using the
GCM-OPEN-KEEP or GCM-OPEN-DELETE service.

Table 47. GCM Service Processing Sequence

Step Coding in your application program Comments

...

1 Open the service
XPCC FUNC=SENDR

Your program's send buffer must
contain an SPL generated for
requesting the GCM service for
XPCC-applid.userid.

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 153

Table 47. GCM Service Processing Sequence (continued)

Step Coding in your application program Comments

2 Check the return codes
in register 15 and in the
XPCCB (byte IJBXRETC)

3 WAIT IJBXSECB

4 Check the reason code (in
the XPCCB byte IJBXREAS)

5 Check the VSE/POWER return
and feedback codes (in the
XPCCB bytes PXPRETCD and
PXPFBKCD, respectively)

6 Check for and evaluate
messages returned by
VSE/POWER

If messages are to be returned for the
XPCC-applid.userid application, then
VSE/POWER passes them to your
program's reply buffer.

7 If feedback code PXP00EOD does
not indicate availability of
additional messages, go to step 9;
else proceed.

8 Get additional messages by
XPCC FUNC=SENDR,...

and return to step 3.

Coding for this purpose is required
only if the feedback code indicates
that more messages are queued. Your
program must set up a GCM-MORE
request.

9 End of Service

The following coding rules and sequences of the various GCM-OPEN requests and
GCM subrequests are valid:

GCM-OPEN-KEEP Subrequests

�� �GCM-OPEN-KEEP
GCM-MORE
GCM-REMOVE

��

GCM-OPEN-DELETE Subrequest

�� �GCM-OPEN-DELETE
GCM-MORE

��

�� GCM-OPEN-REMOVE ��

�� GCM-OPEN-PURGE ��

GCM Service

154 VSE/POWER V9R2 Application Programming

If the sequence rules are not obeyed, VSE/POWER stops the request, and
PXPRETCD/PXPFBKCD = PXPRCERR/PXP08ROS (X'08'/X'25) is returned to the
application.

GCM-XEM Service

GCM-XEM is an extension of the GCM service for eXtended Event Message
support. A user-written application program uses this extended service for both
initializing generation of extended event messages and extracting queued
messages.

Overview of eXtended Event Messages Handling

The generation of XEMs differs significantly from the generation of
JCMs/JGMs/OGMs. JCMs/JGMs/OGMs are created by VSE/POWER only for a
job which was submitted via the SAS interface with specific options. XEMs are not
related to the execution of any specific job. An application program initializes XEM
using a special SAS request. Subsequently, VSE/POWER begins to generate XEMs
until the application program terminates this process.

XEMs cover a much wider set of events compared to JCMs/JGMs/OGMs (refer to
“Generation of eXtended Event Messages” on page 156). Therefore, while only a
few JCMs/JGMs/OGMs are issued, many XEMs can be produced.

VSE/POWER puts a generated XEM in a separate message queue which is not
used for keeping JCMs/JGMs/OGMs. This queue has a fixed number of message
slots (one slot for one message). If there is no free slot for a new message (the
queue is full), then the message is discarded and lost for the application.

VSE/POWER provides every XEM application with its own queue; the total
number of concurrent XEM applications is limited by a predefined value (refer to
“XEM Support Capacity” on page 157). A message queue is only accessible by the
initiating application. Thus, the same message can be kept within several queues
owned by different applications simultaneously. Retrieving a message from one
application queue doesn't result in retrieving the same message from another
application queue.

At initialization of the XEM service, an application program can specify selection
criterion – types of queue entries whose events will result in messages queuing.
RDR, LST, or PUN entries can be selected here, as well as any combinations of
these types.

VSE/POWER returns queued messages to an application as batches, that is, several
messages at once within a reply buffer. Similar to JCMs/JGMs/OGMs, each XEM
is preceded in the reply buffer by a record prefix. The reply buffer has a fixed
length (refer to “Retrieving eXtended Event Messages” on page 160), so an
application must reserve storage of the predefined size for this buffer. Note,
however, that the buffer may not completely filled if fewer messages are available
at retrieval time.

Messages are returned by VSE/POWER in FIFO order. There is no selection criteria
for messages retrieval (all queued messages are returned unconditionally). The slot
of a retrieved message becomes available for storing a new message.

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 155

Concurrent usage of the GCM-XEM service by several applications with the same
ID is not allowed. VSE/POWER rejects attempts to repeatedly start the XEM
service by the same application ID.

Generation of eXtended Event Messages

VSE/POWER generates XEMs when the following events occur:
v A new entry has been created within a VSE/POWER queue or spooled to a tape.

An entry can be created, for example, by spooling or segmenting output,
submitting a job via reader or SAS application, punching the account file,
duplicating another entry (by using * $$ LSTDUP, or * $$ PUNDUP statement, or
PCOPY operator command).

v An existing entry has been altered in a VSE/POWER queue. An entry is altered
as a result of processing (with initial disposition K) or issuance of specific
operator commands. Entry processing here means, for example, printing or
punching an output, getting an entry via SAS interface (or by GETSPOOL
macro) or sending it via PNET. Operator commands that can alter queue entries
are: PRELEASE, PHOLD and PCANCEL, externally or internally invoked
PALTER and PFLUSH. Note, that browsing an entry doesn't result in its
alteration and, therefore, is not recorded.

v An existing entry has been deleted from RDR, LST, PUN or XMT queue.
Deletion takes place, for example, if an output (with initial disposition D) is
printed or punched, a job (with DISP=D) is executed or canceled (PCANCEL
operator command issued), an entry is deleted by PDELETE command, or the
expiration time of an entry is reached (PDELETE is invoked internally).

Destination of eXtended Event Messages

VSE/POWER uses the application ID specified via the APPL operand of the
XPCCB macro to address the message queue for keeping extended event messages.
VSE/POWER ignores the user ID specified in the USERID operand of the PWRSPL
macro, thus an application program can omit this specification for GCM-XEM
requests. The output of the ‘PDISPLAY A,SAS’ operator command always shows
XEM as the user ID for status of the SAS task which has started the XEM service.
Refer to VSE/POWER Administration and Operation, SC34-2625 for more detailed
information.

VSE/POWER reserves storage for the application XEM queue when the application
starts the XEM service, and releases the storage when the application stops the
service (or disconnects VSE/POWER). While the queue exists, newly generated
extended event messages are saved in it, and the pertinent application can retrieve
them from the queue. VSE/POWER actually processes messages in the following
way. When a new extended event message has been produced (a queue entry was
created, altered or deleted), VSE/POWER looks through the running applications
which have started an XEM service and puts the message into those queues where
a specified selection criterion is satisfied. After that, it starts waiting for a new
message.

When storage of any application message queue is released, all messages that were
not retrieved are discarded for this application.

GCM Service

156 VSE/POWER V9R2 Application Programming

Storage Allocation for XEM Support

Storage for XEM support is reserved in the two-step procedure as follows:
v VSE/POWER on its own startup reserves storage for the XEM Control Block

(XMCB) which controls addresses of extended event message queues. The
lifetime of XMCB continues until VSE/POWER shutdown.

v When an application starts the XEM service, VSE/POWER reserves storage for
the message queue of this application. This storage is released when the
application stops the XEM service.

The size of the XEM Control Block (XMCB) does not exceed 4 KB of real (fixed)
storage of the VSE/POWER partition. One message queue occupies 512 KB within
the GETVIS-31 area of the VSE/POWER partition. Ensure that sufficient real
storage is available for the XMCB, and sufficient GETVIS-31 storage is available for
the applications' message queues. If there is no sufficient real storage for the
XMCB, then XEM support is unavailable. If GETVIS-31 storage is insufficient for
an application message queue, then VSE/POWER cannot start the XEM service for
the requesting application.

VSE/POWER does not provide any notification about insufficient real storage for
the XMCB during its startup. Instead, it informs an application program and
operator as follows:
v Return and feedback codes are loaded into the verification SPL which is

returned to the application after the GCM-XEM-START request (refer to
“Starting the GCM-XEM Service” on page 159).

v Message 1Q3KI (RC=0001) is displayed on the system console after the
GCM-XEM-START request has been issued.

v The output of the ‘PDISPLAY STATUS’ operator command shows that XEM
support is unavailable.

If VSE/POWER cannot start the XEM service for an application because of
insufficient GETVIS-31 storage, it notifies the requesting application program and
operator as follows:
v Return and feedback codes are loaded into the verification SPL and returned to

the application after the GCM-XEM-START request (refer to “Starting the
GCM-XEM Service” on page 159).

v Message 1Q3KI (RC=0004) is displayed on the system console after the
GCM-XEM-START request has been issued.

XEM Support Capacity

Regarding storage requirement for XEM support, refer to “Storage Allocation for
XEM Support.”

The message queue of an application contains 2048 slots for keeping extended
event messages (one slot for one message). This number is reflected in the output
of the ‘PDISPLAY STATUS’ operator command. If there is no free slot for a new
message (the queue is full), then the message is discarded (lost for the application
program) and VSE/POWER notifies the application and operator as follows:
v Number of lost messages is returned to the application during messages

retrieval in the two-byte field PXPLEMC of the XPCCB (see “Retrieving
eXtended Event Messages” on page 160).

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 157

v Message 1Q4AI RC=0004 is displayed on the system console each time an
extended event message is lost for any application and when at least 60 seconds
have passed since the last appearance of 1Q4AI RC=0004 (see “Retrieving
eXtended Event Messages” on page 160).

v Output of the ‘PDISPLAY STATUS’ command shows ID of the application which
lost the maximal number of extended event messages and this number itself.

VSE/POWER supports up to 32 running applications which use XEM service
concurrently. This number is reflected in the ‘PDISPLAY STATUS’ command
output. If the limit is exceeded, then VSE/POWER informs the requesting
application program and operator as follows:
v Return and feedback codes are passed along with the verification SPL which is

returned to the user application program after the GCM-XEM-START request
(see “Starting the GCM-XEM Service” on page 159).

v Message 1Q3KI (RC=0002) is shown on the system console after the
GCM-XEM-START request has been issued.

v Report of the ‘PDISPLAY STATUS’ command shows number of currently
running applications which use XEM support.

How to Use XEM Support

XEM support is provided with the extended GCM service only (GCM-XEM). This
means that an application invokes this extended service for both initializing
message queuing and retrieving queued messages. Such behavior differs from
usage of JCM/JGM/OGM support, when an application requests PUT (or CTL)
service to submit a job and to initialize messages queuing, and later uses GCM
service for retrieving messages.

In general, after an application has been identified to XPCC and connection to
VSE/POWER has been established (as described under “Setting Up a
Communication Path” on page 59), you must adhere to the following steps for
inquiring extended event messages:
v Start GCM-XEM service (get access to XEM support).

When an application has requested the service, VSE/POWER reserves storage
for the application message queue and begins queuing messages for this
application. Start of XEM service doesn't itself result in retrieving messages. To
retrieve queued messages, the application must open GCM-XEM service.

v Retrieve XEM message.
To retrieve messages, the application must obtain access to the XEM message
queue (in other words, open GCM-XEM service). When the service is opened by
the application, VSE/POWER waits until the reply buffer of this application is
full. When the buffer is full or the waiting period (explicitly specified by the
application or the default) is expired, then the reply buffer is returned to the
application. If all available messages do not fit in the reply buffer (which is
indicated by return and feedback codes), then the application can retrieve them
immediately using GCM-MORE sub-request. An application can also reopen the
GCM-XEM service to retrieve messages that were not returned and to wait for
new messages.

v Stop GCM-XEM service (close access to XEM support).
VSE/POWER releases storage occupied by the application message queue (all
messages that were not retrieved are discarded).

For details, refer to the sections below.

GCM Service

158 VSE/POWER V9R2 Application Programming

Layout of a Fixed Format eXtended Event Message

Layout of an extended event message data record within the reply buffer is similar
to layout of the other fixed format messages (refer to “Layout of a Fixed Format
Job Event and Output Generation Message” on page 143):

The PWRSPL macro provides DSECT's RECPRFIX and XEMDS which applications
can use to access the extended event message data. For a description of the record
prefix (DSECT RECPRFIX), refer to Table 24 on page 77; and to the "VSE/POWER
Record Prefix Layout" section in “Spool-Access Support Parameter List (PWRSPL
DSECT)” on page 231. The second byte of the prefix indicates that the following
record is a fixed format extended event message and is equal to RECTFXEM
(X’0C’). For layout of a fixed format extended event message (DSECT XEMDS),
refer to “Spool-Access Support Parameter List (PWRSPL DSECT)” on page 231.

Since the length of DSECT XEMDS may change in a future release of
VSE/POWER, use field RECLNGTH to find out the actual length of an extended
event message.

Starting the GCM-XEM Service

To start the XEM service, an application program must issue the GCM-XEM-START
request with the following specifications:
v Specify SEND buffer type within XPCCB as SPL: set field PXUBTYP equated to

PXUBTSPL, specify SPL address and length in the XPCCB fields IJBXADR and
IJBXBLN.

v Set up an SPL as
PWRSPL TYPE=UPD,REQ=GCM

and mandatory function byte SPLGFB1 equated to SPLGF1XS.
Instead of TYPE=UPD, TYPE=GEN can be used, if you want to specify a new
SPL. As opposed to the GCM-OPEN request, specification of USERID is not
needed for GCM-XEM-START, and actually VSE/POWER ignores this
specification (refer to “Destination of eXtended Event Messages” on page 156).
Optionally, you can reduce the stream of queuing messages by specifying
selection criterion within the extended flag byte SPLXFLG1. Specify:
– SPLX1XRD to queue event messages related to RDR entry type only;
– SPLX1XLS to queue event messages related to LST entry type only;
– SPLX1XPN to queue event messages related to PUN entry type only.
To select more than one queue entry type, apply the logical sum of the above
flags. If you omit specification of selection criterion, VSE/POWER will queue
extended event messages for entries of all types (RDR, LST, and PUN).

Note: Selection criterion determines queue entry types, but not VSE/POWER
queues. If, for example, you specify SPLX1XLS, it will result in queuing event

DSECT
RECPRFIX

DSECT

length in bytes

8 248

XEMDS

Figure 8. Layout in Bytes of a Fixed Format eXtended Event Message

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 159

messages for both LST and XMT (I=L) entries. The actual location of an entry is
flagged within the message; refer to DSECT XEMDS in “Spool-Access Support
Parameter List (PWRSPL DSECT)” on page 231.

VSE/POWER indicates the result of GCM-XEM-START request processing by
means of return/feedback codes combination in fields PXPRETCD/PXPFBKCD
and, additionally, by feedback-2 code in the field PXPFBKC2. After the application
program has been posted in the field IJBXSECB of XPCCB, it can analyze these
codes:

PXPRCOK/ PXP00OK (X’00’/X’00’)
VSE/POWER has started XEM service for requesting application successfully.

PXPRCERR / PXP08XUA / PXPC24CA (X’08’/X’4C’/X’01’)
XEM support is unavailable because there is insufficient real (fixed) storage for
the XMCB. These codes are accompanied by 1Q3KI console message with
RC=0001 (refer to “Storage Allocation for XEM Support” on page 157).

PXPRCERR / PXP08XUA / PXPC24CB (X’08’/X’4C’/X’02’)
VSE/POWER can not start XEM service for an application because the
maximum number of applications which can use XEM support concurrently
would be exceeded. Codes are accompanied by 1Q3KI console message with
RC=0002 (refer to “XEM Support Capacity” on page 157).

PXPRCERR / PXP08XUA / PXPC24CC (X’08’/X’4C’/X’03’)
VSE/POWER can not start XEM service for an application because XEM
application with the same ID is already running. These codes are accompanied
by 1Q3KI console message with RC=0003.

PXPRCERR / PXP08XUA / PXPC24CC (X’08’/X’4C’/X’04’)
VSE/POWER can not start XEM service for an application because there is
insufficient GETVIS-31 storage for the application message queue. These codes
are accompanied by 1Q3KI console message with RC=0004 (refer to “XEM
Support Capacity” on page 157).

For additional return and feedback information, see Table 49 on page 165.

Retrieving eXtended Event Messages

Retrieving extended event messages differs from retrieving other fixed format
messages. At first, VSE/POWER returns retrieved XEMs in a 4KB reply buffer
which can include up to 16 messages. Secondly, VSE/POWER fills the reply buffer
over a specified time interval: XEMs are returned to an application if the buffer is
full or the time interval has expired. If a application program does not specify a
time interval or if zero interval is specified, then the default value of 10 seconds is
used.

To retrieve XEMs, an application must issue GCM-XEM-OPEN request with the
following specifications:
v Specify SEND buffer type within XPCCB as SPL (set field PXUBTYP equated to

PXUBTSPL), specify SPL address and length in the XPCCB fields IJBXADR and
IJBXBLN.

v Set up a message reply buffer to which the retrieved messages will be passed:
– Specify buffer address in the XPCCB field IJBXRADR;
– Specify buffer size (number of bytes) in the XPCCB field IJBXRLNG.

Since VSE/POWER returns messages in the 4 KB reply buffer, each
application must specify 4096 for the buffer size in the field IJBXRLNG. If an

GCM Service

160 VSE/POWER V9R2 Application Programming

application specifies a smaller buffer, VSE/POWER will reject the request. A
larger buffer will be accepted but will not be completely used.

v Set up an SPL as follows:
PWRSPL TYPE=UPD,REQ=GCM

and the mandatory function byte SPLGFB1 equated to SPLGF1XM (TYPE=GEN
can be used instead of TYPE=UPD). In the same way as for GCM-XEM-START,
specification of USERID here is ignored by VSE/POWER (refer to “Starting the
GCM-XEM Service” on page 159).
Optionally, you can specify a time interval (number of seconds) within the
SPLXWAIT field to overwrite the default value of 10 seconds.

When VSE/POWER receives the GCM-XEM-OPEN request, it starts waiting for
filling of the message buffer. When the buffer is full or the wait interval has
expired, VSE/POWER returns messages (if any) to the application and posts the
request in the XPCCB field IJBXSECB. After that, your program can evaluate return
and feedback codes in the fields PXPRETCD and PXPFBKCD (and additionally
feedback-2 code in the field PXPFBKC2) to clarify, for example, whether messages
are available in the reply buffer or an error occurred:

PXPRCOK/PXP00OK (X’00’/X’00’)
The reply buffer is full, and there are more messages that were not retrieved.

PXPRCOK/PXP00EOD (X’00’/X’01’)
There are messages in the reply buffer, and no more messages were available
at retrieval time.

PXPRCOKF/PXP04NMF (X’04’/X’16’)
VSE/POWER didn't find any messages during wait interval.

PXPRCERR/PXP08BTS (X’08’/X’1A’)
The size of the reply buffer specified by application program is less than the
predefined value of 4096 bytes. In this case VSE/POWER cancels all queued
messages (if any) and stops XEM service for the application (in the same way
as when processing the GCM-XEM-STOP request, refer to “Stopping the
GCM-XEM Service” on page 163).

PXPRCERR/PXP08ROS/PXPC225H (X’08’/X’25’/X’08’)
Application has issued GCM-XEM-OPEN request prior to successful
GCM-XEM-START request.

For other return and feedback codes, refer to Table 49 on page 165.

Your application program can also inspect the following fields of XPCCB returned
by VSE/POWER:
v IJBXSLN: actual length of messages sent to the application. 4 KB reply buffer can

be filled incompletely if less than 16 messages are available by the expiration of
waiting period.

v PXPLEMC: number of discarded messages (lost by your application). This
number is counted since the moment when XEM service was started (request
GCM-XEM-START is issued) and neither decremented, nor cleared until service
stop (GCM-XEM-STOP is issued). Maximum possible value of PXPLEMC field is
X’7FFF’, which indicates that the number of discarded messages is equal to or
greater than 32767.

For retrieving unreturned messages, an application can issue the GCM-MORE
subrequest (see “GCM Subrequests” on page 150). This subrequest can be repeated

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 161

as many times as needed until all available messages have been retrieved. To
retrieve more available messages, the application can also issue the
GCM-XEM-OPEN request again with the same or another time interval. Note that
the GCM-MORE subrequest is posted by VSE/POWER immediately even if the
reply buffer is not full (as opposed to the GCM-XEM-OPEN request, which is
posted when the buffer is full or the waiting period has expired).

Applicability of Further Requests for Retrieving eXtended
Event Messages

The Table 48 reflects the applicability of further requests for XEMs retrieval
depending on the return and feedback codes of the previous GCM-XEM-OPEN
and GCM-MORE requests.

Table 48. Applicability of further requests for XEM retrieving

Return/Feedback
Codes Further GCM-MORE Further GCM-XEM-OPEN

PXP00OK/PXP00OK Applicable Applicable

PXP00OK/PXP00EOD Rejected with Return/Feedback/
Feedback-2 codes
PXPRCERR/PXP08ROS/PXPC225I
(X’08’/X’25’/X’09’)

Applicable

PXPRCOKF/
PXP04NMF

Rejected with Return/Feedback/
Feedback-2 codes
PXPRCERR/PXP08ROS/PXPC225D
(X’08’/X’25’/X’04’)

Applicable

Cancelling eXtended Event Messages Retrieving

Sometimes, you might need to cancel retrieving of messages, that is, to revoke a
pending GCM-XEM-OPEN request (for example, if the wait interval specified was
too long, but there are no XEM events so far). The following options can be used
to accomplish this:
v Issue the XPCC CLEAR request from your application program (refer to z/VSE

System Macros Reference, SC34-2638 and z/VSE System Macros User's Guide,
SC33-8407).

v Enter ‘PCANCEL jobname’ or ‘PFLUSH partition’ (Format 2) command at the
operator console.

As a result, VSE/POWER stops the XEM service for the application (refer to
“Stopping the GCM-XEM Service” on page 163) and disconnects from the
application (if PCANCEL or PFLUSH operator command was entered when job
processing is canceled as well). Note that the XPCC CLEAR function can only be
used during message retrieval (otherwise, it will be rejected by the XPCC interface
with the return code IJBXNREQ, refer to “Stopping the GCM-XEM Service” on
page 163).

Please remember that operator command PSTOP format 9 (PSTOP
SAS,ALL|connect_ID) does not result in the immediate cancellation of XEMs
retrieving. Instead, the command only initiates delayed stopping of the SAS XEM
task. The task will be stopped when the pending GCM-XEM-OPEN request is
posted.

GCM Service

162 VSE/POWER V9R2 Application Programming

Stopping the GCM-XEM Service

To stop the XEM service, an application must issue the GCM-XEM-STOP request
with the following specifications:
v Specify SEND buffer type within XPCCB as SPL: set field PXUBTYP equated to

PXUBTSPL, specify SPL address and length in the XPCCB fields IJBXADR and
IJBXBLN.

v Set up an SPL as
PWRSPL TYPE=UPD,REQ=GCM

and the mandatory function byte SPLGFB1 equated to SPLGF1XT.

When XEM is stopped, VSE/POWER terminates queuing messages for the
requesting application and releases the storage occupied by the application's
message queue (messages that were not returned, if any, are canceled). After that,
your application can issue a new SAS request, for example, the GCM-XEM-START
to start the XEM service again with the same or another selection criterion (see
“Starting the GCM-XEM Service” on page 159).

VSE/POWER indicates the result of GCM-XEM-STOP request processing by means
of return/feedback codes combination in fields PXPRETCD/PXPFBKCD and,
additionally, by feedback-2 code in the field PXPFBKC2:

PXPRCOK/PXP00OK (X’00’/X’00’)
XEM service has been stopped successfully.

PXPRCERR/PXP08ROS/PXPC225H (X’08’/X’25’/X’08’)
GCM-XEM-STOP was issued prior to successful execution of
GCM-XEM-START request.

XEM service will also be stopped if the application breaks communication path to
VSE/POWER via the XPCC DISCONNECT request (instead of using the
GCM-XEM-STOP request), or XEMs retrieving has been canceled (see “Cancelling
eXtended Event Messages Retrieving” on page 162). Note however, that the
DISCONNECT request will result in actual disconnect if the connection is not busy
at that moment. Otherwise, in particular, if there is a pending GCM-XEM-OPEN
request, the XPCC interface rejects DISCONNECT.

The table below summarizes system's replies on attempts to stop XEM service
depending on:
v the action done by the application program or central operator,
v the status of the GCM-XEM-OPEN request.

Action done

Status of the GCM-XEM-OPEN request

Active (IJBXSECB is
pending)

Not active (IJBXSECB is
posted)

Application issued XPCC
CLEAR request

GCM-XEM service for
requesting application is
stopped; VSE/POWER is
disconnected from the
requesting application.

The function is rejected by
the XPCC interface
(IJBXRETC= IJBXNREQ).

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 163

Action done

Status of the GCM-XEM-OPEN request

Active (IJBXSECB is
pending)

Not active (IJBXSECB is
posted)

Application issued XPCC
DISCONNECT request

The function is rejected by
the XPCC interface
(IJBXRETC=IJBXNDC2).

GCM-XEM service for the
requesting application is
stopped; VSE/POWER is
disconnected from the
application.

Application issued
GCM-XEM-STOP request

The request is rejected by the
XPCC interface
(IJBXRETC=IJBXCBSY).

GCM-XEM service for
requesting application is
stopped; VSE/POWER is not
disconnected from the
application and SAS user
task continues working.

Operator entered PCANCEL
or PFLUSH command on the
console

GCM-XEM service for the
application is stopped;
VSE/POWER is disconnected
from the application.

GCM-XEM service for the
application is stopped;
VSE/POWER is disconnected
from the application.

Restrictions of XEM Support

XEM support has the following restrictions:
v VSE/POWER does not route generated XEM messages to other systems of a

shared spooling complex, nor to other PNET nodes.
v XEMs are generated for master and duplicate queue entries but without

indication whether the queue entry is master or duplicate.
v Creation and deletion of an internal queue entry (class=X'FA') is ignored by

XEM support. Thus, XEM is not generated for $SPLnnnn LST entry, which
VSE/POWER creates temporarily for accumulating display lines of ‘PDISPLAY
queue’ command submitted by CTL service request (refer to Chapter 7, “CTL -
Passing a Command,” on page 65).

v Deletion of a queue entry ‘in creation’ is ignored by XEM support. For example,
if job input is canceled by PFLUSH operator command (Format 1), XEM is not
created. XEM will also not be created for output purged via PURGE=nnnn
operand of * $$ LST statement.

GCM Service

164 VSE/POWER V9R2 Application Programming

Return and Feedback Codes from the GCM Requests
The return and feedback codes provided by VSE/POWER for the GCM service
requests are described in Table 49. The meaning of these codes is shown in Table 80
on page 297.

Table 49. Return and Feedback Codes for GCM-Service-Related Requests

Request Type

Mnemonic
Return
Code

Feedback
Code

GCM-
OPEN

(KEEP /
DELETE)

GCM-
MORE

GCM-
REMOVE

GCM-
OPEN

REMOVE
/ PURGE

GCM-
XEM-

START

GCM-
XEM-
OPEN

GCM-
XEM-
STOP

PXP00OK
PXP00EOD

PXP04SOA
PXP04NJC
PXP04NMF

PXP08SPL
PXP08REQ
PXP08JNM
PXP08UID
PXP08BTS
PXP08IAB
PXP08IBT
PXP08ROS
PXP08BOS
PXP08FB1
PXP08JNO
PXP08XUA

PXP0CINS
PXP0CIXF

PXP10PSP
PXP10SIE
PXP10CAA
PXP10MST

00

04

08

0C

10

00
01

09
12
16

01
02
05
09
1A
1C
24
25
27
2B
31
4C

01
02

05
06
03
07

X
X

X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X

X
X
X
X

X
X

X

X

X

X
X

X
X

X

X

X

X

X
X

X
X

X

X
X
X

X
X
X
X

X
X
X
X
X
X

X
X

X
X

X

X

X
X

X

X

X
X

X
X

X

X
X

X

X
X

X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

GCM Programming Example

Control Statements for Punching the Example
This example will punch the GCMEXAMP.Z into the VSE/POWER punch queue
for further access.
* $$ JOB JNM=GCMJOB,CLASS=A,DISP=D
// JOB GCMJOB
// EXEC LIBR

ACCESS S=IJSYSRS.SYSLIB
PUNCH GCMEXAMP.Z

/*
/&
* $$ EOJ

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 165

GCM Programming Example Source Code

* THIS EXAMPLE ILLUSTRATES THE RETRIEVAL OF JOB EVENT *
* MESSAGES. ALTHOUGH THE CODE THEREIN IS EXCLUSIVELY DESTINED *
* FOR ILLUSTRATION ONLY, IT CAN EASILY BE MADE EXECUTABLE *
* TO MEET THE USER’S NEEDS. SOME LOCATIONS REQUIRE THE SAME *
* CODING AS ALREADY USED IN THE ’PWRSASEX’ EXAMPLE, SO THIS *
* CODE IS OMITTED AND ONLY A REFERENCE TO ’PWRSASEX’ IS *
* INDICATED, WHERE THE RELEVANT CODING CAN BE FOUND UNDER *
* THE SAME LABEL. *
* *
* ASSUME, THAT ANOTHER APPLICATION PROGRAM ALREADY SUBMITTED *
* JOBS TO VSE/POWER VIA THE SPOOL-ACCESS SUPPORT INTERFACE *
* USING THE ’QUEUE-EVENT-MESSAGE’ OPTION, AND THESE *
* JOBS HAVE ALREADY FINISHED THEIR EXECUTION. *
* THE APPLICATION PROGRAM SPECIFIED THE XPCC APPLID ’GCMAPPL’ *
* AND THE SPOOL-ACCESS SUPPORT USERID ’THOMRAPP’ TO SUBMIT *
* THE JOBS. THESE ID’S ARE NOW USED AGAIN TO RETRIEVE THE *
* RESULTING JOB EVENT MESSAGES. IN ORDER TO RETRIEVE *
* ALL JOB EVENT MESSAGES, THE FIELDS IN THE SPL FOR JOB *
* NAME (SPLGJB) AND JOB NUMBER (SPLGJN) ARE FILLED WITH *
* EIGHT BLANK CHARACTERS AND HEX ZERO, RESPECTIVELY. *
* *
* *
* THE EXAMPLE WILL SHOW: *
* *
* 1. HOW TO ESTABLISH A COMMUNICATION PATH TO VSE/POWER *
* 2. HOW TO ISSUE A GCM-OPEN-KEEP REQUEST, WHICH COPIES *
* JOB EVENT MESSAGES FROM THE MESSAGE QUEUE TO THE *
* USER’S REPLY BUFFER. *
* 3. HOW TO ISSUE A GCM-MORE SUBREQUEST IN ORDER TO RETRIEVE *
* STILL OUTSTANDING MESSAGES WHICH COULD NOT BE RETRIEVED *
* BECAUSE THE USER’S REPLY BUFFER WAS TOO SMALL TO HOLD ALL *
* ELIGIBLE MESSAGES. *
* 4. HOW TO ISSUE A GCM-REMOVE SUBREQUEST IN ORDER TO REMOVE *
* ALL ALREADY RETRIEVED MESSAGES FROM THE MESSAGE QUEUE *
* 5. HOW TO TERMINATE THE COMMUNICATION TO VSE/POWER *
* *

GCMSAMP CSECT START OF THIS SAMPLE PROGRAM

BALR R8,0 GET START ADDRESS
USING *,R8,R9 ESTABLISH ADDRESSABILITY
SPACE 2
LA R9,4095(,R8) LOAD SECOND BASE REGISTER WITH
LA R9,1(,R9) CONTENTS OF FIRST + 4096
SPACE 2
LA R4,OWNXPCCB GET ADDR OF CROSS PART. CONTROL BLK
USING IJBXPCCB,R4 ESTABLISH ADDRESSABILITY FOR DSECT
SPACE 2
LA R5,IJBXSUSR GET ADDR OF USER DATA TO BE SENT
USING PXUUSER,R5 ESTABLISH ADDRESSABILITY FOR DSECT
SPACE 2
LA R6,IJBXRUSR GET ADDR OF RECEIVED USER DATA
USING PXPUSER,R6 ESTABLISH ADDRESSABILITY FOR DSECT
SPACE 2
LA R7,OWNSPL GET ADDR OF SPL
USING OWNSPLDS,R7 ESTABLISH ADDRESSABILITY FOR DSECT
EJECT

** >> IDENTIFY GCMSAMP VSE/AF XPCC USER << **

SPACE 1
IDENT DS 0H

SPACE 1
XPCC XPCCB=(R4),FUNC=IDENT IDENTIFY ’GCMAPPL’ TO AF-XPCC
SPACE 1

GCM Service

166 VSE/POWER V9R2 Application Programming

* FOR ERROR CHECKING, SEE PWRSASEX (IDENT) -------------------->

** >> ESTABLISH THE XPCC CONNECTION TO VSE/POWER << **

SPACE 1
CONCT DS 0H

SPACE 1
XPCC XPCCB=(R4),FUNC=CONNECT CONNECT TO VSE/POWER
SPACE 1

* FOR ERROR CHECKING, SEE PWRSASEX (CONCT) -------------------->
SPACE 1
EJECT

** >> RETRIEVE JOB EVENT MESSAGES BY MEANS OF GCM-OPEN-KEEP << **

SPACE 1
GCMA1 DS 0H

PWRSPL TYPE=UPD,SPL=OWNSPL,REQ=GCM
SPACE 2
MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL
MVI PXUACT1,0 CLEAR ALL OTHER BYTES IN PXUUSER,
MVI PXUSIGNL,0 WHICH MAY BE CHANGED BY THE USER
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR.
LA R3,SPLGLEN LOAD LENGTH OF SPL
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB
SPACE 1

* SPECIFICATION OF THE GCM REQUEST TYPE AND SELECTION CRITERIA
SPACE 1
MVI SPLGFB1,SPLGF1KM SPEC. GCM-OPEN-KEEP
MVC SPLGJB,JOBNBLNK SPEC. BLANK JOB NAME: ANY NAME
MVC SPLGJN,JOBNUMB SPEC. JOB NUMBER: ANY NUMBER
SPACE 1

* ISSUE THE GCM-OPEN-KEEP REQUEST AND RETRIEVE THE MESSAGES.
* IF THERE ARE MORE MESSAGES TO RETRIEVE, ISSUE THE GCM-MORE
* SUBREQUEST AS LONG AS THERE ARE MORE MESSAGES AVAILABLE.

SPACE 1
GCMMORE DS 0H DO UNTIL EOD OR FAILURE

BAL RD,SENDR ISSUE THE REQUEST
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RET. CODE ZERO?
BNE REQFAIL ..NO, GO TO HANDLE FAILURE
CLI PXPFBKCD,PXP00OK WAS VSE/POWER FDBK CODE ZERO?
BE GCMA2 ..YES, MORE TO RETRIEVE
CLI PXPFBKCD,PXP00EOD FB WAS EOD?
BE GCMA2 ..YES, PROCESS BUFFER
B REQFAIL ..NO, GO TO HANDLE FAILURE
SPACE 1

* PROCESS RETURNED MESSAGE BUFFER
SPACE 1

GCMA2 DS 0H PROCESS MESSAGE BUFFER
BAL RE,BUFPROC PROCESS RETURNED MSG BUFFER
CLI PXPFBKCD,PXP00EOD FB WAS EOD?
BE GCMREM ..YES, GO TO REMOVE THE MSGS
SPACE 1

* SET UP THE GCM-MORE SUBREQUEST
SPACE 1
MVI PXUACT1,PXUATGCM SIGNAL GCM-MORE
MVI PXUBTYP,0 SIGNAL NULL BUFFER
XC IJBXBLN,IJBXBLN SET UP NULL BUFFER
B GCMMORE END UNTIL EOD OR FAILURE
SPACE 2

* ISSUE THE GCM-REMOVE SUBREQUEST
SPACE 1

GCMREM DS 0H REMOVE THE MSGS
MVI PXUBTYP,0 SIGNAL NULL BUFFER
MVI PXUACT1,PXUATDEL SIGNAL GCM-REMOVE
XC IJBXBLN,IJBXBLN SET UP NULL BUFFER
BAL RD,SENDR ISSUE THE REQUEST

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 167

CLI PXPRETCD,PXPRCOK WAS VSE/POWER RET. CODE ZERO?
BNE REQFAIL ..NO, GO TO HANDLE FAILURE
CLI PXPFBKCD,PXP00EOD ALL MSG’S DELETED?
BE DISCT ..YES, GO TO DISCONNECT
B REQFAIL ..NO, GO TO REPORT ERROR
SPACE 2
EJECT

**
* >> PROCESS JOB EVENT MESSAGES CONTAINED IN YOUR BUFFER
**
BUFPROC DS 0H GET BEGIN OF REPLY BUFFER

SR R0,R0 SET R0 TO ZERO
CLM R0,M7,IJBXSLN NO MORE DATA TO DISPLAY?
BE BUFPROX ..YES, GO TO ROUTINE EXIT
LA BUFPTR,REPLBUF POINT TO REPLY BUFFER
SR BUFLN,BUFLN INIT COUNT FOR REM.UNPROC. BUFFER
ICM BUFLN,M7,IJBXSLN GET LENGTH OF DATA TO BE PROCESSED
SPACE 1

BUFPR0 DS 0H SET BUFFER POINTER TO 1ST MSG
USING RECPRFIX,BUFPTR GET DSECT OF RECORD LAYOUT
LH R2,RECLNGTH GET LENGTH OF FIRST/NEXT DATA REC.
LR RF,R2 SAVE RECLENGTH
CLI RECTYPE,RECTFJCM JOB COMPLETION MSG?
BNE BUFPRJG ..NO, MUST BE JOB GENERATION MSG
SPACE 1

* PROCESS FIXED FORMAT JOB COMPLETION MESSAGE
SPACE 1

BUFPRJC DS 0H SET BUFFER POINTER TO 1ST MSG
LA BUFPTR,RECPRFXL(,BUFPTR) SKIP RECORD PREFIX
LR R3,BUFPTR GET MESSAGE ADDRESS
USING JCMDS,R3 MAKE F.F. MSG ADDRESSABLE
SPACE 1

* --
* >> INCLUDE HERE YOUR CODING TO PROCESS THE DATA OF ONE JOB
* >> COMPLETION MESSAGE (F.F. JCM)
* --

DROP R3 DROP F.F. JCM ADDR’Y
B BUFPR1 GO TO MOVE BUFFER POINTER
SPACE 2

* PROCESS FIXED FORMAT JOB GENERATION MESSAGE
SPACE 1

BUFPRJG DS 0H SET BUFFER POINTER TO 1ST MSG
LA BUFPTR,RECPRFXL(,BUFPTR) SKIP RECORD PREFIX
LR R3,BUFPTR GET MESSAGE ADDRESS
USING JGMDS,R3 MAKE F.F. MSG ADDRESSABLE
SPACE 1

* ---
* >> INCLUDE HERE YOUR CODING TO PROCESS THE DATA OF ONE JOB
* >> GENERATION MESSAGE (F.F. JGM)
* ---

DROP R3 DROP F.F. JGM ADDR’Y
SPACE 2

BUFPR1 DS 0H MOVE BUFFER POINTER
LR R2,RF RESTORE REC LENGTH
LA R1,RECPRFXL(,R2) CALC. LENGTH OF RECORD INCL. PREFIX
SR BUFLN,R1 CALC. LENGTH OF DATA STILL TO PROC.
LA BUFPTR,0(R2,BUFPTR) POINT TO NEXT RECORD
LTR BUFLN,BUFLN ALL DATA IN BUFFER PROCESSED?
BNZ BUFPR0 ..NO, GO TO PROCESS NEXT DATA REC.
SPACE 1

BUFPROX DS 0H ROUTINE EXIT
BR RE RETURN TO CALLER
EJECT

** >> ROUTINE TO HANDLE REQUEST FAILURES << **

REQFAIL DS 0H

GCM Service

168 VSE/POWER V9R2 Application Programming

* ESTABLISH CODING TO HANDLE ANY REQUEST FAILURES. TERMINATE
* OR CONTINUE THE REQUEST, WHATEVER IS REQUIRED.

** >> DISCONNECT THE XPCC COMMUNICATION LINK TO VSE/POWER << **

SPACE 1
DISCT DS 0H

XPCC XPCCB=(R4),FUNC=DISCONN DISCONNECT LINK TO VSE/POWER
SPACE 1
LTR RF,RF WAS DISCONNECT SUCCESSFUL, RF=’00’?
BZ TERMN ..YES CONTINUE WITH XPCC TERMINATION

* FOR ERROR PROCESSING, SEE PWRSASEX (DISCT) ------------------>

** >> TERMINATE INTERACTION WITH THE VSE/AF XPCC SUPPORT << **

TERMN DS 0H

XPCC XPCCB=(R4),FUNC=TERMIN TERMINATE CROSS PART. INTERFACE
LTR RF,RF DID WE GET A ZERO RET-CODE ?
BZ FINEND ..YES, GO TO NORMAL EOJ MACRO

* FOR ERROR PROCESSING, SEE PWRSASEX (TERMN) ------------------>

** >> TERMINATE MESSAGE RETRIEVAL << **

SPACE 1
FINEND DS 0H NORMAL TERMINATION

EOJ NORMAL END OF GCMSAMP PROGRAM

** >> CENTRAL XPCC SENDR ROUTINE << **

SENDR DS 0H
* FOR CODING OF A SENDR REQUEST, SEE PWRSASEX (SENDR) --------->

SPACE 2

** D E F I N I T I O N S **

SPACE 2

* STORAGE RESERVATION FOR XPCC SEND AND REPLY BUFFER *

SPACE 1
SENDBUF DS CL400 BUFFER USED FOR XPCC SENDR TO VSE/POWER
REPLBUF DS CL500 BUFFER FOR RECEIPT OF DATA FROM VSE/POWER

SPACE 2

* >> CROSS PARTITION CONTROL BLOCK << *

SPACE 1
OWNXPCCB XPCCB APPL=GCMAPPL,TOAPPL=SYSPWR, *

BUFFER=(SENDBUF,400),REPAREA=(REPLBUF,500)
SPACE 2

**
** >> GENERATE S P L << *
**

SPACE 1
OWNSPL PWRSPL TYPE=GEN,USERID=THOMRAPP,PRFX=OWN

EJECT

* DUMMY SECTION OF VSE/POWER SPOOL PARAMETER LIST (SPL) *

SPACE 1
OWNSPLDS PWRSPL TYPE=MAP

EJECT

* DUMMY SECTION OF CROSS PARTITION CONTROL BLOCK (XPCCB) *

SPACE 1
MAPXPCCB

GCM Service

Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages 169

EJECT
**@
* >> SPECIFICATION OF SELECTION CRITERIA << @
**@
JOBNBLNK DC CL8’ ’ DATA FOR SELECTION CRITERIA @
JOBNUMB DC AL2(0) DATA FOR SELECTION CRITERIA @

* EQUATES *

SPACE 1
M7 EQU 7 MASK BIT SETTING
BUFPTR EQU 10 USE RA AS BUFPOINTER
BUFLN EQU 12 USE RC TO CALC REMAINING BUFLEN
R0 EQU 0 WORK REGISTER
R1 EQU 1 WORK REGISTER + USED BY PWRSPL MACRO
R2 EQU 2 WORK REGISTER
R3 EQU 3 WORK REGISTER
R4 EQU 4 ADDR REG FOR XPCCB DSECT
0
R6 EQU 6 ADDR REG FOR RECEIVED USER DATA
R7 EQU 7 ADDR REG FOR SPL DSECT
R8 EQU 8 FIRST BASE REGISTER OF GCMSAMP
R9 EQU 9 SECOND BASE REGISTER OF GCMSAMP
RA EQU 10 WORK REGISTER
RB EQU 11 WORK REGISTER
RC EQU 12 WORK REGISTER
RD EQU 13 BRANCH AND LINK REGISTER FOR SENDR
RE EQU 14 BRANCH AND LINK REG. FOR BUFPROC
RF EQU 15 MACRO CALL RETURN CODE REGISTER

SPACE 1
END

GCM Service

170 VSE/POWER V9R2 Application Programming

Chapter 11. Supporting I/O Devices Via Device Driving
Systems

The external device support is a special application of the spool-access support
described in Chapter 6, “Introduction to Spool-Access Support,” on page 57 and
the following chapters. Therefore, this description is based on the preceding
chapters.

The support shifts the control for writing spooled output to a device from
VSE/POWER to a device-driving system (DDS), for example, a CICS spooler or
PSF. This device-driving system may run in a partition under or outside the control
of VSE/POWER. The support allows you, for example, to process output spooled
to the LST or PUN queue on a device which is not supported by VSE/POWER.

Using the support requires you to implement extensive coding of your own in
your program. This coding must be done in assembler language.

The coding required in your program is illustrated in
v this publication by Table 50 on page 176 to Table 58 on page 194, showing your

program steps together with a "comment" column, which explains "how to code"
and "what VSE/POWER does".

v the VSE/POWER Diagnosis Reference Manual by figures that use the
"communication protocol" description for your program steps and how
VSE/POWER reacts in each case. You may find it helpful to consult this
publication in addition.

This chapter briefly discusses the operational concepts of the support and describes
how to use it. The macros you need to implement the support in your program are
documented in Chapter 12, “Spool-Access Support Macros,” on page 211.

For more information on the return and feedback codes see Chapter 14, “Return
and Feedback Codes and Their Meanings,” on page 297.

To make the description even more understandable and to facilitate entry into your
own code, you can request the "DDSIM" programming example from the
VSE/POWER development libraries by sending an e-mail to L2POWER@de.ibm.com.

Concepts
Programming Prerequisites

Figure 9 on page 172 shows how a device driving system communicates with
VSE/POWER. Before a subsystem-controlled device can be started for output of
spooled data, this subsystem must:
1. Identify itself to the system.
2. Issue one or more connect-any requests, one per device that is to be used for

the processing of spooled output. A connect-any request ensures that
VSE/POWER can establish a communication path when a PSTART command
for the device is issued.

User Responsibilities

© Copyright IBM Corp. 1987, 2014 171

The subsystem must provide for all of the services normally available for a device
under VSE/POWER control. This includes services such as device recovery,
measurement techniques for performance and accounting, and protection of
spooled data after VSE/POWER has passed this data to the subsystem.

Operational Overview

Following is an overview of the operational steps involved in writing spooled
output to a device under subsystem control. This overview assumes that the
device-owning subsystem is up and running. It further assumes that the output
device to be used is ready.
1. VSE/POWER processes a PSTART command for the device, for example:

PSTART DEV,PLOT1,GRAPHAPP,G,...

The command causes VSE/POWER to activate a device service task which
establishes a communication path to the subsystem named GRAPHAPP.

2. When the communication path is established, the device owning subsystem
passes to VSE/POWER a request for a device order.

3. In response to the request, VSE/POWER passes to the subsystem a “start
device” order. This order includes all of the control values that were specified
in the above PSTART command.

4. The subsystem, after having confirmed the order by passing an order-response
record, would normally issue a GET-GENERIC request. An example of such a
request is given below:

PWRSPL TYPE=UPD,CLASS=G,MODE=GENERIC,QUEUE=LST,REQ=GET,SPL=MYSPL...

Passing this updated SPL to VSE/POWER via XPCC FUNC=SENDR causes
VSE/POWER to return to your program any output queued with the specified
class (G in the above example) of the LST queue for the device PLOT1.

Subsystem or
Application
Program
(Device
Driving Sys.)

Output
Device

Output
Device

Output
Device

Output
Device

Subsystem or
Application
Program
(Device
Driving Sys.)

XPCC Interface

XPCC Interface

DST

DST

DST

DST

V
S
E
/
P
O
W
E
R

Legend: Data flow (includes control data)
DST Device Service Task

Figure 9. External Device Support Overview

External Device Support

172 VSE/POWER V9R2 Application Programming

The retrieval of a complete queue entry requires the subsystem to issue a series
of Get spool data requests with XPCC FUNC=SENDR. Per request,
VSE/POWER passes a unit of transfer, one or more records of data, to your
program's reply buffer.
Note that before your program can set up an XPCC FUNC=SENDR request, it
must always clear the XPCCB User Data IJBXSUSR.

5. The subsystem writes every unit of transfer to the output device selected by the
PSTART command.

6. When the processing of a queue entry is complete, the subsystem issues a close
request followed by another GET-GENERIC request to open the retrieval of the
next eligible queue entry.

The above sequence of operational steps continues as long as there is work to do.
This sequence, although not all inclusive, shows that your program must
synchronize its operation with VSE/POWER primarily by:
1. Picking up and analyzing any device order that VSE/POWER may pass.
2. Responding to a device order by passing to VSE/POWER the corresponding

order-response record. This response record must indicate how your program is
going to handle the device order.

Shared Spooling Considerations
For operation with external device support in a shared spooling environment, the
following restrictions exist:
v Only one system operator can control your program's output devices: the

operator of the system on which your program is running.
v Messages passed to VSE/POWER for routing to a user of one of the other

sharing systems cannot be forwarded to this user by VSE/POWER.

The remaining sections of this chapter discuss the sequences of the coding required
to ensure proper handling of spooled output. These sequences are discussed as
part of the applicable communication and device-control functions.

IBM recommends that you obtain a listing of the DSECTS that are generated by the
assembly of the PWRSPL TYPE=MAP macro and that you have this listing readily
available at your finger tips. This may be helpful for the study of the chapter.

Setting Up a Communication Path
Your program must initiate the setup of required communication paths. To do this,
provide code in your program to:
1. Identify your program to the system.

You do this by way of an XPCC macro specifying FUNC=IDENT.
2. Initiate setting up a communication path, one per device.

You do this by way of an XPCC FUNC=CONNECT with TOAPPL=ANY
specified in the related XPCCB macro.
In your program, you can issue as many XPCC FUNC=CONNECT requests as
you have devices to control for the processing of spooled output. A connect
request must be complete before you can issue the next one.

For more information about establishing a communication path, see “Setting Up a
Communication Path” on page 59. “Setting Up Several Communication Paths” on
page 64 describes how to establish several communication paths.

External Device Support

Chapter 11. Supporting I/O Devices Via Device Driving Systems 173

Starting a Device
Starting a device is triggered by a PSTART command issued by one of the
following:

The central operator
An authorized subsystem administrator
Via PNET

In processing the command, VSE/POWER tries to set up a communication path
within two minutes. If VSE/POWER cannot set up the path within this time, then
the originator of the PSTART command gets a message.

VSE/POWER expects this originator to react to the message as follows:
v if the device driving subsystem cannot establish a communication path to

VSE/POWER for device activation, issue the PSTOP device command, or
v wait until the subsystem is prepared for the device setup.

Your program must include code which does the following (assuming that you
have properly initiated the setup of a communication path):
1. Waits for the communication path to be set up.

You do this by checking whether the system has posted the connect ECB (field
IJBXCECB of the applicable XPCCB).

2. Passes to VSE/POWER a request for a device order.
You do this by issuing an XPCC FUNC=SENDR request which:
v Passes a null buffer (IJBXBLN set to zero).
v Has XPCCB bytes set as follows:

PXUACT1 to PXUATROR
PXUBTYP to zero

and by checking for successful completion or, if necessary, by analyzing return
information that the system may have set in the fields IJBXRETC and later in
IJBXREAS of the XPCCB.

3. Analyzes the start device order which VSE/POWER passes in the reply buffer
for the communication path.

4. Passes to VSE/POWER the corresponding order-response record.
To do this, issue an XPCC FUNC=SENDR request with this record set up in the
communication path's send buffer. Before you issue this request, clear the
XPCCB User Data IJBXSUSR.

For a more detailed discussion of the start-device sequence, see the related sections
that follow.

Processing a Start-Device Order
If Device Can Be Started

Refer to Table 50 on page 176, the coding sequence for starting a device under
subsystem control. For the layout and contents of order-control and response
records, see the section “Processing of Order-Control Records and Signals” on page
192.

Start Device

174 VSE/POWER V9R2 Application Programming

If Device Cannot Be Started

Your program may not be prepared to process output on the device as requested.
You must indicate this and give a reason by setting a return-and-feedback code in
your order-response record for one of the following, for example:

Device unknown
Device in use (busy)
Device out of service

A return code other than X'00' causes VSE/POWER to break the connection. For
details about these codes, see the section “Start-Device Order” on page 199.

Based on your program's control data, VSE/POWER builds a message and routes
it to the command originator.

Starting a Device with 'Set Logical Destinations'
If your program does not use a set-logical-destinations order (see
“Set-Logical-Destination Order” on page 205), VSE/POWER takes the specified
device name (PLOT1 for example) as the only valid destination name for the
device.

If you use a set-logical-destinations order, your program can define to
VSE/POWER up to eight logical destination names for one device. Assume that a
device has been started in your program with a device name of PLOT1. You could
then request VSE/POWER by a set-logical-destinations order to route, via the path
for PLOT1, output to the following destinations, for example:

D121OUT
D122OUT
D123OUT
and so on

If any of these logical destinations is specified as destination user of an output,
then VSE/POWER routes this output to the external device named PLOT1.

However, if the device name used in the PSTART command is to be used as user
ID for routing output further on, that name must be included in the list of logical
destinations.

Note: The logical destination name LOCAL returns queue entries either
1. destined for local processing or destined for the user ID LOCAL.
2. do not use R000 thru R250 as logical destination, since these are reserved for

RJE userid's.

Start Device

Chapter 11. Supporting I/O Devices Via Device Driving Systems 175

Table 50. Code for Starting an External Device Sequence

Coding in your application program Comments

...
XPCC FUNC=CONNECT

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXCECB

Connect with TOAPPL=ANY

The communication path exists when
the ECB is posted.
Field IJBXTOAP of XPCCB contains

'SYSPWRD'.

Request a device order to be passed
XPCC FUNC=SENDR

Check the return codes
as shown above.

WAIT IJBXSECB
Check the VSE reason codes

in XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the device order

A device order is in your program's
reply buffer when the ECB is posted.

Normally, your program finds a start
device order after successful setup
of a communication path.

Respond to the order
XPCC FUNC=SENDR

Check the return codes
as shown above.

WAIT IJBXSECB
Check the VSE reason codes

in XPCCB byte IJBXREAS.

Check the VSE/POWER return
and feedback codes as
shown above.
...

VSE/POWER has finished processing
your order-response record and
returned a null buffer when the
ECB is posted.
If these codes indicate success-
ful processing of the order-response
record, then VSE/POWER is ready to
process GET-service requests.

The coding sequence for a device start with setting logical destinations is the same
as for a normal device start (see Table 50). In addition, however, your program
must pass to VSE/POWER a set-logical-destinations order. You do this after
VSE/POWER has successfully processed your order-response record for the
start-device order. VSE/POWER responds to your order by passing an
order-response record to your program's reply buffer.

For the layout and contents of control records, see the section “Processing of
Order-Control Records and Signals” on page 192.

Start Device

176 VSE/POWER V9R2 Application Programming

Processing Spooled Output
When your program is ready to process an output queue entry, it should issue a
generic GET-OPEN request. To do this, pass to VSE/POWER an SPL for which you
defined, for example, the following:

Column 72----
|

PWRSPL TYPE=UPD,SPL=(4),CLASS=G,MODE=GENERIC, C
QUEUE=LST,REQ=GET

Then VSE/POWER retrieves from the accessed queue (LST in the example) the
first queue entry that it finds to have:
v Class G assigned
v A disposition of D or K
v A user ID matching one of the logical destinations of the device

In response to your open-service request, VSE/POWER passes to your program's
reply buffer an SPL which describes the queue entry's characteristics. Your
program must analyze this SPL and decide whether VSE/POWER is to proceed
with data retrieval or whether any other action is to be initiated.

The subsystem, your program, has to handle certain situations which VSE/POWER
handles when processing the output of spooled data on a local device. The
handling of these situations is normally triggered by a device order passed to your
program by VSE/POWER. Of course, the handling of a device failure, should one
occur, cannot be triggered by VSE/POWER. Some of these situations are discussed
in sections as indicated below; they should give you a feel for the involved
programming effort:
v No selectable entry in the accessed queue ─ See “Handling a No-Selectable-Entry

Situation.”
v A device setup is required to process the output ─ See “Handling a Device-Setup

Situation” on page 178.
v Output processing is to be canceled ─ See “Canceling Output Processing” on

page 183.
v VSE/POWER-queued device orders or signals are to be requested ─ See

“Requesting an Order or a Signal” on page 183.

Note: No password checking is done for a queue entry that is to be processed by a
subsystem for output under subsystem control.

Handling a No-Selectable-Entry Situation
If there is no selectable queue entry, VSE/POWER informs the system operator
about this. In addition, it informs your program by way of return-and-feedback
codes in the VSE/POWER-set user area of the XPCCB. VSE/POWER then waits for
one of the following:

An order from your program (message or set-logical-destination).
A ‘wait-for-order/signal’ request from your program.
A command from the operator.
A selectable output queue entry to be queued.

Table 51 on page 178 shows the sequence of the coding which you should provide
in your program to cover the situation. Instead of passing a wait-for-order/signal
indication to VSE/POWER, your program may take either of the actions below.

Process Output

Chapter 11. Supporting I/O Devices Via Device Driving Systems 177

v Give up the communication path (by an XPCC FUNC=DISCONN).
v Define or change one or more of the logical destination names for the device (by

a set-logical-destination order), followed by another generic GET request.

Handling a Device-Setup Situation
Your program should analyze the verification SPL which VSE/POWER passes after
the Get-service open request. As a result of this analysis, your program may have
to initiate a device setup. The operational steps for this setup normally are as
follows:
1. Your program passes a send-message order control record.

This order instructs VSE/POWER to route the included message to the
destination given in the order. VSE/POWER forwards the message to this
destination, normally the operator responsible for the output device which is to
be set up.
Your order-control record may request VSE/POWER to hold a copy of the
message in storage: the message may fail to reach its destination, and
VSE/POWER's device-service task may therefore be operator bound. A copy of
the message is helpful in this case; it enables the central operator to redisplay
the message by means of a PDISPLAY M command. For more information
about processing a send-message order, see “Send-Message Order” on page 205.

2. Your program waits for the reactivation of this output processing.
The program does this by passing to VSE/POWER a wait-for-order/signal
request (XPCCB bytes set as follows: PXUACT1 to PXUATWFR; PXUBTYP to
zero).
When a device order or a signal gets queued for the communication path to
your program, then VSE/POWER passes this order or signal.

Table 51. Code for a “No Entry Available” Situation Sequence

Coding in your application program Comments

...
Open GET service

XPCC FUNC=SENDR
Check the return codes in

register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

This should be a generic GET-OPEN
request. VSE/POWER expects an (up-
dated) SPL in your program's send.

A return SPL is in your program's
reply buffer when the ECB is posted,
provided an eligible queue entry
was found.
The feedback code (byte PXPFBKCD)
is set to PXP04NOF if VSE/POWER
cannot find a selectable queue
entry. The remainder of the
sequence chart applies to this case.

Process Output

178 VSE/POWER V9R2 Application Programming

Table 51. Code for a “No Entry Available” Situation Sequence (continued)

Coding in your application program Comments

Pass a wait-for-order/signal request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as shown
above.

Analyze the order/signal.

Pass a null buffer to VSE/POWER and
be sure the wait-for-order/signal
flag (PXUACT1 set to PXUATWFR)
is set in the XPCCB (see Note).
VSE/POWER has passed an order or a
signal when the ECB is posted.

VSE/POWER passes an output-arrived
signal as soon as a selectable queue
entry is queued.

Let's assume that VSE/POWER did
pass the signal. This means that
VSE/POWER is ready to accept a GET-
service request via the communica-
tion path.

Open GET service
XPCC FUNC=SENDR

...

A retry of the originally passed
generic GET-OPEN request.

Again, a selectable queue entry
may not be available for processing.
By the time VSE/POWER processes your
program's request, the queued entry
may have been manipulated from
another source.
Note: Since no selectable
queue entry is available and no
'order pending' is indicated by
VSE/POWER, your program should use
the PXUATWFR request. This results in
a VSE/POWER wait for the next order
or signal, while a PXUATROR request
would return immediate information
about the availability of an
order/signal.

3. Output processing is reactivated.
The operator issues a PGO command to indicate that the required setup work
is done. This makes VSE/POWER queue a reactivation-device order so that it
can be passed to your program.
Your program cannot reactivate output processing until VSE/POWER has
passed a reactivate-device order. If VSE/POWER passes a device order other
than reactivate (or setup), your program must respond to this order and reissue
the wait-for-order/signal request.

Table 52 on page 180 shows the sequence of the coding which you should provide
to cover the needs of a device setup and a reactivation of output processing. For
more details about the processing of device orders, order-response records, and
device signals, see the section “Processing of Order-Control Records and Signals”
on page 192.

Process Output

Chapter 11. Supporting I/O Devices Via Device Driving Systems 179

Table 52. Code for Device Setup and Reactivation Sequence

Coding in your application program Comments

...
Open GET service

XPCC FUNC=SENDR
Check the return codes in

register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the verification SPL.

This should be a generic GET-OPEN
request. VSE/POWER expects an (up-
dated) SPL in your program's send
buffer.

A verification SPL is in your pro-
gram's reply buffer when the ECB is
posted.

The remainder of the chart assumes
that the indicated device character-
istics require a device setup.

Pass a send-message order
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as shown
above.

The order tells VSE/POWER where to
route the message which is part of
the order-control record.

VSE/POWER's order response record
is in your program's reply buffer
when the ECB is posted.

Pass a wait-for-order/signal request
XPCC FUNC=SENDR

Check the return codes as
shown above.

Pass a null buffer to VSE/POWER and
be sure the "wait for order/signal"
flag is set in the XPCCB.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

Analyze the device order.

VSE/POWER has passed an order or
a signal when the ECB is posted.
Let's assume that VSE/POWER passed
a setup-device order.

It indicates the number of pages
the operator asks your program to
retrieve from VSE/POWER and pass to
the device for setup purposes.

Process Output

180 VSE/POWER V9R2 Application Programming

Table 52. Code for Device Setup and Reactivation Sequence (continued)

Coding in your application program Comments

Pass an order-response record
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

Required programmed action:
1. Request VSE/POWER to pass the de

fined number of setup pages.
2. Reactivate normal processing when

the setup action is complete.

GET spool data request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

Process the records in your re-
ply buffer.

If end of last setup page,
proceed to the next step;
else return to the beginning
of this step.

When the ECB is posted, your pro-
gram's reply buffer is filled with
spooled output records retrieved
from the accessed queue entry.

The data being passed may have to
be replaced by strings of Xs.

Pass the setup-processed signal

XPCC FUNC=SENDR
Check the return codes as

shown above.
WAIT IJBXSECB

Check the VSE reason codes
as shown above.

Check the VSE/POWER return
and feedback codes as shown
above.

Your program passes a null buffer
with PXUSIGNL of the XPCCB set to
PXUSSET.
This causes VSE/POWER to reset its
retrieval pointers to the beginning
of the queue entry being processed.
VSE/POWER has processed the signal
and returned a null buffer
when the ECB is posted.

Process Output

Chapter 11. Supporting I/O Devices Via Device Driving Systems 181

Table 52. Code for Device Setup and Reactivation Sequence (continued)

Coding in your application program Comments

Pass a wait-for-order/signal request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the order/signal

Your program passes a null buffer
and the wait-for-order/signal flag
in the XPCCB.

VSE/POWER has passed an order or a
signal when the ECB is posted.

Let's assume that VSE/POWER passed
a reactivate-device order.

Pass an order-response record
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as shown
above.

VSE/POWER is ready to accept GET
service requests and returned a
null buffer when the ECB is
posted (if VSE/POWER's return
and feedback codes are OK).

GET spool data request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

Process the data passed by
VSE/POWER.

If more data
is to be processed, return to
the beginning of this step.

Else proceed.

When the ECB is posted, your
program's reply buffer is filled
with spooled output records re-
trieved from the accessed queue
entry.

Pass a close request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Your program passes a null buffer
with the XPCCB bytes set as
follows:

PXUACT1 to PXUATRQS
PXUBTYP to zero

When the ECB is posted, VSE/POWER
has disposed of the just processed
queue entry in accordance with the
assigned disposition:

D - The entry is deleted
K - The entry's disposition is

changed to L.

Process Output

182 VSE/POWER V9R2 Application Programming

Table 52. Code for Device Setup and Reactivation Sequence (continued)

Coding in your application program Comments

Process the next selectable
queue entry or end the retrieval
of output.

Canceling Output Processing
Output processing is to be canceled when VSE/POWER receives a PFLUSH
command for the device under your program's control. The command may request
this cancelation with or without a HOLD specification.

For the PFLUSH command, VSE/POWER builds and queues a flush-device order.
This order is passed to your program in response to a return-order/signal request.

Your program may delay the requested cancelation until a certain point in its
processing; it may ignore the order by returning a not-accepted response.
Normally, however, a subsystem would handle the device order as shown:
v In Table 53 on page 184 for a PFLUSH without a HOLD specification.
v In Table 54 on page 185 for a PFLUSH with a HOLD specification.

If HOLD is specified, your program should continue output processing until a
meaningful boundary (end of a page, for example) is reached. This may require
your program to request a certain number of output records even after
VSE/POWER passed the flush-device order. In addition, your program should
request a checkpoint to be taken before it stops processing for the output that is
to be canceled.

If a cancel message is to be written at the end of the canceled output, your
program must build the message and write it to the device.

Requesting an Order or a Signal
VSE/POWER chains and passes device orders (or signals), using the
first-in/first-out method. When it chains an order or signal, VSE/POWER indicates
this by setting the user byte PXPINFO to PXPIORD. Your program should monitor
the presence of a device order by testing this byte along with the VSE/POWER
return-and-feedback codes.

For VSE/POWER to pass the order next in line, you must code the following in
your program:
v If no order is queued and your program needs a certain order to continue ─

A wait-for-order/signal request. You do this by passing to VSE/POWER an
XPCC FUNC=SENDR with a null buffer and PXUACT1 set to PXUATWFR. You
would use this method, for example, in a device-setup situation after your
program has passed a send-message order.

v If an order is queued ─

A return-order/signal request. You do this by passing to VSE/POWER an XPCC
FUNC=SENDR with a null buffer and PXUACT1 set to PXUATROR.

Whenever VSE/POWER passes to you a device order, it expects you to return (in
your send buffer) an order-response. For more information about the processing of
orders, see the section “Processing of Order-Control Records and Signals” on page
192.

Process Output

Chapter 11. Supporting I/O Devices Via Device Driving Systems 183

Table 53. Code for a PFLUSH without HOLD Sequence

Coding in your application program Comments

... Assumption: During GET data
processing the PXPIORD
(order signal queued) indication
is set in the your program's XPCCB.

Pass a return-order/signal request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the order/signal.

Your program passes a null buffer
and the return-order/signal flag
in the XPCCB.

VSE/POWER has passed an order or a
signal when the ECB is posted.

Let's assume that VSE/POWER passed
the device order for a PFLUSH with-
out HOLD.

Pass an order-response record
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as shown
above.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

Pass a close request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.

Check the VSE/POWER return
and feedback codes as shown
above.

Your program passes a null buffer
with the XPCCB bytes set as follows:

PXUACT1 to PXUATRQS
PXUBTYP to zero

VSE/POWER has processed the request
and returned a null buffer when the
ECB is posted. VSE/POWER deletes
the currently processed queue
entry if the entry's disposition
was D. VSE/POWER retains the entry
with a disposition of L, if its
original disposition was K.

Get-service request for the
next selectable queue entry

...

Process Output

184 VSE/POWER V9R2 Application Programming

Table 54. Code for a PFLUSH with HOLD Sequence

Coding in your application program Comments

... Assumption: During GET data
processing the PXPIORD
(order signal queued) indication
is set in your program's XPCCB.

Pass a return-order/signal request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the order/signal.

Your program passes a null buffer
and the return-order/signal flag
in the XPCCB.

VSE/POWER has passed an order or a
signal when the ECB is posted.
Let's assume that VSE/POWER
passed a device order for a PFLUSH
with HOLD.

Pass an order-response record
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return and

feedback codes as shown above.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

GET spool data request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

If the end of the current
page is reached, proceed to
the next step;

else return to the beginning
of this step.

When the ECB is posted, your
program's reply buffer is filled
with spooled output records re-
trieved from the accessed queue
entry.

Process Output

Chapter 11. Supporting I/O Devices Via Device Driving Systems 185

Table 54. Code for a PFLUSH with HOLD Sequence (continued)

Coding in your application program Comments

Pass a checkpoint request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Your program passes a checkpoint-
control record in its send buffer.

When the ECB is posted, VSE/POWER
has passed a checkpoint-response
record to your program's reply buf-
fer.

Pass a flush-hold request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as shown
above.

Your program passes a null buffer
and XPCCB bytes set as follows:

PXUACT1 set to PXUATFLH
PXUBTYP set to zero

VSE/POWER has processed the request
and returned a null buffer
when the ECB is posted; process-
ing of the affected output queue
entry by VSE/POWER is canceled.
The complete output queue entry
is retained in its output queue with
the class and priority assignments
unchanged. The queue entry's dis-
position, however, is changed to:

H if it was D.
L if it was K.

Get-service request for
the next selectable
queue entry.

...

Stopping the Device
Normally, the stopping of a device is triggered by VSE/POWER when it processes
a PSTOP DEV command for the device or a PEND command.

Either command causes VSE/POWER to build a stop-device order and to add this
order to the order chain for the device. The order may request the device to be
stopped:
v At the end of the currently processed output

A PSTOP command with EOJ or a PEND command was issued. Your program
must provide for continued processing of output until the end of the currently
processed output is reached. Table 55 on page 187 shows the coding sequence
that should be followed.

v At once for restart at the point of interruption
A PSTOP command with RESTART was issued. Your program must provide for
continued processing of output until the end of a logical boundary (a page for a

Process Output

186 VSE/POWER V9R2 Application Programming

printer, for example) is reached. At this point, have your program request a
checkpoint because setting up output processing on restart for the queue entry is
your program's responsibility. Table 56 on page 189 shows the coding sequence
that should be followed.

v At once for restart from the beginning
Neither EOJ nor RESTART was specified in the PSTOP command. In this case,
your program should:
1. Purge the data that may be contained in a device buffer, if any.
2. Issue a quit request.

Table 55. Code for Device Stop after End of Output Sequence

Coding in your application program Comments

... Assumption: During GET data
processing the PXPIORD
(order signal queued) indication
is set in your program's XPCCB.

Pass a return-order/signal request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Analyze the order/signal.

Your program passes a null buffer
and the return-order/signal flag
in the XPCCB.

VSE/POWER has passed an order or a
signal when the ECB is posted.
Let's assume that VSE/POWER
passed a device order for a PSTOP
with EOJ.

Pass an order-response record
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return and

feedback codes as shown above.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

GET spool data request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

If the end of the queue
entry is reached, proceed;

else return to the beginning
of this step.

When the ECB is posted, your
program's reply buffer is filled
with output records retrieved
from the accessed queue entry.

Stop Device

Chapter 11. Supporting I/O Devices Via Device Driving Systems 187

Table 55. Code for Device Stop after End of Output Sequence (continued)

Coding in your application program Comments

Empty hardware I/O buffers Applies if the device is buffered or
connected via a communication link.
Your program must ensure that re-
cords still in a hardware buffer are
actually written to the device before
the retrieval service for the output
is closed. This avoids that VSE/POWER
deletes the output before all of the
output records have been transferred
to and processed by the device.

Issue a CLOSE request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Your program passes a null buffer
with the XPCCB bytes set as follows:

PXUACT1 to PXUATRQS
PXUBTYP to zero

When the ECB is posted, VSE/POWER
has:
- returned a null buffer.
- deleted the output if this

output's disposition was D.
- changed the output's disposi-

tion to L if this disposition
was K.

Pass a device-stopped signal
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Your program passes a null buffer
with XPCCB bytes set as follows:

PXUSIGNL to PXUSDSTP
PXUBTYP to zero

VSE/POWER has processed the signal
and returned a null buffer
when the ECB is posted.
VSE/POWER informs about the de-
vice-stopped condition by a message
to the PSTART device operator and to
the user who issued the PSTOP
(or PEND) command, thus disconnecting
the communication path.

Give up the communication path
XPCC FUNC=DISCPRG

Check the return codes as
shown above.
...

The communication path is removed.

This chart shows only how a stop with a restart possibility differs from a stop after
end of job.

Stop Device

188 VSE/POWER V9R2 Application Programming

Table 56. Code for Device Stop with a Restart Possibility Sequence

Coding in your application program Comments

...
Pass the required order-response
record

XPCC FUNC=SENDR
Check the return codes in

register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

GET spool data request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

If the end of a logical
boundary is reached, proceed;

else return to the beginning of
this step.

When the ECB is posted, your
program's reply buffer is filled
with output records retrieved
from the accessed queue entry.

Pass a checkpoint request
XPCC FUNC=SENDR

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Your program passes a checkpoint-
control record in its send buffer.

When the ECB is posted, VSE/POWER
has passed a checkpoint-response
record to your program's reply buf-
fer.

Empty hardware I/O buffers This is the same as for a termina-
tion after end of job; see the
coding sequence shown in the

preceding illustration.

Pass a quit request
XPCC FUNC=SENDR

Check the return codes as
shown above.

Your program passes a null buffer
and XPCCB bytes set as follows:

PXUACT1 set to PXUATABR
PXUBTYP set to zero

Stop Device

Chapter 11. Supporting I/O Devices Via Device Driving Systems 189

Table 56. Code for Device Stop with a Restart Possibility Sequence (continued)

Coding in your application program Comments

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

VSE/POWER has processed the request
when the ECB is posted. The queue
entry being processed is retained
by VSE/POWER with unchanged priority
and disposition assignments.

Pass a device-stopped signal This and the remainder of the coding
sequence is the same as for a termination
after end of job (see in the
Table 55 on page 187).

Handling an Abnormal-End Situation
An abnormal-end situation may arise
1. because of an error condition found in processing an output queue entry, or
2. because of an error condition within VSE/POWER.

Output-Related Abnormal End
This type of an abnormal-end situation may be triggered by VSE/POWER or by
your program. Normally, VSE/POWER removes the communication path
immediately. It writes a message to the system operator and to the device owner,
retains the currently processed queue entry with its priority and disposition, and
performs accounting.

If it is triggered by your program, your program should analyze the situation and
do one of the following:
v Cancel itself. This action is indicated if there is no chance for continued useful

work. If this occurs, VSE/POWER is informed about it by the XPCC interface.
v Remove the communication path by an XPCC request specifying

FUNC=DISCPRG. This action is indicated if there is no chance for continued
useful processing of data passed via the communication path to or from your
program.

v Remove the communication path by an XPCC request specifying
FUNC=DISCONN when the last FUNC=SENDR request has been completed
(SECB posted). This action is indicated if, for example, your program can no
longer write to the output device. Before removing the communication path,
your program should inform the system operator and, if possible, also the
device owner of the type of failure.
If the device was active when the failure occurred, have your program save a
checkpoint, a VSE/POWER-assigned record number lower than the number of
the failing record. Your program can use this record number as a restart point
when processing of the interrupted queue entry is resumed.

Table 57 on page 191 shows the coding sequence that should be followed when a
device fails.

Stop Device

190 VSE/POWER V9R2 Application Programming

Table 57. Code for Abnormal End Because of a Device Failure Sequence

Coding in your application program Comments

...
Pass a send-message order

XPCC FUNC=SENDR
Check the return codes in

register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the VSE/POWER return

and feedback codes in XPCCB
bytes PXPRETCD and PXPFBKCD,
respectively.

Tells VSE/POWER where to route the
message which is part of the order
control record.

VSE/POWER's order response record is
in your program's reply buffer when
the ECB is posted.

Pass a checkpoint request
XPCC FUNC=SENDR

Check the return codes as
shown above.

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return and

feedback codes as shown above.

Your program passes a checkpoint-
control record in its send buffer.

When the ECB is posted, VSE/POWER
has passed a checkpoint-response
record to your program's reply buf-
fer.

Pass a quit request
XPCC FUNC=SENDR

Check the return codes as
shown above.

Your program passes a null buffer
and XPCCB bytes set as follows:

PXUACT1 set to PXUATABR
PXUBTYP set to zero

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return

and feedback codes as
shown above.

VSE/POWER has processed the request
when the ECB is posted. The inter-
rupted queue entry is retained by
VSE/POWER with unchanged priority
and disposition assignments.

Give up the communication path
XPCC FUNC=DISCONN

Check the return codes in
register 15 and in the
XPCCB (byte IJBXRETC).
...

The communication path is removed.

In case of an output-processing failure indicated to your program, you can also
issue a ‘quit-and-lock’ request at any point during the retrieval of a queue entry.
The request causes VSE/POWER to re-queue the currently processed queue entry
in the appropriate class chain with a temporary disposition of Y for the purpose of:
v Indicating that a problem has occurred during output processing, and
v Preventing that the output queue entry is handled again until the subsystem has

taken some action.

For further information, see “Issuing a QUIT-and-LOCK Request” on page 87.

Abnormal End

Chapter 11. Supporting I/O Devices Via Device Driving Systems 191

Whenever the communication path is removed before output processing for a
'protected' queue entry could be terminated by any GET end-service request,
VSE/POWER requeues the output entry with a temporary disposition Y. For
creation of 'protected' queue entries see “Handling an Abnormal-End Condition
During GET” on page 100.

Abnormal End of VSE/POWER
VSE/POWER itself may happen to be canceled during output processing. The
XPCC interface informs your program about this by passing to your program
XPCCB return or reason codes of IJBXNOC3 and IJBXABDC, respectively. Your
program can, in this case:
1. Empty hardware-output buffers, if any.
2. When VSE/POWER is up again, restart the interrupted processing either:
v At a suitable checkpoint (if the output was checkpointed). Obtaining

checkpoints during data retrieval is described under “Requesting a
Checkpoint” on page 88; restarting at a checkpoint is discussed in the section
“Requesting a Restart of the GET Spool Data” on page 93.

v At the beginning of the interrupted output.

For more information about the retrieval and restart of a queue entry, see
Chapter 8, “GET - Retrieving a Queue Entry,” on page 75.

If VSE/POWER or the XPCC interface happens to be canceled while processing a
‘protected’ output queue entry, VSE/POWER recovery (at system warm start) or
the VSE/POWER device-service task will re-queue the output entry with
disposition Y to the non-dispatchable queue. For creation of a protected queue
entry see “Handling an Abnormal-End Condition During GET” on page 100.

Processing of Order-Control Records and Signals
Orders and signals are used to synchronize a VSE/POWER device-service task
with your program.

An order is a control record which is passed from one side of a communication
path to the other. A signal is a status indication that is passed to the other end of
the communication path. Orders that VSE/POWER can pass to your program are
referred to as device orders; orders that your program can pass to VSE/POWER
are called subsystem orders.

VSE/POWER-Built Device Orders
VSE/POWER builds a device order whenever it processes any of the following
commands for a device under your program's control:

Command Order-Type
PSTART Start-device order
PSTOP Stop-device order
PRESTART Restart-device order
PGO Reactivate-device order
PSETUP Setup-device order
PFLUSH Cancel-output device order
PXMIT Transmit-command device order

VSE/POWER handles device orders in a first-in first-out way by chaining them,
one behind the other, separately for every device controlled by your program.
VSE/POWER accepts a command for a device even after a PSTOP DEV command
was processed for this device, that is, until your program has passed a device-stop

Abnormal End

192 VSE/POWER V9R2 Application Programming

signal.

Subsystem-Originated Orders
The subsystem (your program) would build an order and pass it to VSE/POWER
whenever the need arises. Your program can build and pass orders of the
following type:

Send-message order.
Set-logical-destination order.
Put-account record order.

Process a Device Order

Process Overview
When having passed a device order to your program, VSE/POWER expects that
the program analyses the order immediately and returns a corresponding
order-response record. If your program fails to return this record, VSE/POWER
discontinues the communication path and informs your program by a return code
of PXPRCPVL together with the applicable feedback code. VSE/POWER stops the
communication path also if your program's order-response record does not
correspond to the type of order passed by VSE/POWER.

The order-response record shows your program's decision: accepted or not
accepted. If the decision is not accepted, the record may also indicate a reason for
rejecting the device order; it may include a message for VSE/POWER to route to
the user whose command triggered the device order. For the programmed actions
that are to be coded to return an order-response record, see Table 58 on page 194.

A message generated by VSE/POWER in response to a command is routed to the
command originator whose node ID and user ID may be derived from the
device-order header. A message passed to VSE/POWER as part of an
order-response control record is routed to the user indicated in this record; by
default, this is the originator of the command. For details on message routing, refer
to Table 60 on page 197.

A device order, once accepted by an order-response record, may be processed by
your program some time later. For example, after having accepted an
immediate-stop device order, your program can request a checkpoint to be taken
before it processes the order. There is one exception, however: the start-device
order. Your program must process this order immediately and return the result of
this processing by way of an order-response record valid for this device order.

Sequence of Events
1. VSE/POWER chains a device order for being passed via a communication path

when it processes a command for the involved device. This may occur at any
time. VSE/POWER indicates the chaining of a device order.

2. VSE/POWER indicates the chaining of a device order by setting the
order-pending flag in the XPCCB for the communication path. When this
XPCCB is passed to the other end (your program), VSE/POWER expects,
sooner or later, a return-order/signal request to be returned. In short, your
program should be ready to pick up and analyze a device order every time
VSE/POWER has passed to your program a block of output records.

3. In response to a return-order/signal request, VSE/POWER passes the device
order at the head of the chain if two or more such orders are chained for the

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 193

communication path. The order-pending flag remains set as long as a device
order waits for being passed to your program.

Table 58 shows the coding sequence which you should follow in your program for
the handling of device orders.

Size of Your Reply Buffer
An order-control record can be up to 180 bytes long. Therefore, the size of your
program's reply buffer should be 180 bytes or larger.

Table 58. Code for Processing of Device Orders Sequence

Coding in your application program Comments

...
GET spool data request for the
next block

XPCC FUNC=SENDR
Check the return codes in

register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the return-and-feedback

codes in XPCCB bytes PXPRETCD
and PXPFBKCD, respectively.

Check the XPCCB byte PXPINFO.

When the ECB is posted, your
program's reply buffer is filled
with spooled output records re-
trieved from the accessed queue
entry.

An order or signal is chained if the
PXPIORD bit of this byte is set on.

Process the data passed by
VSE/POWER

Prepare this data for writing it
to the involved output device.

Pass a return-order/signal request
XPCC FUNC=SENDR

Check the return codes as
shown above.

Your program passes a null buffer
with XPCCB bytes set as follows:

PXUBTYP to zero
PXUACT1 to PXUATROR

WAIT IJBXSECB
Check the VSE reason codes

as shown above.
Check the VSE/POWER return and

feedback codes as shown above.
Analyze the order.

When the ECB is posted, VSE/POWER
has passed an order or a signal, if
there was one; if there was none,
VSE/POWER indicates this by a re-
turn and feedback code combination
of PXPRCOKF and PXP04NOQ.
Let's assume that VSE/POWER
passed a device order.

Orders and Signals

194 VSE/POWER V9R2 Application Programming

Table 58. Code for Processing of Device Orders Sequence (continued)

Coding in your application program Comments

Pass the required order-response
record

XPCC FUNC=SENDR
Check the return codes in

register 15 and in the
XPCCB (byte IJBXRETC).

WAIT IJBXSECB
Check the VSE reason codes

in the XPCCB byte IJBXREAS.
Check the return-and-feedback

codes in XPCCB bytes PXPRETCD
and PXPFBKCD, respectively.
...

With only the control record in
your program's send buffer and with
the XPCCB's byte PXUBTYP set to
PXUBTCTL.

VSE/POWER has processed the response
record and returned a null buffer
when the ECB is posted.

Process a Subsystem Order
To pass an order to VSE/POWER, your program must:
1. Set up the device order as the only data in the communication path's send

buffer.
2. Issue an XPCC request specifying FUNC=SENDR. The XPCCB used for the

request must have its user-information byte PXUBTYP set to PXUBTCTL.

VSE/POWER analyzes the order and returns to your program the corresponding
order-response record. For information about the format and contents of the orders
and response records, see “Device/Subsystem Orders and Order-Response
Records” below.

Device/Subsystem Orders and Order-Response Records
Device/subsystem orders and order-response records are similar in format. Both
types of control records have a header section and a variable-data section.
Following below are:
1. The format and description of the header section of a device/subsystem order.

The description includes a general discussion of the data section; the required
details about order data sections are given separately by device/subsystem
orders.

2. The format and description of the order-response record, including its data
section.

Device/Subsystem-Order Header Section
For the format of this record section and a discussion of its contents, refer to
Table 59. In the assembly output listing for the PWRSPL macro with TYPE=MAP,
you find a DSECT for the record section at the label PORDER.

Table 59. Device/Subsystem-Order Header Section Format

Bytes Field Contents / Description

0-1 PORDRLEN Record length (in binary notation).

2 PORDTYPE X'05' ─ Device-order indicator.

3 PORDMOD Device-order type:

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 195

Table 59. Device/Subsystem-Order Header Section Format (continued)

Bytes Field Contents / Description

Mnemonic Value Order-type Triggered by

PORDMSTR X'01' Start device PSTART

PORDMSTP X'02' Stop device PSTOP

PORDMRST X'03' Restart device PRESTART

PORDMPGO X'04' Reactivate device PGO

PORDMSET X'05' Setup device PSETUP

PORDMFLH X'06' Cancel processing PFLUSH

PORDMXMT X'07' User defined PXMIT

PORDMSND X'10' Send message Subsystem

PORDMSLD X'11' Set logical destination Subsystem

PORDMPAO X'12' Put account record Subsystem

4 PORDFLAG Flag byte. To be set to X'80' by the subsystem in a send-message order if the message
is to be held for redisplay (by a PDISPLAY M command).

5 PORDMSGL Length of message (in binary notation). To be supplied by the subsystem in a
send-message order.

6-7 PORDAFPL Length of Advanced Function Printing account record. To be supplied by the
subsystem in a PUT-account record order.

8-F PORDSUBS Requesting1 subsystem's name (in character notation).

10-17 PORDNODE Requesting1 node's name (in character notation). Your own z/VSE system's node name
(or blank) if the triggering command was submitted within the domain of your node.

18-1F PORDUSER Requesting:sup.1:esup. user's ID (in character notation) Blank if the command was
entered by a central operator.

20-n Variable-data area. See also the Note below.
1 If send-message order, the field contains the destination information instead of the requestor's information.

Note: Details are given in the sections discussing the device/subsystem orders.
The variable-data area includes a parameter string if one was specified in the
triggering command. This string normally provides operator-specified information
that your program needs. Tell your operator what to specify and how.

VSE/POWER's requirements regarding the parameter string are:
v It may not be longer than 60 characters. This includes blanks or commas that

your program may need as delimiters.
v It must start with an alphameric character in the first character position.
v It must include at least one blank in any of the second through 16th character

positions.
v An apostrophe (') within the string must be entered by the operator as two

apostrophes ('').

Orders and Signals

196 VSE/POWER V9R2 Application Programming

Order-Response Record
When VSE/POWER passes a device order, it expects your program to return the
corresponding order-response record with your program's next XPCC request. If
your program passes an invalid response record, VSE/POWER:
1. Rejects this record with a return/feedback-code combination of

PXPRCERR/PXPO8UXR in the XPCCB bytes PXPRETCD and PXPFBKCD.
2. Waits for a new corrected response record.

When your program passes a subsystem order, VSE/POWER returns the
corresponding order-response record also in response to the next XPCC request.

For the format of the record and a discussion of its contents refer to Table 60. In
the assembly output listing for the PWRSPL macro with TYPE=MAP, you find a
DSECT for the record section at the label PORDRESP.

Table 60. Order-Response Control Record Format

Bytes Field Contents / Description

0-1 PORSRLEN Record length (in binary notation).

2 PORSTYPE X'06' - Order-response record indicator.

3 PORSMOD Device-order type ─ The type indicator of the device order
to which a response is being made. Consider picking up
field PORDMOD of the device order, which is discussed
under “Device/Subsystem-Order Header Section” on page
195.

4 PORSFLAG Flag byte:

Mnemonic Value Meaning

PORSFMID X'80' PORSMID contains 4-byte
message-id.

Following a send-message order, once the message has been
issued to the local or central operator, then the system
returns the message-id with which the subsystem can delete
the message from the console screen using the DOM macro.
This is necessary for 'highlighted' action messages (for
example, MOUNT FORMS) that the operator would
otherwise have to delete manually.

5 PORSMSGL Length of the message (in binary notation), if there is one;
else X'00'.

6 PORSRETC Order return code:

Mnemonic Value Meaning

PORSROK X'00' Order accepted.

PORSROKF X'04' Order accepted; unable to
handle request.

PORSRINV X'08' Order not accepted.

7 PORSFDBK Order feedback code:

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 197

Table 60. Order-Response Control Record Format (continued)

Bytes Field Contents / Description

Mnemonic Value Meaning

From the subsystem to VSE/POWER:

PORSFOK X'00' All OK.

PORSFPAR X'01' Missing or invalid
parameter string.

PORSFONA X'02' Subsystem-internal reason.

PORSFDUN X'03' Device to be started is
unknown.

PORSFDBS X'04' Device to be started is busy.

PORSFDOS X'05' Device to be started out of
service.

PORSFDRJ X'06' Device start rejected for
subsystem internal reason

From VSE/POWER to the subsystem:

PORSFNAC X'01' Accounting support not
initialized.

PORSFINV X'01' Order is invalid or
unknown.

PORSFOTS X'02' Order is too short versus
contents.

PORSFMSG X'03' Message text is too long.

PORSFSLD X'04' Invalid destination in a
preceding set-logical
destination order.

PORSFPAC X'05' The passed order length is
not equal to the length of
the order header plus
specified length of the
account record.

PORSFRTL X'06' The passed account record
is either too small (less than
55 bytes) or too large (larger
than 1000 bytes).

8-F PORDSUBS Destination subsystem's name (in character notation).

10-17 PORDNODE Destination node's name (in character notation). Blank if the
message passed with the order-response record is to be
routed to the system operator.

18-1F PORDUSER Destination user's ID (in character notation). Blank if the
message passed with the order-response record is to be
routed to the system operator.

20-97 PORSMSG Message text1

20-23 PORSMID Message-id if flag PORSFMID is set and VSE/POWER
returns an order-response record.

Orders and Signals

198 VSE/POWER V9R2 Application Programming

Table 60. Order-Response Control Record Format (continued)

Bytes Field Contents / Description
1 Applies to order-response records from the subsystem to VSE/POWER.

The content of the field PORSMSG, the message text, is picked up by VSE/POWER. It
must be alphanumeric and can be up to 120 characters long. A shorter text must be padded
with trailing blanks. Your program can include an error message here if, for example, the
parameter string passed with the device order is in error. VSE/POWER routes this message
to the user identified by fields PORDSUBS, PORDNODE, PORDUSER, and translates the
message text to uppercase. For more details on how the message is displayed on the
central operator console, see “Send-Message Order” on page 205.

Start-Device Order
VSE/POWER passes the order to your program when a PSTART DEV command is
processed for a device under your program's control. Not until it has accepted the
order (by a corresponding order-response record) can your program request
VSE/POWER to pass output spooled for the device.

If the device cannot be started, your program must indicate this and give a reason
by setting the return-and-feedback codes in the order-response record. A return
code other than PORSROK (X'00') causes VSE/POWER to discontinue the
communication path.

Table 61 and Table 62 show the format of the device order's data section and the
return-and-feedback codes that your program may have to supply in the response
record.

Table 61. Start-Device Order: Data Section

Bytes Field Contents/Description

20 - 27 PORDSDEV Device name specified in the PSTART command

28 - 2B PORDSCLS Class(es) specified in the PSTART command

2C - 2D Reserved for future use

2E PORDSFLG Flag byte:

Mnemonic Value Meaning

PORDSSKP X'80' PSTART with SKIP=YES

2F PORDSPSL Length of parameter string (binary)

30 - 6B - Parameter string as supplied in the PSTART command

Table 62. Start-Device Order: Response-Record Return and Feedback Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted, device started

PORSRINV X'08' Order not accepted

PORSFPAR X'01' Parameter string missing or invalid.

PORSFONA X'02' Subsystem-internal reason

PORSFDUN X'03' Device to be started is unknown.

PORSFDBS X'04' Device to be started is busy.

PORSFDOS X'05' Device to be started out of service.

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 199

Table 62. Start-Device Order: Response-Record Return and Feedback Codes (continued)

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSFDRJ X'06' Device start rejected for subsystem
internal reason.

Stop-Device Order
Table 63 and Table 64 show the format of the device order's data section and the
return-and-feedback codes that your program may have to supply in the response
record.

VSE/POWER passes the order to your program when either of the following
occurs:
v A PSTOP DEV command is processed for a device under your program's

control.
v An orderly VSE/POWER shutdown in response to a PEND command is in

process.

VSE/POWER honors your program's GET-spooled data requests even after the
program has passed the corresponding response record. In fact, it honors these
requests until your program has passed its device-stopped signal.

Table 63. Stop-Device Order: Data Section

Bytes Field Contents/Description

20 PORDPTRB Termination request byte:

Mnemonic Value Meaning

PORDPEOJ X'80' Stop at end of job

PORDPIMM X'40' Stop immediately

PORDPRST X'20' Stop for later restart

21-22 Reserved

23 PORDPPSL Length of parameter string

24-5F PORDPPRM Parameter string

Table 64. Stop-Device Order: Response-Record Return and Feedback Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted, device started

PORSRINV X'08' Order not accepted

PORSFPAR X'01' Parameter string missing or invalid.

PORSFONA X'02' Subsystem-internal reason

A PSTOP DEV,..,FORCE command does not cause a stop-device order to be passed
by VSE/POWER. Instead, VSE/POWER discontinues the communication path
immediately. VSE/POWER informs your program about this by a return- and
feedback-code combination of PXPRCNOC and PXP10PSP.

Orders and Signals

200 VSE/POWER V9R2 Application Programming

Setup-Device Order
VSE/POWER passes the order to your program when a PSETUP DEV command is
processed for a device under your program's control. The order indicates the
number of pages that are to be printed so that the operator can do the required
device setup. As a help for the device operator, consider having your program
replace on the setup pages:

all letters by the character X
every digit of a number by a 9

Table 65 and Table 66 below show the format of the device order's data section and
the return-and-feedback codes that your program may have to supply in the
response record.

Table 65. Setup-Device Order: Data Section

Bytes Field Contents/Description

20-23 PORDUPGE Number of pages (in binary notation).

24-2E Reserved

2F PORDUPSL Length of parameter string (in binary notation)

30-6B PORDUPRM Parameter string

Table 66. Setup-Device Order: Response-Record Return and Feedback Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted, device started

PORSRINV X'08' Order not accepted

PORSFPAR X'01' Parameter string missing or invalid.

PORSFONA X'02' Subsystem-internal reason

Your program must inform VSE/POWER when it is finished with the setup
processing. This is done by passing a setup-processed signal. The signal causes
VSE/POWER to re-position its retrieval pointers to the beginning of the currently
processed queue entry.

Reactivate-Device Order
VSE/POWER passes the order to your program when a PGO DEV command is
processed for a device under your program's control. Table 67 and Table 68 on page
202 show the format of the device order's data section and the return-and-feedback
codes that your program may have to supply in the response record.

Table 67. Setup-Device Order: Data Section

Bytes Field Contents/Description

20-22 Reserved

23 PORDGPSL Length of parameter string

24-5F PORDGPRM Parameter string

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 201

Table 68. Setup-Device Order: Response-Record Return and Feedback Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted, device started

PORSRINV X'08' Order not accepted

PORSFPAR X'01' Parameter string missing or invalid.

PORSFONA X'02' Subsystem-internal reason

Restart-Device Order
VSE/POWER passes the order to your program when a PRESTART DEV command
is processed for a device under your program's control. Table 69 and Table 70 show
the format of the device order's data section and the return-and-feedback codes
that your program may have to supply in the response record.

Table 69. Restart-Device Order: Data Section

Bytes Field Contents / Description

20 PORDTFLG Restart-sign flag:

Mnemonic Value Meaning

PORDTPOS X'80' Plus sign (forward count)

PORDTMIN X'40' Minus sign (backward count)

PORDTABS X'20' No sign (start from the
beginning)

21 - 23 Reserved

24 - 27 PORDTPGE Number of pages/printlines &bxh. How to interpret this
number depends on your application.

28 - 2E Reserved

2F PORDTPSL Length of parameter string

30 - 6B PORDTPRM Reserved

Table 70. Restart-Device Order: Response-Record Return and Feedback Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted, device started

PORSRINV X'08' Order not accepted

PORSFPAR X'01' Parameter string missing or invalid.

PORSFONA X'02' Subsystem-internal reason

Orders and Signals

202 VSE/POWER V9R2 Application Programming

Cancel-Output Order
VSE/POWER passes the order to your program when a PFLUSH DEV command is
processed for a device under your program's control.

Table 71 and Table 72 show the format of the device order's data section and the
return-and-feedback codes that your program may have to supply in the response
record.

Table 71. Cancel-Output Order: Data Section

Bytes Field Contents/Description

20 PORDFFLG HOLD indicator ─ HOLD was specified in the command if
the byte is set to PORDFHLD (X'80'); else, the byte is set to
X'00'.

21-22 Reserved

23 PORDFPSL Length of parameter string

24-5F PORDFPRM Parameter string

Table 72. Cancel-Output Order: Response-Record Return and Feedback Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted, device started

PORSRINV X'08' Order not accepted

PORSFPAR X'01' Parameter string missing or invalid.

PORSFONA X'02' Subsystem-internal reason

Transmit-Command Order
VSE/POWER passes the order to your program when a PXMIT DEV command is
processed for a device under your program's control. The command specified in
the PXMIT command is passed to your program unchanged.

Table 73 and Table 74 show the format of the device order's data section and the
return-and-feedback codes that your program may have to supply in the response
record.

Table 73. Transmit-Command Order: Data Section

Bytes Field Contents/Description

20 PORDXPSL Length of the specified command

21-A4 PORDXPRM The command specified in the PXMIT command

Table 74. Transmit-Command Order: Response-Record Return and Feedback Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted, device started

PORSRINV X'08' Order not accepted

PORSFONA X'02' Subsystem-internal reason

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 203

Subsystem Orders
VSE/POWER accepts and processes subsystem orders as follows:
v Send-message order
v Set-logical-destination order
v Put-account record order

To pass an order to VSE/POWER, your program must:
1. Set the buffer-type flag in the XPCCB to indicate that your program's send

buffer contains a control record.
2. Ensure that the buffer contains the correct order-control record and nothing

else.
3. Issue an XPCC request with FUNC=SENDR.

Your program can pass an order at any time after completion of a preceding
request.

VSE/POWER replies to the order with the corresponding response record. Table 75
shows the return-and-feedback codes which VSE/POWER may set in its response
record.

Table 75. Subsystem Orders: Response Codes

Return Code Feedback Code

MeaningMnemonic Value Mnemonic Value

PORSROK X'00' PORSFOK X'00 Order accepted

PORSROKF X'04' PORSFNAK X'01' Accounting function not initialized

PORSRINV X'08' Order not accepted

PORSFINV X'01' Order is invalid or unknown

PORSFOTS X'02' Order is too short

PORSFMSG X'03' Message text is too long

PORSFSLD X'04' Invalid destination in a preceding
set-logical destination order

PORSFPAC X'05' Length fields mismatch with order
record

PORSFRTL X'06' Account record is either too small
(< 55 bytes) or too large (> 1,000
bytes)

Note: The order response comes from the local system even if the order was
routed to another NODEID (for example, send-message order).

Orders and Signals

204 VSE/POWER V9R2 Application Programming

Send-Message Order
Your program would pass a send-message order when it detects an error or an
intervention-required condition on the involved device. This order includes the
message that your program wants to be routed to the responsible operator or user.

VSE/POWER routes the message as instructed ─ to the system console if the order
does not include a user ID. It issues the message with all alphabetic characters
converted to uppercase.

A message directed to the system console is preceded by the VSE/POWER
provided header: "From device:". However, selected action type messages of the
CICS Report Controller and all action type messages of the Print Services Facility™

(PSF) are headed by "1QZ2A" so that they will not scroll off the console screen. All
other PSF messages are headed by "1QZ2I".

If the message cannot be forwarded to its final destination, then VSE/POWER
discards the message without informing your program. Therefore, if your program
requires a reply to the message, be sure to supply the ID of a user that you know
to be online.

The data section of a send-message order (labeled PORDMMSG) contains the
free-format message as set up by your program. This message can be up to 120
alphameric characters long.

Set-Logical-Destination Order
A user can route a job's output to a certain destination. This is done by specifying,
in an * $$ LST (* $$ PUN) statement for the output, a user ID with or without a
node name. If this ID is the name of a device under your program's control, then
the output is selectable for processing by your program.

By way of a set-logical-destination order, you can instruct VSE/POWER to
“equate” up to eight names to the one by which the involved output device is
known in your program. VSE/POWER then selects an output for processing by
this device if it is destined for an equated user.

However, if the original name by which the output device is known in your
program is to be used as user ID for routing output further, that name must be
included in the list of logical destinations. An operator who issued a PSTART DEV
command for a device can control that device only by commands using the same
device name.

You may define identical logical destinations for several (or all) devices used under
your program's control for the processing of spooled output. If you do this, two or
more of these devices are available for the processing of output for certain logical
destinations. In other words, you get a certain pool effect for your output devices.
Consider this if you see a need for load levelling for the involved output devices.

You can pass a set-logical-destination order for a device at any time after this
device has been started in response to a start-device order.

VSE/POWER uses the defined logical destination names when your program
passes the next generic GET-OPEN service request via the same communication
path. Therefore, code a set-logical-destination order followed by a generic
GET-OPEN service request at the point where your program finds VSE/POWER's
service task waiting for work. The set-logical-destination order may make one or
more output queue entries selectable for processing by your program.

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 205

In a set-logical-destination order, bytes 0 through 3 of the header section are used as
shown in Table 59 on page 195; the remaining bytes of this section are of no
significance. The order's data section, an area of 64 bytes at label PORDDLOG, is
used for the definition of logical destinations, names of up to eight alphameric
characters, as follows:
1. Fill the area with blanks.
2. Do not use R000 thru R250 as logical destination, since these are reserved for

RJE userid's and will lead to a rejection of the subsystem order with return
error PORSRETC/PORSFDBK=X'08/04'.

3. Specify the destination names, one after the other and one per name slot of
eight bytes. Include the logical name of the output device, if necessary. For
VSE/POWER, a blank in the first character position of a name slot means that
no more names follow.

Put-Account Record Order
The VSE/POWER spool-access-operation account record (for layout, see Table 15
on page 26) written by VSE/POWER when your program has received an output
entry via a GET request, may not contain accurate page or copy counts, because
VSE/POWER does not interpret Advanced Function Printing related information of
the report entry. To allow for accurate printing charges, you can define your own
Advanced Function Printing account record, make it part of an account record
order, and ask VSE/POWER to write your account record order to the
VSE/POWER account file.

The PUT-account record order can be sent at any time for a processed output entry,
even when the entry has been deleted from the VSE/POWER output queue in
between. To identify the output queue entry uniquely, your private account record
must:
v Start with the standard VSE/POWER account record header filled by your

program with information according to the layout given on Table 4 on page 11.
v Fill your own Advanced Function Printing account-record information into the

area beginning at label ACAFPBDY (see Table 4 on page 11).
v Provide a layout description for this area, so that accounting evaluation

programs may interpret your data.

The following fields within the order header, as shown in Table 59 on page 195,
must be provided to make up a PUT-Account-Record Order:

PORDRLEN
offering the order header length plus the length of the appended account
record

PORDTYPE
saying by X'05'= this is an order control record

PORDMOD
identifying by PORDMPAO (X'12'): this is an account order

PORDAFPL
offering the length of the account record which starts at label PORDAFPA.

VSE/POWER requires a minimum length of 55 bytes:
45 bytes standard account-record header
2 bytes length field ACAFPLEN
8 bytes to identify the order originator in field ACAPPLID

and does not allow account records longer than 1,000 bytes.

Orders and Signals

206 VSE/POWER V9R2 Application Programming

When VSE/POWER has accepted your PUT-account-record order and has written
the passed account record to the VSE/POWER account file, an order response
control record is returned to your program accompanied by the user data return
feedback code combination PXPRCOK/PXP00OK=00/00. Then VSE/POWER has
updated the following fields of the account record:

ACIDEN
set to 'A'= AFP account record.

ACAFPLEN
set to the value of PORDAFPL which specifies the total length of the
account record.

ACAPPLID
set to the XPCC application-id of your program.

If your passed account record can not be written to the account file due to a full
condition, the control operator is informed to save or empty the account file.
During this period, the SENDR request of your program does not complete and no
other request may be passed until your program has received the account-record
order response.

VSE/POWER may signal the following failures with the user data return/feedback
code PXPRCERR/PXP08IOR=08/30 that accompany the order response record
where more detailed failure reason are given as shown in Table 75 on page 204.

PORSROKF/PORSFNAC=04/01
VSE/POWER has been started without accounting support

PORSRINV/PORSFOTS=08/02
Your passed order control record is longer than the XPCC SENDR length

PORSRINV/PORSFPAC=08/05
PORDRLEN does not provide a length of an order header plus the length
of your account record (given in PORDAFPL)

PORSRINV/PORSFRTL=08/06
PORDAFPL specifies an account record that is either too short (< 55 bytes)
or too long (> 1,000 bytes).

Process a Signal
Signals supply status information required at the other end of a communication
path. VSE/POWER and your program can work with status signals as follows:
v Output-arrived signal

VSE/POWER passes this signal to your program when an output queue entry
has become available for processing on the involved device. If you operate in a
shared-spooling environment, this output may have been placed into the output
queue by one of the other sharing systems.
The format of this signal, a control record, is shown in Table 76 on page 208.
VSE/POWER passes the record as the only one to your program's reply buffer
for the communication path after a wait-for-order/signal or return-order/signal
request. VSE/POWER needs no specific response after having passed an
output-arrived signal.

Note: A generic GET-OPEN request in response to an output-arrived signal may
nevertheless result in a "no entry available" response by VSE/POWER. Another
user of your system may have requested that this selectable output queue entry
be processed, or the entry's class may have changed.

Orders and Signals

Chapter 11. Supporting I/O Devices Via Device Driving Systems 207

v Device-stopped signal
VSE/POWER expects this signal from your program after (but not necessarily in
immediate response to) a stop-device order. Your program should pass the signal
to VSE/POWER after all available records have been processed on the involved
device.

Table 76. Output-Arrived Signal Control Record

Bytes Field Contents / Description

0-1 PSGNRLEN Record length.

2 PSGNLTYP X'07' - Signal-control record indicator.

3 PSGNLMOD X'01' - Output-arrived indicator.

4-7 Reserved

v Setup-processed signal
VSE/POWER expects this signal from your program after (but not necessarily in
immediate response to) a setup-device order. Your program should pass the
signal to VSE/POWER when the program's processing for the necessary setup
activity is complete.

To pass a signal to VSE/POWER, your program must:
1. Set up a null buffer (set IJBXBLN to zero).
2. Set byte PXUBTYP of the XPCCB to zero.
3. Set byte PXUSIGNL of the XPCCB to PXUSDSTP (for device-stopped) or

PXUSSET (for setup processed).
4. Issue an XPCC request specifying FUNC=SENDR.
5. Check the return codes in register 15 and in the XPCCB byte IJBXRETC.
6. Issue a WAIT IJBSECB.
7. When the ECB is posted, VSE/POWER has returned a null buffer and passed

return/feedback codes in the XPCCB user data. Check the VSE reason code in
field IJBXREAS, and the VSE/POWER return-and-feedback codes.

General Hints
The following remarks generally apply to using the external device support.

Routing of VSE/POWER-Generated Messages for External
Devices

If the device owner issuing the PSTART DEV,devname command is not the local
central operator but, for example, a remote-node operator (or an authorized
subsystem administrator), then VSE/POWER routes all messages concerning the
device status to
1. The device owner (PSTART DEV operator), and to
2. The central operator, if required by the severity of the message, or even to
3. The command originator, if DEV-type commands for an already started output

device originated from a third party.

Orders and Signals

208 VSE/POWER V9R2 Application Programming

Range of Support for Communicating with a Subsystem
Throughout the preceding discussion of the external device support it was
assumed that, to process an output queue entry, your program would normally
issue a generic GET service request with PWRSPL...QUEUE=LST specified. It is
also possible to issue a
v generic GET service request to the PUN queue
v direct (specific) GET service request to the LST/PUN queue
v (specific) GET service request to the LST/PUN queue but with limited return

and feedback code information
v CTL service request to any of the VSE/POWER queues.

GET requests to the RDR/XMT queue and PUT requests are not allowed.

No password checking is performed for a queue entry that is to be processed
under the subsystem control.

Use of VSE/POWER Commands During Program Debug
Activities

As a help in program debugging, you can consult the output as displayed by the
following commands:
v PDISPLAY A,DEV
v PINQUIRE ALL|DEV|DEV=devname

For both commands, see the examples in VSE/POWER Administration and Operation,
SC34-2625, following the description of the respective commands.

Use the PSTOP DEV,devname,FORCE command if you want to force an immediate
termination of the communication path to a subsystem device.

General Hints

Chapter 11. Supporting I/O Devices Via Device Driving Systems 209

210 VSE/POWER V9R2 Application Programming

Chapter 12. Spool-Access Support Macros

For each of the described macros, the information is given in applicable sections as
follows:
1. A short summary of the macro's purpose.
2. The macro's format as used for access to VSE/POWER services.
3. A description of the macro's operands.
4. Possible return codes

For further detail on the z/VSE macros MAPXPCCB, XPCC, and XPCCB, see
z/VSE System Macros User's Guide, SC33-8407 and z/VSE System Macros Reference,
SC34-2638. These publications give a complete description of the macros' function
and return codes.

The following chapter describes only a subset of these macros' functions. Likewise,
only those functions are used in the examples that are pertinent to an
understanding of the spool-access support.

Note that you must use the SENDR function (send with reply) to communicate
with VSE/POWER. But you may consider making use of the 31-bit addressing
support of the XPCC macro.

For an explanation of the syntax, see Chapter 1, “Understanding Syntax
Diagrams,” on page 3. Continuation codes that may be required in column 72 are
not shown as part of the macro formats.

XPCCB
The macro sets up a cross-partition control block. Logically, the block represents
one communication path. For a full description of the XPCCB macro, consult the
z/VSE System Macros Reference, SC34-2638 publication.

Format of the Macro

��
name

XPCCB APPL=name,TOAPPL= ANY
SYSPWR

�

�
,BUFFER= (buffname,length)

bflstadr
,REPAREA=(areaname,length)

��

Required RMODE: 24 or ANY

APPL=name
For name specify the name of your program. The characters SYS as the first
three characters of a name are reserved for IBM subsystems.

TOAPPL=ANY|SYSPWR
Specify:

© Copyright IBM Corp. 1987, 2014 211

TOAPPL=ANY
If your application makes use of the external device support (for more
detail see Chapter 11, “Supporting I/O Devices Via Device Driving
Systems,” on page 171).

TOAPPL=SYSPWR
If your application accesses VSE/POWER services for queue manipulation
and for the retrieval or submission of jobs and output.

BUFFER=(buffname,length)|bflstadr
In the operand, buffname is the name of your program's send buffer.

For length specify the buffer's length in number of bytes. For the transfer of
data to VSE/POWER, this buffer may be up to 65,535 bytes long.

If you do not specify a length, your program must insert this length into field
IJBXBLN of the XPCCB.

If your program's send buffer is concatenated from several buffer segments,
specify bflstadr; it should be the address of a list of 8-byte segment
description fields as described under 'BUFFER parameter' in the XPCC macro;
refer to “XPCC.”

REPAREA=(areaname,length)
In the operand, areaname is the name of your program's reply buffer.

For length specify the buffer's length in number of bytes. For the transfer of
data from VSE/POWER, this buffer may be up to 65,535 bytes long.

MAPXPCCB
The macro causes a DSECT of the XPCCB to be generated.

The macro has no operands.

Format of the Macro

��
name

MAPXPCCB ��

For name, you may assign to the DSECT a label of your own choosing. For a full
description of the MAPXPCCB macro, consult the z/VSE System Macros Reference,
SC34-2638 publication.

XPCC
The XPCC macro initiates a cross-partition communication service.

The operands, fields, and reason codes described below list a subset of operands
used by VSE/POWER. For a full description of the XPCC macro, consult the z/VSE
System Macros Reference, SC34-2638 publication.

XPCCB Macro

212 VSE/POWER V9R2 Application Programming

Macro Format

��
name

XPCC XPCCB= address
(1)
(S,address)

,FUNC= function
(reg_no.)

�

�
,BUFFER= bflstadr

(reg_no.)
(S,addr)

��

Requirements for the caller:

AMODE:
24 or 31

RMODE:
24 or ANY

ASC Mode:
Primary

XPCCB=address|(1)|(S,address)
The operand defines the address of the XPCCB, a control block containing
request-related information. For more details about the block, see “XPCCB” on
page 211.

The address of the XPCCB is treated as a 3-byte address if the issuer of the
macro is operating in 24-bit mode and as a 4-byte address if in 31-bit mode.

FUNC=function|(reg-no.)
The operand defines the type of request. For function you can specify:

CONNECT
To have the system provide a communication path to VSE/POWER. Your
program can have several communication paths set up by using for every
path a separate copy of the XPCCB you used for program identification
(FUNC=IDENT).

DISCONN
To have the system disconnect the currently used (and no longer required)
communication path to VSE/POWER.

DISCPRG
To have the system remove the existing communication path (set up by a
FUNC=CONNECT) at once. This may interrupt the transfer of data from
your program to VSE/POWER or vice versa.

For GET-service processing, VSE/POWER retains the affected queue entry
with its disposition and priority unchanged.

For PUT-service processing, the interrupted submission has to be restarted
either at a checkpoint or from the beginning.

IDENT
To make your program known to the system as a spool-access support
user. This is, in effect, a “logon” service.

SENDR
To have VSE/POWER process the desired service and provide a reply.

XPCC Macro

Chapter 12. Spool-Access Support Macros 213

TERMIN
To finish using the spool-access support. This is, in effect, a “logoff”
service. Specify this operand if none of your program's tasks requires any
further access to VSE/POWER services.

BUFFER=bflstadr|(reg-no.)|(S,addr)
The operand may be used to define your program's send buffer. If you use the
operand, the system ignores the area definition given by BUFFER=specification
in the associated XPCCB macro.

In the operand, bflstadr must point to an address list as shown below:

Bytes Description

0

1-3

4-7

Bit 0: indicator X’00’: not last entry in list
X’80’: last entry in list

Bits 1-7: 24-bit mode: ignored
31-bit mode: bits 0-6 of address of buffer segment

24-bit mode: address of buffer segment
31-bit mode: bits 7-30 of address of buffer segment
length of buffer segment

Up to 256 entries of this format may be specified in a buffer address list. Buffer
segments defined therein are concatenated for the SENDR request and are
passed as one buffer to VSE/POWER.

Return Information
The system supplies return information in register 15 and in field IJBXRETC of the
XPCCB; it may supply additional return information in field IJBXREAS. You
should test this information along with testing the posting of IJBXSECB, the
send-event control block.

VSE/POWER supplied return information in the XPCCB's user data area (field
IJBXRUSR) is listed in the preceding chapters that discuss CTL, GET, PUT, and
GCM service requests.

Table 77 on page 215 lists the mnemonics that you can use to test the return and
reason codes supplied by the system. This list is followed by a short description of
these mnemonics (Table 78 on page 216 and Table 79 on page 217). The mnemonics
are also listed and described in the DSECT generated by the assembler for the
MAPXPCCB macro.

XPCC Macro

214 VSE/POWER V9R2 Application Programming

Table 77. Mnemonic of Return and Reason Codes for XPCC Macro

Mnemonic in
XPCCB Field

FUNC=

Reg.15 IJBXRETC IJBXREAS CONNECT DISCONN DISPRG IDENT SENDR TERMIN

00

04

08

IJBXREOK

IJBXAPSP
IJBXDAPP
IJBXNIDN
IJBXNCNN

IJBXCBSY
IJBXNDC1
IJBXNDC2
IJBXNOC1

IJBXNOC2
IJBXNOC3
IJBXNOSY
IJBXNSTO

IJBXNTRM
IJBXQSCE
IJBXTMCR
IJBXWCBA

IJBXWCBK
IJBXWIDK
IJBXWIND
IJBXWLST

IJBXWOWN
IJBXWPID

IJBXCPRG
IJBXDISC
IJBXABDC

X

X
X

X
X

X
X

X
X

X

X
X

X

X

X
X

X

X

X

X
X

X

X
X

X

X

X

X

X

X
X

X

X
X

X
X

X
X
X

X

X

X
X

X

12 The request was rejected because the XPCCB address is invalid.

XPCC Macro

Chapter 12. Spool-Access Support Macros 215

Table 78. Return Codes (IJBXRETC) for XPCC macro

Mnemonic Equated
Value

Meaning

IJBXREOK

IJBXAPSP

IJBXCBSY

IJBXDAPP

IJBXNCNN

IJBXNDC1

IJBXNDC2

IJBXNIDN

IJBXNOC1

IJBXNOC2

IJBXNOC3

IJBXNOSY

IJBXNSTO

IJBXNTRM

IJBXQSCE

IJBXTMCR
IJBXWCBA

IJBXWCBK

IJBXWIDK

IJBXWIND

IJBXWLST

IJBXWOWN

IJBXWPID

00

02

12

01

05

15

16

04

18

19

1A

0F

0E

14

17

0D
1C

06

07

0A

0B

09

08

Request completed successfully.

Identification is requested with the same application from the same
partition. Connect to VSE/POWER is possible.

The communication path to be used is busy.

Identification is requested with the same application from a different
partition. Connect to VSE/POWER is possible.

VSE/POWER has identified itself but not issued a CONNECT request
(see the Note below).

The communication path is being used (a request from your program is
being processed).

The communication path is being used (a request issued by VSE/POWER is
being processed).

VSE/POWER has not yet identified itself to the system (see Note below).

The communication path to be used does not exist.

VSE/POWER came to a normal end of processing.

VSE/POWER came to an abnormal end of processing.

The name specified for TOAPPL in XPCCB is not SYSPWR.

No storage available for setting up the required control blocks.

Your program issued FUNC=TERMIN prior disconnection.

VSE/POWER is being shut down.

Too many CONNECT requests were issued by the requestor.
The request uses an XPCCB other than the one used with
the FUNC=CONNECT request for setting up the communication path.

The XPCCB has an invalid format.

Wrong system-assigned cross-partition ID.

In the defined buffer list, at least one of the indicators is wrong.

One of the following:
- Too many buffers are specified.
- The total length of the buffers exceeds 16MB.
- One of the buffers in the list has a length of zero.

The task that issued the request is not authorized to use the
communication path.

Wrong system-assigned path ID.

Note: Have your program wait for field IJBXCECB to be posted.

XPCC Macro

216 VSE/POWER V9R2 Application Programming

Table 79. Reason Codes (IJBXREAS) for XPCC macro

Mnemonic Equated
Value

Meaning

IJBXCPRG

IJBXDISC

IJBXABDC

01

40

80

VSE/POWER issued a disconnect request as result of
PSTOP SAS command (see Note 1 below).
This code is logically added with IJBXDISC code (by OI instruction).

VSE/POWER issued a disconnect request (see Note 2 below).

VSE/POWER was disconnected as a result of an abnormal end
(see Note 2 below).

Note:

1. Refer ro “Additional Considerations” on page 151.

2. If R15 returns X'0C', the XPCCB address is invalid. The reason code, if it occurs, is inserted into field IJBXREAS
by an OI instruction.

PWRSPL
You can use the macro to do one of the following:
v generate an SPL
v update an SPL
v generate DSECTs of the SPL and of the various request control records and

VSE/POWER-response records

For complex applications, the macro may not offer the scope of required control.
The macro does not offer the required scope of control for applications involving
the submission of output.

If the macro's scope does not meet your application's requirements, first use the
macro to generate an SPL or update an existing SPL, then provide for setting up
certain fields of the SPL by coding of your own. You do this by accessing the
applicable SPL (field) via a generated DSECT. For the layout of the PWRSPL
DSECT, please refer to “Spool-Access Support Parameter List (PWRSPL DSECT)”
on page 231.

Format 1: Generating an SPL

��
name

PWRSPL TYPE=GEN
,PRFX=xxx ,REQ= CTL

GET
PUT
GCM

�

�
,QUEUE= RDR

LST
PUN
XMT

,CLASS=A

,CLASS=class

,JOBN=AUTONAME

,JOBN=jobname

,PWD=

,PWD=password
�

XPCC Macro

Chapter 12. Spool-Access Support Macros 217

�
,USERID=user_id ,MODE= RESET

APPEND
RESTART
BROWSE
GENERIC

�

�
(1)

,FUNC= (ALTER ,CLASS)
,DISP
,COPY
,CMPACT
,NODE
,REMOTE
,PRI
,SYSID
,USER

DISPLAY
CANCEL
RELEASE
HOLD
DELETE
COMMAND

(2)
,NEWVAL=newvalue

�

�

�

,OPT= RESET
,

(ALLCPY)
CTLREC
FORMAT
NOWAIT
RETSEP

��

Notes:

1 Valid only if REQ=CTL.

2 Valid only if FUNC=(ALTER,...)

Format 2: Updating an SPL

��
name

PWRSPL TYPE=UPD
,PRFX=xxx

,SPL= splname
(reg)

�

�
,REQ= CTL

GET
PUT
GCM

,QUEUE= RDR
LST
PUN
XMT

,CLASS= (reg)
class

�

�
,JOBN= (reg)

fieldname
,JNUM= (reg)

fieldname
,JSUF= (reg)

fieldname

�

PWRSPL Macro

218 VSE/POWER V9R2 Application Programming

�
,PWD= (reg)

fieldname
,USERID= (reg)

fieldname
,MODE= RESET

APPEND
RESTART
BROWSE
GENERIC

�

�
(1)

,FUNC= (ALTER ,CLASS)
,DISP
,COPY
,CMPACT
,NODE
,REMOTE
,PRI
,SYSID
,USER

DISPLAY
CANCEL
RELEASE
HOLD
DELETE
COMMAND

(2)
,NEWVAL= (reg)

fieldname

�

�

�

,OPT= RESET
,

(ALLCPY)
CTLREC
FORMAT
NOWAIT
RETSEP

��

Notes:

1 Valid only if REQ=CTL.

2 Valid only if FUNC=(ALTER,...)

Format 3: Generating a DSECT

��
name

PWRSPL TYPE=MAP
,PRFX=xxx

��

Since many operands in the various formats are identical, the operands are
explained only once.

TYPE=GEN|MAP|UPD
The operand specifies the desired type of macro expansion:

GEN
Causes an SPL to be generated.

MAP
Causes a DSECT of the SPL to be generated. Only the operand PRFX=xxx
is meaningful together with a TYPE=MAP specification.

PWRSPL Macro

Chapter 12. Spool-Access Support Macros 219

UPD
Requests that an SPL defined in the program by PWRSPL TYPE=GEN be
updated in accordance with the specified operands. SPL fields
corresponding to omitted operands remain unchanged.

CLASS=class|(reg)
The operand specifies the class that:
v Matches the class of the queue entry which is to be retrieved (REQ=GET is

specified).
v Is to be assigned to the output queue entry (REQ=PUT is specified).
v Is to be used as a search argument if a control function is to be processed

(REQ=CTL is specified).

As class value, specify the desired one-byte input or output class as
self-defining character constant.

If the macro specifies TYPE=GEN, then:
v You cannot use register notation.
v Class A is used as default.

If you use a register (together with TYPE=UPD), it must point to a one-byte
field that contains the class value.

FUNC=(ALTER,attrib-type)|CANCEL|COMMAND|DELETE|DISPLAY| HOLD|RELEASE
The operand applies only if you specify also REQ=CTL; it specifies the type of
function to be performed.

ALTER
Causes VSE/POWER to alter, in the specified queue for the named job(s)
(with optional jobnumber and/or jobsuffix and/or class (see note), the
attribute that you specify for attrib-type.

For attrib-type, you can specify one of the attributes discussed under
NEWVAL=field|(reg), below. Only one attribute can be changed per CTL
request.

Note: Although class is optional, it is automatically provided as default 'A'
through PWRSPL TYPE=GEN. Consider overwriting the default and
specify another class value using the CLASS=class operand. You can also
nullify the default class value (and address queue entries in more than one
class) using the PWRSPL TYPE=UPD,CLASS=(reg) request, where (reg)
points to a blank (X'40') field. Alternatively, you can nullify the default
class value by setting the SPLGCL field to X'40' directly in the SPL control
block before you send the SPL to VSE/POWER.

CANCEL
Causes VSE/POWER to cancel (flush) the job identified by job name and,
optionally, by job number.

COMMAND
Indicates that VSE/POWER is to process the command supplied in the
field SPLCFLD of the SPL that is being generated or updated.
VSE/POWER accepts the command without error checking for the
command.

For passing a command to VSE/POWER, the following rules have to be
observed:
v The command must be set up using uppercase letters.
v The command cannot be longer than 130 bytes.

PWRSPL Macro

220 VSE/POWER V9R2 Application Programming

v Continuation of the command is not supported.
v At least one blank must follow the command within the 130 byte area.
v For a coding example, see label 'CTLAB1' of the PWRSASEX example in

Chapter 13, “Spool-Access Support Programming Example,” on page
271.

Here, successful processing of the command is not indicated by a message.
For details, see “Retrieving Messages” on page 67.

The table below lists the commands that VSE/POWER accepts via a
spool-access communication path:

PALTER queue entries (see Note 1 below)
PBRDCST
PCANCEL jobname (see Note 1 below)
PDELETE queue entries (see Note 1 below)
PDELETE FCB (see Note 2 below)
PDELETE MSG
PDISPLAY queue entries (see Note 6 on page 222 below)
PDISPLAY CRE
PDISPLAY DEL
PDISPLAY TOTAL PDISPLAY M PDISPLAY MSG
PDISPLAY A
PDISPLAY BIGGEST
PDISPLAY Q PDISPLAY T
PDISPLAY TASKS
PDISPLAY DYNC
PDISPLAY PNET
PDISPLAY EXIT
PDISPLAY SPDEV
PDISPLAY SPDEVT
PDISPLAY STATUS PDISPLAY AUSTMT
PDISPLAY TAPE (see Note 2 below)
PDISPLAY VIO (see Note 2 below)
PFLUSH DEV|cuu (see Notes 2 and 3 below)
PGO DEV|cuu (see Notes 2 and 3 below)
PHOLD queue entries (see Note 1 below)
PINQUIRE
PLOAD DYNC (see Note 2 below)
PRELEASE queue entries (see Note 1 below)
PRESTART DEV (see Note 2 below)
PSEGMENT (see Note 5 on page 222 below)
PSETUP DEV (see Note 2 below)
PSTART DEV|cuu (see Notes 2 and 3 below)
PSTOP DEV|cuu (see Notes 2 and 3 below)
PVARY DYNC (see Note 2 below)
PVARY MSG (see Note 2 below) PXMIT node-id
PXMIT DEV (see Note 2 below)

Note:

1. Accepted only if there is a match of the recorded and specified user IDs
(origin or target) and, if applicable, also of these passwords.
Only the owner of an entry can manipulate a target entry with a
destination of ANY (unless his own user ID is ANY which, however, is
not recommended).

2. Only for authorized users ─ for example the subsystem administrator, if
there is one.

3. Messages which are due to a syntax error of the command are routed
to the application program issuing the command. For example:
1R52I PSTART OPERAND 1 MISSING OR INVALID
or
1R58I PSTART DEVICE 00E IS IN USE

PWRSPL Macro

Chapter 12. Spool-Access Support Macros 221

If the command has been processed successfully, the application
program gets return/feedback code (00/01). If within the command
'cuu' has been specified, messages, which are related to this command,
may be issued and routed to the console, but not to the application
program. For example:
1Q34I RDR WAITING FOR WORK ON 00C
or
1Q33I STOPPED LST, 00E

4. For a summary of command access limitation, see “Scope of GET/CTL
Access to Queue Entries” on page 61.

5. The command addresses a queue entry in creation and is accepted only
if there is a match of the recorded and specified IDs (origin or target)
and, if applicable, also of these passwords.

6. You can display queue entries of the physical RDR/LST/PUN/XMT
queues and of the logical CRE and DEL queues.

DELETE
Causes VSE/POWER to delete, in the specified queue, the named job(s)
(further qualified by optional jobnumber and/or jobsuffix and/or class (see
note for ALTER)).

DISPLAY
Causes VSE/POWER to return information about the queue entries of the
specified queue as described by jobname (further qualified by optional
jobnumber and/or class (see note for ALTER)).

HOLD
Causes VSE/POWER to change, in the specified queue, the disposition of
the named job(s) (further qualified by the optional jobnumber and/or
jobsuffix and/or class (see note for ALTER)) to the following:

H (hold) if it was D (dispatchable)
L (leave) if it was K (keep).

RELEASE
Causes VSE/POWER, in the specified queue for the named job(s) (further
qualified by optional jobnumber and/or jobsuffix and/or class (see note
for ALTER)), to take them out of the hold or leave state and make them
available for processing.

JOBN=jobname|fieldname|(reg)
The operand specifies the VSE/POWER job name that is to be used for the
execution of the request. The job name you specify must be alphameric (more
precisely: "alphaj" as defined in Chapter 14, “Return and Feedback Codes and
Their Meanings,” on page 297 and, for CTL requests, those of generic type as
well) and not longer than eight characters.

If the macro specifies TYPE=GEN, then:
v You must define the name as a self-defining character constant.
v Omission of the operand causes AUTONAME to be used as the default

name.

If you code this operand together with TYPE=UPD, specify for jobname the
label of an eight-byte field that contains the job name left justified and padded
with blanks.

If you use a register, it must point to an eight-byte field with the name.

JNUM=fieldname|(reg)
The operand can be used only together with TYPE=UPD. It specifies the

PWRSPL Macro

222 VSE/POWER V9R2 Application Programming

number which VSE/POWER assigned to the job whose queue entry is to be
manipulated or whose data is to be retrieved.

If you use a register, it must contain the job number. If you do not use a
register, the field name must be the label of a halfword that contains the job
number in binary notation.

If you do not want to supply a job number, set the field (or register) to binary
zeros.

JSUF=fieldname|(reg)
The operand can be used only together with TYPE=UPD. It specifies the
job-suffix (segment) number assigned to the queue entry that is to be
manipulated or to be retrieved.

If a register is used, it must contain the number. If you do not use a register,
the field name must be the label of a halfword containing the number (in
binary).

MODE=APPEND|BROWSE|GENERIC|RESET|RESTART
The operand specifies the mode of operation for the requested service:

APPEND
Spooling is to continue at the end of an already existing queue entry. This
applies only to the PUT output function.

BROWSE
Useful primarily if you intend to examine (but not to update) a job.

If you specify BROWSE, you must also provide the name of the job to be
accessed, with or without the applicable job number and job suffix. A
queue entry accessed in BROWSE mode enters the active (DISP=*) state.
Because viewing can only be terminated by the QUIT request of the GET
service, the queue entry is left unchanged in its queue even if the entry's
disposition is D. For more details on browsing, refer to “Browsing a Queue
Entry for Viewing Only” on page 78.

For a retrieval in BROWSE mode, VSE/POWER accepts only a subset of
GET-service requests (with an action code in byte PXUACT1 of the XPCCB
field IJBXSUSR) as shown below:

Type of Request Mnemonic Equated to the Action Code

A retrieval request PXUATSDR

A quit request PXUATABR

A restart request Not applicable. You submit this request by passing (to
VSE/POWER) a restart-control record.

GENERIC
Causes VSE/POWER to retrieve the first eligible queue entry destined for
a certain user within the specified class. When processing a retrieval
request in this mode, VSE/POWER ignores the specification of a job name,
a job number, or a job suffix.

VSE/POWER selects, for retrieval, the queue entry whose characteristics
are closest to the ones defined in the PWRSPL macro.

You can include in your request up to three additional classes by:
1. Inserting the additional classes left justified in the field SPLGNV of

your SPL followed by a blank.
2. Setting the flag SPLGOACL in byte SPLGOPT, the SPL's option byte.

PWRSPL Macro

Chapter 12. Spool-Access Support Macros 223

You can further limit the selection of retrieved queue entries to those
whose target (disregarding 'from') user ID matches the user ID of the GET
request (SPLGUS) by setting the flag SPLGO2HU in byte SPLGOPT2, the
option byte 2 of the SPL.

RESET
Causes the mode settings to be reset to the default values.

RESTART
Spooling is to begin at a certain record of an already existing queue entry
(PUT-output function). This record is either of the following:
v The one whose number your program supplies in field SPLDCREC of

the applicable SPL.
v The record last checkpointed by VSE/POWER if your program does not

supply a record number in this SPL field.

NEWVAL=newvalue|fieldname|(reg)
The operand names the direct constant or field that contains the new value to
be used by VSE/POWER as attribute for the named queue entry.

If you have specified TYPE=GEN in this macro before, the new value must in
all cases be defined as a self-defining character constant.

If you have specified the FUNC= operand in this macro before with
(ALTER,attrib-type), this operand gives you the new value to be used. What
type of value it is, is explained below. These are the parameters you have to
choose from for the FUNC= operand as 'attrib-type':

CLASS
The name of a one-byte field that contains the new class of the queue
entry. If you use a register, it must point to the one-byte field.

DISP
The name of a one-byte field that contains, in character format, the new
disposition (D, K, H, or L) of the affected queue entry. If you use a register,
it must point to the one-byte field.

For further information on disposition refer to the VSE/POWER
Administration and Operation, SC34-2625 publication.

How the operator is to handle dispositions X and Y is described in the
Chapter “Operating with VSE/POWER” of that publication.

COPY
The name of a three-byte field that contains, in character format, the new
number of copies (any value from 1 to 255). If you supply the number
right justified, leading zeros are required.

If a register is used, it must point to the three-byte field.

The specification applies only to output queue entries; it is ignored if you
specify it for an input queue entry.

CMPACT
The label of a four-byte field which contains the name of the new
compaction table set to be used for transmitting the queue entry to an SNA
workstation. Supply this table set's name left justified without leading
blanks.

Instead of the name of a compaction table, you may specify either:

* To indicate that the default compaction table is to be used.

PWRSPL Macro

224 VSE/POWER V9R2 Application Programming

NO To indicate that no compaction should be performed.

If you use a register, it must point to the four-byte field.

NODE
The label of an eight-byte field that contains, in character format, the new
target destination of the queue entry. In this field, supply the destination
left justified without leading blanks. If you use a register, it must point to
the eight-byte field.

REMOTE
The label of a three-byte field that contains, in character format, the new
remote ID. This is a value from 0 to 250.

If you supply the number right justified, leading zeros are required. If you
use a register, it must point to the three-byte field.

The specification applies only to output queue entries; it is ignored if you
specify it for an input queue entry.

PRI
The name of a one-byte field that contains, in character format, the new
priority. If you use a register, it must point to the one-byte field.

SYSID
The label of a one-byte field that contains, in character format, the new
system ID. If you use a register, it must point to the one-byte field.

USER
The label of an eight-byte field that contains, in character format, the new
target user ID of the queue entry. In that field, supply this ID left justified
without any leading blanks. If you use a register, it must point to the
eight-byte field.

OPT=RESET|(service-options)
The operand specifies options for performing the requested service.

RESET
Causes VSE/POWER to reset (turn off) any option specified previously.

(service-options)
You may omit the enclosing parentheses if you specify only one of the
options.

If a specified option does not apply to the requested function,
VSE/POWER ignores this option.

ALLCPY
Causes VSE/POWER to return all copies of an output queue entry to the
requestor. The specification applies only if you specified REQ=GET.

Depending on OPT=CTLREC, each copy ends with its last data or control
record. When OPT=CTLREC then a control record follows with a record
prefix and one blank byte of data. The command code is X'07', the record
type is X'08', meaning 'end-of-copy', and the record number is zero.

In all cases the new copy starts with an inline SPL record of command
code X'00', record type X'01' and a record number of zero. Depending on
OPT=CTLREC, either the first control record or the first data record of the
new copy then follows, starting with record number one or more.

CTLREC
Causes VSE/POWER to return also immediate control records (such as
skip to channel 1 and space 2 lines) when retrieving an output queue entry.

PWRSPL Macro

Chapter 12. Spool-Access Support Macros 225

A control record consists of a record prefix and one byte of data. The
command code is contained in the record prefix. For control records with a
command code reserved for use by VSE/POWER only, see “Spooling of
Records with Carriage Control Character X'FE'” on page 120.

FORMAT
Causes the result of a requested RDR/LST/PUN/XMT or
CRE/DEL/TOTAL queue display to be returned as 'fixed' format records
rather than console-display (also called 'free') format messages.

For a PDISPLAY BIGGEST request, the FORMAT option is ignored.

The specification applies to queue display commands, set up either as
fixed format commands by
PWRSPL REQ=CTL,FUNC=DISPLAY,QUEUE=...

or as free format commands by
PWRSPL REQ=CTL,FUNC=COMMAND

The terms 'fixed' and 'free' format command and 'fixed'/'free' format
messages have no relation to each other. For use of both command formats,
refer to labels CTLA1 and CTLAB1 in Chapter 13, “Spool-Access Support
Programming Example,” on page 271.

For the receipt of 'fixed' format messages, keep the following in mind:
v They are structured according to the PXFMDSCT DSECT. For the layout

of the Fixed Format Queue Display Record, refer to “Spool-Access
Support Parameter List (PWRSPL DSECT)” on page 231.

v The standard 8-byte prefix (see RECPRFIX in “Spool-Access Support
Parameter List (PWRSPL DSECT)” on page 231) identifies fixed format
records by RECTYPE=RECTFIXM.

v Only actual queue record information is passed to your program, i.e.,
headline messages for the various queues are suppressed.

v The queue type of a presented queue entry can be derived from field
PXFMQUID. It contains R|L|P for RDR/LST/PUN data types, whereas
the additional flag PXFMFLG1.PXFMF1XQ shows that the entry actually
resides in the XMT queue.

v The "being browsed" informaton is included in fields 'PXFMMACN,
PXFMMAC1,...,PXFMMAC9'. For a non-shared VSE/POWER system,
'PXFMMACN', showing a nonzero value is equivalent to the '*' in the 'B'
column of a normal queue display. If for a shared system at least one
field of 'PXFMMAC1,...,PXFMMAC9' is nonzero, this is also equivalent
to '*' in the 'B' column.

v The queue type of a presented queue entry of the DELETION QUEUE
shows the original queue type before the entry was deleted.
PXFMFLG3.PXFM3DEL shows that the entry is in deletion.

v The queue type of a presented queue entry of the CREATE QUEUE
shows the desired queue type in field PXFMQUID.
PXFMFLG3.PXFM3CRE shows that the entry is in creation.
The following new fields defined in PXFMDSCT are meaningful only if
the fixed-format messages are returned for a 'PDISPLAY CRE' request.
– PXFMTASK contains the owning task identifier (last 7 bytes) as

shown in 'PDISPLAY TASKS'.
– PXFMOWNT contains the task type (1 byte):

- 'J' - output is being created by a JOB

PWRSPL Macro

226 VSE/POWER V9R2 Application Programming

- 'N' - job or output is being received from other NODE
- 'R' - job is being received from REMOTE station
- 'S' - job or output is being spooled by SAS application
- ' ' - job or output is being created by other task type (none of the

above)
– PXFMOWND contains the owner description (8 bytes) in relation to

the task type shown in PXFMOWNT.
- jobname
- node name
- Remote ID
- Application name
- blank

For a LST/PUN queue entry the start time (PXFMSTRT) and stop time
(PXFMSTOP) are identical until the queue entry is printed/punched and
requeued.

For detailed scheduling information as offered by PXFMFLG2, refer to
VSE/POWER Administration and Operation, SC34-2625.

NOWAIT
Requests control to be returned to the requestor when a wait condition
occurs because of lack of disk space. If you do not specify NOWAIT,
VSE/POWER waits for such space to become available. What this means
for your program is discussed below.

During GET-service processing, VSE/POWER may find that the account-file
is full. The situation may come up when VSE/POWER executes one of the
following subfunctions:
v CLOSE the processing for the currently accessed queue entry.
v Perform a FLUSH-HOLD for the spool request (applies only to an

application involving external device support).
v Purge the involved queue entry.
v Quit processing the request.

When the account-file-full condition occurs, the function has already been
performed. Therefore, VSE/POWER cannot inform your program right
away. If no other GET (CTL or PUT) request follows, your program does
not become aware of this situation. However, a subsequent GET (CTL or
PUT) request from your program is rejected with applicable return and
feedback codes supplied by VSE/POWER. In your program, you can then
decide, whether you want to wait and retry after a certain time interval or
to set up a new communication path to VSE/POWER to start the new
function.

During a PUT-service processing, VSE/POWER may run into a “short of
disk space” situation as indicated:
v While VSE/POWER is spooling a job or job output.

VSE/POWER stops further spooling of the submitted job or output. This
results in the following:
– If an output file is being spooled without being checkpointed, this file

is lost, and VSE/POWER queues an information message. If the file is
checkpointed, VSE/POWER queues the file up to last committed
checkpoint; the file's remaining data is lost.

PWRSPL Macro

Chapter 12. Spool-Access Support Macros 227

– If a single job is being spooled, the job is lost, and VSE/POWER
queues an information message.

– If multiple jobs are being spooled, the jobs already spooled are kept
in the input queue, but the job being processed and all subsequent
ones are lost. VSE/POWER queues a message and returns a
verification SPL for the last job spooled successfully.

– If a segment-output request is being processed, VSE/POWER may or
may not pass to your program a verification SPL in addition to the
data-file-full indication.
By passing this SPL, VSE/POWER informs your program that all data
submitted up to this point has been spooled and a queue entry for
the segment exists. Processing for building another segment cannot
continue.
If VSE/POWER passes only the data-file-full indication, all data
submitted since the last successful segment request or checkpoint
(whichever applies) is lost.

v When VSE/POWER tries to write into the account file.
This can occur after a CLOSE, quit, or segment request; it can occur after
a spool-data request during multiple-job submission.
– For a CLOSE or quit request, VSE/POWER returns a successful

completion indication. However, VSE/POWER rejects any subsequent
PUT, GET or CTL function as long as the account-file-full situation
exists. For the new function request, VSE/POWER performs no error
checking; instead it returns to your program the return- and
feedback-code combination PXPRCOKF and PXPS04SOA to indicate
that the account file is full.

– For a segment request, VSE/POWER returns the PXPRCOKF/
PXPS0SOA return/feedback-code combination together with the SPL
that describes the output segment just queued. VSE/POWER does not
accept any further spool requests.

– For multiple-job submission (with one open PUT-service request),
VSE/POWER returns a verification SPL together with the
PXPRCOKF/PXPS04SOA return/feedback code combination. This SPL
applies to the job that was queued, but for which no account record
could be written. Any subsequent job-spool requests are rejected by
VSE/POWER.

RETSEP
Causes separator pages (or cards) to be returned as normal data records in
front and at the end of the requested output queue entry. Separator pages
(cards) that VSE/POWER builds are passed with their MCCs.

The option applies only if you specified REQ=GET and if a JSEP value
other than zero was specified for the queue entry.

PRFX=xxx
Use this operand if, for the generated SPL or SPL DSECT, you want the field
names to begin with characters other than SPL. This avoids the occurrence of
duplicate names if your program includes the macro two or more times; for
example several times with TYPE=GEN and once with TYPE=MAP.

For xxx, specify the string of up to three characters with which you want the
field names to begin.

PWD=password|fieldname|(reg)
The operand specifies the password associated with the queue entry to be

PWRSPL Macro

228 VSE/POWER V9R2 Application Programming

retrieved or manipulated. The password must be alphameric and not longer
than eight characters; if it is shorter, it is to be defined left justified and padded
with blanks.

For a request with TYPE=GEN, specify a password (if this is feasible) as a
self-defining character constant.

For a request with TYPE=UPD, specify the label of an eight-byte field that
contains the password. If you use a register, it must point to the eight-byte
field that contains the password.

For a request with TYPE=GEN, VSE/POWER defaults to a password of eight
blanks. Then you may access all jobs without a password -- either read-in
locally or submitted by a spool-access PUT request.

QUEUE=LST|PUN|RDR|XMT
The operand specifies the queue that is to be accessed. The queue
specifications valid for the various function requests are indicated by an X in
the table below:

Function Specification

QUEUE=

LST PUN RDR XMT

REQ=CTL X X X X

REQ=GET X X X X1

REQ=PUT: spooling job(s) - - X -2

REQ=PUT: spooling output X X - -3

1 Applicable only for "Direct Queue Entry Access"
2 If your program submits a job for processing at another node,

it must define this in the * $$ JOB statement for the job.
3 If your program submits output data for transmission to another node,

the target node's name and user ID must be defined in the fields
SPLDTNN and SPLDTUID, respectively, of the applicable SPL.

REQ=CTL|GET|PUT|GCM
The operand specifies the type of function to be performed. The set of
operands that applies to each of these basic function requests is given below. In
the operand lists, M = mandatory and O = optional. Specify:

CTL
To pass to VSE/POWER a control request or a command for execution.
Operands that apply to a CTL request (where: M = mandatory; O =
optional):
FUNC=function M
JOBN=jobname|(reg) M1

QUEUE=RDR|LST|PUN|XMT M1

USERID=user-id|(reg) M

CLASS=class|(reg) O2

JNUM=fieldname|(reg) O
JSUF=fieldname|(reg) O
NEWVAL=field|(reg) O
OPT=FORMAT O
PWD=password|(reg) O

1Optional if your program passes a command to VSE/POWER specified
directly in the field 'SPLCFLD' and FUNCTION is COMMAND.
2If omitted, then VSE/POWER uses the default class A.

PWRSPL Macro

Chapter 12. Spool-Access Support Macros 229

GET
To retrieve, from the specified VSE/POWER queue, the named queue
entry. Operands that apply to a GET request (where: M = mandatory; O =
optional):
CLASS=class|(reg) M
JOBN=jobname|(reg) M
QUEUE=RDR|LST|PUN|XMT M1

USERID=user-id|(reg) M

JNUM=fieldname|(reg) O
JSUF=fieldname|(reg) O
MODE=BROWSE O
MODE=GENERIC O
OPT=(ALLCPY,CTLREC,NOWAIT,RETSEP) O
PWD=password|(reg) O

1XMT is applicable only for "Direct Queue Entry Access"

PUT
To have job(s) spooled to VSE/POWER input queues (RDR, XMT) and Job
output to the VSE/POWER output queues (LST, PUN, XMT).

Operands that apply to a PUT-job request (where: M = mandatory; O =
optional):
QUEUE=RDR M
USERID=user-id|(reg) M

OPT=NOWAIT O
PWD=password|(reg) O

Operands that apply to a PUT-output request (where: M = mandatory; O =
optional):
QUEUE=LST|PUN M
JOBN=jobname|(reg) M
USERID=user-id|(reg) M

CLASS=class|(reg) O1

MODE=APPEND|RESTART O
OPT=NOWAIT O
PWD=password|(reg) O

1If omitted, then VSE/POWER uses the default class A.

Spooling of output data may require that your program set up a certain
number of SPL fields individually. For more information about setting up
SPL fields, see “Submitting Output Data” on page 117.

Note: For spooling job(s) or output to the XMT queue, see the description
of the QUEUE operand.

GCM
To have messages retrieved from a VSE/POWER fixed format job event
and output generation messages queue. Operands that apply to the GCM
Open-request (where M=mandatory; O=optional) are:
USERID=user-id|(reg) M
JOBN=jobname|(reg) O
JNUM=fieldname|(reg) O

PWRSPL Macro

230 VSE/POWER V9R2 Application Programming

Retrieval of fixed format job event and output generation messages
requires that your program sets up some SPL fields individually. For more
information, see “How to Retrieve Job Event and Output Generation
Messages” on page 141.

SPL=splname|(reg)
The operand specifies the address of the SPL to be used. It applies only if you
specify TYPE=UPD.

If you do not use a register, the code generated for your PWRSPL macro causes
a pointer to the SPL to be loaded into register 1. Save this register's content
before you issue the macro. If you code the macro with a name in the name
field, that name must be identical with the symbolic address you specify for
splname.

USERID=user-id|fieldname|(reg)
The operand specifies the user ID associated with the queue entry that is to be
retrieved, submitted, or manipulated.

For a request with TYPE=GEN, specify the actual ID as a self-defining
character constant.

For a request with TYPE=UPD, specify the label of an eight-byte field that
contains the ID left justified and padded with blanks.

If you use a register, it must point to the eight-byte field that contains the ID.

Note: ANY is not recommended as user ID.
For a summary of access limitations, see “Scope of GET/CTL Access to Queue
Entries” on page 61.

Spool-Access Support Parameter List (PWRSPL DSECT)
If you use the PWRSPL macro and specify TYPE=MAP, you will be provided with
the following DSECTs:

Bytes Hex Field Label Description/Function

General Section Part 1

00 SPLDS Start of parameter list

00-02 SPLGHD Storage descriptor

03 SPLGVM Version and modification level

SPLGVM1 X’10’ - Version and modification level 10

SPLGVM2 X’20’ - Version and modification level 20

SPLGVM3 X’30’ - Version and modification level 30

SPLGVM31 X’31’ - Version and modification level 31

04-0B SPLGJB Job name, left justified and padded with blanks

0C-0D SPLGJN Job number, binary

0E SPLGJS Job suffix - X’00’ to X’7F’ (0 to 127)

SPLGJSLA X’80’ - Last segment indication in bit 0
Actual segment number 1 - 127 in bit 1 - 7

0F SPLGCL Job class

10-17 SPLGPW Job password

18-1F SPLGUS User id of requestor

PWRSPL Macro

Chapter 12. Spool-Access Support Macros 231

Bytes Hex Field Label Description/Function

20 SPLGQI Queue identifier

SPLGQIR C’R’ - RDR queue

SPLGQIL C’L’ - LST queue

SPLGQIP C’P’ - PUN queue

SPLGQIX C’X’ - XMT queue

21 SPLGFLG Flag byte (for Reply SPL)

SPLGFXR C’R’ — RDR type in XMT queue

SPLGFXL C’L’ — LST type in XMT queue

SPLGFXP C’P’ — PUN type in XMT queue

The following fields define the request types. The contents of
the subrequest byte and function bytes depend on the request type.

22 SPLGRQB Request byte

SPLGRPUT X’01’ - PUT OPEN request

SPLGRGET X’02’ - GET OPEN request

SPLGRCTL X’03’ - CTL OPEN request

SPLGRGCM X’04’ - GCM OPEN request

23 SPLGSRB Subrequest byte

SPLGSRDY X’01’ - Display job/output queue entry

SPLGSRCN X’02’ - Cancel job

SPLGSRRL X’03’ - Release job/output queue entry

SPLGSRHD X’04’ - Hold job/output queue entry

SPLGSRDL X’05’ - Delete job/output queue entry

SPLGSRAL X’06’ - Alter job/output queue entry

SPLGSRCM X’07’ - VSE/POWER command

SPLGSRDC X’08’ - Delete checkpoint information

SPLGSRJG X’09’ - GCM: RETRIEVE JGM

SPLGSRJC X’0A’ - GCM: RETRIEVE JCM

SPLGSROG X’0B’ - GCM: RETRIEVE OGM

24 SPLGFB1 Function byte 1

SPLGF1AP X’01’ - Append of incomplete queue entry

SPLGF1RS X’02’ - Restart of queue entry

SPLGF1BR X’03’ - Browsing of queue entry

SPLGF1GG X’04’ - Generic GET request

SPLGF1QM X’05’ - PUT: Queue completion message
CTL-RELEASE: Queue completion message (must be specified
together with SPLGFB2.SPLGF2MR flag)

SPLGF1KM X’06’ - GCM: Retrieve and keep message

SPLGF1DM X’07’ - GCM: Retrieve and delete message

SPLGF1RM X’08’ - GCM: Remove message

SPLGF1QQ X’09’ - PUT: Queue job event message

SPLGF1PM X’0A’ - GCM: Purge message queue

PWRSPL DSECT

232 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

SPLGF1QP X’0B’ - PUT: Queue job completion and output generation messages

SPLGF1QO X’0C’ - PUT: Queue output generation message

SPLGF1QX X’0D’ - PUT: Queue job event and output generation messages

SPLGF1XS X’0E’ - GCM: Start XEM service

SPLGF1XM X’0F’ - GCM: Retrieve and delete XEM

SPLGF1XT X’10’ - GCM: Stop XEM service

25 SPLGFB2 Function byte 2

SPLGF2CL X’01’ - Alter class

SPLGF2DP X’02’ - Alter disposition

SPLGF2CP X’03’ - Alter copy number

SPLGF2CM X’04’ - Alter compaction table name

SPLGF2RE X’05’ - Alter remote id

SPLGF2PR X’06’ - Alter priority

SPLGF2SY X’07’ - Alter system identifier

SPLGF2TN X’08’ - Alter destination node name

SPLGF2TU X’09’ - Alter destination user id

SPLGF2MR X’0A’ - Release command gets completion message (must be
specified together with SPLGFB1.SPLGF1QM flag)

26-2D SPLGNV Field containing the new value for the alter or additional classes

26-28 SPLGACLS Extra classes for generic GET

2E SPLGOPT Option byte 1

SPLGOSEP X’80’ - Return separator pages/cards

SPLGOFCC X’40’ - Feed back immediate commands

SPLGOALL X’20’ - Pass all copies of queue entry

SPLGOFIX X’10’ - Return fixed format queue display

SPLGONOW X’08’ - NOWAIT option

SPLGOACL X’04’ - Upto 3 extra classes specified

SPLGOGIC X’02’ - Request GET-OPEN for queue entry in creation

2F SPLGOPT2 Option byte 2

SPLGO2AC X’80’ - Convert ASA characters to machine control characters

SPLGO2HU X’40’ - Honor user id for generic GET request

SPLGO2BT X’20’ - Ignore blank truncation during spooling

SPLGO2QN X’10’ - Use queue record number

SPLGO2FE X’08’ - Allow to put X’FE’ records

SPLGO2OJ X’04’ - PUT: Pass original job number in job event and output generation
messages

- GCM: Use original job number in JCMDS/JGMDS/OGMDS
to search for messages

SPLGO2CD X’02’ - GCM: Use generated job ids

SPLGO2WP X’01’ - GCM: GCM WAIT is allowed when in PEND state

SPLGSLEN Length of general section part 1

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 233

Bytes Hex Field Label Description/Function

General Section Part 2
The following fields contain descriptive information about
the queue entry either built or accessed.

30 SPLDDP Disposition of queue entry

31 SPLDPR Priority of queue entry

32-33 SPLDOJ# Original job number

34 SPLDSID System identifier

35 SPLDMOP General option byte 1

SPLDMNCS X’20’ - No copy separators

SPLDMOHP X’10’ - Hold when printing/punching failed

36 SPLDFLG Flag byte

SPLDFVSE X’80’ - Output produced on z/VSE system

SPLDFCKI X’40’ - Extended checkpoint information exists

SPLDFCKE X’20’ - Extended checkpoint information unavailable due to I/O error

SPLDSKIP X’10’ - SET SKIP=YES in autostart

SPLDFRUN X’08’ — NORUN=IGN specified on * $$ JOB statement

37 SPLDCCPY Checkpoint copy number

38-3B SPLDRCT Total record count

3C-3F SPLDPCT Total page count for list entries only

40-43 SPLDLCT Card/line count for LST/PUN entries only

44-47 SPLDCREC Checkpoint record number or PUT-OPEN-RESTART record number

48-57 SPLDUI User information

58-5F SPLDONN Originator node name

60-67 SPLDOUID Originator user/remote identifier

68-6F SPLDTNN Target node name

70-77 SPLDTUID Target user/remote identifier

78-8B SPLDPRGN Programmer name

8C-93 SPLDROOM Room number

94-9B SPLDDEPT Department number

9C-A3 SPLDBLDG Building number

A4-A5 SPLDLREC Maximum record length

• Output Section
The following fields are only applicable when either spooling
or retrieving output to/from the LST, PUN, or XMT queues.

A6 SPLORCFM Record format

SPLORSCS X’80’ - SCS print

SPLORBMS X’40’ - BMS mapping

SPLOR327 X’20’ - 3270 format

SPLORAPA X’10’ - CPDS data stream, APA data

SPLORESC X’08’ - Escape mode

PWRSPL DSECT

234 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

SPLORASA X’04’ - ASA control characters

SPLORMCC X’02’ - Machine control characters

A7 SPLONCPY Number of copies

A8-AB SPLOCOMP Compaction table name (RJE,SNA output only)

AC-B3 SPLOFORM Forms identifier (FNO)

B4-BB SPLOEWTR Subsystem name

BC-C3 SPLOFCB FCB name

C4-CB SPLOUCB UCB name

CC SPLOUCBO UCB option byte

SPLOUCBD X’80’ - Block data check option

SPLOUCBF X’40’ - Fold option

CD SPLONSEP Number of separator pages/cards

CE SPLOTDP Output transmission disposition

CF Reserved

• 3800 Section
The following fields are only applicable for 3800 output

D0-DF SPL3TAB Character arrangement tables

D0-D3 SPL3TAB1 Character arrangement table 1

D4-D7 SPL3TAB2 Character arrangement table 2

D8-DB SPL3T3B3 Character arrangement table 3

DC-DF SPL3TAB4 Character arrangement table 4

E0-E3 SPL3MODF Copy modification name

E4-E7 SPL3CCHR Character arrangement table for copy modification

E8-EF SPL3CPYG Copy groupings

E8 SPL3CPG1 Copy group 1

E9 SPL3CPG2 Copy group 2

EA SPL3CPG3 Copy group 3

EB SPL3CPG4 Copy group 4

EC SPL3CPG5 Copy group 5

ED SPL3CPG6 Copy group 6

EE SPL3CPG7 Copy group 7

EF SPL3CPG8 Copy group 8

F0-F3 SPL3FLSH Flash identifier

F4 SPL3FLCT X’FF’ - Flash count = 255

F5 SPL3FLG1 Flag byte 1

SPL3F1BR X’80’ - Burst is requested

SPL3F1TR X’40’ - 1st byte contains TRC character

SPL3F138 X’20’ - 3800 section present

SPL3SLEN Length of all sections to date

F6-F7 Reserved for future use

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 235

Bytes Hex Field Label Description/Function

• Extended Section for SPL Version 2

F8-F9 SPLEOPOF Offset to start of OPTBs

FA-FB SPLEOPLN Length of specified OPTBs

• Extended Section for SPL Version 3

FC-103 SPLXDIST Distribution code

104-105 SPLXQRJ# Job number of job that created the output

106-107 SPLXCKIL Length of checkpoint with extended information

108-10B SPLXQNUM Queue entry number, binary

10C SPLXFLG1 Extended flag byte 1

SPLX1GLN X’80’ - LOG=NO specified

SPLX1EMG X’40’ - EOJMSG=YES specified

SPLX1ACE X’20’ - entry created by PACCOUNT PUN

SPLX1SNO X’10’ - PUT: output not to be spool access protected (SECAC=NO)
- GET: entry not spool access protected (SECAC=NO)

SPLX1DSP X’08’ - Direct GET for $SPLnnnn

SPLX1XRD X’04’ - GCM-XEM: queue RDR entry event

SPLX1XLS X’02’ - GCM-XEM: queue LST entry event

SPLX1XPN X’01’ - GCM-XEM: queue PUN entry event

10D SPLXOB1 Extended option byte 1

SPLXO1CQ X’01’ - PUT: Job event and output generation messages to common queue

SPLXO1DQ X’02’ - PUT: Job event and output generation messages to common and user
queue

10E-10F SPLXWAIT GCM: Wait time (0 - 27962 seconds)

SPLXWETR X’FFFF’ - GCM: Wait indefinitely

110-117 SPLXSID z/VSE security user id

118-11F SPLXSPW z/VSE security password

PWRSPL DSECT

236 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

120-127 SPLXPMDE Processing mode (PRMODE)

128-12F SPLXPRIV PUT: Private information

130-133 SPLXQDAT GET: Creation date of entry (DDMMYYYY or MMDDYYYY), packed format

134-137 SPLXQTIM GET: Creation time of entry (0HHMMSSF), packed format

138-13A SPLXEXPM PUT: Expiration moment values:

138-139 SPLXEXPD PUT: Expiration days

13A SPLXEXPH PUT: Expiration hours

13B Reserved for future use

• Extended Section for SPL Version 3.1

13C-13F SPLXTKN TKN value in return SPL

140-143 Reserved for future use

SPLEOPST Possible start of OPTBs

SPLTLEN Total length of SPL (X’144’)

144 SPLEOPTB Start of OPTB area

• VSE/POWER Command Section
The following section is an overlay of the last six sections
and defines the command area used when passing a free-format command to VSE/POWER.

30-B1 SPLCFLD Command field: max. 130 bytes, terminated by one blank (X’40’)

• User Data in XPCCB Changed by VSE/POWER
The return and feedback codes of bytes 4 and 5 are explained in
more detail in
Chapter 14, “Return and Feedback Codes and Their Meanings,” on page 297.

00 PXPUSER DSECT definition

00 PXPBTYP Buffer type

PXPBTSPL X’01’ - Spool parameter list

PXPBTNDB X’02’ - Normal data buffer

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 237

Bytes Hex Field Label Description/Function

PXPBTMSG X’03’ - Message buffer

PXPBTCTL X’04’ - Control record buffer

PXPBTOPT X’05’ - Buffer with OPTBs

01 PXPACT1 Action type 1

02 Reserved

01-02 PXPLC12 or: Bytes 1 and 2 of data record number returned after
restart to active record.

03 PXPINFO User information byte

PXPIMSG X’80’ - Message(s) queued

PXPIORD X’40’ - Order pending

PXPIPSH X’20’ - VSE/POWER is in shutdown

04 PXPRETCD Return code

PXPRCOK X’00’ - No error

PXPRCOKF X’04’ - Request not handled

PXPRCERR X’08’ - Request rejected

PXPRCPVL X’0C’ - Protocol violated or severe error

PXPRCNOC X’10’ - Connection terminated

05 PXPFBKCD Feedback code

PXP00OK X’00’ - No error

PXP00EOD X’01’ - End of data

PXP00NJB X’02’ - Job not on job boundary

PXP00NRS X’03’ - No record spooled

PXP00RTR X’04’ - Record exceeds maximum specified length

PXP00ZBF X’05’ - Zero data buffer

PWRSPL DSECT

238 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PXP00CIA X’06’ - Checkpoint identification altered

PXP00NCM X’07’ - No job completion message retrieval available

PXP00LCM X’08’ - Only 2 to 5 job completion messages to queue

PXP00OCM X’09’ - Only 0 to 1 job completion message to queue

PXP04NOF X’01’ - Job/output not found

PXP04JOP X’02’ - Job/output protected

PXP04BSY X’03’ - Job/output marked as active

PXP04NDS X’04’ - Job/output is not dispatchable

PXP04IDP X’05’ - Append error, invalid disposition

PXP04RER X’06’ - Restart error, outside range

PXP04CER X’07’ - Checkpoint error, outside range

PXP04SOD X’08’ - Short on spool file space

PXP04SOA X’09’ - Short on account file space

PXP04BER X’0A’ - Request not allowed in browse mode

PXP04DNF X’0B’ - Nothing found while performing a display queue

PXP04TQN X’0C’ - Temporary queue set not found

PXP04NMU X’0D’ - No matching user id

PXP04WDP X’0E’ - RESTART disposition is not D, H, K, L or X

PXP04JSR X’0F’ - Job suffix number is mandatory

PXP04NOQ X’10’ - No order/signal queued

PXP04ONF X’11’ - OPTB(s) not found

PXP04NJC X’12’ - Job completion message retrieval not available for
GCM-OPEN request

PXP04CKN X’13’ - Extended checkpoint information does not exist

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 239

Bytes Hex Field Label Description/Function

PXP04CKE X’14’ - External checkpoint information lost due to I/O error

PXP04NCK X’15’ - Checkpoint information does not exist

PXP04NMF X’16’ - No job completion message found (GCM-OPEN)

PXP04SAC X’17’ - Spool access security violation

PXP04NAT X’18’ - Queue entry not active or active on other shared system

PXP04ANS X’19’ - Queue entry active by task not suitable for restart to active
record

PXP04RIS X’1A’ - Restart to active record specified inconsistently together with
positioning on line, page, or end of queue entry

PXP04NRU X’1B’ - Restart to active record request rejected, requestor not in
browse mode

PXP08SPL X’01’ - Invalid SPL

PXP08REQ X’02’ - Unknown request type

PXP08SRQ X’03’ - Unknown subrequest type

PXP08FB2 X’04’ - Unknown function byte 2

PXP08JNM X’05’ - Invalid job name

PXP08QID X’06’ - Invalid queue identifier

PXP08CLS X’07’ - Invalid class

PXP08PWD X’08’ - Invalid password

PXP08UID X’09’ - Invalid user/remote identifier

PXP08RFM X’0A’ - Invalid record format

PXP08DSP X’0B’ - Invalid local or transmission disposition

PXP08PRY X’0C’ - Invalid priority

PXP08SID X’0D’ - Invalid system identifier

PXP08TNN X’0E’ - Invalid destination node name

PWRSPL DSECT

240 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PXP08TUN X’0F’ - Invalid destination user/remote id.

PXP08FNO X’10’ - Invalid forms identifier

PXP08FCB X’11’ - Invalid FCB name

PXP08UCB X’12’ - Invalid UCB name

PXP08UOP X’13’ - Invalid UCB options

PXP08FLH X’14’ - Invalid flask identifier

PXP08CPT X’15’ - Invalid compaction table name

PXP08CGP X’16’ - Invalid copy groupings

PXP08CHR X’17’ - Invalid character tables

PXP08MOD X’18’ - Invalid copy modification tables

PXP08CCR X’19’ - Invalid characters for copy modification

PXP08BTS X’1A’ - Buffer too small

PXP08IAO X’1B’ - Wrong specification of append or restart option

PXP08IAB X’1C’ - Invalid action request

PXP08ICR X’1D’ - Invalid control record

PXP08PRG X’1E’ - Invalid programmer name

PXP08ROO X’1F’ - Invalid room number

PXP08DPT X’20’ - Invalid department number

PXP08BLD X’21’ - Invalid building number

PXP08CON X’22’ - Conflicting specifications (see also PXPFBKC2)

PXP08ROL X’23’ - Received record is too large

PXP08IBT X’24’ - Invalid buffer type

PXP08ROS X’25’ - Request out of sequence (see also PXPFBKC2)

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 241

Bytes Hex Field Label Description/Function

PXP08SOS X’26’ - SPL received out of sequence

PXP08BOS X’27’ - Received buffer is out of sequence

PXP08RPH X’28’ - Request not allowed

PXP08ISS X’29’ - Invalid signal specification or signal out of sequence

PXP08RPW X’2A’ - Record prefix wrong

PXP08FB1 X’2B’ - Unknown function byte 1

PXP08IML X’2C’ - Invalid record length specified in the SPL

PXP08IEX X’2D’ - Invalid subsystem name

PXP08SPA X’2E’ - Complete record is not in the buffer

PXP08ICC X’2F’ - Invalid carriage control character

PXP08IOR X’30’ - Invalid order

PXP08JNO X’31’ - Invalid job number (=0)

PXP08JSF X’32’ - Invalid job suffix number (>127)

PXP08IUI X’33’ - Invalid user information

PXP08IPD X’34’ - GET SPL from RDR queue or PUT SPL not allowed for
a DST task

PXP08UXR X’35’ - Unexpected response received

PXP08WOS X’36’ - Wait for order out of sequence

PXP08NSP X’37’ - Invalid separator pages/cards

PXP08IRR X’38’ - Invalid request for RDR

PXP08IOP X’39’ - Invalid OPTB specified

PXP08OLM X’3A’ - OPTB length mismatch

PXP08DOP X’3B’ - Duplicate OPTBs specified

PXP08OTL X’3C’ - Specified OPTBs too long

PWRSPL DSECT

242 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PXP08IDH X’3D’ - Invalid DSHR found

PXP08DIS X’3E’ - Invalid distribution code

PXP08INK X’3F’ - Invalid keyword OPTB (syntax)

PXP08NDK X’40’ - Define statement missing for keyword OPTB

PXP08IDV X’41’ - Invalid value of keyword OPTB

PXP08CKZ X’42’ - Length of extended checkpoint information is zero

PXP08CKL X’43’ - Length of extended checkpoint information is too large

PXP08IQN X’44’ - Queue entry number invalid

PXP08GJN X’45’ - Generic job name can not be used

PXP08SEU X’46’ - z/VSE security user id invalid

PXP08SEP X’47’ - z/VSE security password invalid

PXP08IPM X’48’ - Incorrect processing mode for PUT-OPEN-OUTPUT

PXP08IEM X'49' - PUT SPL with invalid expiration value

PXP08SDU X'4A' - GET service: Modify-OPTB rejected for master or duplicate

PXP08RDU X'4B' - PUT-OPEN-RESTART rejected for master or duplicate

PXP08XUA X’4C’ - GCM-XEM service is unavailable or can net be started for
application (see also PXPFBKC2)

PXP0CINS X’01’ - SEND issued, but SENDR required

PXP0CIXF X’02’ - Used an unsupported XPCC function

PXP0CBTL X’03’ - Buffer too large

PXP0CPER X’04’ - Protocol error

PXP0CPVD X’05’ - Protocol violation by a DDS. Order queued flag not honored

PXP0CIOE X’07’ - I/O error on either the queue or data file

PXP0CSNF X’08’ - No VSE/POWER section found in JHR or DSHR

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 243

Bytes Hex Field Label Description/Function

PXP0CCOR X’09’ - Invalid length field in JHR or DSHR

PXP10CAA X’03’ - Connection already active

PXP10PSP X’05’ - PSTOP issued by operator or due to exit failure

PXP10SIE X’06’ - Severe internal error

PXP10MST X’07’ - SAS task limit reached

06-07 PXPROFF Offset to invalid record

06-07 PXPRBLN or: Required buffer length

06-07 PXPLEMC or: GCM - Count of lost job event and output generation messages

06-07 PXPLC34 or: Bytes 3 and 4 of data record number returned after
restart to active record

06 PXPFBKC2 or: Feedback-2 code, valid for RETCD 04, FBKCD 01 and 0B only:

PXPC2OK X’00’ - ALL-CMDS, no error

PXPC2TEM X’01’ - R|H-CMD no access to DISP=X|A|Y

PXPC2NOH X’02’ - H-CMD HOLD only for DISP=D|K

PXPC2NOR X’03’ - R-CMD RELEASE only for DISP=H|L

PXPC2NTA X’04’ - A-CMD warning nothing to change

PXPC2CPO X’05’ - A-CMD COPY change for ’*’ entry but additional operands given

PXPC2CDI X’06’ - A-CMD COPY change for ’*’ entry but ’PDIR’ outbound task found

PXPC2CNT X’07’ - A-CMD COPY change for ’*’ entry, no suitable active task found

PXPC2BAD X’08’ - ALL-CMDS|GET, queue record not accessible due to I/O error

PXPC2FRE X’09’ - ALL-CMDS|GET, queue rec. empty, already in free Q-record chain

PXPC2MQU X’0A’ - ALL-CMDS|GET, mismatch queue

PXPC2MJM X’0B’ - ALL-CMDS|GET, mismatch job name

PXPC2MJB X’0C’ - ALL-CMDS|GET, mismatch job number

PWRSPL DSECT

244 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PXPC2IPW X’0D’ - A|H|L|R-CMD, SPL specified user password mismatching Q-rec pwd

PXPC2BPW X’0E’ - A|H|L|R-CMD, default SPL pwd. No match to Q-record password

PXPC2JFR X’0F’ - A|H|L|R-CMD job only, FROM-NODE or FROM-USER not matching own

PXPC2OT1 X’10’ - A|H|L|R-CMD,output only,TO-USER not matching to own USER-ID

PXPC2OT2 X’11’ - A|H|L|R-CMD, similar PXPC2OT1

PXPC2OT3 X’12’ - A|H|L|R-CMD, similar PXPC2OT1

PXPC2OTN X’13’ - A|H|L|R-CMD output only,TO-NODE not matching to own node name

PXPC2MJS X’14’ - A|H|L|R-CMD|GET, mismatching job(output) suffix

PXPC2MCL X’15’ - GET-RQ, mismatching job class

PXPC2MSY X’16’ - GET-RQ, mismatch target sysid

PXPC2MFU X’17’ - GET-RQ, userid not matching to ’FROM’-userid of job entry

PXPC2MFT X’18’ - GET-RQ, userid not matching to FROM|TO-userid of output entry

PXPC2SAC X’19’ - GET/CTL RQ, security logon user ID not equal origin/target user
IDVSE/POWER
has been started with Spool Access Protection active, the
given spool entry does not specify SECAC=NO, and an XPCC program
SAS GET/CTL (direct) attempted to access a spool entry. However,
either:
- the program’s security logon user ID (either from the IBM component

terminal logon or the partition // ID or * $$ JOB SEC= statement)
does not match the spool entry’s authorized access user ID(s)
(either the spool entry’s origin user ID or target user ID), or

- the spool entry specifies a target user ID of ’ANY’ and the program
does not have a security logon user ID

The authorized access user ID(s) can be displayed with the PDISPLAY
command (displayed as FROM= or TO=).

PXPC2INC X’1A’ - ALL-CMDS/GET, queue record incomplete - in creation

PXPC2DEL X’1B’ - GET/CTL-RQ for queue entry in delayed deletion

PXPC2NVT X’1C’ - GET-RQ, queue entry is either in creation on another
system or is being created by a task not eligible to browse
an entry in creation.
Valid task: execution writer

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 245

Bytes Hex Field Label Description/Function

PXPC2EMP X’1D’ - GET-RQ, queue entry is in creation but still empty

PXPC2QCL X’1E’ - GET-RQ, queue entry is complete in LST queue, no longer in
creation

PXPC2QCP X’1F’ - GET-RQ, queue entry is complete in PUN queue, no longer in
creation

PXPC2QCR X’20’ - GET-RQ, queue entry is complete in RDR queue, no longer in
creation

PXPC2QCX X’21’ - GET-RQ, queue entry is complete in XMT queue, no longer in
creation

PXPC2EXC X’22’ – ALL-CMDS/GET, queue record is not accessible due to
"excluded" duplicate

06 PXPFBKC2 or: Feedback-2 code, valid for RETCD 08 and FBKCD 22 only:

PXPC222A X’01’ - Buffer length is zero, but a buffer type (PXUBTYP) is set.

PXPC222B X’02’ - Buffer length is zero and no action (PXUACT1) is set and
no DST task is running.

PXPC222C X’03’ - Buffer length is zero and no action (PXUACT1) and
no signal (PXUSIGNL) is set and a DST task is running.

PXPC222D X’04’ - Buffer length is not zero, but no buffer type
(PXUBTYP) is set.

PXPC222E X’05’ - Buffer length is not zero, but a signal (PXUSIGNL) is set
and a DST task is running.

PXPC222F X’06’ - The buffer length is not zero, no (PUT-, GET-, CTL-, GCM-)
service is in progress, but a buffer type (PXUBTYP) and an
action (PXUACT1) is set.

PXPC222G X’07’ - The buffer length is not zero, a GET- or a CTL- or a
GCM- service is in progress, and a buffer type (PXUBTYP) and an
action (PXUACT1) is set.

PXPC222H X’08’ - A PUT-close request is received and the
buffer type is not zero and does not indicate an SPL nor a
data buffer.

PXPC222I X’09’ - A PUT-segment request is received and the
buffer type is not zero and does not indicate an SPL nor a
data buffer.

PWRSPL DSECT

246 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PXPC222J X’0A’ - A PUT-close-append request is received and the
buffer type is not zero and does not indicate an SPL nor a
data buffer.

PXPC222K X’0B’ - A checkpoint request during a PUT service is received and the
buffer type is not zero and does not indicate a data buffer.

PXPC222L X’0C’ - A quit request during a PUT service is received and
the buffer type is not zero and does not indicate a data buffer.

06 PXPFBKC2 or: Feedback-2 code, valid for RETCD 08 and FBKCD 25 only:

PXPC225A X’01’ - The buffer length is zero, no (PUT-, GET-, CTL-, GCM-)
service is in progress and none of the following is received:

1. no valid request for message retrieving (PXUACT1 is not PXUATRMR not
PXUATABR)

2. no return order request for a DST task

3. no waiting for a order request for a DST task

4. no signal for a DST task

PXPC225B X’02’ - GET service is in progress and a send data request is
received (PXUACT1), but no more data are available.

PXPC225C X’03’ - Message retrieving is in progress and
a return message request is received (PXUACT1), but no more
messages are available.

PXPC225D X’04’ - A GCM service has ended
and no new SPL is received (PXUBTYP is not PXUBTSPL).

PXPC225E X’05’ - A GCM-OPEN-KEEP is being processed and received
request (PXUACT1) is not a GCM-MORE nor a GCM-REMOVE request.

PXPC225F X’06’ - A GCM-OPEN-DELETE is being processed and
received request (PXUACT1) is not contain a GCM-MORE request.

PXPC225G X’07’ - A GCM-OPEN-REMOVE or GCM-OPEN-PURGE
is being processed and a request is received
(PXUACT1 not 0).

PXPC225H X’08’ - XEM: GCM-XEM-OPEN or XEM-STOP received prior to GCM-XEM-START

PXPC225I X’09’ - XEM: GCM-MORE request received but EOD was signaled

6 PXPFBKC2 or: Feedback-2 code, valid for RETCD 08 and FBKCD 4C only:

PXPC24CA X’01’ - XEM service is unavailable due to insufficient storage for XEM
control block

PXPC24CB X’02’ - Maximal number of running XEM applications is exceeded

PXPC24CC X’03’ - XEM service already started for Appl-ID

PXPC24CD X’04’ - No sufficient storage above 16M for application messages queue

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 247

Bytes Hex Field Label Description/Function

PXPUSLN Length of control block

• User Data in XPCCB Changed by User

PXUUSER DSECT name

00 PXUBTYP buffer type

PXUBTSPL X’01’ - Spool parameter list

PXUBTNDB X’02’ - Normal data buffer

PXUBTCTL X’04’ - Control record buffer

01 PXUACT1 Action type 1

PXUATEOD X’01’ - End of data (PUT function)

PXUATRQS X’02’ - Close queue entry (GET function)

PXUATABR X’03’ - Quit request

PXUATSGM X’04’ - Segmentation request

PXUATROE X’05’ - End of data for appendable output

PXUATPRG X’06’ - Purge queue entry request

PXUATCHK X’07’ - Checkpoint request

PXUATRMR X’08’ - Return message request

PXUATSDR X’09’ - Send data request

PXUATFLH X’0A’ - Flush hold request

PXUATROR X’0B’ - Return order/signal immediately

PXUATWFR X’0C’ - Wait till order/signal to return

PXUAT1PF X’0D’ - Printing/punching failed

PXUATCKR X’0E’ - Retrieve external checkpoint information

PXUATDEL X’10’ - Delete retrieved messages (GCM-REMOVE)

PWRSPL DSECT

248 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PXUATGCM X’11’ - Retrieve more messages (GCM-MORE)

02 Reserved

03 PXUINFO User information byte

04 PXURETCD Return code

05 PXUFBKCD Feedback code

06 PXUSIGNL Signal byte

PXUSDSTP X’01’ - Device stopped

PXUSSET X’02’ - Setup processed

07 Reserved

PXUUSLN Length of control block

• VSE/POWER Record Prefix Layout

RECPRFIX DSECT name

00 RECCCODE Command code

01 RECTYPE Record type

RECTNORM X’00’ - Normal data record
Used for all records of RDR queue or normal (non-CPDS) data
records of LST/PUN queue.
Normal when data record prefix in DBLK reflects
’line print or card move data’.

RECTSPL X’01’ - Spool parameter list

RECTFIXM X’02’ - Fixed format message

RECTSEPR X’03’ - Start separator page/card record

RECT3540 X’04’ - 3540 data record

RECTCCR X’05’ - Control command record
Control when data record prefix in DBLK does not reflect
’line print or card move data’.

RECTCPDS X’06’ - CPDS data record

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 249

Bytes Hex Field Label Description/Function

RECTESEP X’07’ - End separator page/card record

RECTEOC X’08’ - End of copy record

RECTFJCM X’09’ - GCM: Fixed format job completion message

RECTFJGM X’0A’ - GCM: Fixed format job generation message

RECTFOGM X’0B’ - GCM: Fixed format output generation message

RECTFXEM X’0C’ - GCM: Fixed format extended event message

02-03 RECLNGTH Logical record length (excluding 8-byte prefix)

04-07 RECLOGNO Logical record number

RECPRFXL Record prefix length

Bytes Hex Field Label Description/Function

• VSE/POWER Fixed Format Queue Display Record

PXFMDSCT DSECT name

00-01 PXFMRLEN Record length

02 PXFMTYPE Record type

PXFMTQDI X’01’ - Fixed format queue display

03 PXFMVOL BAM tape volume number

PXFMVOLA X’80’ - Last-volume flag
X’01’-X’7E’ - Volumes 1-126
X’7F’ - Volume 127 or higher

04-0B PXFMDATE Creation date of queue entry (mm/dd/yy or dd/mm/yy)
For creation date century, see PXFMDATC

0C-0F PXFMSTRT Start time (0HHMMSSF), packed format

10-13 PXFMSTOP Stop time (0HHMMSSF), packed format

14-23 PXFMUSER User information

24-2B PXFMNAME Job name

PWRSPL DSECT

250 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

2C-2D PXFMJNUM Job number

2E PXFMJSUF Job suffix - X’00’ to X’7F’ (0 to 127)

PXFMJSLA X’80’ - Last segment indication in bit 0
Actual segment number 1 - 127 in bit 1 - 7

2F PXFMQUID Queue identifier

30 PXFMCLSS Class

31 PXFMPRIO Priority

32 PXFMDISP Disposition (’*’ = in execution by task with update authority)

33 PXFMCOPY Number of copies

34 PXFMFLG1 Control flag 1

PXFMF1XQ X’80’ - Queue set resides in the XMT queue

PXFMF1AB X’40’ - Abended queue set, DISP=X

PXFMF1AP X’20’ - Appendable queue set, DISP=A

PXFMF1CP X’10’ - Checkpointed queue set in-creation queue

PXFMF1PF X’08’ - Printing/punching failed, DISP=Y

PXFMF1EX X’04’ - Due date expired

PXFMF1SE X’02’ - Job is authenticated

PXFMF1SA X’01’ - Not spool access protected

35 PXFMRCFM Record format

36 PXFMSTAT Paper status byte

C’B’ - burst requested

37 PXFMSYID Target or processing system identifier, or ’M’, if parallel
browsing

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 251

Bytes Hex Field Label Description/Function

38-3B PXFMREC# Number of records spooled.
If RDR-type (I=R) entry in the XMT queue with DISP=*, then
"remaining" number of records to be transmitted.

3C-3F PXFMPGE# Number of pages spooled.
IF LST queue entry with DISP=*, then "remaining" number of pages
to be printed.
Note - no remaining pages shown if in the XMT queue.

40-43 PXFMLNE# Number of lines/cards spooled.
If LST/PUN queue entry or LST/PUN-type (I=L or I=P) in the XMT
queue, then "remaining" number of lines/cards to be
printed/punched or to be tramsmitted.

44-47 PXFMFLSH Flash identifier

48-4F PXFMFORM Forms identifier (FNO)

50-57 PXFMCPYG Copy groupings

58 PXFMFLG2 Control flag 2

PXFM2SDF X’80’ - Class defined as static

PXFM2SRN X’40’ - Static class running

PXFM2SWW X’20’ - Static class waiting for work

PXFM2DDF X’10’ - Class defined as dynamic

PXFM2DSP X’08’ - Dynamic class suspended

PXFM2DEN X’04’ - Dynamic class enabled

PXFM2PRP X’02’ - In execution preparation phase

PXFM2RUN X’01’ — NORUN=IGN specified in the * $$ JOB statement

59 PXFMNSEP Number of separator cards or pages

5A-5B PXFMJBO# Original job number

5C-5F PXFMCMPT Compaction table name

60-67 PXFMNODE Target destination node name

68-6F PXFMUSID Target destination user/remote id

PWRSPL DSECT

252 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

70-77 PXFMORGN Originating node name

78-7F PXFMORGU Originating user/remote id

80-87 PXFMSUBS Subsystem name (external writer id)

88-8C PXFMDDND Next due date

88-89 PXFMDDN1 Day or month

8A PXFMDDS1 Separator ’/’

8B-8C PXFMDDN2 Day or month

8D-91 PXFMDDNT Next due time

8D-8E PXFMDDNH Hours

8F PXFMDDS2 Separator

90-91 PXFMDDNM Minutes

92-93 PXFMDATC Century (cc) of creation date at PXFMDATE

94-97 PXFMQNUM Queue entry number, binary

98-9F PXFMSECN Job security zone if job is authenticated

A0-A7 PXFMDIST Output distribution code

A8-B1 PXFMMACC Multiple browse access counts:

A8 PXFMMACN Non-shared access count

A9 PXFMMAC1 Shared SYSID 1 access count

AA PXFMMAC2 Shared SYSID 2 access count

AB PXFMMAC3 Shared SYSID 3 access count

AC PXFMMAC4 Shared SYSID 4 access count

AD PXFMMAC5 Shared SYSID 5 access count

AE PXFMMAC6 Shared SYSID 6 access count

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 253

Bytes Hex Field Label Description/Function

AF PXFMMAC7 Shared SYSID 7 access count

B0 PXFMMAC8 Shared SYSID 8 access count

B1 PXFMMAC9 Shared SYSID 9 access count

B2 PXFMFLG3 Control flag 3

PXFM3CRE X’80’ - Queue entry is in creation

PXFM3DEL X’40’ - Queue entry is in deletion

PXFM3PLI X’20’ – Queue entry is in creation, PUN into AF library

B3 PXFMMDUP Number of duplicates (entry is a master queue entry)

B4-BA PXFMTASK Task descriptor of task creating this queue entry

BB PXFMOWNT Task type of task creating this queue entry

PXFMOWNJ ’J’ - queue entry being created by JOB

PXFMOWNN ’N’ - queue entry being created by Networking

PXFMOWNR ’R’ - queue entry being created by Remote Station

PXFMOWNS ’S’ - queue entry being created by SAS Application

PXFMOWNB ’ ’ - queue entry being created by other task

BC-C3 PXFMOWND Task type of task creating this queue entry

C4-CF PXFMEDY Expiration moment:

C4-C5 PXFMEDYA Month or day

C6-C7 PXFMEDYB Day of month

C8-CB PXFMEDYY Year

CC-CD PXFMEDYH Hour

CE-CF PXFMEDYM Minute

D0-D3 PXFMMNUM Queue entry number of master, entry is duplicate

PWRSPL DSECT

254 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

D4-D7 PXFMTKN TKN value in HEX

D8-EF Reserved for future use

PXFMLENG Length of DSECT

• VSE/POWER Restart Control Record (Layout)

PXRSDSCT DSECT name

00-01 PXRSRLEN Length of the restart record

02 PXRSTYPE Record type

PXRSTRST X’02’ - Restart control record

03 Reserved

04-07 PXRSRECN Logical record number specifying where to begin the restart

08 PXRSRCPY Associated restart copy number

09 PXRSOPT Option byte

PXRSOPOL X’80’ - Positioning on line requested
(ignored for RDR/PUN type queue entries)

PXRSOPAE X’40’ - Positioning at end of queue entry requested
if restart number is too high

PXRSOPOP X’20’ - Positioning on page requested
(ignored for RDR type queue entries)

PXRSOPAR X’10’ - Positioning on active record requested

0A-0B Reserved

PXRSLENG Length of DSECT

• VSE/POWER Checkpoint Control Record (Layout)

PXCPDSCT DSECT name

00-01 PXCPRLEN Length of checkpoint record

02 PXCPTYPE Record type

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 255

Bytes Hex Field Label Description/Function

PXCPTCHK X’03’ - Checkpoint control record

03 PXCPFLAG Flag byte

PXCPFXIE X’80’ - Checkpoint control record with extended information

04-07 PXCPRECN Logical record number of the checkpoint record

08 PXCPRCPY Associated copy number

09-0B Reserved

PXCPLENG Length of DSECT

0C PXCPSTXI Start of checkpoint with extended information (length from 1 to
DBLK size minus 288)

• VSE/POWER Checkpoint Response Control Record (Layout)

PXCRDSCT DSECT name

00-01 PXCRRLEN Length of checkpoint response record

02 PXCRTYPE Record type

PXCRTCRS X’04’ - Checkpoint response control record

03 PXCRFLAG Flag byte

PXCRFXIE X’80’ - Checkpoint with extended information exists

PXCRFXIS X’40’ - Checkpoint with extended information saved

04-0B PXCRJNAM Job name

0C-0D PXCRJNUM Job number

0E PXCRJSUF Job suffix - X’00’ to X’7F’ (0 to 127)

PXCRJSLA X’80’ - Last segment indication in bit 0
Actual segment number 1 - 127 in bit 1 - 7

0F PXCRRCPY Associated copy number

10-13 PXCRRECN Logical record number associated with the checkpoint

PWRSPL DSECT

256 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

14-17 PXCRQNUM Associated queue entry number

18-1B Reserved for future use

PXCRLENG Length of DSECT

1C PXCRSTXI Start of checkpoint with extended information

• VSE/POWER GET-OPTB Control Record

PXGODSCT DSECT name

00-01 PXGORLEN Length of control record

02 PXGOTYPE Record type

PXGOTGOP X’08’ - GET-OPTB control record

03 Reserved for future use

04-05 PXGOID OPTB identifier (0 for all)

• VSE/POWER MODIFY-OPTB Control Record

PXMODSCT DSECT name

00-01 PXMORLEN length of control record

02 PXMOTYPE record type

PXMOTMOP X’08’ - MODIFY-OPTB control record

03 Reserved for future use

04-07 Reserved for future use

08 PXMOOPTB Output parameter text block

• DSECT for SPL version 1 and 2

XTSOVSPL DSECT name

00-2F XTSGSECT General section part 1

30-A5 XTSDSECT General section part 2

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 257

Bytes Hex Field Label Description/Function

A6-CF XTSOSECT Output section

D0-F7 XTS3SECT 3800 section

F8-FB XTSESECT OPTB section

F8-F9 XTSOPOF Offset to OPTBs

FA-FB XTSOPLN Length of OPTBs

FC XTSEOPTB Possible start of OPTBs

• VSE/POWER Order Control Record

The order control record consists of two sections:

- the header section
- the variable order section

PORDER DSECT name

00-01 PORDRLEN Length of order

02 PORDTYPE Record type

PORDREC X’05’ - Order control record

03 PORDMOD Order request type

PORDMSTR X’01’ - Start device order

PORDMSTP X’02’ - Stop device order

PORDMRST X’03’ - Restart device order

PORDMPGO X’04’ - Re-activate device order

PORDMSET X’05’ - Setup device order

PORDMFLH X’06’ - Flush device order

PORDMXMT X’07’ - User defined order

PORDMSND X’10’ - Send message order

PORDMSLD X’11’ - Set logical destination order

PWRSPL DSECT

258 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PORDMPAO X’12’ - Account record order

04 PORDFLAG Flag byte

PORDFQFD X’80’ - Queue for display

05 PORDMSGL Length of message

06-07 PORDAFPL Length of Advanced Function Printing account record

08-1F PORDDEST Destination for order

08-0F PORDSUBS Requesting subsystem identifier

10-17 PORDNODE Requesting node name

18-1F PORDUSER Requesting user identifier

PORDHLEN Length of header section

• VSE/POWER Start Device Order Section

20-27 PORDSDEV Device name

28-2B PORDSCLS Class(es)

2C-2D Reserved

2E PORDSFLG Flag byte

PORDSSKP X’80’ - PSTART with SKIP=YES

2F PORDSPSL Length of parameter string

30-6B PORDSPRM Parameter string

PORDSLEN Length of start device order

• VSE/POWER Stop Device Order Section

20 PORDPTRB Termination request byte

PORDPEOJ X’80’ - Terminate at end of job

PORDPIMM X’40’ - Terminate immediately

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 259

Bytes Hex Field Label Description/Function

PORDPRST X’20’ - Terminate with restart

21-22 Reserved

23 PORDPPSL Length of parameter string

24-5F PORDPPRM Parameter string

PORDPLEN Length of stop device order

• VSE/POWER Setup Device Order Section

20-23 PORDUPGE Number of pages to setup

24-2E Reserved

2F PORDUPSL Length of parameter string

30-6B PORDUPRM Parameter string

PORDGLEN Length of setup device order

• VSE/POWER Reactivate Device Order Section

20-22 Reserved

23 PORDGPSL Length of parameter string

24-5F PORDGPRM Parameter string

PORDULEN Length of reactivate device order

• VSE/POWER Restart Device Order Section

20 PORDTFLG Flag byte

PORDTPOS X’80’ - Positive displacement

PORDTMIN X’40’ - Negative displacement

PORDTABS X’20’ - Absolute displacement from begin of file

21-23 Reserved

24-27 PORDTPGE Number of pages/lines for restart

PWRSPL DSECT

260 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

28-2E Reserved

2F PORDTPSL Length of parameter string

30-6B PORDTPRM Parameter string

PORDTLEN Length of restart device order

• VSE/POWER Flush Device Order Section

20 PORDFFLG Flag byte

PORDFHLD X’80’ - Flush hold requested

21-22 Reserved

23 PORDFPSL Length of parameter string

24-5F PORDFPRM Parameter string

PORDFLEN Length of flush device order

• VSE/POWER Xmit Device Order Section

20 PORDXPSL Length of command string

21-A4 PORDXPRM Parameter string

PORDXLEN Length of xmit device order

• VSE/POWER Send Message Order Section (inbound)

20-97 PORDMMSG Message text

PORDMLEN Length of send message order section

• VSE/POWER Set Logical Destination Order Section (inbound)

20-5F PORDLOG8 Eight logical destination names

20-27 PORDDLOG Logical destination name

PORDDLEN Length of set logical destination order section

• VSE/POWER Put Account Record Order (inbound)

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 261

Bytes Hex Field Label Description/Function

20-.. PORDAFPA Start of Advanced Function Printing account record

• VSE/POWER Order Response Control Record

PORDRESP DSECT name

00-01 PORSRLEN Record length

02 PORSTYPE Record type

PORSREC X’06’ - Order response control record

03 PORSMOD Order request type. See order control record for definitions of
order types.

04 PORSFLAG Flag byte

PORSFMID X’80’ - PORSMID contains 4-byte message-id

05 PORSMSGL Length of message

06-07 PORSRCFC Return code and feedback code

06 PORSRETC Return code

PORSROK X’00’ - Order accepted

PORSROKF X’04’ - Order accepted, but request can not be handled

PORSRINV X’08’ - Order invalid or not accepted

07 PORSFDBK Feedback code

PORSFOK X’00’ - Order accepted and valid.

Feedback Code from the User to VSE/POWER

PORSFPAR X’01’ - Parm string missing or invalid

PORSFONA X’02’ - Order not accepted

PORSFDUN X’03’ - PSTART - device unknown

PORSFDBS X’04’ - PSTART - device busy

PORSFDOS X’05’ - PSTART - device out of service

PWRSPL DSECT

262 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

PORSFDRJ X’06’ - PSTART - rejected

Feedback Code from VSE/POWER to the User

PORSFNAC X’01’ - Accounting not initialized

PORSFINV X’01’ - Invalid or unknown order

PORSFOTS X’02’ - Order buffer too small for the passed order control record

PORSFMSG X’03’ - Message length too large

PORSFSLD X’04’ - Set logical destination with an invalid destination

PORSFPAC X’05’ - Mismatch of length fields within order

PORSFRTL X’06’ - Account record too small (< 55 bytes) or too large
(> 1000 bytes)

08-1F PORSDEST Destination

08-0F PORSSUBS Destination subsystem identification

10-17 PORSNODE Destination node name

18-1F PORSUSER Destination user identification

PORSHLEN Length of header section

20-97 PORSMSG Message text, if order response sent to VSE/POWER

20-23 PORSMID Message-id, if order response sent to user, and PORSFMID is set

PORSTLEN Length of total record

• VSE/POWER Signal Control Record

PSIGNAL DSECT name

00-01 PSGNRLEN Record length

02 PSGNLTYP Record type

PSGNLREC X’07’ - Signal control record

03 PSGNLMOD Signal type

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 263

Bytes Hex Field Label Description/Function

PSGNLTOA X’01’ - Output arrived signal

04-07 Reserved

PSGNLLEN Length of record

• VSE/POWER Message Control Record

PMSGREC DSECT name

00-01 PMSGRLEN Record length

02 PMSGTYPE Record type

PMSGTREC X’80’ - Message control record

03 Reserved

04 PMSGFLAG Flag byte

05 PMSGTXTL Message text length

06-07 Reserved

08-0F PMSGSUBS Destination subsystem identifier

10-17 PMSGNODE Destination node name

18-1F PMSGUSER Destination user identifier

PMSGHLEN Length of header section

20-97 PMSGTEXT Message text

PMSGTLEN Length of total record

• VSE/POWER Notify Control Record

PNTYREC DSECT name

00-01 PNTYRLEN Record length

02 PNTYTYPE Record type

PNTYTREC X’81’ - Notify control record

PWRSPL DSECT

264 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

03 Reserved

04 PNTYFLAG Flag byte

05-07 Reserved

08-0F PNTYJNAM Job name

10-11 PNTYJNUM Job number

12 PNTYJSUF Job suffix - X’00’ to X’7F’ (0 to 127)

PNTYJSLA X’80’ - Last segment indication in bit 0
Actual segment number 1 - 127 in bit 1 - 7

13 PNTYJCLA Job class

14-1B PNTYDEST Destination user identification

PNTYLEN Length of record

• VSE/POWER Fixed Format Job Completion Message Record

JCMDS Fixed format JCM record

00-04 JCMID Message number (1Q5DI)

05-06 reserved

07 JCMFLT System configuration info

JCMFDD X’80’ - Date format is ddmmyy

08-0F JCMFNAM Job name

10-13 JCMFNUM Job number

14-17 JCMFONUM Job number of originating job or hex zero

18-1F JCMFNOD Node-id of execution node

20-27 JCMFECT Execution completion time

28-2B JCMFLRC Last return code

2C-2F JCMFMRC Maximum return code

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 265

Bytes Hex Field Label Description/Function

30-37 JCMFECD Execution completion date (see also JCMFECDC)

38 JCMFJC7 Job Control Switch 7 (JCSW7)

JCMFJ7CA X’80’ - Operator CANCEL pending

JCMFJ7JC X’02’ - Job Control cancelation

39 JCMFJC8 Job Control Switch 8 (JCSW8)

JCMFJ8AB X’08’ - Abnormal termination

3A-43 JCMFDUR Job duration information

44-45 JCMFECDC Century of processing completion date JCMFECD

46-4F Reserved

50 JCMFPRIV Data from SPLXPRIV

58 JCMFUSID User-id from SPLGUS valid at job submission time

JCMFLEN Length of JCM record

• VSE/POWER Fixed Format Job Generation Message Record

JGMDS Fixed format JGM record

00-04 JGMID Message number (1Q5HI)

05-07 Reserved

08-0F JGMFNAM Generating job name

10-13 JGMFNUM Generating job number

14-1B JGMFNNAM Generated job name

1C-1F JGMFNNUM Generated job number

20-4B Reserved

4C-4F JGMF1NUM Original job number of generating job when it entered the system
for the first time

50-57 JGMFPRIV Data from SPLXPRIV

PWRSPL DSECT

266 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

58-5F JGMFUSID User-id from SPLGUS

JGMFLEN Length of JGM record

• VSE/POWER Fixed Format Output Generation Message Record

OGMDS

00-04 OGMID Message number (1Q5RI)

05-06 Reserved

07 OGMFLT System configuration information (COMREG)

OGMFDD X’80’ - date format is DD/MM/YY

08-0F OGMFNAM Generating job name

10-13 OGMFNUM Generating job number

14-1B OGMFNNAM Generated output name

1C-1F OGMFNNUM Generated output number

20-27 OGMFTIME Output created time in the packed format HH:MM:SS

28-2F OGMFNDID Originator node ID

30-37 OGMFDATE Output created date in the packed format DD/MM/YY or MM/DD/YY
(see OGMFLT)

38 OGMFNSFX Generated output suffix number (for the segmented output)

39 OGMFQU Output identifier ('L' for LST and 'P' for PUN)

3A-41 OGMFDNID Destination node ID for the generated output

42-43 Reserved

44-45 OGMFDATC Output created date century in the packet format CC

46-4B Reserved

4C-4F OGMFONUM Original generating job number

50-57 OGMFPRIV Data from SPLXPRIV

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 267

Bytes Hex Field Label Description/Function

58-5F OGMFUSID User-ID from SPLGUS

OGMFLEN Length of OGM record

• VSE/POWER Fixed Format eXtended Event Message Record

XEMDS

00-04 XEMID Message Identifier (1Q5XI)

05 XEMEID Event Identifier

XEMECR C’C’ – Creation

XEMEAC C’A’ – Alteration by a command

XEMEAP C’P’ – Alteration by processing

XEMEDL C’D’ – Deletion

06 XEMFLG Flag byte

XEMFDD X’80’ – Event’s date has DD/MM/YY format (from System
Configuration Information - COMREG)

XEMERT X’40’ – Execution Reader Task ID ("E xx" within XEMTSK field)

XEMFXQ X’20’ – Queue entry in XMT queue

XEMFCN X’10’ – Queue entry altered/deleted due to PFLUSH | PCANCEL command

XEMFCI X’08’ – Command processor (’O CP’) invoked internally

XEMFCSC X’04’ – Segment requested by PSEGMENT | PALTER SEGMENT command

X’02’ – Reserved for future use

X’01’ – Reserved for future use

07 Reserved for future use

08-OB XEMTSK Task ID

0C-OF XEMCUU CUU (Physical device ID)

10-17 XEMDATE Event date (DD/MM/YY or MM/DD/YY according with the XEMFLG flag)

18-1F XEMTIME Event time in the format HH:MM:SS

20-21 XEMDATC Event date century (CC)

22 XEMQI Q-record ID (QRQI)

23 Reserved for future use

24-2B XEMNAM Queue entry name

2C-2D XEMNUM Queue entry number (hexadecimal)

2E XEMSFX Queue entry suffix (hexadecimal)

2F XEMDISP Queue entry disposition

30 XEMCLS Queue entry class

31 XEMPRI Queue entry priority

32-33 Reserved for future use

34-37 XEMQNUM Queue entry QNUM (hexadecimal)

38-3B XEMTKN Queue entry TKN value

3C-4B XEMUINF User information (UINF)

4C XEMC1 Queue entry change bit map 1

PWRSPL DSECT

268 VSE/POWER V9R2 Application Programming

Bytes Hex Field Label Description/Function

XEMC1CLS X’80’ – Change class: CLASS

XEMC1CMP X’40’ – Change performing of data compaction for SNA terminal:
CMPACT

XEMC1CPY X’20’ – Change number of output copies: COPY

XEMC1DSP X’10’ – Change disposition: DISP

XEMC1DIS X’08’ – Change output distribution code: DIST

XEMC1DUE X’04’ – Nullify Due Date: DUETIME=NULL

XEMC1EMO X’02’ – Change expiration moment: EXPDAYS or EXPHRS or NULL

XEMC1FCB X’01’ – Change name of FCB image phase: FCB

4D XEMC2 Queue entry change bit map 2

XEMC2FNO X’80’ – Change form-number specification: FNO

XEMC2NOD X’40’ – Change final destination: NODE

XEMC2PRI X’20’ – Change priority: PRI

XEMC2REM X’10’ – Change Remote-ID: REMOTE

XEMC2SID X’08’ – Change system ID: SYSID

XEMC2INF X’04’ – Change User information: UINF

XEMC2USR X’02’ – Change User-ID: USER

X’01’ – Reserved for future use

4E XEMC3 Queue entry change bit map 3

XEMC3FWR X’80’ – Re-queue from Wait For Run sub-queue (time event)

XEMC3XTR X’40’ – Transition between local queue (RDR | LST | PUN)
and XMT queue (PALTER NODE command)

X’20’ – Reserved for future use

X’10’ – Reserved for future use

X’08’ – Reserved for future use

X’04’ – Reserved for future use

X’02’ – Reserved for future use

X’01’ – Reserved for future use

4F Reserved for future use

50-57 XEMFUSER ’From’ User-ID

58-5F XEMFNODE ’From’ Node-ID

60-67 XEMTUSER ’To’ User-ID

68-6F XEMTNODE ’To’ Node-ID

70-77 XEMQDATE Queue entry creation date

78-7F XEMQTIME Queue entry creation time

80-81 XEMQDATC Queue entry creation century

82-87 Reserved for future use

88-8F XEMSUSER SAS User task: User-ID (not used by other tasks)

90-97 XEMSAPPL SAS User task: Application-ID (not used by other tasks)

98-9F XEMWGNAM Execution writer: generating job name (not used by other tasks)

A0-A1 XEMWGNUM Execution writer: generating job number (not used by other tasks)

PWRSPL DSECT

Chapter 12. Spool-Access Support Macros 269

Bytes Hex Field Label Description/Function

A2-F7 Reserved for future use

PWRSPL DSECT

270 VSE/POWER V9R2 Application Programming

Chapter 13. Spool-Access Support Programming Example

The sample routine shown here is delivered to you as an A-book in PRD1.MACLIB
under the name of PWRSASEX.A . Here follow:
1. The set of statements that causes the source code of the spool-access support

example to be assembled, linked, and cataloged.
2. An inline macro definition.
3. The source code, which is provided under “Programming Example Source

Code” on page 272 primarily for study and reference purposes.
4. The set of statements that request execution of the sample routine phase

'PWRSASEX'.
5. The console printlog of PWRSASEX execution.

Control Statements for Assembly and Catalog
* $$ JOB JNM=PWRSACAT,DISP=D,CLASS=A
// JOB PWRSACAT
// OPTION CATAL
// LIBDEF *,SEARCH=PRD1.MACLIB
// LIBDEF *,CATALOG=...
*
* PROVIDE ... CATALOG LIB.SUBLIB FOR PWRSASEX
*
// EXEC ASSEMBLY,SIZE=100K

COPY PWRSASEX
END

/*
// EXEC LNKEDT
/&
* $$ EOJ

Use the printout of job PWRSACAT, namely the Assembler listing of program
PWRSASEX, for a detailed study of generated macro code and DSECT addresssing.

Inline Macro Definition
This macro definition, which precedes the source code, provides for a display of
messages on the system console. Only the beginning and end of the instructions of
this definition are shown here.

TITLE PWRSASEX - SAS EXAMPLE PROGRAM
MACRO

&LABEL DPLAY &LINE,&LENGTH,&ID=1
GBLB &FDSP(15)
LCLA &LINLEN,&LENLEN;
LCLC &LENREG,&LINREG,&DISP;
LCLB &LENSW,&LINSW,&TXT,&DEF;
AIF (T’&ID EQ ’N’ AND &ID LE 15).L001
MNOTE 8,’ID NOT NUMERIC OR GREATER THAN 15’
MEXIT

.L001 AIF (T’&LINE NE ’O’).L002
...
...
...

.L018 ANOP
L 0,=A(&LINE)

.L019 ANOP
STCM 0,7,DSCCW&ID+1;

© Copyright IBM Corp. 1987, 2014 271

L 1,=A(DSCCB&ID)
EXCP (1)
WAIT (1)
MEND

Programming Example Source Code
PUNCH ’ PHASE PWRSASEX,*’ 00124000

*** 00125000
** ** 00126000
** P W R S A S E X ** 00127000
** ** 00128000
** VSE/POWER SPOOL ACCESS SUPPORT: EXAMPLE PROGRAM ** 00129000
** ** 00130000
*** 00131000
* * 00132000
* THIS PROGRAM - NAMED PWRSASEX - ACTS AS A SPOOL-ACCESS-SERVICE * 00133000
* USER THAT INTERACTS WITH VSE/POWER USING THE SPOOL-ACCESS SUPPORT * 00134990
* * 00136000
* PWRSASEX CAN RUN IN ANY PARTITION, UNDER OR OUTSIDE THE CONTROL * 00137000
* OF VSE/POWER. FOR SUCCESSFUL COMPLETION, HOWEVER, AN ADDITIONAL * 00138000
* PARTITION UNDER CONTROL OF VSE/POWER AND WITH EXECUTION ... * 00139290
* C L A S S = 4 * 00139580
* MUST BE WAITING FOR WORK. * 00140000
* N O T E : THE MANUAL SUGGESTS TO SUBMIT JOB ’PWRSARUN’ TO THE * 00140100
* EXECUTION CLASS=A. PWRSARUN GIVES CONTROL TO ’PWRSASEX’ * 00140200
* THAT SUBMITS JOB ’EXAMPLE’ FOR CLASS=4 AND THAT SURVEYS * 00140300
* THE EXECUTION OF JOB EXAMPLE. YOU MAY CHANGE THE EXE- * 00140400
* CUTION CLASS OF JOB EXAMPLE BY ALTERING THE * $$ JOB * 00140500
* STATEMENT AT CODE LABEL ’JECL1’. JOB PWRSARUN AND JOB * 00140600
* EXAMPLE MAY EVEN HAVE THE SAME DYNAMIC CLASS, PROVIDED * 00140700
* THIS CLASS ALLOWS AT LEAST TWO PARTITIONS TO BE ACTIVE. * 00140800
* * 00141000
* THE PROGRAM’S OPERATIONAL STEPS ARE: * 00142000
* * 00143000
* 1. IDENTIFY ITSELF TO THE SYSTEM’S XPCC SUPPORT WITH THE USER * 00144000
* IDENTIFICATION ’PWRSASEX’. * 00145490
* * 00146000
* 2. TRY TO ESTABLISH A COMMUNICATION PATH TO VSE/POWER -- TERMIN- * 00147000
* ATE IF THIS PATH CANNOT BE ESTABLISHED WITHIN TWO MINUTES * 00148000
* * 00149000
* 3. USE THE PUT SERVICE TO SUBMIT THE JOB ’EXAMPLE’ TO THE * 00150000
* VSE/POWER RDR QUEUE FOR EXECUTION IN CLASS=4. * 00151490
* * 00152000
* 4. USE THE CTL SERVICE TO SUBMIT A PDISPLAY COMMAND, IN * 00153590
* ORDER TO LOCATE THE OUTPUT OF JOB ’EXAMPLE’ IN THE * 00154180
* VSE/POWER LST QUEUE, AND SHOW THE QUEUE-DISPLAY MESSAGE ON * 00155000
* THE CONSOLE. IF THE OUTPUT IS NOT YET AVAILABLE, THE PROGRAM * 00156590
* RE-ISSUES THE PDISPLAY COMMAND EVERY 10TH OF A SECOND FOR TWO * 00157180
* MINUTES. IF THEN THE OUTPUT IS STILL NOT AVAILABLE, PWRSASEX * 00158000
* TERMINATES. * 00159000
* N O T E : THE CTL SERVICE IS PRESENTED IN TWO FLAVOURS, YOU * 00159300
* MAY SELECT FLAVOUR TWO AT CODE LABEL ’CTL1’. * 00159600
* * 00160000
* 5. RETRIEVE THE LST QUEUE ENTRY ’EXAMPLE’ USING THE GET SERVICE. * 00161000
* N O T E : THE GET SERVICE IS PRESENTED IN TWO FLAVOURS ACC. * 00161300
* TO THE PRE-SELECTION AT CODE LABEL ’CTL1’. * 00161600
* * 00162000
* THE PROGRAM CAUSES THE COMPLETE ENTRY TO BE DISPLAYED ON THE * 00163000
* CONSOLE. PWRSASEX ISSUES A GET-RESTART REQUEST THAT POSITIONS * 00164490
* THE RETRIEVAL POINTER IN THE MIDDLE OF THE QUEUE ENTRY AND * 00165000
* REDISPLAYS THE SECOND HALF. * 00166000
* * 00167000
* PWRSASEX ENDS GET PROCESSING BY ISSUING A QUIT REQUEST. * 00168000
* * 00169000
* 6. SUBMIT THE DATA CARDS OF JOB ’EXAMPLE’ TO THE VSE/POWER * 00173000
* LST-QUEUE AS ENTRY ’EXAMPSEG’ AND ISSUE PUT-SEGMENT REQUESTS * 00174000

Programming Example

272 VSE/POWER V9R2 Application Programming

* TO GET THREE (RBS-LIKE) SEGMENTS OF EQUAL SIZE. * 00175490
* * 00176000
* NOTE: THE ASA CONTROL ’CHARACTER PRINT-AND-SKIP-2’ IS USED * 00177000
* FOR THE SUBMITTED LINES. * 00178000
* * 00179000
* 7. DISCONNECT THE COMMUNICATION PATH TO VSE/POWER. * 00180000
* * 00181000
* 8. TERMINATE (LOG OFF FROM) THE VSE XPCC SUPPORT. * 00182000
* * 00183000
* 9. TERMINATE PWRSASEX PROGRAM. * 00183300
* * 00183600
*** 00184000
* * 00185000
* THE FOLLOWING MACROS ARE REQUIRED: * 00186000
* * 00187000
* SYSTEM MACROS: XPCC * 00188000
* XPCCB * 00189000
* MAPXPCCB * 00190000
* SETIME * 00192000
* WAITM * 00193000
* WAIT * 00194000
* * 00195000
* VSE/POWER: PWRSPL * 00196000
* * 00197000
* * 00198000
* AN INLINE MACRO (AVAILABLE WITH THE EXAMPLE). IT IS USED FOR * 00199000
* DISPLAYING MESSAGES ON THE CONSOLE. THE MACRO CALLS ARE IN * 00200000
* THE FORMAT: * 00201000
* * 00202000
* DPLAY MESSAGE-LABEL,LENGTH * 00203000
* DPLAY (REG1),(REG2) * 00204000
* * 00205000
* NOTE: LINES WITH THE @-SIGN AT THE END REPRESENT THE INTERFACE * 00206000
* TO VSE/POWER. * 00207000
* LINES WITHOUT THE @-SIGN AT THE END REPRESENT THE INTERFACE * 00208000
* TO THE SYSTEM’S XPCC SUPPORT (STEPS 1, 2, 7, 8 AND 9). * 00209490
* * 00210000
* CHANGE ACTIVITY: * 00211000
* * 00212000
* DO NOT CONNECT TO VSE/POWER IF XPCC IDENT RC >= X’08’ @DY43262* 00213000
* VSE/POWER 6.1.1 TURBO DISPATCHER SHIPMENT @DY44055* 00214290
* GUIDANCE FOR FIXED-FORMAT DISPLAY AND DIRECT GET REQUEST @DY45495* 00214580
*** 00215000

EJECT 00216000
SPACE 2 00217000

* REGISTER USAGE 00218000
SPACE 1 00219490

* R0 - **** - WORK REGISTER 00220000
* R1 - **** - WORK REGISTER, ALSO USED BY PWRSPL MACRO 00221000
* R2 - **** - WORK REGISTER 00222000
* R3 - **** - WORK REGISTER 00223000
* R4 - **** - ADDR REG FOR CROSS PARTITION CONTROL BLOCK XPCCB 00224000
* R5 - **** - ADDRESS REGISTER FOR USER DATA TO BE SENT 00225000
* R6 - **** - ADDRESS REGISTER FOR RECEIVED USER DATA 00226000
* R7 - **** - ADDRESS REGISTER FOR SPL DSECT 00227000
* R8 - **** - FIRST BASE REGISTER OF PWRSASEX 00228000
* R9 - **** - SECOND BASE REGISTER OF PWRSASEX 00229000
* RA - **** - WORK REGISTER 00230000
* RB - **** - WORK REGISTER 00231000
* RC - **** - WORK REGISTER 00232000
* RD - **** - BRANCH AND LINK REGISTER FOR SENDR SUBROUTINE 00233000
* RE - **** - BRANCH AND LINK REGISTER FOR DATDSPLY SUBROUTINE 00234000
* RF - **** - MACRO CALL RETURN CODE REGISTER 00235000

EJECT 00236000
SAMPIN START 120 START OF THIS SAMPLE PROGRAM 00237000

BALR R8,0 GET START ADDRESS 00238000
USING *,R8,R9 ESTABLISH ADDRESSABILITY 00239000

Programming Example

Chapter 13. Spool-Access Support Programming Example 273

SPACE 1 00240490
LA R9,4095(,R8) LOAD SECOND BASE REGISTER WITH 00241000
LA R9,1(,R9) CONTENTS OF FIRST + 4096 00242000
SPACE 1 00243490
LA R4,OWNXPCCB GET ADDR OF CROSS PART. CONTROL BLK 00244000
USING IJBXPCCB,R4 ESTABLISH ADDRESSABILITY FOR DSECT 00245000
SPACE 2 00246000
LA R5,IJBXSUSR GET ADDR OF USER DATA TO BE SENT 00247000
USING PXUUSER,R5 ESTABLISH ADDRESSABILITY FOR DSECT 00248000
SPACE 2 00249000
LA R6,IJBXRUSR GET ADDR OF RECEIVED USER DATA 00250000
USING PXPUSER,R6 ESTABLISH ADDRESSABILITY FOR DSECT 00251000
SPACE 2 00252000
LA R7,OWNSPL GET ADDR OF SPL 00253000
USING OWNSPLDS,R7 ESTABLISH ADDRESSABILITY FOR DSECT 00254000
SPACE 2 00254300
MVC FAILCOPY,FAILMSG PRESERVE EMPTY MESSAGE SKELETON 00254600
EJECT 00255000

*** 00256000
** S T E P : 1 ** 00257490
** >> IDENTIFY PWRSASEX AS VSE/AF XPCC USER << ** 00257980
** IF THE MACRO FAILS, THE PROGRAM DISPLAYS A MESSAGE AND TERMINATES ** 00258470
** - WITHOUT A DUMP IF IT FAILED BECAUSE OF LACK OF STORAGE ** 00259000
** - WITH A DUMP OTHERWISE. ** 00260490
*** 00261000

SPACE 1 00262000
IDENT DS 0H 00263000

SPACE 1 00264000
XPCC XPCCB=(R4),FUNC=IDENT IDENTIFY ’PWRSASEX’ TO AF-XPCC 00265000
SPACE 1 00266000
CLM RF,M1,EIGHTDC RETURN CODE < X’08’? 00267590
BL CONCT ..YES, CONNECT TO VSE/POWER 00268180
SPACE 1 00269000
MVC FAILFUNC,=C’IDENTIFY’ INSERT FAILING FUNCTION INTO MSG 00270000
BAL RE,MSGRETC INSERT XPCC RETURN CODE INTO MSG 00271000
MVC FAILLABL,=C’IDENT ’ INSERT CODE LABEL FOR DIAGNOSTIC 00272490
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE 00273000
CLI IJBXRETC,IJBXNSTO DID IDENT FAIL DUE TO NO STORAGE ? 00274000
BE FINEND ..YES, TERMINATE WITH EOJ MACRO 00275000
B FINDUMP BRANCH TO TERMINATION WITH DUMP 00276000
EJECT 00277000

*** 00278000
** S T E P : 2 ** 00278500
** >> ESTABLISH THE XPCC CONNECTION TO VSE/POWER << ** 00279000
** IF THE MACRO FAILS, THE PROGRAM DISPLAYS A FAILURE MESSAGE AND ** 00280000
** TERMINATES. THE PROGRAM WAITS UP TO TWO MINUTES FOR THE CONNEC- ** 00281490
** TION TO BE COMPLETED. ** 00282000
** IF THE CONNECTION IS ESTABLISHED AS REQUESTED, THE PROGRAM DIS- ** 00283000
** PLAYS A CONFIRMATION MESSAGE. ** 00284000
*** 00285000

SPACE 1 00286000
CONCT DS 0H 00287000

SPACE 1 00288000
XPCC XPCCB=(R4),FUNC=CONNECT CONNECT TO VSE/POWER 00289000
SPACE 1 00290000
LTR RF,RF IS CONNECTION ALREADY AVAILABLE ? 00291000
BZ CONNOK ..YES, BYPASS WAIT FOR CONNECTION 00292000
SPACE 1 00293000
CLM RF,M1,EIGHTDC WAS RETURN CODE X’08’ GIVEN BACK ? 00294000
BL WAITCECB ..NO, MUST BE ’04’, SO WAIT FOR CECB 00295000
CLI IJBXRETC,IJBXQSCE DID VSE/POWER GIVE XPCC TERMQSCE ? 00296000
BE TERMQSCE ..YES, GO TO HANDLE THAT STATE 00297000
MVC FAILFUNC,=C’CONNECT ’ INSERT FAILING FUNCTION INTO MSG 00298000
BAL RE,MSGRETC INSERT XPCC RETURN CODE INTO MSG 00299000
MVC FAILLABL,=C’CONCT ’ INSERT CODE LABEL FOR DIAGNOSTIC 00300490
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE 00301000
CLI IJBXRETC,IJBXNSTO DID CONNECT FAIL DUE TO NO STOR. ? 00302000

Programming Example

274 VSE/POWER V9R2 Application Programming

BE TERMN ..YES, GO TO CLOSE XPCC INTERFACE 00303000
SPACE 1 00304000
B FINDUMP GO TO TERMINATION WITH DUMP 00305000
SPACE 1 00306000

TERMQSCE DS 0H 00307000
DPLAY FAILM1,72 DISPLAY FAILURE MESSAGE 00308000
SPACE 1 00309000
B TERMN GO TO CLOSE XPCC INTERFACE CORRECTLY 00310000
SPACE 1 00311000

WAITCECB DS 0H CONNECTION IS STILL ’PENDING’ 00312000
SETIME 120,INTECB INSTALL WAIT INTERVAL OF TWO MIN. 00313000
LA R3,IJBXCECB LOAD ADDRESS OF CONNECTION ECB 00314000
ST R3,LISTCECB COMPLETE WAITLIST 00315000
WAITM WAITLIST WAIT FOR CONNECTION OR 2 MIN. COMPL. 00316000
TM IJBXCECB+2,POSTBIT CONNECTION COMPLETE? 00317000
BO CONNOK ..YES, CONTINUE AT CONNOK 00318490
SPACE 1 00319000
DPLAY FAILM3,72 ISSUE MSG THAT TIME LIMIT EXCEEDED 00320000
SPACE 1 00321000
B DISCT GO TO DISCONNECT AND TERMINATE 00322000
SPACE 1 00323000

CONNOK DS 0H NOW, CONNECTION ECB IS POSTED 00324000
DPLAY SUCCM1,72 00325000
EJECT 00326000

**@ 00327000
** S T E P : 3 *@ 00327500
** >> PUT-REQUEST TO RDR QUEUE << *@ 00328000
** THE JOB ’EXAMPLE’ IS SUBMITTED TO THE VSE/POWER RDR QUEUE. *@ 00329000
**@ 00330000

SPACE 1 @ 00331000
* REGISTER USAGE FOR PUT-REQUEST TO RDR QUEUE @ 00332000

SPACE 2 @ 00333000
* R3 - ***** - WORK REGISTER @ 00334000
* RA - BUFPTR - POINTER FOR THE SEND BUFFER @ 00335000
* RB - DATAPTR - POINTER FOR THE INPUT CARDS @ 00336000
* RC - ***** - TEMPORARY ADDR. REG FOR SPL DSECT @ 00337000

SPACE 2 @ 00338000
* THE GENERATED SPL (OWNSPL) IS UPDATED INDICATING A PUT OPEN @ 00339000
* REQUEST AND IS THEN SENT TO VSE/POWER. @ 00340490

SPACE 2 @ 00341000
PUTA1 DS 0H @ 00342000

SPACE 1 @ 00342100
DPLAY SUCCM1A,72 00342200
SPACE 1 @ 00342300

* THE SPL IS UPDATED FOR A ’PUT-OPEN JOB’ REQUEST, SPECIFYING @ 00342400
* - THE MANDATORY FIELDS ’QUEUE, USERID’ @ 00342500
* FOR DETAILS ON MANDAT./OPT. FIELDS SEE PWRSPL REQ=PUT (JOB).@ 00342600
* NOTE: THE JOB ATTRIBUTES WILL BE EXTRACTED FROM THE JECL @ 00342700
* JOB STATEMENT SUBMITTED LATER WITH THE JOB DATA. @ 00342800

SPACE 1 @ 00342900
PWRSPL TYPE=UPD,SPL=OWNSPL,REQ=PUT,QUEUE=RDR @ 00343000
SPACE 2 @ 00344000
MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL @ 00345000
MVI PXUACT1,0 CLEAR ALL OTHER BYTES IN PXUUSER, @ 00346000
MVI PXUSIGNL,0 WHICH MAY BE CHANGED BY THE USER @ 00347000
SPACE 1 @ 00348000

* THE SPL IS DIRECTLY USED AS XPCC SEND BUFFER @ 00349000
SPACE 1 @ 00350000
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR. @ 00351000
LA R3,SPLGLEN LOAD LENGTH OF SPL @ 00352000
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB @ 00353000
SPACE 1 @ 00354000
MVC FAILLABL,=C’PUTA1 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00355490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00356000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00357000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00358000

* THE VERIFICATION SPL RETURNED BY VSE/POWER FOR A PUT-OPEN @ 00359190

Programming Example

Chapter 13. Spool-Access Support Programming Example 275

* REQUEST IS IGNORED, THE VERIFICATION SPL RETURNED LATER FOR @ 00359380
* A PUT-CLOSE REQUEST MAY BE OF MORE INTEREST. @ 00359570

SPACE 2 @ 00360000
* FOR THE SUBSEQUENT ’PUT-SPOOL’ REQUESTS THE PXU-USER FIELD @ 00360300
* SETTINGS ARE ESTABLISHED, AND @ 00360600
* THE SEND BUFFER IS FILLED WITH INPUT CARDS (EACH CARD @ 00361000
* PRECEDED BY A RECORD PREFIX) UNTIL NO MORE CARD FITS. @ 00362000
* THE BUFFER IS THEN PASSED TO VSE/POWER IN THE ACTUALLY @ 00363000
* USED LENGTH. @ 00364000

SPACE 1 @ 00365000
MVI PXUBTYP,PXUBTNDB BUFFER TYPE = NORMAL DATA BUFFER @ 00366000
MVI PXUACT1,0 CLEAR ACTION BYTE @ 00367000
SPACE 1 @ 00368000
LA BUFPTR,SENDBUF GET ADDRESS OF SEND BUFFER @ 00369000
STCM BUFPTR,M7,IJBXADR INSERT BUFFER ADDRESS INTO XPCCB @ 00370000
LA DATAPTR,JECL1 GET ADDR OF FIRST INPUT CARD, ... @ 00371290

* USUALLY THE * $$ JOB STATEMENT @ 00371580
SPACE 1 @ 00372000

FILLBUF DS 0H @ 00373000
CLC ENDIND,0(DATAPTR) END OF FILE REACHED? @ 0 00374490
BE PUTA3 YES, GO TO SEND FINAL BUFFER @ 00375000
CL BUFPTR,LASTPREC ENOUGH SPACE FOR ONE MORE RECORD? @ 00376000
BH PUTA2 NO, GO TO SEND NORMAL BUFFER @ 00377000
USING RECPRFIX,BUFPTR GET DSECT FOR RECORD LAYOUT @ 00378000
XC 0(RECPRFXL,BUFPTR),0(BUFPTR) CLEAR BYTES FOR PREFIX @ 00379000
MVI RECTYPE,RECTNORM INSERT REC. TYPE IN REC. PREFIX @ 00380000
LA R3,L’DATACARD LOAD LENGTH OF DATA CARD @ 00381000
STH R3,RECLNGTH INSERT LENGTH OF DATA CARD IN PREF.@ 00382000
LA BUFPTR,RECPRFXL(,BUFPTR) SKIP PREFIX IN BUFFER @ 00383000
DROP BUFPTR @ 00384000
MVC 0(L’DATACARD,BUFPTR),0(DATAPTR) MOVE DATA INTO BUFFER @ 00385000
LA BUFPTR,L’DATACARD(,BUFPTR) POINT TO NEXT FREE B.SPACE@ 00386000
LA DATAPTR,L’DATACARD(,DATAPTR) POINT TO NEXT INPUT CARD @ 00387000
B FILLBUF TRY TO FILL IN NEXT INPUT CARD @ 00388000
SPACE 1 @ 00389000

PUTA2 DS 0H @ 00390000
LA R3,SENDBUF GET AGAIN START ADDR OF SEND BUFFER@ 00391000
SR BUFPTR,R3 CALC. ACTUALLY USED BUFFER LENGTH @ 00392000
ST BUFPTR,IJBXBLN INSERT ACTUAL BUF.LENGTH INTO XPCCB@ 00393000
MVC FAILLABL,=C’PUTA2 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00394490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00395000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00396000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00397000
LA BUFPTR,SENDBUF GET AGAIN ADDRESS OF SEND BUFFER @ 00398000
B FILLBUF GO TO FILL BUFFER AGAIN @ 00399000
SPACE 2 @ 00400190

* FOR THE SUBSEQUENT ’PUT-CLOSE’ REQUEST THE PXU-USER FIELD @ 00400380
* IS SET UP WITH THE END-OF-DATA INDICATION, AND @ 00400570
* THE BUFFER BEING FILLED WHEN END OF FILE WAS DETECTED @ 00401000
* IS PASSED TO VSE/POWER AS FINAL BUFFER. @ 00402990

SPACE 1 @ 00404000
PUTA3 DS 0H @ 00405000

SPACE 1 @ 00406000
MVI PXUACT1,PXUATEOD INDICATE END OF DATA @ 00407000
LA R3,SENDBUF GET AGAIN START ADDR OF SEND BUFFER@ 00408000
SR BUFPTR,R3 CALC. ACTUALLY USED BUFFER LENGTH @ 00409000
ST BUFPTR,IJBXBLN INSERT ACTUAL BUF.LENGTH INTO XPCCB@ 00410000
MVC FAILLABL,=C’PUTA3 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00411490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00412000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00413000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00414000
CLI PXPFBKCD,PXP00OK WAS POWER FEEDBACKCODE ALSO ZERO? @ 00415000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00416000
SPACE 1 @ 00417000

* THE VERIFICATION SPL RETURNED BY VSE/POWER IS ANALYZED, AND @ 00418490
* JOBNAME AND JOBNUMBER ARE SAVED. @ 00419000
* IF MESSAGES ARE QUEUED, A ’RETURN MESSAGE’ REQUEST IS SENT. SUB- 00420490

Programming Example

276 VSE/POWER V9R2 Application Programming

* SEQUENTLY, THE DATDSPLY ROUTINE IS CALLED IN ORDER TO DISPLAY @ 00421000
* THE RETURNED MESSAGES. @ 00422000

SPACE 1 @ 00423000
LA RC,REPLBUF GET AD. OF REPLY AREA FOR SPL DSECT@ 00424000
DROP R7 @ 00425000
USING OWNSPLDS,RC ESTABLISH ADDRESSABILITY FOR DSECT @ 00426000
MVC JOBNAME,SPLGJB SAVE JOBNAME RETURNED BY VSE/POWER @ 00427000
MVC JOBNUM,SPLGJN SAVE RETURNED BINARY JOBNUMBER @ 00428490
DROP RC @ 00429000
USING OWNSPLDS,R7 REESTABLISH ADDRESSABILITY FOR SPL @ 00430000
SPACE 1 @ 00431000
TM PXPINFO,PXPIMSG ARE MESSAGES QUEUED? @ 00432000
BZ CTL1 NO, CONTINUE WITH CONTROL REQUEST @ 00433490
SPACE 1 @ 00434000

PUTA4 DS 0H @ 00435000
XC IJBXBLN,IJBXBLN INDICATE ZERO BUFFER LENGTH @ 00436000
MVI PXUBTYP,0 CLEAR BUFFER TYPE BYTE IN USER DATA@ 00437000
MVI PXUACT1,PXUATRMR INDICATE RETURN MESSAGE REQUEST @ 00438000
MVC FAILLABL,=C’PUTA4 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00439490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00440000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00441000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00442000
BAL RE,DATDSPLY YES, GO TO DISPLAY RETURNED MSG’S @ 00443000
EJECT @ 00444000

**@ 00445000
** S T E P : 4 *@ 00446090
** >> CONTROL REQUEST << *@ 00446180
** *@ 00446270
** COMMANDS CAN BE SUBMITTED TO VSE/POWER IN *@ 00446360
** 1) FIXED FORMAT - SEE ’PWRSPL FUNC=ALTER³CANCEL³DELETE³... *@ 00446450
** ...DISPLAY³HOLD³RELEASE’, OR *@ 00446540
** 2) FREE FORMAT - SEE ’PWRSPL FUNC=COMMAND’ IN THE FORMAT AS AN *@ 00446630
** OPERATOR WOULD KEY IT - FOR *@ 00446720
** ALL ALLOWED COMMANDS ACCEPTED *@ 00446810
** VIA THE SPOOL-ACCESS INTERFACE*@ 00446900
** *@ 00446990
** DISPLAY COMMANDS CAN REQUEST MESSAGES TO BE RETURNED AS *@ 00447080
** A) FIXED FORMAT RECORDS - SEE ’PWRSPL OPT=FORMAT’, TO BE *@ 00447170
** PROCESSED ACC. TO DSECT ’PXFMDSCT’ *@ 00447260
** B) FREE FORMAT MESSAGES - SEE ’PWRSPL OPT=RESET’, TO BE *@ 00447350
** PROCESSED AS CONSOLE DISPLAY MESSAGES *@ 00447440
** *@ 00447530
** FOR PDISPLAY, THE COMMAND FORMATS 1) AND 2) CAN BE COMBINED WITH *@ 00447620
** ANY MESSAGE FORMAT A) OR B). IN THE FOLLOWING, PWRSASEX OFFERS *@ 00447710
** TWO COMBINATIONS AT LABEL *@ 00447800
** - ’CTLA1’ - CMD FORMAT 1) WITH MSG FORMAT B). THIS IS STANDARD *@ 00447890
** FLOW, LEADS INTO LABEL ’GETB1’ REQUEST.*@ 00447980
** - ’CTLAB1’ - CMD FORMAT 2) WITH MSG FORMAT A). THIS FLOW MUST BE *@ 00448070
** SELECTED, LEADS INTO GETBB1 REQUEST. *@ 00448160
**@ 00450000

SPACE 1 @ 00451030
CTL1 DS 0H @ 00451060

SPACE 1 @ 00451090
DPLAY SUCCM1B,72 00451120
SPACE 1 @ 00451150
B CTLA1 TAKE STANDARD FLOW, OR SELECT ... @ 00451180

* B CTLAB1 ... ALTERNATIVE FLOW BY YOUR OWN @ 00451210
SPACE 1 @ 00451240
SPACE 1 @ 00451270

**@ 00451300
** >> C T L S T A N D A R D F L O W << *@ 00451330
** A FIXED FORMAT PDISPLAY COMMAND (FOR FREE FORMAT MESSAGES) IS *@ 00451360
** SUBMITTED IN ORDER TO LOCATE THE OUTPUT OF JOB ’EXAMPLE’ IN THE *@ 00451390
** LST QUEUE (CLASS=S, ACC. TO * $$ LST) AND PRESENT THE LIST QUEUE *@ 00451420
** DISPLAY LINE ON THE CONSOLE. *@ 00451450
** NOTE: THE FREE FORMAT DISPLAY LINE(S) IS PRECEDED BY THE ’QUEUE *@ 00451480
** HEADER’ LINE AS WITH NORMAL OPERATOR DISPLAY. *@ 00451510

Programming Example

Chapter 13. Spool-Access Support Programming Example 277

** NOTE: THE FIRST LST OUTPUT OF A JOB HAS ALWAYS THE SAME JOBNUMBER *@ 00451540
** AS THE PARENT JOB. ITS JOBNUMBER HAS BEEN SAVED IN BINARY *@ 00451570
** FORMAT. IT IS NEEDED NOW IN THE SAME FORMAT. *@ 00451600
**@ 00451630

SPACE 1 @ 00451660
* REGISTER USAGE FOR CTL-REQUEST @ 00452000

SPACE 1 @ 00453490
* RA - ***** - COUNTER FOR NUMBER OF WAIT INTERVALS @ 00454000

SPACE 1 @ 00455190
* THE SPL IS UPDATED FOR A DISPLAY-CTL REQUEST, SPECIFYING @ 00455380
* - THE MANDATORY SELECTION FIELDS ’QUEUE, JOBNAME, USERID’ @ 00455570
* - PLUS OPTIONAL SELECTION FIELDS ’CLASS, JOBNUMBER’ @ 00455760
* - PLUS RESETTING (FOR SAFETY) THE OPTIONAL ’OPT=..’. @ 00455950
* FOR DETAILS ON MANDATORY/OPTIONAL SEE PWRSPL REQ=CTL. @ 00456140

SPACE 1 @ 00457000
CTLA1 DS 0H @ 00458000

PWRSPL TYPE=UPD,SPL=OWNSPL,QUEUE=LST,REQ=CTL,CLASS=S, *00459000
JOBN=JOBNAME,JNUM=JOBNUM,FUNC=DISPLAY,OPT=RESET @ 00460890

SPACE 1 @ 00461840
LA RA,12 PREPARE COUNTER FOR WAIT INTERVALS @ 00462000
MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL @ 00463000
MVI PXUACT1,0 CLEAR ACTION BYTE @ 00464000
SPACE 1 @ 00465000

* THE UPDATED SPL IS DIRECTLY USED AS XPCC BUFFER. @ 00466000
SPACE 1 @ 00467000
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR. @ 00468000
SPACE 1 @ 00469000
LA R3,SPLGLEN LOAD LENGTH OF SPL @ 00471990
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB @ 00475000
SPACE 1 @ 00476000
MVC FAILLABL,=C’CTLA2 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00477490

CTLA2 DS 0H @ 00478000
BAL RD,SENDR GO TO SENDR ROUTINE @ 00479000
SPACE 1 @ 00482000

* THE PROGRAM TESTS THE VSE/POWER RC/FBKCD TO SEE IF THE OUTPUT OF @ 00483000
* THE JOB ’EXAMPLE’ COULD BE LOCATED. @ 00484000
* IF THIS OUTPUT COULD NOT YET BE LOCATED, THE PROGRAM REPEATS THE @ 00485000
* CTL REQUEST EVERY 10 SECONDS IN ORDER TO WAIT FOR REQUEST @ 00486690
* COMPLETION. HOWEVER PWRSASEX DISCONNECTS AFTER 12 UNSUCCESSFUL @ 00487380
* ATTEMPTS. @ 00488070
* ANY OTHER RC/FBKCD COMBINATION SHOULD NOT OCCUR AND INDICATES A @ 00489000
* FAILURE OF THE REQUEST. @ 00490000

SPACE 1 @ 00491000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00491300
BE CTLA3 YES, CONTINUE WITH MSG DISPLAY @ 00491600
CLI PXPRETCD,PXPRCOKF WAS VSE/POWER RETURN CODE X’04’ @ 00492000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00493000
CLI PXPFBKCD,PXP04DNF WAS OUTPUT NOT FOUND ? (PARENT .. @ 00494290

* .. JOB NOT YET COMPLETED))@ 00494580
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00495000
SPACE 1 @ 00496000
SETIME 10,INTECB INSTALL WAIT INTERVAL OF 10 SEC. @ 00497000
WAIT INTECB WAIT @ 00498000
BCT RA,CTLA2 LOOP (MAX. 12 TIMES) @ 00499000
SPACE 1 @ 00500000
DPLAY FAILM4,72 DISPLAY FAILURE MESSAGE @ 00501000
SPACE 1 @ 00502000
B DISCT DISCONN AND TERMIN XPCC LINK, EOJ @ 00503000
SPACE 1 @ 00504000

CTLA3 DS 0H @ 00505000
SPACE 1 @ 00506090
DPLAY SUCCM1C,72 00506180
SPACE 1 @ 00506270
BAL RE,DATDSPLY GO TO DISPLAY THE MESSAGE RETURNED @ 00506360

* ... IN ’CONSOLE DISPLAY’ FORMAT @ 00506450
B GETB1 GO FOR NORMAL GET-OPEN REQUEST @ 00506540
EJECT @ 00507000

Programming Example

278 VSE/POWER V9R2 Application Programming

SPACE 1 @ 00507006
**@ 00507012
** >> C T L A L T E R N A T I V E << *@ 00507018
** A FREE FORMAT PDISPLAY COMMAND (FOR FIXED FORMAT MESSAGE) IS *@ 00507024
** SUBMITTED IN ORDER TO LOCATE THE OUTPUT OF JOB ’EXAMPLE’ IN THE *@ 00507030
** LST QUEUE (CLASS=S, ACC. TO * $$ LST). SELECTED FIELDS OF THE *@ 00507036
** FIXED FORMAT MESSAGE ARE PASSED TO THE ARTIFICIALLY BUILT ’1QSAS’ *@ 00507042
** MESSAGE, WHICH IS THEN DISPLAYED ON THE CONSOLE. *@ 00507048
** NOTE: FIXED FORMAT MESSAGES ARE NOT PRECEDED BY A ’QUEUE HEADER’ *@ 00507054
** LINE; QUEUE TYPE CAN BE DERIVED FROM PXFMQUID & -FLG1/-FLG3.*@ 00507060
** NOTE: THE FIRST LST OUTPUT OF A JOB HAS ALWAYS THE SAME JOBNUMBER *@ 00507066
** AS THE PARENT JOB ITSELF. THE SAVED BINARY JOBNUMBER HAS *@ 00507072
** TO BE CONVERTED TO DECIMAL FOR USE IN THE PDISPLAY COMMAND. *@ 00507078
**@ 00507084

SPACE 1 @ 00507090
* REGISTER USAGE FOR CTL-REQUEST @ 00507096

SPACE 1 @ 00507102
* RA - ***** - COUNTER FOR NUMBER OF WAIT INTERVALS @ 00507108

SPACE 1 @ 00507114
* THE SPL IS UPDATED FOR A COMMON-CTL REQUEST, SPECIFYING @ 00507120
* - THE MANDATORY SELECTION FIELD ’USERID’ @ 00507126
* - PLUS SELECTION CRITERIA IN A FREE FORMAT COMMAND @ 00507132
* - PLUS THE OPTIONAL SELECTION CRITERION ’OPT=FORMAT’. @ 00507138
* FOR DETAILS ON MANDATORY/OPTIONAL SEE PWRSPL REQ=CTL. @ 00507144

SPACE 1 @ 00507150
CTLAB1 DS 0H @ 00507156

PWRSPL TYPE=UPD,SPL=OWNSPL,REQ=CTL,FUNC=COMMAND, *00507162
OPT=FORMAT @ 00507168

SPACE 1 @ 00507174
* @ 00507180
* CONSTRUCT: ’PDISPLAY LST,<JOBNAME>,<JOBNUMBER>,CCLASS=S ’ @ 00507186
* @ 00507192

SPACE 1 @ 00507198
* FEED JOBNAME TO FREE FORMAT COMMAND SKELETON @ 00507204

SPACE 1 @ 00507210
MVC CMDBODY(L’JOBNAME),JOBNAME PLUG SAVED NAME INTO CMD @ 00507216
LA R3,CMDBODY POINT TO START OF JOBNAME @ 00507222

CTLAB1A DS 0H @ 00507228
CLI 0(R3),C’ ’ FIRST TRAILING BLANK FOUND ? @ 00507234
BE CTLAB1C YES, GO TO PROVIDE ’COMMA’ @ 00507240
LA R3,1(R3) PROCEED TO NEXT NAME BYTE @ 00507246
B CTLAB1A GO AND CHECK FOR BLANK @ 00507252

CTLAB1C DS 0H @ 00507258
MVI 0(R3),C’,’ PROVIDE ’COMMA’ AFTER JOBNAME @ 00507264
LA R3,1(R3) POINT TO BEGIN OF JOBNUMBER @ 00507270
SPACE 1 @ 00507276

* FEED DECIMAL JOBNUMBER TO FREE FORMAT COMMAND @ 00507282
SPACE 1 @ 00507288
SR R1,R1 CLEAR REGISTER @ 00507294
ICM R1,3,JOBNUM PICK UP BINARY JOB NUMBER @ 00507300
CVD R1,HELP8 CONVERT TO PACKED DECIMAL @ 00507306
UNPK HELP5,HELP8+5(3) UNPACK 3 DIGITS @ 00507312
OI HELP5+4,X’F0’ CHANGE X’C.’ TO PRINTABLE X’F.’ @ 00507318
MVC 0(5,R3),HELP5 PLUG 5 DIGIT JOBNUMBER WITH ... @ 00507324
LA R3,5(R3) POINT BEHIND JOBNUMBER @ 00507330
MVI 0(R3),C’,’ PROVIDE ’COMMA’ AFTER JOBNAME @ 00507336
LA R3,1(R3) POINT TO BEGIN OF C-SELECTION FLD. @ 00507342
SPACE 1 @ 00507348

* TERMINATE COMMAND BY ’CCLASS=S ’, PASS COMMAND TO PWRSPL @ 00507354
SPACE 1 @ 00507360
MVC 0(L’CMDCLAS,R3),CMDCLAS PASS CLASS SELECTION OPERAND @ 00507366
MVC SPLCFLD,JOBCMD PLUG FREE FORMAT CMD INTO PWRSPL @ 00507372
SPACE 1 @ 00507378
LA RA,12 PREPARE COUNTER FOR WAIT INTERVALS @ 00507384
MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL @ 00507390
MVI PXUACT1,0 CLEAR ACTION BYTE @ 00507396
SPACE 1 @ 00507402

Programming Example

Chapter 13. Spool-Access Support Programming Example 279

* THE UPDATED SPL IS DIRECTLY USED AS XPCC BUFFER. @ 00507408
SPACE 1 @ 00507414
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR. @ 00507420
SPACE 1 @ 00507426
LA R3,SPLGLEN LOAD LENGTH OF SPL @ 00507432
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB @ 00507438
SPACE 1 @ 00507444
MVC FAILLABL,=C’CTLAB2’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00507450

CTLAB2 DS 0H @ 00507456
BAL RD,SENDR GO TO SENDR ROUTINE @ 00507462
SPACE 1 @ 00507468

* THE PROGRAM TESTS THE VSE/POWER RC/FBKCD TO SEE IF THE OUTPUT OF @ 00507474
* THE JOB ’EXAMPLE’ COULD BE LOCATED. @ 00507480
* IF THIS OUTPUT COULD NOT YET BE LOCATED, THE PROGRAM REPEATS THE @ 00507486
* CTL REQUEST EVERY 10 SECONDS IN ORDER TO WAIT FOR REQUEST COMPLE- @ 00507492
* TION. HOWEVER PWRSASEX DISCONNECTS AFTER 12 UNSUCCESSFUL AT- @ 00507498
* TEMPTS. @ 00507504
* ANY OTHER RC/FBKCD COMBINATION SHOULD NOT OCCUR AND INDICATES A @ 00507510
* FAILURE OF THE REQUEST. @ 00507516

SPACE 1 @ 00507522
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00507528
BE CTLAB3 YES, CONTINUE WITH MSG DISPLAY @ 00507534
CLI PXPRETCD,PXPRCOKF WAS VSE/POWER RETURN CODE X’04’ @ 00507540
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00507546
CLI PXPFBKCD,PXP04DNF WAS OUTPUT NOT FOUND ? (PARENT .. @ 00507552

* .. JOB NOT YET COMPLETED))@ 00507558
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00507564
SPACE 1 @ 00507570
SETIME 10,INTECB INSTALL WAIT INTERVAL OF 10 SEC. @ 00507576
WAIT INTECB WAIT @ 00507582
BCT RA,CTLAB2 LOOP (MAX. 12 TIMES) @ 00507588
SPACE 1 @ 00507594
DPLAY FAILM4,72 DISPLAY FAILURE MESSAGE @ 00507600
SPACE 1 @ 00507606
B DISCT DISCONN AND TERMIN XPCC LINK, EOJ @ 00507612
SPACE 1 @ 00507618

CTLAB3 DS 0H @ 00507624
SPACE 1 @ 00507630
DPLAY SUCCM1C,72 00507636
SPACE 1 @ 00507642
BAL RE,DATDSPLY GO TO INTERPRET THE FIXED FORMAT @ 00507648

* MSG (ONLY ONE MESSAGE RECORD IS @ 00507654
* EXPECTED) VIA PXFMDSCT, DISPLAY @ 00507660
* ’1QSAS’, SAVE INTERNAL Q-ENTRY @ 00507666
* NUMBER FOR THE SUBSEQUENT ’DIRECT’ @ 00507672
* GET REQUEST. @ 00507678

B GETBB1 GO FOR ’DIRECT’ GET-OPEN REQUEST @ 00507684
EJECT @ 00507690

**@ 00507696
** S T E P : 5 *@ 00507702
** >> GET REQUEST FROM LST QUEUE << *@ 00507708
** *@ 00507714
** GET SERVICE REQUESTS CAN BE SUBMITTED TO VSE/POWER AS *@ 00507720
** 1) ’GET FOR UPDATE’ - ALLOWING ACCESS TO DISPATCHABLE ENTRIES, *@ 00507726
** AND TERMINATE GET BY ’CLOSE’ (MAY DELETE *@ 00507732
** ENTRY) OR BY ’QUIT’ (PRESERVES ENTRY) *@ 00507738
** 2) ’GET FOR BROWSE’ - SEE PWRSPL MODE=BROWSE (SPLGFB1) FOR *@ 00507744
** ACCESSING ENTRIES INDEPENDENT OF THEIR *@ 00507750
** DISPOSITION, BUT TERMINATE GET REQUEST *@ 00507756
** BY ’QUIT’ ONLY. *@ 00507762
** BOTH GET REQUEST TYPES CAN BE INITIATED IN TWO FLAVOURS AS *@ 00507768
** A) NORMAL GET - WITH MANDATORY ’QUEUE, JOBNAME, CLASS, AND *@ 00507774
** FROM/TO USERID ’ AS PWRSPL SEARCH FIELDS *@ 00507780
** B) DIRECT GET - WITH SAME MANDATORY SEARCH FIELDS PLUS FIELD *@ 00507786
** SPLXQNUM, SPECIFYING THE INTERNAL QUEUE *@ 00507792
** ENTRY NUMBER - PROVIDED IT IS KNOWN BEFORE.*@ 00507798
** SEE ALSO "DIRECT QUEUE ENTRY GET ACCESS..."*@ 00507804

Programming Example

280 VSE/POWER V9R2 Application Programming

** IN THIS MANUAL FOR ADVANTAGES OF ’DIRECT’. *@ 00507810
** *@ 00507816
** GET REQUEST TYPE 1) AND 2) CAN BE INITIATED WITH ANY A) OR B) *@ 00507822
** SELECTION FLAVOURS. IN THE FOLLOWING, PWRSASEX OFFERS TWO *@ 00507828
** COMBINATIONS AT LABEL *@ 00507834
** - ’GETB1’ - GET FOR UPDATE 1) WITH FLAVOUR A) ’NORMAL’. THIS IS *@ 00507840
** THE STANDARD CONTROL FLOW. *@ 00507846
** - ’GETBB1’ - GET FOR BROWSE 2) WITH FLAVOUR B) ’DIRECT’. THIS *@ 00507852
** FLOW IS SELECTED WHEN ENABLING ’CTLAB1’*@ 00507858
** *@ 00507864
** N O T E : REFER TO "SCOPE OF GET/CTL(NOT DISPLAY) ACCESS TO QUEUE*@ 00507870
** ENTRIES" IN THIS MANUAL FIRST: *@ 00507876
** THE SUBSEQUENT GET REQ. WITH INHERITED USERID=SASUSER1 *@ 00507882
** IS ALLOWED TO ACCESS OUTPUT ENTRY ’EXAMPLE’, BECAUSE *@ 00507888
** PARENT JOB WAS SUBMITTED BY ’PWRSPL USERID=SASUSER1’, *@ 00507894
** WHICH IS PROPAGATED TO ITS OUTPUT - HAVING ALSO THE *@ 00507900
** FROM/TO=SASUSER1 ATTRIBUTE. *@ 00507906
** WHEN ACCESSING QUEUE ENTRIES WITH FROM/TO USERID NOT *@ 00507912
** MATCHING TO YOUR PWRSPL SPECIFICATION, CONSIDER TO *@ 00507918
** GENERATE VSE/POWER WITH A ’MASTER PASSWORD’. WHEN *@ 00507924
** SUPPLYING THIS PASSWORD (LEFT BOUND, PADDED BLANK) IN *@ 00507930
** FIELD ’SPLGPW’, YOUR GET/CTL REQUEST IS ENTITLED FOR *@ 00507936
** UNLIMITED ACCESS TO ANY QUEUE ENTRY. *@ 00507942
**@ 00507948

SPACE 2 @ 00507954
**@ 00508000
** >> G E T S T A N D A R D F L O W << *@ 00509790
** THE ’GET FOR UPDATE’ SERVICE WITH ’NORMAL’ SELECTION SPECIFIED *@ 00510580
** IS USED TO RETRIEVE THE LST QUEUE ENTRY OF JOB ’EXAMPLE’ AND TO *@ 00511370
** DISPLAY ITS DATA ON THE CONSOLE. THEN THE GET-RESTART FUNCTION *@ 00512160
** IS USED TO DISPLAY THE SECOND HALF OF THE ENTRY AGAIN. *@ 00512950
**@ 00514000

SPACE 1 @ 00515000
* REGISTER USAGE FOR GET-REQUEST FROM LST QUEUE @ 00516000

SPACE 1 @ 00517490
* R3 - **** - WORK REGISTER @ 00518000
* RA - BUFPTR - POINTER FOR THE SEND BUFFER @ 00519000

SPACE 1 @ 00520090
GETB1 DS 0H @ 00520180

DPLAY SUCCM7,72 DISPLAY MESSAGE @ 00520270
SPACE 1 @ 00520360

* THE SPL IS UPDATED FOR A ’GET-OPEN’ REQUEST, SPECIFYING @ 00520450
* - THE MANDATORY SELECTION ’CLASS, JOBNAME, QUEUE, USERID’ @ 00520540
* - PLUS OPTIONAL SELECTION FIELD ’JOBNUMBER’ @ 00520630
* - PLUS RESETTING (FOR SAFETY) THE OPTIONAL ’OPT=..’. @ 00520720
* FOR DETAILS ON MANDATORY/OPTIONAL SEE PWRSPL REQ=GET. @ 00520810
* NOTE: ONLY PARAMETERS WHICH ARE DIFFERENT FROM THOSE USED IN THE @ 00520900
* PREVIOUS CTL-REQUEST ARE SPECIFIED IN THE UPDATE SPL. @ 00522000

SPACE 1 @ 00523000
PWRSPL TYPE=UPD,SPL=(R7),REQ=GET,OPT=RESET @ 00525990
SPACE 1 @ 00528000
MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL @ 00529000
MVI PXUACT1,0 CLEAR ACTION BYTE 1 @ 00530000
SPACE 1 @ 00531000
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR. @ 00532000
LA R3,SPLGLEN LOAD LENGTH OF SPL @ 00533490
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB @ 00534000
SPACE 1 @ 00535000
MVC FAILLABL,=C’GETB1 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00536490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00537000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00538000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00539000
B GETB2 GO AND TAKE STANDARD FLOW, WHEN @ 00540010

* COMING FROM ’CTLA1’ CONTROL REQ. @ 00540020
SPACE 2 @ 00540030

**@ 00540040
** >> G E T A L T E R N A T I V E << *@ 00540050

Programming Example

Chapter 13. Spool-Access Support Programming Example 281

** THE ’GET FOR BROWSE’ SERVICE WITH ’DIRECT’ SELECTION SPECIFIED *@ 00540060
** IS USED TO RETRIEVE THE LST QUEUE ENTRY OF JOB ’EXAMPLE’ AND TO *@ 00540070
** DISPLAY ITS DATA ON THE CONSOLE. THEN THE GET-RESTART FUNCTION *@ 00540080
** IS USED TO DISPLAY THE SECOND HALF OF THE ENTRY AGAIN. *@ 00540090
**@ 00540100

SPACE 1 @ 00540110
* REGISTER USAGE FOR GET-REQUEST FROM LST QUEUE @ 00540120

SPACE 1 @ 00540130
* R3 - **** - WORK REGISTER @ 00540140
* RA - BUFPTR - POINTER FOR THE SEND BUFFER @ 00540150

SPACE 1 @ 00540160
GETBB1 DS 0H @ 00540170

DPLAY SUCCM7,72 DISPLAY MESSAGE @ 00540180
SPACE 1 @ 00540190

* THE SPL IS UPDATED FOR ’DIRECT GET-OPEN’ REQUEST, SPECIFYING @ 00540200
* - THE MANDATORY SELECTION ’CLASS, JOBNAME, QUEUE, USERID’ @ 00540210
* - PLUS OPTIONAL SELECTION FIELD ’MODE=BROWSE’ @ 00540220
* - PLUS RESETTING (FOR SAFETY) THE OPTIONAL ’OPT=..’. @ 00540230
* FOR DETAILS ON MANDATORY/OPTIONAL SEE PWRSPL REQ=GET. @ 00540240

SPACE 1 @ 00540250
PWRSPL TYPE=UPD,SPL=(R7),REQ=GET,OPT=RESET,MODE=BROWSE, *00540260

JOBN=JOBNAME,CLASS=S,QUEUE=LST,JNUM=ZERONUM @ 00540270
SPACE 1 @ 00540280

* SEE "DIRECT QUEUE ENTRY GET (ALSO CTL) ACCESS ..." IN THIS @ 00540290
* MANUAL FOR REQUIRED PWRSPL SPECIFICTIONS. @ 00540300

SPACE 1 @ 00540310
MVC SPLXQNUM,JOBQNUM SPECIFY SAVED Q-ENTRY-# FOR DIRECT @ 00540320

* GET ACCESS TO DISPLAYED Q-ENTRY, @ 00540330
* NO JOBNUMBER NEEDED FOR UNIQUENESS @ 00540340

OI SPLGOPT2,SPLGO2QN INDICATE ’USE QUEUE ENTRY NUMBER’ @ 00540350
* TO ENABLE ’DIRECT’ GET REQUEST @ 00540360

MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL @ 00540370
MVI PXUACT1,0 CLEAR ACTION BYTE 1 @ 00540380
SPACE 1 @ 00540390
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR. @ 00540400
LA R3,SPLGLEN LOAD LENGTH OF SPL @ 00540410
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB @ 00540420
SPACE 1 @ 00540430
MVC FAILLABL,=C’GETBB1’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00540440
BAL RD,SENDR GO TO SENDR ROUTINE @ 00540450
NI SPLGOPT2,X’FF’-SPLGO2QN RESET ’USE INT. Q-ENTRY-#’ @ 00540460
XC SPLXQNUM,SPLXQNUM RESET INTERNAL QUEUE ENTRY NUMBER @ 00540470
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00540480
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE, @ 00540490

* DISPLAY ALSO PXPFBKC2 IF NOT FOUND @ 00540500
B GETB2 GO AND JOIN COMMON FLOW NOW @ 00540510
SPACE 1 @ 00540520
EJECT @ 00540530

* THE VERIFICATION SPL RETURNED BY VSE/POWER, WHICH COULD BE CHECKED@ 00541000
* FOR USEFUL INFORMATION (SUCH AS FORMSID), IS IGNORED BY PWRSASEX. @ 00542000
* @ 00543390
* FOR THE SUBSEQUENT ’GET-SPOOL-DATA’ REQUEST, THE PXU-USER FIELD @ 00543780
* IS FLAGGED WITH A SEND-DATA REQUEST, AND A NULL BUFFER IS PASSED @ 00544170
* TO VSE/POWER. @ 00544560

SPACE 1 @ 00545000
GETB2 DS 0H @ 00546000

XC IJBXBLN,IJBXBLN INDICATE ZERO BUFFER LENGTH @ 00547000
MVI PXUBTYP,0 CLEAR BUFFER TYPE BYTE IN USER DATA@ 00548000
MVI PXUACT1,PXUATSDR INDICATE SEND DATA REQUEST @ 00549000
MVC FAILLABL,=C’GETB2 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00550490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00551000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00552000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00553000
MVI GETFCT,C’G’ INDICATE: DATDSPLY IS CALLED BY GET@ 00554000
BAL RE,DATDSPLY GO TO DISPLAY RETURNED DATA @ 00555000

* AND DO NOT RETURN UNTIL LAST DATA @ 00556000
* RECORD IS DISPLAYED @ 00557000

Programming Example

282 VSE/POWER V9R2 Application Programming

MVI GETFCT,C’ ’ RESET INDICATION @ 00558000
SPACE 1 @ 00559000
DPLAY SUCCM2,72 DISPLAY MSG TO INDICATE RESTART RQ.@ 00560000
SPACE 2 @ 00561590

* A ’RESTART CONTROL RECORD’ IS BUILT IN THE SEND BUFFER AND @ 00562180
* PASSED TO VSE/POWER. THE LOGICAL RECORD NUMBER - PREVIOUSLY @ 00563000
* SAVED BY THE DATDSPLY ROUTINE - IS USED AS RESTART POINT. @ 00564490

SPACE 1 @ 00565000
GETB3 DS 0H @ 00566000

SPACE 1 @ 00567000
MVI PXUBTYP,PXUBTCTL BUFFER TYPE = CONTROL RECORD @ 00568000
MVI PXUACT1,0 CLEAR ACTION BYTE 1 @ 00569000
LA BUFPTR,SENDBUF GET ADDRESS OF SEND BUFFER @ 00570000
STCM BUFPTR,M7,IJBXADR INSERT BUFFER ADDRESS INTO XPCCB @ 00571000
SPACE 1 @ 00572000
USING PXRSDSCT,BUFPTR GET DSECT FOR RESTART CONTROL REC. @ 00573000
XC 0(PXRSLENG,BUFPTR),0(BUFPTR) CLEAR RESTART CONTROL R.@ 00574000
MVI PXRSTYPE,PXRSTRST INDICATE RECORD TYPE = RESTART CTL.@ 00575000
MVC PXRSRECN,PWRRECNO INSERT PREVIOUSLY SAVED LOG. REC.# @ 00576000
LA R3,PXRSLENG LOAD LENGTH OF RESTART CTL. REC. @ 00577000
STH R3,PXRSRLEN INSERT LENGTH INTO RESTART CTL. REC@ 00578000
ST R3,IJBXBLN INSERT LENGTH INTO XPCCB @ 00579000
DROP BUFPTR @ 00580000
SPACE 1 @ 00581000
MVC FAILLABL,=C’GETB3 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00582490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00583000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00584000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00585000
MVI GETFCT,C’G’ INDICATE: DATDSPLY IS CALLED BY GET@ 00586000
BAL RE,DATDSPLY YES, GO TO DISPLAY RETURNED DATA @ 00587000

* AND DO NOT RETURN UNTIL LAST DATA @ 00588000
* RECORD IS DISPLAYED @ 00589000

MVI GETFCT,C’ ’ RESET INDICATION @ 00590000
SPACE 1 @ 00591000

* FOR THE SUBSEQUENT ’GET-QUIT’ REQUEST, THE PXU-USER FIELD IS @ 00592490
* FLAGGED WITH A ’QUIT’ INDICATION, AND A NULL BUFFER IS PASSED @ 00592980
* TO VSE/POWER. @ 00593470

SPACE 1 @ 00594000
GQUIT DS 0H @ 00595000

XC IJBXBLN,IJBXBLN INSERT ZERO BUFFER LENGTH @ 00596000
MVI PXUBTYP,0 CLEAR BUFFER TYPE BYTE IN USER DATA@ 00597000
MVI PXUACT1,PXUATABR INDICATE QUIT REQUEST @ 00598000
SPACE 1 @ 00599000

* IF A CLOSE OR PURGE REQUEST IS DESIRED (ONLY IN CASE OF @ 00600590
* ’NORMAL’ GET), ONE OF THE FOLLOWING STATEMENTS MUST BE CODED @ 00601180

SPACE 1 @ 00602000
*GCLOSE MVI PXUACT1,PXUATRQS REQUIRED SETTING FOR A CLOSE REQU. @ 00603000
*GPURGE MVI PXUACT1,PXUATPRG REQUIRED SETTING FOR A PURGE REQU. @ 00604000

SPACE 1 @ 00605000
MVC FAILLABL,=C’GQUIT ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00606490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00607000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00608000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00609000
SPACE 2 @ 00610000
EJECT @ 00611000

**@ 00612000
** S T E P : 6 *@ 00612500
** >> PUT REQUEST TO LST QUEUE << *@ 00613000
** THE DATA CARDS OF THE EXAMPLE JOB ARE SUBMITTED TO THE VSE/POWER *@ 00614000
** LST QUEUE AS ’EXAMPSEG’. A SEGMENT REQUEST IS ISSUED *@ 00615000
** AFTER EACH SEVENTH RECORD. *@ 00616000
**@ 00617000

SPACE 1 @ 00618000
* REGISTER USAGE FOR PUT-REQUEST TO LST QUEUE @ 00619000

SPACE 2 @ 00620000
* R2 - RECORDCT - RECORD COUNTER FOR SEGMENTATION IN LOOP @ 00621000
* RA - BUFPTR - POINTER FOR THE SEND BUFFER @ 00622000

Programming Example

Chapter 13. Spool-Access Support Programming Example 283

* RB - DATAPTR - POINTER FOR THE INPUT CARDS @ 00623000
SPACE 2 @ 00624000

PUTB1 DS 0H @ 00625990
SPACE 1 @ 00626980
DPLAY SUCCM8,72 DISPLAY MESSAGE @ 00628000
SPACE 1 @ 00629000

* THE SPL IS UPDATED FOR A ’PUT-OPEN OUTPUT’ REQ., SPECIFYING @ 00630090
* - THE MANDATORY FIELDS ’QUEUE, JOBNAME, USERID’, AND @ 00630180
* - THE OPTIONAL FIELDS ’CLASS, MODE, (OPT, PWD)’ FOR UPD REQ.@ 00630270
* FOR DETAILS ON MANDAT./OPT. FIELDS SEE PWRSPL REQ=PUT OUTPUT.@ 00630360
* NOTE: ALL FURTHER OUTPUT ATTRIBUTES HAVE TO BE SET BY OWN @ 00630450
* CODE, TO FEED UPDATE SPL FIELDS ACC. TO "SUBMITTING @ 00630540
* OUTPUT DATA" IN THIS MANUAL. @ 00630630

SPACE 1 @ 00630720
PWRSPL TYPE=UPD,REQ=PUT,SPL=OWNSPL,CLASS=Z,JOBN=JOBNLAB, *00631000

QUEUE=LST,MODE=RESET @ 00632000
SPACE 2 @ 00633000

* SET ADDITIONAL OUTPUT SPECIFIC FIELDS IN THE SPL BY OWN CODE @ 00634490
MVI SPLDDP,DISP INDICATE OUTPUT DISPOSITION @ 00635000
MVI SPLONSEP,SEPPAGE INDICATE OUTPUT SEPARATOR PAGES @ 00636000
MVI SPLDPR,PRIOR INDICATE OUTPUT PRIORITY @ 00637000
MVC SPLOFORM,FORMS INDICATE OUTPUT FORMS @ 00638000
MVI SPLORCFM,SPLORASA INDICATE ASA CC FOR OUTPUT @ 00639000
MVI SPLDSID,C’N’ INDICATE ’NO’ SPECIFIC TARGET SYSID@ 00639300

* FIELD IS REQUIRED FOR SHARED SYST. @ 00639600
SPACE 1 @ 00640000
MVI PXUACT1,0 CLEAR ACTION BYTE 1 IN USER DATA @ 00641000
MVI PXUBTYP,PXUBTSPL INDICATE BUFFER TYPE = SPL @ 00642000
SPACE 1 @ 00643000
STCM R7,M7,IJBXADR INSERT SPL ADDRESS AS BUFFER ADDR. @ 00644000
LA R3,SPLGLEN LOAD LENGTH OF SPL @ 00645000
ST R3,IJBXBLN INSERT BUFFER LENGTH INTO XPCCB @ 00646000
SPACE 1 @ 00647000
MVC FAILLABL,=C’PUTB1 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00648490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00649000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00650000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00651000
SPACE 2 @ 00652000

* THE VERIFICATION SPL RETURNED BY VSE/POWER IS IGNORED. @ 00653390
* @ 00653780
* FOR THE SUBSEQUENT ’PUT-SPOOL-DATA’ REQUEST, THE PXU-USER FIELD @ 00654170
* SETTINGS ARE ESTABLISHED, AND THE SEND BUFFER IS FILLED WITH @ 00654560
* ’OUTPUT LINE RECORDS’ (EACH RECORD PRECEDED BY A RECORD PREFIX) @ 00654950
* UNTIL NO MORE RECORD FITS. @ 00655340
* THE BUFFER IS THEN PASSED TO VSE/POWER IN THE ACTUALLY USED @ 00655730
* LENGTH. THE OUTPUT IS ALWAYS SEGMENTED AFTER SEVEN RECORDS. @ 00656120

SPACE 1 @ 00657000
PUTB2 DS 0H @ 00658000

MVI PXUBTYP,PXUBTNDB BUFFER TYPE = NORMAL DATA BUFFER @ 00659000
MVI PXUACT1,0 CLEAR ACTION BYTE 1 IN USER DATA @ 00660000
SPACE 1 @ 00661000
LA BUFPTR,SENDBUF GET ADDRESS OF SEND BUFFER @ 00662000
STCM BUFPTR,M7,IJBXADR INSERT BUFFER ADDRESS INTO XPCCB @ 00663000
LA DATAPTR,DATACARD GET ADDR OF FIRST INPUT CARD @ 00664000
SPACE 1 @ 00665000
LA RECORDCT,NOOFRECS INITIALIZE RECORD COUNTER @ 00666000

FILLBUFO DS 0H @ 00667000
CLC JCL2(3),0(DATAPTR) END OF DATA REACHED? @ 00668000
BE SDEOD YES, GO TO SEND FINAL BUFFER @ 00669000
SPACE 1 @ 00670000
CL BUFPTR,LASTPREC ENOUGH SPACE FOR ONE MORE RECORD? @ 00671000
BH SDNDB NO, GO TO SEND NORMAL BUFFER @ 00672000
SPACE 1 @ 00673000
USING RECPRFIX,BUFPTR GET DSECT FOR RECORD LAYOUT @ 00674000
XC 0(RECPRFXL,BUFPTR),0(BUFPTR) CLEAR BYTES FOR PREFIX @ 00675000
MVI RECTYPE,RECTNORM INSERT REC. TYPE INTO REC. PREFIX @ 00676000
MVI RECCCODE,C’-’ SET ASA CC IN REC. PREFIX TO SKIP2 @ 00677000

Programming Example

284 VSE/POWER V9R2 Application Programming

LA R3,NOOFRECS MAX NUMBER OF RECORDS IN A SEGMENT @ 00678000
CLR RECORDCT,R3 FIRST RECORD OF SEGMENT? @ 00679000
BNE LAB1 NO, CONTINUE AT LABEL LABL1 @ 00680000
MVI RECCCODE,C’1’ SET ASA CC IN REC.PREF. TO NXT.PAGE@ 00681000
SPACE 1 @ 00682000

LAB1 DS 0H @ 00683000
LA R3,L’DATACARD LOAD LENGTH OF DATA @ 00684000
STH R3,RECLNGTH INSERT LENGTH OF DATACARD IN PREFIX@ 00685000
LA BUFPTR,RECPRFXL(,BUFPTR) SKIP PREFIX IN BUFFER @ 00686000
MVC 0(L’DATACARD,BUFPTR),0(DATAPTR) MOVE DATA IN BUFFER @ 00687000
LA BUFPTR,L’DATACARD(,BUFPTR) POINT TO NEXT FREE BUFSPACE @ 00688000
LA DATAPTR,L’DATACARD(,DATAPTR) POINT TO NEXT INPUT CARD @ 00689000
BCT RECORDCT,FILLBUFO DO LOOP AND DECREMENT RECORDCOUNTER@ 00690000
SPACE 1 @ 00691000
CLC JCL2(3),0(DATAPTR) END OF DATA REACHED? @ 00692000
BE SDEOD YES, GO TO SEND FINAL BUFFER @ 00693000
MVI PXUACT1,PXUATSGM INDICATE OUTPUT SEGMENTATION @ 00694000

SDNDB DS 0H @ 00695000
LA R3,SENDBUF GET AGAIN START ADDR. OF SEND BUFF @ 00696000
SR BUFPTR,R3 CALC. ACTUALLY USED BUFFER LENGTH @ 00697000
ST BUFPTR,IJBXBLN INSERT ACTUAL BUF.LENGTH INTO XPCCB@ 00698000
MVC FAILLABL,=C’SDNDB ’ INSERT PART OF CODE LABEL FOR DIAGN@ 00699490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00700000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00701000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00702000
LA BUFPTR,SENDBUF GET ADDRESS OF SEND BUFFER @ 00703000
LTR RECORDCT,RECORDCT IS RECORD COUNTER ZERO? @ 00704000
BNZ KEEPRCT NO, KEEP ACTUAL VALUE OF RECORDCT @ 00705000
LA RECORDCT,NOOFRECS INITIALIZE REC COUNTER AGAIN @ 00706000

KEEPRCT DS 0H @ 00707000
MVI PXUACT1,0 CLEAR ACTION BYTE 1 IN USER DATA @ 00708000
B FILLBUFO GOTO CHECK NEXT INPUT CARD @ 00709000
SPACE 2 @ 00710000

SDEOD DS 0H @ 00711000
MVI PXUACT1,0 CLEAR ACTION BYTE 1 IN USER DATA @ 00712000
MVI PXUACT1,PXUATEOD ACTION BYTE = END OF DATA @ 00713000
LA R3,SENDBUF GET AGAIN START ADDR. OF SEND BUFF @ 00714000
SR BUFPTR,R3 CALC. ACTUALLY USED BUFFER LENGTH @ 00715000
ST BUFPTR,IJBXBLN INSERT ACTUAL BUF.LENGTH INTO XPCCB@ 00716000
L R3,IJBXBLN LOAD ACTUAL SEND BUFFER LENGTH @ 00717000
LTR R3,R3 IS BUFFER LENGTH ZERO? @ 00718000
BNZ NOTNLB NO, IND. NORMAL DATA BUFFER @ 00719000
MVI PXUBTYP,0 CLEAR BUFFER TYPE IN USER DATA @ 00720000

NOTNLB DS 0H @ 00721000
MVC FAILLABL,=C’SDEOD ’ INSERT PART OF CODE LABEL FOR DIAGN@ 00722490
BAL RD,SENDR GO TO SENDR ROUTINE @ 00723000
CLI PXPRETCD,PXPRCOK WAS VSE?POWER RETURN CODE ZERO? @ 00724000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00725000
SPACE 2 @ 00726000

* THE EXTENDED SPL RETURNED BY VSE/POWER IS IGNORED. @ 00727000
SPACE 1 @ 00728000

PUTB3 DS 0H @ 00729000
TM PXPINFO,PXPIMSG MESSAGES QUEUED? @ 00730000
BNO DISPLAY NO, GO TO DISPLAY INFO MESSAGES @ 00731000
MVC FAILLABL,=C’PUTB3 ’ INSERT CODE LABEL FOR DIAGNOSTIC @ 00732490
XC IJBXBLN,IJBXBLN INDICATE ZERO BUFFER LENGTH @ 00733000
MVI PXUBTYP,0 CLEAR USER DATA IN XPCCB @ 00734000
MVI PXUACT1,PXUATRMR INDICATE RETURN QUEUED MESSAGES @ 00735000
BAL RD,SENDR GO TO SENDR ROUTINE @ 00736000
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURN CODE ZERO? @ 00737000
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE @ 00738000
BAL RE,DATDSPLY YES, GO TO DISPLAY RETURNED MSG’S @ 00739000
SPACE 1 @ 00740000

DISPLAY DS 0H @ 00741000
DPLAY SUCCM3,72 DISPLAY MESSAGE @ 00742000
DPLAY SUCCM4,72 DISPLAY MESSAGE @ 00743000
DPLAY SUCCM6,72 DISPLAY MESSAGE @ 00744000

Programming Example

Chapter 13. Spool-Access Support Programming Example 285

SPACE 1 @ 00745000
B DISCT DISCONN AND TERMIN XPCC LINK, EOJ @ 00746000
EJECT @ 00747000

*** 00834000
** S T E P : 7 ** 00834500
** >> DISCONNECT THE XPCC COMMUNICATION LINK TO VSE/POWER << ** 00835000
** IF THE MACRO FAILS, THE PROGRAM DISPLAYS A DIAGNOSTIC MESSAGE AND ** 00836000
** TERMINATES WITH A DUMP. ** 00837000
*** 00838000

SPACE 1 00839000
DISCT DS 0H 00840000

XPCC XPCCB=(R4),FUNC=DISCONN DISCONNECT LINK TO VSE/POWER 00841000
SPACE 1 00842000
LTR RF,RF WAS DISCONNECT SUCCESSFUL, RF=’00’ ? 00843000
BZ TERMN ..YES CONTINUE WITH XPCC TERMINATION 00844000
SPACE 1 00845000
MVC FAILFUNC,=C’DISCONN ’ INSERT FAILING FUNCTION 00846000
BAL RE,MSGRETC INSERT XPCC RETURN CODE INTO MSG 00847000
MVC FAILLABL,=C’DISCT ’ INSERT CODE LABEL FOR DIAGNOSTIC 00848490
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE 00849000
B FINDUMP GO TO TERMINATION WITH DUMP 00850000
EJECT 00851000

*** 00852000
** S T E P : 8 ** 00852500
** >> TERMINATE INTERACTION WITH THE VSE/AF XPCC SUPPORT << ** 00853000
** IF THE MACRO FAILS, THE PROGRAM DISPLAYS A DIAGNOSTIC MESSAGE AND ** 00854000
** TERMINATES WITH A DUMP. ** 00855000
*** 00856000

SPACE 1 00857000
TERMN DS 0H 00858000

XPCC XPCCB=(R4),FUNC=TERMIN TERMINATE CROSS PART. INTERFACE 00859000
LTR RF,RF DID WE GET A ZERO RET-CODE ? 00860000
BZ FINEND ..YES, GO TO NORMAL EOJ MACRO 00861000
SPACE 1 00862000
MVC FAILFUNC,=C’TERMIN ’ INSERT FAILING FUNCTION INTO MSG 00863000
BAL RE,MSGRETC INSERT XPCC RETURN CODE INTO MSG 00864000
MVC FAILLABL,=C’TERMN ’ INSERT CODE LABEL FOR DIAGNOSTIC 00865490
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE 00866000
B FINDUMP GO TO TERMINATION WITH DUMP 00867000
EJECT 00868000

*** 00869000
** S T E P : 9 ** 00869500
** >> TERMINATE PWRSASEX << ** 00870000
*** 00871000

SPACE 1 00872000
FINDUMP DS 0H TERMINATION FORCED DUE TO ERROR 00873000
* DUMP A PARTITION DUMP CAN BE FORCED IF 00874000
* NECESSARY FOR DEBUG PURPOSES 00875000

SPACE 1 00876000
FINEND DS 0H NORMAL TERMINATION 00877000

EOJ NORMAL END OF PWRSASEX PROGRAM 00878000
EJECT 00879000

*** 00879008
** S U B R O U T I N E S ** 00879016
** >> DATDSPLY ROUTINE << ** 00879024
** THIS ROUTINE DISPLAYS THE FOLLOWING INFO RETURNED BY VSE/POWER: ** 00879032
** - MESSAGES IN ’OPERATOR’ DISPLAY FORMAT (CTL OR PUT REQUEST) ** 00879040
** - MESSAGES IN ’FIXED FORMAT’ (CTL OPT=FORMAT), CONVERTED TO THE ** 00879048
** OWN CONSOLE MESSAGE ’1QSAS’ ** 00879056
** - DATA RECORDS OF RETRIEVED QUEUE ENTRIES (GET REQUEST) ** 00879064
*** 00879072

SPACE 1 00879080
* REGISTER USAGE FOR DATDSPLY ROUTINE 00879088

SPACE 1 00879096
* RA - BUFPTR - POINTER FOR THE REPLY BUFFER 00879104
* RC - BUFLN - REG TO CALCULATE THE LENGTH OF THE DATA STILL 00879112
* TO BE DISPLAYED 00879120

Programming Example

286 VSE/POWER V9R2 Application Programming

* R0, R1, R2, R3 - WORK REGISTER 00879128
* 00879136
* CALLED FROM: PUT REQUEST TO RDR QUEUE 00879144
* CTL REQUEST 00879152
* GET REQUEST 00879160
* PUT REQUEST TO LST QUEUE 00879168
* 00879176
* EXIT TO CALLER IF ALL AVAILABLE MESSAGES/DATA ARE DISPLAYED 00879184

SPACE 2 00879192
DATDSPLY DS 0H 00879200

SR R0,R0 SET R0 TO ZERO 00879208
CLM R0,M7,IJBXSLN NO MORE DATA TO DISPLAY? 00879216
BER RE RETURN TO CALLER 00879224
LA BUFPTR,REPLBUF POINT TO REPLY BUFFER 00879232
SR BUFLN,BUFLN CLEAR REGISTER 00879240
ICM BUFLN,M7,IJBXSLN GET LENGTH OF DATA TO BE DISPLAYED 00879248
SPACE 1 00879256

* PWRSASEX DISPLAYS, RECORD AFTER RECORD, THE DATA OR MESSAGES RE- 00879264
* TURNED BY VSE/POWER. THE RECORD PREFIX OF EACH DATA RECORD IS 00879272
* ANALIZED BUT NOT DISPLAYED. 00879280
* IF DATDSPLY IS CALLED TO DISPLAY PARTS OF A FIXED FORMAT MESSAGE 00879288
* RECORD (ONLY ONE EXPECTED), THE RETURNED ’INTERNAL’ QUEUE ENTRY 00879296
* NUMBER OF OUTPUT ’EXAMPLE’ IS SAVED FOR THE ALTERNATIVE FLOW OF THE 00879304
* ’DIRECT GET’ REQUEST. 00879312
* IF DATDSPLY IS CALLED BY THE GET FUNCTION, THE LOGICAL RECORD 00879320
* NUMBER OF THE 12TH DATA CARD OF OUTPUT ENTRY ’EXAMPLE’ IS SAVED. 00879328
* PWRSASEX USES THIS NUMBER LATER AS A RESTART POINT. 00879336

SPACE 1 00879344
DSPL0 DS 0H 00879352

USING RECPRFIX,BUFPTR GET DSECT OF RECORD LAYOUT 00879360
CLI GETFCT,C’G’ WAS DATDSPLY CALLED BY GET? 00879368
BNE DSPL1 NO, GO FOR MESSAGE INTERPRETATION 00879376
CLC RECPRFXL(4,BUFPTR),=C’* 12’ IS THE CURRENT CARD NO.12 00879384
BNE DSPL1X NO, GO TO DISPLAY DATA RECORD 00879392
MVC PWRRECNO,RECLOGNO SAVE LOGICAL RECORD NUMBER 00879400
B DSPL1X GO TO DISPLAY DATA RECORD 00879408
SPACE 1 00879416

DSPL1 DS 0H 00879424
CLI RECTYPE,RECTFIXM FIXED FORMAT MSG RECORD RETURNED ? 00879432
BNE DSPL1X GO TO DISPLAY CONSOLE MESSAGE 00879440
LH R2,RECLNGTH GET LENGTH OF FIRST/NEXT DATA REC. 00879448
LA BUFPTR,RECPRFXL(,BUFPTR) POINT TO FIX FORMAT RECORD 00879456
DROP BUFPTR RELEASE PREFIX ADDRESSABILITY 00879464
USING PXFMDSCT,BUFPTR MAKE FIX FORM MSG ADDRESSABLE 00879472
MVC FFMHD+15(L’JOBNAME),PXFMNAME PASS NAME TO MSG SKELET. 00879480
SR R1,R1 CLEAR REGISTER 00879488
ICM R1,3,PXFMJNUM PICK UP BINARY JOB NUMBER 00879496
CVD R1,HELP8 CONVERT TO PACKED DECIMAL 00879504
UNPK HELP5,HELP8+5(3) UNPACK 3 DIGITS 00879512
OI HELP5+4,X’F0’ CHANGE X’C.’ TO PRINTABLE X’F.’ 00879520
MVC FFNHD+5(5),HELP5 PASS DEC. JOBNUMBER TO MSG SKEL 00879528
MVC FFCHD+7(1),PXFMCLSS PASS JOB CLASS TO MSG SKELETON 00879536
MVC JOBQNUM,PXFMQNUM SAVE INTERNAL Q-ENTRY-# FOR DIR. GET 00879544
DROP BUFPTR RELEASE FF-MSG ADDRESSABILITY 00879552
SPACE 1 00879560
DPLAY FFDSPLY,72 DISPLAY ASSEMBLED DISPLAY LINE 00879568
SPACE 1 00879576
B DSPL1Y GO PROCESS NEXT/LAST PASSED RECORD 00879584
SPACE 2 00879592

DSPL1X DS 0H 00879600
USING RECPRFIX,BUFPTR MAKE RECORD PREFIX ADDRESSABLE 00879608
LH R2,RECLNGTH GET LENGTH OF FIRST/NEXT DATA REC. 00879616
LA BUFPTR,RECPRFXL(,BUFPTR) SKIP RECORD PREFIX 00879624
DROP BUFPTR RELEASE PREFIX ADDRESSABILITY 00879632
SPACE 1 00879640
DPLAY (BUFPTR),(R2) DISPLAY CURRENT DATA RECORD 00879648
SPACE 2 00879656

Programming Example

Chapter 13. Spool-Access Support Programming Example 287

DSPL1Y DS 0H 00879664
LA R1,RECPRFXL(,R2) CALC. LENGTH OF RECORD INCL. PREFIX 00879672
SR BUFLN,R1 CALC.LENGTH OF DATA STILL IN BUFFER 00879680
LA BUFPTR,0(R2,BUFPTR) POINT TO NEXT RECORD 00879688
LTR BUFLN,BUFLN ALL DATA IN BUFFER DISPLAYED? 00879696
BNZ DSPL0 NO, GO TO DISPLAY NEXT DATA REC. 00879704
SPACE 1 00879712
CLI PXPFBKCD,PXP00EOD END OF DATA? 00879720
BER RE YES, RETURN TO CALLER 00879728
SPACE 1 00879736

* IF THIS ROUTINE IS CALLED BY THE GET FUNCTION, ’SEND (MORE) DATA’ 00879744
* HAS TO BE INDICATED IN THE ACTION BYTE. IN ALL OTHER CASES 00879752
* ’RETURN (MORE) MESSAGES’ MUST BE SET. 00879760

SPACE 1 00879768
DSPL2 DS 0H 00879776

XC IJBXBLN,IJBXBLN INDICATE ZERO BUFFER LENGTH 00879784
MVI PXUBTYP,0 CLEAR BUFFER TYPE BYTE 00879792
MVI PXUACT1,PXUATRMR INDICATE A ’RETURN MESSAGE’ REQUEST 00879800
CLI GETFCT,C’G’ WAS DATDSPLY CALLED BY GET? 00879808
BNE DSPL3 NO, KEEP RETURN MESSAGE INDICATION 00879816
MVI PXUACT1,PXUATSDR INDICATE A ’SEND DATA’ REQUEST 00879824

DSPL3 DS 0H 00879832
MVC FAILLABL,=C’DSPL2 ’ INSERT CODE LABEL FOR DIAGNOSTIC 00879840
BAL RD,SENDR GO TO SENDR ROUTINE 00879848
CLI PXPRETCD,PXPRCOK WAS VSE/POWER RETURNCODE ZERO? 00879856
BNE REQFAIL NO, GO TO HANDLE REQUEST FAILURE 00879864
B DATDSPLY YES, START DISPLAYING AGAIN 00879872
EJECT 00879880

*** 00879888
** >> ROUTINE TO HANDLE REQUEST FAILURES << ** 00879896
** THE ROUTINE IS CALLED IF VSE/POWER RC/FBKC WAS NOT ZERO ** 00879904
*** 00879912

SPACE 1 00879920
REQFAIL DS 0H 00879928

MVC FAILFUNC,=C’SENDR ’ INSERT FAILING FUNCTION INTO MSG 00879936
BAL RE,MSGRCFB PREPARE RC/FBKC DISPLAY 00879944
BAL RE,MSGDSPLY DISPLAY MESSAGE ON CONSOLE 00879952
B FINDUMP GO TO TERMINATION WITH DUMP 00879960
EJECT 00879968

*** 00880000
** >> MESSAGE BUILD ROUTINE FOR FAILMSG << ** 00881000
** BRANCHED TO FROM ANY CALLER TO FILL SELECTED FIELDS OF THE DIAG- ** 00882000
** NOSTIC MESSAGE. RETURNS TO CALLER VIA REGISTER 14 (RE). ** 00883000
*** 00884000

SPACE 1 00885000
MSGRETC DS 0H 00886000

UNPK HELP,IJBXRETC(2) UNPACK HEX XPCC RETURN CODE 00887000
TR HELP(2),TRTAB CONVERT TO PRINTABLE HEX-VALUE 00888000
MVC FAILRETC,HELP INSERT PRINTABLE XPCC RET. CODE 00889000
BR RE RETURN TO CALLER 00890000
SPACE 1 00891000

MSGREAS DS 0H 00892000
UNPK HELP,IJBXREAS(2) UNPACK HEX XPCC REASON CODE 00893000
TR HELP(2),TRTAB CONVERT TO PRINTABLE HEX-VALUE 00894000
MVC FAILREAS,HELP INSERT PRINTABLE XPCC REAS. CODE 00895000
BR RE RETURN TO CALLER 00896000
SPACE 1 00897000

MSGRCFB DS 0H 00898000
UNPK HELP,PXPRETCD(2) UNPACK HEX VSE/POWER RETURN CODE 00899000
TR HELP(2),TRTAB CONVERT TO PRINTABLE HEX-VALUE 00900000
MVC FAILPWRC,HELP INSERT PRINTABLE POWER RET.CODE 00901000
SPACE 1 00902000
UNPK HELP,PXPFBKCD(2) UNPACK HEX POWER FEEDBACK CODE 00903000
TR HELP(2),TRTAB CONVERT TO PRINTABLE HEX-VALUE 00904000
MVC FAILPWFB,HELP INSERT VSE/POWER FEEDACK CODE 00905000
SPACE 1 00905310
CLC FAILLABL,=C’GETBB1’ CALLED FROM ’DIRECT’ GET, WHERE 00905320

Programming Example

288 VSE/POWER V9R2 Application Programming

* FEEDBACK CODE 2 IS MEANINGFUL ? 00905330
BNE MSGRCFB2 NO, CONTINUE 00905340
CLI PXPRETCD,PXPRCOKF VSE/POWER RETCD = X’04’ ? 00905350
BNE MSGRCFB2 NO, CONTINUE 00905360
CLI PXPFBKCD,PXP04NOF VSE/POWER FEEDBACK-1 = X’01’ ? 00905370
BNE MSGRCFB2 NO, CONTINUE 00905380
UNPK HELP,PXPFBKC2(2) UNPACK HEX POWER FEEDBACK-2 CODE 00905390
TR HELP(2),TRTAB CONVERT TO PRINTABLE HEX-VALUE 00905400
MVC FAILPWF2,HELP INSERT VSE/POWER FEEDACK-2 CODE 00905410

MSGRCFB2 DS 0H 00905420
SPACE 1 00905430

* FOR RETC/FBKCD CODE PXP08CON (08/22) OR PXP08ROS (08/25) GENERALLY, 00905440
* CONSIDER TO DISPLAY ALSO THE FEEDBACK-2 CODE FROM PXPFBKC2. 00905600

BR RE RETURN TO CALLER 00906000
SPACE 1 00907000

MSGDSPLY DS 0H 00908000
DPLAY FAILMSG,72 DISPLAY FAILURE MESSAGE 00909290
MVC FAILMSG,FAILCOPY REFRESH FAILURE MESSAGE 00909580
SPACE 1 00910000
BR RE 00911000
EJECT 00912000

*** 00913000
** >> CENTRAL XPCC SENDR ROUTINE << ** 00914000
** BEFORE THIS ROUTINE IS CALLED, THE PROGRAM INSERTS THE CALLING ** 00915000
** POINT IN THE DIAGNOSTIC MESSAGE THAT IS ISSUED SHOULD THE SENDR ** 00916000
** MACRO FAIL. THIS ROUTINE: ** 00917000
** - ISSUES THE XPCC MACRO WITH FUNC=SENDR AND WAITS FOR THE ** 00918000
** SECB TO BE POSTED. IT CHECKS REGISTER 15 (RF) AND THE VSE ** 00919000
** - CHECKS REGISTER 15 (RF) AND THE z/VSE RETURN- AND REASON CODES ** 00920000
** IN FIELDS IJBXRETC AND IJBXREAS, RESPECTIVELY. ** 00921000
** - CHECKS THE VSE/POWER RETURN CODE IN FIELD PXPRETCD IF ** 00922000
** VSE/POWER DISCONNECTS THE COMMUNICATION PATH WITH A PURGE. ** 00923000
** THE ROUTINE RETURNS TO THE CALLER IF THE XPCC MACRO CALL COM- ** 00924000
** PLETED SUCCESSFULLY OR, IN CASE OF A FAILURE, THE VSE/POWER RE- ** 00925000
** TURN CODE IS NOT TOO SEVERE. RETURN IS PROVIDED VIA REGISTER ** 00926000
** 13 (RD). ** 00927000
*** 00928000

SPACE 1 00929890
* REGISTER USAGE FOR SENDR ROUTINE 00930780

SPACE 2 00931670
* R3 - WORK REGISTER (FOR WAIT) 00932560
* RD - REGISTER USED TO RETURN TO CALLER 00933450
* 00934340
* CALLED FROM: PUT REQUEST TO RDR QUEUE 00935230
* CTL REQUEST 00936120
* GET REQUEST 00937010
* PUT REQUEST TO LST QUEUE 00937900
* DATDSPLY ROUTINE 00938790
* 00939680
* EXIT TO CALLER (SEE COMMENT ABOVE) 00940570
* OR TO DISCT OR FINDUMP IN CASE OF A FAILURE 00941460
* 00942350

SPACE 2 00943240
SPACE 1 00945000

SENDR DS 0H 00946000
XPCC XPCCB=(R4),FUNC=SENDR SEND BUFFER TO VSE/POWER 00947000
LTR RF,RF DID WE GET A ZERO RETURN CODE ? 00948000
BZ WAITSECB ..YES, THEN WAIT FOR REPLY OF POWER 00949000
SPACE 2 00950000

* IF THE SENDR MACRO COMPLETES WITH RF=X’08’, THEN THE ROUTINE: 00951000
* 1. FILLS THE DIAGNOSTIC MESSAGE ACCORDING TO THE VSE RETURN CODE. 00952000
* 2. DISPLAYS THE MESSAGE. 00953000
* 3. TERMINATES WITH OR WITHOUT A DUMP. 00954000
* THERE IS NO RETURN TO THE CALLER OF SENDR. 00955000

SPACE 1 00956000
TESTRETC DS 0H 00957000

CLI IJBXRETC,IJBXNOC3 DID VSE/POWER ABNORMALLY TERMINATE ? 00958000

Programming Example

Chapter 13. Spool-Access Support Programming Example 289

BE ABNPOW ..YES, THEN GO TO STOP PWRSASEX 00959000
MVC FAILFUNC,=C’SENDR ’ INSERT ’SENDR ’ INTO MSG TEXT 00960000
BAL RE,MSGRETC PUT XPCC RETURN CODE INTO MSG 00961000
CLI IJBXRETC,IJBXNOC2 DID VSE/POWER GIVE A DISCONNECT PURGE00962000
BE TERMCONN ..YES,THEN GO TO SHOW WHY, TERMINATE 00963000
BAL RE,MSGDSPLY DISPLAY DIAGNOSTIC MESSAGE ON CONS. 00964000
B FINDUMP TERMINATE PWRSASEX WITH PART.DUMP 00965000
SPACE 1 00966000

ABNPOW DS 0H 00967000
DPLAY FAILM2,72 00968000
SPACE 1 00969000
B DISCT DISCONN AND TERMIN XPCC LINK, EOJ 00970000
SPACE 2 00971000

* THE ROUTINE WAITS FOR THE SEND ECB TO BE POSTED. IT RETURNS TO THE 00972000
* CALLER IF THE SYSTEM PASSED A REASON CODE OF ZERO, THAT IS, THE 00973000
* XPCC CONNECTION IS ERROR FREE. 00974000
* FOR A NON-ZERO REASON CODE, THE ROUTINE DISPLAYS A DIAGNOSTIC 00975000
* MESSAGE AND TERMINATES WITH OR WITHOUT A DUMP. 00976000

SPACE 1 00977000
WAITSECB DS 0H 00978000

LA R3,IJBXSECB LOAD ADDRESS OF SEND COMPLETION ECB 00979000
WAIT (R3) WAIT FOR COMPLETION OF SENDR 00980000
CLI IJBXREAS,REASOK DID ANY CONNECTION ERROR OCCUR ? 00981000
BER RD .. NO, THEN RETURN TO CALLER 00982000
SPACE 1 00983000

BADREAS DS 0H 00984000
TM IJBXREAS,IJBXABDC DID VSE/POWER TERMINATE ABNORMALLY ? 00985000
BO ABNPOW .. YES, GIVE MESSAGE AND GO TO EOJ 00986000
MVC FAILFUNC,=C’SENDR ’ INSERT ’SENDR ’ INTO MSG TEXT 00987000
BAL RE,MSGREAS FILL XPCC REASON CODE INTO MSG 00988000

TERMCONN DS 0H 00989000
BAL RE,MSGRCFB PUT VSE/POWER RETURN/FEEDBACK TO MSG 00990000
BAL RE,MSGDSPLY DISPLAY DIAGNOSTIC MESSAGE 00991000
CLI PXPRETCD,PXPRCPVL VSE/POWER RC = PROTOCOL VIOLATION? 00992000
BE FINDUMP .. YES, USER ERROR 00993000
B DISCT SYSTEM ERROR OCCURED @D23QDIR 00994000
EJECT 00995000

*** 00996000
** D E F I N I T I O N S ** 00997000
*** 00998000

SPACE 2 00999000
TRTAB EQU *-240 ENTRY POINT FOR TRANSLATE TABLE 01000000

DC X’F0F1F2F3F4F5F6F7F8F9C1C2C3C4C5C6’ TRANSLATE TABLE 01001000
SPACE 1 01002000

EIGHTDC DC X’08’ BYTE TO TEST RETURN CODE 01003000
HELP DC CL3’ ’ FIELD FOR UNPACK RET CODE 01004000
HELP5 DS CL5 FIELD FOR UNPACK JOBNUMBER 01004200

DS 0D ENFORCE ALIGNMENT FOR ’CVD’ FIELD 01004400
HELP8 DS CL8 FIELD FOR CONVERT DECIMAL JOBNUMBER 01004600

SPACE 1 01005000
WAITLIST DC A(INTECB) INTECB = 1ST ELEMENT OF WAITLIST 01006000
LISTCECB DC A(0) IJBXCECB = 2ND ELEM. OF WAITLIST 01007000
LISTEND DC X’FF’ INDICATE END OF WAITLIST 01008000

SPACE 1 01009000
INTECB DS F ECB USED TO WAIT FOR TIMER INTERVALS 01010000

SPACE 1 01011000
EIGHT EQU X’08’ RETURN CODE X’08’ 01012000
POSTBIT EQU X’80’ MASK FOR A POSTED ECB 01013000
REASOK EQU X’00’ ZERO VSE/AF REASON CODE 01014000

EJECT 01015000
*** 01016590
* DEFINITIONS FOR PUT,CTL AND GET REQUEST * 01017180
*** 01017770

SPACE 1 01018360
M1 EQU 1 MASK BIT SETTING 01018950
M7 EQU 7 MASK BIT SETTING 01019540
ZERO EQU 0 01020130

Programming Example

290 VSE/POWER V9R2 Application Programming

ONE EQU 1 01020720
SPACE 1 01021310

NOOFRECS EQU 7 NUMBER OF RECORDS IN A SEGMENT 01021900
DISP EQU C’L’ DISPOSITION OF OUTPUT TO BE SENT 01022490
PRIOR EQU C’9’ PRIORITY OF OUTPUT TO BE SENT 01023080
SEPPAGE EQU 4 NUMBER OR SEPARATOR PAGES/CARDS 01023670

SPACE 1 01024260
RECORDCT EQU 2 USE R2 AS REC COUNTER IN LOOP 01024850
BUFPTR EQU 10 USE RA AS BUFPOINTER 01025440
DATAPTR EQU 11 USE RB AS DATA POINTER 01026030
BUFLN EQU 12 USE RC TO CALC REMAINING BUFLEN 01026620

SPACE 2 01027210
JOBNAME DS CL8 FIELD TO SAVE JOBNAME RET’D BY POW. 01027800
JOBNUM DS XL2 FIELD TO SAVE JOBNUMB.RET’D BY POW. 01028390
PWRRECNO DS F FIELD TO SAVE POW. LOGICAL REC NO. 01028980
JOBQNUM DS F FIELD TO SAVE INT. QUEUE ENTRY NO. 01029570
ZERONUM DC H’0’ TO INDICATE ’NO JOBNUMBER SPECIFIED’ 01030160
* BECAUSE SPLXQNUM IS ’UNIQUE’ 01030750
GETFCT DC C’ ’ FIELD TO IDENTIFY GET AS CALLER OF 01031340
* DATDSPLY 01031930

SPACE 1 01032520
FORMS DC CL8’AABB’ FORMS OF OUTPUT TO BE SENT 01033110
JOBNLAB DC CL8’EXAMPSEG’ NAME OF OUTPUT TO BE SPOOLED 01033700

SPACE 1 01034290
JOBCMD DS 0CL130 COMMAND AT ITS MAXIMUM LENGTH, TER- 01034880
* MINATED WITH AT LEAST ONE BLANK(!) 01035470
CMDHEAD DC CL13’PDISPLAY LST,’ FIXED START OF COMMAND 01036060
CMDBODY DC CL117’ ’ DYNAMIC BODY/END OF COMMAND 01036650

SPACE 1 01037240
CMDCLAS DC C’CCLASS=S ’ SELECTION CLASS FOR PDISPLAY 01037830

SPACE 1 01038420
FFDSPLY DS 0CL72 MESSAGE EXTRACT FROM FF MSG RECORD 01039010
FFMHD DC CL23’1QSAS LST JNM= ’ MSG HEADER PLUS JOBNAME 01039600
FFNHD DC CL10’ JNB= ’ JOBNUMBER ONLY 01040190
FFCHD DC CL8’ CLASS= ’ JOBCLASS ONLY 01040780

DC CL31’ ’ BLANK MESSAGE TRAILER 01041370
EJECT 01041960

*** 01044000
* MESSAGE AREA FOR FAILING MACRO CALLS * 01045000
*** 01046000

SPACE 1 01047000
FAILMSG DS 0CL72 01048000
F1 DC C’FUNC=’ 01049000
FAILFUNC DC CL8’ ’ REQUESTED FUNCTION 01050000
F2 DC C’ FAILED AT: ’ 01051000
FAILLABL DC CL6’ ’ CODE LABEL OF FAILING FUNCTION 01052590
F3 DC C’ XPCC=’ 01053180
FAILRETC DC CL2’00’ RETURN CODE RECEIVED IN IJBXRETC 01054000
F4 DC C’/’ 01055000
FAILREAS DC CL2’00’ REASON CODE RECEIVED IN IJBXREAS 01056000
F5 DC C’ PWR-RC/FB1/FB2=’ 01057490
FAILPWRC DC CL2’00’ VSE/POWER RETURN CODE IN IJBXRUSR 01058000
F6 DC C’/’ 01059000
FAILPWFB DC CL2’00’ POWER FEEDBACK CODE 1 IN IJBXRUSR 01060190
F7 DC C’/’ 01060380
FAILPWF2 DC CL2’00’ VSE/POWER FEEDBACK CODE 2 IN IJBXRUSR01060570
F8 DC CL6’ ’ 01060760

SPACE 1 01060950
FAILCOPY DS CL72 01061140

SPACE 1 01062000
FAILM1 DC CL72’VSE/POWER ALREADY IN TERMINATION, NO MORE CONNECTIO*01063000

N REQUEST ACCEPTED’ 01064000
FAILM2 DC CL72’VSE/POWER ABNORMAL TERMINATION, CONNECTION DISRUPTE*01065000

D’ 01066000
FAILM3 DC CL72’CONNECTION COULD NOT BE COMPLETED WITHIN 2 MINUTES’ 01067000
FAILM4 DC CL72’LIST QUEUE ENTRY COULD NOT BE FOUND, PWRSASEX WILL *01068000

STOP’ 01069000

Programming Example

Chapter 13. Spool-Access Support Programming Example 291

SPACE 1 01070000
SUCCM1 DC CL72’>>> XPCC CONNECTION TO VSE/POWER SUCCESSFULLY BUILT*01071000

<<<’ 01072000
SUCCM1A DC CL72’>>> PWRSASEX WILL SUBMIT JOB ’’EXAMPLE’’ FOR EXECUT*01073390

ION IN CLASS 4 (!) <<<’ 01073780
SUCCM1B DC CL72’>>> PWRSASEX WILL WAIT FOR EXECUTION OF JOB ’’EXAMP*01074170

LE’’ IN CLASS 4 <<<’ 01074560
SUCCM1C DC CL72’>>> NOW ISSUE PDISPLAY FOR OUTPUT ’’EXAMPLE’’ AND P*01074950

ASS IT TO CONSOLE <<<’ 01075340
SUCCM2 DC CL72’>>> NOW PWRSASEX WILL RESTART ON RECORD NO.12 <<<’ 01075730
SUCCM3 DC CL72’>>> THE VSE/POWER LIST QUEUE MUST NOW CONTAIN 3 RBS*01076120

-LIKE SEGMENTS ... <<<’ 01076510
SUCCM4 DC CL72’>>> ... NAMED ’’EXAMPSEG’’ AND A SINGLE ENTRY NAMED*01076900

’’EXAMPLE’’ <<<’ 01077290
SUCCM6 DC CL72’>>> *** SUCCESSFUL TERMINATION OF PWRSASEX *** <<<’ 01078000
SUCCM7 DC CL72’>>> NOW FOLLOWS THE DISPLAY OF THE LIST ENTRY ’’EXA*01079590

MPLE’’ <<<’ 01080180
SUCCM8 DC CL72’>>> NEXT PWRSASEX WILL SUBMIT DATA TO THE LIST QUEU*01081000

E <<<’ 01082000
EJECT 01083000

*** 01084000
* JOB ’EXAMPLE’ TO BE PASSED TO VSE/POWER * 01085000
*** 01086000

SPACE 1 01087000
JECL1 DC C’* $$ JOB JNM=EXAMPLE,DISP=K,CLASS=4 ’ 01088690
JECL2 DC C’* $$ LST LST=SYSLST,DISP=K,CLASS=S ’ 01089490
JCL1 DC C’// JOB EXAMPLE ’ 01090000
DATACARD DC C’* 01---------------------*----------------------01 *’ 01091000

DC C’* 02-------------------* *-------------------02 *’ 01092000
DC C’* 03-----------------* *-----------------03 *’ 01093000
DC C’* 04---------------* *---------------04 *’ 01094000
DC C’* 05-------------* *-------------05 *’ 01095000
DC C’* 06-----------* *-----------06 *’ 01096000
DC C’* 07---------* *---------07 *’ 01097000
DC C’* 08-------* *-------08 *’ 01098000
DC C’* 09-----* *-----09 *’ 01099000
DC C’* 10---* *---10 *’ 01100000
DC C’* 11-* *-11 *’ 01101000
DC C’* 12---* *---12 *’ 01102000
DC C’* 13-----* *-----13 *’ 01103000
DC C’* 14-------* *-------14 *’ 01104000
DC C’* 15---------* *---------15 *’ 01105000
DC C’* 16-----------* *-----------16 *’ 01106000
DC C’* 17-------------* *-------------17 *’ 01107000
DC C’* 18---------------* *---------------18 *’ 01108000
DC C’* 19-----------------* *-----------------19 *’ 01109000
DC C’* 20-------------------* *-------------------20 *’ 01110000
DC C’* 21---------------------*----------------------21 *’ 01111000

JCL2 DC C’/&& ’ 01112000
JECL3 DC C’* $$ EOJ ’ 01113000
ENDIND DC C’/+’ 01114000

EJECT 01115000
*** 01116000
* CROSS PARTITION CONTROL BLOCK * 01117000
*** 01118000

SPACE 1 01119000
OWNXPCCB XPCCB APPL=PWRSASEX,TOAPPL=SYSPWR, *01120000

BUFFER=(SENDBUF,400),REPAREA=(REPLBUF,500) 01121000
SPACE 2 01122000

*** 01123000
* STORAGE RESERVATION FOR XPCC SEND AND REPLY BUFFER * 01124000
*** 01125000

SPACE 1 01126000
SENDBUF DS CL400 BUFFER USED FOR XPCC SENDR TO POWER 01127000
LASTPREC DC A(SENDBUF+L’SENDBUF-RECPRFXL-L’DATACARD) LAST POSSIBLE 01128000
* RECORD THAT FITS INTO SEND BUFFER 01129000
REPLBUF DS CL500 BUFFER FOR RECEIPT OF DATA FROM POWER 01130000

Programming Example

292 VSE/POWER V9R2 Application Programming

EJECT 01131000
*** 01132000

LTORG 01133000
*** 01134000

EJECT 01135000
**@ 01136000
** >> GENERATE S P L << *@ 01137000
** THIS SPL IS LATER ON UPDATED IN ORDER TO INDICATE A *@ 01138000
** PUT, CTL, OR GET REQUEST WITH THE DESIRED PARAMETERS *@ 01139490
**@ 01140000

SPACE 1 @ 01141000
OWNSPL PWRSPL TYPE=GEN,USERID=SASUSER1,PRFX=OWN @ 01142000

EJECT @ 01143000
*** 01144000
* DUMMY SECTION OF VSE/POWER SPOOL PARAMETER LIST (SPL) * 01145000
*** 01146000

SPACE 1 01147000
OWNSPLDS PWRSPL TYPE=MAP 01148000

EJECT 01149000
*** 01150000
* DUMMY SECTION OF CROSS PARTITION CONTROL BLOCK (XPCCB) * 01151000
*** 01152000

SPACE 1 01153000
MAPXPCCB 01154000
EJECT 01155000

*** 01156000
* GENERAL EQUATES * 01157000
*** 01158000

SPACE 1 01159000
R0 EQU 0 WORK REGISTER 01160000
R1 EQU 1 WORK REGISTER + USED BY PWRSPL MACRO 01161000
R2 EQU 2 WORK REGISTER 01162000
R3 EQU 3 WORK REGISTER 01163000
R4 EQU 4 ADDR REG FOR XPCCB DSECT 01164000
R5 EQU 5 ADDR REG FOR USER DATA TO BE SENT 01165000
R6 EQU 6 ADDR REG FOR RECEIVED USER DATA 01166000
R7 EQU 7 ADDR REG FOR SPL DSECT 01167000
R8 EQU 8 FIRST BASE REGISTER OF PWRSASEX 01168000
R9 EQU 9 SECOND BASE REGISTER OF PWRSASEX 01169000
RA EQU 10 WORK REGISTER 01170000
RB EQU 11 WORK REGISTER 01171000
RC EQU 12 WORK REGISTER 01172000
RD EQU 13 BRANCH AND LINK REGISTER FOR SENDR 01173000
RE EQU 14 BRANCH AND LINK REG. FOR DATDSPLY 01174000
RF EQU 15 MACRO CALL RETURN CODE REGISTER 01175000

SPACE 1 01176000

Control Statements for Execution
* $$ JOB JNM=PWRSARUN,DISP=K,CLASS=A
// JOB PWRSARUN
// LIBDEF *,SEARCH=...
*
* PROVIDE ... LIB.SUBLIB USED IN JOB PWRSACAT
*
// EXEC PWRSASEX
/&
* $$ EOJ

For execution of phase PWRSASEX, submit this job planned for processing in class
A. Remember to have a partition available (F4) to process the job in class 4. For
details or changes, such as of class 4, refer to the header note in the PWRSASEX
source code.

Programming Example

Chapter 13. Spool-Access Support Programming Example 293

PRINTLOG of PWRSASEX Execution
R RDR,PWRSARUN
AR 0015 1C39I COMMAND PASSED TO VSE/POWER
F1 0001 1R88I OK
BG 0001 1Q47I BG PWRSARUN 00178 FROM PNET631 , TIME=17:28:23
BG 0000 // JOB PWRSARUN

DATE 06/20/2000, CLOCK 17/28/23
BG 0000 >>> XPCC CONNECTION TO VSE/POWER SUCCESSFULLY BUILT <<<
BG 0000 >>> PWRSASEX WILL SUBMIT JOB ’EXAMPLE’ FOR EXECUTION IN CLASS 4 (!) <<<
BG 0000 >>> PWRSASEX WILL WAIT FOR EXECUTION OF JOB ’EXAMPLE’ IN CLASS 4 <<<
F4 0001 1Q47I F4 EXAMPLE 00179 FROM PNET631(SASUSER1) , TIME=17:28:23
F4 0004 // JOB EXAMPLE

DATE 06/20/2000, CLOCK 17/28/23
F4 0004 * 01---------------------*----------------------01 *
F4 0004 * 02-------------------* *-------------------02 *
F4 0004 * 03-----------------* *-----------------03 *
F4 0004 * 04---------------* *---------------04 *
F4 0004 * 05-------------* *-------------05 *
F4 0004 * 06-----------* *-----------06 *
F4 0004 * 07---------* *---------07 *
F4 0004 * 08-------* *-------08 *
F4 0004 * 09-----* *-----09 *
F4 0004 * 10---* *---10 *
F4 0004 * 11-* *-11 *
F4 0004 * 12---* *---12 *
F4 0004 * 13-----* *-----13 *
F4 0004 * 14-------* *-------14 *
F4 0004 * 15---------* *---------15 *
F4 0004 * 16-----------* *-----------16 *
F4 0004 * 17-------------* *-------------17 *
F4 0004 * 18---------------* *---------------18 *
F4 0004 * 19-----------------* *-----------------19 *
F4 0004 * 20-------------------* *-------------------20 *
F4 0004 * 21---------------------*----------------------21 *
F4 0004 EOJ EXAMPLE

DATE 06/20/2000, CLOCK 17/28/24, DURATION 00/00/00
F4 0001 1Q34I F4 WAITING FOR WORK
BG 0000 >>> NOW ISSUE PDISPLAY FOR OUTPUT ’EXAMPLE’ AND PASS IT TO CONSOLE <<<
BG 0000 1R46I LIST QUEUE P D C S PAGES CC FORM -- CTL standard flow
BG 0000 1R46I EXAMPLE 00179 3 K S 1 1 TO=(SASUSER1) -- CTL standard flow
FROM=(SASUSER1) -- CTL standard flow

BG 0000 1QSAS LST JNM=EXAMPLE JNB=00179 CLASS=S -- CTL alternat.flow

BG 0000 >>> NOW FOLLOWS THE DISPLAY OF THE LIST ENTRY ’EXAMPLE’ <<<
BG 0000 // JOB EXAMPLE
DATE 06/20/2000, CLOCK 17/28/23
BG 0000 * 01---------------------*----------------------01 *
BG 0000 * 02-------------------* *-------------------02 *
BG 0000 * 03-----------------* *-----------------03 *
BG 0000 * 04---------------* *---------------04 *
BG 0000 * 05-------------* *-------------05 *
BG 0000 * 06-----------* *-----------06 *
BG 0000 * 07---------* *---------07 *
BG 0000 * 08-------* *-------08 *
BG 0000 * 09-----* *-----09 *
BG 0000 * 10---* *---10 *
BG 0000 * 11-* *-11 *
BG 0000 * 12---* *---12 *
BG 0000 * 13-----* *-----13 *
BG 0000 * 14-------* *-------14 *
BG 0000 * 15---------* *---------15 *
BG 0000 * 16-----------* *-----------16 *
BG 0000 * 17-------------* *-------------17 *
BG 0000 * 18---------------* *---------------18 *
BG 0000 * 19-----------------* *-----------------19 *

Programming Example

294 VSE/POWER V9R2 Application Programming

BG 0000 * 20-------------------* *-------------------20 *
BG 0000 * 21---------------------*----------------------21 *
BG 0000 EOJ EXAMPLE
DATE 06/20/2000, CLOCK 17/28/24, DURATION 00/00/00
BG 0000 >>> NOW PWRSASEX WILL RESTART ON RECORD NO.12 <<<
BG 0000 * 12---* *---12 *
BG 0000 * 13-----* *-----13 *
BG 0000 * 14-------* *-------14 *
BG 0000 * 15---------* *---------15 *
BG 0000 * 16-----------* *-----------16 *
BG 0000 * 17-------------* *-------------17 *
BG 0000 * 18---------------* *---------------18 *
BG 0000 * 19-----------------* *-----------------19 *
BG 0000 * 20-------------------* *-------------------20 *
BG 0000 * 21---------------------*----------------------21 *
BG 0000 EOJ EXAMPLE
DATE 06/20/2000, CLOCK 17/28/24, DURATION 00/00/00
BG 0000 >>> NEXT PWRSASEX WILL SUBMIT DATA TO THE LIST QUEUE <<<
BG 0000 >>> THE VSE/POWER LIST QUEUE MUST NOW CONTAIN 3 RBS-LIKE SEGMENTS ... <<
BG 0000 >>> ... NAMED ’EXAMPSEG’ AND A SINGLE ENTRY NAMED ’EXAMPLE’ <<<
BG 0000 >>> *** SUCCESSFUL TERMINATION OF PWRSASEX *** <<<
BG 0000 EOJ PWRSARUN

DATE 06/20/2000, CLOCK 17/28/38, DURATION 00/00/15
BG 0001 1Q34I BG WAITING FOR WORK
D LST,*EXAMP
AR 0015 1C39I COMMAND PASSED TO VSE/POWER
F1 0001 1R46I LIST QUEUE P D C S PAGES CC FORM
F1 0001 1R46I EXAMPLE 00179 3 K S 1 1 TO=(SASUSER1)

FROM=(SASUSER1)
F1 0001 1R46I EXAMPSEG 00182 9 L Z 1 1 AABB S=001 FROM=(SASUSER1)
F1 0001 1R46I EXAMPSEG 00182 9 L Z 1 1 AABB S=002 FROM=(SASUSER1)
F1 0001 1R46I EXAMPSEG 00182 9 L Z 1 1 AABB S=003 FROM=(SASUSER1)

This printlog can help you synchronize the intended source code actions of
PWRSASEX with the actual execution steps logged on the console. PWRSASEX
executes in BG (class A) and
v Writes ">>>" progress messages to the console from BG
v Submits job EXAMPLE, which executes in F4, producing Job Control comment

lines on the console.
v Produces a list queue display on the console
v Retrieves data of this list queue entry for display by the BG partition.
v Submits list queue output segments, which are finally verified by a PDISPLAY

LST,*EXAMP command entered by the operator.

Programming Example

Chapter 13. Spool-Access Support Programming Example 295

Programming Example

296 VSE/POWER V9R2 Application Programming

Chapter 14. Return and Feedback Codes and Their Meanings

The following figure lists
v the mnemonics of the feedback code (containing the respective return code in

position 4 + 5)
v the hexadecimal values of the return code
v the hexadecimal values of the feedback code
v and the meaning of the feedback code.

The following abbreviation is used for groups of allowed characters:
alpham = A-Z 0-9 $ @ #
alpham* = A-Z 0-9 $ @ # *
alphaj = A-Z 0-9 $ @ # . / -
alphaj* = A-Z 0-9 $ @ # . / - *
alphajb = A-Z 0-9 $ @ # . / - blank
alphap = A-Z $ @ #

Table 80. Return and Feedback Codes and Their Meanings

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP00OK 00 00 OK

PXP00EOD 00 01 End of Data, end of messages, or no messages at all -
The buffer passed to the application program contains the
last data or message record.

PXP00NJB 00 02 EOD received but not on job boundary -
End of Data was indicated in the action byte PXUACT1 for
a PUT Job Service, but the job does not end with a /& or an
* $$ EOJ statement.

PXP00NRS 00 03 No records spooled -
One of the following actions is indicated in action byte
PXUACT1 for a PUT Job/Output Service, but no records are
spooled since last Open request:

- End of Data
- Quit request
- Checkpoint request
- Segment request

© Copyright IBM Corp. 1987, 2014 297

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP00RTR 00 04 Record truncated -
The record length of a record passed to VSE/POWER is
greater than the maximum allowed record length specified
in SPLDLREC.
VSE/POWER passes the offset from the beginning of user
program’s send buffer to the truncated record back in field
PXPROFF of the user data.
If more than one record was truncated, the offset is always
for the last truncated record.

PXP00ZBF 00 05 Zero data buffer received -
The buffer received by VSE/POWER does not contain any data
record. It is empty.

PXP00CIA 00 06 Checkpoint record number changed -
PUT Output Service: A Restart request is indicated in the
user data for an already checkpointed output entry.
Restart means that spooling continues at the specified
record number. If this record number is less than the
checkpoint record number, VSE/POWER uses the restart
record number as new checkpoint number.

PXP00NCM 00 07 PUT-OPEN service:
Job completion message retrieval support not available.
The message queue size has been defined with SET JCMQ=0 during
VSE/POWER startup.

PXP00LCM 00 08 PUT-OPEN service:
The capacity of the message queue identified by your userid
and applid is nearly exhausted. Space for 2 - 5 messages
is left in the queue.

PXP00OCM 00 09 PUT-OPEN service:
The capacity of the message queue identified with your tag is
reached. Space for at most 1 message is left in the queue.

Return and Feedback Codes

298 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP04NOF 04 01 Job/Output queue entry not found -
The job or output queue entry specified in the GET/CTL Open SPL
was not found in the queue, or you are not entitled to access
the queue entry because of non-matching user ID or even
node ID. Refer also to
“Scope of GET/CTL Access to Queue Entries” on page 61.
If you issued a ’Direct’ CTL request, refer to additional
feedback-2 codes in Table 23 on page 73.
If you issued a ’Direct’ GET request, refer to additional
feedback-2 codes in Table 30 on page 100.
Or you issued a ’delete checkpoint information’ request
and the queue entry number which identifies the job does
not match the characteristics specified in the SPL.
See also Table 21 on page 70.

PXP04JOP 04 02 Job/Output queue entry protected -
The password specified in the Open SPL does not match the
password of the job/output for which the Open was done.

PXP04BSY 04 03 Job/Output queue entry marked active -
The job or output queue entry specified in the SPL for a

- GET Open for update request or

+ PUT Open restart request or
+ ’Direct’ CTL Open (PALTER/PDELETE/PHOLD/PRELEASE) request
+ CTL Open for Delete Checkpoint request is currently

processed by VSE/POWER.

- GET Open for browse is currently processed by non-browse mode
requests, or the maximum number of 255 (non-shared) or 15
(shared, per Sysid)parallel ’browses’ has already been reached.

Therefore, the entry is not accessible.

PXP04NDS 04 04 Job/Output queue entry not in dispatchable state -
The job or output queue entry specified in the SPL for a
GET Open request does not have disposition K or D or the job
specified in the SPL for a GET Open request has time event
scheduling operands.
Consider using GET-Open for browsing instead.

PXP04IDP 04 05 Output queue entry not in appendable state -
The output queue entry specified in the SPL for a PUT Open
Append request has not disposition A.

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 299

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP04RER 04 06 Restart error, record, line or page number out of range -
The specified restart record/line/page number is greater
than the number of records/lines/pages spooled by VSE/POWER.

PXP04CER 04 07 Checkpoint error, checkpoint number out of range -
The specified checkpoint number is greater than the number
of the record VSE/POWER has passed as last record during
processing of a GET Data request.

PXP04SOD 04 08 Short on spool file space -
VSE/POWER wants to write the data records received with PUT
Data requests to the spool file but the spool file is full.

PXP04SOA 04 09 Short on account file space -
VSE/POWER wants to write a spool account record for a spool
(PUT Service) or retrieve (GET Service) operation when it
is finished, but the account file is full.

PXP04BER 04 0A Request prohibited in BROWSE mode -
The following requests are not allowed for a queue entry
which was accessed by a GET Open BROWSE request:

- Close request
- Purge request
- Flush Hold request
- Printing/Punch Failed request
- Checkpoint request
- Modify OPTB request if the caller is not CICS.

PXP04DNF 04 0B Nothing found in specified queue(s) -
A PDISPLAY queue command was passed with CTL Service toVSE/POWER
, but no queue entry was eligible for display.
If you issued a ’Direct’ PDISPLAY CTL request, refer to additional
feedback-2 codes Table 23 on page 73.

PXP04TQN 04 0C Temporary queue entry not found -
For a PDISPLAY queue command passed with the CTL Service
to VSE/POWER, VSE/POWER builds a temporary LST queue entry
containing the result of the display command. If this
queue entry is not found 04/0C is passed back. This should
never occur.

Return and Feedback Codes

300 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP04NMU 04 0D No matching user id specified -
The userid specified in the SPL for a PUT Open Restart or
PUT Open Append request does not match the user id of the
specified queue entry, or the output was created on
another node.

PXP04WDP 04 0E Invalid disposition -
PUT Open Restart is not allowed for a queue entry with a
disposition of A.

PXP04JSR 04 0F Job suffix number mandatory -
A PUT Open Restart request without a suffix number
specified was passed to VSE/POWER, but the output queue
entry consists of multiple segments.

PXP04NOQ 04 10 No order/signal queued -
VSE/POWER received a ’return order’ request from a DDS but
there is currently no order or signal queued.

PXP04ONF 04 11 OPTB(s) not found -
VSE/POWER received a Get-OPTB request during PUT or GET
Service, but the specified OPTB(s) is not found or the queue
entry does not have OTPBs.

PXP04NJC 04 12 GCM-OPEN service:
No job completion message retrieval has been generated.
The message queue size has been specified with SET JCMQ=0
in the VSE/POWER autostart procedure.

PXP04CKN 04 13 No extended checkpoint information exists.
A request ’retrieve extended checkpoint information’ is
issued, but no checkpoint with extended information
has been recorded (or already been deleted).

PXP04CKE 04 14 Extended checkpoint information exists, but can not
be read. A request ’retrieve extended checkpoint
information’ is issued, but no extended information is
available due to an I/O error.

PXP04NCK 04 15 No checkpoint information exists.
A request ’delete checkpoint information’ is issued, but
no checkpoint has been recorded (neither with or without
extended checkpoint information) or already been deleted.

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 301

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP04NMF 04 16 GCM-OPEN service:
No job completion message was found.
You addressed a message queue by your applid and userid
in which VSE/POWER could not find the messages you
want to retrieve.

PXP04SAC 04 17 Job/output Spool Access Protection violation.
VSE/POWER has been started with Spool Access Protection active.
An XPCC SAS GET or SAS PUT-OUTPUT-APPEND/RESTART program
attempted to access a spool entry, but the program’s security
logon user ID (either from the IBM Component terminal logon
or the partition // ID or * $$ JOB SEC= statement)
does not match the spool entry’s authorized access user ID(s)
(either the spool entry’s origin or target user ID). The
authorized access user IDs can be displayed with the PDISPLAY
command (displayed as FROM= or TO=).

PXP04NAT 04 18 GET Restart to Active Record:
Queue entry not active or is active on another shared system.

PXP04ANS 04 19 GET Restart to Active Record:
Queue entry active by task which is not suitable for
restart to active record.

PXP04RIS 04 1A GET Restart to Active Record:
’Restart to active record’ specified inconsistently
together with positioning to line, page, or end of queue entry.

PXP04NRU 04 1B GET Restart to Active Record:
’Restart to active record’ request is rejected because
requestor is not in browse mode.

PXP08SPL 08 01 Invalid SPL -
VSE/POWER received an invalid SPL:

- The SPL has no descriptor ’SPL’ in the first three
bytes.

- There exits a length inconsistency concerning OPTBs:
the offset specified in SPLEOPOF plus the length of
OPTBs is greater than the SPL received, or the offset
in field SPLEOPOF is wrong.

PXP08REQ 08 02 Unknown request type in SPL -
The request indicated in request byte SPLGRQB is not PUT,
GET, CTL, or GCM.

Return and Feedback Codes

302 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08SRQ 08 03 Unknown subrequest type in SPL -
The subrequest indicated in subrequest byte SPLGSRB is
not valid. Valid subrequests are:

- DISPLAY job/output
- CANCEL job/output
- RELEASE job/output
- HOLD job/output
- DELETE job/output
- ALTER job/output
- VSE/POWER command passed
- Delete checkpoint information

PXP08FB2 08 04 Unknown function byte 2 in SPL -
For an ALTER job/output subrequest indicated in SPLGSRB
the function specified in SPLGFB2 is invalid. Valid
functions are:

- ALTER class
- ALTER disposition
- ALTER number of copies
- ALTER compaction table name
- ALTER remote id
- ALTER priority
- ALTER system id
- ALTER destination node name
- ALTER destination user id

PXP08JNM 08 05 Job name invalid or missing -
The job name must be alphaj and not longer than eight
characters.

PXP08QID 08 06 Queue identifier invalid or missing -
The queue id passed in the SPL is not LST, PUN, RDR or XMT
or the queue id is not allowed for the specified service.

PXP08CLS 08 07 Class specification invalid or missing -
The specified class is invalid (not A-Z or 0-9).

PXP08PWD 08 08 Password invalid -
The password must be alphaj and not longer than eight
characters.

PXP08UID 08 09 User id invalid or missing -
The user id is mandatory. It must be alphaj and not longer
than eight characters.

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 303

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08RFM 08 0A Record format invalid -
The record format indicated in SPLORCFM is invalid. Valid
record formats are:

- SCS Print
- BMS Mapping
- 3270 format
- CPDS format
- Escape mode
- ASA format
- Machine Control format

PXP08DSP 08 0B Disposition invalid -
The local disposition specified in SPLDDP is not D, K, L or H, or
the transmission disposition specified in SPLOTDP is not
D, K, L, or H.

PXP08PRY 08 0C Priority invalid -
The priority specified in SPLDPR is not in the range from
1-9.

PXP08SID 08 0D Sysid invalid -
The sysid specified in SPLDSID is neither in the range from
1-9 nor ’N’.

PXP08TNN 08 0E Destination node name invalid -
The first character must be alphap, the rest alpham and it
may not be longer than eight characters.

PXP08TUN 08 0F Destination user id invalid -
The user id must be alphaj* and not longer than eight
characters.

PXP08FNO 08 10 Forms id invalid -
The forms id must be alphaj and not longer than eight
characters.

PXP08FCB 08 11 FCB name invalid -
The first character must be alphap, the rest alpham and it
may not be longer than eight characters.

PXP08UCB 08 12 UCB name invalid -
The first character must be alphap, the rest alpham and it
may not be longer than eight characters.

Return and Feedback Codes

304 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08FLH 08 14 Flash id invalid -
The flash id must be alphaj and not longer than four
characters.

PXP08CPT 08 15 Compaction table name invalid -
The first character must be alphap, the rest alpham and it
may not be longer than four characters.

PXP08CGP 08 16 Copy group parameter invalid -
The copy group must be numeric and the sum of the
individual copy groups may not exceed 255. A maximum of
eight bytes is allowed.

PXP08CHR 08 17 Character arrangement table invalid -
The character arrangement table must be alphaj and not
longer than four characters.

PXP08MOD 08 18 Copy modification name invalid -
The copy modification name must be alphaj and not longer
than four characters.

PXP08CCR 08 19 Character arrangement table for copy modification invalid -
The table must be alphaj and not longer than four
characters.

PXP08BTS 08 1A Reply buffer too small -
The reply buffer your program provides is too small to hold

- the requested OPTBs
- the requested order or signal
- an SPL
- a data record plus prefix
- a message plus prefix
- the extended checkpoint

VSE/POWER returns the required buffer length in field PXPRBLN
of the user data.

PXP08IAO 08 1B Append/Restart specification invalid -
Append or Restart is specified in function byte SPLGFB1, but
Append or Restart is not allowed for RDR queue entries.

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 305

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08IAB 08 1C Action byte invalid -
PUT Service: A null buffer was sent to VSE/POWER but the
action indicated in PXUACT1 is invalid. Valid actions are:

- End of Data
- Segment request
- EOD for appendable output
- Checkpoint request
- Quit request

Get Service: The action indicated in PXUACT1 is invalid.
Valid actions are:

- Quit request
- Printing/punching failed
- Close request
- Purge request
- Send data request
- Flush hold request

For a spool-access support service an action was indicated
in PXUACT1 which is only valid for External Device Support.

PXP08ICR 08 1D Control record received invalid -
PUT Service: A control record is indicated in the user data,
but the length of the control record is invalid.

GET Service: A control record is indicated in the user data,
but the type of the control record is invalid.
Valid control records are:

- Restart control record
- Checkpoint control record
- Get-OPTB control record
- Modify-OPTB control record

CTL Service: On request of a PDISPLAY command a temporary
queue entry is built and passed to the user program.
During passing the result of the command to the user
program only a restart control record is allowed.

There is a length mismatch between the length specified
in the prefix and the actual length of the control record
passed.

PXP08PRG 08 1E Programmer name invalid -
The programmer name must be alphajb and not longer than
twenty characters.

PXP08ROO 08 1F Room number invalid -
The room number must be alphajb and not longer than eight
characters.

Return and Feedback Codes

306 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08DPT 08 20 Department number invalid -
The department number must be alphajb and not longer than
eight characters.

PXP08BLD 08 21 Building number invalid -
The building number must be alphajb and not longer than
eight bytes.

PXP08CON 08 22 Conflicting specifications
For unique determination of the reason,
see the additional feedback-2 code PXPFBKC2, described in
“Spool-Access Support Parameter List (PWRSPL DSECT)” on page 231.

PXP08ROL 08 23 Received record too large -
The data record received has a record length greater than
32K-8.
VSE/POWER passes the offset from the beginning of user
program’s send buffer to the invalid record back in field
PXPROFF of the user data.

PXP08IBT 08 24 Buffer type invalid -
PUT Service: An update SPL was received for a PUT Service

Job.

Specified buffer type is invalid.
Valid buffer types are:

- SPL
- normal data buffer
- control record

CTL Service: The buffer received is no control record.

PXP08ROS 08 25 Request out of sequence
For unique determination of the reason,
see the additional feedback-2 code PXPFBKC2, described in
“Spool-Access Support Parameter List (PWRSPL DSECT)” on page 231.

PXP08SOS 08 26 SPL out of sequence -
GET Service: VSE/POWER receives an SPL while processing a GET
Service.

PUT Service: VSE/POWER receives an SPL during normal PUT
processing or VSE/POWER receives an update SPL with checkpoint
or quit indication in PXUACT1.

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 307

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08BOS 08 27 There is currently no service in process, but VSE/POWER
received a normal data buffer or a control record. Expected
is a SPL.

PXP08RPH 08 28 Request prohibited -
PUT Service: Segment, Checkpoint or Append is indicated in
PXUACT1, but spooling is done to the RDR queue.

GET Service: Flush hold is indicated in PXUACT1 but Flush
hold is only allowed for External Device Support.

PXP08ISS 08 29 Signal specified invalid or out of sequence -
VSE/POWER received an invalid signal.
Valid signals are:

- device stopped signal
- setup-processed signal

VSE/POWER received a setup-processed signal, but no SETUP
order was sent to the DDS.
VSE/POWER received a device stopped signal, but no STOP
device order was sent to the DDS.

PXP08RPW 08 2A Record prefix invalid -
VSE/POWER received a buffer with a length which is less
than the length of a record prefix plus 1 data byte.

The remaining length of the buffer where VSE/POWER deblocks
the data records from, is less than the length of the record
prefix plus 1 data byte.

For spooling data to RDR or PUN queue, normal data record
must be specified in the record prefix.

For spooling data to the LST queue normal data record or
CPDS record must be specified in the record prefix.

Record format APA was specified in SPLORCFM, but in the
record prefix CPDS data record is not specified.
VSE/POWER passes the offset from the beginning of user
program’s send buffer to the invalid record back in field
PXPROFF of the user data.

Return and Feedback Codes

308 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08FB1 08 2B Unknown function byte 1 -
PUT Service: The specified function in SPLGFB1 is invalid
for PUT Service.
Valid functions are:

- Append of incomplete queue entry
- Restart of queue entry

GET Service: The specified function in SPLGFB1 is invalid
for GET Service.
Valid functions are:

- Browsing of queue entry
- Generic get request

PXP08IML 08 2C Maximum record length invalid -
The maximum record length specified in SPLDLREC is for PUT
Job 128 bytes and for PUT Output 32K-8.

PXP08IEX 08 2D Subsystem name invalid -
The subsystem name must be alphaj* and not longer than
eight characters.

PXP08SPA 08 2E Spanned record received -
The record length specified in the prefix indicates that
the data goes beyond the buffer end. VSE/POWER passes the
offset from the beginning of user program’s send buffer to
the invalid record back in field PXPROFF of the user data.

PXP08ICC 08 2F Carriage control character invalid -
The record prefix contains a carriage control character of
X’FF’, X’FD’ or X’FE’. This is invalid. VSE/POWER passes the
offset from the beginning of user program’s send buffer to
the invalid record back in field PXPROFF of the user data.

PXP08IOR 08 30 Inbound order invalid -
The order request byte contains an invalid order.
Valid orders are:

- Send message order
- Set logical destination order
- Put account record order

PXP08JNO 08 31 Invalid job number-
The job number is X’00’ or, within a CTL service, the job
suffix number is not 0 but the job number is 0.

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 309

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08JSF 08 32 Job suffix invalid -
The suffix specified in SPLGJS is greater
than 127.

PXP08IUI 08 33 User information invalid -
The user information must be alhpaj and not longer than 16
bytes.

PXP08IPD 08 34 Service invalid for a DDS -
The following services are not allowed for a DDS:

- PUT Service
- GET Service to the RDR/XMT queue

PXP08UXR 08 35 Response received is invalid -
The message length of the order response is larger than the
buffer received by VSE/POWER.

The buffer received contains only the order response record
header.

PXP08WOS 08 36 ’Wait for order’ request out of sequence -
Currently not used!

PXP08NSP 08 37 Separator pages/cards invalid -
The number of separator pages/cards must be in the range
from 1-9.

PXP08IRR 08 38 Control request invalid -
PUT Service: An unexpected or unknown control record type
has been found, or one of the following control requests
is not allowed for the RDR queue:

- Restart control record
- Get-OPTB control record
- Modify-OPTB control record

GET Service: The following requests are not allowed for the
RDR queue:

- Get-OPTB control record
- Modify-OPTB control record

PXP08IOP 08 39 OPTB invalid -
The format or contents of an OPTB is invalid.

Return and Feedback Codes

310 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08OLM 08 3A OPTB length mismatch -
Modify-OPTB: there is a length mismatch between the current
OPTB in the DSHR and the modification.

PXP08DOP 08 3B Duplicate OPTBs -
VSE/POWER received an SPL for PUT Output service, but there
are duplicate OPTBs specified.

PXP08OTL 08 3C Specified OPTBs too long -
The OPTBs specified in the SPL exceed the maximum length of
32760 for a total DSHR.

PXP08IDH 08 3D Invalid DSHR found -
Get-OPTB, Modify-OPTB:
While reading an OPTB in the DSHR the following
inconsistencies are found:

- the count of the number of data elements supplied for
the keyword parameter is greater than 16,383.

- the length of one data element is greater than 16,383.

- the length of all data elements supplied for the
keyword parameter is greater than the OPTB section
of DSHR.

PXP08DIS 08 3E Distribution code invalid -
The distribution code must be alphaj.

PXP08INK 08 3F Invalid keyword OPTB -
The syntax of the keyword OPTB is wrong.
Thus, VSE/POWER could not find the keyword delimiter ’=’,
or the keyword OPTB starts with ’=’.
VSE/POWER returns the offset from the beginning of the
user programs’ send buffer to the invalid OPTB in
field PXPROFF of the user data.

PXP08NDK 08 40 No define statement present -
There was no DEFINE statement specified for the passed
keyword OPTB during autostart of VSE/POWER.
VSE/POWER returns the offset from the beginning of the
user programs’ send buffer to the invalid OPTB in
field PXPROFF of the user data.

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 311

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08IDV 08 41 Invalid keyword OPTB value -
The keyword OPTB value passed does not meet the definitions
of the respective DEFINE statement or has a wrong syntax.
VSE/POWER returns the offset from the beginning of the
user programs’ send buffer to the invalid OPTB in
field PXPROFF of the user data.

PXP08CKZ 08 42 Length of extended checkpoint information is zero.-
A checkpoint record has been received indicating
that extended information exists, but
this extended information has a length of zero.

PXP08CKL 08 43 Length of extended checkpoint information is larger than
the currently used DBLK size minus 288.-
A checkpoint record has been received indicating
that extended information exists, but
this extended information has an invalid length.

PXP08IQN 08 44 Internal queue-entry number invalid-
The number is either zero or too large for the current
- ’Delete checkpoint information’ request or
- ’Direct’ PDISPLAY CTL request or
- ’Direct’ PALTER/PDELETE/PHOLD/PRELEASE CTL request or
- ’Direct’ GET-Service request.

PXP08GJN 08 45 Generic jobname can not be used-...
A ’delete checkpoint information’, or a ’Direct’ PALTER/PDELETE/
PHOLD/PRELEASE CTL request, or a ’Direct’ PDISPLAY CTL request has
been issued, which can only address a single, unique queue entry.

PXP08SEU 08 46 VSE security userid is invalid-
A security password was specified, but the security userid
was omitted.

PXP08SEP 08 47 VSE security password is invalid-
Either a security password was specified, but the length exceeds
the maximum allowed
by VSE,
or an authorized program has not specified both security userid
and password when the VSE Access Control was not active,
or a security userid was specified and
the password was required but omitted.
Blank padding to the right determines the password length.

Return and Feedback Codes

312 VSE/POWER V9R2 Application Programming

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP08IPM 08 48 Incorrect processing mode for PUT OPEN OUTPUT -
The SPLXPMDE field does either not contain 8 blank characters
(default), or does not contain up to 8 alphaj characters,
leftbound and padded with blanks to the right.
For suitable processing mode values, refer to the PRMODE=operand
of the VSE/POWER * $$ LST/PUN statement in
VSE/POWER Administration and Operation.

PXP08IEM 08 49 PUT service: invalid expiration value specified in the
SPLXEXPD field, or in the SPLXEXPH field of SPL, or in both
(SPLXEXPD must be a number between 0 and 999, and SPLXEXPH
must be a number between 1 and 24).

PXP08SDU 08 4A GET service: Modify-OPTB request is rejected because the
spooled master and duplicate queue entries must not be changed.

PXP08RDU 08 4B PUT-output service: PUT-OPEN-RESTART request is rejected
because the spooled master and duplicate queue entries must not be
changed.

PXP08XUA 08 4C GCM-XEM service: GCM-XEM-START request is rejected because
service is unavailable or cannot be started for application.
For unambiguous identification of the reason, see the additional
feedback-2 code PXPFBKC2, described in
“Spool-Access Support Parameter List (PWRSPL DSECT)” on page 231.

PXP0CINS 0C 01 User program used SEND instead of SENDR.

PXP0CIXF 0C 02 User program used CLEAR.

PXP0CBTL 0C 03 Buffer too large -
The buffer received by VSE/POWER is greater than 64KB.

PXP0CPER 0C 04 Protocol error -
VSE/POWER received a buffer and assumes an order response
control record, but the buffer contains at least the header
of an order or it is neither an order response nor another
order type.

PXP0CPVD 0C 05

06

Protocol violated by a DDS -
Currently not used!

Currently not used!

PXP0CIOE 0C 07 I/O error occurred on queue/data/account file -

Return and Feedback Codes

Chapter 14. Return and Feedback Codes and Their Meanings 313

Table 80. Return and Feedback Codes and Their Meanings (continued)

Mnemonic
PXPFBKCD

Return
Code

Fdbk
Code Meaning

PXP0CSNF 0C 08 VSE/POWER section not found in job (JHR) or data set header
record (DSHR) - may be due to data corruption.

PXP0CCOR 0C 09 Job or data set header record (DSHR) is corrupted (some length
field is either zero or greater than X’7FFF’)

PXP10CAA 10 03 Connection already active -
ICCF or DSNX tried to establish a second notify path.

CICS notify user already connected.
GCM: A wait request is already connected.

PXP10PSP 10 05 PSTOP given by operator or due to exit failure or stop by exit

PXP10SIE 10 06 Severe internal error

PXP10MST 10 07 The number of Spool Access Support (SAS) GET/PUT/CTL/GCM tasks has
reached the VSE/POWER limit of concurrent tasks as
reported on console by message 1Q3JA. Therefore the CONNECT
attempt to SYSPWR had to be rejected by an XPCC DISCPRG request.
The default limit of 250 tasks may be modified by the
’PVARY MAXSAS,nnnn’ command.

Return and Feedback Codes

314 VSE/POWER V9R2 Application Programming

Part 3. Exit Routines

© Copyright IBM Corp. 1987, 2014 315

316 VSE/POWER V9R2 Application Programming

Chapter 15. Writing Various Exit Routines

VSE/POWER supports user-written routine types for the customized handling of
local input (JOBEXIT), input from the network (NETEXIT), output to the network
(XMTEXIT), and for output (OUTEXIT).

All user routines are loaded with the POWER generation macro or the PLOAD
command and disabled or enabled with the PVARY command. To display status
information about the exit routine, use the PDISPLAY EXIT command. For details
on the POWER generation macro and the PLOAD, PVARY, and PDISPLAY
commands, see VSE/POWER Administration and Operation, SC34-2625. For a
discussion of the routines for network input/output, see VSE/POWER Networking,
SC34-2603.

Intercommunication Between Exit Routines
When exits gain control, the TCB field TCQV (use mapping macro IPW$DTC)
points to the queue record (use macro IPW$DQR) of the queue entry being
processed. The one-byte field QRUEX of the queue record has been provided by
VSE/POWER for exit purposes only. VSE/POWER neither checks nor processes
field QRUEX. Exits may use it, for example, as follows:

The NETEXIT can set one or more flags in QRUEX while receiving a job. When the
job starts to execute in a z/VSE partition, all of its created output queue entries
will inherit the contents of QRUEX. An XMTEXIT or OUTEXIT can then check
QRUEX of the created output entries and take appropriate action. This is an easy
way to pass information from an input exit routine like JOBEXIT/NETEXIT to
output exit routines like OUTEXIT/XMTEXIT. The contents of QRUEX are lost
when the queue entry is transmitted to another node.

Handling of Exit Failures
When a failure has been detected in an exit routine, recovery will be performed if
the following conditions are fulfilled:
v The exit gets control in the normal way, that is, the exit is called properly by the

VSE/POWER task in the exit calling module. This will set the task in 'exit-state'
when the exit is called.

v The contents of registers 10 and 11 are not destroyed by the exit, which means
that R11 must address the task control block of the task which uses the exit, and
R10 must address the Common Address Table.

When VSE/POWER performs recovery from such a failure, message 1Q2CI is
issued reflecting the exit failure and then message 1Q2KI to indicate continuation
of VSE/POWER processing. VSE/POWER produces an IDUMP for better locating
the error. If IDUMP processing fails, VSE/POWER does not ask for a device to
print the dump. Tasks which are currently using the exit are stopped immediately.
Tasks which may use the failing exit, but are currently not processing a queue
entry, are not stopped immediately, but at the time they start processing and are
going to call the exit. The exit remains enabled, but is marked with the indicator
'failed'. VSE/POWER issues message 1Q2HI which informs the operator that the
exit has been put into 'FAILED STATE'. Other task types which do not use the
faulty exit continue processing.

© Copyright IBM Corp. 1987, 2014 317

The report issued in response to a PDISPLAY EXIT command reflects the exit with
state 'failed'.

Recovery will not be performed if the task is not in exit-state when the failure
occurs.

However, if the failing exit destroyed data vital for further VSE/POWER
processing and recovery has been done, unpredictable results may occur. For
example, VSE/POWER may terminate abnormally after a while although failure
recovery has been performed previously. No checkpointing of VSE/POWER
control blocks takes place.

Whenever an exit is in 'FAILED STATE', a newly started task is stopped at the time
the task gives control to the exit. Sometimes, especially if a JOBEXIT failed, it must
be possible to start a task which should not be stopped. This can be achieved by
one of the following actions:
v Put the user exit into 'DISABLED STATE' by using the PVARY command with

the DISAB operand.
v Load a new user exit by using the PLOAD command.

Recovery Feasible
Recovery takes place in several steps. VSE/POWER
1. Issues message 1Q2CI indicating the failing exit,
2. Issues message 1Q2KI which signals that recovery is performed,
3. Takes an IDUMP for locating the error,
4. Marks the failing exit as 'FAILED',
5. Issues message 1Q2HI,
6. Forces all tasks which are currently using the exit to stop immediately,
7. Returns to the location from where the exit was called,
8. Issues appropriate messages for each task which is stopped (for example,

1Q33I, 1QX3I, 1QY4I, 1RA8I),
9. Allows other tasks to continue processing.

Resulting Final Task Processing

If recovery is performed, all tasks which use the exit are stopped. Depending on
the task which actually terminates, an additional message is issued reflecting the
task type and exit failure condition:

1Q33I Local reader or writer task is stopped (equivalent to PSTOP command).

1QX3I Cross-partition task which spooled a job to the reader queue is stopped
(equivalent to PSTOP command).

1QY4I Device service task (using the spool-access support) is stopped (equivalent
to PSTOP DEV command).

1RA8I Network receiver or transmitter task is drained. Behavior is equivalent to

PDRAIN PNET,nodeid,RV*|TR*,JOB and
PDRAIN PNET,nodeid,RV*|TR*,OUT, respectively.

Since all tasks which use the faulty exit are stopped, such a message may occur
repeatedly.

Writing Exit Routines

318 VSE/POWER V9R2 Application Programming

Note:

1. If a local reader task is stopped, part of the input job remains in the reader.
Running under VM, the size of this remaining part varies depending on the
buffersize used by VM. For small jobs, the size is usually zero. For large jobs,
the size is usually not zero. The first statement remaining in the reader is
usually not that statement which follows immediately the last statement
processed by VSE/POWER.
To remove the remaining part, you can issue the VM command CLOSE cuu,
where 'cuu' is the device address of your reader.

2. No messages appear if a reader or writer task for a remote work station (using
either BSC or SNA protocol) is stopped.

Handling of Data being Processed by Stopped Tasks

Depending on the type of exit, VSE/POWER handles incoming or outgoing data as
follows when recovery is performed due to a faulty exit:

JOBEXIT
The incoming VSE/POWER job is not added to the queue.

NETEXIT
Incoming data is not added to queue.

OUTEXIT
Outgoing data is queued again with its original disposition.

XMTEXIT
Outgoing data is queued again with its original disposition.

Recovery Not Feasible

When the failure occurred in an exit but recovery cannot be performed:
1. Message 1Q2CI or 1Q2DI, respectively, is issued, reflecting the failing exit, and
2. VSE/POWER termination takes place.

Exit Routine for Local Input (Type JOBEXIT)

Function
The routine gets control from VSE/POWER when a z/VSE JCL or a VSE/POWER
JECL statement is read, unless DISP=I was specified. The JCL or JECL statement
may be read from a local or remote reader or from a programmed interface for job
submission via the spool-access PUT request or the PUTSPOOL request.
VSE/POWER passes to the routine all statements of the types listed below,
including continuation lines, if there are any:

All statements beginning with //
All statements beginning with /.
All statements beginning with *
/*
/&

and has converted all VSE/POWER JECL statements and the z/VSE// JOB JCL
statements to upper case characters.

The routine may change or delete any z/VSE job control or JECL statement; it may
insert other statements.

Writing Exit Routines

Chapter 15. Writing Various Exit Routines 319

If the exit routine inserts a statement, VSE/POWER handles it and then presents to
the routine once more the original statement. When the exit routine has made all
the insertions it must indicate if it wants to delete or to process the original
statement.

Note: If the routine inserts statements after it has passed the * $$ EOJ statement,
VSE/POWER runs out of processor storage during end-of-job processing, and the
operator gets a wait message. This should be avoided.

The User Routine Work Area
The routine must be re-enterable if several VSE/POWER reader tasks are running
at the same time. A reader task in this context is:
v A task started by a PSTART RDR,... command
v A task servicing a job-input spool request from another partition
v An RJE reader task started when a terminal sends job data to VSE/POWER

To help you to make this input routine reentrant, VSE/POWER passes a work area
to the routine. This work area can be used by the routine to hold variables and
information needed with the queue entry or to hold records to be inserted. You
define the size of the work area in the POWER macro or with the PLOAD
command (maximum 65,535 bytes, default zero) along with the phase name of
your exit routine under the parameter JOBEXIT (no longer RDREXIT).

The work area is obtained from the partition GETVIS area and is initialized with
X'00'. The first four bytes of the work area contain its length. This information is
refreshed every time the user routine gets control. It exists as long as the reader
task exists and is not initialized with every new job as for NETEXIT, XMTEXIT,
and OUTEXIT type routines.

Restrictions
The routine may not perform an operation that causes a wait condition and may
not use any z/VSE macro that needs the logical transient area (LTA); the DUMP
macro may, for example, cause a deadlock condition.

Note: The exit routine must not use access-register mode and all executable code
must be located below the 16MB line. The exit routine is executed in 24-bit
addressing mode and must call VSE/POWER services and return to VSE/POWER
in 24-bit addressing mode.

When the exit routine loses control (for example, due to a page fault), the status of
the currently used addressing mode and the access registers are not saved. Thus,
when the exit routine gets control back again, the previously used access registers
can not be restored.

Because the exit routine must not use the access-register mode, the exit routine can
not use data spaces. VSE/POWER does not accept an exit routine which has
already been loaded into the SVA.

JOBEXIT Routine

320 VSE/POWER V9R2 Application Programming

Interface Description
Use of Registers

When the user routine gets control, this is the register content:
Register 0: contains the address of the statement read
Register 1: contains the length of the statement
Register 3: points to the generated work area, otherwise zero if none

Registers 10 to 12: reserved for VSE/POWER and may not be changed.

Register 11: points to the TCB of the reader task
and may be used to identify it.

Register 14: return address to VSE/POWER.
Register 15: entry point to user routine. When leaving the user

exit routine, to be used for its return code.

To return to VSE/POWER, issue a BR 14 instruction.

Return Codes

The user routine must return control to VSE/POWER with one of the following
return codes in register 15:

X'00' Process the statement passed to the routine. The user routine may update
fields within the statement but may not change its length or address.

X'04' Ignore this statement.

X'08' Insert and process the new statement; return the original statement to the
user routine once more. Any number of statements may be inserted.

The address of the statement that is to be inserted must be provided in
register 0, the statement's length in register 1. This length must be X'50'.

Note: Inserted VSE/POWER JECL and z/VSE // JOB JECL statements
will be translated to upper case before spooling.

X'0C' Terminate the z/VSE job — that means no further statements of the current
z/VSE job unit (starting with a // JOB, ending with the next /& or
// JOB statement) should be spooled for creating a VSE/POWER reader
queue entry. Also no more JCL statements (//, /., /*, /&) of the current
z/VSE job unit are passed to the jobexit. It is recommended to request
X'0C' only, when a // JOB statement has been passed to the jobexit,
otherwise already spooled statements of the z/VSE job unit may create a
job fragment, which VSE/POWER terminates with a /& statement.

X'10' Terminate and flush the VSE/POWER job — that means no further
statements of the current VSE/POWER job unit (starting with a * $$ JOB,
ending with the next * $$ EOJ or a * $$ JOB statement) should be spooled
for creating a VSE/POWER reader queue entry, and the whole
VSE/POWER job fragment should not be added to the reader queue at all.
Also no JCL statements (//, /., /*, /&) and potential JECL statements
(starting with *) of the current VSE/POWER job unit are passed to the
jobexit.

If, at the first statement of a VSE/POWER job, there exists a return code of X'0C' or
X'10', VSE/POWER issues a message and continues processing.

If the register 15 return code does not show one of the before mentioned settings,
VSE/POWER issues message 1R57I and terminates the VSE/POWER job, as if
return code X'10' was given.

JOBEXIT Routine

Chapter 15. Writing Various Exit Routines 321

If ACCOUNT support is available, the field RDRNUM in the reader account record
(see Table 9 on page 21) reflects records added or deleted by the user routine.

Tracing of Exit Failures
When debugging logic failures of your exit routine, it may be helpful to obtain a
snapshot dump of the VSE/POWER partition at a predefined processing point of
your routine. You should include the call of macro IPW$IDM into the exit routine
to have an Idump generated in flight. For details, refer to VSE/POWER
Administration and Operation, SC34-2625.

JOBEXIT Programming Example
The sample of the JOBEXIT routine shown here is delivered to you as an A-book in
PRD1.MACLIB under the name of JOBEXAMP.A. If you extend this example
further, you may need macros that are only available with the optional code
material.

The sample includes:
1. The set of statements that causes the source code of the JOBEXIT routine to be

assembled and cataloged;
2. The source code of the routine example itself.

Control Statements to Assemble and Catalog the Routine
* $$ JOB JNM=JOBEXRUN,CLASS=A,DISP=D
// JOB JOBEXRUN
// OPTION CATAL
// LIBDEF *,SEARCH=PRD1.MACLIB
// LIBDEF *,CATALOG=...
*
* PROVIDE FOR ... CATALOG SUBLIBRARY FOR JOBEXAMP
*
// EXEC ASSEMBLY,SIZE=100K

COPY JOBEXAMP
END

/*
// EXEC LNKEDT
/&
* $$ EOJ

Programming Example Source Code
TITLE ’ JOBEXAMP’ 00000100
PUNCH ’ PHASE JOBEXAMP,*’ 00000200
SPACE 00000300

*** 00000400
*** *** 00000500
*** J O B E X A M P *** 00000600
*** *** 00000700
*** VSE/POWER JOB EXIT: EXAMPLE PROGRAM DY45811 *** 00000800
*** *** 00000900
*** 00001000

SPACE 2 00001100
* THIS PROGRAM - NAMED JOBEXAMP - ACTS AS AN EXAMPLE FOR A 00001200
* USER WRITTEN JOB EXIT ROUTINE. 00001300

SPACE 2 00001400
* THIS EXAMPLE GIVES A SKELETON WHICH SHOWS HOW TO CHECK 00001500
* THE CONTENTS OF JCL AND JECL STATEMENTS. DEPENDING ON THE 00001600
* NEEDS OF THE CUSTOMERS AN ACTION TYPE MAY BE PROVIDED 00001700
* BY THE JOB EXIT TO POSITION 80 OF THE STATEMENT. 00001800
* THIS ACTION TYPE WILL BE INTERPRETED LATER ON AND THE 00001900
* APPROPRIATE RETURN CODE WILL BE 00002000
* SET IN REGISTER 15 TO BE PASSED TO VSE/POWER. 00002100

JOBEXIT Routine

322 VSE/POWER V9R2 Application Programming

SPACE 2 00002200
* CONTROL IS GIVEN TO THIS JOB EXIT VIA REGISTER 15 00002300
* BY THE LOGICAL READER (IPW$$LR). 00002400

SPACE 2 00002500
* THIS JOB EXIT IS ASSUMED TO BE LOADED WITH A WORK AREA 00002600
* OF 50 BYTES. 00002700

SPACE 2 00002800
* THE FOLLOWING ADDRESSABILITY IS ASSUMED AT ENTRY TO 00002900
* THE JOB EXIT: 00003000

SPACE 00003100
* R0 - ADDRESS OF STATEMENT PASSED BY VSE/POWER 00003200
* R1 - LENGTH OF STATEMENT PASSED BY VSE/POWER 00003300
* R3 - ADDRESS OF THE WORKAREA PASSED BY VSE/POWER 00003400
* RA - ADDRESS OF VSE/POWER COMMON ADDRESS TABLE (CAT) 00003500
* RB - ADDRESS OF TASK CONTROL BLOCK (TCB) 00003600
* RE - RETURN ADDRESS TO VSE/POWER 00003700
* RF - BASE REGISTER OF THIS ROUTINE 00003800

SPACE 2 00003900
* THIS JOB EXIT PHASE IS LOCATED WITHIN THE 00004000
* - PAGEABLE AREA OF THE VSE/POWER PARTITION WHEN LOADED 00004100
* AT VSE/POWER INITIALIZATION TIME, OR IN THE 00004200
* - GETVIS AREA OF THE VSE/POWER PARTITION WHEN LOADED 00004300
* AFTER INITIALIZATION BY THE ’PLOAD’ COMMAND. 00004400
* FOR DEBUGGING LOCATE THE JOB EXIT IN STORAGE 00004500
* BY ITS STORAGE DESCRIPTOR ’JOB-EXIT’ AND BY THE POINTER 00004600
* ’CARE’ OF THE COMMON ADDRESS TABLE OF 00004700
* VSE/POWER. 00004800

SPACE 2 00004900
* THE FOLLOWING PIECE OF CODE IS ONLY AN EXAMPLE. 00005000
* IT IS THE USER’S RESPONSIBILITY TO DEVELOP 00005100
* HIS OWN ROUTINE CONCERNING HIS PROBLEM DEFINITION. 00005200

EJECT 00005300
* REGISTER USAGE: 00005400
* R0 - ADDRESS OF STATEMENT IN CASE OF INSERT 00005500
* R1 - LENGTH OF STATEMENT IN CASE OF INSERT 00005600
* R2 - ADDRESS OF STATEMENT IN JOB EXIT 00005700
* R3 - ADDRESS OF WORK AREA PASSED BY VSE/POWER 00005800
* R4 - R7 - WORK REGISTER 00005900
* R8 - RETURN CODE SET BY JOB EXIT 00006000
* R9 - WORK REGISTER 00006100
* RA - RC USED BY VSE/POWER 00006200
* RE - RETURN ADDRESS TO VSE/POWER 00006300
* RF - EXIT BASE REGISTER AND RETURN CODE TO VSE/POWER 00006400

SPACE 2 00006500
JOBEXAMP CSECT 0 ESTABLISH MAIN CONTROL SECTION 00006600

USING *,RF BASE REG ESTABLISHED BY VSE/POWER 00006700
USING PADS,RA ADDRESSABILITY OF VSE/POWER CAT 00006800
USING TCDS,RB ADDRESSABILITY OF TCB 00006900
USING CDSECT,R2 ADDRESSABILITY OF STATEMENT 00007000
USING WDSECT,R3 ADDRESSABILITY FOR WORK AREA 00007100
B JEX000 SKIP STORAGE DESCRIPTOR 00007200
SPACE 00007300
DC CL12’JOB-EXIT’ DEFINE STORAGE DESCRIPTOR 00007400
SPACE 00007500

*** 00007600
* * 00007700
* THE FOLLOWING PIECE OF CODE IS USED TO CHECK THE * 00007800
* STATEMENT. FOR A * $$ JOB STATEMENT THE ACTION TYPE * 00007900
* WILL BE DETERMINED. * 00008000
* FOR ALL OTHER STATEMENTS CONTROL IS PASSED TO VSE/POWER * 00008100
* WITH NORMAL PROCESSING INDICATED IN REGISTER 15. * 00008200
* * 00008300
* FOR A JOB STATEMENT ACCEPTED BY THE JOB EXIT * 00008400
* A NEW STATEMENT WILL BE INSERTED AND THE JOB COUNTER * 00008500
* IN THE WORK AREA WILL BE INCREMENTED. * 00008600
* INSERTION OF THE STATEMENT IS INDICATED IN THE WORK * 00008700
* AREA TO AVOID LOOPING SINCE THE CURRENT * $$ JOB * 00008800

JOBEXIT Routine

Chapter 15. Writing Various Exit Routines 323

* STATEMENT IS PASSED AGAIN TO THIS JOB EXIT. * 00008900
* * 00009000
* FIRST THE EXAMPLE CHECKS,WHETHER THE REQUIRED WORKAREA * 00009100
* SIZE OF 50 BYTES HAS BEEN SPECIFIED FOR THIS EXIT. * 00009200
* IF NOT, WE DO NOT DARE TO USE THE PASSED WORKAREA, * 00009300
* INSTEAD THE CENTRAL OPERATOR WILL BE INFORMED BY A * 00009400
* WARNING MESSAGE. * 00009500
* * 00009600
*** 00009700

SPACE 00009800
JEX000 DS 0H 00009900

SPACE 2 00010000
* WHENEVER A WORK AREA IS USED, THE LENGTH OF THIS AREA MUST BE 00010100
* VERIFIED EACH TIME THE EXIT GAINS CONTROL, BECAUSE 00010200
* - THE EXIT MIGHT HAVE BEEN LOADED BY OPERATOR WITH A WRONG 00010300
* LENGTH OF ITS WORK AREA 00010400
* - A NEW VERSION OF THE EXIT MIGHT HAVE BEEN LOADED AND THE 00010500
* PREVIOUSLY DEFINED WORK AREA IS STILL USED UNTIL THE TASK 00010600
* ENDS. 00010700

SPACE 2 00010800
* SINCE A WORK AREA IS REQUIRED BY THIS ROUTINE, VERIFY IF ONE 00010900
* IS SPECIFIED. IF NOT, THE VSE/POWER JOB IS FLUSHED. 00011000

SPACE 1 00011100
LTR R3,R3 WORK AREA SPECIFIED ? 00011200
BZ JEX003 ..NO, WARN OPER. AND FLUSH JOB 00011300
SPACE 2 00011400

* THE WORK AREA EXISTS AND CAN NOW BE ADDRESSED. TEST IF 00011500
* THE WORK AREA IS LARGE ENOUGH. 00011600

SPACE 1 00011700
L R4,WDLENGTH GET SPECIFIED WORK AREA SIZE 00011800
LA R5,WDLEN GET REQU. SIZE OF WORK AREA 00011900
CR R4,R5 WORK AREA TOO SHORT ? 00012000
BNL JEX005 ..NO, CONTINUE EXIT 00012100
SPACE 1 00012200

JEX003 DS 0H 00012300
SPACE 1 00012400

* RESPECT THAT MACRO IPW$WTO DESTROYS REGISTER R0-R3 00012500
SPACE 1 00012600
LA R7,JEXMSG1 GET ADDRESS OF JEXMSG1 00012700
BAL R6,SUBWTO ISSUE TEXMSG1 00012800
SPACE 1 00012900
LA R7,JEXMSG2 GET ADDRESS OF JEXMSG2 00013000
BAL R6,SUBWTO ISSUE TEXMSG2 00013100
SPACE 1 00013200
LA R7,JEXMSG3 GET ADDRESS OF JEXMSG3 00013300
BAL R6,SUBWTO ISSUE TEXMSG3 00013400
SPACE 1 00013500
LA RF,X’10’ PROVIDE RETURN CODE TO FLUSH JOB 00013600
BR RE AND RETURN TO VSE/POWER 00013700
SPACE 2 00013800

JEX005 DS 0H 00013900
LR R2,R0 SET UP ADDRESS OF STATEMENT 00014000
CLC COMPARE,CUSTNEED * $$ JOB STATEMENT PASSED ? 00014100
BE JEX010 .. YES, CONTINUE 00014200
B JEX050 .. NO, CONTINUE 00014300
SPACE 00014400

JEX010 DS 0H 00014500
TM WDFLAG,WDFLINS INSERT OF STATEMENT DONE ? 00014600
BZ JEX020 ..NO, CONTINUE 00014700
L R4,WDCOUNT GET CURRENT JOB COUNTER 00014800
LA R4,1(R4) INCREMENT JOB COUNTER 00014900
ST R4,WDCOUNT SAVE NEW VALUE 00015000
NI WDFLAG,X’FF’-WDFLINS RESET INSERT DONE 00015100
B JEX060 CONTINUE 00015200
SPACE 00015300

JEX020 DS 0H 00015400
SPACE 00015500

JOBEXIT Routine

324 VSE/POWER V9R2 Application Programming

*** 00015600
* * 00015700
* INSERT CODE HERE WHICH DETERMINES THE ACTION FOR * 00015800
* THIS JECL STATEMENT AND WHICH SAVES THIS ACTION * 00015900
* IN THE ACTION BYTE OF THE WORK AREA. * 00016000
* * 00016100
*** 00016200

SPACE 4 00016300
*** 00016400
* * 00016500
* THE FOLLOWING PIECE OF CODE IS USED TO REACT UPON THE * 00016600
* ACTION AND TO GET THE RELATED RETURN CODE FOR * 00016700
* VSE/POWER. * 00016800
* FOR AN ACTION ’FLUSH VSE/POWER JOB’ THE APPROPRIATE * 00016900
* BIT IS SET IN THE FLAG BYTE OF THE WORK AREA. * 00017000
* THIS ACTION IS ONLY ACCEPTED BY VSE/POWER AFTER * 00017100
* PROCESSING OF THE * $$ JOB STATEMENT BY VSE/POWER. * 00017200
* SINCE THE JOB EXIT IS CURRENTLY PROCESSING THE * $$ JOB * 00017300
* STATEMENT FLUSH IS INDICATED WITH THE NEXT * 00017400
* STATEMENT. * 00017500
* * 00017600
*** 00017700

SPACE 00017800
JEX030 DS 0H 00017900

LA R8,4 ASSUME DELETE 00018000
TM WDACTION,WDACDEL DO WE WANT TO DELETE THIS 00018100

* STATEMENT ? 00018200
BO JEXDONE IF YES, RETURN TO VSE/POWER 00018300
SPACE 00018400
TM WDACTION,WDACINS DO WE WANT TO INSERT ? 00018500
BZ JEX040 ... BRANCH IF NOT 00018600
LA R8,8 GET PROPER RETURN CODE 00018700
LA R0,INSERT POINT TO CORRECT STATEMENT 00018800
LA R1,L’INSERT GET PROPER LENGTH 00018900
OI WDFLAG,WDFLINS INDICATE INSERT DONE 00019000
B JEXDONE RETURN TO VSE/POWER 00019100
SPACE 00019200

JEX040 DS 0H 00019300
OI WDFLAG,WDFLPOW ASSUME FLUSH OF VSE/POWER JOB 00019400
TM WDACTION,WDACFLH DO WE WANT TO FLUSH VSE/POWER JOB ? 00019500
BO JEX060 ..YES, CONTINUE 00019600
SPACE 00019700
NI WDFLAG,X’FF’-WDFLPOW RESET FLUSH INDICATION 00019800
SPACE 00019900
TM WDACTION,WDACCHG DO WE WANT TO CHANGE THIS 00020000

* STATEMENT ? 00020100
BZ JEX060 ..NO, CONTINUE 00020200

* MVC FIELD,NOTCHA MOVE IN CHANGE INFO 00020300
B JEX060 CONTINUE 00020400
SPACE 00020500

JEX050 DS 0H 00020600
TM WDFLAG,WDFLPOW FLUSH VSE/POWER JOB TO DO ? 00020700
BZ JEX060 ..NO, CONTINUE 00020800
LA R8,16 INDICATE FLUSH VSE/POWER JOB 00020900
NI WDFLAG,X’FF’-WDFLPOW RESET FLUSH VSE/POWER JOB 00021000
B JEXDONE 00021100
SPACE 00021200

JEX060 DS 0H 00021300
SR R8,R8 GET NORMAL RETURN CODE 00021400
SPACE 1 00021500

* 00021600
* R E T U R N T O V S E / P O W E R 00021700
* 00021800

SPACE 00021900
JEXDONE DS 0H 00022000

MVI WDACTION,X’00’ CLEAR ACTION BYTE 00022100
LR RF,R8 GET RETURN CODE 00022200

JOBEXIT Routine

Chapter 15. Writing Various Exit Routines 325

BR RE AND RETURN TO VSE/POWER LOG.RDR 00022300
EJECT 00022400

*** 00022500
* SUBROUTINE TO ISSUE MESSAGE ON OPERATOR CONSOLE * 00022600
* * 00022700
* USAGE OF VSE/POWER MACRO IPW$WTO: * 00022800
* THIS MACRO, TOGETHER WITH SOME INDICATIONS SET IN THE TCB, * 00022900
* CAN BE USED TO DISPLAY A MESSAGE ON THE CENTRAL OPERATOR * 00023000
* CONSOLE. * 00023100
* THE USAGE OF THIS MACRO DESTROYS THE REGISTER R0 - R3. * 00023200
* THE MESSAGE TO BE DISPLAYED SHOULD CONTAIN ALPHAMERIC * 00023300
* CHARACTERS ONLY. * 00023400
* * 00023500
*** 00023600

SPACE 2 00023700
SUBWTO DS 0H 00023800

STCM R7,7,TCMW+1 PASS MESSAGE ADDRESS 00023900
MVI TCMW,X’00’ CLEAR OPTION BYTE 00024000
OI TCMW,TCPCOP FORCE MESSAGE TO CONSOLE 00024100
OI TCMW,TCDNMM SUPPRESS MESSAGE MODIFICATION 00024200
SPACE 00024300
IPW$WTO TCMW ISSUE MESSAGE 00024400
SPACE 00024500
MVI TCMW,X’00’ CLEAR OPTION BYTE 00024600
BR R6 RETURN TO CALLER 00024700
SPACE 5 00024800
DROP R2,R3 RELEASE ADDRESSABILITY 00024900
DROP RA,RB RELEASE ADDRESSABILITY 00025000
EJECT 00025100
SPACE 00025200

*** 00025300
* D E F I N I T I O N S * 00025400
*** 00025500

SPACE 00025600
CUSTNEED DC CL9’* $$ JOB ’ ACTION FOR JOB STATEMENT REQUIRED 00025700
INSERT DC CL80’* THIS RECORD IS INSERTED BY JOB EXIT’ 00025800
NOTCHA DC C’CHANGED’ CHANGE INFO 00025900

SPACE 2 00026000
JEXMSG1 DC AL1(JEXMSG1L-JEXMSG1-1) LENGTH OF MESSAGE 00026100

DC C’INCORRECT SIZE OF WORKAREA GIVEN, 50 BYTES NEEDED’ 00026200
JEXMSG1L EQU * 00026300

SPACE 1 00026400
JEXMSG2 DC AL1(JEXMSG2L-JEXMSG2-1) LENGTH OF MESSAGE 00026500

DC C’DISABLE JOBEXIT USING PVARY’ 00026600
JEXMSG2L EQU * 00026700

SPACE 1 00026800
JEXMSG3 DC AL1(JEXMSG3L-JEXMSG3-1) LENGTH OF MESSAGE 00026900

DC C’STOP AND RESTART READER TASK. RELOAD JOBEXIT’ 00027000
JEXMSG3L EQU * 00027100

SPACE 2 00027200
CDSECT DSECT DSECT FOR JECL SATEMENT 00027300
COMPARE DS CL9 PREFIX OF JECL STATEMENT 00027400

DS CL71 FILLER 00027500
SPACE 00027600

WDSECT DSECT , DSECT FOR WORK AREA 00027700
WDLENGTH DS F LENGTH OF WORK AREA 00027800
WDCOUNT DS F COUNTER TO MAINTAIN NUMBER OF 00027900
* JOBS PROCESSED 00028000
WDACTION DS X’00’ ACTION BYTE 00028100
WDACINS EQU X’80’ .. INSERT STATEMENT 00028200
WDACDEL EQU X’40’ .. DELETE STATEMENT 00028300
WDACFLH EQU X’20’ .. FLUSH VSE/POWER JOB 00028400
WDACCHG EQU X’10’ .. CHANGE STATEMENT 00028500
WDFLAG DS X’00’ FLAG BYTE 00028600
WDFLINS EQU X’80’ .. INSERT DONE 00028700
WDFLPOW EQU X’40’ .. FLUSH VSE/POWER JOB TO DO 00028800
WDAREA DS CL40’ ’ WORK AREA 00028900

JOBEXIT Routine

326 VSE/POWER V9R2 Application Programming

WDLEN EQU *-WDSECT LENGTH OF WORK AREA 00029000
SPACE 2 00029100
IPW$EQU , DEFINE REGISTER EQUATES AS 00029200

* USED IN VSE/POWER CODING 00029300
SPACE 2 00029400
IPW$DPA , LAYOUT OF COMMON ADDRESS TABLE 00029500

* (CAT) ALSO CALLED PERMANENT AREA 00029600
* OF VSE/POWER. 00029700

SPACE 2 00029800
IPW$DQC , LAYOUT OF DISK MANAGEMENT BLOCK 00029900
SPACE 2 00030000
IPW$DQR , LAYOUT OF INTERNAL QUEUE RECORD 00030100
SPACE 2 ADDRESSED BY TCQV OF TCB 00030200
IPW$DTC , LAYOUT OF TASK CONTROL BLOCK 00030300
SPACE 2 00030400

* END NOT REQUIRED FOR ’.A’ COPY BOOK

Exit Routine for Output (Type OUTEXIT)

Function
To customize VSE/POWER's output processing to a greater extent than it is
possible by VSE/POWER itself, the program provides an exit for a user routine in
which you can modify every output record before it is being printed for:
1. local printing or punching, or
2. transmitting to an RJE workstation, or
3. passing data records to a device driving system, or
4. passing data records to a Spool-Access task that GETs output from the list or

punch queue (provided the support has been enabled by the SET
OUTEXIT=SAS autostart statement).

The general purpose of a user routine for output is:
v to modify data records to national standards needs
v to achieve different types of printer operation
v to produce own separator pages/cards
v to place the company's logo on a header page
v to produce accounting information on a trailer page
v to selectively produce separator pages for a particular user or job class
v to append security classification on every page.

The User Routine Work Area
To help you in making this output routine reentrant, VSE/POWER passes a work
area to the routine to hold variables and information needed with the queue entry
or to hold records to be inserted.

As described below in “Interface Description” on page 328, you find the address of
this work area (for dump or trace reading) in the field OEXWA of the output exit
parameter list.

You define the work area size in the POWER macro or in the PLOAD command
(maximum 65,535 bytes, default zero) along with the routine phase name.
VSE/POWER reserves this storage at start print time and releases the storage when
the queue entry is printed. That means the work area is only available during
printing of a queue entry and at print start time it always contains X'00'. The first
four bytes of the work area contain its length. This information is refreshed every

JOBEXIT Routine

Chapter 15. Writing Various Exit Routines 327

time the user routine gets control.

Restrictions
The output user routine should not invoke z/VSE macros which may cause, either
voluntarily or involuntarily, a wait for an event or a resource. In particular, do not
use a WAIT macro. When writing console messages, refer to the usage of the
VSE/POWER IPW$WTO macro in “JOBEXIT Programming Example” on page 322.

Note: The exit routine must not use access-register mode and all executable code
must be located below the 16MB line. The exit routine is executed in 24-bit
addressing mode and must call VSE/POWER services and return to VSE/POWER
in 24-bit addressing mode.

When the exit routine loses control (for example, due to a page fault), the status of
the currently used addressing mode and the access registers are not saved. Thus,
when the exit routine gets control back again, the previously used access registers
cannot be restored.

Because the exit routine must not use the access-register mode, the exit routine
cannot use data spaces. VSE/POWER does not accept an exit routine which has
already been loaded into the SVA.

Interface Description

Use of Registers
This is the register content at entry to the output user routine:
Register 1: address of parameter list described below
Register 14: return address
Register 15: entry point address of user routine

The user routine has access to all control blocks available in the environment; the
pointers to these control blocks are passed as follows:
Register 5: Queue record
Register 11: TCB

However, the user routine must not alter any fields in any control block to which it
has access! Furthermore, the layout of these control blocks is subject to change in
any future release of VSE/POWER.

The routine may not alter the content of registers 10, 11 and 12. These registers are
reserved for VSE/POWER use only! All other registers may be used by the user
routine.

The Parameter List
The list contains information about the passed records. A DSECT is provided by
IPW$DXE, a macro without operands.

OUTEXIT Routine

328 VSE/POWER V9R2 Application Programming

Table 81. Output Exit Parameter List

Name Length Type Content

OEXRV
OEXRL
OEXCC
OEXRT

OEXTT

OEXOT

OEXWA
OEXRC

4
4
1
1

1

1

4
1

B
B
B
B

B

B

B
B

Record address
Record length
Operation Code (used as carriage control character)
Record Type:
X’80’ Job Header Record (1)
X’40’ Job Trailer Record (1)
X’20’ Data Set Header Record (1)
X’08’ Record of start separator page(1)
X’04’ Record of end separator page (1)
X’00’ Data or control record (1)
Task type:
X’80’ Local list task
X’40’ Local punch task
X’20’ RJE task
X’02’ Device service task
X’01’ Spool-Access GET task
Additional information:
X’80’ List output
X’40’ Punch output
X’20’ Start of queue entry
X’10’ Start next copy
X’08’ Queue entry processed
X’04’ Psetup command active
Address of work area
Return code from exit:
X’00’ Process record
X’04’ Delete record
X’08’ Insert record
X’10’ Flush queue entry
X’18’ Flush queue entry with hold
X’1C’ Stop task

Note: (1) Depends on the task type, whether certain records are passed (+) to the
exit or not (-):

Table 82. Record Types Passed to an OUTEXIT

Task Type

Record Type LST/PUN RJE Device
Service
(DST)

Spool Access
Support (SAS)

Spool Access
Support (SAS)
(SET
OUTEXIT=SAS)

Job Header Record - - + - +

Data Set Header
Record (*)

+ + + - +

Job Trailer Record (+) (+) + - +

(All other records or
control records)

+ + + - +

(*) - please refer to the VSE/POWER Networking, SC34-2603 and note the section
"Sample of a PNET Receiver Exit Routine" when you have to process the various

OUTEXIT Routine

Chapter 15. Writing Various Exit Routines 329

sections of a data set header record, especially the Output Processing Section,
which contains 'user defined keywords' in an internally encoded form — called
OPTB (also OPTU).

(+) - see “Processing of Queue Entries” on page 331 for details.

Fields set by VSE/POWER:
OEXRV record address
OEXRL record length
OEXCC op code or carriage control character
OEXRT record type
OEXTT task type
OEXOT various info
OEXWA work area address

Field set by the user for normal processing, deletion of records, flush and stop
processing:

OEXRC return code from exit routine

Fields set by the user for insertion of records:
OEXRV record address
OEXRL record length
OEXCC op code or carriage control
OEXRT record type
OEXRC return code from exit routine

You must set only the record types (OEXRT) X'08' or X'04' for separator pages. Any
other record type you insert is handled by VSE/POWER as normal data or control
records with the type code X'00'.

Make sure that OEXRT does not conflict with the return code set in OEXRC.

For OEXCC, do not use FF, FE, or FD as carriage control characters or your routine
will terminate.

Return Codes
The exit routine must return control to VSE/POWER with one of the following
return codes set in the parameter list field OEXRC.

X'00' Process record passed to the output exit; the exit routine may update fields
within the boundaries of the record but may not change its length or
address. If you change fields in any VSE/POWER control record (job
header record or data set header record), this will have no effect! If you
change data, check that you will not exceed the record length indicated in
field OEXRL. Only changing of FCB and UCB name in the data set header
record or changing the SETPRT parameter list record takes effect, because
these values are interpreted after return from the output exit. Message
1R32I with RC=0003 is issued if record address or record length is
changed.

X'04' Delete this record. Job header, job trailer, data set header record and end of
data indication cannot be deleted. Message 1R32I with RC=0004 is issued
to indicate this failure. The SETPRT parameter list record may be deleted.

X'08' Insert and process a new record. VSE/POWER returns the original record
to the user routine once more. Any number of output records can be
inserted.

OUTEXIT Routine

330 VSE/POWER V9R2 Application Programming

The address, length, and operation code must be provided in the
appropriate fields of the parameter list. A record with record length or
record address of X'00' is rejected. A record length greater than 512 bytes is
only allowed for CPDS records. VSE/POWER truncates all other records to
512 bytes without warning. Make sure that the record length you pass in
OEXRL can be handled by the output device or device driving system. A
CPDS record is only allowed for a device service task or Spool-Access GET
task.

Job header, job trailer and data set header record, end of page and SETPRT
parameter list records cannot be inserted. Message 1R32I with RC=0005 is
issued if the user exit routine inserts an illegal record.

Note: VSE/POWER accepts every operation code (no check will be done)
but only machine control characters for output make sense here since ASA
conversion takes place earlier. Make sure that you insert valid operation
codes for the appropriate type of output.

Note: When supporting a Device Service Task or a Spool Access Support
Task it is not recommended to insert user records before the Job Header
Record or the Data Set Header Record - otherwise the SAS application
program may be confused when receiving an extra Data Set Reader record
as an Inline SPL.

X'10' Flush output queue entry. The affected queue entry is retained in the
output queue with disposition 'L' if the original disposition was 'K' or is
deleted if the original disposition was 'D'. For a device service task a
PFLUSH DEV,... is issued. Ignored for RJE and Spool-Access GET tasks.

X'18' Flush and Hold queue entry. The affected queue entry is retained in the
output queue with disposition 'L' if the original disposition was 'K' or with
'H' if the original disposition was 'D'. For a device service task, a PFLUSH
DEV,...,HOLD is issued. Ignored for RJE and Spool-Access GET tasks.

X'1C' Stop writer task. The affected queue entry is retained in the output queue
with its original disposition.

Any other return code received from the output routine leads to a stop of the task
and to requeue the queue entry with its original disposition. Message 1R32I with
RC=0001 reflects this handling.

Processing of Queue Entries
Every queue entry which can be processed by a user written exit routine consists
of a job header record, followed by a data set header record, followed by data
records, followed by a job trailer record. Job header record and data set header
record contain information about the job itself and about the data of the job. The
job trailer record marks the end of the queue entry.

The exit routine can expect a job header record if it is working for a device service
task or Spool-Access GET task. For the other task types no job header record is
passed to the output exit. The 'start of queue entry'(X'20' in OEXOT) indication will
therefore be set in the parameter list together with the very first record of the
queue entry, independent of job header record or normal data record.

Similarly the job trailer record can also only be expected if the exit routine is
working for a device service task or Spool-Access GET task. For the other task
types, VSE/POWER passes a NOP record (X'03' in OEXCC) instead. Therefore, for

OUTEXIT Routine

Chapter 15. Writing Various Exit Routines 331

all tasks, an additional artificial end of entry indication is passed to the output exit
by a record address of X'00' and the 'queue entry processed' (X'08' in OEXOT)
indication is set in the accompanying parameter list.

If a local list task is working for a 3800 printer, VSE/POWER does not pass a data
set header record to the exit routine. Instead, VSE/POWER builds the 3800
SETPRT parameter list record (from the data set header record) and passes this
record to the output exit.

If the PSETUP command is active for a list task, the output exit is informed via the
X'04' indication in OEXOT. When PSETUP has finished, also 'queue entry
processed' is indicated in the parameter list and processing of the queue entry is
resumed at the beginning of the entry.

If multiple copies are produced, VSE/POWER indicates the start of every copy via
a bit in the parameter list. When all copies are processed, VSE/POWER also passes
'queue entry processed' together with the record address of X'00'.

Accounting for the Output Exit Routine
The following account record types contain each a field showing the number of
lines inserted and a field containing the number of records deleted by the routine:
the list account record
the punch account record
the spool operation account record

Device Driving System Considerations
A device driving system requests records from VSE/POWER via the Spool-Access
Support GET interface handled by a device service task. Every record passed to the
device driving system is preceded by a prefix containing the record number. Some
products connected to VSE/POWER as a device driving system are sensitive to
this record number (PSF for example). Deletion of records by the user written exit
and the resulting gap in the record numbers causes no problems. But insertion of
records leads to unpredictable results in the print pages prepared by the product in
case of an error because inserted records are not written on spool. Therefore,
insertion of records by the output exit called for a device service task must be
handled carefully.

The flush return code issued by the output exit leads to queue a PFLUSH order
control record (with or without the HOLD option) for the device driving system,
that means, processing continues with the same queue entry until the device
driving system reacts to the flush device order.

A stop request issued by the exit leads to set stop code 'S' for the device service
task. This means that a return/feedback code (10/05) is given to the device driving
system and the connection is terminated via a disconnect purge request.

OUTEXIT Routine

332 VSE/POWER V9R2 Application Programming

Restart Considerations
Since the output exit can insert or delete records (which are not recorded on the
VSE/POWER spool files), RESTART issued by the operator could lead to
unexpected results. Example: A PDISPLAY command for a particular entry in the
LST queue shows a page count of 4. Since records might have been inserted by the
user exit routine, it is possible that currently page 7 is on the printer. If the
operator wants to restart on page 6, message 1Q42I is displayed and the restart
request is ignored.

Tracing of Exit Failures
When debugging logic failures of your exit routine, it may be helpful to obtain a
snapshot dump of the VSE/POWER partition at a predefined processing point of
your routine. You should include the call of macro IPW$IDM into the exit routine
to have an Idump generated in flight. For details, refer to VSE/POWER Networking,
SC34-2603.

OUTEXIT Programming Example
The sample of the OUTEXIT exit routine shown here is delivered to you as an
A-book in PRD1.MACLIB under the name of OUTEXAMP.A. If you extend this
example further, you may need macros that are only available with the optional
code material.

The sample includes:
1. The set of statements that causes the source code of the OUTEXIT user exit

routine to be assembled and cataloged.
2. The source code of the routine example itself.

Control Statements to Assemble and Catalog the Routine
* $$ JOB JNM=OUTEXRUN,CLASS=A,DISP=D
// JOB OUTEXRUN
// OPTION CATAL
// LIBDEF *,SEARCH=PRD1.MACLIB
// LIBDEF *,CATALOG=...
*
* PROVIDE FOR ... CATALOG SUBLIBRARY FOR OUTEXAMP
*
// EXEC ASSEMBLY,SIZE=100K

COPY OUTEXAMP
END

/*
// EXEC LNKEDT
/&
* $$ EOJ

Programming Example Source Code
TITLE ’ OUTEXAMP’ 00001000
PUNCH ’ PHASE OUTEXAMP,*’ 00002000

*** 00003000
** ** 00004000
** O U T E X A M P ** 00005000
** ** 00006000
** VSE/POWER OUTPUT EXIT: EXAMPLE PROGRAM DY45811 ** 00007000
** ** 00008000
** ** 00009000
*** 00010000
* * 00011000
* THIS PROGRAM - NAMED OUTEXAMP - ACTS AS AN EXAMPLE FOR A USER * 00012000
* WRITTEN OUTPUT EXIT ROUTINE. * 00013000
* * 00014000

OUTEXIT Routine

Chapter 15. Writing Various Exit Routines 333

* THIS EXAMPLE GIVES A SKELETON WHICH SHOWS HOW THE INTERFACE * 00015000
* BETWEEN VSE/POWER AND A USER WRITTEN OUTPUT EXIT WORKS. * 00016000
* IT CAN NOT SHOW THE VARIOUS FUNCTIONS AN OUTPUT EXIT COULD * 00017000
* PERFORM SINCE THAT DEPENDS ON THE NEEDS OF THE CUSTOMER. * 00018000
* * 00019000
* THE FUNCTIONS, FOR EXAMPLE, COULD BE: * 00020000
* * 00021000
* - MODIFY DATA RECORDS TO NATIONAL STANDARDS’ NEEDS * 00022000
* - PRODUCE OWN SEPARATOR PAGES/CARDS * 00023000
* - PLACE THE COMPANY’S LOGO ON A HEADER PAGE * 00024000
* - ACHIEVE DIFFERENT PRINTER OPERATIONS * 00025000
* - APPEND SECURITY CLASSIFICATION ON EACH PAGE * 00026000
* - SELECTIVELY PRODUCE SEPARATOR PAGES/CARDS FOR A * 00027000
* PARTICULAR USER OR JOB * 00028000
* * 00029000
* GIVEN HERE IS AN EXAMPLE HOW THE FUNCTION * 00030000
* ’ADD SECURITY CLASSIFICATION ON EACH PAGE’ CAN BE * 00031000
* IMPLEMENTED. HERE THE SECURITY CLASSIFICATION IS * 00032000
* PRINTED ON TOP OF EVERY PAGE BY A LOCAL LIST TASK. * 00033000
* * 00034000
* SINCE MORE THAN ONE LIST TASK CAN BE ACTIVE IN PARALLEL * 00035000
* A WORK AREA OF 50 BYTES IS REQUESTED BY THIS EXAMPLE. * 00036000
* THE WORK AREA IS USED HERE TO SAVE RECORD INFORMATION. * 00037000
* IF THE WORK AREA IS NOT PRESENT THE LIST TASK IS STOPPED. * 00038000
* * 00039000
* * 00040000
* * 00041000
* THE FOLLOWING ADDRESSABILITY IS ASSUMED AT ENTRY TO THE * 00042000
* OUTPUT EXIT: * 00043000
* * 00044000
* R1 - ADDRESS OF PARAMETER LIST PASSED BY VSE/POWER * 00045000
* RA - ADDRESS OF VSE/POWER COMMON ADDRESS TABLE (CAT) * 00046000
* RB - ADDRESS OF TASK CONTROL BLOCK (TCB) * 00047000
* RE - RETURN ADDRESS TO VSE/POWER * 00048000
* RF - BASE REGISTER OF THIS ROUTINE * 00049000
* * 00050000
* THE OUTPUT EXIT MAY NOT ALTER THE CONTENTS OF * 00051000
* REGISTERS 10, 11 AND 12. THESE REGISTERS ARE RESERVED FOR * 00052000
* VSE/POWER. ALL OTHER REGISTERS MAY BE USED BY * 00053000
* THE OUTPUT EXIT. * 00054000
* * 00055000
* THIS OUTPUT EXIT PHASE IS LOCATED WITHIN THE * 00056000
* - PAGEABLE AREA OF THE VSE/POWER PARTITION WHEN LOADED * 00057000
* AT VSE/POWER INITIALIZATION TIME, OR IN THE * 00058000
* - GETVIS AREA OF THE VSE/POWER PARTITION WHEN LOADED * 00059000
* AFTER INITIALIZATION BY THE ’PLOAD’ COMMAND. * 00060000
* FOR DEBUGGING LOCATE THE OUTPUT EXIT IN STORAGE BY * 00061000
* THE STORAGE DESCRIPTOR ’OUTPUT-EXIT’ AND BY THE POINTER ’CAOEX’ * 00062000
* IN THE COMMON ADDRESS TABLE OF VSE/POWER. * 00063000
* * 00064000
*** 00065000
* * 00066000
*** 00067000
* * 00068000
* THE FOLLOWING MACROS ARE REQUIRED: * 00069000
* * 00070000
* VSE/POWER: * 00071000
* * 00072000
* IPW$DXE - DSECT FOR THE INTERFACE PARAMETER LIST * 00073000
* * 00074000
* * 00075000
* * 00076000
*** 00077000

EJECT 00078000
SPACE 2 00079000

* REGISTER USAGE 00080000
SPACE 2 00081000

OUTEXIT Routine

334 VSE/POWER V9R2 Application Programming

* R0 - **** - WORK REGISTER 00082000
* R1 - **** - POINTER TO INTERFACE PARAMETER LIST 00083000
* R2 - **** - WORK REGISTER 00084000
* R3 - **** - WORK REGISTER 00085000
* R4 - **** - WORK REGISTER 00086000
* R5 - **** - POINTER TO QUEUE RECORD (NOT USED BY OUTPUT EXIT) 00087000
* R6 - **** - POINTER TO THE WORK AREA 00088000
* R7 - **** - WORK REGISTER 00089000
* R8 - **** - WORK REGISTER 00090000
* R9 - **** - WORK REGISTER 00091000
* RA - **** - POINTER TO CAT (NOT USED BY OUTPUT EXIT) 00092000
* RB - **** - POINTER TO TCB 00093490
* RD - **** - WORK REGISTER 00094000
* RE - **** - RETURN ADDRESS TO VSE/POWER 00095000
* RF - **** - BASE REGISTER 00096000

EJECT 00097000
OUTEXAMP DS 0H 00098000

USING *,RF ESTABLISH ADDRESSABILITY 00099000
USING PADS,RA MAKE VSE/POWER CAT ADDRESSABLE 00100000
USING TCDS,RB MAKE VSE/POWER TCB ADDRESSABLE 00101000
USING OEXDS,R1 ESTABLISH ADDRESSABILITY FOR 00102000

* PARAMETER LIST 00103000
B IPWX005 BRANCH OVER STORAGE DESCRIPTOR 00104000
SPACE 00105000
DC CL12’OUTPUT-EXIT’ DEFINE STORAGE DESCRIPTOR 00106000
SPACE 00107000

* SINCE THIS OUTPUT EXIT EXAMPLE NEEDS A WORK AREA 00108000
* THE TASK WILL BE STOPPED IF NONE IS PRESENT. 00109000

SPACE 2 00109100
* WHENEVER A WORK AREA IS USED, THE LENGTH OF THIS AREA MUST BE 00109200
* VERIFIED EACH TIME THE EXIT GAINS CONTROL, BECAUSE 00109300
* - THE EXIT MIGHT HAVE BEEN LOADED BY OPERATOR WITH A WRONG 00109400
* LENGTH OF ITS WORK AREA 00109500
* - A NEW VERSION OF THE EXIT MIGHT HAVE BEEN LOADED AND THE 00109600
* PREVIOUSLY DEFINED WORK AREA IS STILL USED UNTIL THE TASK 00109700
* ENDS. 00109800

SPACE 00110000
IPWX005 DS 0H 00111000

ICM R6,15,OEXWA WORK AREA PRESENT ? 00112000
BZ IPWX007 ..NO, STOP TASK 00113490
USING WDSECT,R6 ESTABLISH ADDRESSABILITY FOR WORK 00114000

* AREA 00115000
* THE WORK AREA EXISTS AND CAN NOW BE ADDRESSED. TEST IF 00115050
* THE WORK AREA IS LARGE ENOUGH. 00115100

SPACE 1 00115150
L R7,WDLENGTH GET SPECIFIED WORK AREA SIZE 00115200
LA R8,WDLEN GET REQU. SIZE OF WORK AREA 00115250
CR R7,R8 WORK AREA TOO SHORT ? 00115300
BNL IPWX010 ..NO, CONTINUE EXIT 00115350
SPACE 1 00115400

IPWX007 DS 0H 00115450
SPACE 1 00115500

* RESPECT THAT MACRO IPW$WTO DESTROYS REGISTER R0-R3 00115550
SPACE 1 00115600
LA R7,IPWMSG1 GET ADDRESS OF IPWMSG1 00115650
BAL R6,SUBWTO ISSUE OEXMSG1 00115700
SPACE 1 00115750
LA R7,IPWMSG2 GET ADDRESS OF IPWMSG2 00115800
BAL R6,SUBWTO ISSUE OEXMSG2 00115850
SPACE 2 00115900
B IPWXSTP GO AND STOP TASK 00115950
SPACE 00116000

* DIFFERENT ACTIONS MAY BE NECESSARY FOR THE DIFFERENT 00117000
* TYPES OF TASK. THEREFORE WE DETERMINE THE TYPE OF TASK 00118000
* FOR WHICH THE OUTPUT EXIT CURRENTLY WORKS. 00119000

SPACE 00120000
IPWX010 DS 0H 00121000

OUTEXIT Routine

Chapter 15. Writing Various Exit Routines 335

TM OEXTT,OETLST WORKING FOR A LOCAL LIST TASK ? 00122000
BO IPWX100 ..YES,CONTINUE 00123000
SPACE 00124000
TM OEXTT,OETPUN WORKING FOR A LOCAL PUNCH TASK ? 00125000
BO IPWX200 ..YES, CONTINUE 00126000
SPACE 00127000
TM OEXTT,OETDST WORKING FOR DEVICE SERVICE TASK ? 00128000
BO IPWX300 ..YES, CONTINUE 00129000
SPACE 00130000
TM OEXTT,OETXPT WORKING FOR SPOOL ACCESS GET TASK ? 00131000

* ..IN CASE ’SET OUTEXIT=SAS’ 00132000
BO IPWX350 ..YES, CONTINUE 00133000
SPACE 00134000
B IPWX400 MUST BE RJE TASK 00135000
SPACE 00136000

*** 00137000
** HANDLE LOCAL LIST TASK ** 00138000
*** 00139000
* * 00140000
* FOR A LOCAL LIST TASK A SECURITY CLASSIFICATION IS PRINTED * 00141000
* AS FIRST RECORD ON EACH PAGE. A NEW PAGE ALWAYS STARTS AFTER * 00142000
* POSITIONING THE PRINTER VIA A ’SKIP TO CHANNEL 1’ COMMAND * 00143000
* (OPERATION CODE X’8B’) TO THE FIRST LINE OF THE PAGE. * 00144000
* THAT MEANS AFTER THE ’SKIP TO CHANNEL 1’ WAS PASSED TO THE * 00145000
* PRINTER A NEW RECORD (THE RECORD WITH THE SECURITY * 00146000
* CLASSIFICATION) MUST BE INSERTED. * 00147000
* * 00148000
*** 00149000

SPACE 2 00150000
IPWX100 DS 0H 00151000

CLI OEXCC,IPW8B SKIP TO CHANNEL 1 RECEIVED ? 00152000
BNE IPWX110 ..NO, CONTINUE 00153000
SPACE 00154000

* THE CURRENT OPERATION CODE IS SAVED IN THE WORK AREA TO 00155000
* KNOW THAT SKIP TO CHANNEL 1 IS PROCESSED. 00156000

SPACE 00157000
MVC WDOPCODE,OEXCC SAVE CURRENT OPERATION CODE 00158000
B IPWXNOR CONTINUE NORMAL PROCESSING 00159000
SPACE 00160000

IPWX110 DS 0H 00161000
CLI WDOPCODE,IPW8B WAS LAST RECORD SKIP TO CHANNEL 1 ? 00162000
BNE IPWXNOR ..NO, CONTINUE NORMAL PROCESSING 00163000
SPACE 00164000

* SET UP PARAMETER LIST TO INSERT RECORD 00165000
SPACE 00166000
LA R2,IPDATA1 GET RECORD ADDRESS 00167000
ST R2,OEXRV SET UP RECORD ADDRESS 00168000
LA R2,L’IPDATA1 GET LENGTH OF RECORD 00169000
ST R2,OEXRL SET UP RECORD LENGTH 00170000
MVI OEXCC,IPW11 SET UP OPERATION CODE 00171000
MVI WDOPCODE,X’00’ CLEAR OP CODE TO FORGET ABOUT 00172000

* SKIP TO CHANNEL 1 00173000
B IPWXINS CONTINUE WITH INSERT 00174000
SPACE 2 00175000

*** 00176000
** HANDLE LOCAL PUN TASK ** 00177000
*** 00178000

SPACE 2 00179000
IPWX200 DS 0H 00180000
* INSERT HERE SPECIAL FUNCTIONS TO BE PERFORMED FOR 00181000
* A PUNCH TASK 00182000

SPACE 00183000
B IPWXNOR CONTINUE NORMAL PROCESSING 00184000
SPACE 2 00185000

*** 00186000
** HANDLE DEVICE SERVICE TASK ** 00187000
*** 00188000

OUTEXIT Routine

336 VSE/POWER V9R2 Application Programming

SPACE 2 00189000
IPWX300 DS 0H 00190000
* INSERT HERE SPECIAL FUNCTIONS TO BE PERFORMED FOR 00191000
* A DEVICE SERVICE TASK 00192000

SPACE 00193000
B IPWXNOR CONTINUE NORMAL PROCESSING 00194000
SPACE 2 00195000

*** 00196000
** HANDLE SPOOL ACCESS GET TASK ** 00197000
*** 00198000

SPACE 2 00199000
IPWX350 DS 0H 00200000
* INSERT HERE SPECIAL FUNCTIONS TO BE PERFORMED FOR 00201000
* A SPOOL ACCESS GET TASK 00202000

SPACE 00203000
B IPWXNOR CONTINUE NORMAL PROCESSING 00204000
SPACE 2 00205000

*** 00206000
** HANDLE RJE TASK ** 00207000
*** 00208000

SPACE 2 00209000
IPWX400 DS 0H 00210000
* INSERT HERE SPECIAL FUNCTIONS TO BE PERFORMED FOR 00211000
* AN RJE TASK 00212000

SPACE 00213000
B IPWXNOR CONTINUE NORMAL PROCESSING 00214000
SPACE 2 00215000

*** 00216000
** STOP TASK ** 00217000
*** 00218000

SPACE 2 00219000
IPWXSTP DS 0H 00220000

MVI OEXRC,OERSTP INDICATE TO STOP THE TASK 00221000
B IPWXEXT CONTINUE 00222000
SPACE 2 00223000

*** 00224000
** FLUSH HOLD QUEUE ENTRY (NOT USED BY THIS EXAMPLE) ** 00225000
*** 00226000

SPACE 2 00227000
IPWXFLH DS 0H 00228000

MVI OEXRC,OERFLH INDICATE TO FLUSH HOLD THE QUEUE 00229000
* ENTRY 00230000

B IPWXEXT CONTINUE 00231000
SPACE 2 00232000

*** 00233000
** FLUSH QUEUE ENTRY (NOT USED BY THIS EXAMPLE) ** 00234000
*** 00235000

SPACE 2 00236000
IPWXFLS DS 0H 00237000

MVI OEXRC,OERFLS INDICATE TO FLUSH THE QUEUE ENTRY 00238000
B IPWXEXT CONTINUE 00239000
SPACE 2 00240000

*** 00241000
** INSERT A NEW RECORD ** 00242000
*** 00243000

SPACE 2 00244000
IPWXINS DS 0H 00245000

MVI OEXRC,OERINS INDICATE TO INSERT A NEW RECORD 00246000
B IPWXEXT CONTINUE 00247000
SPACE 2 00248000

*** 00249000
** DELETE THE CURRENT RECORD (NOT USED BY THIS ** 00250000
** EXAMPLE) ** 00251000
*** 00252000

SPACE 2 00253000
IPWXDEL DS 0H 00254000

MVI OEXRC,OERDEL INDICATE TO DELETE THE RECORD 00255000

OUTEXIT Routine

Chapter 15. Writing Various Exit Routines 337

B IPWXEXT CONTINUE 00256000
SPACE 2 00257000

*** 00258000
** NORMAL RETURN ** 00259000
*** 00260000

SPACE 2 00261000
IPWXNOR DS 0H 00262000

MVI OEXRC,OEROK INDICATE NORMAL PROCESSING 00263000
SPACE 2 00264000

*** 00265000
** EXIT ** 00266000
*** 00267000

SPACE 2 00268000
IPWXEXT DS 0H 00269000

BR RE RETURN TO VSE/POWER 00270000
SPACE 00271000
DROP R1,R6 RELEASE ADDRESSABILITY 00272000
SPACE 00273000
EJECT 00274000

*** 00274030
* SUBROUTINE TO ISSUE MESSAGE ON OPERATOR CONSOLE * 00274060
* * 00274090
* USAGE OF VSE/POWER MACRO IPW$WTO: * 00274120
* THIS MACRO, TOGETHER WITH SOME INDICATIONS SET IN THE TCB, * 00274150
* CAN BE USED TO DISPLAY A MESSAGE ON THE CENTRAL OPERATOR * 00274180
* CONSOLE. * 00274210
* THE USAGE OF THIS MACRO DESTROYS THE REGISTER R0 - R3. * 00274240
* THE MESSAGE TO BE DISPLAYED SHOULD CONTAIN ALPHAMERIC * 00274270
* CHARACTERS ONLY. * 00274300
* * 00274330
*** 00274360

SPACE 2 00274390
SUBWTO DS 0H 00274420

STCM R7,7,TCMW+1 PASS MESSAGE ADDRESS 00274450
MVI TCMW,X’00’ CLEAR OPTION BYTE 00274480
OI TCMW,TCPCOP FORCE MESSAGE TO CONSOLE 00274510
OI TCMW,TCDNMM SUPPRESS MESSAGE MODIFICATION 00274540
SPACE 1 00274570
IPW$WTO TCMW ISSUE MESSAGE 00274600
SPACE 00274630
MVI TCMW,X’00’ CLEAR OPTION BYTE 00274660
BR R6 RETURN TO CALLER 00274690
SPACE 5 00274720
DROP RA,RB RELEASE ADDRESSABILITY 00274750
EJECT 00274780
SPACE 00274810

*** 00275000
** D E F I N I T I O N S ** 00276000
*** 00277000

SPACE 2 00278000
IPW8B EQU X’8B’ OP. CODE: SKIP TO CHANNEL 1 00279000
IPW11 EQU X’19’ OP. CODE: WRITE AND SPACE 3 LINES 00280000

SPACE 00281000
IPWMSG1 DC AL1(IPWMSG1L-IPWMSG1-1) LENGTH OF MESSAGE 00281100

DC C’INCORRECT SIZE OF WORKAREA GIVEN, 50 BYTES NEEDED’ 00281200
IPWMSG1L EQU * 00281300

SPACE 1 00281400
IPWMSG2 DC AL1(IPWMSG2L-IPWMSG2-1) LENGTH OF MESSAGE 00281500

DC C’DISABLE OUTEXIT USING PVARY’ 00281600
IPWMSG2L EQU * 00281700

SPACE 00281800
*** 00282000
* LINE TO BE INSERTED BY THE OUTPUT EXIT * 00283000
*** 00284000

SPACE 00285000
IPDATA1 DC C’ ******* INTERNAL USE ONLY ******* ’ 00286000

SPACE 00287000

OUTEXIT Routine

338 VSE/POWER V9R2 Application Programming

*** 00288000
* DSECT FOR WORK AREA * 00289000
*** 00290000

SPACE 00291000
WDSECT DSECT DSECT OF WORK AREA 00292000
WDLENGTH DS F LENGTH OF WORK AREA 00293000
WDOPCODE DS X’00’ SAVE OPERATION CODE 00294000
WDAREA DS CL45’ ’ UNUSED PART OF WORK AREA 00295000
WDLEN EQU *-WDLENGTH LENGTH OF WORK AREA 00295500

SPACE 00296000
EJECT 00297000

*** 00298000
LTORG 00299000

*** 00300000
*** 00301000
* DUMMY SECTION OF PARAMETER LIST * 00302000
*** 00303000

SPACE 00304000
IPW$DXE 00305000
SPACE 4 00306000
IPW$EQU , DEFINE REGISTER EQUATES AS 00307000

* USED IN VSE/POWER CODING 00308000
SPACE 2 00309000
IPW$DPA , LAYOUT OF COMMON ADDRESS TABLE 00310000

* (CAT) ALSO CALLED PERMANENT AREA 00311000
* OF VSE/POWER. 00312000

SPACE 2 00313000
IPW$DTC , LAYOUT OF TASK CONTROL BLOCK (TCB) 00314000
SPACE 2 00315000
IPW$DQR , LAYOUT OF INTERNAL QUEUE RECORD 00316000
SPACE 2 ADDRESSED BY TCQV OF TCB 00317000
IPW$DNR JHR=YES,JTR=YES,DHR=YES,OUT=YES NETWORK CONTROL RECS 00318000
SPACE 2 00319000

* END NOT REQUIRED FOR ’.A’ COPY BOOK 00320000

OUTEXIT Routine

Chapter 15. Writing Various Exit Routines 339

340 VSE/POWER V9R2 Application Programming

Part 4. Appendixes

© Copyright IBM Corp. 1987, 2014 341

342 VSE/POWER V9R2 Application Programming

Appendix A. Cross-Partition Communication via Spool Macros

This chapter describes the XECB-macro based cross-partition communication
(SPOOL macro) support.

Restriction
If VSE/POWER is running in a partition which is allocated in a private address
space, the user program communicating to VSE/POWER must run in a partition
which is allocated in the same address space as the VSE/POWER partition. For
more information, see “Return Codes in Register 15” on page 359.

This support allows you to access VSE/POWER services from within a program.
While it ensures program compatibility, you can use it side by side with the
XPCC-macro based support described in Part 2, “Spool-Access Support,” on page
55. Continued use of the SPOOL macro support requires that, for VSE/POWER
table generation, you specify SPOOL=YES in the POWER generation macro.

For using the SPOOL macro support, the macros described in this chapter are
available.

In addition, you need the z/VSE macro XECBTAB, described in z/VSE System
Macros Reference, SC34-2638.

To connect to VSE/POWER, use the z/VSE XECBTAB macro with the following
operands:

�� XECBTAB TYPE=DEFINE,XECB= SPMXECB
ICRXECB

,ACCESS=XWAIT ��

Specify XECB=SPMXECB for a GETSPOOL or a CTLSPOOL macro, specify
XECB=ICRXECB for a PUTSPOOL macro. An XECB (cross-partition event control
block) must be at least eight bytes long.

VSE/POWER requires the three-byte address of a spool parameter list (SPL) to be
inserted into the XECB before your program issues a service request. You insert
this address at:

SPMXECB+5 for a GETSPOOL or a CTLSPOOL request
ICRXECB+5 for a PUTSPOOL request

Other than XECBTAB, no z/VSE macro is required for VSE/POWER's SPOOL
macro support. Issue an XECBTAB=DELETE for the defined XECBs when the
support is no longer required by your program.

© Copyright IBM Corp. 1987, 2014 343

Coding Practices
Only one user of the PUTSPOOL macro, and only one user of either the
GETSPOOL or the CTLSPOOL macro may be active at any point in time.
Therefore, in private multitasking environments, as for example in CICS, the user
must provide an enqueuing mechanism to ensure that the spooling resource
SPMXECB or ICRXECB is serialized. In addition, it is recommended to use the
XECBTAB TYPE=DELETALL request in abend routines in order to have
VSE/POWER informed. You can bypass this restriction and also avoid many a
contention situation by using the support described in Chapter 6, “Introduction to
Spool-Access Support,” on page 57.

For the conventions used in presenting macro formats in this appendix, see
Chapter 1, “Understanding Syntax Diagrams,” on page 3. A coding example for
using the SPOOL macro support is given under “Coding Example for Using the
SPOOL Macros” on page 361.

Spool Access Protection Considerations
This mode of security protection can be activated when starting VSE/POWER if it
was also enabled at IPL. This protection mode limits eligible spool entry access to
authenticated users or programs, or to system administrators, i.e., when access is
restricted to certain user IDs, these must be authenticated. Authentication requires
a security logon with a password or a system component logon, such as IUI. This
mode applies only when using GETSPOOL or CTLSPOOL.

A PXMIT command routed to a new local node will be tagged with the issuer's
security user ID if Spool Access Protection is active, replacing the originator user
ID identified in the SPL field SPUS.

If a PXMIT command is issued by a non-authenticated user, this is indicated in the
command when it is routed to the target node. PXMIT commands from systems
without the Spool Access Protection feature active (e.g., downlevel systems or
non-VSE systems) will be assumed to be authenticated.

If VSE/POWER Spool Access Protection is active, then every attempt will be made
to tag a job spool entry with an origin userid to obtain Spool Access Protection
eligibility. In the case of a PUTSPOOL macro, the USERID=userid operand of the
PUTSPOOL macro is optional and the origin userid may not available (field SPUS).
In this case VSE/POWER will search for a security logon userid for the XECB
PUTSPOOL program (available from the PUTSPOOL program's
* $$ JOB SEC=(userid,pwd) or // ID USER=userid,PWD=password statement if any).
If the security logon userid is available, then it will be used as the job origin
userid.

Programs issuing the GETSPOOL/CTLSPOOL macro previously could access any
spool entry without regard to the spool entry's matching origin or target userid(s).
Now, if a spool entry has an origin or target userid, and the GETSPOOL/
CTLSPOOL program does not have system administrator authority, the program
must perform a security logon with the same origin or target userid to gain access,
e.g. via * $$ JOB SEC=(userid,pwd) or via // ID USER=cccccccc,PWD=password. To
obtain system administrator authority, the use of the VSE/POWER Master
Password should be considered.

Communication via Spool Macros

344 VSE/POWER V9R2 Application Programming

General Notes
1. VSE/POWER responds to spooling requests from the SVA. However, the

required SPLs and data areas must reside in the partitions that contain the
requesting programs.

2. A program using the SPOOL macro support must include an SPL TYPE=MAP
macro.

3. The operand PBUF=buffaddr must be specified in either the definition macro
SPL, or in the execution macro (CTLSPOOL, GETSPOOL, or PUTSPOOL) that
is executed first in the program.

4. A system error may occur if:
a. The partition using the SPOOL macro support has a higher priority than

VSE/POWER.
b. An abnormal end or shut down of VSE/POWER occurs before all active

SPOOL macro service tasks have completed.
5. Before using the support, you must save your registers 0, 1, 13, 14, and 15 (they

are used and overwritten by VSE/POWER). Register 15 has the return code.
6. The operands CLASS= and DISP= are not supported in the PUTSPOOL macro

or its associated SPL.
To specify the output class or disposition for a job submitted by PUTSPOOL,
include an * $$ LST or * $$ PUN statement at the beginning of the job. If you
supply an * $$ JOB statement, include the * $$ LST or * $$ PUN statement
immediately behind the * $$ JOB statement.
If these PUTSPOOL operands have already been coded in an existing program,
VSE/POWER updates the SPL with the specified value (in case the SPL is used
later by a GETSPOOL or CTLSPOOL macro).
If you use these operands in a modified source program, then:
v You receive a warning comment if they occur in the SPL macro.
v You get an assembler generated MNOTE if they occur in the PUTSPOOL

macro.
7. If you use the spooling macros in a private multitasking environment like

CICS, you must provide your own queueing mechanism to ensure that the
spooling resource is serialized.

8. If you use the 'STXIT AB' macro or the 'HANDLE ABEND' routines in CICS,
you need to use the 'XECBTAB TYPE=DELETALL' macro.

SPL Macro: Generate a Spool Parameter List
The macro builds a spool parameter list (SPL) for use by the execution macros
PUTSPOOL, GETSPOOL, and CTLSPOOL. Any specification you make in an SPL
is in effect for the execution macro using this SPL, except if (a) the specification is
overridden by a corresponding operand of the execution macro or (b) the REQ=
operand is not specified in the CTLSPOOL macro; in that case the class
specification is modified.

Correct use of the macro requires you to:
1. Store the SPL address into the correct XECB.
2. Load the pointer register named in the SPL=(reg) operand of the CTLSPOOL,

GETSPOOL, or PUTSPOOL macro.

Communication via Spool Macros

Appendix A. Cross-Partition Communication via Spool Macros 345

Formats of the Macro
The macro has the following two formats:

Format 1: Generating an SPL

��
name

SPL TYPE=DEFINE
,CBUF=firstbuffaddr

,CLASS=A

,CLASS=class
�

�
,DISP=K

,DISP=disposition

,JOBN=DUMMY

,JOBN=jobname ,NEWVAL=value
�

�
,PBUF=buffaddr

,PBUFL=88

,PBUFL=bufflength ,PWD=password
�

�
,REQ= CANCEL

CLASS
COMMAND
DISP
LOOKUP
PRI
REMOTE
SCRATCH
STATUS

,USERID=user_id
��

Format 2: Generating a DSECT

��
name

SPL TYPE=MAP
,ICRXECB=NO

,ICRXECB=YES

,SPMXECB=NO

,SPMXECB=YES
��

TYPE=DEFINE
The operand causes an SPL to be set up with the specified values.

CBUF=firstbuffaddr
The operand specifies the address of the first buffer of a chain of buffers that
contain the job stream. Each buffer is 88 bytes long and has the following
contents:

Bytes 0 - 3 = Pointer to the next buffer in the chain; set to
zero in the last buffer

Bytes 4 - 7 = Reserved
Bytes 8 - 87 = Spool record

Up to 4095 such buffers may be chained for every PUTSPOOL access.

CLASS=A|class
The operand specifies the VSE/POWER output class (A-Z) for the affected job.
The operand is ignored if specified in an SPL for PUTSPOOL.

DISP=K|disposition
The operand specifies the output disposition for the affected job. The operand
is ignored if specified in an SPL for PUTSPOOL.

SPL Macro

346 VSE/POWER V9R2 Application Programming

JOBN=DUMMY|jobname
The operand specifies the job name to be assigned to the affected input queue
entry for a PUTSPOOL operation or to be searched for in case of a CTLSPOOL
or GETSPOOL operation.

NEWVAL=value
The operand is meaningful only if the SPL is to be used with CTLSPOOL.

For value in the operand, specify the new value that is to be assigned in
accordance with your specification in the REQ operand of the CTLSPOOL
macro. You can specify a new value for one of the following:

Class of the job: REQ=CLASS in CTLSPOOL
Disposition of the job: REQ=DISP in CTLSPOOL
Priority of the job: REQ=PRI in CTLSPOOL
A remote ID: REQ=REMOTE in CTLSPOOL

The value can be specified in one of the following ways:
C’x’ For example, NEWVAL=C’A’
X’nn’ For example, NEWVAL=X’01’

PBUF=buffaddr
For buffaddr, specify the address of an area for use by VSE/POWER and for
VSE/POWER feedback information under certain error conditions.

PBUFL=88|bufflength
For bufflength, specify (in number of bytes) the length of the buffer whose
address is given in PBUF=buffaddr. Define your buffer's length large enough
for your longest data record to fit into the buffer. VSE/POWER truncates the
trailing blanks of a record; it indicates the length of every record after
truncation in either:
v the four-byte SPL field SPRL if data records are not blocked, or
v bytes 2 and 3 of the record prefix if the data records are blocked (see also

the MODE=BUF operand of the GETSPOOL macro).

The minimum length you can specify is 88.

PWD=password
The operand specifies the password to be associated with the request.

If the queue entry to be accessed by CTLSPOOL or GETSPOOL carries an
explicit password (neither defaults of zero or blank), then specify this
password.

If you want to create a password protected job, then supply this operand for
the PUTSPOOL request.

If you omit this operand, a default blank password will be given to submitted
jobs or will be used in combination with CTLSPOOL or GETSPOOL requests.
This does not hinder the latter requests to gain access to locally read in jobs.

The password can be any alphameric string of up to eight characters.

REQ=CANCEL|CLASS|COMMAND|DISP|LOOKUP|PRI|REMOTE |SCRATCH|STATUS
The operand defines a default for CTLSPOOL requests. For the various
specifications, refer to “Format of the Macro” on page 348.

USERID=user-id
For user-id specify an alphameric string of up to eight characters.

Supply such an owning user-id in the PUTSPOOL request when you want to
prevent unauthorized CTLSPOOL access to the job or to its produced output.

SPL Macro

Appendix A. Cross-Partition Communication via Spool Macros 347

If you want to manipulate an existing queue entry that shows an explicit
from/to user-id then specify the corresponding user-id in your CTLSPOOL
request.

For GETSPOOL requests, the user-id specification is not required.

TYPE=MAP
The operand causes a DSECT of the SPL to be generated. An SPL macro with
TYPE=MAP must be specified at least once in a program using the SPOOL
macro support.

ICRXECB=YES|NO
Specify ICRXECB=YES if the DSECT to be generated is to apply to an SPL for
use with PUTSPOOL.

SPMXECB=YES|NO
Specify SPMXECB=YES if the DSECT to be generated is to apply to an SPL for
use with CTLSPOOL or GETSPOOL.

CTLSPOOL Macro: Control VSE/POWER Jobs
The macro requests VSE/POWER to do one of the following:
v Alter the attributes of a VSE/POWER job.
v Cancel a submitted job prior to its execution.
v Delete the list or punch output of a job after its execution.
v Display the status of any job or of all jobs.
v Send a message to another user, remote operator, or central operator.
v Submit a VSE/POWER command for execution.

Nearly all of the macro's operands allow you to use register notation (indicated by
"(reg)" as a possible specification). You can use for this purpose any register except
0, 1, 14, and 15.

Requirements for the Caller
AMODE:

24

RMODE:
24

ASC Mode:
Primary

Format of the Macro

��
name

CTLSPOOL SPL=(reg)
,CCLASS= value

(reg)
,JNUM= SPL

(reg)

�

�
,JOBN= jobname

(reg)
,MODE=SPOOL ,NEWVAL= value

(reg)

�

SPL Macro

348 VSE/POWER V9R2 Application Programming

�
,PBUF= buffaddr

(reg)
,PWD= password

(reg)

,QUEUE=LST

,QUEUE= PUN
RDR
XMT

�

�
,REQ= CANCEL

CLASS
COMMAND
DISP
LOOKUP
PRI
REMOTE
SCRATCH
STATUS
(reg)

,USERID= user-id
(reg)

��

SPL=(reg)
This mandatory operand specifies the register which contains the address of
the spool parameter list (SPL) to be used. The SPL defines the request to
VSE/POWER.

CCLASS=value|(reg)
For value, specify the class of the queue entries to which the CTLSPOOL
request is to apply. You can specify the value in one of the following forms:

C’x’ For example, CCLASS=C’A’
X’nn’ For example, CCLASS=X’F1’

If you use a register, it must contain the class in its low-order byte. This
operand is valid only with one of the following:

REQ=CLASS
REQ=DISP
REQ=PRI
REQ=REMOTE

JNUM=SPL|(reg)
The operand specifies the job number that is to be used as a search argument
together with the job name.

Specify JNUM=SPL if VSE/POWER is to use the job number currently stored
in the SPL.

If you use a register it must contain the job number.

If you omit the operand, VSE/POWER takes the first job with a matching
name.

JOBN=jobname|(reg)
For jobname, specify the name by which the job is known to VSE/POWER.

If you use a register, it must contain a pointer to an eight-byte storage field
containing the job's name.

MODE=SPOOL
The operand causes VSE/POWER to write its response to the CTLSPOOL
request into the LST queue and to return the LST queue entry's job name and
number in the SPL used for the request. Issue a GETSPOOL request to retrieve
this response from the LST queue.

CTLSPOOL Macro

Appendix A. Cross-Partition Communication via Spool Macros 349

MODE=SPOOL is valid only if REQ=COMMAND is specified and the
submitted command is "PDISPLAY queue" or "PDISPLAY PNET". The job
name assigned to the queue entry by VSE/POWER is $SPLnnnn (where nnnn
= the job number assigned by VSE/POWER). The queue entry's class and
disposition are the ones contained in the SPL.

NEWVAL=value|(reg)
For value, specify the new value that is to be used by VSE/POWER as the job
attribute. You can specify this value in one of the following forms:

C’x’ For example: NEWVAL=C’A’
X’nn’ For example: NEWVAL=X’F1’
n For example: NEWVAL=5

The operand is valid only together with one of the following specifications:
REQ=CLASS For a new class of the job
REQ=DISP For a new disposition of the job
REQ=PRI For a new priority of the job
REQ=REMOTE For a new remote ID

If you use a register, it must contain the new value.

PBUF=buffaddr|(reg)
The operand specifies the address of a buffer which is for use by VSE/POWER
and for VSE/POWER feedback information. This buffer must be 88 bytes long.

If you use a register, it must contain the buffer's address.

PWD=password|(reg)
For password, specify the password for the VSE/POWER job or output.

If a password was defined on input or in an * $$ LST or * $$ PUN statement,
then the same password is to be specified to have VSE/POWER execute any
queue manipulation commands (such as PALTER or PDELETE). If there is no
match of the passwords, then VSE/POWER rejects the request with a return
code in the error/feedback bytes of the SPL for the request.

If you omit this operand (and also in the SPL macro) you will be given access
also to a queue entry which was submitted without password protection via a
local spool device.

If you use a register, it must point to an eight-byte field that contains the
password left-justified.

QUEUE=LST|PUN|RDR|XMT
The operand specifies the queue to be used for the CTLSPOOL request:

LST For list queue
PUN For punch queue
RDR For reader queue
XMT For transmission queue

The operand is ignored if one of the following is specified
REQ=CANCEL
REQ=COMMAND
REQ=STATUS

REQ=...
The operand specifies the requested operation as follows:

CANCEL
Applies only to job input; causes the affected job to be deleted from the
input queue if it has not yet been processed.

CTLSPOOL Macro

350 VSE/POWER V9R2 Application Programming

CLASS
Alters the job class of the job on the specified VSE/POWER queue.
Requires a NEWVAL=value specification in order to be valid.

COMMAND
Indicates that you have supplied a VSE/POWER command in the area
defined in the PBUF operand. No error detection is performed for the
command, and no error code is returned, except for an invalid request (an
invalid SPL address, for example). You must analyze the PBUF area in
your program for a possible return message. Your program can pass only
one of the following commands per CTLSPOOL request:

PALTER queue,jobname (See Note 1 below)
PBRDCST
PCANCEL jobname (See Note 1 below)
PDELETE queue,jobname (See Note 1 below)
PDELETE MSG
PDISPLAY queue,jobname
PDISPLAY CRE
PDISPLAY DEL
PDISPLAY TOTAL
PDISPLAY BIGGEST PDISPLAY MSG
PDISPLAY A
PDISPLAY T
PDISPLAY DYNC
PDISPLAY PNET
PHOLD queue,jobname (See Note 1 below)
PINQUIRE
PLOAD DYNC (See Note 2 below)
PRELEASE queue,jobname (See Note 1 below)
PVARY DYNC (See Note 2 below)
PXMIT

Note:

1. The command can be used in a networking environment for execution
at another node if that other node is controlled by VSE/POWER.
VSE/POWERpasses only one message back to your program in reply to
any command.
VSE/POWERprocesses the command on your own z/VSE node if both
the user ID and the password match the explicit user ID and password
defined for the job or its output.
On another node controlled by VSE/POWER, the command is
presented only if the user ID matches the one specified for the affected
job or its output.

2. These commands are valid only for requests entitled by a hex zero
password.

DISP
Alters the disposition of the affected queue entry. Requires a
NEWVAL=value specification in order to be valid.

LOOKUP
Causes status information about the specified job or output to be returned
in applicable fields of the SPL. VSE/POWER returns the following:

Job number
Class
Disposition
Number of lines or cards
Flag (indicating that more than one queue entry exists)

CTLSPOOL Macro

Appendix A. Cross-Partition Communication via Spool Macros 351

PRI
Alters the priority of the affected queue entry. Requires a NEWVAL=value
specification in order to be valid.

REMOTE
Alters the remote ID to which output of the job is to be routed. Requires a
NEWVAL=value specification in order to be valid.

SCRATCH
Causes the named job to be deleted from the affected VSE/POWER output
(LST, PUN, or XMT) queue.

STATUS
Causes the following to be passed to the named SPL:
1. The disposition of the named job in the field SPQD of the SPL.
2. The job's queue indicator in the field SPSQ of the SPL. This indicator

may be:
L = The job is in the LST queue.
N = Nothing to display (the specified job name is unknown).
P = The job is in the PUN queue.
R = The job is in the RDR queue.
X = The job is in the XMT queue.

If the job exists in several queues, only its first occurrence is returned. The
queues are searched in this sequence: LST, RDR, PUN, XMT.

(reg)
Indicates that a request code is provided in the specified register. You can
specify one of the following codes in this register:

Code
Request

Type Requested Function
Corresponding

Command

X'01' PRI Alter the priority PALTER

X'02' DISP Alter the disposition PALTER

X'04' CLASS Alter the class PALTER

X'08' REMOTE Alter the remote identifier PALTER

X'10' CANCEL Cancel input PDELETE RDR

X'20' SCRATCH Scratch output PDELETE queue

X'40' STATUS Display the status of the named job PDISPLAY

X'80' COMMAND Process the passed VSE/POWER command -

USERID=user-id|(reg)
For user-id specify an alphameric string of up to eight characters. For user-id,
specify the explicit user ID of the queue entry that is to be manipulated. This
ID was defined when the job was submitted to VSE/POWER or read in locally.
If you omit the operand, VSE/POWER uses, for your CTLSPOOL request, the
user ID currently stored in the request SPL.

VSE/POWER rejects your request if:
v You specified an ID which does not match the originally defined one.
v You did not specify an ID, but the ID currently stored in the SPL does not

match the originally defined one.
v You did not specify an ID, no ID is stored in the SPL, and an explicit ID was

defined for the affected queue entry.

CTLSPOOL Macro

352 VSE/POWER V9R2 Application Programming

If you use a register, it must point to an eight-byte field that contains the ID
left-justified.

GETSPOOL Macro: Retrieve Data from Queues
The macro requests the retrieval of data currently held in VSE/POWER queues on
disk. VSE/POWER returns the requested data to the buffer area of the partition
issuing the GETSPOOL macro.

VSE/POWER accepts the request only if the affected queue entry's disposition is D
or K. As for an output task, the entry's disposition is changed to L after processing
if this disposition was K, the entry is deleted if this disposition was D. Therefore,
before you can retrieve a queue entry processed by VSE/POWER previously, you
must issue a CTLSPOOL request that changes this entry's disposition from L to K
again.

If you use GETSPOOL and do not read to the end of data, a problem can occur.
The accessed queue entry remains in the VSE/POWER queue in an active state
and the operator cannot delete the entry (VSE/POWER displays DISP=*). You can
avoid this by one of the following actions:
v Delete the entry using a CTLSPOOL request.
v Submit a CTLSPOOL request following your GETSPOOL, for example:

CTLSPOOL SPL=(reg),REQ=STATUS

v Always read a queue entry until end-of-data.
v Request a GETSPOOL operation for another queue entry.

Any of these actions causes the entry to be deleted (disposition was D) or closed
and retained with disposition L (disposition was K).

In response to the first GETSPOOL request, VSE/POWER returns, in your SPL, the
number of records which the entry contains.

When end of data is reached, VSE/POWER returns the EOF indicator as a dummy
record after the last data record. With buffered GETSPOOL requests, VSE/POWER
returns the EOF indicator in the prefix of the last data record.

Requirements For the Caller
AMODE:

24

RMODE:
24

ASC Mode:
Primary

CTLSPOOL Macro

Appendix A. Cross-Partition Communication via Spool Macros 353

Format of the Macro

��
name

GETSPOOL SPL=(reg)
,CC=NO

,CC=YES ,CLASS= class
(reg)

�

�
,JNUM= SPL

(reg)
,JOBN= jobname

(reg)
,LINENO= number

(reg)

�

�
,MODE=BUF ,PBUF= buffaddr

(reg)
,PBUFL= bufflength

(reg)

�

�
,PWD= password

(reg)

,QUEUE=LST

,QUEUE=PUN ,USERID= user-id
(reg)

��

SPL=(reg)
This mandatory operand specifies the register which contains the address of
the SPL to be used. The SPL defines the request to VSE/POWER.

If you used the LINENO operand in a preceding GETSPOOL request, specify
the address of the same SPL in this request; else, line positioning gets lost.

CC=YES|NO
Specify CC=YES to have VSE/POWER return the command code of the CCW
for the currently processed data record. VSE/POWER inserts this code in the
field SPCC of the SPL, except when you specify also MODE=BUF.

If you specify also MODE=BUF, VSE/POWER passes all command codes,
including those which have no associated data, to your program's buffer.

CLASS=class|(reg)
For class, specify the class value assigned to the queue entry (by PUTSPOOL,
for example). If you use a register, supply the applicable class value in it.

JNUM=SPL|(reg)
Use this operand if several jobs in the accessed queue have the same name.

Specify JNUM=SPL if VSE/POWER is to use the job number currently stored
in the SPL. Supply the VSE/POWER-assigned job number in the specified
register otherwise. If you omit the operand, VSE/POWER sets the SPL's job
number field to zero.

JOBN=jobname|(reg)
For jobname, specify the name by which VSE/POWER knows the queue entry
that is to be retrieved. It is the name that was assigned to the entry (by
PUTSPOOL, for example).

If you use register notation, the specified register must point to an eight-byte
field containing the name in that field left-adjusted.

LINENO=number|(reg)
Use this operand in your first GETSPOOL request for a queue entry if retrieval

GETSPOOL Macro

354 VSE/POWER V9R2 Application Programming

is to begin with a certain output record. The operand causes retrieval to begin
at the specified line number relative to the beginning of the file. If you use a
register, supply the line number in it.

The maximum value that you can specify for number is 16777215.

If you omit the operand, VSE/POWER starts retrieval at the beginning of the
queue entry's spool data.

To read records in consecutive order, omit this operand in a second or
subsequent GETSPOOL request to the same queue entry. For random retrieval,
specify the operand in subsequent GETSPOOL requests for repositioning
VSE/POWER's line pointer accordingly. Ensure, however, that the subsequent
GETSPOOL requests use the same SPL as the initial request for this retrieval
operation.

MODE=BUF
Specify this operand if VSE/POWER is to retrieve more than one record per
request. The operand causes VSE/POWER to fill the area named in the PBUF
operand with as many records as will fit. Every data record in that area has a
four-byte prefix as follows:

Byte Contents

0 Command code. If VSE/POWER is to pass also command-code-only
records (such as a skip to channel 1), you must specify CC=YES in
addition.

1
X'80' = The last record in the buffer.
X'C0' = The last record of the spool data.

2-3 Length (in binary) of a data record, including the four-byte prefix.

Deblocking is to be done in your program.

PBUF=buffaddr|(reg)
For buffaddr, specify the symbolic address of the buffer into which
VSE/POWER is to pass retrieved data records or feedback information (on
certain error conditions) or both. If you use this operand, you must also
specify PBUFL=bufflength.

You can omit this operand and the PBUFL operand if you defined a buffer in
your SPL.

If you use register notation, the specified register must point to the buffer
which VSE/POWER is to use.

PBUFL=bufflength|(reg)
The operand specifies the length (in number of bytes) of the buffer whose
address is given in the PBUF operand. Define your buffer's length large
enough for your longest data record to fit into the buffer. VSE/POWER
truncates the trailing blanks of a record; it indicates the length of every record
after truncation in either:
v The four-byte SPL field SPRL if data records are not blocked, or
v Bytes 2 and 3 of the record prefix if the data records are blocked (see also

the MODE=BUF operand).

The minimum length you can specify is 88.

If you use a register, it must contain the buffer's length.

GETSPOOL Macro

Appendix A. Cross-Partition Communication via Spool Macros 355

PWD=password|(reg)
For password, specify the explicit password for the queue entry to be
retrieved. If there is no match of the passwords, VSE/POWER rejects the
request with a return code in the error/feedback bytes of the SPL for the
request.

If you omit this operand (and also in the SPL macro), you will be given access
also to a queue entry which was submitted without password protection via a
local spool device.

If you use register notation, the specified register must point to an eight-byte
field that contains the password left-justified.

QUEUE=LST|PUN
The operand specifies the queue to which the GETSPOOL request applies:

LST
For list queue

PUN
For punch queue

USERID=user-id|(reg)
For user-id specify an alphameric string of up to eight characters. For user-id,
specify the user ID associated with the queue entry to be retrieved. This ID
was defined when the job was submitted to VSE/POWER. If you omit the
operand, VSE/POWER uses, for your GETSPOOL request, the ID currently
stored in the request SPL.

If you use a register, it must point to an eight-byte field that contains the ID
left-justified.

Note: Currently this user-id value is not used by VSE/POWER when checking
correct access!

PUTSPOOL Macro: Submitting a Job Stream
You use the macro to submit a job stream from your program's buffer to the:
v VSE/POWER RDR queue for later execution in a partition under control of

VSE/POWER
v VSE/POWER transmission (XMT) queue for transmission to an other node

VSE/POWER analyses only those JECL statements which you submit with the first
PUTSPOOL request for a queue entry. VSE/POWER places these statements into
the input queue. For example, if you wish to specify output characteristics (such as
class or disposition) other than the default values, supply an * $$ LST or * $$ PUN
statement.

If your program does not pass an * $$ JOB statement, VSE/POWER builds this
statement (in accordance with your specifications for the applicable SPL) and
inserts it into your job stream.

For the second and subsequent PUTSPOOL requests, VSE/POWER passes your
input from the buffer to the VSE/POWER input queue. No more checking is
performed. When the last statement of the input has been read from the buffer and
no more continuation input exists, VSE/POWER inserts an * $$ EOJ statement if
one has not been passed.

GETSPOOL Macro

356 VSE/POWER V9R2 Application Programming

The job number assigned by VSE/POWER is returned to your program in the
job-number field of the SPL. You may want to use this job number later together
with the job name in order to retrieve the job's output.

If there is a user-written JOBEXIT routine for local input, VSE/POWER passes to
this routine the z/VSE job-control statements and JECL statements of the submitted
jobs.

Requirements For the Caller
AMODE:

24

RMODE:
24

ASC Mode:
Primary

Format of the Macro

��
name

PUTSPOOL SPL=(reg)
,CBUF= firstbuffaddr

(reg)

�

�
,CONT=(reg) ,JOBN= jobname

(reg)
,PBUF= buffaddr

(reg)

�

�
,PWD= password

(reg)
,USERID= user-id

(reg)

��

SPL=(reg)
For reg, specify the register that contains the address of the SPL that is to be
used by the PUTSPOOL macro. The SPL defines the request to VSE/POWER.

CBUF=firstbuffaddr|(reg)
For firstbuffaddr, specify the symbolic address of the first of the 88-byte buffers
that contain the job stream. The format of an 88-byte buffer is as follows:

Bytes Contents

0-3 A pointer to the next buffer in the chain (0 for the last
buffer)

4-7 Reserved

8-87 An 80-byte data buffer data

If the CONT operand is specified together with CBUF, the same buffers must
be reused for the continuation data. If register notation is used, the
continuation routine must reset the previously used register contents every
time continuation data is made available. See also the description of the CONT
operand below.

The CBUF pointer in the SPCB field of the SPL is used as a work area and is
set to zero when PUTSPOOL processing is ended. If the PUTSPOOL macro
uses an SPL which has already been used, or if the PUTSPOOL macro is
entered more than once with the same SPL, one of the following is required:

PUTSPOOL Macro

Appendix A. Cross-Partition Communication via Spool Macros 357

v CBUF is specified to reset the field SPCB of the SPL.
v The field SPCB of the SPL is updated (a maximum of 4,095 input buffers is

allowed for every PUTSPOOL access).
v The buffer defined by CBUF is the only one (its chain pointer is zero).

CONT=(reg)
If the buffers processed by this execution of PUTSPOOL do not contain the
complete job stream, this operand should be used to give the address of a
continuation routine. In this routine, you can submit further data buffers
associated with the same job stream. However, no other operands can be
changed in the continuation routine.

When this operand is used, then also the CBUF operand must be specified.

To exit from the routine, set the specified register to zero and return to the
PUTSPOOL macro or, via register 14, to VSE/POWER.

JOBN=jobname|(reg)
For jobname, specify the (unique) name that is to be assigned to the job in the
VSE/POWER input queue. This name is to be used if, for example, the job's
output is to be retrieved by a GETSPOOL macro or if the job is to be accessed
by a CTLSPOOL macro.

PBUF=buffaddr|(reg)
For buffaddr, specify the address of a buffer for use by VSE/POWER and for
VSE/POWER feedback information on certain error conditions. The size of this
buffer must be at least 88 bytes. If register notation is used, the specified
register must contain a pointer to this buffer.

PWD=password|(reg)
Use this operand to define the password for this VSE/POWER job.

A password which you specify in a PUTSPOOL macro:
v Overrides the password that may be stored in the request SPL.
v Must be used in any subsequent GETSPOOL and CTLSPOOL macro for the

job.
v Can be overridden for output by the PWD operand of an * $$ LST statement

or * $$ PUN statement.

The password can be any string of up to eight alphameric characters.

USERID=user-id|(reg)
For user-id, specify the owning user-ID which is to be associated with the
queue entry that is to be placed into one of the VSE/POWER queues (RDR or
XMIT).

If you use register notation, the specified register must point to an eight-byte
field containing the ID left-justified.

If you omit this operand and do not supply a user ID with the SPL macro
defining the request SPL, VSE/POWER spools the applicable job input with a
default blank user ID.

PUTSPOOL Macro

358 VSE/POWER V9R2 Application Programming

Return Codes for CTLSPOOL, GETSPOOL, and PUTSPOOL
When issuing a PUTSPOOL, GETSPOOL, or CTLSPOOL macro, the return codes
are issued in the SPL and/or in register 15.

Return Codes in Register 15
VSE/POWER's SPOOL macro support makes use of the z/VSE macros XPOST and
XWAIT; your program should examine their return codes in register 15. For a
description of these macros and their return codes, see z/VSE System Macros
Reference, SC34-2638. In order to distinguish between return codes provided by
XPOST and XWAIT, XPOST return codes are multiplied by 16. This means bit 24 to
bit 27 of register 15 contain the return code for XPOST. Bit 28 to bit 31 contain the
return code for XWAIT. If XPOST sets any return code, XWAIT will not be
processed.

Register 15 contains the code X'40' if VSE/POWER control tables were generated
without SPOOL=YES specified in the VSE/POWER generation macro.

Register 15 contains the code X'C0' if VSE/POWER is running in a partition
allocated in a private address space and the user program is running in a partition
allocated in a different private address space (and no other error occurred). In this
case, either allocate the VSE/POWER partition in the shared address space or let
the user program run in a partition allocated in the same address space as the
VSE/POWER partition.

Return Codes in the SPL
Table 83 on page 360 shows the return codes that your program receives following
the processing of a PUTSPOOL, GETSPOOL, or CTLSPOOL macro. VSE/POWER
supplies these codes as follows:
v In the SPL bytes SPER and SPER2
v In a byte you can access using the DSECT generated by SPL TYPE=MAP,...

You access this byte by referring to field xxxXECB+4, where xxx is either SPM or
ICR depending on the type of SPL.

Additional information is passed to your program in error-feedback byte 2 (SPER2)
of the SPL:

Mnemonic of
Equate

Hex.
Value Meaning

SPAI 80 Wrong password - access denied

SPAC 40 Job/Output Spool Access Protection violation. VSE/POWER
has been started with Spool Access Protection active, and the
given spool entry does not specify SECAC=NO, and an
XECB program attempted to access a spool entry. However,
either:

- the program's security logon userid (from either the IBM
Component terminal logon or the partition from the // ID or
* $$ JOB SEC= statement) does not match the spool entry's
authorized access userid(s) (either the spool entry's origin or
target userid), or

- the spool entry specifies a target userid of 'ANY' and the
program does not have a security logon userid

Return Codes

Appendix A. Cross-Partition Communication via Spool Macros 359

Mnemonic of
Equate

Hex.
Value Meaning

The authorized access userid(s) can be displayed with the
PDISPLAY command (displayed as FROM= or TO=).

SPDDR 02 3540 data-mode record is being processed

Table 83. Return Codes Supplied in the SPL

Return
Code Meaning

Passed in

xxxXECB
+4 SPER

X’0x’
X’08’

X’09’
X’1x’
X’11’
X’12’
X’14’
X’15’
X’16’
X’17’
X’18’
X’2x’
X’21’

X’22’

X’24’

X’28’

Miscellaneous:
End of data encountered during a GETSPOOL
request, or invalid LINENO specified in
GETSPOOL.
Task was waiting on queue/account file space.
Invalid specification:
Command not allowed.
Invalid VSE/POWER output disposition in SPL.
Invalid output class (not A-Z, not 0-9) in SPL.
Invalid user Id (not A-Z) in SPL.
Invalid queue specified.
Invalid password specified.
Invalid job name in SPL.
Job processing errors:
The PBUF buffer area is smaller than 88 bytes
or not large enough to hold the largest output
data record (PBUFL in GETSPOOL too small).
GETSPOOL was unable to locate output file by
specified job name, job class, and dispatch-
able VSE/POWER disposition, or requested output
file is in use. If an invalid password was
specified, X’80’ appears in field SPER2
of the SPL also.
A loop occurred in the PUTSPOOL buffer chain,
or more than 4095 buffers were used per
request.
Invalid CTLSPOOL REQ operand.

X

X
X
X
X
X
X
X

X

X

X

X

X

X
X
X
X
X
X
X

X

X

X

X

X’4x’
X’41’

X’42’

X’44’

X’48’

X’49’

X’8x’
X’82’
X’84’
X’88’

VSE/POWER diagnostic:
VSE/POWER terminated normally, or
VSE/POWER terminated abnormally, or
VSE/POWER spool management task terminated
abnormally.
A VSE/POWER message was logged during CTLSPOOL
(see Notes below).
A VSE/POWER error occurred during GETSPOOL
(see Notes below).
A VSE/POWER error occurred during PUTSPOOL
(see Notes below).
Task waiting on queue/account file space. This
return code will not appear when the PUTSPOOL/
GETSPOOL user receives control back fromVSE/POWER
.
Invalid address pointer:
Invalid data buffer chain (PUTSPOOL)
Invalid VSE/POWER buffer address (PBUF)
Invalid SPL address

X
X
X

X

X

X

X
X
X

X

X

X

X
X

Return Codes

360 VSE/POWER V9R2 Application Programming

Table 83. Return Codes Supplied in the SPL (continued)

Return
Code Meaning

Passed in

xxxXECB
+4 SPER

Notes:

1. The first 60 characters of the VSE/POWER message are displayed at displacement 28 of
the buffer defined by the PBUF operand.

2. No spool management error detection is done for a CTLSPOOL with
REQ=COMMAND. Your program must analyze the message returned by VSE/POWER
in the buffer defined by the PBUF operand. If the command passed by a CTLSPOOL
request results in more than one message, VSE/POWER returns only the message that
best describes the condition.

3. All values specified in the NEWVAL operand of CTLSPOOL must conform to the
related VSE/POWER rules.

Coding Example for Using the SPOOL Macros
Figure 10 gives a coding example for the use of the SPOOL macro support.
Figure 11 on page 369 shows the console listing that resulted from running the
example, and Figure 12 on page 370 shows the corresponding list output.

The example submits a job made up of numbered card-image records. The output
of the job is retrieved, with GETSPOOL, both sequentially and randomly. The
output is displayed at the same time.

In the example, the F2 partition is used by VSE/POWER, the F3 partition processes
the reader CLASS=A input, and the job runs in the BG partition.

Columns 119 and 120 of Figure 12 on page 370 contain the CCW command code
on account of the CC=YES specification in the GETSPOOL macro.

PUNCH ’ PHASE EXAMPLE,S’
* *
* *
* V S E / P O W E R *
* *
* C R O S S - P A R T I T I O N E X A M P L E *
* *
* *
* *
* *

SPACE 3
* THE FOLLOWING IS AN EXAMPLE OF THE USAGE OF VSE/POWER CROSS-PARTITION
* SUPPORT. IT CONFORMS TO THE SUGGESTED PROGRAMMING PRACTICES SO AS
* TO ALLOW A MAXIMUM OF FRICTION-FREE EXISTENCE BETWEEN MULTIPLE USERS.
*
* REGISTER USAGE:
*
* R0 - VSE WORK REG (SETIME MACRO)
* R1 - WORK REGISTER,DOS/VSE WORK REG (XECBTAB MACRO)
* R2 - WORK REGISTER
* R3 - WORK REGISTER
* R4 - WORK REGISTER
* R5 - PNTR TO PUTSPOOL CARD INPUT AREA,WORK REGISTER

Figure 10. Coding Example for the Use of SPOOL Macros

Return Codes

Appendix A. Cross-Partition Communication via Spool Macros 361

* R6 - LINK RETURN REG: PUT,TESTSTAT,HEXCONV ROUTINES
* R7 - BASE REG 2
* R8 - GETSPOOL LINENO= PARAMETER VALUE
* R9 - BASE REG 1
* R10 - LINK RETURN REG: GETSUB,XRETRY ROUTINE
* R11 - SPL PNTR
* R12 - PUTSPOOL CONT= PNTR
* R13 -
* R14 - VSE WORK REG (XECBTAB MACRO)
* R15 - VSE WORK REG

SPACE 1
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SPACE 3
EJECT
PRINT NOGEN
CSECT
BALR R9,0 ESTABLISH ADDRESSABILITY
USING *,R9,R7 LA R7,4095(,R9)
LA R7,1(,R7)
SPACE
OPEN SYSLST
SPACE
MVC LINE,=CL120’EXAMPLE BEGIN’
BAL R6,PUT PRINT START OF EXEC MSG
SPACE

* PUTSPOOL SECTION *

SPACE
* THE PUTSPOOL XECB IS DEFINED AND IF DEFINE IS NOT SUCCESSFUL,
* THEN A RETRY WITH A COUNTER IS MADE. IF NOT SUCCESSFUL, THEN
* EITHER ANOTHER USER HAS IT RESERVED, OR THE VSE XECB
* TABLE IS FULL.

SPACE
XR R2,R2 SET RETRY COUNTER
MVC LINE,ERRMSG0 INIT MSG AREA

XDEFPUT XECBTAB TYPE=DEFINE,XECB=ICRXECB,ACCESS=XWAIT
LTR R15,R15 ERROR RETURN?
BZ PUTSPOOL NO
SPACE

* XECBTAB ERROR RETURN
LA R10,XDEFPUT LOAD RETRY RETURN PNTR
B XRETRY RETRY
SPACE

* THE PUTSPOOL XECB IS NOW OWNED.
* THE POINTER REGS ARE LOADED FOR THE PUTSPOOL CALL.
PUTSPOOL MVC LINE,=CL120’EXAMPLE PUTSPOOL:’

BAL R6,PUT PRINT HEADER
SPACE
LA R11,SPLEX LOAD PUTSPOOL SPL=PNTR
USING SPL,R11
ST R11,ICRXECB+4 INITIALIZE XECB

Coding Example for SPOOL Macros

362 VSE/POWER V9R2 Application Programming

LA R12,PUTCONT LOAD PUTSPOOL CONT= PNTR
LA R5,CARDS1 LOAD PUTSPOOL CBUF= PNTR
SPACE

PUTLOOP PUTSPOOL SPL=(R11),CONT=(R12),CBUF=(R5),JOBN=EXAMPLE
SPACE

* DO ERROR CHECKING FOLLOWING PUTSPOOL.
MVC LINE,ERRMSG1 INIT MSG AREA
LTR R15,R15 VSE ERROR RTN ?
BNZ ERRX YES MVC LINE,ERRMSG2 INIT MSG AREA
LA R2,ICRXECB INIT PNTR FOR PUTSPOOL ERR RTN CHECK
BAL R6,TESTSTAT CHECK FOR PUTSPOOL ERROR RTN
SPACE

* DELETE THE PUTSPOOL XECB NOW TO ALLOW OTHER USERS ACCESS
XECBTAB TYPE=DELETE,XECB=ICRXECB
B JOBWAIT
SPACE 3

* PUTSPOOL CONTINUATION ROUTINE

SPACE
* DO ERROR CHECKING
PUTCONT MVC LINE,ERRMSG1 INIT MSG AREA

LTR R15,R15 VSE ERROR RTN?
BNZ ERRX YES
MVC LINE,ERRMSG2 INIT MSG AREA
LA R2,ICRXECB LOAD PNTR FOR PUTSPOOL ERR RTN CHECK
BAL R6,TESTSTAT CHECK FOR PUTSPOOL ERROR RTN
SPACE

* SET UP FOR PUTSPOOL CONTINUATION AND RETURN TO PUTSPOOL.
LA R5,CARDS2 LOAD PNTR TO NEXT INPUT
LA R12,0 INDICATE END OF INPUT
B PUTLOOP RETURN TO PUTSPOOL
SPACE 3

* CHECK FOR JOB COMPLETION

* A WAIT WITH TIMER INTERRUPT IS SCHEDULED IN ORDER TO ALLOW ANY
* PARTITIONS WITH A LOWER PRIORITY TO EXECUTE WHILE WAITING ON
* PUTSPOOL INPUT TO EXECUTE. THIS IS ESPECIALLY
* IMPORTANT IF THIS PARTITION HAS A HIGHER PRIORITY THAN THE
* VSE/POWER PARTITION!!

SPACE
JOBWAIT LA R11,SPLEX

ST R11,SPMXECB+4 INIT XECB
SPACE

CTLLOOP SETIME 1,TECB SET TIMER INTERRUPT
WAIT TECB
SPACE

* DEFINE CTL/GETSPOOL XECB
XR R2,R2 INIT RETRY COUNTER

XDEFCTL XECBTAB TYPE=DEFINE,XECB=SPMXECB,ACCESS=XWAIT
LTR R15,R15 ERROR RTN?
BZ CTLSP1 NO
SPACE

* XECBTAB ERROR RETURN
MVC LINE,ERRMSG3 INIT MSG AREA
LA R10,XDEFCTL LOAD PNTR FOR XRETRY
B XRETRY
SPACE

* XECB IS NOW OWNED AFTER TIMER PAUSE. NOW PROCEED WITH CTLSPOOL CALL.
CTLSP1 CTLSPOOL SPL=(R11),REQ=STATUS

SPACE
* CHECK FOR ERROR

MVC LINE,ERRMSG4 INIT MSG AREA
LTR R15,R15 VSE ERROR RTN?
BNZ ERRX YES
MVC LINE,ERRMSG5 INIT MSG AREA

Coding Example for SPOOL Macros

Appendix A. Cross-Partition Communication via Spool Macros 363

LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK FOR CTLSPOOL ERROR RTN
SPACE
CLI SPSQ,C’R’ JOB STILL IN RDR QUEUE?
BE CTLDEL YES,DELETE XECB AND LOOP
CLI SPSQ,C’L’ IS JOB IN THE LST QUEUE?
BE GETSPOOL YES, KEEP XECB AND DO GETSPOOL
MVC LINE,ERRMSGX ERROR MSG AREA, INIT MSG AREA
BAL R6,PUT
SPACE

* DELETE XECB AND EXIT
XECBTAB TYPE=DELETE,XECB=SPMXECB
EOJ
SPACE

* DELETE XECB AND RETRY AFTER TIMER WAIT
CTLDEL XECBTAB TYPE=DELETE,XECB=SPMXECB DELETE CTL/GETSPOOL XECB

B CTLLOOP LOOP
EJECT

* GETSPOOL SECTION - SEQUENTIAL RETRIEVAL

SPACE
GETSPOOL MVC LINE,=CL120’EXAMPLE GETSPOOL SEQUENTIAL:’

BAL R6,PUT
SPACE

GETLOOP XC PBUF,PBUF CLEAR OUTPUT BUFFER
SPACE
GETSPOOL SPL=(R11),CC=YES RETRIEVE WITH CMND CODES
SPACE

* CHECK FOR ERROR
MVC LINE,ERRMSG6 INIT MSG AREA
LTR R15,R15 VSE ERROR RTN?
BNZ ERRX YES
MVC LINE,ERRMSG7 INIT MSG AREA
LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK FOR GETSPOOL ERROR RTN
SPACE

* PRINT OUT RECORD RETRIEVED WITH COMMAND CODE.
MVC LINE,PBUF MOVE RETRIEVED OUTPUT TO PRINT BUF
XR R3,R3
IC R3,SPCC LOAD LST RECORD CMND CODE
LA R4,CC
BAL R6,HEXCONV CONVERT CMND CODE TO EBCDIC
BAL R6,PUT PRINT OUTPUT REC
SPACE

* TEST FOR END OF OUTPUT
TM SPER,SPLR END OF DATA?
BNO GETLOOP NO, LOOP BACK AND GET NEXT RECORD
SPACE 3

* GETSPOOL SECTION - BROWSING (RANDOM RETRIEVAL)

SPACE
* JOB NOW HAS DISP=L AFTER RETRIEVAL. CHANGE BACK TO DISP=K IN ORDER
* TO RETRIEVE AGAIN.

SPACE
CTLSPOOL SPL=(R11),REQ=DISP,NEWVAL=C’K’
SPACE

* CHECK FOR ERROR
MVC LINE,ERRMSG8 INIT MSG AREA
LTR R15,R15 VSE ERROR RTN?
BNZ ERRX YES MVC LINE,ERRMSG9 INIT MSG AREA
LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK FOR CTLSPOOL ERROR RTN
SPACE

* PRINT OUT HEADER
MVC LINE,=CL120’EXAMPLE GETSPOOL RANDOM RETRIEVAL:’

Coding Example for SPOOL Macros

364 VSE/POWER V9R2 Application Programming

BAL R6,PUT
SPACE

* GET LINE 3
LA R8,3 LOAD LINENO VALUE
BAL R10,GETSUB CALL GETSPOOL AND PRINT LINE
SPACE

* GET LINE 2
LA R8,2 LOAD LINENO VALUE
BAL R10,GETSUB CALL GETSPOOL AND PRINT LINE
SPACE

* GET LINE 4
LA R8,4 LOAD LINENO VALUE
BAL R10,GETSUB CALL GETSPOOL AND PRINT LINE
SPACE 3

* DELETE OUTPUT AND EXIT

SPACE
CTLSPOOL SPL=(R11),REQ=SCRATCH
SPACE

* CHECK FOR ERROR
MVC LINE,ERRMSG10 INIT MSG AREA
LTR R15,R15 VSE ERROR RTN?
BNZ ERRX YES
MVC LINE,ERRMSG11 INIT MSG AREA
LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK CTLSPOOL ERROR RTN
SPACE 3
MVC LINE,=CL120’EXAMPLE SUCCESSFUL’
BAL R6,PUT
SPACE

ERREND DS 0H
* EXIT - XECB’S DEFINED AT THIS TIME ARE DELETED BY VSE AT EOJ, SO
* NO XECBTAB TYPE=DELETE IS NECESSARY

EOJ
SPACE 3
EJECT

* GETSPOOL SUBROUTINE

* SUBROUTINE TO DO RANDOM GETSPOOL.
* INPUT REGS:
* R8 - LINENO VALUE
* R10 - LINK REG
* R11 - SPL PNTR

SPACE
GETSUB XC PBUF,PBUF CLEAR GETSPOOL OUTPUT AREA

GETSPOOL SPL=(R11),LINENO=(R8)
SPACE* CHECK FOR ERROR
MVC LINE,ERRMSG12 INIT MSG AREA
LTR R15,R15 VSE ERROR RTN?
BNZ ERRX YES
MVC LINE,ERRMSG13 INIT MSG AREA
LA R2,SPMXECB LOAD PNTR FOR TESTSTAT
BAL R6,TESTSTAT CHECK FOR GETSPOOL ERROR RTN
SPACE

* PRINT RETRIEVED LINE
MVC LINE,=CL120’LINE XX =’
LR R3,R8
LA R4,LINE+5
BAL R6,HEXCONV CONVERT LINE NUMBER TO EBCDIC
BAL R6,PUT PRINT LINE NUMBER
SPACE
MVC LINE,PBUF
BAL R6,PUT PRINT PBUF
SPACE
BR R10 RETURN

Coding Example for SPOOL Macros

Appendix A. Cross-Partition Communication via Spool Macros 365

SPACE 5

* EXIT ROUTINE FOR VSE ERROR RTN HANDLING

SPACE
ERRX LR R2,R15 LOAD VSE ERROR RTN CODE TO R2

BAL R6,PUT PRINT MSG AREA
MVC LINE,=CL120’ ERROR RTN CODE IN REGISTER 2’
BAL R6,PUT

* DUMP DUMP
B ERREND EXIT
EJECT

* TESTSTAT SUBROUTINE - TESTS THE VSE/POWER RETURN CODE

* INPUT REGS:
* R2 - ADDR OF CORRESPONDING VSE/POWER XECB
* R6 - LINK REG

SPACE
TESTSTAT TM 4(R2),SPIA+SPPP+SPUE+SPPI ERROR RETURN ?

BZR R6 NO
SPACE

* PRINT PREPARED MESSAGE WITH RTN CODE
XR R3,R3
IC R3,4(R2) LOAD RETURN CODE
LA R4,RTNCODE POINT TO HEXCONV OUTPUT AREA
BAL R6,HEXCONV CONVERT RTN CODE TO HEX
BAL R6,PUT PRINT OUT PREPARED MESSAGE AREA
SPACE

* PRINT PBUF FOR POSSIBLE MESSAGE FROM VSE/POWER
MVC LINE,=CL120’PBUF=’
BAL R6,PUT
MVC LINE,PBUF
BAL R6,PUT
SPACE

* DUMP B ERREND
SPACE 5

* HEXCONV SUBROUTINE - CONVERTS SINGLE BYTE TO TWO EBCDIC BYTES

* INPUT REGS:
* R3 = INPUT BYTE TO CONVERT
* R4 = PNTR TO OUTPUT AREA (TWO BYTES LONG)
* R6 = LINK REG
HEXTBL DC C’0123456789ABCDEF’ HEX CONVERT TABLE

SPACE
HEXCONV SLDL R2,28 SHIFT LEFT HALF-BYTE TO R2 LOW ORDER

STC R2,0(R4) STORE LEFT HALF-BYTE TO OUTPUT + 0
SRL R3,28 SHIFT RIGHT HALF-BYTE TO R3 LOW ORDER
STC R3,1(R4) STORE RIGHT HALF-BYTE TO OUTPUT + 1
TR 0(2,R4),HEXTBL TRANSLATE OUTPUT
BR R6 RETURN
EJECT

* XRETRY SUBROUTINE - RETRYS BLOCKED XECBTAB MACRO

* PRINTS A WARNING MESSAGE EVERY 16 SEC.
* INPUT REGS:
* R2 - RETRY COUNTER (BEGINNING WITH ZERO)
* R6 - RETURN REG

SPACE
XRETRY LA R2,1(,R2) INCREMENT COUNTER

ST R2,RETRYCNT STORE FOR TRACING
SPACE

* SET TIMER INTERRPT FOR 1 SEC.
SETIME 1,TECB
WAIT TECB

Coding Example for SPOOL Macros

366 VSE/POWER V9R2 Application Programming

SPACE
C R2,RETRYMAX RETRY LIMIT EXCEEDED ?
BH XEND YES, PRINT MSG AND EXIT
SPACE
TM RETRYCNT+3,X’0F’ RETRY COUNTER DIVISABLE BY 16?
BNZR R10 NO, RETRY WITHOUT WARNING MESSAGE
SPACE

* PRINT INITIALIZED BUFFER MESSAGE
BAL R6,PUT PRINT WARNING MESSAGE
BR R10 RETRY
SPACE

* PRINT ERROR MESSAGE AND EXIT
XEND MVC LINE,ERRMSG14

BAL R6,PUT
B ERREND
SPACE 5

* PUT SUBROUTINE - PRINTS LINE ON CONSOLE AND SYSLST

SPACE
PUT LA R1,CCB

EXCP (R1)
WAIT (R1) PUT SYSLST
BR R6
EJECT

* CONSTANTS

SPACE
* XECB’S
ICRXECB DC A(0,*-*)
SPMXECB DC A(0,*-*)

SPACE
* ECB’S
TECB TECB

SPACE
* I/O BUFFERS
PBUF DC CL120’ ’
LINEX DC X’09’
LINE DC CL120’ ’

ORG LINE+118
CC DS 2X

ORG ,
RTNCODE EQU LINE+39

SPACE
* PUTSPOOL INPUT
CARDS1 DC A(*+88,0)

DC CL80’// JOB XYZ’
DC A(0,0)
DC CL80’* CARD 2’

CARDS2 DC A(*+88,0)
DC CL80’* CARD 3’
DC A(0,0)
DC CL80’/&&’
SPACE

* RETRY VALUES
RETRYCNT DC A(*-*) CURRENT MAXIMUM RETRIES
RETRYMAX DC F’600’ MAX RETRY - 10 MINUTES

SPACE
* SPL MACRO’S
SPLEX SPL TYPE=DEFINE,PBUF=PBUF,PBUFL=120

SPACE
* MESSAGES
ERRMSG0 DC CL120’EXAMPLE WARNING:XECBTAB DEFINE OF ICRXECB BLOCKED’
ERRMSG1 DC CL120’EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROM PUTSPOOL’
ERRMSG2 DC CL120’EXAMPLE ERROR:PUTSPOOL ERROR RTN CODE=’
ERRMSG3 DC CL120’EXAMPLE WARNING:XECBTAB DEFINE OF SPLXECB BLOCKED’

Coding Example for SPOOL Macros

Appendix A. Cross-Partition Communication via Spool Macros 367

ERRMSG4 DC CL120’EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROM CTLSPOOL1’
ERRMSG5 DC CL120’EXAMPLE ERROR:CTLSPOOL1 ERROR RTN CODE=’
ERRMSGX DC CL120’EXAMPLE ERROR:JOB LST OUTPUT NOT IN LST QUEUE’
* (CAUSE IS EITHER ANOTHER TASK/X-PARTITION USER PROCESSED
* THE OUTPUT, OR IT WAS NOT SPOOLED DURING EXECUTION)
ERRMSG6 DC CL120’EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROM GETSPOOL1’
ERRMSG7 DC CL120’EXAMPLE ERROR:GETSPOOL1 ERROR RTN CODE=’
ERRMSG8 DC CL120’EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROM CTLSPOOL2’
ERRMSG9 DC CL120’EXAMPLE ERROR:CTLSPOOL2 ERROR RTN CODE=’
ERRMSG10 DC CL120’EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROM CTLSPOOL3’
ERRMSG11 DC CL120’EXAMPLE ERROR:CTLSPOOL3 ERROR RTN CODE=’
ERRMSG12 DC CL120’EXAMPLE ERROR:XPOST/XWAIT ERROR RTN FROM GETSPOOL2’
ERRMSG13 DC CL120’EXAMPLE ERROR:GETSPOOL2 ERROR RTN CODE=’
ERRMSG14 DC CL120’EXAMPLE ERROR:XECB DEFINE BLOCKED’

SPACE 5
* I/O SECTION
CCB CCB SYSLOG,CCW
CCW CCW X’09’,LINE,X’20’,80

SPACE
SYSLST DTFDI DEVADDR=SYSLST,IOAREA1=LINEX,RECSIZE=121,MODNAME=MODNAME

SPACE
MODNAME DIMOD TYPEFLE=OUTPUT

EJECT
PRINT GEN

* DSECT’S
SPL SPL TYPE=MAP

CSECT
LTORG
END

Coding Example for SPOOL Macros

368 VSE/POWER V9R2 Application Programming

BG
exec example
BG
EXAMPLE BEGIN
BG
EXAMPLE PUTSPOOL:
F2
1Q47I F3 EXAMPLE 00020 FROM 000
F3
// JOB XYZ
DATE 07/11/78, CLOCK 09/04/51
F3
* CARD 2
F3
* CARD 3
F3
EOJ XYZ

DATE 07/11/78,CLOCK 09/04/54,DURATION 00/00/02
F2
1034I F3 WAITING FOR WORK
BG
EXAMPLE GETSPOOL SEQUENTIAL:
BG

BG
// JOB XYZ
BG
* CARD 2
BG
* CARD 3
BG
EOJ XYZ
BG

BG

BG
EXAMPLE GETSPOOL RANDOM RETRIEVAL:
BG
LINE 03 =
BG
* CARD 3
BG
LINE 02 =
BG
* CARD 2
BG
LINE 04 =
BG
EOJ XYZ
BG
EXAMPLE SUCCESSFUL
BG
1I00A READY FOR COMMUNICATIONS.
BG

Figure 11. Console Listing of the SPOOL Macro Example

Coding Example for SPOOL Macros

Appendix A. Cross-Partition Communication via Spool Macros 369

Figure 12. List Output of SPOOL Macro Example

370 VSE/POWER V9R2 Application Programming

Appendix B. Output Segmentation by SEGMENT Macro

The SEGMENT macro can be used for controlling output segmentation for a job
running in a VSE/POWER-controlled partition. You can use the macro for the
specification of new output characteristics that are to apply to the next segment.
VSE/POWER assigns a new job number for the second and every subsequent
SEGMENT request of your program.

The SEGMENT macro call results in a spooled I/O request for device=DEVADDR,
and the macro call completion may in extreme cases be affected by storage or
spool-space shortage of the VSE/POWER partition. The call opens a
single-threaded path to VSE/POWER that ties up the Logical Transient Area for
the duration of the simulated I/O request. Therefore, it is recommended to use the
multi-threaded IPWSEGM macro instead, and even modify existing application
programs to exchange the SEGMENT macro by the IPWSEGM call. Follow up the
necessary conversion steps by comparing the SEGMENT coding examples 1 and 2
with the functionally equivalent examples 1 and 2 of the IPWSEGM macro.

When converting existing SEGMENT macro calls to IPWSEGM, then
v Use the FNO= and JNM= operands of the * $$ LST/PUN statements to achieve

the function of the FORMS= and NAME= operands of the SEGMENT macro.
v No * $$ JOB statement can be passed via IPWSEGM to modify the current

segment's name. This seldom used function is provided by the SEGMENT macro
only.

SEGMENT Macro - Controlling Output Segmentation
Before using the macro, save the registers 0 and 1, because they are used and
overwritten by VSE/POWER. Register 15 contains the return code passed by
VSE/POWER on completion of the segment request.

Requirements for the Caller
AMODE:

24 or 31

RMODE:
24

ASC Mode:
Primary

Format of the Segment Macro

��
name

SEGMENT DEVADDR=SYSxxx
,FORMS=formnumber

�

�
,JECL= addr

(reg)
,NAME= name

(reg)

��

© Copyright IBM Corp. 1987, 2014 371

DEVADDR=SYSxxx
For SYSxxx, specify the system or programmer logical unit assigned to the
device on which the segmentation is to occur.

Your device specification in this operand must match your specification in the
LST operand of * $$ LST for list output, or
PUN operand of * $$ PUN for punch output

if you supplied a device specification in that statement. In case of mismatch,
the LST/PUN operand values are ignored (see also Note 2 of the JECL
operand).

FORMS=formnumber
For formnumber, specify the new one- to four-character form number which
VSE/POWER is to use for the next segment.

VSE/POWER sets the form number to blanks if you omit the operand.

If you also use the JECL operand, any FORMS specification will be
overwritten. In that case, use the FNO operand of your * $$ LST/PUN
statement to define a form number for the next output segment.

JECL=address|(reg)
This operand points to a 71-byte area which contains one of the following
JECL statements: * $$ LST, * $$ PUN, or * $$ JOB (see note 1). These statements
are described in the VSE/POWER Administration and Operation, SC34-2625. The
JECL area must reside below the 16MB line either in the partition or in the
dynamic GETVIS area.

For address, specify the area's label in your program.

For reg, if you choose register notation, specify the register which contains the
address of the area.

If you omit the specification of an * $$ LST, * $$ PUN, or * $$ JOB statement,
default spooling values will be set for the new segment (regardless of any
previously established values); therefore, pass only the operands needed to
change default values which do not meet your requirements.

Note:

1. The SEGMENT macro causes new values to be set for the new (also called
next) segment. However, passing a * $$ JOB statement with the JNM
operand causes the currently processed segment to be renamed. The
statement should, therefore, be passed by a separate SEGMENT macro after
a previous SEGMENT request has created a new output segment with
default or specified options. You may also specify the UINF operand within
your * $$ JOB statement to provide new user information for the current
segment.

2. Specification of the LST or PUN operand passed in * $$ LST or * $$ PUN
statement is ignored.

3. If output segmentation is requested for output on an IBM 3800 printer,
VSE/POWER uses the default printer setup for the new segment. If this is
not desirable, supply an * $$ LST statement defining the desired printer
setup. After having issued the SEGMENT macro, you may, in your
program, issue a SETPRT macro requesting the proper printer setup.

4. Submitted * $$ LST or * $$ PUN statements with the operands TLBL= or
LTAPE= cannot be used to specify spooling output for a VSE/SAM
supported spool tape because this might result in a system softwait.

SEGMENT Macro

372 VSE/POWER V9R2 Application Programming

NAME=name|(reg)
The description of the NAME operand is provided for compatibility with
releases previous to VSE/POWER 5.2. Instead, use the JNM operand of the
* $$ LST/PUN statement, which provides the same function.

To assign a new name to the new (next) segment, place the JNM operand into
the * $$ LST/PUN statement. To rename the currently processed segment, use
the JNM operand of the * $$ JOB statement. Finally, pass the corresponding
statement via the JECL= operand to the SEGMENT macro.

For name, specify a one- to eight-character new segment name. If you omit this
operand, VSE/POWER uses the name by which the job was placed into the
input queue. If you use register notation, the specified register must point to
an eight-byte field containing the name of the segment. This field must reside
below the 16MB line either in the partition or in the dynamic GETVIS area.

Return Codes from the SEGMENT Macro
Successful completion of the SEGMENT macro is indicated to the issuing program
by a return code of 0 in register 15. If the operation fails, register 15 contains one
of the return codes listed below.

Code Meaning

X'04' One of the following:
v The device specified in the DEVADDR operand is not spooled by

VSE/POWER.
v VSE/POWER is not active.
v The partition in which your program is running is not under control of

VSE/POWER.
v The spooled device is used for output with a disposition of N.
v The passed JECL statement was not one of:

* $$ JOB
* $$ LST
* $$ PUN

v The passed JECL statement was incorrect and flagged on the console by
message 1R33D, and the operator responded with FLUSH or EOB, or the
corresponding automated action was triggered by the
SET 1R33D=FLUSH|IGNORE

statement.

X'08' VSE/POWER cannot accept the JECL statement because either:
v The partition was not started as a multitasking partition and the

partition is waiting for work, or
v The partition was started as a multitasking partition and is waiting for

work, but no JECL statement was submitted for the specified device.

Note:

1. When output segmentation is requested by the SEGMENT macro, all
the already collected output by VSE/POWER for the specified device is
added as an entry to the corresponding VSE/POWER queue - provided
that the device has already been addressed during the VSE/POWER
job before.

2. The output which has been created between two segment macros in a
job transaction for the specified logical unit is added to a VSE/POWER

SEGMENT Macro

Appendix B. Output Segmentation by SEGMENT Macro 373

queue before the program reaches end-of-job. For long running
programs like CICS, you can use the SEGMENT macro in a transaction
to close spooling of output whenever desired. But, the specified output
logical unit is unique in a CICS partition and, therefore, you may get
mixed output if the same transaction runs twice at the same time,
unless you have established private resource locking.

3. COBOL/VSE programs (and most likely all other LE/VSE languages)
spool "double buffered" for unit record output, e.g. SYSLST. This causes
problems if the VSE/POWER SEGMENT macro is used. The last line of
the current segment may appear as the first line of the next segment
instead. The two I/O buffers are handled by LIOCS (Logical
Input/Output Control System) and are not synchronized with the
SEGMENT macro call which expands into a SVC 0 and uses PIOCS
(Physical Input/Output Control System).
The solution to this problem is to select only one I/O buffer in the file
definition of the calling high level language program in order to spool
the data "single buffered".

Examples of the SEGMENT Macro

Example 1
The following example shows how to code the SEGMENT macro and its
referenced data areas.

...
LA 2,LSTCARD
SEGMENT DEVADDR=SYSLST,JECL=(2)
...

LSTCARD DC CL71’* $$ LST JNM=TESTOUT,FNO=ACB1,DISP=H’
...

Example 2
This sample job creates another VSE/POWER job in the RDR queue with new
name and new input class using the DISP=I facility. To accomplish this, two
SEGMENT macros are required.

The first SEGMENT macro passes a '* $$ PUN' JECL statement to VSE/POWER.
This statement contains 'DISP=I' to indicate that the output segment being created
should be added to the RDR queue. It also contains 'CLASS=7' and
'JNM=NEWJOB2' to specify the execution class of the new job segment with the
unique name 'NEWJOB2'. When requesting this SEGMENT macro, VSE/POWER
will create a new queue entry with the new class and jobname. The next step is to
punch the job control and user data to the punch device. In this case, using
physical I/O control (PIOCS). A second SEGMENT macro is required to have the
current segment added to the RDR queue.
// JOB SEGMENT
// OPTION CATAL
// LIBDEF *,SEARCH=PRD1.MACLIB
// LIBDEF PHASE,CATALOG=IJSYSRS.SYSLIB
PHASE SEGTEST,*
// EXEC ASSEMBLY,SIZE=100K

CSECT
PRINT GEN
BALR 10,0
USING *,10

* ---
* POINT TO THE * $$ PUN STATEMENT WITH DISP=I, THE NEW JOB CLASS AND
* THE NEW JOB NAME
* ---

SEGMENT Macro

374 VSE/POWER V9R2 Application Programming

LA 2,PUNCARD
* ---
* NOW PASS 1ST SEGMENT REQUEST TO POWER WITH >>> SEE NOTE 1 <<<
* ---
*

SEGMENT DEVADDR=SYS008,JECL=(2)
*

LTR 15,15 DID IT WORK?
BNZ ERROR NO, GO INFORM OPERATOR

* ---
* NOW PASS THE JCL AND USER STATEMENTS FOR THE NEW POWER JOB
* BEING CREATED.
* ---

LA 1,CCB POINT TO THE CCB
EXCP (1) AND ISSUE THE SVC0
WAIT (1) AND WAIT FOR I/O TO COMPLETE

* ---
* AND FINALLY, PASS SECOND SEGMENT REQUEST FOR THE PUNCH DEVICE
* TO HAVE THE NEW JOB ADDED TO THE READER QUEUE WITH UNIQUE
* EXECUTION CLASS AND JOB-NAME. AT THE SAME TIME RE-ESTABLISH DEFAULT
* PUNCH OUTPUT CHARACTERISTICS USING NO EXPLICIT * $$ PUN JECL STMT.
* >>> SEE NOTE 2 <<<
* ---
*

SEGMENT DEVADDR=SYS008
*

LTR 15,15 DID IT WORK?
BZ EOJ YES, DONE, GOTO EOJ

ERROR DS 0H
C 15,FOUR IF RC ¬= 4 THEN
BNE CHK8 CHECK FOR RC8
MVI RC,C’4’ ELSE, SET RC4
LA 1,CCB2 AND INFORM THE OPERATOR
EXCP (1) VIA A CONSOLE MESSAGE
WAIT (1) WAIT FOR THE I/O TO COMPLETE
B EOJ AND GOTO EOJ

CHK8 DS 0H
C 15,EIGHT IF RC ¬= 8 THEN
BNE UNKNOWN WE GOT AN UNKNOWN RETURN
MVI RC,C’8’ ELSE, SET RC8
LA 1,CCB2 AND INFORM THE OPERATOR
EXCP (1) VIA A CONSOLE MESSAGE
WAIT (1) WAIT FOR THE I/O TO COMPLETE
B EOJ AND GOTO EOJ

UNKNOWN DS 0H
MVI RC,C’U’ IF RC ¬=4 AND RC ¬=8 THEN
LA 1,CCB2 SET UNKNOWN RETURN CODE
EXCP (1) ON THE CONSOLE
WAIT (1) WAIT FOR I/O TO COMPLETE

EOJ DS 0H
EOJ RETURN TO JOB CONTROL

* ---
* * $$ PUN CARD WITH CLASS=7, DISP=I, AND JNM=NEWJOB2
* ---
*
PUNCARD DC CL71’* $$ PUN CLASS=7,DISP=I,JNM=NEWJOB2’
*
* ---
* SEGMENT MACRO ERROR MESSAGE TEXT
* ---
MSG1 DC CL29’SEGMENT MACRO RETURN CODE IS ’
* ---
* SEGMENT MACRO RETURN CODE TEXT
* --
* ---
RC DC CL1’ ’

DS 0D

SEGMENT Macro

Appendix B. Output Segmentation by SEGMENT Macro 375

FOUR DC F’4’
EIGHT DC F’8’
* ---
* CCB AND CCW FOR CONSOLE I/O
* ---
CCB2 CCB SYSLOG,CCWADDR2
CCWADDR2 CCW 09,MSG1,X’20’,X’001E’
* ---
* CCB AND CCWS FOR PUNCHING JCL AND USER STATEMENTS
* ---
CCB CCB SYS008,CCWADDR
CCWADDR CCW 01,BUF02,X’60’,X’0050’

CCW 01,BUF03,X’60’,X’0050’
CCW 01,BUF04,X’60’,X’0050’
CCW 01,BUF05,X’60’,X’0050’
CCW 01,BUF06,X’60’,X’0050’
CCW 01,BUF07,X’60’,X’0050’
CCW 01,BUF08,X’20’,X’0050’

* ---
* CONSTANTS FOR JOBSTREAM BEING PUNCHED
* ---
BUF02 DC CL80’// JOB NEWJOB2’
BUF03 DC CL80’// PAUSE’
BUF04 DC CL80’// EXEC LIBR’
BUF05 DC CL80’A S=IJSYSRS.SYSLIB’
BUF06 DC CL80’LD IPW$$NU.PHASE’
BUF07 DC CL80’/*’
BUF08 DC CL80’/&&’

END
/*
// EXEC LNKEDT
// ASSGN SYS008,SYSPCH
// LIBDEF PHASE,SEARCH=IJSYSRS.SYSLIB
// EXEC SEGTEST
/&

Example 3
The following example shows an ASSEMBLER subroutine which is called by a
high level language (COBOL) program to invoke segmentation of its list output at
a desired point in time.
*
* . This routine is to be cataloged as .OBJ
*
* . It will be AUTOLINKED to the CALLING program in the LNKEDT step
*
* . It receives three parameters:
*
* 1) A 71-byte area containing the LST card with options for the
* new segment
* 2) An 8-byte area containing the name for the new segment
* 3) A full-word parameter where the return code from
* the SEGMENT macro (register 15 contents) will be placed
*
* In the COBOL example below, the ASSEMBLER routine is used to
* segment output for different remote numbers (for instance,
* branch offices).
*
*
* Example of a COBOL calling program:
* -----------------------------------
*
* WORKING-STORAGE SECTION.
* ...
* 01 LST-CARD.
* 05 FILLER PIC X(24) VALUE ’* $$ LST CLASS=T,REMOTE=’.
* 05 LST-REMID PIC 9(03) VALUE 0.

SEGMENT Macro

376 VSE/POWER V9R2 Application Programming

* 05 FILLER PIC X(44) VALUE SPACES.
* 01 LST-NAME PIC X(08) VALUE SPACES.
* 01 LST-RETCODE PIC S9(04) COMP VALUE +0.
* ...
* PROCEDURE DIVISION.
* ...
* MOVE BRANCH-NUMBER TO LST-REMID.
* MOVE BRANCH-NAME TO LST-NAME.
* CALL ’SEGMT’ USING LST-CARD LST-NAME LST-RETCODE.
* IF LST-RETCODE NOT EQUAL ZERO
* GO TO SEGMT-ERROR.
* ...
*
* called ASSEMBLER subroutine:
*--
SEGMT CSECT

USING *,R2
STM R14,R12,12(R13)
LR R2,R15
LM R3,R5,0(R1)

*
SEGMENT DEVADDR=SYSLST,JECL=(R3),NAME=(R4)
ST R15,0(R5)
LM R14,R12,12(R13)
BR R14

*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

END SEGMT

SEGMENT Macro

Appendix B. Output Segmentation by SEGMENT Macro 377

SEGMENT Macro

378 VSE/POWER V9R2 Application Programming

Appendix C. Spool-Access Support Graphical Description

The following is a graphical summary of the Spool-Access Support similar to
Backus Naur Format. It describes the Support communication protocol at various
levels of abstraction using an informal language. The elements of the language are
"words" and the description shows the "syntax" of the language.

A dictionary of the language occurs at the end of this section. An explanation of
the description is given in the syntax diagram in Figure 13.

The description begins with a "General Phrase" which is a single "sentence" of the
language describing the protocol at the highest level of abstraction. This is
described in the syntax diagram in Figure 14.

The remaining detail of the "General Phase" follows below, which is in turn
followed by the Dictionary.

Disclaimer

This description is meant to aid the user in understanding the protocol at various
levels of abstraction. It is not meant to replace the textual description contained
earlier in this publication. In case of a contradiction, the textual description should
be referred to. IBM does not accept any responsibility for the accuracy of the
protocol description.

Layout of Graphical Description

��
(1)

User_Request
(2)

FRAGMENT <VSE_Response> ��

FRAGMENT:

. . . (protocol description detail) . . .

Notes:

1 User Request (Event)

2 VSE/POWER or VSE Response (State)

Spool-Access Support Description "General Phrase" Overview

Figure 13. Spool-Access Support Graphical Description Explanation

Figure 14. Spool-Access Support Graphical Description "General Phrase"

© Copyright IBM Corp. 1987, 2014 379

�� Identify �
(1)

Connect USER_DIALOG Disconnect
<PWR_Disconnect>
<Severe_Err_AF>
<Severe_Err_PWR>

(2)
<PWR_Quiesced>
<Connect_Error>

<Identify_Error>

��

Notes:

1 The Fragment or User event can be exited by any of the events or states
following this location.

2 <PWR_Quiesced> occurs due to the event of VSE/POWER shutting down.

Spool-Access Support Description Detail

�� ��

USER_DIALOG:

PUT_SERVICE
GET_SERVICE
CTL_SERVICE
GCM_SERVICE

PUT_SERVICE:

PUT_PROTOCOL
<Msg_Available> PUT_MSG_PROTOCOL

PUT_PROTOCOL (Job or Output):

PUT_OPEN PUT_REQUEST
<Msg_Available>

<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

PUT_MSG_PROTOCOL:

�
(1)

Return_Msg
<Last_Msgs>
<End_of_Msgs>
<More_Msgs>
<Request_Err>

(2)
<Last_Msgs>
<End_of_Msgs>
<More_Msgs>
<Request_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

Spool-Access Support Graphical Description

380 VSE/POWER V9R2 Application Programming

Notes:

1 The Fragment or User event can be exited by any of the events or states
following this location.

2 Any remaining messages will be discarded.

Spool-Access Support Description "General Phrase" Detail

�� ��

PUT_OPEN:

Put_Open_Job <Request_OK>+<Verify_SPL>
Put_Open_Output <Open_Err>
Put_Open_Output_Restart <Severe_Err_AF>

(1) <Severe_Err_PWR>
Put_Open_Output_Append

PUT_REQUEST:

�

<Put_Spool_OK> or <Request_Err>
(3)

PUT_SPOOL
(2)

<Chkpnt_Resp>

�

� <Put_Close_OK>+<Verify_SPL>
<Quit_OK>

(5)
<SOD_Err>
<SOA_Err>

(4)
<Verify_SPL>

<Severe_Err_AF>
<Severe_Err_PWR>

PUT_SPOOL(Job):

Put_Spool_Data'
Put_Spool_Data+Quit'
Put_Close'
Put_Spool_Data+Close'
Quit

PUT_SPOOL (Output):

Spool-Access Support Graphical Description

Appendix C. Spool-Access Support Graphical Description 381

Put_Spool_Data
Put_Checkpoint
Put_Spool_Data+Checkpoint
Put_Restart
Put_Segmentation
Put_Spool_Data+Segmentation
Put_Segmentation+Update SPL
Put_Close
Put_Close_Append
Put_Close+Update SPL
Put_Spool_Data+Quit
Put_Spool_Data+Close
Put_Spool_Data+Close_Append
Get_OPTB
Modify_OPTB
Quit

Notes:

1 Output must have been closed by Put_Close_Append first.

2 Result of processing checkpoint request, or a restart request which was lower
or equal to the last checkpoint.

3 The Fragment or User event can be exited by any of the events or states
following this location.

4 If an SOA error occurs and the Put_Spool request contained more than one
VSE/POWER job, then a Verification SPL is returned to the User to identify
the job which failed to be submitted.

5 The SOD / SOA Error is indicated only if required as specified at request
open with PWRSPL OPT=NOWAIT

Spool-Access Support Description "General Phrase" Detail

�� ��

GET_SERVICE:

GET_PROTOCOL
BROWSE_PROTOCOL

GET_PROTOCOL(Job or Output):

GET_OPEN <Open_OK> GET_REQUEST
<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

Spool-Access Support Graphical Description

382 VSE/POWER V9R2 Application Programming

GET_OPEN:

Get_Open <Open_OK>+<Verify_SPL>
<Open_Err>

(1)
<SOA_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

GET_REQUEST:

�
(3)

GET_SPOOL <Request_OK> <Quit_OK>
<End_Of_Data> <Get_Quit&Lock_OK>

(2) <Get_Close_OK>
<Request_OK>+<Chkpnt_Resp> <Get_Purge_OK>
<Request_OK>+<DSHR_SPL> <Severe_Err_AF>
<Request_Err> <Severe_Err_PWR>

GET_SPOOL:

Get_Spool_Data
Get_Checkpointing
Get_Checkpoint_Ext
Get_Restart
Get_Close
Get_Quit&Lock
Get_Purge_Queue
Get_OPTB
Modify_OPTB
Quit

Notes:

1 The SOD or SOA Error is indicated only if desired by the user as specified at
request open with PWRSPL OPT=NOWAIT

2 Result of processing successful <Get_Checkpointing> or
<Get_Checkpoint_Ext> request.

3 The Fragment or User event can be exited by any of the events or states
following this location.

Spool-Access Support Description "General Phrase" Detail

�� ��

BROWSE_PROTOCOL(Job or Output):

BROWSE_OPEN <Open_OK> BROWSE_REQUEST
<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

Spool-Access Support Graphical Description

Appendix C. Spool-Access Support Graphical Description 383

BROWSE_OPEN:

Browse_Open <Open_OK>+<Verify_SPL>
<Open_Err>

(1)
<SOA_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

BROWSE_REQUEST:

�
(2)

BROWSE_SPOOL <Request_OK>
<End_Of_Data>
<Request_OK>+<DSHR_SPL>
<Request_Err>

�

� <Quit_OK>
<Severe_Err_AF>
<Severe_Err_PWR>

BROWSE_SPOOL:

Browse_Spool_Data
Browse_Restart
Browse_OPTB
Quit

Notes:

1 The SOD or SOA Error is indicated only if desired by the user as specified at
request open with PWRSPL OPT=NOWAIT

2 The Fragment or User event can be exited by any of the events or states
following this location.

Spool-Access Support Description "General Phrase" Detail

�� ��

CTL_SERVICE:

CTL_OPEN_CMND <Request_OK>
(1) CTL_MSG_PROTOCOL

<End_of_Data>
<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

CTL_OPEN_DELETE_CKPT <Request_OK>
<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

Spool-Access Support Graphical Description

384 VSE/POWER V9R2 Application Programming

CTL_OPEN_CMND:

(2)
PALTER
PCANCEL
PDELETE
PDISPLAY
PHOLD
PRELEASE
(3)

Command

CTL_OPEN_DELETE_CKPT:

Delete_Checkpoint

CTL_MSG_PROTOCOL:

�
(5)

Return_Msg <More_Msgs>
(4) <Last_Msgs>

Get_Restart <End_of_Msgs>
(4) <Request_Err>

Quit

(6)
<More_Msgs>
<Last_Msgs>
<End_of_Msgs>
<Request_Err>
<Quit_OK>
<Severe_Err_AF>
<Severe_Err_PWR>

Notes:

1 <End_of_Data> indicated instead of message "1R88I OK".

2 These commands can be specified using the PWRSPL FUNC= operand.

3 This represents all commands that can be specified using PWRSPL
FUNC=COMMAND.

4 The Get_Restart and Quit requests may be issued during processing of
command response message buffer(s) for a successful "PDISPLAY queue"
command.

5 The Fragment can be exited by any of the following states.

6 Any remaining messages will be discarded if the <End_of_Data> state has not
been indicated.

Spool-Access Support Description "General Phrase" Detail

�� ��

GCM_SERVICE:

GCM_OPEN_DELETE
GCM_OPEN_KEEP
GCM_OPEN_REMOVE
GCM_OPEN_PURGE

Spool-Access Support Graphical Description

Appendix C. Spool-Access Support Graphical Description 385

GCM_OPEN_DELETE:

(1)
GCM_Open_Delete <Request_OK>

GCM_DELETE_REQ <Severe_Err_AF>
<Severe_Err_PWR>

<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

GCM_OPEN_KEEP:

(1)
GCM_Open_Keep <Request_OK> GCM_KEEP_REQ

<Severe_Err_AF>
<Severe_Err_PWR>

<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

GCM_OPEN_REMOVE:

GCM_Open_Remove <Request_OK>
<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

GCM_OPEN_PURGE:

GCM_Open_Purge <Request_OK>
<Open_Err>
<Severe_Err_AF>
<Severe_Err_PWR>

Notes:

1 The Fragment or User event can be exited by any of the events or states
following this location. The GCM Service does not require a specific exit state
(e.g. Quit or Close) as other Services.

Spool-Access Support Description "General Phrase" Detail

�� ��

GCM_DELETE_REQ:

�
(1)

GCM_More <More_Msgs>
<Last_Msgs> <Severe_Err_AF>
<End_of_Msgs> <Severe_Err_PWR>
<Request_Err>

GCM_KEEP_REQ:

Spool-Access Support Graphical Description

386 VSE/POWER V9R2 Application Programming

�

�

(1)
GCM_Remove <End_of_Data>

<Request_Err> <Severe_Err_AF>
<Severe_Err_PWR>

GCM_More <More_Msgs>
<Last_Msgs>
<End_of_Msgs>
<Request_Err>

Notes:

1 The Fragment or User event can be exited by any of the events or states
following this location. The GCM Service does not require a specific exit state
(e.g. Quit or Close) as other Services.

Spool-Access Support Description "Dictionary"
User Requests (Miscellaneous)

Definition

1.1.Identify

User performs XPCC FUNC=IDENT function.
(for details, see "Set Up a Communication Path")

1.2.Connect

User performs XPCC FUNC=CONNECT function.
(for details, see "Set Up a Communication Path")

1.3.Disconnect

User performs XPCC FUNC=DISCONN or
FUNC=DISCPRG function.
(for details, see "Ending Access to VSE/POWER Services")

1.4.Return_Msg

User requests VSE/POWER messages from previous
PUT_PROTOCOL
or CTL_PROTOCOL request.
PXUACT1=PXUATRMR PXUBTYP=0 IJBXBLN=0

1.5.Quit
User issues a Quit request.
PXUACT1=PXUATABR PXUBTYP=0 IJBXBLN=0

User Requests (Put Service Job)

2.1.Put_Open_Job'
User PUT-OPEN Job request.
PXUACT1=0 PXUBTYP=SPL SPLGRQB=SPLGRPUT

SPLGQI=SPLGQIR

Spool-Access Support Graphical Description

Appendix C. Spool-Access Support Graphical Description 387

2.2.Put_Spool_Data'
User PUT-SPOOL Job data request.
PXUACT1=0 PXUBTYP=PXUBTNBL

2.3.Put_Spool_Data+Close'
User PUT-SPOOL Job data and a PUT-CLOSE Job request
PXUACT1=PXUATEOD PXUBTYP=PXUBTNDB

2.4.Put_Spool_Data+Quit'
User PUT-SPOOL Job data and a PUT-QUIT Job request
PXUACT1=PXUATABR PXUBTYP=PXUBTNDB

2.5.Put_Close'
User PUT-CLOSE Job Service request.
PXUACT1=PXUATEOD PXUBTYP=0 IJBXBLN=0

User Requests (Put Service Output)

3.1.Put_Checkpoint
User PUT-CHECKPOINT Output request.
PXUACT1=PXUATCHK PXUBTYP=0

3.2.Put_Close
User PUT-CLOSE Output Service request.
IJBXBLN=0
PXUACT1=PXUATEOD PXUBTYP=0

3.3.Put_Close_Append

User PUT-CLOSE Output request (for later PUT-OPEN
append).
PXUACT1=PXUATROE PXUBTYP=0

3.4.Put_Close+Update SPL

User PUT-CLOSE Output request (for later PUT-OPEN
append) with update SPL.
PXUACT1=PXUATROE PXUBTYP=PXUBTSPL

3.5.Put_Open_Output
User PUT-OPEN Output request.
PXUACT1=0 PXUBTYP=PXUBTSPL SPLGRQB=SPLGRPUT

SPLGQI=SPLGQIL/P

3.6.Put_Open_Output_Append
User PUT-OPEN request for appending Output data.
PXUACT1=0 PXUBTYP=PXUBTSPL etc.

3.7.Put_Open_Output_Restart
User PUT-OPEN request for restarting Output data.
PXUACT1=0 PXUBTYP=PXUBTSPL etc.

3.8.Put_Restart
User PUT-RESTART Output Service request.
PXUACT1=0 PXUBTYP=PXUBTCTL

3.9.Put_Segmentation
User PUT-SEGMENTATION Output Service request.
PXUACT1=PXUATSGM PXUBTYP=0 IJBXBLN=0

3.10.Put_Segmentation+Update_SPL

Spool-Access Support Graphical Description

388 VSE/POWER V9R2 Application Programming

User PUT-SEGMENTATION Output Service request with
update SPL
PXUACT1=PXUATSGM PXUBTYP=PXUBTSPL

3.11.Put_Spool_Data
User PUT-SPOOL Output data request.
PXUACT1=PXUATSGM PXUBTYP=PXUBTNDB

3.12.Put_Spool_Data+Close
User PUT-SPOOL data and PUT-CLOSE Output request.
PXUACT1=PXUATEOD PXUBTYP=PXUBTNDB

3.13.Put_Spool_Data+Checkpoint
User PUT-SPOOL data and PUT-CHECKPOINT Output request.
PXUACT1=PXUATCHK PXUBTYP=PXUBTNDB

3.14.Put_Spool_Data+Quit
User PUT-SPOOL data and PUT-QUIT Output request.
PXUACT1=PXUATABR PXUBTYP=PXUBTNDB

3.15.Put_Spool_Data+Segmentation

User PUT-SPOOL data and PUT-SEGMENTATION Output
request.
PXUACT1=PXUATSGM PXUBTYP=PXUBTNDB

3.16.Put_Spool_Data+Close_Append

User PUT-SPOOL data and PUT-CLOSE Output request
(for later PUT-OPEN
append).
PXUACT1=PXUATROE PXUBTYP=PXUBTNDB

User Requests (Get Service, Job or Output)
Definition

4.1.Get_Open
User GET-OPEN Service request.
PXUACT1=0 PXUBTYP=PXUBTSPL SPLGRQB=SPLGRGET

SPLGQI=SPLGQIR/L/P

Note: For Direct Queue Entry Access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

4.2.Get_Spool_Data
User GET-SPOOL Data Service request.
PXUACT1=PXUATSDR PXUBTYP=0 IJBXBLN=0

4.3.Get_Close
User GET-CLOSE Service request.
PXUACT1=PXUATRQS PXUBTYP=0 IJBXBLN=0

4.4.Quit&Lock
User GET-QUIT-and-LOCK Service request.
PXUACT1=PXUAT1PF PXUBTYP=0 IJBXBLN=0

4.5.Get_Purge_Queue
User GET-PURGE Service request.
PXUACT1=PXUATPRG PXUBTYP=0 IJBXBLN=0

Spool-Access Support Graphical Description

Appendix C. Spool-Access Support Graphical Description 389

4.6.Get_Checkpointing
User GET-CHECKPOINTING Service request.
PXUACT1=0 PXUBTYP=PXUBTCTL
Send Buffer=Checkpoint control record

4.7.Get_Checkpoint_Ext

User GET-CHECKPOINT_EXT Service request.
(Get Extended Checkpoint Information)
PXUACT1=PXUATCKR PXUBTYP=0 IJBXBLN=0

4.8.Get_Restart
User GET-RESTART Service request.
PXUACT1=0 PXUBTYP=PXUBTCTL

4.9.Get_OPTB
User GET-OPTB Output request
PXUACT1=0 PXUBTYP=PXUBTCTL
Send Buffer=GET-OPTB control record

4.10.Modify_OPTB
User Modify-OPTB Output request
PXUACT1=0 PXUBTYP=PXUBTCTL
Send Buffer=Modify-OPTB control record

User Requests (Browse Service, Job or Output)
Definition

5.1.Browse_Open
User BROWSE-OPEN Service request.
PXUACT1=0 PXUBTYP=PXUBTSPL SPLGRQB=SPLGRGET

SPLGFB1=SPLGF1BR
SPLGQI=SPLGQIR/L/P

Note:

1. For direct queue entry access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

2. For direct access to queue entries in creation, specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

SPLGOPT.SPLGOGIC=ON

5.2.Browse_Spool_Data
User BROWSE-SPOOL Data Service request.
PXUACT1=PXUATSDR PXUBTYP=0 IJBXBLN=0

5.3.Browse_Restart
User BROWSE-RESTART Service request.
PXUACT1=0 PXUBTYP=PXUBTCTL

5.4.Browse_OPTB
User BROWSE-OPTB Output request.
PXUACT1=0 PXUBTYP=PXUBTCTL
Send Buffer=Get-OPTB control record

User Requests (CTL Sevice)
Definition

6.1.PALTER

Spool-Access Support Graphical Description

390 VSE/POWER V9R2 Application Programming

User requests VSE/POWER to perform command 'PALTER'
(PWRSPL FUNC=(ALTER,attrib-type),NEWVAL=field)
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRAL SPLGRQB=SPLGRCTL

SPLGFB2=attrib-type SPLGNV=field
SPLGQI=SPLGQIR/L/P/X

Note: For Direct Queue Entry Access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

6.2.PCANCEL

User requests VSE/POWER to perform command 'PCANCEL'
(PWRSPL FUNC=CANCEL)
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRCN SPLGRQB=SPLGRCTL

SPLGJB=jobname SPLGJN=jobnumber

6.3.PDELETE

User requests VSE/POWER to perform command 'PDELETE'
(PWRSPL FUNC=DELETE)
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRCL SPLGRQB=SPLGRCTL

SPLGJB=jobname SPLGJN=jobnumber
SPLGQI=SPLGQIR/L/P/X

Note: For Direct Queue Entry Access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

6.4.PDISPLAY

User requests VSE/POWER to perform command 'PDISPLAY'
(PWRSPL FUNC=DISPLAY)
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRDY SPLGRQB=SPLGRCTL

SPLGJB=jobname SPLGJN=jobnumber
SPLGQI=SPLGQIR/L/P/X

Note: For Direct Queue Entry Access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

User Requests (CTL Sevice)
Definition

6.5.PHOLD

User requests VSE/POWER to perform command 'PHOLD'
(PWRSPL FUNC=HOLD)
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRHD SPLGRQB=SPLGRCTL

SPLGJB=jobname SPLGJN=jobnumber
SPLGQI=SPLGQIR/L/P/X

Note: For Direct Queue Entry Access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

6.6.PRELEASE

User requests VSE/POWER to perform command 'PRELEASE'
(PWRSPL FUNC=RELEASE)
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRRL SPLGRQB=SPLGRCTL

SPLGJB=jobname SPLGJN=jobnumber
SPLGQI=SPLGQIR/L/P/X

Spool-Access Support Graphical Description

Appendix C. Spool-Access Support Graphical Description 391

Note: For Direct Queue Entry Access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

6.7.Command

User requests VSE/POWER to perform command as specified
in the field SPLCFLD.

(PWRSPL FUNC=COMMAND)
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRCM SPLGRQB=SPLGRCTL

SPLCFLD=(desired command)

Note: For Direct Queue Entry Access specify additionally
SPLXQNUM=queue-entry-number SPLGOPT2.SPLGO2QN=ON

6.8.Delete_Checkpoint
User CTL request to delete a checkpoint.
PXUACT1=0 PXUBTYP=SPL SPLGSRB=SPLGSRDC SPLGRQB=SPLGRCTL

SPLGJB=jobname SPLGJN=jobnumber
SPLXQNUM=queue-entry-number SPLGQI=SPLGQIR/L/P/X

User Requests (GCM Sevice)
Definition

7.1.GCM_Open_Delete
User GCM-OPEN-DELETE request.
PXUBTYP=PXUBTSPL SPLGRQB=SPLGRGCM SPLGFB1=SPLGF1DM

7.2.GCM_Open_Keep
User GCM-OPEN-KEEP request.
PXUBTYP=PXUBTSPL SPLGRQB=(etc.) SPLGFB1=SPLGF1KM

7.3.GCM_Open_Remove
User GCM-OPEN-REMOVE request.
PXUBTYP=PXUBTSPL SPLGRQB=(etc.) SPLGFB1=SPLGF1RM

7.3.GCM_Open_Purge
User GCM-OPEN-PURGE request.
PXUBTYP=PXUBTSPL SPLGRQB=(etc.) SPLGFB1=SPLGF1PM

7.5.GCM_More
User GCM-MORE subrequest.
PXUBTYP=0 PXUACT1=PXUATGCM IJBXBLN=0

7.6.GCM_Remove
User GCM-REMOVE subrequest.
PXUBTYP=0 PXUACT1=PXUATDEL IJBXBLN=0

System Responses
Definition

8.1.<Connect_Error>
XPCC FUNC=CONNECT error.

8.5a.<Msg_Available>
VSE/POWER response that message(s) are available for the user to fetch
following a PUT_PROTOCOL.
PXPIMSG=On

8.2.<Chkpnt_Resp>
Response of VSE/POWER to an accepted Checkpoint request.

Spool-Access Support Graphical Description

392 VSE/POWER V9R2 Application Programming

Reply Buffer: Checkpoint Response Record

8.3.<DSHR_SPL>
Response of VSE/POWER to GET-SPOOL data request that returns a
data-set-header record in the form of a SPL to the user's reply buffer.
Reply Buffer: SPL

8.4.<End_of_Data>
End of VSE/POWER response data (GET-SPOOL data or messages: PUT,
CTL or GCM).
PXPRETCD=X’00’ PXPFBKCD=X’01’

8.5.<Identify_Error>
XPCC FUNC=IDENT error.

8.6a.<Msg_Available>
VSE/POWER response that message(s) are available for the User to fetch
following a PUT_PROTOCOL.
PXPIMSG=On

8.6b.<More_Msgs>
VSE/POWER messages returned in buffer in response to a User request.
PXPRETCD=X’00’ PXPFBKCD=X’00’ IJBXSLN > 0

8.6c.<Last_Msgs>
Final VSE/POWER messages returned in buffer in response to a User
request.
PXPRETCD=X’00’ PXPFBKCD=X’01’ IJBXSLN > 0

8.6c.<End_of_Msgs>
No VSE/POWER messages available in buffer in response to a User
request.
PXPRETCD=X’00’ PXPFBKCD=X’01’ IJBXSLN = 0

8.7.<Open_Err>
VSE/POWER has detected a User OPEN request error.
PXPRETCD=X’04’,X’08’ PXPFBKCD=(see Manual)

8.7a.<Put_Close_Ok>
VSE/POWER has accepted a PUT-CLOSE user request.
PXPRETCD=X’00’

8.7b.<Put_Spool_OK>
VSE/POWER has accepted a PUT-SPOOL user request.
PXPRETCD=X’00’

8.7c.<Put_Spool_Err>
VSE/POWER has rejected a user PUT request (except for <SOD_Err> or
<SOA_Err>).
PXPRETCD=X’04’,X’08’ (except for <SOD_Err> or <SOA_Err>)

System Responses
Definition

8.8a.<PWR_Disconnect>
VSE/POWER has disconnected.

8.8b.<PWR_Quiesced>
VSE/POWER has quiesced.

8.9.<Quit_OK>
VSE/POWER has accepted a QUIT user request.

Spool-Access Support Graphical Description

Appendix C. Spool-Access Support Graphical Description 393

PXPRETCD=X’00’

8.10a.<Request_Err>
VSE/POWER has detected a User request error.
PXPRETCD=X’04’,X’08’ (except for <SOD_Err> or <SOA_Err>)

8.10b.<Request_OK>
VSE/POWER response to a User request indicating that no warning or
error has occurred. When processing response message(s), this state
indicates that (more) response messages are queued for the user to process.
PXPRETCD=X’00’ PXPFBKCD=X’00’

8.11a.<SOD_Err>
"Short-on-Data-File" error, i.e. VSE/POWER has run out of Data File
storage.
PXPRETCD=X’04’ PXP04SOD=X’08’

8.11b.<SOA_Err>
"Short-on-Account-File" error, i.e. VSE/POWER has run out of Account File
storage.
PXPRETCD=X’04’ PXP04SOA=X’09’

8.11c.<Severe_Err_PWR>
A severe error has been detected by VSE/POWER or VSE/POWER has
stopped the communication, i.e.:
v A User Request error has occurred.
v A User Dialog request error has occurred.
v A VSE/POWER PSTOP SAS command has been issued.
v A VSE/POWER Queue/Data File disk I/O error has occurred.
PXPRETCD >X’08’

8.11d.<Severe_Err_AF>
A severe User error has been detected by z/VSE following the XPCC call
or VSE/POWER has terminated, causing the XPCC request to be rejected:
v immediately following the XPCC call.

Register 15 > 0

v following the wait on the XPCC call completion when the user is posted.

IJBXREAS=error

8.12.<Verify_SPL>
Response of VSE/POWER that returns an SPL to the user's reply buffer
containing the up-to-date information about the indicated queue entry.
Reply Buffer: SPL

Spool-Access Support Graphical Description

394 VSE/POWER V9R2 Application Programming

Glossary

This glossary includes terms and definitions for
IBM z/VSE.

The following cross-references are used in this
glossary:
1. See refers the reader from a term to a

preferred synonym, or from an acronym or
abbreviation to the defined full form.

2. See also refers the reader to a related or
contrasting term.

To view glossaries for other IBM products, go to
www.ibm.com/software/globalization/
terminology.

A

Access Control Logging and Reporting. An IBM
licensed program to log all attempts of access to
protected data and to print selected formatted reports
on such attempts.

access control table (DTSECTAB). A table that is used
by the system to verify a user's right to access a certain
resource.

access list. A table in which each entry specifies an
address space or data space that a program can
reference.

access method. A program, that is, a set of commands
(macros) to define files or addresses and to move data
to and from them; for example VSE/VSAM or VTAM.

account file. A disk file that is maintained by
VSE/POWER containing accounting information that is
generated by VSE/POWER and the programs running
under VSE/POWER.

addressing mode (AMODE). A program attribute that
refers to the address length that a program is prepared
to handle on entry. Addresses can be either 24 bits or
31 bits in length. In 24 bit addressing mode, the
processor treats all virtual addresses as 24-bit values; in
31 bit addressing mode, the processor treats all virtual
addresses as 31-bit values. Programs with an
addressing mode of ANY can receive control in either
24 bit or 31 bit addressing mode.

administration console. In z/VSE, one or more
consoles that receive all system messages, except for
those that are directed to one particular console.
Contrast this with the user console, which receives only
those messages that are directed to it, for example
messages that are issued from a job that was submitted

with the request to echo its messages to that console.
The operator of an administration console can reply to
all outstanding messages and enter all system
commands.

alternate block. On an FBA disk, a block that is
designated to contain data in place of a defective block.

alternate index. In systems with VSE/VSAM, the
index entries of a given base cluster that is organized
by an alternate key, that is, a key other than the prime
key of the base cluster. For example, a personnel file
preliminary ordered by names can be indexed also by
department number.

alternate library. An interactively accessible library
that can be accessed from a terminal when the user of
that terminal issues a connect or switch library request.

alternate track. A library, which becomes accessible
from a terminal when the user of that terminal issues a
connect or switch (library) request.

AMODE. Addressing mode.

APA. All points addressable.

APAR. Authorized Program Analysis Report.

appendage routine. A piece of code that is physically
located in a program or subsystem, but logically and
extension of a supervisor routine.

application profile. A control block in which the
system stores the characteristics of one or more
application programs.

application program. A program that is written for or
by a user that applies directly to the user's work, such
as a program that does inventory control or payroll. See
also batch program and online application program.

AR/GPR. Access register and general-purpose register
pair.

ASC mode. Address space control mode.

ASI (automated system initialization) procedure. A
set of control statements, which specifies values for an
automatic system initialization.

attention routine (AR). A routine of the system that
receives control when the operator presses the
Attention key. The routine sets up the console for the
input of a command, reads the command, and initiates
the system service that is requested by the command.

© Copyright IBM Corp. 1987, 2014 395

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

automated system initialization (ASI). A function that
allows control information for system startup to be
cataloged for automatic retrieval during system startup.

autostart. A facility that starts VSE/POWER with little
or no operator involvement.

auxiliary storage. Addressable storage that is not part
of the processor, for example storage on a disk unit.
Synonymous with external storage.

B

B-transient. A phase with a name beginning with $$B
and running in the Logical Transient Area (LTA). Such
a phase is activated by special supervisor calls.

bar. 2 GigyByte (GB) line

basic telecommunications access method (BTAM). An
access method that permits read and write
communication with remote devices. BTAM is not
supported on z/VSE.

BIG-DASD. A subtype of Large DASD that has a
capacity of more than 64 K tracks and uses up to 10017
cylinders of the disk.

block. Usually, a block consists of several records of a
file that are transmitted as a unit. But if records are
very large, a block can also be part of a record only. On
an FBA disk, a block is a string of 512 bytes of data.
See also a control block.

block group. In VSE/POWER, the basic organizational
unit for fixed-block architecture (FBA) devices. Each
block group consists of a number of 'units of transfer'
or blocks.

C

CA splitting. Is the host part of the VSE JavaBeans,
and is started using the job STARTVCS, which is placed
in the reader queue during installation of z/VSE. Runs
by default in dynamic class R. In VSE/VSAM, to
double a control area dynamically and distribute its CIs
evenly when the specified minimum of free space get
used up by more data.

carriage control character. The fist character of an
output record (line) that is to be printed; it determines
how many lines should be skipped before the next line
is printed.

catalog. A directory of files and libraries, with
reference to their locations. A catalog may contain other
information such as the types of devices in which the
files are stored, passwords, blocking factors. To store a
library member such as a phase, module, or book in a
sublibrary. See also VSE/VSAM catalog.

cell pool. An area of virtual storage that is obtained
by an application program and managed by the callable
cell pool services. A cell pool is located in an address
space or a data space and contains an anchor, at least
one extent, and any number of cells of the same size.

central location. The place at which a computer
system's control device, normally the systems console
in the computer room, is installed.

chained sublibraries. A facility that allows
sublibraries to be chained by specifying the sequence in
which they must be searched for a certain library
member.

chaining. A logical connection of sublibraries to be
searched by the system for members of the same type
(phases or object modules, for example).

channel command word (CWW). A doubleword at
the location in main storage that is specified by the
channel address word. One or more CCWs make up
the channel program that directs data channel
operations.

channel program. One or more channel command
words that control a sequence of data channel
operations. Execution of this sequence is initiated by a
start subchannel instruction.

channel scheduler. The part of the supervisor that
controls all input/output operations.

channel subsystem. A feature of 370-XA and
Enterprise Systems Architecture that provides extensive
additional channel (I/O) capabilities over the
System/370.

channel to channel attachment (CTCA). A function
that allows data to be exchanged
1. Under the control of VSE/POWER between two

virtual VSE machines running under VM or
2. Under the control of VTAM between two

processors.

character-coded request. A request that is encoded
and transmitted as a character string. Contrast with
field-formatted request.

checkpoint.
1. A point at which information about the status of a

job and the system can be recorded so that the job
step can be restarted later.

2. To record such information.

CICS (Customer Information Control System). An
IBM program that controls online communication
between terminal users and a database. Transactions
that are entered at remote terminals are processed
concurrently by user-written application programs. The
program includes facilities for building, using, and
servicing databases.

396 VSE/POWER V9R2 Application Programming

CICS ECI. The CICS External Call Interface (ECI) is
one possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It is part of the CICS client and
allows workstation programs to CICS function on the
z/VSE host.

CICS EXCI. The EXternal CICS Interface (EXCI) is one
possible requester type of the CICS business logic
interface that is provided by the CICS Transaction
Server for VSE/ESA. It allows any BSE batch
application to call CICS functions.

CICS system definition (CSD) file. Is the host part of
the VSE JavaBeans, and is started using the job
STARTVCS, which is placed in the reader queue during
installation of z/VSE. Runs by default in dynamic class
R. See CSD.

CICS Transaction Server for VSE/ESA. A z/VSE base
program that controls online communication between
terminal users and a database. This is the successor
system to CICS/VSE.

CICS TS. CICS Transaction Server

CICS/VSE. Customer Information Control
System/VSE. No longer shipped on the Extended Base
Tape and no longer supported, cannot run on z/VSE
5.1.

class. In VSE/POWER, a group of jobs that either
come from the same input device or go to the same
output device.

cluster controller. A hardware unit to control the
input/output operations of more than one device that
is connected to it. A cluster controller might be run by
a program that is stored and executed in the unit; for
example, the IBM 3601 Finance Communication
Controller. Or it might be controlled entirely by
hardware; for example, the IBM 3272 Control Unit.

Common Connector Framework (CCF). Is part of
IBM's Visual Age for Java, and allows connections to
remote hosts to be created and maintained. The CCF
classes are contained in the VSEConnector.jar file and
are used internally by the VSE JavaBeans. CCF is
important for multitier architectures where, for
example, servlets run on a middle-tier platform.
Because CCF allows open connections to be kept in a
pool, this avoids the time that is involved in opening
and closing TCP/IP connection to the remote z/VSE
host each time a servlet is invoked.

CMS. Conversational monitor system running on
z/VM.

common library. A library that can be interactively
accessed by any user of the (sub)system that owns the
library.

communication adapter. A circuit card with associated
software that enables a processor, controller, or other
device to be connected to a network.

communication region. An area of the supervisor that
is set aside for transfer of information within and
between programs.

component.
1. Hardware or software that is part of a computer

system.
2. A functional part of a product, which is identified

by a component identifier.
3. In z/VSE, a component program such as

VSE/POWER or VTAM.
4. In VSE/VSAM, a named, cataloged group of stored

records, such as the data component or index
component of a key-sequenced file or alternate
index.

component identifier. A 12-byte alphanumeric string,
uniquely defining a component to MSHP.

conditional job control. The capability of the job
control program to process or to skip one or more
statements that are based on a condition that is tested
by the program.

connect. To authorize library access on the lowest
level. A modifier such as "read" or "write" is required
for the specified use of a sublibrary.

connection pooling. Introduced with an z/VSE 5.1
update to manage (reuse) connections of the z/VSE
database connector in CICS TS.

ConnectionManager class. Is part of CCF, and
identifies the connection to a remote z/VSE host: it
holds connections between the middle-tier and the
remote z/VSE server. Servlets can reserve a connection
from the pool, work with it and give it back later. This
is performed internally using VSE JavaBeans.

connector. In the context of z/VSE, a connector
provides the middleware to connect two platforms:
Web Client and z/VSE host, middle-tier and z/VSE
host, or Web Client and middle-tier.

connector (e-business connector). A piece of software
that is provided to connect to heterogeneous
environments. Most connectors communicate to
non-z/VSE Java-capable platforms.

container. Is part of the JVM of application servers
such as the IBM WebSphere Application Server, and
facilitates the implementation of servlets, EJBs, and
JSPs, by providing resource and transaction
management resources. For example, an EJB developer
must not code against the JVM of the application
server, but instead against the interface that is provided
by the container. The main role of a container is to act
as an intermediary between EJBs and clients, Is the host
part of the VSE JavaBeans, and is started using the job

Glossary 397

STARTVCS, which is placed in the reader queue during
the installation of z/VSE. Runs by default in dynamic
class R. and also to manage multiple EJB instances.
After EJBs have been written, they must be stored in a
container residing on an application server. The
container then manages all threading and
client-interactions with the EJBs, and co-ordinate
connection- and instance pooling.

control interval (CI). A fixed-length area of disk
storage where VSE/VSAM stores records and
distributes free space. It is the unit of information that
VSE/VSAM transfers to or from disk storage. For FBA
it must be an integral multiple to be defined at cluster
definition, of the block size.

control program. A program to schedule and
supervise the running of programs in a system.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and program
development capabilities and operates under the
control of z/VM.

count-key-data (CKD) device. A disk device that store
data in the record format: count field, key field, data
field. The count field contains, among others, the
address of the record in the format: cylinder, head
(track), record number, and the length of the data field.
The key field, if present, contains the record's key or
search argument. CKD disk space is allocated by tracks
and cylinders. Contrast with FBA disk device. See also
extended count-key-data device.

cross-partition communication control. A facility that
enables VSE subsystems and user programs to
communicate with each other; for example, with
VSE/POWER.

cryptographic token. Usually referred to simply as a
token, this is a device, which provides an interface for
performing cryptographic functions like generating
digital signatures or encrypting data.

cryptography.
1. The transformation of data to conceal its meaning.
2. In computer security, the principles, means, and

methods for encrypting 'plaintext' and Is the host
part of the VSE JavaBeans, and is started using the
job STARTVCS, which is placed in the reader queue
during installation of z/VSE. Runs by default in
dynamic class R.decrypting 'ciphertext'.

D

data block group. The smallest unit of space that can
be allocated to a VSE/POWER job on the data file. This
allocation is independent of any device characteristics.

data conversion descriptor file (DCDF). With a
DCDF, you can convert individual fields within a

record during data transfer between a PC and its host.
The DCDF defines the record fields of a particular file
for both, the PC and the host environment.

data import. The process of reformatting data that was
used under one operating system such that it can
subsequently be used under a different operating
system.

Data Interfile Transfer, Testing, and Operations
(DITTO) utility. An IBM program that provides
file-to-file services for card I/O, tape, and disk devices.
The latest version is called DITTO/ESA for VSE.

Data Language/I (DL/I). A database access language
that is used with CICS.

data link. In SNA, the combination of the link
connection and the link stations joining network noes,
for example, a z/Architecture channel and its
associated protocols. A link is both logical and physical.

data security. Is the host part of the VSE JavaBeans,
and is started using the job STARTVCS, which is placed
in the reader queue during installation of z/VSE. Runs
by default in dynamic class R. See access control.

data set header record. In VSE/POWER abbreviated
as DSHR, alias NDH or DSH. An NJE control record
either preceding output data or, in the middle of input
data, indicating a change in the data format.

data space. A range of up to 2 gigabytes of contiguous
virtual storage addresses that a program can directly
manipulate through ESA/370 instructions. Unlike an
address space, a data space can hold only user data; it
does not contain shared areas, system data, or
programs. Instructions do not execute in a data space,
although in a program can reside in a data space as
nonexecutable code. Contrast with address space.

data terminal equipment (DTE). In SNA, the part of a
data station that serves a data source, data sink, or
both.

database connector. Is a function introduced with
z/VSE 5.1.1, which consists of a client and server part.
The client provides an API (CBCLI) to be used by
applications on z/VSE, the server on any Java capable
platform connects a JDBC driver that is provided by
the database. Both client and server communicate via
TCP/IP.

Database 2 (DB2). An IBM rational database
management system.

DB2-based connector. Is a feature introduced with
VSE/ESA 2.5, which includes a customized DB2
version, together with VSAM and DL/I functionality, to
provide access to DB2, VSAM, and DL/I data, using
DB2 Stored Procedures.

398 VSE/POWER V9R2 Application Programming

DB2 Runtime only Client edition. The Client Edition
for z/VSE comes with some enhanced features and
improved performance to integrate z/VSE and Linux
on System z.

DB2 Stored Procedure. In the context of z/VSE, a
DB2 Stored Procedure is a Language Environment (LE)
program that accesses DB2 data. However, from
VSE/ESA 2.5 onwards you can also access VSAM and
DL/I data using a DB2 Stored Procedure. In this way, it
is possible to exchange data between VSAM and DB2.

DBLK. Data block.

DCDF. Data conversion descriptor file.

deblocking. The process of making each record of a
block available for processing.

dedicated (disk) device. A device that cannot be
shared among users.

device address.
1. The identification of an input/output device by its

device number.
2. In data communication, the identification of any

device to which data can be sent or from which
data can be received.

device driving system (DDS). A software system
external to VSE/POWER, such as a CICS spooler or
PSF, that writes spooled output to a destination device.

Device Support Facilities (DSF). An IBM supplied
system control program for performing operations on
disk volumes so that they can be accessed by IBM and
user programs. Examples of these operations are
initializing a disk volume and assigning an alternative
track.

device type code. The four- or five-digit code that is
used for defining an I/O device to a computer system.

dialog. In an interactive system, a series of related
inquiries and responses similar to a conversation
between two people. For z/VSE, a set of panels that
can be used to complete a specific task; for example,
defining a file.

dialog manager. The program component of z/VSE
that provides for ease of communication between user
and system.

digital signature. In computer security, encrypted
data, which is appended to or part of a message, that
enables a recipient to prove the identity of the sender.

Digital Signature Algorithm (DSA). The Digital
Signature Algorithm is the US government-defined
standard for digital signatures. The DSA digital
signature is a pair of large numbers, computed using a
set of rules (that is, the DSA) and a set of parameters
such that the identity of the signatory and integrity of

the data can be verified. The DSA provides the
capability to generate and verify signatures.

directory. In z/VSE the index for the program
libraries.

direct access. Accessing data on a storage device using
their address and not their sequence. This is the typical
access on disk devices as opposed to magnetic tapes.
Contrast with sequential access.

disk operating system residence volume (DORSES).
The disk volume on which the system sublibrary
IJSYSRS.SYSLIB is located including the programs and
procedures that are required for system startup.

disk sharing. An option that lets independent
computer systems uses common data on shared disk
devices.

disposition. A means of indicating to VSE/POWER
how a job input or output entry is to be handled:
according to its local disposition in the RDR/LST/PUN
queue or its transmission disposition when residing in
the XMT queue. A job might, for example, be deleted
or kept after processing.

distribution tape. A magnetic tape that contains, for
example, a preconfigured operating system like z/VSE.
This tape is shipped to the customer for program
installation.

DITTO/ESA for VSE. Data Interfile Transfer, Testing,
and Operations utility. An IBM program that provides
file-to-file services for disk, tape, and card devices.

DSF. Device Support Facilities.

DSH (R). Data set header record.

dummy device. A device address with no real I/O
device behind it. Input and output for that device
address are spooled on disk.

duplex. Pertaining to communication in which data
can be sent and received at the same time.

DU-AL (dispatchable unit - access list). The access
list that is associated with a z/VSE main task or
subtask. A program uses the DU-AL associated with its
task and the PASN-AL associated with its partition. See
also PASN-AL.

dynamic class table. Defines the characteristics of
dynamic partitions.

dynamic partition. A partition that is created and
activated on an 'as needed' basis that does not use fixed
static allocations. After processing, the occupied space
is released. Dynamic partitions are grouped by class,
and jobs are scheduled by class. Contrast with static
partition.

Glossary 399

dynamic partition balancing. A z/VSE facility that
allows the user to specify that two or more or all
partitions of the system should receive about the same
amount of time on the processor.

dynamic space reclamation. A librarian function that
provides for space that is freed by the deletion of a
library member to become reusable automatically.

E

ECI. See CICS ECI.

emulation. The use of programming techniques and
special machine features that permit a computer system
to execute programs that are written for another system
or for the use of I/O devices different from those that
are available.

emulation program (EP). An IBM control program
that allows a channel-attached 3705 or 3725
communication controller to emulate the functions of
an IBM 2701 Data Adapter Unit, or an IBM 2703
Transmission Control.

end user.
1. A person who makes use of an application

program.
2. In SNA, the ultimate source or destination of user

data flowing through an SNA network. Might be an
application program or a terminal operator.

Enterprise Java Bean. An EJB is a distributed bean.
"Distributed" means, that one part of an EJB runs inside
the JVM of a web application server, while the other
part runs inside the JVM of a web browser. An EJB
either represents one data row in a database (entity
bean), or a connection to a remote database (session
bean). Normally, both types of an EJB work together.
This allows to represent and access data in a
standardized way in heterogeneous environments with
relational and non-relational data. See also JavaBean.

entry-sequenced file. A VSE/VSAM file whose
records are loaded without respect to their contents and
whose relative byte addresses cannot change. Records
are retrieved and stored by addressed access, and new
records are added to the end of the file.

Environmental Record Editing and Printing (EREP)
program. A z/VSE base program that makes the data
that is contained in the system record file available for
further analysis.

EPI. See CICS EPI.

ESCON Channel (Enterprise Systems Connection
Channel). A serial channel, using fiber optic cabling,
that provides a high-speed connection between host
and control units for I/O devices. It complies with the
ESA/390 and System z I/O Interface until z114. The
zEC12 processors do not support ESCON channels.

exit routine.
1. Either of two types of routines: installation exit

routines or user exit routines. Synonymous with exit
program.

2. See user exit routine.

extended addressability. See 31 bit addressing. The
ability of a program to use virtual storage that is
outside the address space in which the program is
running. Generally, instructions and data reside in a
single address space - the primary address space.
However, a program can have data in address spaces
other than the primary or in data spaces. (The
instructions remain in the primary address space, while
the data can reside in another address space, or in a
data space.) To access data in other address spaces, a
program must use access registers (ARs) and execute in
access register mode (AR mode).

extended recovery facility (XRF). In z/VSE, a feature
of CICS that provides for enhanced availability of CICS
by offering one CICS system as a backup of another.

External Security Manager (ESM). A priced vendor
product that can provide extended functionality and
flexibility that is compared to that of the Basic Security
Manager (BSM), which is part of z/VSE.

F

FASTCOPY. See VSE/Fast Copy.

fast copy data set program (VSE/Fast Copy). See
VSE/Fast Copy.

fast service upgrade (FSU). A service function of
z/VSE for the installation of a refresh release without
regenerating control information such as library control
tables.

FAT-DASD. A subtype of Large DASD, it supports a
device with more than 4369 cylinders (64 K tracks) up
to 64 K cylinders.

FCOPY. See VSE/Fast Copy.

fence. A separation of one or more components or
elements from the remainder of a processor complex.
The separation is by logical boundaries. It allows
simultaneous user operations and maintenance
procedures.

fetch.
1. To locate and load a quantity of data from storage.
2. To bring a program phase into virtual storage from

a sublibrary and pass control to this phase.
3. The name of the macro instruction (FETCH) used to

accomplish 2. See also loader.

Fibre Channel Protocol (FCP). A combination of
hardware and software conforming to the Fibre
Channel standards and allowing system and peripheral

400 VSE/POWER V9R2 Application Programming

connections via FICON and FICON Express feature
cards on IBM zSeries processors. In z/VSE, zSeries FCP
is employed to access industry-standard SCSI disk
devices.

fragmentation (of storage). Inability to allocate
unused sections (fragments) of storage in the real or
virtual address range of virtual storage.

FSU. Fast service upgrade.

FULIST (FUnction LIST). A type of selection panel
that displays a set of files and/or functions for the
choice of the user.

G

generation. See macro generation.

generation feature. An IBM licensed program order
option that is used to tailer the object code of a
program to user requirements.

GETVIS space. Storage space within partition or the
shared virtual area, available for dynamic allocation to
programs.

guest system. A data processing system that runs
under control of another (host) system. On the
mainframe z/VSE can run as a guest of z/VM.

H

hard wait. The condition of a processor when all
operations are suspended. System recovery from a hard
wait is impossible without performing a new system
startup.

hash function. A hash function is a transformation
that takes a variable-size input and returns a fixed-size
string, which is called the hash value. In cryptography,
the hash functions should have some additional
properties:
v The hash function should be easy to compute.
v The hash function is one way; that is, it is impossible

to calculate the 'inverse' function.
v The hash function is collision-free; that is, it is

impossible that different input leads to the same
hash value.

hash value. The fixed-sized string resulting after
applying a hash function to a text.

High-Level Assembler for VSE. A programming
language providing enhanced assembler programming
support. It is a base program of z/VSE.

home interface. Provides the methods to instantiate a
new EJB object, introspect an EJB, and remove an EJB
instantiation., as for the remote interface is needed
because the deployment tool generates the

implementation class. Every Session bean's home
interface must supply at least one create() method.

host mode. In this operating mode, a PC can access a
VSE host. For programmable workstation (PWS)
functions, the Move Utilities of VSE can be used.

host system. The controlling or highest level system in
a data communication configuration.

host transfer file (HTF). Used by the Workstation File
Transfer Support of z/VSE as an intermediate storage
area for files that are sent to and from IBM personal
computers.

HTTP Session. In the context of z/VSE, identifies the
web-browser client that calls a servlet (in other words,
identifies the connection between the client and the
middle-tier platform).

I

ICCF. See VSE/ICCF.

ICKDSF (Device Support Facilities). A z/VSE base
program that supports the installation, use, and
maintenance of IBM disk devices.

include function. Retrieves a library member for
inclusion in program input.

index.
1. A table that is used to locate records in an indexed

sequential data set or on indexed file.
2. In, an ordered collection of pairs, each consisting of

a key and a pointer, used by to sequence and locate
the records of a key-sequenced data set or file; it is
organized in levels of index records. See also
alternate index.

input/output control system (IOCS). A group of IBM
supplied routines that handle the transfer of data
between main storage and auxiliary storage devices.

integrated communication adapter (ICA). The part of
a processor where multiple lines can be connected.

integrated console. In z/VSE, the service processor
console available on IBM System z server that operates
as the z/VSE system console. The integrated console is
typically used during IPL and for recovery purposes
when no other console is available.

Interactive Computing and Control Facility (ICCF).
An IBM licensed program that serves as interface, on a
time-slice basis, to authorized users of terminals that
are linked to the system's processor.

interactive partition. An area of virtual storage for the
purpose of processing a job that was submitted
interactively via VSE/ICCF.

Glossary 401

Interactive User Communication Vehicle (IUCV).
Programming support available in a VSE supervisor for
operation under z/VM. The support allows users to
communicate with other users or with CP in the same
way they would with a non-preferred guest.

intermediate storage. Any storage device that is used
to hold data temporarily before it is processed.

IOCS. Input/output control system.

IPL. Initial program load.

irrecoverable error. An error for which recovery is
impossible without the use of recovery techniques
external to the computer program or run.

IUCV. Interactive User Communication Vehicle.

J

JAR. Is a platform-independent file format that
aggregates many files into one. Multiple applets and
their requisite components (.class files, images, and
sounds) can be bundled in a JAR file, and then
downloaded to a web browser using a single HTTP
transaction (much improving the download speed). The
JAR format also supports compression, which reduces
the files size (and further improves the download
speed). The compression algorithm that is used is fully
compatible with the ZIP algorithm. The owner of an
applet can also digitally sign individual entries in a
JAR file to authenticate their origin.

Java application. A Java program that runs inside the
JVM of your web browser. The program's code resides
on a local hard disk or on the LAN. Java applications
might be large programs using graphical interfaces.
Java applications have unlimited access to all your local
resources.

Java bytecode. Bytecode is created when a file
containing Java source language statements is
compiled. The compiled Java code or "bytecode" is
similar to any program module or file that is ready to
be executed (run on a computer so that instructions are
performed one at a time). However, the instructions in
the bytecode are really instructions to the Java Virtual
Machine. Instead of being interpreted one instruction at
a time, bytecode is instead recompiled for each
operating-system platform using a just-in-time (JIT)
compiler. Usually, this enables the Java program to run
faster. Bytecode is contained in binary files that have
the suffix.CLASS

Java servlet. See servlet.

JHR. Job header record.

job accounting interface. A function that accumulates
accounting information for each job step, to be used for

charging the users of the system, for planning new
applications, and for supervising system operation
more efficiently.

job accounting table. An area in the supervisor where
accounting information is accumulated for the user.

job catalog. A catalog made available for a job by
means of the file name IJSYSUC in the respective DLBL
statement.

job entry control language (JECL). A control language
that allows the programmer to specify how
VSE/POWER should handle a job.

job step. In 1 of a group of related programs complete
with the JCL statements necessary for a particular run.
Every job step is identified in the job stream by an
EXEC statement under one JOB statement for the whole
job.

job trailer record (JTR). As VSE/POWER parameter
JTR, alias NJT. An NJE control record terminating a job
entry in the input or output queue and providing
accounting information.

K

key. In VSE/VSAM, one or several characters that are
taken from a certain field (key field) in data records for
identification and sequence of index entries or of the
records themselves.

key sequence. The collating sequence either of records
themselves or of their keys in the index or both. The
key sequence is alphanumeric.

key-sequenced file. A VSE/VSAM file whose records
are loaded in key sequence and controlled by an index.
Records are retrieved and stored by keyed access or by
addressed access, and new records are inserted in the
file in key sequence.

KSDS. Key-sequenced data sets. See key-sequenced file.

L

label.
1. An identification record for a tape, disk, or diskette

volume or for a file on such a volume.
2. In assembly language programming, a named

instruction that is generally used for branching.

label information area. An area on a disk to store
label information that is read from job control
statements or commands. Synonymous with label area.

Language Environment for z/VSE. An IBM software
product that is the implementation of Language
Environment on the VSE platform.

402 VSE/POWER V9R2 Application Programming

language translator. A general term for any assembler,
compiler, or other routine that accepts statements in
one language and produces equivalent statements in
another language.

Large DASD. A DASD device that
1. Has a capacity exceeding 64 K tracks and
2. Does not have VSAM space created prior to

VSE/ESA 2.6 that is owned by a catalog.

LE/VSE. Short form of Language Environment for
z/VSE.

librarian. The set of programs that maintains, services,
and organizes the system and private libraries.

library block. A block of data that is stored in a
sublibrary.

library directory. The index that enables the system to
locate a certain sublibrary of the accessed library.

library member. The smallest unit of a data that can
be stored in and retrieved from a sublibrary.

line commands. In VSE/ICCF, special commands to
change the declaration of individual lines on your
screen. You can copy, move, or delete a line declaration,
for example.

linkage editor. A program that is used to create a
phase (executable code) from one or more
independently translated object modules, from one or
more existing phases, or from both. In creating the
phase, the linkage editor resolves cross-references
among the modules and phases available as input. The
program can catalog the newly built phases.

linkage stack. An area of protected storage that the
system gives to a program to save status information in
a branch or a program call.

link station. In SNA, the combination of hardware
and software that allows a node to attach to and
provide control for a link.

loader. A routine, commonly a computer program,
that reads data or a program into processor storage. See
also relocating loader.

local shared resources (LSR). A VSE/VSAM option
that is activated by three extra macros to share control
blocks among files.

lock file. In a shared disk environment under VSE, a
system file on disk that is used by the sharing systems
to control their access to shared data.

logical partition. In LPAR mode, a subset of the
server unit hardware that is defined to support the
operation of a system control program.

logical record. A user record, normally pertaining to a
single subject and processed by data management as a
unit. Contrast with physical record, which may be larger
or smaller.

logical unit (LU).
1. A name that is used in programming to represent

an I/O device address. physical unit (PU), system
services control point (SSCP), primary logical unit
(PLU), and secondary logical unit (SLU).

2. In SNA, a port through which a user accesses the
SNA network,
a. To communicate with another user and
b. To access the functions of the SSCP. An LU can

support at least two sessions. One with an SSCP
and one with another LU and might be capable
of supporting many sessions with other LUs.

logical unit name. In programming, a name that is
used to represent the address of an input/output unit.

logical unit 6.2. A SNA/SDLC protocol for
communication between programs in a distributed
processing environment. LU 6.2 is characterized by
1. A peer relationship between session partners,
2. Efficient utilization of a session for multiple

transactions,
3. Comprehensive end-to-end error processing, and
4. A generic Application Programming Interface (API)

consisting of structured verbs that are mapped into
a product implementation.

logons interpret interpret routine. In VTAM, an
installation exit routine, which is associated with an
interpret table entry, that translates logon information.
It also verifies the logon.

LPAR mode. Logically partitioned mode. The CP
mode that is available on the Configuration (CONFIG)
frame when the PR/SM feature is installed. LPAR
mode allows the operator to allocate the hardware
resources of the processor unit among several logical
partitions.

M

macro definition. A set of statements and instructions
that defines the name of, format of, and conditions for
generating a sequence of assembler statements and
machine instructions from a single source statement.

macro expansion. See macro generation

macro generation. An assembler operation by which a
macro instruction gets replaced in the program by the
statements of its definition. It takes place before
assembly. Synonymous with macro expansion.

macro (instruction).
1. In assembler programming, a user-invented

assembler statement that causes the assembler to

Glossary 403

process a set of statements that are defined
previously in the macro definition.

2. A sequence of VSE/ICCF commands that are
defined to cause a sequence of certain actions to be
performed in response to one request.

maintain system history program (MSHP). A
program that is used for automating and controlling
various installation, tailoring, and service activities for
a VSE system.

main task. The main program within a partition in a
multiprogramming environment.

master console. In z/VSE, one or more consoles that
receive all system messages, except for those that are
directed to one particular console. Contrast this with
the user console, which receives only those messages
that are specifically directed to it, for example messages
that are issued from a job that was submitted with the
request to echo its messages to that console. The
operator of a master console can reply to all
outstanding messages and enter all system commands.

maximum (max) CA. A unit of allocation equivalent
to the maximum control area size on a count-key-data
or fixed-block device. On a CKD device, the max CA is
equal to one cylinder.

memory object. Chunk of virtual storage that is
allocated above the bar (2 GB) to be created with the
IARV64 macro.

message. In VSE, a communication that is sent from a
program to the operator or user. It can appear on a
console, a display terminal or on a printout.

MSHP. See maintain system history program.

multitasking. Concurrent running of one main task
and one or several subtasks in the same partition.

MVS. Multiple Virtual Storage. Implies MVS/390,
MVS/XA, MVS/ESA, and the MVS element of the
z/OS (OS/390) operating system.

N

NetView. A z/VSE optional program that is used to
monitor a network, manage it, and diagnose its
problems.

network address. In SNA, an address, consisting of
subarea and element fields, that identifies a link, link
station, or NAU. Subarea nodes use network addresses;
peripheral nodes use local addresses. The boundary
function in the subarea node to which a peripheral
node is attached transforms local addresses to network
addresses and vice versa. See also network name.

network addressable unit (NAU). In SNA, a logical
unit, a physical unit, or a system services control point.

It is the origin or the destination of information that is
transmitted by the path control network. Each NAU
has a network address that represents it to the path
control network. See also network name, network address.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. Its full name is
ACF/NCP.

network definition table (NDT). In VSE/POWER
networking, the table where every node in the network
is listed.

network name.
1. In SNA, the symbolic identifier by which users refer

to a NAU, link, or link station. See also network
address.

2. In a multiple-domain network, the name of the
APPL statement defining a VTAM application
program. This is its network name, which must be
unique across domains.

node.
1. In SNA, an end point of a link or junction common

to several links in a network. Nodes can be
distributed to host processors, communication
controllers, cluster controllers, or terminals. Nodes
can vary in routing and other functional
capabilities.

2. In VTAM, a point in a network that is defined by a
symbolic name. Synonymous with network node. See
major node and minor node.

node type. In SNA, a designation of a node according
to the protocols it supports and the network
addressable units (NAUs) it can contain.

O

object module (program). A program unit that is the
output of an assembler or compiler and is input to a
linkage editor.

online application program. An interactive program
that is used at display stations. When active, it waits
for data. Once input arrives, it processes it and send a
response to the display station or to another device.

operator command. A statement to a control program,
issued via a console or terminal. It causes the control
program to provide requested information, alter normal
operations, initiate new operations, or end existing
operations.

optional licensed program. An IBM licensed program
that a user can install on VSE by way of available
installation-assist support.

output parameter text block (OPTB). in
VSE/POWER's spool-access support, information that

404 VSE/POWER V9R2 Application Programming

is contained in an output queue record if a * $$ LST or
* $$ PUN statement includes any user-defined
keywords that have been defined for autostart.

P

page data set (PDS). One or more extents of disk
storage in which pages are stored when they are not
needed in processor storage.

page fixing. Marking a page so that it is held in
processor storage until explicitly released. Until then, it
cannot be paged out.

page I/O. Page-in and page-out operations.

page pool. The set of page frames available for paging
virtual-mode programs.

panel. The complete set of information that is shown
in a single display on terminal screen. Scrolling back
and forth through panels like turning manual pages.
See also selection panel.

partition balancing, dynamic. A z/VSE facility that
allows the user to specify that two or more or all
partitions of the system should receive about the same
amount of time on the processor.

PASN-AL (primary address space number - access
list). The access list that is associated with a partition.
A program uses the PASN-AL associated with its
partition and the DU-AL associated with its task (work
unit). See also DU-AL.

Each partition has its own unique PASN-AL. All
programs running in this partition can access data
spaces through the PASN-AL. Thus a program can
create a data space, add an entry for it in the PASN-AL,
and obtain the ALET that indexes the entry. By passing
the ALET to other programs in the partition, the
program can share the data space with other programs
running in the same partition.

PDS. Page data sets.

phase. The smallest complete unit of executable code
that can be loaded into virtual storage.

physical record. The amount of data that is
transferred to or from auxiliary storage. Synonymous
with block.

PNET. Programming support available with
VSE/POWER; it provides for the transmission of
selected jobs, operator commands, messages, and
program output between the nodes of a network.

POWER. See VSE/POWER.

pregenerated operating system. An operating system
such as z/VSE that is shipped by IBM mainly in object
code. IBM defines such key characteristics as the size of

the main control program, the organization, and size of
libraries, and required system areas on disk. The
customer does not have to generate an operating
system.

preventive service. The installation of one or more
PTFs on a VSE system to avoid the occurrence of
anticipated problems.

primary address space. In z/VSE, the address space
where a partition is executed. A program in primary
mode fetches data from the primary address space.

primary library. A VSE library owned and directly
accessible by a certain terminal user.

printer/keyboard mode. Refers to 1050 or 3215 console
mode (device dependent).

Print Services Facility (PSF)/VSE. An access method
that provides support for the advanced function
printers.

private area. The virtual space between the shared
area (24 bit) and shared area (31 bit), where (private)
partitions are allocated. Its maximum size can be
defined during IPL. See also shared area.

private memory object. Memory object (chunk of
virtual storage) that is allocated above the 2 GB line
(bar) only accessible by the partition that created it.

private partition. Any of the system's partitions that
are not defined as shared. See also shared partition.

production library.
1. In a pre-generated operating system (or product),

the program library that contains the object code for
this system (or product).

2. A library that contains data that is needed for
normal processing. Contrast with test library.

programmer logical unit. A logical unit available
primarily for user-written programs. See also logical
unit name.

program temporary fix (PTF). A solution or by-pass of
one or more problems that are documented in APARs.
PTFs are distributed to IBM customers for preventive
service to a current release of a program.

PSF/VSE. Print Services Facility/VSE.

PTF. See Program temporary fix.

Q

Queue Control Area (QCA). In VSE/POWER, an area
of the data file, which might contain:
v Extended checkpoint information
v Control information for a shared environment.

Glossary 405

queue file. A direct-access file that is maintained by
VSE/POWER that holds control information for the
spooling of job input and job output.

R

random processing. The treatment of data without
respect to its location on disk storage, and in an
arbitrary sequence that is governed by the input
against which it is to be processed.

real address area. In z/VSE, processor storage to be
accessed with dynamic address translation (DAT) off

real address space. The address space whose
addresses map one-to-one to the addresses in processor
storage.

real mode. In VSE, a processing mode in which a
program might not be paged. Contrast with virtual
mode.

recovery management support (RMS). System
routines that gather information about hardware
failures and that initiate a retry of an operation that
failed because of processor, I/O device, or channel
errors.

refresh release. An upgraded VSE system with the
latest level of maintenance for a release.

relative-record file. A VSE/VSAM file whose records
are loaded into fixed-length slots and accessed by the
relative-record numbers of these slots.

release upgrade. Use of the FSU functions to install a
new release of z/VSE.

relocatable module. A library member of the type
object. It consists of one or more control sections
cataloged as one member.

relocating loader. A function that modifies addresses
of a phase, if necessary, and loads the phase for
running into the partition that is selected by the user.

remote interface. In the context of z/VSE, the remote
interface allows a client to make method calls to an EJB
although the EJB is on a remote z/VSE host. The
container uses the remote interface to create client-side
stubs and server-side proxy objects to handle incoming
method calls from a client to an EJB.

remote procedure call (RPC).
1. A facility that a client uses to request the execution

of a procedure call from a server. This facility
includes a library of procedures and an external
data representation.

2. A client request to service provider in another node.

residency mode (RMODE). A program attribute that
refers to the location where a program is expected to
reside in virtual storage. RMODE 24 indicates that the

program must reside in the 24-bit addressable area
(below 16 megabytes), RMODE ANY indicates that the
program can reside anywhere in 31-bit addressable
storage (above or below 16 megabytes).

REXX/VSE. A general-purpose programming
language, which is particularly suitable for command
procedures, rapid batch program development,
prototyping, and personal utilities.

RMS. Recovery management support.

RPG II. A commercially oriented programming
language that is specifically designed for writing
application programs that are intended for business
data processing.

S

SAM ESDS file. A SAM file that is managed in
VSE/VSAM space, so it can be accessed by both SAM
and VSE/VSAM macros.

SCP. System control programming.

SDL. System directory list.

search chain. The order in which chained sublibraries
are searched for the retrieval of a certain library
member of a specified type.

second-level directory. A table in the SVA containing
the highest phase names that are found on the
directory tracks of the system sublibrary.

Secure Sockets Layer (SSL). A security protocol that
allows the client to authenticate the server and all data
and requests to be encrypted. SSL was developed by
Netscape Communications Corp. and RSA Data
Security, Inc..

segmentation. In VSE/POWER, a facility that breaks
list or punch output of a program into segments so that
printing or punching can start before this program has
finished generating such output.

selection panel. A displayed list of items from which
a user can make a selection. Synonymous with menu.

sense. Determine, on request or automatically, the
status or the characteristics of a certain I/O or
communication device.

sequential access method (SAM). A data access
method that writes to and reads from an I/O device
record after record (or block after block). On request,
the support performs device control operations such as
line spacing or page ejects on a printer or skip some
tape marks on a tape drive.

service node. Within the VSE unattended node
support, a processor that is used to install and test a
master VSE system, which is copied for distribution to

406 VSE/POWER V9R2 Application Programming

the unattended nodes. Also, program fixes are first
applied at the service node and then sent to the
unattended nodes.

service program. A computer program that performs
function in support of the system. See with utility
program.

service refresh. A form of service containing the
current version of all software. Also referred to as a
system refresh.

service unit. One or more PTFs on disk or tape
(cartridge).

shared area. In z/VSE, shared areas (24 bit) contain
the Supervisor areas and SVA (24 bit) and shared areas
(31 bit) the SVA (31 bit). Shared areas (24 bit) are at the
beginning of the address space (below 16 MB), shared
area (31 bit) at the end (below 2 GB).

shared disk option. An option that lets independent
computer systems use common data on shared disk
devices.

shared memory objects. An option that lets
independent computer systems uses common data on
shared disk devices.

shared partition. In z/VSE, a partition that is
allocated for a program (VSE/POWER, for example)
that provides services and communicates with
programs in other partitions of the system's virtual
address spaces.

shared spooling. A function that permits the
VSE/POWER account file, data file, and queue file to
be shared among several computer systems with
VSE/POWER.

shared virtual area (SVA). In z/VSE, a high address
area that contains a list system directory list (SDL) of
frequently used phases, resident programs that are
shared between partitions, and an area for system
support.

SIT (System Initialization Table). A table in CICS that
contains data used the system initialization process. In
particular, the SIT can identify (by suffix characters) the
version of CICS system control programs and CICS
tables that you have specified and that are to be
loaded.

skeleton. A set of control statements, instructions, or
both, that requires user-specific information to be
inserted before it can be submitted for processing.

socksified. See socks-enabled.

Socks-enabled. Pertaining to TCP/IP software, or to a
specific TCP/IP application, that understands the socks
protocol. "Socksified" is a slang term for socks-enabled.

socks protocol. A protocol that enables an application
in a secure network to communicate through a firewall
via a socks server.

socks server. A circuit-level gateway that provides a
secure one-way connection through a firewall to server
applications in a nonsecure network.

source member. A library member containing source
statements in any of the programming languages that
are supported by VSE.

split. To double a specific unit of storage space (CI or
CA) dynamically when the specified minimum of free
space gets used up by new records.

spooling. The use of disk storage as buffer storage to
reduce processing delays when transferring data
between peripheral equipment and the processor of a
computer. In z/VSE, this is done under the control of
VSE/POWER.

Spool Access Protection. An optional feature of
VSE/POWER that restricts individual spool file entry
access to user IDs that have been authenticated by
having performed a security logon.

spool file.
1. A file that contains output data that is saved for

later processing.
2. One of three VSE/POWER files on disk: queue file,

data file, and account file.

stacked tape. An IBM supplied product-shipment tape
containing the code of several licensed programs.

standard label. A fixed-format record that identifies a
volume of data such as a tape reel or a file that is part
of a volume of data.

stand-alone program. A program that runs
independently of (not controlled by) the VSE system.

startup. The process of performing IPL of the
operating system and of getting all subsystems and
applications programs ready for operation.

start option. In VTAM, a user-specified or IBM
specified option that determines conditions for the time
a VTAM system is operating. Start options can be
predefined or specified when VTAM is started.

static partition. A partition, which is defined at IPL
time and occupying a defined amount of virtual
storage that remains constant. See also dynamic partition.

storage director. An independent component of a
storage control unit; it performs all of the functions of a
storage control unit and thus provides one access path
to the disk devices that are attached to it. A storage
control unit has two storage directors.

Glossary 407

storage fragmentation. Inability to allocate unused
sections (fragments) of storage in the real or virtual
address range of virtual storage.

suballocated file. A VSE/VSAM file that occupies a
portion of an already defined data space. The data
space might contain other files. See also unique file.

sublibrary. In VSE, a subdivision of a library.
Members can only be accessed in a sublibrary.

sublibrary directory. An index for the system to locate
a member in the accessed sublibrary.

submit. A VSE/POWER function that passes a job to
the system for processing.

SVA. See shared virtual area.

Synchronous DataLink Control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
Transmission exchanges might be duplex or half-duplex
over switched or non-switched links. The configuration
of the link connection might be point-to-point,
multipoint, or loop.

SYSRES. See system residence volume.

system control programming (SCP). IBM supplied,
non-licensed program fundamental to the operation of
a system or to its service or both.

system directory list (SDL). A list containing directory
entries of frequently used phases and of all phases
resident in the SVA. The list resides in the SVA.

system file. In z/VSE, a file that is used by the
operating system, for example, the hardcopy file, the
recorder file, the page data set.

System Initialization Table (SIT). A table in CICS that
contains data that is used by the system initialization
process. In particular, the SIT can identify (by suffix
characters) the version of CICS system control
programs and CICS tables that you have specified and
that are to be loaded.

system recorder file. The file that is used to record
hardware reliability data. Synonymous with recorder file.

system refresh. See service refresh.

system refresh release. See refresh release.

system residence file (SYSRES). The z/VSE system
sublibrary IJSYSRS.SYSLIB that contains the operating
system. It is stored on the system residence volume
DORSES.

system residence volume (SYSRES). The disk volume
on which the system sublibrary is stored and from
which the hardware retrieves the initial program load
routine for system startup.

system sublibrary. The sublibrary that contains the
operating system. It is stored on the system residence
volume (SYSRES).

T

task management. The functions of a control program
that control the use, by tasks, of the processor and
other resources (except for input/output devices).

time event scheduling support. In VSE/POWER, the
time event scheduling support offers the possibility to
schedule jobs for processing in a partition at a
predefined time once repetitively. The time event
scheduling operands of the * $$ JOB statement are used
to specify the wanted scheduling time.

track group. In VSE/POWER, the basic organizational
unit of a file for CKD devices.

track hold. A function that protects a track that is
being updated by one program from being accessed by
another program.

transaction.
1. In a batch or remote batch entry, a job or job step. 2.

In CICS TS, one or more application programs that
can be used by a display station operator. A given
transaction can be used concurrently from one or
more display stations. The execution of a
transaction for a certain operator is also referred to
as a task.

2. A given task can relate only to one operator.

transient area. An area within the control program
that is used to provide high-priority system services on
demand.

Turbo Dispatcher. A facility of z/VSE that allows to
use multiprocessor systems (also called CEC: Central
Electronic Complexes). Each CPU within such a CEC
has accesses to be shared virtual areas of z/VSE:
supervisor, shared areas (24 bit), and shared areas (31
bit). The CPUs have equal rights, which means that any
CPU might receive interrupts and work units are not
dedicated to any specific CPU.

U

UCB. Universal character set buffer.

universal character set buffer (UCB). A buffer to hold
UCS information.

user console. In z/VSE, a console that receives only
those system messages that are specifically directed to
it. These are, for example, messages that are issued
from a job that was submitted with the request to echo
its messages to that console. Contrast with master
console.

408 VSE/POWER V9R2 Application Programming

user exit. A programming service that is provided by
an IBM software product that can be requested during
the execution of an application program for the service
of transferring control back to the application program
upon the later occurrence of a user-specified event.

V

variable-length relative-record data set (VRDS). A
relative-record data set with variable-length records.
See also relative-record data set.

variable-length relative-record file. A VSE/VSAM
relative-record file with variable-length records. See
also relative-record file.

VIO. See virtual I/O area.

virtual address. An address that refers to a location in
virtual storage. It is translated by the system to a
processor storage address when the information stored
at the virtual address is to be used.

virtual addressability extension (VAE). A storage
management support that fives the user of VSE
multiple address spaces of virtual storage.

virtual address space. A subdivision of the virtual
address area available to the user for the allocation of
private, nonshared partitions.

virtual disk. A range of up to 2 gigabytes of
contiguous virtual storage addresses that a program
can use as workspace. Although the virtual disk exists
in storage, it appears as a real FBA disk device to the
user program. All I/O operations that are directed to a
virtual disk are intercepted and the data to be written
to, or read from, the disk is moved to or from a data
space.

Like a data space, a virtual disk can hold only user
data; it does not contain shared areas, system data, or
programs. Unlike an address space or a data space,
data is not directly addressable on a virtual disk. To
manipulate data on a virtual disk, the program must
perform I/O operations.

virtual I/O area (VIO). An extension of the page data
set; used by the system as intermediate storage,
primarily for control data.

virtual mode. The operating mode of a program can
be paged.

virtual partition. In VSE, a division of the dynamic
area of virtual storage.

virtual storage. Addressable space image for the user
from which instructions and data are mapped into
processor storage locations.

virtual tape. In z/VSE, a virtual tape is a file (or data
set) containing a tape image. You can read from or

write to a virtual tape in the same way as if it were a
physical tape. A virtual tape can be:
v A VSE/VSAM ESDS file on the z/VSE host side.
v A remote file on the server side; for example, a

Linux, UNIX, or Windows file. To access such a
remote virtual tape, a TCP/IP connection is required
between z/VSE and the remote system.

volume ID. The volume serial number, which is a
number in a volume label that is assigned when a
volume is prepared for use by the system.

VRDS. Variable-length relative-record data sets. See
variable-length relative record file.

VSAM. See VSE/VSAM.

VSE (Virtual Storage Extended). A system that
consists of a basic operating system and any IBM
supplied and user-written programs that are required
to meet the data processing needs of a user. VSE and
hardware it controls form a complete computing
system. Its current version is called z/VSE.

VSE/Advanced Functions. As part of VSE Central
Functions, a base program of z/VSE. A program that
provides basic system control and includes the
supervisor and system programs such as the Librarian
and the Linkage Editor.

VSE Connector Server. Is the host part of the VSE
JavaBeans, and is started using the job STARTVCS,
which is placed in the reader queue during installation
of z/VSE. Runs by default in dynamic class R.

VSE/DITTO (VSE/Data Interfile Transfer, Testing, and
Operations Utility). An IBM licensed program that
provides file-to-file services for disk, tape, and card
devices.

VSE/ESA (Virtual Storage Extended/Enterprise
Systems Architecture). The predecessor system of
z/VSE.

VSE/Fast Copy. A utility program for fast copy data
operations from disk to disk and dump/restore
operations via an intermediate dump file on magnetic
tape or disk.

VSE/FCOPY (VSE/Fast Copy Data Set program). An
IBM licensed program for fast copy data operations
from disk to disk and dump/restore operations via an
intermediate dump file on magnetic tape or disk. There
is also a stand-alone version: the FASTCOPY utility.

VSE/ICCF (VSE/Interactive Computing and Control
Facility). An IBM licensed program that serves as
interface, on a time-slice basis, to authorized users of
terminals that are linked to the system's processor.

VSE/ICCF library. A file that is composed of smaller
files (libraries) including system and user data, which
can be accessed under the control of VSE/ICCF.

Glossary 409

VSE JavaBeans. Are JavaBeans that allow access to all
VSE-based file systems (VSE/VSAM, Librarian, and
VSE/ICCF), submit jobs, and access the z/VSE operator
console. The class library is contained in the
VSEConnector.jar archive. See also JavaBeans.

VSE library. A collection of programs in various forms
and storage dumps stored on disk. The form of a
program is indicated by its member type such as source
code, object module, phase, or procedure. A VSE library
consists of at least one sublibrary, which can contain
any type of member.

VSE/POWER. An IBM licensed program that is
primarily used to spool input and output. The
program's networking functions enable a VSE system to
exchange files with or run jobs on another remote
processor.

VSE/VSAM (VSE/Virtual Storage Access Method).
An IBM access method for direct or sequential
processing of fixed and variable length records on disk
devices.

VSE/VSAM catalog. A file containing extensive file
and volume information that VSE/VSAM requires to
locate files, to allocate and deallocate storage space, to
verify the authorization of a program or an operator to
gain access to a file, and to accumulate use statistics for
files.

VSE/VSAM managed space. A user-defined space on
disk that is placed under the control of VSE/VSAM.

W

wait for run subqueue. In VSE/POWER, a subqueue
of the reader queue with dispatchable jobs ordered in
execution start time sequence.

wait state. The condition of a processor when all
operations are suspended. System recovery from a hard
wait is impossible without performing a new system
startup. See hard wait.

Workstation File Transfer Support. Enables the
exchange of data between IBM Personal Computers
(PCs) linked to a z/VSE host system where the data is
kept in intermediate storage. PC users can retrieve that
data and work with it independently of z/VSE.

work file. A file that is used for temporary storage of
data being processed.

Numerics

24-bit addressing. Provides addressability for address
spaces up to 16 megabytes.

31-bit addressing. Provides addressability for address
spaces up to 2 gigabytes.

64-bit addressing. Provides addressability for address
spaces up to 2 gigabytes and above. See also 24-bit
addressing.

410 VSE/POWER V9R2 Application Programming

Index

Special characters
$JOBACCT phase 28
$SPLnnnn 67
'FE' record 219
'FE' records 120

Numerics
4248 support 53

A
A-book 322, 333
abnormal device end 190
abnormal end

external device support 190
spool-access support, at

GET-output 100
spool-access support, at PUT

output 122
abnormal end during PUT-SPOOL 122
accepted commands, by

VSE/POWER 219
access, unlimited for subsystem 62
accessibility xii
account record, DSECT 9
account record, layout of Advanced

Function Printing 11
account records

card format of 8
DSECTs for 9
execution 12
list 15
network 17
prefix for 9
processing of 7
punch 18
reader 20
receiver task 21
RJE,BSC 23
RJE,SNA 23
spool-access connect 25
spool-access operation 25
SYSID information in 9
system-up 24
transmitter task 21
types of 9

account records, types of 7
accounting 11
accounting for OUTEXIT 332
accounting for output 121
accounting, job 7
Advanced Function Printing

layout of 11
AFP (operand of PACCNT macro) 9
ALL (operand of PACCNT macro) 9
ALLCPY (operand of PWRSPL

macro) 219
alphaj, definition of 297
alphaj*, definition of 297

alphajb, definition of 297
alpham, definition of 297
alpham*, definition of 297
alphap, definition of 297
ALTER (operand of PWRSPL

macro) 219
alter job attributes

from partition, SPOOL macro
support 348

from partition, spool-access
support 219

apostrophe coding 195
APPEND (operand of PWRSPL

macro) 219
appending output to queue 131
application programming

access VSE/POWER 57, 343
job accounting 7
output segmentation 31
SPOOL macro support 343
spool-access support 57

ASA conversion 88
ASA-type records 120
attributes in the PWRSPL macro 219

B
bibliography xiv
blank truncation 106, 117
BMS mapping 25
BROWSE (operand of PWRSPL

macro) 219
BROWSE mode 75

parallel 78
BSC (operand of PACCNT macro) 9
buffer format 357
buffers

reply, external device support 194
spool-access GET service 75
spool-access PUT 103
spool-access support, overview 57

buffers, number of 346

C
CANCEL (operand of PWRSPL

macro) 219
cancel codes (job-accounting)

execution account record 12
list account record 15
network account record 17
punch account record 18
reader account record 20
receiver task account record 21
RJE,BSC account record 23
RJE,SNA account record 23
spool-access connect account

record 25
spool-access operation account

record 25

cancel codes (job-accounting) (continued)
transmitter task account record 21

cancel output order 203
carriage control character 219
carriage control characters, reserved 120
central operator commands

authority to use, SPOOL macro
support 348

authority to use, spool-access
support 219

PACCOUNT, use of 7
changes xvii
channel programs for IBM 4248 53
character conversion, ASA to machine

control 88
checkpoint control record 231
checkpoint response control record 231
checkpoint-response records 128
checkpoint, deletion of information 70
checkpoint, spool access

GET-service 88
PUT-output service 127

checkpointing 88
storage requirements 90

CLASS (operand of PWRSPL macro) 219
close request, spool access

GET service 86
PUT-job service 111
PUT-output service 123

CMPACT (operand of PWRSPL
macro) 219

coding sequence for output
submission 123

coding sequence, external device support
abnormal end 190
cancel with HOLD 183
cancel without HOLD 183
device failure 190
device setup 178
device stop, end of output 186
device stop, restart after 186
device-order processing 194
no entry in queue 178
reactivation 178
starting a device 175

coding sequence, spool access
CTL service 65
GET service, complete queue

entry 84
GET service, restart 93
PUT service, checkpoint for

output 127
PUT service, close with SPL 123
PUT service, get messages 113
PUT service, job/output

submission 106
PUT service, output

segmentation 125
PUT service, restart for output 128,

131
set up a communication path 59

© Copyright IBM Corp. 1987, 2014 411

column 72 211
COMMAND (operand of PWRSPL

macro) 219
command authorization

SPOOL macro support 348
spool-access support 219

command symbols 3
commands accepted by

VSE/POWER 219
communication across partitions 343
communication path

external device support 173
for SPOOL macro support 343
multiple for spool-access 64
removal of 63
single for spool-access 59

communication path to VSE/POWER 57
concepts

job accounting 7
output segmentation 31
SPOOL macro support 343
spool-access support 57

connect-any request 171
connection-termination code 25
considerations

SPOOL macro support 344
considerations, device driving

system 332
considerations, restart 333
control

by CTLSPOOL of SPOOL macro
support 348

control service
by CTL macro, SPOOL macro

support 348
conventions, command 3
conversion from ASA to machine

control 88
conversion to upper case 319
COPY (operand of PWRSPL macro) 219
copy number 93
count-driven output segmentation 31
CPDS-type record 120
cross-partition communication 343
CTL (operand of PWRSPL macro) 219
CTL access, direct queue entry 68
CTL service request 65
CTL service, spool-access support

coding sequence 65
direct access 68
end by QUIT 68
message retrieval 67
opening of 65
possible functions 65
return information 71
scope of access 61

CTL-OPEN request, starting 68
CTLREC (operand of PWRSPL

macro) 219
CTLSPOOL macro 348

D
data format, spool-access support 103
data input

using SPOOL macro support 356
using spool-access support 103

data length
input, spool-access support 103

data-driven output segmentation 31
DELETE (operand of PWRSPL

macro) 219
deleting checkpoint information 70
DEVADDR (SEGMENT operand) 371
device driving system,

considerations 332
device failure, coding for 190
device order

cancel output 203
coding sequence for 193
formats of 195
header section 195
parameter string in 195
PFLUSH, data section 203
PGO, data section 201
PRESTART, data section 202
processing of 193
PSETUP, data section 201
PSTART, data section 199
PSTOP, data section 200
PXMIT, data section 203
reactivate-device 201
request for 174
response to, header section 197
restart-device 202
setup-device 201
start-device 199
stop-device 200
transmit-command 203

device order, processing 193
device setup

external device support 178
device-driving system (DDS) 171
device-stopped signal 207
devices

external (see external device
support) 174

diagnostic aids, exits 333
direct queue entry access, CTL 68
direct queue entry access, GET 79
disability xii
DISP (operand of PWRSPL macro) 219
DISPLAY (operand of PWRSPL

macro) 219
disposition Y

external device support 190
spool-access GET service 100
spool-access PUT service 117

disposition, changing of
by CTLSPOOL macro 348
from partition by spool-access 219
to L after GETSPOOL 353
to L after spool-access GET 75

DSECT for account record 9
DSECT of IPWSEGM (IPW$MXD) 38
DSECT of XPCCB 212
dump, of VSE/POWER partition 333

E
ECB posted 123
end spool-access 63
end spool-access service

CTL processing 68

end spool-access service (continued)
GET service 86
PUT-job service 111
PUT-output service 123

end-of-buffer indication, PUT
service 103

entry processing by user exit 331
escape mapping 25
example of spool macro coding 361
example, IPWSEGM macro 44
example, OUTEXIT routine 333
example, PUTACCT macro 28
example, SEGMENT macro 374
example, user exit routine for local

input 322
examples

add information for job
accounting 28

coding, SPOOL macro support 361
reader exit routine 317
segment output (program-driven

output segmentation) 44, 374
spool-access support

programming 271
EXEC (operand of PACCNT macro) 9
execution account record 11
exit failure, tracing 333
exit routine for output 327
exit routine JOBEXIT 319
exit routines, intercommunication 317
extended event message (XEM) 155

generation 156
layout 159
overview 155
retrieving 160
start 159
stop 163

extended segmentation 31
external device support

abnormal-end, of VSE/POWER 192
abnormal-end, output-related 190
cancelation of output 183
communication path for 173
data retrieval 177
debugging a program 209
debugging aid, external device

support 209
device for, start 174
device orders, format of 195
device orders, processing of 193
device setup 178
device-order request 174
logical destinations 175
message routing by 208
no output available 177
order-parameter string 195
order-response header section 197
order/signal request 183
orders header section 195
output displays 209
overview 171
password checking 209
processing spooled output 177
program debugging 209
programming prerequisites 171
range of support 208
routing of messages by 208

412 VSE/POWER V9R2 Application Programming

external device support (continued)
signals 207
stopping the device 186
use of VSE/POWER commands for

debugging 209
used as debugging aid, external

device support 209
user responsibilities 171
with shared spooling 173

F
failure of user exit 317
FE records 120, 219
feedback codes

meaning of 297
feedback-2 codes

during GET 97
summary 231

fields of SPL 117
fixed format queue display record 231
fixed format, how to obtain 219
format

account records (see account
records) 12

device orders 195
macros, SPOOL macro support 345
macros, spool-access support 211
subsystem orders 195

FORMAT (operand of PWRSPL
macro) 219

format of buffer 357
FORMS (SEGMENT operand) 371
forms alignment

on external device 178
full account file 8
FUNC (operand of PWRSPL macro) 219
functions of VSE/POWER

job accounting 7
segmentation (of output) 31
SPOOL macro support 343
spool-access support 57

G
GCM (operand of PWRSPL macro) 219
GCM-OPEN-DELETE request,

issuing 146
GCM-OPEN-KEEP request, issuing 146
GCM-OPEN-REMOVE request,

issuing 147
GEN (operand of PWRSPL macro) 219
GENERIC (operand of PWRSPL

macro) 219
GET (operand of PWRSPL macro) 219
GET BROWSE in creation 81
GET OPEN request, starting 80
GET service request 75
GET service, spool-access support

checkpoint request 88
close request 86
coding sequence, complete queue

entry 84
coding sequence, restart 93
considerations 75
data request 86

GET service, spool-access support
(continued)

direct access 79
generic mode 75
GET BROWSE mode 78
Get-OPTB request 96
Modify-OPTB request 97
open processing 84
output failure 87, 190
PURGE request 87
QUIT request 87
quit-and-lock request 190
QUIT-and-LOCK request 87
restart request 93
return information 97
scope of access 61

GET-OPTB control record 231
GETSPOOL macro 353

H
handling failure of VSE/POWER user

exit 317
header section of device order 195
HOLD (operand of PWRSPL macro) 219

I
Idump 333
inline SPL 93, 219
input

using SPOOL macro support 356
using spool-access support 103

internal record count 93
IPW$DQR mapping macro 93, 317, 322
IPW$IDM macro 333
IPW$MXD mapping macro 38
IPWSEGM DSECT (IPW$MXD) 38
IPWSEGM macro 31, 38

J
JCM (job completion message)

queueing 110
requesting 109
retrieving 139

JECL (SEGMENT operand) 371
JGM (job generation message)

queueing 110
requesting 109
retrieving 139

JNUM (operand of PWRSPL macro) 219
job accounting

account records, DSECTs for 9
add user information 28
execution account record 12
list account record 15
network account record 17
PACCNT macro 9
punch account record 18
PUTACCT macro 28
reader account record 20
receiver task account record 21
RJE,BSC account record 23
RJE,SNA account record 23

job accounting (continued)
spool-access connect account

record 25
spool-access operation account

record 25
spool-access, output submission 121
summary 7
system-up account record 24
transmitter task account record 21

job accounting, requirements 7
job attributes, dynamic access to 51
job completion message (JCM)

queueing 110
requesting 109
retrieving 139

job completion message record 231
job completition message enabling 70
job entry control language (JECL)

output segmentation, data-driven 31
job event message retrieval 139
job generation message (JGM)

queueing 110
requesting 109
retrieving 139

job generation message record 231
job name

submission, PUTSPOOL 357
submission, spool-access 219

job stream, submitting 356
job, VSE/POWER

controlling by CTLSPOOL 348
segmentation of output 31
submission (cross-partition using

SPOOL support) 356
JOBEXIT 319
JOBEXIT routine sample 322
JOBEXIT type routine 322
JOBN (operand of PWRSPL macro) 219
JSUF (operand of PWRSPL macro) 219

K
keyword OPTB 133

L
layout, Advanced Function Printing

Account Record 11
layout, record prefix 231
line count for spooled records 120
LIST (operand of PACCNT macro) 9
list account record 15
list of spool parameters 133
list output

delay of 31
local disposition 117, 123, 231, 297
local input routine 319
logical destinations, setting of 175

M
macros

CTLSPOOL 348
GETSPOOL 353
IPW$MXD 38
IPWSEGM 31

Index 413

macros (continued)
job accounting, VSE/POWER 9
MAPXPCCB 212
PACCNT 9
PUTACCT 28
PUTSPOOL 356
PWRSPL macro 217
SEGMENT 371
SPL 345
spool-access support, overview 57
XPCC 212
XPCCB 211

MAP (operand of PWRSPL macro) 219
mapping formats 25
MAPXPCCB macro 212
MAPXPCCB macro, overview 57
master password 62
master record 89
maximum number of PUTSPOOL

buffers 346
MCC-type records 120
message control record 231
message retrieval

CTL service, spool-access 67
PUT service, spool-access, coding

for 113
PUT service, spool-access,

general 104
message retrieval support 139
message routing (external device

support) 208
messages deleted 67
MODE (operand of PWRSPL macro) 219
MODIFY-OPTB control record 231
Modify-OPTB request, spool-access

support 97
modifying output 327
multivolume tape segmentation 31

N
NAME (SEGMENT operand) 371
NETEXIT type routine 333
networking function

account record for 17
command authority (SPOOL macro

support) 348
command authority, spool-access

support 219
receiver account record 21
transmitter account record 21

NEWVAL (operand of PWRSPL
macro) 219

NODE (operand of PWRSPL macro) 219
notations, command 3
notify control record 231
NOWAIT (operand of PWRSPL

macro) 219
null buffer 123

O
OGM (output generation message)

queueing 110
requesting 109
retrieving 139

open spool-access service
CTL-service processing 65
GET-service processing 84
PUT-service processing 106

open-append request 128
operations

command authority
(cross-partition) 348

OPT (operand of PWRSPL macro) 219
OPTB 75, 132, 133, 328
OPTB (see Output Parameter Text

Block) 96, 97, 132, 133
options of VSE/POWER

job accounting (PACCOUNT
command) 7

output segmentation 31
output segmentation, data-driven 31

OPTU 132, 328
order control record 231

flush device order section 231
reactivate device order section 231
restart device order section 231
send message order section 231
set logical destination order

section 231
setup device order section 231
start device order section 231
stop device order section 231
Xmit device order section 231

order response control record 231
order-response control record 197
orders, external device

cancel output 203
formats of 195
processing of 192
reactivate-device 201
request passing of 183
restart-device 202
send-message 205
set-logical-destination 205
setup-device 201
start-device 199
stop-device 200
transmit-command 203
VSE/POWER originated 192

OUTEXIT fields in account record 332
OUTEXIT routine 327
OUTEXIT, parameter of SET 327
output (see also list/punch output)

segmented (staged) 31
submission, failure during 122
to external device, coding for 177
to partition, SPOOL macro

support 353
to partition, spool-access support 75
unavailable, external device

support 177
output accounting 121
output appended to queue 131
output exit parameter list 328
output generation message (OGM)

queueing 110
requesting 109
retrieving 139

output generation message record 231

Output Parameter Text Block
(spool-access support)

format 132
Get-OPTB request 96
Modify-OPTB request 97
passing 133
specifying 132

output segmentation 31
coding example (SEGMENT

macro) 44, 374
count-driven 31
data-driven 31
IPWSEGM macro 31
macro SEGMENT 31
overview 31
program-driven 31
return codes, IPWSEGM macro 36
return codes, SEGMENT macro 373
SEGMENT macro 371
types of segmentation 31

output submission 123
output user routine 327
output-arrived signal 207
overviews

account records 9
job accounting 7
output segmentation 31
SPOOL macro support 343
spool-access support 57

P
PACCNT macro 9
page count

VSE/POWER maintained 120
page count for spooled records 120
parallel browsing 78
parameter list for OUTEXIT 328
parameter string, external device

support 195
partition priority

with SPOOL macro support 345
passing commands to VSE/POWER 219
phase $JOBACCT 28
PNET (operand of PACCNT macro) 9
PNET exit routine sample 333
POWJOB job attributes 51
PRFX (operand of PWRSPL macro) 219
PRI (operand of PWRSPL macro) 219
PRMODE support, for PUT-OPEN

output 117
processing of queue entries 331
product-sensitive programming

interface 322
program-driven output segmentation 31
program-driven segmentation

causes for 31
macro for 371
macros for 31

programming example, JOBEXIT 322
programming example, OUTEXIT 333
programming interface,

product-sensitive 322
protected output entry (spool-access

support) 100, 117
PUNCH (operand of PACCNT macro) 9

414 VSE/POWER V9R2 Application Programming

punch output
delay of 31

PURGE request, spool-access support 87
put account record order 206
PUT account record order 231
PUT APPEND, and Spool Access

Protection 131
PUT service, spool access

close processing, job submission 111
close service for output 123
coding sequence, checkpoint for

output 127
coding sequence, close with SPL 123
coding sequence, get messages 113
coding sequence, job/output

submission 106
coding sequence, output

segmentation 125
coding sequence, output submission

restart 128, 131
data format 103
data length 103
end of data indication 103
general considerations 103
job(s) to input queue 105
message retrieval, coding for 113
message retrieval, general 104
open processing 106
output data 117
output submission, failure of 122
passing OPTBs 133
PUT-data request 111
QUIT request 112
return information, job

submission 114
return information, output

submission 134
specifying OPTBs 132

PUTACCT macro 28
PUTSPOOL buffer, maximum

number 346
PUTSPOOL macro 356
PWD (operand of PWRSPL macro) 219
PWRSASEX 271
PWRSPL macro 57, 217, 231
PXPFBKC2 field in PWRSPL 231
PXPFBKCD field in PWRSPL 231
PXPRETCD field in PWRSPL 231

Q
QUEUE (operand of PWRSPL

macro) 219
queue control area (QCA) 89
queue display record, fixed format 231
queue entry

retrieval of 75
submission of, job 105
submission of, output 117

queue entry access, direct GET 79
queue entry number 70
queue entry processing 331
queue entry, direct 68
queue record number, finding 80
queue record number, internal 68
quit request, spool access

GET service 87

quit request, spool access (continued)
PUT service 112

quit-and-lock request 25
external device support 190
spool-access GET service 87

QUIT(-and-LOCK) request 87

R
reactivate-device order 201
READER (operand of PACCNT

macro) 9
reader exit

example for local input 317
receiver task

account record 21
record count

application to VSE/POWER 127
synchronization of 127
VSE/POWER maintained 120

record count after restart 128
record length

in record prefix 103
maximum/minimum for spool-access

PUT 103
record order, put account 206
record prefix 75
Record prefix layout 231
record prefix, bytes 2 and 3 346
record types, accounting 7
record, active 93
record, checkpoint control 231
record, checkpoint response control 231
record, GET-OPTB control 231
record, job completion message 231
record, job generation message 231
record, message control 231
record, MODIFY-OPTB control 231
record, notify control 231
record, order control 231
record, order response control 231
record, output generation message 231
record, restart control 231
record, signal control 231
RECV (operand of PACCNT macro) 9
register use

reader-exit 321
SPOOL macro support 345

RELEASE (operand of PWRSPL
macro) 219

REMOTE (operand of PWRSPL
macro) 219

remote job entry BSC
account record for 23

remote job entry SNA
RJE,SNA account record 23

reply buffer, size 194
reply buffer, spool access

for CTL service 65
for GET service 75
for PUT service 103

REQ (operand of PWRSPL macro) 219
request spool-access 57
requirements for external device

support 171
requirements for job accounting 7
reserved carriage control characters 120

RESET (operand of PWRSPL macro) 219
residency mode (RMODE) 38
response records

cancel output 203
formats of 195
processing of 193
reactivate-device 201
restart-device 202
send-message 205
set-logical-destination 205
setup-device 201
start-device 199
stop-device 200
transmit-command 203

RESTART (operand of PWRSPL
macro) 219

restart considerations 333
restart control record 231
restart request 128
restart to active record 95
restart-device order 202
restart, spool access

GET-service 93
PUT-output service 128

restrictions
external devices and shared

spooling 173
PUTACCT macro use 28
shared spooling and external

devices 173
restrictions for OUTEXIT 328
retrieval of data from queues

GET-service, spool-access 75
GETSPOOL macro 353

retrieve queue entry 75
RETSEP (operand of PWRSPL

macro) 219
return and feedback code 200
return code in XPCCB 59
return codes 134

(see also return information) 297
return codes (see also return information)

CTLSPOOL, GETSPOOL,
PUTSPOOL 359

IPWSEGM macro 36
on return from reader exit 321
PUTACCT macro 28
SEGMENT macro 373
XPCC macro (spooled-access

support) 214
XPOST 359
XWAIT 359

return codes for XPCC macro 214
return codes from IPWSEGM 36
return codes from OUTEXIT 330
return codes from PUTACCT macro 28
return codes from SEGMENT 373
return codes from spool macros 359
return information, spool access

CTL-service processing 71
GET-service processing 97
on access termination 63
PUT-job service 114
PUT-output service 134

return information, XPCC macro 214
routines, user-written

job accounting 28

Index 415

routines, user-written (continued)
reader exit (example) 317

rules for passing commands 219

S
sample for exit routine 322, 333
saving account records 8
scope of GET/CTL access 61
SCS mapping 25
SEGMENT macro 371
segmentation of output 31
segmentation, extended 31
send buffer, spool access

for CTL service 65
for GET service 75
for PUT service 103

send-message order 205
sense ID 53
service request 57
session termination code 23
set-logical-destination order 205
setup-device order 201
setup-processed signal 201, 207
shared spooling

with external device support 173
shared system, account record for 9
signal control record 231
signals processing 207
signals, external device support

device-stopped 207
output-arrived 207
processing of 207
request passing of 183
setup-processed 207

SIGNOFF code 23
size of reply buffer 194
SNA (operand of PACCNT macro) 9
SPL (operand of PWRSPL macro) 219
SPL fields 117
SPL macro (cross-partition) 345
SPLDMOHP field (spool-access

support) 100, 117
Spool Access Protection

effect on GET/CTL access 61
effect on PUT APPEND 131
PNET considerations 61
violation, return code 297
with SPOOL macros 344

spool job records, format 105
spool macro coding example 361
spool macro return codes 359
SPOOL macro support

command authority 348
connect to VSE/POWER 343
controlling jobs (by CTLSPOOL) 348
disconnect from VSE/POWER 343
job submission (PUTSPOOL) 356
partition priority 345
performance considerations 344
programming example 361
purpose of 343
register use 345
retrieve data from queues

(GETSPOOL) 353
SPL macro 345
spool parameter list 345

SPOOL macro support (continued)
VSE macros required 343

spool macros 343
spool output records, format 119
spool parameter list 133
spool parameter list, spool access

definition macro for 217
fields of for job submission 106
fields of for output (append) 131
fields of for output (restart) 131
fields of for output submission 117
GET service 75
PUT-job service 105
PUT-output service 122
with PUT-output close 123

spool parameter list, SPOOL macro
support

defining to VSE/POWER 346
DSECT for 346
macro for definition 345
pointer to 343

spool-access parameter list 231
Spool-Access PUT-OUTPUT

segmentation 31
spool-access support 57

communication path for 59
concept 57
control service 65
end use of 63
Get-OPTB request 96
GET-service 75
IPW$MXD macro 38
job submission 105
keyword OPTB 133
macros for, description 211
macros for, summary 57
MAPXPCCB macro 212
Modify-OPTB request 97
OPTB (see Output Parameter Text

Block 96, 97, 132, 133
output submission 117
passing OPTBs 133
purpose of 57
PUT job service 105
PUT output service 117
PUT service, general 103
PWRSPL macro 217
service types, overview 60
specifying OPTBs 132
submission to XMT queue 103
XPCC macro 212
XPCCB macro 211

staged output 31
start-device order 199
status display

job status (SPOOL macro
support) 348

job/output characteristics,
spool-access support 219

status information signaled 207
stop-device order 200
stopping

external device 186
output 183
spool-access 63

submitting a job stream 356
subsystem access, unlimited 62

subsystem order, processing 195
subsystem orders 195

processing of 204
send-message 205
set logical destination 205

subsystem-order header section 195
summary of changes xvii
support for job event messages 139
syntax symbols 3
syntax, of commands 3
SYS (operand of PACCNT macro) 9
SYSID (operand of PACCNT macro) 9
SYSID (operand of PWRSPL macro) 219
system error 345

T
tape segmentation 31
terminate spool-access 63
TRANS (operand of PACCNT macro) 9
transmission disposition 117, 123, 231,

297
transmit queue, access to 101
transmit-command order 203
transmitter task

account record 21
TYPE (operand of PWRSPL macro) 219
TYPE specification

of spool parameter list, SPOOL macro
support 346

of spool parameter list, spool-access
support 219

types of account records 7

U
unit of transfer (see also buffers)

spool-access support 57
UPD (operand of PWRSPL macro) 219
update SPL fields 128
USER (operand of PWRSPL macro) 219
User data changed by user 231
User data changed by VSE/POWER 231
user exit

handling failure of 317
recovery 317

user exit example, JOBEXIT 322
user exit example, PNET 333
user exit routine OUTEXIT 327
user exit routines,

intercommunication 317
user information

additional, for job accounting 28
user-exit processing of queue entry 331
user-written channel programs for IBM

4248 53
USERID (operand of PWRSPL

macro) 117, 219

V
VSE macros

for SPOOL macro support 343
LFCB causing segmentation 31

VSE/POWER user exit
handling failure of 317

416 VSE/POWER V9R2 Application Programming

VSE/POWER user exit (continued)
recovery 317

X
XCONN (operand of PACCNT macro) 9
XECBTAB macro 343
XECBTAB macro (for SPOOL macro

support) 343
XEM 155
XMIT-command order 203
XMT (transmission) queue

access to 81, 101
job submission to 103
output submission to 103

XPCC macro 212
XPCC macro, overview 57
XPCC macro, return codes 214
XPCCB DSECT 212
XPCCB macro 211
XPCCB macro, overview 57
XSPOOL (operand of PACCNT macro) 9

Z
z/VSE macros, restricted use 328

Index 417

418 VSE/POWER V9R2 Application Programming

Readers’ Comments — We'd Like to Hear from You

IBM z/VSE
VSE Central Functions
VSE/POWER Application Programming
Version 9 Release 2

Publication No. SC34-2642-01

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +49-7031-163456
v Send your comments via email to: s390id@de.ibm.com
v Send a note from the web page: http://www.ibm.com/systems/z/os/zvse/

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2642-01

SC34-2642-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Product Number: 5686-CF9

Printed in USA

SC34-2642-01

	Contents
	Figures
	Tables
	Notices
	Trademarks
	Accessibility
	Using Assistive Technologies

	About This Publication
	Who Should Use This Publication
	How to Use This Publication
	Where to Find More Information
	Abbreviations

	Summary of Changes
	VSE/POWER 9.2
	VSE/POWER 9.1
	VSE/POWER 8.3

	Part 1. Syntax Diagrams, Accounting, Output Segmentation, Dynamic Access to Job Attributes, and IBM 4248 Printer Support
	Chapter 1. Understanding Syntax Diagrams
	Chapter 2. Job Accounting
	Job Accounting by VSE/POWER
	Requirements
	Account Macros and Records
	Account-File-Full Condition
	Record Format With or Without Prefix
	The PACCNT Macro: Generating an Account-Record DSECT
	Layout of the Advanced Function Printing (AFP) Account Record
	Layout of the Execution Account Record
	Layout of the List Account Record
	Layout of the Network Account Record
	Layout of the Punch Account Record
	Layout of the Reader Account Record
	Layout of the Transmitter/Receiver Account Record
	Layout of the RJE,BSC Account Record
	Layout of the RJE,SNA Account Record
	Layout of the System-Up Account Record
	Layout of the Spool-Access-Connect Account Record
	Layout of the Spool-Access-Operation Account Record
	The PUTACCT Macro: Adding User Information to Account Records

	Chapter 3. Output Segmentation
	IPWSEGM Macro - Extended Output Segmentation
	Generation of Duplicate LST and PUN Output
	Requirements for the Caller
	Format of the Macro
	Return Codes from the IPWSEGM Macro
	Residency Mode Considerations
	IPW$MXD Mapping Macro
	Format of the Macro
	Examples of the IPWSEGM Macro

	Chapter 4. Dynamic Access to VSE/POWER Job Attributes
	Chapter 5. Support of the IBM 4248 Printer
	Part 2. Spool-Access Support
	Chapter 6. Introduction to Spool-Access Support
	Spool-Access Support Overview
	Setting Up a Communication Path
	Requesting VSE/POWER Access Services
	Scope of GET/CTL Access to Queue Entries
	Limitation by User ID (and Node ID)
	Limitation by Password
	Unlimited Access
	Limitation by Maximum Number of Users

	Ending Access to VSE/POWER Services
	End of Access Requested by Your Program

	Setting Up Several Communication Paths

	Chapter 7. CTL - Passing a Command
	Starting the CTL Service
	Retrieving Messages
	Ending the CTL Service
	Direct Queue Entry CTL Access
	Enabling Job Completion Messages by the Release Command
	Deleting Checkpoint Information
	Checking the Return Information for CTL Service Requests

	Chapter 8. GET - Retrieving a Queue Entry
	Introduction to the GET Service
	Starting the GET Service
	Overview of the Checkpoint and Restart Facility
	Ending the GET Service

	Browsing a Queue Entry for Viewing Only
	Direct Queue Entry GET Access to the RDR/LST/PUN/XMT Queues
	How to Find the Internal Queue Record Number
	Starting a Direct GET-OPEN Request
	Special Considerations for Access to the XMT Queue

	Direct GET BROWSE Access To Output Queue Entries In Creation
	Searching for Queue Entries in Creation
	Starting a Direct GET-OPEN for BROWSE of Queue Entries in Creation

	Mandatory and Optional Operands for GET-OPEN
	Coding Sequence for the GET Service
	Starting the GET Service
	Retrieving Spool Data
	Ending the GET Service
	Issuing a CLOSE Request
	Issuing a GET-QUIT Request
	Issuing a QUIT-and-LOCK Request
	Issuing a PURGE Queue Entry Request

	Converting ASA Characters to Machine Control Characters
	Requesting a Checkpoint
	Requesting a Checkpoint with Extended Information
	Processing of a Checkpoint with Extended Information
	Deletion of a Checkpoint with Extended Information
	Storage Requirements
	Recording a Checkpoint with Extended Information
	Retrieving a Checkpoint with Extended Information
	Checking the Return Information

	Requesting a Restart of the GET Spool Data
	Restarting to the Active Record During GET BROWSE
	Identifying the Position after Restart to Active

	Issuing Requests Concerning an OPTB
	Issuing a Get-OPTB Request
	Issuing a Modify-OPTB Request

	Checking the Return Information for GET-Service Requests
	Handling an Abnormal-End Condition During GET
	Accessing the Transmit (XMT) Queue

	Chapter 9. PUT - Submitting a Job, a Job Stream, or Output
	Retrieval of Messages
	Submitting a Job or a Job Stream
	Starting a PUT Service for a Job or a Jobstream
	Enabling Retrieval of Job Event and Output Generation Messages
	Requesting Job Event and Output Generation Messages
	Jobs Generated with DISP=I
	Additional Job Event and Output Generation Message Options

	Issuing a PUT-SPOOL-Data Request
	Issuing a PUT-CLOSE-Service Request
	Ending the PUT Service for Jobs
	Issuing a RETURN-MESSAGE Request

	Checking the Return Information for a PUT-Job Service Request
	Submitting Output Data
	Format of Spool Output Records
	Spooling of Records with Carriage Control Character X'FE'
	Page and Line Counts
	VSE/POWER Account Records
	Verification SPLs
	Handling an Abnormal-End Condition During PUT-SPOOL
	Coding Sequence for PUT-OUTPUT Requests
	Issuing a CLOSE-Service Request
	Requesting Output-Segmentation
	Requesting a Checkpoint for PUT Services for Output
	Requesting a Restart
	Appending Output to an Existing Spool File

	Output Parameter Text Blocks (OPTBs)
	Specifying Standard OPTBs
	Specifying Keyword OPTBs
	Passing OPTBs to VSE/POWER
	Checking the Return Information for a PUT Service Request for Output

	Chapter 10. GCM - Retrieving Job Event and Output Generation Messages, Inquiring eXtended Event Messages
	Destination of Job Event and Output Generation Messages
	The Size of the Message Queue
	Requirements for Requesting the GCM Service
	How to Submit a Job with the 'Queue Event Message' Option
	How to Enable Completion Message Queuing by Command
	How to Retrieve Job Event and Output Generation Messages
	Layout of a Fixed Format Job Event and Output Generation Message
	Message Selection Criteria
	GCM-OPEN Request Types
	Issuing a GCM-OPEN-DELETE Request
	Issuing a GCM-OPEN-KEEP Request
	Issuing a GCM-OPEN-REMOVE Request
	Issuing A GCM-OPEN-PURGE Request
	Optional Specifications Related to the GCM-OPEN Request
	SPLXWAIT
	SPLGOPT2
	Retrieving Messages from Common Queues

	GCM Subrequests
	Issuing a GCM-MORE Subrequest
	Issuing a GCM-REMOVE Subrequest

	Additional Considerations
	Wait Specification
	Special Userid
	Identifying The Lost Message Condition
	Reflecting Active GCM Applications
	Multiple GCM Requests
	Shared Processing
	Networking

	Discontinuing the GCM-Service
	Coding Sequence for a GCM Service
	GCM-XEM Service
	Overview of eXtended Event Messages Handling
	Generation of eXtended Event Messages
	Destination of eXtended Event Messages
	Storage Allocation for XEM Support
	XEM Support Capacity
	How to Use XEM Support
	Layout of a Fixed Format eXtended Event Message
	Starting the GCM-XEM Service
	Retrieving eXtended Event Messages
	Applicability of Further Requests for Retrieving eXtended Event Messages
	Cancelling eXtended Event Messages Retrieving
	Stopping the GCM-XEM Service
	Restrictions of XEM Support

	Return and Feedback Codes from the GCM Requests
	GCM Programming Example
	Control Statements for Punching the Example
	GCM Programming Example Source Code

	Chapter 11. Supporting I/O Devices Via Device Driving Systems
	Concepts
	Shared Spooling Considerations

	Setting Up a Communication Path
	Starting a Device
	Processing a Start-Device Order
	Starting a Device with 'Set Logical Destinations'

	Processing Spooled Output
	Handling a No-Selectable-Entry Situation
	Handling a Device-Setup Situation
	Canceling Output Processing
	Requesting an Order or a Signal

	Stopping the Device
	Handling an Abnormal-End Situation
	Output-Related Abnormal End
	Abnormal End of VSE/POWER

	Processing of Order-Control Records and Signals
	VSE/POWER-Built Device Orders
	Subsystem-Originated Orders
	Process a Device Order
	Process Overview
	Sequence of Events
	Size of Your Reply Buffer

	Process a Subsystem Order
	Device/Subsystem Orders and Order-Response Records
	Device/Subsystem-Order Header Section
	Order-Response Record
	Start-Device Order
	Stop-Device Order
	Setup-Device Order
	Reactivate-Device Order
	Restart-Device Order
	Cancel-Output Order
	Transmit-Command Order

	Subsystem Orders
	Send-Message Order
	Set-Logical-Destination Order
	Put-Account Record Order

	Process a Signal

	General Hints
	Routing of VSE/POWER-Generated Messages for External Devices
	Range of Support for Communicating with a Subsystem
	Use of VSE/POWER Commands During Program Debug Activities

	Chapter 12. Spool-Access Support Macros
	XPCCB
	MAPXPCCB
	XPCC
	Macro Format
	Return Information

	PWRSPL
	Format 1: Generating an SPL
	Format 2: Updating an SPL
	Format 3: Generating a DSECT

	Spool-Access Support Parameter List (PWRSPL DSECT)

	Chapter 13. Spool-Access Support Programming Example
	Control Statements for Assembly and Catalog
	Inline Macro Definition
	Programming Example Source Code
	Control Statements for Execution
	PRINTLOG of PWRSASEX Execution

	Chapter 14. Return and Feedback Codes and Their Meanings
	Part 3. Exit Routines
	Chapter 15. Writing Various Exit Routines
	Intercommunication Between Exit Routines
	Handling of Exit Failures
	Recovery Feasible

	Exit Routine for Local Input (Type JOBEXIT)
	Function
	The User Routine Work Area
	Restrictions
	Interface Description
	Tracing of Exit Failures
	JOBEXIT Programming Example
	Control Statements to Assemble and Catalog the Routine
	Programming Example Source Code

	Exit Routine for Output (Type OUTEXIT)
	Function
	The User Routine Work Area
	Restrictions
	Interface Description
	Use of Registers
	The Parameter List
	Return Codes

	Processing of Queue Entries
	Accounting for the Output Exit Routine
	Device Driving System Considerations
	Restart Considerations
	Tracing of Exit Failures
	OUTEXIT Programming Example
	Control Statements to Assemble and Catalog the Routine
	Programming Example Source Code

	Part 4. Appendixes
	Appendix A. Cross-Partition Communication via Spool Macros
	Restriction
	Coding Practices
	Spool Access Protection Considerations
	General Notes

	SPL Macro: Generate a Spool Parameter List
	Formats of the Macro
	Format 1: Generating an SPL
	Format 2: Generating a DSECT

	CTLSPOOL Macro: Control VSE/POWER Jobs
	Requirements for the Caller
	Format of the Macro

	GETSPOOL Macro: Retrieve Data from Queues
	Requirements For the Caller
	Format of the Macro

	PUTSPOOL Macro: Submitting a Job Stream
	Requirements For the Caller
	Format of the Macro

	Return Codes for CTLSPOOL, GETSPOOL, and PUTSPOOL
	Return Codes in Register 15
	Return Codes in the SPL

	Coding Example for Using the SPOOL Macros

	Appendix B. Output Segmentation by SEGMENT Macro
	SEGMENT Macro - Controlling Output Segmentation
	Requirements for the Caller
	Format of the Segment Macro
	Return Codes from the SEGMENT Macro
	Examples of the SEGMENT Macro
	Example 1
	Example 2
	Example 3

	Appendix C. Spool-Access Support Graphical Description
	Spool-Access Support Description "Dictionary"

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

